Single Tungsten Atoms Supported on MOF‐Derived N‐Doped Carbon for Robust Electrochemical Hydrogen Evolution

Tungsten‐based catalysts are promising candidates to generate hydrogen effectively. In this work, a single‐W‐atom catalyst supported on metal–organic framework (MOF)‐derived N‐doped carbon (W‐SAC) for efficient electrochemical hydrogen evolution reaction (HER), with high activity and excellent stabi...

Full description

Saved in:
Bibliographic Details
Published inAdvanced materials (Weinheim) Vol. 30; no. 30; pp. e1800396 - n/a
Main Authors Chen, Wenxing, Pei, Jiajing, He, Chun‐Ting, Wan, Jiawei, Ren, Hanlin, Wang, Yu, Dong, Juncai, Wu, Konglin, Cheong, Weng‐Chon, Mao, Junjie, Zheng, Xusheng, Yan, Wensheng, Zhuang, Zhongbin, Chen, Chen, Peng, Qing, Wang, Dingsheng, Li, Yadong
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 26.07.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Tungsten‐based catalysts are promising candidates to generate hydrogen effectively. In this work, a single‐W‐atom catalyst supported on metal–organic framework (MOF)‐derived N‐doped carbon (W‐SAC) for efficient electrochemical hydrogen evolution reaction (HER), with high activity and excellent stability is reported. High‐angle annular dark‐field scanning transmission electron microscopy (HAADF‐STEM) and X‐ray absorption fine structure (XAFS) spectroscopy analysis indicate the atomic dispersion of the W species, and reveal that the W1N1C3 moiety may be the favored local structure for the W species. The W‐SAC exhibits a low overpotential of 85 mV at a current density of 10 mA cm−2 and a small Tafel slope of 53 mV dec−1, in 0.1 m KOH solution. The HER activity of the W‐SAC is almost equal to that of commercial Pt/C. Density functional theory (DFT) calculation suggests that the unique structure of the W1N1C3 moiety plays an important role in enhancing the HER performance. This work gives new insights into the investigation of efficient and practical W‐based HER catalysts. A single‐tungsten‐atom catalyst supported on metal–organic framework‐derived N‐doped carbon is reported. The catalyst demonstrates a high activity and excellent stability for efficient electrochemical hydrogen evolution.
AbstractList Tungsten‐based catalysts are promising candidates to generate hydrogen effectively. In this work, a single‐W‐atom catalyst supported on metal–organic framework (MOF)‐derived N‐doped carbon (W‐SAC) for efficient electrochemical hydrogen evolution reaction (HER), with high activity and excellent stability is reported. High‐angle annular dark‐field scanning transmission electron microscopy (HAADF‐STEM) and X‐ray absorption fine structure (XAFS) spectroscopy analysis indicate the atomic dispersion of the W species, and reveal that the W 1 N 1 C 3 moiety may be the favored local structure for the W species. The W‐SAC exhibits a low overpotential of 85 mV at a current density of 10 mA cm −2 and a small Tafel slope of 53 mV dec −1 , in 0.1 m KOH solution. The HER activity of the W‐SAC is almost equal to that of commercial Pt/C. Density functional theory (DFT) calculation suggests that the unique structure of the W 1 N 1 C 3 moiety plays an important role in enhancing the HER performance. This work gives new insights into the investigation of efficient and practical W‐based HER catalysts.
Tungsten‐based catalysts are promising candidates to generate hydrogen effectively. In this work, a single‐W‐atom catalyst supported on metal–organic framework (MOF)‐derived N‐doped carbon (W‐SAC) for efficient electrochemical hydrogen evolution reaction (HER), with high activity and excellent stability is reported. High‐angle annular dark‐field scanning transmission electron microscopy (HAADF‐STEM) and X‐ray absorption fine structure (XAFS) spectroscopy analysis indicate the atomic dispersion of the W species, and reveal that the W1N1C3 moiety may be the favored local structure for the W species. The W‐SAC exhibits a low overpotential of 85 mV at a current density of 10 mA cm−2 and a small Tafel slope of 53 mV dec−1, in 0.1 m KOH solution. The HER activity of the W‐SAC is almost equal to that of commercial Pt/C. Density functional theory (DFT) calculation suggests that the unique structure of the W1N1C3 moiety plays an important role in enhancing the HER performance. This work gives new insights into the investigation of efficient and practical W‐based HER catalysts. A single‐tungsten‐atom catalyst supported on metal–organic framework‐derived N‐doped carbon is reported. The catalyst demonstrates a high activity and excellent stability for efficient electrochemical hydrogen evolution.
Tungsten-based catalysts are promising candidates to generate hydrogen effectively. In this work, a single-W-atom catalyst supported on metal-organic framework (MOF)-derived N-doped carbon (W-SAC) for efficient electrochemical hydrogen evolution reaction (HER), with high activity and excellent stability is reported. High-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) and X-ray absorption fine structure (XAFS) spectroscopy analysis indicate the atomic dispersion of the W species, and reveal that the W N C moiety may be the favored local structure for the W species. The W-SAC exhibits a low overpotential of 85 mV at a current density of 10 mA cm and a small Tafel slope of 53 mV dec , in 0.1 m KOH solution. The HER activity of the W-SAC is almost equal to that of commercial Pt/C. Density functional theory (DFT) calculation suggests that the unique structure of the W N C moiety plays an important role in enhancing the HER performance. This work gives new insights into the investigation of efficient and practical W-based HER catalysts.
Tungsten‐based catalysts are promising candidates to generate hydrogen effectively. In this work, a single‐W‐atom catalyst supported on metal–organic framework (MOF)‐derived N‐doped carbon (W‐SAC) for efficient electrochemical hydrogen evolution reaction (HER), with high activity and excellent stability is reported. High‐angle annular dark‐field scanning transmission electron microscopy (HAADF‐STEM) and X‐ray absorption fine structure (XAFS) spectroscopy analysis indicate the atomic dispersion of the W species, and reveal that the W1N1C3 moiety may be the favored local structure for the W species. The W‐SAC exhibits a low overpotential of 85 mV at a current density of 10 mA cm−2 and a small Tafel slope of 53 mV dec−1, in 0.1 m KOH solution. The HER activity of the W‐SAC is almost equal to that of commercial Pt/C. Density functional theory (DFT) calculation suggests that the unique structure of the W1N1C3 moiety plays an important role in enhancing the HER performance. This work gives new insights into the investigation of efficient and practical W‐based HER catalysts.
Tungsten-based catalysts are promising candidates to generate hydrogen effectively. In this work, a single-W-atom catalyst supported on metal-organic framework (MOF)-derived N-doped carbon (W-SAC) for efficient electrochemical hydrogen evolution reaction (HER), with high activity and excellent stability is reported. High-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) and X-ray absorption fine structure (XAFS) spectroscopy analysis indicate the atomic dispersion of the W species, and reveal that the W1 N1 C3 moiety may be the favored local structure for the W species. The W-SAC exhibits a low overpotential of 85 mV at a current density of 10 mA cm-2 and a small Tafel slope of 53 mV dec-1 , in 0.1 m KOH solution. The HER activity of the W-SAC is almost equal to that of commercial Pt/C. Density functional theory (DFT) calculation suggests that the unique structure of the W1 N1 C3 moiety plays an important role in enhancing the HER performance. This work gives new insights into the investigation of efficient and practical W-based HER catalysts.Tungsten-based catalysts are promising candidates to generate hydrogen effectively. In this work, a single-W-atom catalyst supported on metal-organic framework (MOF)-derived N-doped carbon (W-SAC) for efficient electrochemical hydrogen evolution reaction (HER), with high activity and excellent stability is reported. High-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) and X-ray absorption fine structure (XAFS) spectroscopy analysis indicate the atomic dispersion of the W species, and reveal that the W1 N1 C3 moiety may be the favored local structure for the W species. The W-SAC exhibits a low overpotential of 85 mV at a current density of 10 mA cm-2 and a small Tafel slope of 53 mV dec-1 , in 0.1 m KOH solution. The HER activity of the W-SAC is almost equal to that of commercial Pt/C. Density functional theory (DFT) calculation suggests that the unique structure of the W1 N1 C3 moiety plays an important role in enhancing the HER performance. This work gives new insights into the investigation of efficient and practical W-based HER catalysts.
Author Cheong, Weng‐Chon
Li, Yadong
Wang, Yu
Yan, Wensheng
Peng, Qing
Wang, Dingsheng
Chen, Wenxing
Ren, Hanlin
Wu, Konglin
Chen, Chen
Dong, Juncai
He, Chun‐Ting
Pei, Jiajing
Wan, Jiawei
Zhuang, Zhongbin
Zheng, Xusheng
Mao, Junjie
Author_xml – sequence: 1
  givenname: Wenxing
  surname: Chen
  fullname: Chen, Wenxing
  organization: Beijing Institute of Technology
– sequence: 2
  givenname: Jiajing
  surname: Pei
  fullname: Pei, Jiajing
  organization: Beijing University of Chemical Technology
– sequence: 3
  givenname: Chun‐Ting
  surname: He
  fullname: He, Chun‐Ting
  organization: Sun Yat‐Sen University
– sequence: 4
  givenname: Jiawei
  surname: Wan
  fullname: Wan, Jiawei
  organization: Tsinghua University
– sequence: 5
  givenname: Hanlin
  surname: Ren
  fullname: Ren, Hanlin
  organization: Tsinghua University
– sequence: 6
  givenname: Yu
  surname: Wang
  fullname: Wang, Yu
  organization: Chinese Academy of Sciences
– sequence: 7
  givenname: Juncai
  surname: Dong
  fullname: Dong, Juncai
  organization: Chinese Academy of Sciences
– sequence: 8
  givenname: Konglin
  surname: Wu
  fullname: Wu, Konglin
  organization: Tsinghua University
– sequence: 9
  givenname: Weng‐Chon
  surname: Cheong
  fullname: Cheong, Weng‐Chon
  organization: Tsinghua University
– sequence: 10
  givenname: Junjie
  surname: Mao
  fullname: Mao, Junjie
  organization: Tsinghua University
– sequence: 11
  givenname: Xusheng
  surname: Zheng
  fullname: Zheng, Xusheng
  organization: University of Science and Technology of China
– sequence: 12
  givenname: Wensheng
  surname: Yan
  fullname: Yan, Wensheng
  organization: University of Science and Technology of China
– sequence: 13
  givenname: Zhongbin
  surname: Zhuang
  fullname: Zhuang, Zhongbin
  organization: Beijing University of Chemical Technology
– sequence: 14
  givenname: Chen
  surname: Chen
  fullname: Chen, Chen
  organization: Tsinghua University
– sequence: 15
  givenname: Qing
  surname: Peng
  fullname: Peng, Qing
  organization: Tsinghua University
– sequence: 16
  givenname: Dingsheng
  orcidid: 0000-0003-0074-7633
  surname: Wang
  fullname: Wang, Dingsheng
  email: wangdingsheng@mail.tsinghua.edu.cn
  organization: Tsinghua University
– sequence: 17
  givenname: Yadong
  surname: Li
  fullname: Li, Yadong
  organization: Tsinghua University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29888491$$D View this record in MEDLINE/PubMed
BookMark eNqFkcFu1DAURS1URKeFLUsUiQ2bDM92YsfL0XRKkVoq0bK2HOdlSJXEwXaKZscn8I18CR5NC1IlxMpP9jlXtu8JORrdiIS8prCkAOy9aQazZEArAK7EM7KgJaN5Aao8IgtQvMyVKKpjchLCHQAoAeIFOWaqqqpC0QVxN9247TG7ncdtiDhmq-iGkN3M0-R8xCZzY3Z1ff7rx88z9N192vi0n92UprXxdTpunc8-u3oOMdv0aKN39isOnTV9drFrvNum1M296-fYufEled6aPuCrh_WUfDnf3K4v8svrDx_Xq8vcFlKI3EjgQhrOSmslrQoBlNYFK0ugUnHZojSipZUtRF0yRI60olYqVkHD0DYtPyXvDrmTd99mDFEPXbDY92ZENwfNoORMggKe0LdP0Ds3-zHdLlGSM5GoIlFvHqi5HrDRk-8G43f68SsTUBwA610IHlttu2j2b47edL2moPeN6X1j-k9jSVs-0R6T_ymog_C963H3H1qvzq5Wf93fObapQA
CitedBy_id crossref_primary_10_1016_j_ccr_2024_216238
crossref_primary_10_1039_D0CC02949A
crossref_primary_10_1016_j_ccr_2022_214855
crossref_primary_10_3390_en16062664
crossref_primary_10_1002_advs_202407631
crossref_primary_10_1007_s12274_023_5616_z
crossref_primary_10_1016_j_jssc_2019_121052
crossref_primary_10_1002_adma_202102811
crossref_primary_10_1016_j_ccr_2021_214209
crossref_primary_10_1016_j_jcis_2024_01_023
crossref_primary_10_1016_j_carbon_2018_12_032
crossref_primary_10_1002_adma_202210166
crossref_primary_10_1016_j_seppur_2023_125036
crossref_primary_10_1038_s41467_019_09845_z
crossref_primary_10_1002_aenm_201903181
crossref_primary_10_1016_j_jcis_2021_03_142
crossref_primary_10_1039_D2TA01750D
crossref_primary_10_1016_j_fuel_2025_134704
crossref_primary_10_1021_acsami_1c10513
crossref_primary_10_1002_smll_202004809
crossref_primary_10_1002_smtd_201800471
crossref_primary_10_1002_cssc_201801679
crossref_primary_10_1016_j_matpr_2020_12_1231
crossref_primary_10_1039_D0NR09104A
crossref_primary_10_1002_adma_202100745
crossref_primary_10_1039_D1CP01861B
crossref_primary_10_1002_adfm_202204458
crossref_primary_10_1016_j_jes_2023_06_027
crossref_primary_10_1016_j_apcatb_2023_122397
crossref_primary_10_1016_j_fuel_2024_131176
crossref_primary_10_1039_D0NR06396G
crossref_primary_10_1039_C9TA03220G
crossref_primary_10_1016_j_cej_2023_143740
crossref_primary_10_1016_j_jechem_2023_01_054
crossref_primary_10_1039_D0CS01569E
crossref_primary_10_1002_anie_202014112
crossref_primary_10_1002_anie_202109530
crossref_primary_10_1021_acsami_8b15456
crossref_primary_10_1002_aenm_201802390
crossref_primary_10_1002_chem_201804658
crossref_primary_10_1039_D0SC01284J
crossref_primary_10_1021_acsenergylett_0c01858
crossref_primary_10_1002_adfm_202308898
crossref_primary_10_1002_chem_202100612
crossref_primary_10_1016_j_mattod_2022_04_002
crossref_primary_10_1002_adma_202405128
crossref_primary_10_1002_adma_202310912
crossref_primary_10_1021_acsaem_2c03973
crossref_primary_10_1021_acs_chemrev_9b00818
crossref_primary_10_1021_acscatal_2c04563
crossref_primary_10_1021_acssuschemeng_0c04324
crossref_primary_10_1002_smll_202403767
crossref_primary_10_1002_ejic_202100522
crossref_primary_10_1039_C9CS00422J
crossref_primary_10_1002_ange_202014112
crossref_primary_10_1021_acsnano_0c08135
crossref_primary_10_1002_smtd_201800443
crossref_primary_10_1007_s12274_023_6393_4
crossref_primary_10_1002_celc_202000136
crossref_primary_10_1007_s41061_021_00324_y
crossref_primary_10_1002_cctc_202400548
crossref_primary_10_1002_anie_202408846
crossref_primary_10_1002_smtd_202301219
crossref_primary_10_1016_j_nanoen_2018_12_055
crossref_primary_10_1039_C9CC05225A
crossref_primary_10_1021_acscatal_2c03189
crossref_primary_10_1021_acs_chemrev_2c00495
crossref_primary_10_1002_adma_202106371
crossref_primary_10_1002_smll_202202394
crossref_primary_10_1016_j_cej_2023_141301
crossref_primary_10_1002_advs_202409855
crossref_primary_10_1002_eng2_12327
crossref_primary_10_1002_er_7280
crossref_primary_10_1039_D2YA00284A
crossref_primary_10_1016_j_ccr_2023_215066
crossref_primary_10_1021_acsami_0c14538
crossref_primary_10_1002_adfm_202400767
crossref_primary_10_1039_C9CS00871C
crossref_primary_10_1002_advs_202303110
crossref_primary_10_1016_j_carbon_2020_10_003
crossref_primary_10_1039_D0CC07643K
crossref_primary_10_1039_D0EE02651D
crossref_primary_10_1039_D2CY00259K
crossref_primary_10_1016_j_ccr_2021_214261
crossref_primary_10_1039_D0DT02961K
crossref_primary_10_1016_j_matlet_2020_127831
crossref_primary_10_1038_s41524_021_00684_5
crossref_primary_10_1007_s12274_020_3099_8
crossref_primary_10_1039_D2TA08355H
crossref_primary_10_1002_asia_202200319
crossref_primary_10_1021_acsomega_9b02555
crossref_primary_10_1002_smll_202206626
crossref_primary_10_1016_j_ijhydene_2023_10_137
crossref_primary_10_6023_A22040143
crossref_primary_10_1021_acsami_0c04606
crossref_primary_10_1021_acscatal_0c05577
crossref_primary_10_1002_cctc_201900570
crossref_primary_10_1002_adsu_202200096
crossref_primary_10_33609_2708_129X_89_06_2023_79_96
crossref_primary_10_1021_jacs_2c05059
crossref_primary_10_1038_s41467_022_28413_6
crossref_primary_10_1002_adma_202309715
crossref_primary_10_1016_j_ccr_2021_214392
crossref_primary_10_1016_j_cej_2024_149406
crossref_primary_10_1021_acs_chemrev_1c00981
crossref_primary_10_1039_D0TA09495A
crossref_primary_10_1016_j_pmatsci_2019_100618
crossref_primary_10_1039_D1TA08582D
crossref_primary_10_1002_aenm_201803689
crossref_primary_10_1021_acsanm_4c00522
crossref_primary_10_1039_D0NR07126A
crossref_primary_10_1039_C9TA10935H
crossref_primary_10_34133_2020_5860712
crossref_primary_10_1039_D0NR03685D
crossref_primary_10_1002_ange_201911470
crossref_primary_10_1021_jacs_0c05050
crossref_primary_10_1002_cssc_202100722
crossref_primary_10_1016_j_ccr_2021_214289
crossref_primary_10_1126_sciadv_abl9271
crossref_primary_10_1021_acsami_3c18548
crossref_primary_10_1002_smtd_201800368
crossref_primary_10_1002_smtd_202301771
crossref_primary_10_12677_MS_2021_111007
crossref_primary_10_1039_D0DT03635H
crossref_primary_10_1002_eom2_12274
crossref_primary_10_1016_j_apsusc_2024_159942
crossref_primary_10_1002_aenm_202200875
crossref_primary_10_1016_j_ccr_2020_213483
crossref_primary_10_1039_D0CY00315H
crossref_primary_10_1002_cey2_194
crossref_primary_10_1002_smll_202401034
crossref_primary_10_1002_aenm_202402825
crossref_primary_10_1039_D2NA00829G
crossref_primary_10_3390_nano10040602
crossref_primary_10_1039_D4SC03612C
crossref_primary_10_1088_1674_4926_41_9_091707
crossref_primary_10_1002_aenm_202301580
crossref_primary_10_1002_adfm_202110224
crossref_primary_10_1016_j_ijhydene_2019_08_195
crossref_primary_10_1039_D1TA06915B
crossref_primary_10_1126_sciadv_abb6833
crossref_primary_10_1002_adma_202006042
crossref_primary_10_1016_j_jhazmat_2022_129584
crossref_primary_10_1039_D4CS00333K
crossref_primary_10_1002_cphc_202000595
crossref_primary_10_1007_s12274_020_2755_3
crossref_primary_10_1016_j_apsusc_2023_158225
crossref_primary_10_1016_j_poly_2018_08_004
crossref_primary_10_1021_acs_chemrev_3c00712
crossref_primary_10_1002_advs_202105544
crossref_primary_10_1007_s40820_023_01091_9
crossref_primary_10_1016_j_jmat_2020_10_008
crossref_primary_10_1021_acs_jpcc_1c07682
crossref_primary_10_1039_C9TA10290F
crossref_primary_10_1002_adma_202204448
crossref_primary_10_1039_C9SE00311H
crossref_primary_10_1016_j_mattod_2020_02_019
crossref_primary_10_1007_s11581_024_05382_y
crossref_primary_10_1016_j_carbon_2020_08_041
crossref_primary_10_1016_j_carbon_2023_118456
crossref_primary_10_1002_anie_201914647
crossref_primary_10_1002_smtd_201800181
crossref_primary_10_1039_D3QM00157A
crossref_primary_10_1039_D4RA05183A
crossref_primary_10_1016_j_nanoen_2019_03_045
crossref_primary_10_1007_s41918_018_0024_x
crossref_primary_10_1021_acscatal_3c05000
crossref_primary_10_1002_ange_202408846
crossref_primary_10_1039_D0TA02549F
crossref_primary_10_1007_s12274_019_2324_9
crossref_primary_10_1039_D0NR05907B
crossref_primary_10_1002_tcr_202100329
crossref_primary_10_1007_s12274_023_5449_9
crossref_primary_10_1021_acsnano_2c09270
crossref_primary_10_1039_D0CY00556H
crossref_primary_10_1002_adfm_202309223
crossref_primary_10_1002_anie_202414647
crossref_primary_10_1039_D1EE03311E
crossref_primary_10_1021_acs_chemrev_0c00594
crossref_primary_10_1016_j_apsusc_2018_07_209
crossref_primary_10_1007_s40820_019_0349_y
crossref_primary_10_1016_j_cej_2022_134859
crossref_primary_10_1002_adma_202107053
crossref_primary_10_1016_j_elecom_2021_107024
crossref_primary_10_1016_j_electacta_2019_05_157
crossref_primary_10_1021_acs_chemrev_4c00664
crossref_primary_10_3390_catal15020137
crossref_primary_10_1002_anie_202107018
crossref_primary_10_1021_acs_jpclett_0c01943
crossref_primary_10_1002_sus2_32
crossref_primary_10_1039_D4TA06997H
crossref_primary_10_1039_D0CY01408G
crossref_primary_10_1007_s12274_022_4265_y
crossref_primary_10_1039_D2TA03034A
crossref_primary_10_1002_admi_202001145
crossref_primary_10_1002_smll_201905363
crossref_primary_10_1002_cssc_202002098
crossref_primary_10_1039_D1RA02240G
crossref_primary_10_1021_jacsau_2c00187
crossref_primary_10_1016_j_carbon_2019_12_058
crossref_primary_10_1021_acsenergylett_4c01336
crossref_primary_10_3390_molecules27154751
crossref_primary_10_1007_s12274_019_2345_4
crossref_primary_10_1039_C9CS00869A
crossref_primary_10_1002_adma_202003075
crossref_primary_10_1039_C8TA11416A
crossref_primary_10_1016_j_apenergy_2022_119999
crossref_primary_10_1038_s41598_023_35613_7
crossref_primary_10_1039_C9TA04083H
crossref_primary_10_1002_aenm_201902844
crossref_primary_10_1007_s12598_021_01873_3
crossref_primary_10_1016_j_ccr_2022_214741
crossref_primary_10_34133_2020_9512763
crossref_primary_10_1016_j_nanoen_2022_106989
crossref_primary_10_1073_pnas_2209760120
crossref_primary_10_1021_acs_chemrev_0c00576
crossref_primary_10_1016_j_ijhydene_2019_08_127
crossref_primary_10_1016_j_jcis_2019_12_044
crossref_primary_10_1002_adma_202312724
crossref_primary_10_1002_sstr_202100007
crossref_primary_10_1016_j_carbon_2019_04_002
crossref_primary_10_1002_admt_202200238
crossref_primary_10_1039_C9SE01004A
crossref_primary_10_1016_j_apsusc_2019_143868
crossref_primary_10_1002_smll_202106279
crossref_primary_10_1002_adfm_201805828
crossref_primary_10_1021_acsanm_1c02108
crossref_primary_10_1016_j_nanoen_2020_104637
crossref_primary_10_1002_adfm_202003007
crossref_primary_10_1039_D4SC00569D
crossref_primary_10_1016_j_recm_2022_09_002
crossref_primary_10_1002_aenm_202001561
crossref_primary_10_1002_adfm_202405328
crossref_primary_10_1016_j_est_2024_110947
crossref_primary_10_1002_adsu_202000151
crossref_primary_10_1021_acsaem_2c02062
crossref_primary_10_1002_aic_18792
crossref_primary_10_1016_j_ijhydene_2023_06_008
crossref_primary_10_1002_eem2_12290
crossref_primary_10_1002_adma_202003846
crossref_primary_10_1021_acsami_1c12494
crossref_primary_10_1021_acscatal_0c01459
crossref_primary_10_1002_asia_201900748
crossref_primary_10_1021_acs_iecr_0c00388
crossref_primary_10_1021_acs_chemrev_9b00238
crossref_primary_10_1039_D1NJ04344G
crossref_primary_10_1007_s12274_020_3104_2
crossref_primary_10_1016_j_gee_2020_10_013
crossref_primary_10_3389_fchem_2020_00426
crossref_primary_10_1039_C9EE01647C
crossref_primary_10_1002_adfm_202301463
crossref_primary_10_1002_smtd_202100102
crossref_primary_10_1039_D0CS01032D
crossref_primary_10_1039_D4TA03518F
crossref_primary_10_1016_j_ccr_2023_215639
crossref_primary_10_1039_D3TA01454A
crossref_primary_10_1016_j_matt_2020_07_032
crossref_primary_10_1039_D0NR02196B
crossref_primary_10_1016_j_cej_2023_146443
crossref_primary_10_1016_j_seppur_2022_122298
crossref_primary_10_1063_5_0083167
crossref_primary_10_1016_j_apcatb_2019_118255
crossref_primary_10_1007_s12274_022_4270_1
crossref_primary_10_1016_j_apsusc_2020_146239
crossref_primary_10_1002_cey2_382
crossref_primary_10_1021_acsanm_1c02433
crossref_primary_10_26599_NRE_2024_9120144
crossref_primary_10_1002_advs_202410260
crossref_primary_10_1002_adma_202008151
crossref_primary_10_1021_acsami_3c04602
crossref_primary_10_3390_molecules29081812
crossref_primary_10_1039_D0MH01061H
crossref_primary_10_1039_C9MH01819K
crossref_primary_10_1016_j_cej_2021_130480
crossref_primary_10_1016_j_jpowsour_2021_229708
crossref_primary_10_1007_s40820_023_01231_1
crossref_primary_10_1021_acs_chemrev_0c00864
crossref_primary_10_1002_cssc_202002944
crossref_primary_10_1002_adfm_202418602
crossref_primary_10_1016_j_ccr_2020_213678
crossref_primary_10_1039_D2EE01037B
crossref_primary_10_1039_D0TA01680B
crossref_primary_10_1002_smtd_201900210
crossref_primary_10_1039_D4CP01350F
crossref_primary_10_1002_adma_202102576
crossref_primary_10_1021_acssuschemeng_3c03931
crossref_primary_10_1002_adma_202413658
crossref_primary_10_1016_j_ijhydene_2020_03_174
crossref_primary_10_1016_j_coelec_2018_09_011
crossref_primary_10_1016_j_mattod_2020_03_022
crossref_primary_10_1021_acs_iecr_2c00432
crossref_primary_10_1002_tcr_202200237
crossref_primary_10_1016_j_jpowsour_2020_228446
crossref_primary_10_1016_j_cej_2022_139475
crossref_primary_10_1021_acsnano_1c07694
crossref_primary_10_1016_j_chempr_2018_12_011
crossref_primary_10_1039_D3TA02149A
crossref_primary_10_1088_2515_7639_ac01ac
crossref_primary_10_1002_anie_201911470
crossref_primary_10_1039_D2TA08735A
crossref_primary_10_1021_acs_chemrev_9b00311
crossref_primary_10_1007_s12598_021_01735_y
crossref_primary_10_1002_smll_202304560
crossref_primary_10_1016_j_scib_2020_03_021
crossref_primary_10_1002_adfm_201804600
crossref_primary_10_1002_aenm_201901227
crossref_primary_10_1039_C9TA02200G
crossref_primary_10_1039_C9TA12613A
crossref_primary_10_1021_acscatal_2c04807
crossref_primary_10_1021_acs_chemrev_9b00223
crossref_primary_10_1016_j_mtener_2018_10_014
crossref_primary_10_1007_s11426_021_1163_7
crossref_primary_10_1002_adma_202008599
crossref_primary_10_1002_chem_202102209
crossref_primary_10_1007_s11705_021_2087_1
crossref_primary_10_1039_C9TA03606G
crossref_primary_10_1002_smll_202004398
crossref_primary_10_1021_acsaem_4c01322
crossref_primary_10_1039_C9EE04040D
crossref_primary_10_1002_smll_202101416
crossref_primary_10_1016_j_nanoen_2019_104332
crossref_primary_10_1002_smll_202100203
crossref_primary_10_1016_j_seppur_2019_116424
crossref_primary_10_1021_acsnano_1c06796
crossref_primary_10_1002_tcr_202300330
crossref_primary_10_1016_j_apsusc_2020_146987
crossref_primary_10_1002_celc_202300722
crossref_primary_10_1021_acssuschemeng_9b03720
crossref_primary_10_1016_j_isci_2022_104367
crossref_primary_10_1021_acssuschemeng_9b01789
crossref_primary_10_1007_s11426_024_2083_4
crossref_primary_10_1007_s11814_021_0741_4
crossref_primary_10_1002_inf2_12296
crossref_primary_10_1002_adfm_202010052
crossref_primary_10_1073_pnas_2315362121
crossref_primary_10_1016_j_nanoen_2019_104335
crossref_primary_10_1002_smll_202305220
crossref_primary_10_1186_s40580_020_00251_6
crossref_primary_10_1002_celc_202400696
crossref_primary_10_1002_ange_202109530
crossref_primary_10_1002_smll_202204767
crossref_primary_10_1021_acsaem_1c02271
crossref_primary_10_1039_D3TA00239J
crossref_primary_10_1007_s12274_021_3559_9
crossref_primary_10_1021_acsami_2c19148
crossref_primary_10_1021_acs_chemrev_9b00757
crossref_primary_10_1002_slct_202002908
crossref_primary_10_1021_jacs_9b03811
crossref_primary_10_1039_D4CC02806F
crossref_primary_10_1021_jacs_4c12479
crossref_primary_10_1039_C9NJ01989H
crossref_primary_10_1002_adma_202108504
crossref_primary_10_1016_j_cej_2020_128027
crossref_primary_10_1039_C9CS00906J
crossref_primary_10_1016_j_jelechem_2022_116717
crossref_primary_10_1007_s40820_022_00908_3
crossref_primary_10_1021_acs_chemrev_0c00094
crossref_primary_10_1016_j_ces_2024_120991
crossref_primary_10_1016_j_ijhydene_2020_10_121
crossref_primary_10_1002_smm2_1095
crossref_primary_10_1002_ange_202107018
crossref_primary_10_1002_adfm_202208688
crossref_primary_10_1038_s41467_022_34572_3
crossref_primary_10_1038_s41467_018_06296_w
crossref_primary_10_1021_acsami_1c09029
crossref_primary_10_1002_ange_201914647
crossref_primary_10_1016_j_jclepro_2023_138693
crossref_primary_10_3390_catal13040651
crossref_primary_10_1002_advs_201901129
crossref_primary_10_1002_adma_202003300
crossref_primary_10_1016_j_renene_2022_05_124
crossref_primary_10_1039_D0EE03635H
crossref_primary_10_1039_D1CE00593F
crossref_primary_10_1016_j_apsusc_2020_145302
crossref_primary_10_20517_microstructures_2023_71
crossref_primary_10_1039_C9TA03719E
crossref_primary_10_1016_j_surfin_2021_101714
crossref_primary_10_1039_D0CY01385D
crossref_primary_10_1039_D2DT00551D
crossref_primary_10_1002_adfm_202003870
crossref_primary_10_1002_cey2_663
crossref_primary_10_1016_j_cis_2023_103068
crossref_primary_10_1021_acscatal_2c02416
crossref_primary_10_1021_acsanm_0c00146
crossref_primary_10_1016_j_ccr_2019_02_029
crossref_primary_10_1039_D3TA07343B
crossref_primary_10_1039_D3TA01548C
crossref_primary_10_2139_ssrn_4198113
crossref_primary_10_1007_s40843_019_1242_1
crossref_primary_10_1002_smll_201900248
crossref_primary_10_1002_advs_202105192
crossref_primary_10_1016_j_ensm_2019_03_025
crossref_primary_10_1002_advs_202003212
crossref_primary_10_1002_smtd_201800438
crossref_primary_10_1016_j_cej_2024_149820
crossref_primary_10_1021_acsami_9b11238
crossref_primary_10_1016_j_susmat_2020_e00236
crossref_primary_10_1021_acsestengg_5c00007
crossref_primary_10_1038_s41467_020_15518_z
crossref_primary_10_1021_jacs_8b09211
crossref_primary_10_1039_D1TA00022E
crossref_primary_10_1021_acs_energyfuels_0c01358
crossref_primary_10_1088_1361_648X_ab38da
crossref_primary_10_1002_smll_202309509
crossref_primary_10_1016_j_nanoen_2020_104667
crossref_primary_10_1002_smll_202107459
crossref_primary_10_1002_cey2_720
crossref_primary_10_1016_j_jallcom_2024_174044
crossref_primary_10_1016_j_isci_2022_104177
crossref_primary_10_1007_s11356_022_22084_y
crossref_primary_10_1039_C9QI01487J
crossref_primary_10_1088_2399_1984_ac3ec1
crossref_primary_10_1021_acsami_2c09107
crossref_primary_10_1002_adma_202211790
crossref_primary_10_1016_j_mseb_2021_115341
crossref_primary_10_1002_celc_202100687
crossref_primary_10_1016_j_susmat_2020_e00221
crossref_primary_10_1007_s12274_022_4424_1
crossref_primary_10_1016_j_scib_2020_06_036
crossref_primary_10_1007_s12598_024_02727_4
crossref_primary_10_1021_acsami_0c10234
crossref_primary_10_1002_adfm_202300294
crossref_primary_10_1021_acsami_4c11732
crossref_primary_10_1039_D1CE00709B
crossref_primary_10_1016_j_cej_2022_140759
crossref_primary_10_1016_j_ccr_2020_213619
crossref_primary_10_1002_adma_202418233
crossref_primary_10_1021_acsami_8b15888
crossref_primary_10_1039_D0TA08940K
crossref_primary_10_1002_ange_202414647
crossref_primary_10_1016_j_nanoen_2023_108536
crossref_primary_10_1016_j_apcatb_2021_120740
crossref_primary_10_1039_D4EY00205A
crossref_primary_10_1039_D4SC04905E
crossref_primary_10_1002_aenm_201903137
crossref_primary_10_1007_s40820_021_00668_6
crossref_primary_10_1039_D0TA04016A
crossref_primary_10_1021_acscatal_1c03441
crossref_primary_10_1039_D0CS00575D
crossref_primary_10_1016_j_fuel_2021_121420
crossref_primary_10_1016_j_mcat_2021_111830
crossref_primary_10_1002_aenm_202101670
crossref_primary_10_3390_electrochem6010003
crossref_primary_10_1039_C9CY02006C
crossref_primary_10_1021_acs_inorgchem_3c00584
crossref_primary_10_3390_inorganics11070300
crossref_primary_10_1021_acsaem_0c03033
crossref_primary_10_1002_smtd_201800406
crossref_primary_10_1002_adfm_202307917
crossref_primary_10_1016_j_apsusc_2022_155506
crossref_primary_10_1016_j_fuel_2024_134021
crossref_primary_10_1080_14686996_2022_2149036
Cites_doi 10.1039/C5EE03801D
10.1038/nmat3700
10.1002/anie.201604802
10.1038/460809a
10.1016/j.electacta.2015.12.074
10.1039/c3ee40600h
10.1039/c3cc41031e
10.1002/ange.201702473
10.1039/C4CS00448E
10.1002/anie.201307527
10.1002/adma.201703185
10.1039/C4CS00470A
10.1039/C4EE01329H
10.1021/ar300361m
10.1002/anie.201400294
10.1021/cs5014943
10.1038/ncomms10667
10.1002/adma.201601960
10.1021/acsnano.5b00425
10.1021/jacs.5b10666
10.1021/jacs.7b02736
10.1039/C6EE01867J
10.1007/s40843-015-0043-4
10.1039/C6TA09052D
10.1038/nchem.1095
10.1126/science.aaf5251
10.1126/sciadv.1500462
10.1007/s12274-015-0965-x
10.1002/anie.201407031
10.1021/jacs.6b11027
10.1021/jacs.7b05372
10.1021/acs.accounts.6b00635
10.1002/smll.201700191
10.1002/adma.201502696
10.1038/s41570-016-0003
10.1021/jacs.7b01686
10.1038/ncomms13216
10.1021/jacs.7b00165
10.1038/nenergy.2016.34
10.1002/adma.201505281
10.1002/anie.201703864
10.1002/anie.201501419
10.1038/nature11475
10.1039/c1ee01970h
10.1126/science.1253150
10.1002/aenm.201301875
10.1021/jacs.7b01530
10.1038/ncomms9668
ContentType Journal Article
Copyright 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Copyright_xml – notice: 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DBID AAYXX
CITATION
NPM
7SR
8BQ
8FD
JG9
7X8
DOI 10.1002/adma.201800396
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList CrossRef

PubMed
Materials Research Database
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1521-4095
EndPage n/a
ExternalDocumentID 29888491
10_1002_adma_201800396
ADMA201800396
Genre article
Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 21521091; 21390393; U1463202; 21471089; 21671117; 11405252
– fundername: National Postdoctoral Program for Innovative Talents
  funderid: BX201600195
– fundername: 111 Project
  funderid: B16028
– fundername: Beijing Natural Science Foundation
  funderid: 2174081
– fundername: China Ministry of Science and Technology
  funderid: 2016YFA; 0202801
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RWM
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YR2
ZZTAW
~02
~IA
~WT
.Y3
31~
6TJ
8WZ
A6W
AANHP
AAYOK
AAYXX
ABEML
ACBWZ
ACRPL
ACSCC
ACYXJ
ADMLS
ADNMO
AETEA
AEYWJ
AFFNX
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
FEDTE
FOJGT
HF~
HVGLF
M6K
NDZJH
PALCI
RIWAO
RJQFR
SAMSI
WTY
ZY4
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
NPM
7SR
8BQ
8FD
JG9
7X8
ID FETCH-LOGICAL-c4766-a70367a325cc71846011b4255017937fe7a6f18c46b52ee3e181c79280d2ecdf3
IEDL.DBID DR2
ISSN 0935-9648
1521-4095
IngestDate Fri Jul 11 08:50:28 EDT 2025
Fri Jul 25 06:35:41 EDT 2025
Mon Jul 21 05:44:49 EDT 2025
Thu Apr 24 23:09:24 EDT 2025
Tue Jul 01 00:44:43 EDT 2025
Wed Jan 22 17:11:54 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 30
Keywords electrocatalysts
N-doped carbon
single W atoms
hydrogen evolution reaction
metal-organic frameworks
Language English
License 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4766-a70367a325cc71846011b4255017937fe7a6f18c46b52ee3e181c79280d2ecdf3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-0074-7633
PMID 29888491
PQID 2073260904
PQPubID 2045203
PageCount 6
ParticipantIDs proquest_miscellaneous_2053270903
proquest_journals_2073260904
pubmed_primary_29888491
crossref_citationtrail_10_1002_adma_201800396
crossref_primary_10_1002_adma_201800396
wiley_primary_10_1002_adma_201800396_ADMA201800396
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate July 26, 2018
PublicationDateYYYYMMDD 2018-07-26
PublicationDate_xml – month: 07
  year: 2018
  text: July 26, 2018
  day: 26
PublicationDecade 2010
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Advanced materials (Weinheim)
PublicationTitleAlternate Adv Mater
PublicationYear 2018
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017; 5
2015; 1
2015; 58
2017; 1
2015; 6
2015; 5
2013; 49
2013; 46
2015; 54
2017; 29
2012; 488
2011; 4
2015; 9
2011; 3
2013; 6
2017; 139
2016; 55
2017; 50
2016; 7
2014; 4
2016; 1
2013; 12
2017; 13
2015; 44
2013; 52
2017; 56
2016; 352
2016; 138
2009; 460
2016; 28
2014; 7
2016; 190
2016; 9
2014; 53
2014; 344
2017; 129
e_1_2_4_40_1
e_1_2_4_41_1
e_1_2_4_21_1
e_1_2_4_44_1
e_1_2_4_20_1
e_1_2_4_45_1
e_1_2_4_23_1
e_1_2_4_42_1
e_1_2_4_22_1
e_1_2_4_43_1
e_1_2_4_25_1
e_1_2_4_48_1
e_1_2_4_24_1
e_1_2_4_27_1
e_1_2_4_46_1
e_1_2_4_26_1
e_1_2_4_47_1
e_1_2_4_29_1
e_1_2_4_28_1
e_1_2_4_1_1
e_1_2_4_3_1
e_1_2_4_2_1
e_1_2_4_5_1
e_1_2_4_4_1
e_1_2_4_7_1
e_1_2_4_6_1
e_1_2_4_9_1
e_1_2_4_8_1
e_1_2_4_30_1
e_1_2_4_32_1
e_1_2_4_10_1
e_1_2_4_31_1
e_1_2_4_11_1
e_1_2_4_34_1
e_1_2_4_12_1
e_1_2_4_33_1
e_1_2_4_13_1
e_1_2_4_36_1
e_1_2_4_14_1
e_1_2_4_35_1
e_1_2_4_15_1
e_1_2_4_16_1
e_1_2_4_38_1
e_1_2_4_37_1
e_1_2_4_18_1
e_1_2_4_17_1
e_1_2_4_39_1
e_1_2_4_19_1
References_xml – volume: 58
  start-page: 313
  year: 2015
  publication-title: Sci. China Mater.
– volume: 1
  start-page: 0003
  year: 2017
  publication-title: Nat. Rev. Chem.
– volume: 488
  start-page: 294
  year: 2012
  publication-title: Nature
– volume: 7
  start-page: 10667
  year: 2016
  publication-title: Nat. Commun.
– volume: 44
  start-page: 2060
  year: 2015
  publication-title: Chem. Soc. Rev.
– volume: 44
  start-page: 5148
  year: 2015
  publication-title: Chem. Soc. Rev.
– volume: 4
  start-page: 1301875
  year: 2014
  publication-title: Adv. Energy Mater.
– volume: 1
  start-page: e1500462
  year: 2015
  publication-title: Sci. Adv.
– volume: 49
  start-page: 4884
  year: 2013
  publication-title: Chem. Commun.
– volume: 53
  start-page: 5131
  year: 2014
  publication-title: Angew. Chem., Int. Ed.
– volume: 9
  start-page: 5125
  year: 2015
  publication-title: ACS Nano
– volume: 190
  start-page: 1113
  year: 2016
  publication-title: Electrochim. Acta
– volume: 28
  start-page: 215
  year: 2016
  publication-title: Adv. Mater.
– volume: 344
  start-page: 616
  year: 2014
  publication-title: Science
– volume: 139
  start-page: 8078
  year: 2017
  publication-title: J. Am. Chem. Soc.
– volume: 52
  start-page: 13638
  year: 2013
  publication-title: Angew. Chem., Int. Ed.
– volume: 56
  start-page: 13944
  year: 2017
  publication-title: Angew. Chem., Int. Ed.
– volume: 138
  start-page: 3255
  year: 2016
  publication-title: J. Am. Chem. Soc.
– volume: 50
  start-page: 915
  year: 2017
  publication-title: Acc. Chem. Res.
– volume: 1
  start-page: 16034
  year: 2016
  publication-title: Nat. Energy
– volume: 28
  start-page: 6959
  year: 2016
  publication-title: Adv. Mater.
– volume: 9
  start-page: 3736
  year: 2016
  publication-title: Energy Environ. Sci.
– volume: 139
  start-page: 6669
  year: 2017
  publication-title: J. Am. Chem. Soc.
– volume: 139
  start-page: 9419
  year: 2017
  publication-title: J. Am. Chem. Soc.
– volume: 54
  start-page: 6325
  year: 2015
  publication-title: Angew. Chem., Int. Ed.
– volume: 4
  start-page: 3878
  year: 2011
  publication-title: Energy Environ. Sci.
– volume: 6
  start-page: 8668
  year: 2015
  publication-title: Nat. Commun.
– volume: 139
  start-page: 10976
  year: 2017
  publication-title: J. Am. Chem. Soc.
– volume: 139
  start-page: 5285
  year: 2017
  publication-title: J. Am. Chem. Soc.
– volume: 28
  start-page: 2427
  year: 2016
  publication-title: Adv. Mater.
– volume: 55
  start-page: 10800
  year: 2016
  publication-title: Angew. Chem., Int. Ed.
– volume: 7
  start-page: 2608
  year: 2014
  publication-title: Energy Environ. Sci.
– volume: 54
  start-page: 52
  year: 2015
  publication-title: Angew. Chem., Int. Ed.
– volume: 13
  start-page: 1700191
  year: 2017
  publication-title: Small
– volume: 5
  start-page: 145
  year: 2015
  publication-title: ACS Catal.
– volume: 460
  start-page: 809
  year: 2009
  publication-title: Nature
– volume: 5
  start-page: 765
  year: 2017
  publication-title: J. Mater. Chem. A
– volume: 7
  start-page: 13216
  year: 2016
  publication-title: Nat. Commun.
– volume: 46
  start-page: 1740
  year: 2013
  publication-title: Acc. Chem. Res.
– volume: 9
  start-page: 28
  year: 2016
  publication-title: Nano Res.
– volume: 139
  start-page: 356
  year: 2017
  publication-title: J. Am. Chem. Soc.
– volume: 29
  start-page: 1703185
  year: 2017
  publication-title: Adv. Mater.
– volume: 12
  start-page: 850
  year: 2013
  publication-title: Nat. Mater.
– volume: 3
  start-page: 634
  year: 2011
  publication-title: Nat. Chem.
– volume: 6
  start-page: 2452
  year: 2013
  publication-title: Energy Environ. Sci.
– volume: 352
  start-page: 797
  year: 2016
  publication-title: Science
– volume: 129
  start-page: 7041
  year: 2017
  publication-title: Angew. Chem.
– volume: 9
  start-page: 1468
  year: 2016
  publication-title: Energy Environ. Sci.
– ident: e_1_2_4_11_1
  doi: 10.1039/C5EE03801D
– ident: e_1_2_4_15_1
  doi: 10.1038/nmat3700
– ident: e_1_2_4_38_1
  doi: 10.1002/anie.201604802
– ident: e_1_2_4_2_1
  doi: 10.1038/460809a
– ident: e_1_2_4_21_1
  doi: 10.1016/j.electacta.2015.12.074
– ident: e_1_2_4_14_1
  doi: 10.1039/c3ee40600h
– ident: e_1_2_4_24_1
  doi: 10.1039/c3cc41031e
– ident: e_1_2_4_39_1
  doi: 10.1002/ange.201702473
– ident: e_1_2_4_8_1
  doi: 10.1039/C4CS00448E
– ident: e_1_2_4_19_1
  doi: 10.1002/anie.201307527
– ident: e_1_2_4_35_1
  doi: 10.1002/adma.201703185
– ident: e_1_2_4_46_1
  doi: 10.1039/C4CS00470A
– ident: e_1_2_4_17_1
  doi: 10.1039/C4EE01329H
– ident: e_1_2_4_33_1
  doi: 10.1021/ar300361m
– ident: e_1_2_4_20_1
  doi: 10.1002/anie.201400294
– ident: e_1_2_4_12_1
  doi: 10.1021/cs5014943
– ident: e_1_2_4_30_1
  doi: 10.1038/ncomms10667
– ident: e_1_2_4_31_1
  doi: 10.1002/adma.201601960
– ident: e_1_2_4_23_1
  doi: 10.1021/acsnano.5b00425
– ident: e_1_2_4_41_1
  doi: 10.1021/jacs.5b10666
– ident: e_1_2_4_40_1
  doi: 10.1021/jacs.7b02736
– ident: e_1_2_4_36_1
  doi: 10.1039/C6EE01867J
– ident: e_1_2_4_44_1
  doi: 10.1007/s40843-015-0043-4
– ident: e_1_2_4_22_1
  doi: 10.1039/C6TA09052D
– ident: e_1_2_4_25_1
  doi: 10.1038/nchem.1095
– ident: e_1_2_4_28_1
  doi: 10.1126/science.aaf5251
– ident: e_1_2_4_27_1
  doi: 10.1126/sciadv.1500462
– ident: e_1_2_4_6_1
  doi: 10.1007/s12274-015-0965-x
– ident: e_1_2_4_48_1
  doi: 10.1002/anie.201407031
– ident: e_1_2_4_43_1
  doi: 10.1021/jacs.6b11027
– ident: e_1_2_4_32_1
  doi: 10.1021/jacs.7b05372
– ident: e_1_2_4_4_1
  doi: 10.1021/acs.accounts.6b00635
– ident: e_1_2_4_5_1
  doi: 10.1002/smll.201700191
– ident: e_1_2_4_7_1
  doi: 10.1002/adma.201502696
– ident: e_1_2_4_3_1
  doi: 10.1038/s41570-016-0003
– ident: e_1_2_4_45_1
  doi: 10.1021/jacs.7b01686
– ident: e_1_2_4_9_1
  doi: 10.1038/ncomms13216
– ident: e_1_2_4_18_1
  doi: 10.1021/jacs.7b00165
– ident: e_1_2_4_42_1
  doi: 10.1038/nenergy.2016.34
– ident: e_1_2_4_29_1
  doi: 10.1002/adma.201505281
– ident: e_1_2_4_34_1
  doi: 10.1002/anie.201703864
– ident: e_1_2_4_10_1
  doi: 10.1002/anie.201501419
– ident: e_1_2_4_1_1
  doi: 10.1038/nature11475
– ident: e_1_2_4_13_1
  doi: 10.1039/c1ee01970h
– ident: e_1_2_4_26_1
  doi: 10.1126/science.1253150
– ident: e_1_2_4_16_1
  doi: 10.1002/aenm.201301875
– ident: e_1_2_4_47_1
  doi: 10.1021/jacs.7b01530
– ident: e_1_2_4_37_1
  doi: 10.1038/ncomms9668
SSID ssj0009606
Score 2.6858368
Snippet Tungsten‐based catalysts are promising candidates to generate hydrogen effectively. In this work, a single‐W‐atom catalyst supported on metal–organic framework...
Tungsten-based catalysts are promising candidates to generate hydrogen effectively. In this work, a single-W-atom catalyst supported on metal-organic framework...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e1800396
SubjectTerms Atomic absorption analysis
Atomic structure
Carbon
Catalysis
Catalysts
Density functional theory
electrocatalysts
Fine structure
hydrogen evolution reaction
Hydrogen evolution reactions
Metal-organic frameworks
N‐doped carbon
Scanning electron microscopy
Scanning transmission electron microscopy
single W atoms
Transmission electron microscopy
Tungsten
Title Single Tungsten Atoms Supported on MOF‐Derived N‐Doped Carbon for Robust Electrochemical Hydrogen Evolution
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.201800396
https://www.ncbi.nlm.nih.gov/pubmed/29888491
https://www.proquest.com/docview/2073260904
https://www.proquest.com/docview/2053270903
Volume 30
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Ja9wwFH6UnNpD98XZUKHQk5OxLMvScUhmGAqTQppAbkabL03tMOMJNKf8hPzG_pK-Z3ucTEsptCfLloRl6S2ftXwP4IOzZZAWrZ_3WseCJybWmQoxD14jXs8zL-js8PxEzs7Fp4vs4sEp_o4fYphwI81o7TUpuLHLw3vSUONb3qBE0fFS4tymDVuEik7v-aMInrdke2kWaynUmrVxxA83q296pd-g5iZybV3P9BmYdaO7HSdfD1aNPXA3v_A5_s9XPYenPS5l406QXsCjUL2EJw_YCl9B_QUvl4GdoX1A2ajYuKm_LRnFBaUdu57VFZt_nv64vTvGGtf44ITS9RWmjszCYjYiZHZa29WyYZMu_o7rCQvY7Ltf1CjNbHLda8NrOJ9Ozo5mcR-vIXYilzI2ROaVm5RnzqHLE_ivl1i0CVlrBfIy5EaWiXJC2oyHkAZEFy7XXI08D86X6RvYquoqvAOmPPepVl57ZYSSSpdS0wqsJkCkpY8gXo9X4Xoyc4qpcVl0NMy8oI4sho6M4ONQ_qqj8fhjyd318Be9Oi8xN0eYO9IjEcH7IRsVkVZXTBXqFZXJUp7TtFcEbzuxGV7FtVJK6CQC3g7-X9pQjI_n4-Fu-18q7cBjStMsNJe7sNUsVmEP4VNj91sV-QkZWxEN
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VcoAe-P8JFDASiFPajeM49oHDqrurLe0uUtlKvYUkdi60SbWbLSonHoFX4VV4BJ6EmfyVBSEkpB44xbGdxLFnxjNj-xuAF2mSWZmg9DNGa1dwL3Z1oKzLrdGor4eBEXR2eDKV40Px5ig4WoOv7VmYGh-ic7gRZ1TymhicHNLbF6ihsamAgzxF50tls69yz55_RKtt8Xp3gEP8kvPRcLYzdpvAAm4qQindmFCnwtjnQZqibBZolHgJEm9QkWuY2TCWmadSIZOAW-tbnAbTUHPVM9ymJvPxvVfgKoURJ7j-wcEFYhUZBBW8nx-4WgrV4kT2-PZqe1fnwd-U21VduZrsRjfhW9tN9R6XD1vLMtlKP_2CIPlf9eMtuNGo3qxf88ptWLP5Hdj4CZDxLhTv8HJs2QxFIJJ_zvplcbJgFPqUNiUbVuRs8nb0_fOXAT5xhhlTShenmNqJ5wkWoxHADopkuSjZsA4xlDaYDGx8buYFMiwbnjUMfw8OL-WP78N6XuT2ITBluPG1MtqoWCipdCY1LTJr0vm0NA64LYFEaYPXTmFDjqMaaZpHNHBRN3AOvOrqn9ZIJX-sudnSW9RIrAWWhqjJ93RPOPC8K0ZZQwtIcW6LJdUJfB6SZ8-BBzWddp_iWikltOcAr6jtL22I-oNJv7t79C8PPYNr49lkP9rfne49huuUT053LjdhvZwv7RPUFsvkacWfDN5fNiH_AMZFbBM
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtQwFL0qRUKw4P0IFDASiFXaxkkce8Fi1MxoSpkBlVbqLiS2s6Eko5lMUVnxCXwKv8Iv8CXcm1cZEEJC6oJVHD8SJz73-vp1LsBTneVWZKj9jFHKDbiXuiqU1uXWKLTXo9AEdHZ4MhXjw-DlUXi0Bl-7szANP0Q_4UaSUetrEvCZybfOSENTU_MGeZKOl4p2W-WePf2Ig7bFi90YW_gZ56Phwc7Ybf0KuDqIhHBTIp2KUp-HWqNqDnBM4mWI3bBGa5TbKBW5J3UgspBb61vsBXWkuNw23GqT-_jcC3ARyylyFhHvnxFW0XigZvfzQ1eJQHY0kdt8a7W-q93gb7btqqlc93Wja_Ct-0vNFpf3m8sq29SffiGQ_J9-43W42hrebNBIyg1Ys8VNuPITHeMtKN_i5diyA1SACP6CDaryw4KR41PakmxYWbDJ69H3z19iLHGCEVMKlzMM7aTzDJNxCMD2y2y5qNiwcTCkW0YGNj418xLFlQ1PWnG_DYfn8sV3YL0oC3sPmDTc-EoaZWQaSCFVLhQtMSuy-JQwDrgdPhLdsrWT05DjpOGZ5gk1XNI3nAPP-_yzhqfkjzk3Orglrb5aYGqEdjziOXDgSZ-MmoaWj9LClkvKE_o8onk9B-42MO1fxZWUMlCeA7wG21_qkAziyaC_u_8vhR7DpTfxKHm1O917AJcpmmbcudiA9Wq-tA_RVKyyR7V0Mnh33jj-Ae1casI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Single+Tungsten+Atoms+Supported+on+MOF-Derived+N-Doped+Carbon+for+Robust+Electrochemical+Hydrogen+Evolution&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Chen%2C+Wenxing&rft.au=Pei%2C+Jiajing&rft.au=He%2C+Chun-Ting&rft.au=Wan%2C+Jiawei&rft.date=2018-07-26&rft.issn=1521-4095&rft.eissn=1521-4095&rft.volume=30&rft.issue=30&rft.spage=e1800396&rft_id=info:doi/10.1002%2Fadma.201800396&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon