Single Tungsten Atoms Supported on MOF‐Derived N‐Doped Carbon for Robust Electrochemical Hydrogen Evolution
Tungsten‐based catalysts are promising candidates to generate hydrogen effectively. In this work, a single‐W‐atom catalyst supported on metal–organic framework (MOF)‐derived N‐doped carbon (W‐SAC) for efficient electrochemical hydrogen evolution reaction (HER), with high activity and excellent stabi...
Saved in:
Published in | Advanced materials (Weinheim) Vol. 30; no. 30; pp. e1800396 - n/a |
---|---|
Main Authors | , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
26.07.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Tungsten‐based catalysts are promising candidates to generate hydrogen effectively. In this work, a single‐W‐atom catalyst supported on metal–organic framework (MOF)‐derived N‐doped carbon (W‐SAC) for efficient electrochemical hydrogen evolution reaction (HER), with high activity and excellent stability is reported. High‐angle annular dark‐field scanning transmission electron microscopy (HAADF‐STEM) and X‐ray absorption fine structure (XAFS) spectroscopy analysis indicate the atomic dispersion of the W species, and reveal that the W1N1C3 moiety may be the favored local structure for the W species. The W‐SAC exhibits a low overpotential of 85 mV at a current density of 10 mA cm−2 and a small Tafel slope of 53 mV dec−1, in 0.1 m KOH solution. The HER activity of the W‐SAC is almost equal to that of commercial Pt/C. Density functional theory (DFT) calculation suggests that the unique structure of the W1N1C3 moiety plays an important role in enhancing the HER performance. This work gives new insights into the investigation of efficient and practical W‐based HER catalysts.
A single‐tungsten‐atom catalyst supported on metal–organic framework‐derived N‐doped carbon is reported. The catalyst demonstrates a high activity and excellent stability for efficient electrochemical hydrogen evolution. |
---|---|
AbstractList | Tungsten‐based catalysts are promising candidates to generate hydrogen effectively. In this work, a single‐W‐atom catalyst supported on metal–organic framework (MOF)‐derived N‐doped carbon (W‐SAC) for efficient electrochemical hydrogen evolution reaction (HER), with high activity and excellent stability is reported. High‐angle annular dark‐field scanning transmission electron microscopy (HAADF‐STEM) and X‐ray absorption fine structure (XAFS) spectroscopy analysis indicate the atomic dispersion of the W species, and reveal that the W
1
N
1
C
3
moiety may be the favored local structure for the W species. The W‐SAC exhibits a low overpotential of 85 mV at a current density of 10 mA cm
−2
and a small Tafel slope of 53 mV dec
−1
, in 0.1
m
KOH solution. The HER activity of the W‐SAC is almost equal to that of commercial Pt/C. Density functional theory (DFT) calculation suggests that the unique structure of the W
1
N
1
C
3
moiety plays an important role in enhancing the HER performance. This work gives new insights into the investigation of efficient and practical W‐based HER catalysts. Tungsten‐based catalysts are promising candidates to generate hydrogen effectively. In this work, a single‐W‐atom catalyst supported on metal–organic framework (MOF)‐derived N‐doped carbon (W‐SAC) for efficient electrochemical hydrogen evolution reaction (HER), with high activity and excellent stability is reported. High‐angle annular dark‐field scanning transmission electron microscopy (HAADF‐STEM) and X‐ray absorption fine structure (XAFS) spectroscopy analysis indicate the atomic dispersion of the W species, and reveal that the W1N1C3 moiety may be the favored local structure for the W species. The W‐SAC exhibits a low overpotential of 85 mV at a current density of 10 mA cm−2 and a small Tafel slope of 53 mV dec−1, in 0.1 m KOH solution. The HER activity of the W‐SAC is almost equal to that of commercial Pt/C. Density functional theory (DFT) calculation suggests that the unique structure of the W1N1C3 moiety plays an important role in enhancing the HER performance. This work gives new insights into the investigation of efficient and practical W‐based HER catalysts. A single‐tungsten‐atom catalyst supported on metal–organic framework‐derived N‐doped carbon is reported. The catalyst demonstrates a high activity and excellent stability for efficient electrochemical hydrogen evolution. Tungsten-based catalysts are promising candidates to generate hydrogen effectively. In this work, a single-W-atom catalyst supported on metal-organic framework (MOF)-derived N-doped carbon (W-SAC) for efficient electrochemical hydrogen evolution reaction (HER), with high activity and excellent stability is reported. High-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) and X-ray absorption fine structure (XAFS) spectroscopy analysis indicate the atomic dispersion of the W species, and reveal that the W N C moiety may be the favored local structure for the W species. The W-SAC exhibits a low overpotential of 85 mV at a current density of 10 mA cm and a small Tafel slope of 53 mV dec , in 0.1 m KOH solution. The HER activity of the W-SAC is almost equal to that of commercial Pt/C. Density functional theory (DFT) calculation suggests that the unique structure of the W N C moiety plays an important role in enhancing the HER performance. This work gives new insights into the investigation of efficient and practical W-based HER catalysts. Tungsten‐based catalysts are promising candidates to generate hydrogen effectively. In this work, a single‐W‐atom catalyst supported on metal–organic framework (MOF)‐derived N‐doped carbon (W‐SAC) for efficient electrochemical hydrogen evolution reaction (HER), with high activity and excellent stability is reported. High‐angle annular dark‐field scanning transmission electron microscopy (HAADF‐STEM) and X‐ray absorption fine structure (XAFS) spectroscopy analysis indicate the atomic dispersion of the W species, and reveal that the W1N1C3 moiety may be the favored local structure for the W species. The W‐SAC exhibits a low overpotential of 85 mV at a current density of 10 mA cm−2 and a small Tafel slope of 53 mV dec−1, in 0.1 m KOH solution. The HER activity of the W‐SAC is almost equal to that of commercial Pt/C. Density functional theory (DFT) calculation suggests that the unique structure of the W1N1C3 moiety plays an important role in enhancing the HER performance. This work gives new insights into the investigation of efficient and practical W‐based HER catalysts. Tungsten-based catalysts are promising candidates to generate hydrogen effectively. In this work, a single-W-atom catalyst supported on metal-organic framework (MOF)-derived N-doped carbon (W-SAC) for efficient electrochemical hydrogen evolution reaction (HER), with high activity and excellent stability is reported. High-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) and X-ray absorption fine structure (XAFS) spectroscopy analysis indicate the atomic dispersion of the W species, and reveal that the W1 N1 C3 moiety may be the favored local structure for the W species. The W-SAC exhibits a low overpotential of 85 mV at a current density of 10 mA cm-2 and a small Tafel slope of 53 mV dec-1 , in 0.1 m KOH solution. The HER activity of the W-SAC is almost equal to that of commercial Pt/C. Density functional theory (DFT) calculation suggests that the unique structure of the W1 N1 C3 moiety plays an important role in enhancing the HER performance. This work gives new insights into the investigation of efficient and practical W-based HER catalysts.Tungsten-based catalysts are promising candidates to generate hydrogen effectively. In this work, a single-W-atom catalyst supported on metal-organic framework (MOF)-derived N-doped carbon (W-SAC) for efficient electrochemical hydrogen evolution reaction (HER), with high activity and excellent stability is reported. High-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) and X-ray absorption fine structure (XAFS) spectroscopy analysis indicate the atomic dispersion of the W species, and reveal that the W1 N1 C3 moiety may be the favored local structure for the W species. The W-SAC exhibits a low overpotential of 85 mV at a current density of 10 mA cm-2 and a small Tafel slope of 53 mV dec-1 , in 0.1 m KOH solution. The HER activity of the W-SAC is almost equal to that of commercial Pt/C. Density functional theory (DFT) calculation suggests that the unique structure of the W1 N1 C3 moiety plays an important role in enhancing the HER performance. This work gives new insights into the investigation of efficient and practical W-based HER catalysts. |
Author | Cheong, Weng‐Chon Li, Yadong Wang, Yu Yan, Wensheng Peng, Qing Wang, Dingsheng Chen, Wenxing Ren, Hanlin Wu, Konglin Chen, Chen Dong, Juncai He, Chun‐Ting Pei, Jiajing Wan, Jiawei Zhuang, Zhongbin Zheng, Xusheng Mao, Junjie |
Author_xml | – sequence: 1 givenname: Wenxing surname: Chen fullname: Chen, Wenxing organization: Beijing Institute of Technology – sequence: 2 givenname: Jiajing surname: Pei fullname: Pei, Jiajing organization: Beijing University of Chemical Technology – sequence: 3 givenname: Chun‐Ting surname: He fullname: He, Chun‐Ting organization: Sun Yat‐Sen University – sequence: 4 givenname: Jiawei surname: Wan fullname: Wan, Jiawei organization: Tsinghua University – sequence: 5 givenname: Hanlin surname: Ren fullname: Ren, Hanlin organization: Tsinghua University – sequence: 6 givenname: Yu surname: Wang fullname: Wang, Yu organization: Chinese Academy of Sciences – sequence: 7 givenname: Juncai surname: Dong fullname: Dong, Juncai organization: Chinese Academy of Sciences – sequence: 8 givenname: Konglin surname: Wu fullname: Wu, Konglin organization: Tsinghua University – sequence: 9 givenname: Weng‐Chon surname: Cheong fullname: Cheong, Weng‐Chon organization: Tsinghua University – sequence: 10 givenname: Junjie surname: Mao fullname: Mao, Junjie organization: Tsinghua University – sequence: 11 givenname: Xusheng surname: Zheng fullname: Zheng, Xusheng organization: University of Science and Technology of China – sequence: 12 givenname: Wensheng surname: Yan fullname: Yan, Wensheng organization: University of Science and Technology of China – sequence: 13 givenname: Zhongbin surname: Zhuang fullname: Zhuang, Zhongbin organization: Beijing University of Chemical Technology – sequence: 14 givenname: Chen surname: Chen fullname: Chen, Chen organization: Tsinghua University – sequence: 15 givenname: Qing surname: Peng fullname: Peng, Qing organization: Tsinghua University – sequence: 16 givenname: Dingsheng orcidid: 0000-0003-0074-7633 surname: Wang fullname: Wang, Dingsheng email: wangdingsheng@mail.tsinghua.edu.cn organization: Tsinghua University – sequence: 17 givenname: Yadong surname: Li fullname: Li, Yadong organization: Tsinghua University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29888491$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkcFu1DAURS1URKeFLUsUiQ2bDM92YsfL0XRKkVoq0bK2HOdlSJXEwXaKZscn8I18CR5NC1IlxMpP9jlXtu8JORrdiIS8prCkAOy9aQazZEArAK7EM7KgJaN5Aao8IgtQvMyVKKpjchLCHQAoAeIFOWaqqqpC0QVxN9247TG7ncdtiDhmq-iGkN3M0-R8xCZzY3Z1ff7rx88z9N192vi0n92UprXxdTpunc8-u3oOMdv0aKN39isOnTV9drFrvNum1M296-fYufEled6aPuCrh_WUfDnf3K4v8svrDx_Xq8vcFlKI3EjgQhrOSmslrQoBlNYFK0ugUnHZojSipZUtRF0yRI60olYqVkHD0DYtPyXvDrmTd99mDFEPXbDY92ZENwfNoORMggKe0LdP0Ds3-zHdLlGSM5GoIlFvHqi5HrDRk-8G43f68SsTUBwA610IHlttu2j2b47edL2moPeN6X1j-k9jSVs-0R6T_ymog_C963H3H1qvzq5Wf93fObapQA |
CitedBy_id | crossref_primary_10_1016_j_ccr_2024_216238 crossref_primary_10_1039_D0CC02949A crossref_primary_10_1016_j_ccr_2022_214855 crossref_primary_10_3390_en16062664 crossref_primary_10_1002_advs_202407631 crossref_primary_10_1007_s12274_023_5616_z crossref_primary_10_1016_j_jssc_2019_121052 crossref_primary_10_1002_adma_202102811 crossref_primary_10_1016_j_ccr_2021_214209 crossref_primary_10_1016_j_jcis_2024_01_023 crossref_primary_10_1016_j_carbon_2018_12_032 crossref_primary_10_1002_adma_202210166 crossref_primary_10_1016_j_seppur_2023_125036 crossref_primary_10_1038_s41467_019_09845_z crossref_primary_10_1002_aenm_201903181 crossref_primary_10_1016_j_jcis_2021_03_142 crossref_primary_10_1039_D2TA01750D crossref_primary_10_1016_j_fuel_2025_134704 crossref_primary_10_1021_acsami_1c10513 crossref_primary_10_1002_smll_202004809 crossref_primary_10_1002_smtd_201800471 crossref_primary_10_1002_cssc_201801679 crossref_primary_10_1016_j_matpr_2020_12_1231 crossref_primary_10_1039_D0NR09104A crossref_primary_10_1002_adma_202100745 crossref_primary_10_1039_D1CP01861B crossref_primary_10_1002_adfm_202204458 crossref_primary_10_1016_j_jes_2023_06_027 crossref_primary_10_1016_j_apcatb_2023_122397 crossref_primary_10_1016_j_fuel_2024_131176 crossref_primary_10_1039_D0NR06396G crossref_primary_10_1039_C9TA03220G crossref_primary_10_1016_j_cej_2023_143740 crossref_primary_10_1016_j_jechem_2023_01_054 crossref_primary_10_1039_D0CS01569E crossref_primary_10_1002_anie_202014112 crossref_primary_10_1002_anie_202109530 crossref_primary_10_1021_acsami_8b15456 crossref_primary_10_1002_aenm_201802390 crossref_primary_10_1002_chem_201804658 crossref_primary_10_1039_D0SC01284J crossref_primary_10_1021_acsenergylett_0c01858 crossref_primary_10_1002_adfm_202308898 crossref_primary_10_1002_chem_202100612 crossref_primary_10_1016_j_mattod_2022_04_002 crossref_primary_10_1002_adma_202405128 crossref_primary_10_1002_adma_202310912 crossref_primary_10_1021_acsaem_2c03973 crossref_primary_10_1021_acs_chemrev_9b00818 crossref_primary_10_1021_acscatal_2c04563 crossref_primary_10_1021_acssuschemeng_0c04324 crossref_primary_10_1002_smll_202403767 crossref_primary_10_1002_ejic_202100522 crossref_primary_10_1039_C9CS00422J crossref_primary_10_1002_ange_202014112 crossref_primary_10_1021_acsnano_0c08135 crossref_primary_10_1002_smtd_201800443 crossref_primary_10_1007_s12274_023_6393_4 crossref_primary_10_1002_celc_202000136 crossref_primary_10_1007_s41061_021_00324_y crossref_primary_10_1002_cctc_202400548 crossref_primary_10_1002_anie_202408846 crossref_primary_10_1002_smtd_202301219 crossref_primary_10_1016_j_nanoen_2018_12_055 crossref_primary_10_1039_C9CC05225A crossref_primary_10_1021_acscatal_2c03189 crossref_primary_10_1021_acs_chemrev_2c00495 crossref_primary_10_1002_adma_202106371 crossref_primary_10_1002_smll_202202394 crossref_primary_10_1016_j_cej_2023_141301 crossref_primary_10_1002_advs_202409855 crossref_primary_10_1002_eng2_12327 crossref_primary_10_1002_er_7280 crossref_primary_10_1039_D2YA00284A crossref_primary_10_1016_j_ccr_2023_215066 crossref_primary_10_1021_acsami_0c14538 crossref_primary_10_1002_adfm_202400767 crossref_primary_10_1039_C9CS00871C crossref_primary_10_1002_advs_202303110 crossref_primary_10_1016_j_carbon_2020_10_003 crossref_primary_10_1039_D0CC07643K crossref_primary_10_1039_D0EE02651D crossref_primary_10_1039_D2CY00259K crossref_primary_10_1016_j_ccr_2021_214261 crossref_primary_10_1039_D0DT02961K crossref_primary_10_1016_j_matlet_2020_127831 crossref_primary_10_1038_s41524_021_00684_5 crossref_primary_10_1007_s12274_020_3099_8 crossref_primary_10_1039_D2TA08355H crossref_primary_10_1002_asia_202200319 crossref_primary_10_1021_acsomega_9b02555 crossref_primary_10_1002_smll_202206626 crossref_primary_10_1016_j_ijhydene_2023_10_137 crossref_primary_10_6023_A22040143 crossref_primary_10_1021_acsami_0c04606 crossref_primary_10_1021_acscatal_0c05577 crossref_primary_10_1002_cctc_201900570 crossref_primary_10_1002_adsu_202200096 crossref_primary_10_33609_2708_129X_89_06_2023_79_96 crossref_primary_10_1021_jacs_2c05059 crossref_primary_10_1038_s41467_022_28413_6 crossref_primary_10_1002_adma_202309715 crossref_primary_10_1016_j_ccr_2021_214392 crossref_primary_10_1016_j_cej_2024_149406 crossref_primary_10_1021_acs_chemrev_1c00981 crossref_primary_10_1039_D0TA09495A crossref_primary_10_1016_j_pmatsci_2019_100618 crossref_primary_10_1039_D1TA08582D crossref_primary_10_1002_aenm_201803689 crossref_primary_10_1021_acsanm_4c00522 crossref_primary_10_1039_D0NR07126A crossref_primary_10_1039_C9TA10935H crossref_primary_10_34133_2020_5860712 crossref_primary_10_1039_D0NR03685D crossref_primary_10_1002_ange_201911470 crossref_primary_10_1021_jacs_0c05050 crossref_primary_10_1002_cssc_202100722 crossref_primary_10_1016_j_ccr_2021_214289 crossref_primary_10_1126_sciadv_abl9271 crossref_primary_10_1021_acsami_3c18548 crossref_primary_10_1002_smtd_201800368 crossref_primary_10_1002_smtd_202301771 crossref_primary_10_12677_MS_2021_111007 crossref_primary_10_1039_D0DT03635H crossref_primary_10_1002_eom2_12274 crossref_primary_10_1016_j_apsusc_2024_159942 crossref_primary_10_1002_aenm_202200875 crossref_primary_10_1016_j_ccr_2020_213483 crossref_primary_10_1039_D0CY00315H crossref_primary_10_1002_cey2_194 crossref_primary_10_1002_smll_202401034 crossref_primary_10_1002_aenm_202402825 crossref_primary_10_1039_D2NA00829G crossref_primary_10_3390_nano10040602 crossref_primary_10_1039_D4SC03612C crossref_primary_10_1088_1674_4926_41_9_091707 crossref_primary_10_1002_aenm_202301580 crossref_primary_10_1002_adfm_202110224 crossref_primary_10_1016_j_ijhydene_2019_08_195 crossref_primary_10_1039_D1TA06915B crossref_primary_10_1126_sciadv_abb6833 crossref_primary_10_1002_adma_202006042 crossref_primary_10_1016_j_jhazmat_2022_129584 crossref_primary_10_1039_D4CS00333K crossref_primary_10_1002_cphc_202000595 crossref_primary_10_1007_s12274_020_2755_3 crossref_primary_10_1016_j_apsusc_2023_158225 crossref_primary_10_1016_j_poly_2018_08_004 crossref_primary_10_1021_acs_chemrev_3c00712 crossref_primary_10_1002_advs_202105544 crossref_primary_10_1007_s40820_023_01091_9 crossref_primary_10_1016_j_jmat_2020_10_008 crossref_primary_10_1021_acs_jpcc_1c07682 crossref_primary_10_1039_C9TA10290F crossref_primary_10_1002_adma_202204448 crossref_primary_10_1039_C9SE00311H crossref_primary_10_1016_j_mattod_2020_02_019 crossref_primary_10_1007_s11581_024_05382_y crossref_primary_10_1016_j_carbon_2020_08_041 crossref_primary_10_1016_j_carbon_2023_118456 crossref_primary_10_1002_anie_201914647 crossref_primary_10_1002_smtd_201800181 crossref_primary_10_1039_D3QM00157A crossref_primary_10_1039_D4RA05183A crossref_primary_10_1016_j_nanoen_2019_03_045 crossref_primary_10_1007_s41918_018_0024_x crossref_primary_10_1021_acscatal_3c05000 crossref_primary_10_1002_ange_202408846 crossref_primary_10_1039_D0TA02549F crossref_primary_10_1007_s12274_019_2324_9 crossref_primary_10_1039_D0NR05907B crossref_primary_10_1002_tcr_202100329 crossref_primary_10_1007_s12274_023_5449_9 crossref_primary_10_1021_acsnano_2c09270 crossref_primary_10_1039_D0CY00556H crossref_primary_10_1002_adfm_202309223 crossref_primary_10_1002_anie_202414647 crossref_primary_10_1039_D1EE03311E crossref_primary_10_1021_acs_chemrev_0c00594 crossref_primary_10_1016_j_apsusc_2018_07_209 crossref_primary_10_1007_s40820_019_0349_y crossref_primary_10_1016_j_cej_2022_134859 crossref_primary_10_1002_adma_202107053 crossref_primary_10_1016_j_elecom_2021_107024 crossref_primary_10_1016_j_electacta_2019_05_157 crossref_primary_10_1021_acs_chemrev_4c00664 crossref_primary_10_3390_catal15020137 crossref_primary_10_1002_anie_202107018 crossref_primary_10_1021_acs_jpclett_0c01943 crossref_primary_10_1002_sus2_32 crossref_primary_10_1039_D4TA06997H crossref_primary_10_1039_D0CY01408G crossref_primary_10_1007_s12274_022_4265_y crossref_primary_10_1039_D2TA03034A crossref_primary_10_1002_admi_202001145 crossref_primary_10_1002_smll_201905363 crossref_primary_10_1002_cssc_202002098 crossref_primary_10_1039_D1RA02240G crossref_primary_10_1021_jacsau_2c00187 crossref_primary_10_1016_j_carbon_2019_12_058 crossref_primary_10_1021_acsenergylett_4c01336 crossref_primary_10_3390_molecules27154751 crossref_primary_10_1007_s12274_019_2345_4 crossref_primary_10_1039_C9CS00869A crossref_primary_10_1002_adma_202003075 crossref_primary_10_1039_C8TA11416A crossref_primary_10_1016_j_apenergy_2022_119999 crossref_primary_10_1038_s41598_023_35613_7 crossref_primary_10_1039_C9TA04083H crossref_primary_10_1002_aenm_201902844 crossref_primary_10_1007_s12598_021_01873_3 crossref_primary_10_1016_j_ccr_2022_214741 crossref_primary_10_34133_2020_9512763 crossref_primary_10_1016_j_nanoen_2022_106989 crossref_primary_10_1073_pnas_2209760120 crossref_primary_10_1021_acs_chemrev_0c00576 crossref_primary_10_1016_j_ijhydene_2019_08_127 crossref_primary_10_1016_j_jcis_2019_12_044 crossref_primary_10_1002_adma_202312724 crossref_primary_10_1002_sstr_202100007 crossref_primary_10_1016_j_carbon_2019_04_002 crossref_primary_10_1002_admt_202200238 crossref_primary_10_1039_C9SE01004A crossref_primary_10_1016_j_apsusc_2019_143868 crossref_primary_10_1002_smll_202106279 crossref_primary_10_1002_adfm_201805828 crossref_primary_10_1021_acsanm_1c02108 crossref_primary_10_1016_j_nanoen_2020_104637 crossref_primary_10_1002_adfm_202003007 crossref_primary_10_1039_D4SC00569D crossref_primary_10_1016_j_recm_2022_09_002 crossref_primary_10_1002_aenm_202001561 crossref_primary_10_1002_adfm_202405328 crossref_primary_10_1016_j_est_2024_110947 crossref_primary_10_1002_adsu_202000151 crossref_primary_10_1021_acsaem_2c02062 crossref_primary_10_1002_aic_18792 crossref_primary_10_1016_j_ijhydene_2023_06_008 crossref_primary_10_1002_eem2_12290 crossref_primary_10_1002_adma_202003846 crossref_primary_10_1021_acsami_1c12494 crossref_primary_10_1021_acscatal_0c01459 crossref_primary_10_1002_asia_201900748 crossref_primary_10_1021_acs_iecr_0c00388 crossref_primary_10_1021_acs_chemrev_9b00238 crossref_primary_10_1039_D1NJ04344G crossref_primary_10_1007_s12274_020_3104_2 crossref_primary_10_1016_j_gee_2020_10_013 crossref_primary_10_3389_fchem_2020_00426 crossref_primary_10_1039_C9EE01647C crossref_primary_10_1002_adfm_202301463 crossref_primary_10_1002_smtd_202100102 crossref_primary_10_1039_D0CS01032D crossref_primary_10_1039_D4TA03518F crossref_primary_10_1016_j_ccr_2023_215639 crossref_primary_10_1039_D3TA01454A crossref_primary_10_1016_j_matt_2020_07_032 crossref_primary_10_1039_D0NR02196B crossref_primary_10_1016_j_cej_2023_146443 crossref_primary_10_1016_j_seppur_2022_122298 crossref_primary_10_1063_5_0083167 crossref_primary_10_1016_j_apcatb_2019_118255 crossref_primary_10_1007_s12274_022_4270_1 crossref_primary_10_1016_j_apsusc_2020_146239 crossref_primary_10_1002_cey2_382 crossref_primary_10_1021_acsanm_1c02433 crossref_primary_10_26599_NRE_2024_9120144 crossref_primary_10_1002_advs_202410260 crossref_primary_10_1002_adma_202008151 crossref_primary_10_1021_acsami_3c04602 crossref_primary_10_3390_molecules29081812 crossref_primary_10_1039_D0MH01061H crossref_primary_10_1039_C9MH01819K crossref_primary_10_1016_j_cej_2021_130480 crossref_primary_10_1016_j_jpowsour_2021_229708 crossref_primary_10_1007_s40820_023_01231_1 crossref_primary_10_1021_acs_chemrev_0c00864 crossref_primary_10_1002_cssc_202002944 crossref_primary_10_1002_adfm_202418602 crossref_primary_10_1016_j_ccr_2020_213678 crossref_primary_10_1039_D2EE01037B crossref_primary_10_1039_D0TA01680B crossref_primary_10_1002_smtd_201900210 crossref_primary_10_1039_D4CP01350F crossref_primary_10_1002_adma_202102576 crossref_primary_10_1021_acssuschemeng_3c03931 crossref_primary_10_1002_adma_202413658 crossref_primary_10_1016_j_ijhydene_2020_03_174 crossref_primary_10_1016_j_coelec_2018_09_011 crossref_primary_10_1016_j_mattod_2020_03_022 crossref_primary_10_1021_acs_iecr_2c00432 crossref_primary_10_1002_tcr_202200237 crossref_primary_10_1016_j_jpowsour_2020_228446 crossref_primary_10_1016_j_cej_2022_139475 crossref_primary_10_1021_acsnano_1c07694 crossref_primary_10_1016_j_chempr_2018_12_011 crossref_primary_10_1039_D3TA02149A crossref_primary_10_1088_2515_7639_ac01ac crossref_primary_10_1002_anie_201911470 crossref_primary_10_1039_D2TA08735A crossref_primary_10_1021_acs_chemrev_9b00311 crossref_primary_10_1007_s12598_021_01735_y crossref_primary_10_1002_smll_202304560 crossref_primary_10_1016_j_scib_2020_03_021 crossref_primary_10_1002_adfm_201804600 crossref_primary_10_1002_aenm_201901227 crossref_primary_10_1039_C9TA02200G crossref_primary_10_1039_C9TA12613A crossref_primary_10_1021_acscatal_2c04807 crossref_primary_10_1021_acs_chemrev_9b00223 crossref_primary_10_1016_j_mtener_2018_10_014 crossref_primary_10_1007_s11426_021_1163_7 crossref_primary_10_1002_adma_202008599 crossref_primary_10_1002_chem_202102209 crossref_primary_10_1007_s11705_021_2087_1 crossref_primary_10_1039_C9TA03606G crossref_primary_10_1002_smll_202004398 crossref_primary_10_1021_acsaem_4c01322 crossref_primary_10_1039_C9EE04040D crossref_primary_10_1002_smll_202101416 crossref_primary_10_1016_j_nanoen_2019_104332 crossref_primary_10_1002_smll_202100203 crossref_primary_10_1016_j_seppur_2019_116424 crossref_primary_10_1021_acsnano_1c06796 crossref_primary_10_1002_tcr_202300330 crossref_primary_10_1016_j_apsusc_2020_146987 crossref_primary_10_1002_celc_202300722 crossref_primary_10_1021_acssuschemeng_9b03720 crossref_primary_10_1016_j_isci_2022_104367 crossref_primary_10_1021_acssuschemeng_9b01789 crossref_primary_10_1007_s11426_024_2083_4 crossref_primary_10_1007_s11814_021_0741_4 crossref_primary_10_1002_inf2_12296 crossref_primary_10_1002_adfm_202010052 crossref_primary_10_1073_pnas_2315362121 crossref_primary_10_1016_j_nanoen_2019_104335 crossref_primary_10_1002_smll_202305220 crossref_primary_10_1186_s40580_020_00251_6 crossref_primary_10_1002_celc_202400696 crossref_primary_10_1002_ange_202109530 crossref_primary_10_1002_smll_202204767 crossref_primary_10_1021_acsaem_1c02271 crossref_primary_10_1039_D3TA00239J crossref_primary_10_1007_s12274_021_3559_9 crossref_primary_10_1021_acsami_2c19148 crossref_primary_10_1021_acs_chemrev_9b00757 crossref_primary_10_1002_slct_202002908 crossref_primary_10_1021_jacs_9b03811 crossref_primary_10_1039_D4CC02806F crossref_primary_10_1021_jacs_4c12479 crossref_primary_10_1039_C9NJ01989H crossref_primary_10_1002_adma_202108504 crossref_primary_10_1016_j_cej_2020_128027 crossref_primary_10_1039_C9CS00906J crossref_primary_10_1016_j_jelechem_2022_116717 crossref_primary_10_1007_s40820_022_00908_3 crossref_primary_10_1021_acs_chemrev_0c00094 crossref_primary_10_1016_j_ces_2024_120991 crossref_primary_10_1016_j_ijhydene_2020_10_121 crossref_primary_10_1002_smm2_1095 crossref_primary_10_1002_ange_202107018 crossref_primary_10_1002_adfm_202208688 crossref_primary_10_1038_s41467_022_34572_3 crossref_primary_10_1038_s41467_018_06296_w crossref_primary_10_1021_acsami_1c09029 crossref_primary_10_1002_ange_201914647 crossref_primary_10_1016_j_jclepro_2023_138693 crossref_primary_10_3390_catal13040651 crossref_primary_10_1002_advs_201901129 crossref_primary_10_1002_adma_202003300 crossref_primary_10_1016_j_renene_2022_05_124 crossref_primary_10_1039_D0EE03635H crossref_primary_10_1039_D1CE00593F crossref_primary_10_1016_j_apsusc_2020_145302 crossref_primary_10_20517_microstructures_2023_71 crossref_primary_10_1039_C9TA03719E crossref_primary_10_1016_j_surfin_2021_101714 crossref_primary_10_1039_D0CY01385D crossref_primary_10_1039_D2DT00551D crossref_primary_10_1002_adfm_202003870 crossref_primary_10_1002_cey2_663 crossref_primary_10_1016_j_cis_2023_103068 crossref_primary_10_1021_acscatal_2c02416 crossref_primary_10_1021_acsanm_0c00146 crossref_primary_10_1016_j_ccr_2019_02_029 crossref_primary_10_1039_D3TA07343B crossref_primary_10_1039_D3TA01548C crossref_primary_10_2139_ssrn_4198113 crossref_primary_10_1007_s40843_019_1242_1 crossref_primary_10_1002_smll_201900248 crossref_primary_10_1002_advs_202105192 crossref_primary_10_1016_j_ensm_2019_03_025 crossref_primary_10_1002_advs_202003212 crossref_primary_10_1002_smtd_201800438 crossref_primary_10_1016_j_cej_2024_149820 crossref_primary_10_1021_acsami_9b11238 crossref_primary_10_1016_j_susmat_2020_e00236 crossref_primary_10_1021_acsestengg_5c00007 crossref_primary_10_1038_s41467_020_15518_z crossref_primary_10_1021_jacs_8b09211 crossref_primary_10_1039_D1TA00022E crossref_primary_10_1021_acs_energyfuels_0c01358 crossref_primary_10_1088_1361_648X_ab38da crossref_primary_10_1002_smll_202309509 crossref_primary_10_1016_j_nanoen_2020_104667 crossref_primary_10_1002_smll_202107459 crossref_primary_10_1002_cey2_720 crossref_primary_10_1016_j_jallcom_2024_174044 crossref_primary_10_1016_j_isci_2022_104177 crossref_primary_10_1007_s11356_022_22084_y crossref_primary_10_1039_C9QI01487J crossref_primary_10_1088_2399_1984_ac3ec1 crossref_primary_10_1021_acsami_2c09107 crossref_primary_10_1002_adma_202211790 crossref_primary_10_1016_j_mseb_2021_115341 crossref_primary_10_1002_celc_202100687 crossref_primary_10_1016_j_susmat_2020_e00221 crossref_primary_10_1007_s12274_022_4424_1 crossref_primary_10_1016_j_scib_2020_06_036 crossref_primary_10_1007_s12598_024_02727_4 crossref_primary_10_1021_acsami_0c10234 crossref_primary_10_1002_adfm_202300294 crossref_primary_10_1021_acsami_4c11732 crossref_primary_10_1039_D1CE00709B crossref_primary_10_1016_j_cej_2022_140759 crossref_primary_10_1016_j_ccr_2020_213619 crossref_primary_10_1002_adma_202418233 crossref_primary_10_1021_acsami_8b15888 crossref_primary_10_1039_D0TA08940K crossref_primary_10_1002_ange_202414647 crossref_primary_10_1016_j_nanoen_2023_108536 crossref_primary_10_1016_j_apcatb_2021_120740 crossref_primary_10_1039_D4EY00205A crossref_primary_10_1039_D4SC04905E crossref_primary_10_1002_aenm_201903137 crossref_primary_10_1007_s40820_021_00668_6 crossref_primary_10_1039_D0TA04016A crossref_primary_10_1021_acscatal_1c03441 crossref_primary_10_1039_D0CS00575D crossref_primary_10_1016_j_fuel_2021_121420 crossref_primary_10_1016_j_mcat_2021_111830 crossref_primary_10_1002_aenm_202101670 crossref_primary_10_3390_electrochem6010003 crossref_primary_10_1039_C9CY02006C crossref_primary_10_1021_acs_inorgchem_3c00584 crossref_primary_10_3390_inorganics11070300 crossref_primary_10_1021_acsaem_0c03033 crossref_primary_10_1002_smtd_201800406 crossref_primary_10_1002_adfm_202307917 crossref_primary_10_1016_j_apsusc_2022_155506 crossref_primary_10_1016_j_fuel_2024_134021 crossref_primary_10_1080_14686996_2022_2149036 |
Cites_doi | 10.1039/C5EE03801D 10.1038/nmat3700 10.1002/anie.201604802 10.1038/460809a 10.1016/j.electacta.2015.12.074 10.1039/c3ee40600h 10.1039/c3cc41031e 10.1002/ange.201702473 10.1039/C4CS00448E 10.1002/anie.201307527 10.1002/adma.201703185 10.1039/C4CS00470A 10.1039/C4EE01329H 10.1021/ar300361m 10.1002/anie.201400294 10.1021/cs5014943 10.1038/ncomms10667 10.1002/adma.201601960 10.1021/acsnano.5b00425 10.1021/jacs.5b10666 10.1021/jacs.7b02736 10.1039/C6EE01867J 10.1007/s40843-015-0043-4 10.1039/C6TA09052D 10.1038/nchem.1095 10.1126/science.aaf5251 10.1126/sciadv.1500462 10.1007/s12274-015-0965-x 10.1002/anie.201407031 10.1021/jacs.6b11027 10.1021/jacs.7b05372 10.1021/acs.accounts.6b00635 10.1002/smll.201700191 10.1002/adma.201502696 10.1038/s41570-016-0003 10.1021/jacs.7b01686 10.1038/ncomms13216 10.1021/jacs.7b00165 10.1038/nenergy.2016.34 10.1002/adma.201505281 10.1002/anie.201703864 10.1002/anie.201501419 10.1038/nature11475 10.1039/c1ee01970h 10.1126/science.1253150 10.1002/aenm.201301875 10.1021/jacs.7b01530 10.1038/ncomms9668 |
ContentType | Journal Article |
Copyright | 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
Copyright_xml | – notice: 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
DBID | AAYXX CITATION NPM 7SR 8BQ 8FD JG9 7X8 |
DOI | 10.1002/adma.201800396 |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | CrossRef PubMed Materials Research Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1521-4095 |
EndPage | n/a |
ExternalDocumentID | 29888491 10_1002_adma_201800396 ADMA201800396 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 21521091; 21390393; U1463202; 21471089; 21671117; 11405252 – fundername: National Postdoctoral Program for Innovative Talents funderid: BX201600195 – fundername: 111 Project funderid: B16028 – fundername: Beijing Natural Science Foundation funderid: 2174081 – fundername: China Ministry of Science and Technology funderid: 2016YFA; 0202801 |
GroupedDBID | --- .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS EJD F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RWM RX1 RYL SUPJJ TN5 UB1 UPT V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 YR2 ZZTAW ~02 ~IA ~WT .Y3 31~ 6TJ 8WZ A6W AANHP AAYOK AAYXX ABEML ACBWZ ACRPL ACSCC ACYXJ ADMLS ADNMO AETEA AEYWJ AFFNX AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION FEDTE FOJGT HF~ HVGLF M6K NDZJH PALCI RIWAO RJQFR SAMSI WTY ZY4 AAMMB AEFGJ AGXDD AIDQK AIDYY NPM 7SR 8BQ 8FD JG9 7X8 |
ID | FETCH-LOGICAL-c4766-a70367a325cc71846011b4255017937fe7a6f18c46b52ee3e181c79280d2ecdf3 |
IEDL.DBID | DR2 |
ISSN | 0935-9648 1521-4095 |
IngestDate | Fri Jul 11 08:50:28 EDT 2025 Fri Jul 25 06:35:41 EDT 2025 Mon Jul 21 05:44:49 EDT 2025 Thu Apr 24 23:09:24 EDT 2025 Tue Jul 01 00:44:43 EDT 2025 Wed Jan 22 17:11:54 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 30 |
Keywords | electrocatalysts N-doped carbon single W atoms hydrogen evolution reaction metal-organic frameworks |
Language | English |
License | 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4766-a70367a325cc71846011b4255017937fe7a6f18c46b52ee3e181c79280d2ecdf3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-0074-7633 |
PMID | 29888491 |
PQID | 2073260904 |
PQPubID | 2045203 |
PageCount | 6 |
ParticipantIDs | proquest_miscellaneous_2053270903 proquest_journals_2073260904 pubmed_primary_29888491 crossref_citationtrail_10_1002_adma_201800396 crossref_primary_10_1002_adma_201800396 wiley_primary_10_1002_adma_201800396_ADMA201800396 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | July 26, 2018 |
PublicationDateYYYYMMDD | 2018-07-26 |
PublicationDate_xml | – month: 07 year: 2018 text: July 26, 2018 day: 26 |
PublicationDecade | 2010 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Advanced materials (Weinheim) |
PublicationTitleAlternate | Adv Mater |
PublicationYear | 2018 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2017; 5 2015; 1 2015; 58 2017; 1 2015; 6 2015; 5 2013; 49 2013; 46 2015; 54 2017; 29 2012; 488 2011; 4 2015; 9 2011; 3 2013; 6 2017; 139 2016; 55 2017; 50 2016; 7 2014; 4 2016; 1 2013; 12 2017; 13 2015; 44 2013; 52 2017; 56 2016; 352 2016; 138 2009; 460 2016; 28 2014; 7 2016; 190 2016; 9 2014; 53 2014; 344 2017; 129 e_1_2_4_40_1 e_1_2_4_41_1 e_1_2_4_21_1 e_1_2_4_44_1 e_1_2_4_20_1 e_1_2_4_45_1 e_1_2_4_23_1 e_1_2_4_42_1 e_1_2_4_22_1 e_1_2_4_43_1 e_1_2_4_25_1 e_1_2_4_48_1 e_1_2_4_24_1 e_1_2_4_27_1 e_1_2_4_46_1 e_1_2_4_26_1 e_1_2_4_47_1 e_1_2_4_29_1 e_1_2_4_28_1 e_1_2_4_1_1 e_1_2_4_3_1 e_1_2_4_2_1 e_1_2_4_5_1 e_1_2_4_4_1 e_1_2_4_7_1 e_1_2_4_6_1 e_1_2_4_9_1 e_1_2_4_8_1 e_1_2_4_30_1 e_1_2_4_32_1 e_1_2_4_10_1 e_1_2_4_31_1 e_1_2_4_11_1 e_1_2_4_34_1 e_1_2_4_12_1 e_1_2_4_33_1 e_1_2_4_13_1 e_1_2_4_36_1 e_1_2_4_14_1 e_1_2_4_35_1 e_1_2_4_15_1 e_1_2_4_16_1 e_1_2_4_38_1 e_1_2_4_37_1 e_1_2_4_18_1 e_1_2_4_17_1 e_1_2_4_39_1 e_1_2_4_19_1 |
References_xml | – volume: 58 start-page: 313 year: 2015 publication-title: Sci. China Mater. – volume: 1 start-page: 0003 year: 2017 publication-title: Nat. Rev. Chem. – volume: 488 start-page: 294 year: 2012 publication-title: Nature – volume: 7 start-page: 10667 year: 2016 publication-title: Nat. Commun. – volume: 44 start-page: 2060 year: 2015 publication-title: Chem. Soc. Rev. – volume: 44 start-page: 5148 year: 2015 publication-title: Chem. Soc. Rev. – volume: 4 start-page: 1301875 year: 2014 publication-title: Adv. Energy Mater. – volume: 1 start-page: e1500462 year: 2015 publication-title: Sci. Adv. – volume: 49 start-page: 4884 year: 2013 publication-title: Chem. Commun. – volume: 53 start-page: 5131 year: 2014 publication-title: Angew. Chem., Int. Ed. – volume: 9 start-page: 5125 year: 2015 publication-title: ACS Nano – volume: 190 start-page: 1113 year: 2016 publication-title: Electrochim. Acta – volume: 28 start-page: 215 year: 2016 publication-title: Adv. Mater. – volume: 344 start-page: 616 year: 2014 publication-title: Science – volume: 139 start-page: 8078 year: 2017 publication-title: J. Am. Chem. Soc. – volume: 52 start-page: 13638 year: 2013 publication-title: Angew. Chem., Int. Ed. – volume: 56 start-page: 13944 year: 2017 publication-title: Angew. Chem., Int. Ed. – volume: 138 start-page: 3255 year: 2016 publication-title: J. Am. Chem. Soc. – volume: 50 start-page: 915 year: 2017 publication-title: Acc. Chem. Res. – volume: 1 start-page: 16034 year: 2016 publication-title: Nat. Energy – volume: 28 start-page: 6959 year: 2016 publication-title: Adv. Mater. – volume: 9 start-page: 3736 year: 2016 publication-title: Energy Environ. Sci. – volume: 139 start-page: 6669 year: 2017 publication-title: J. Am. Chem. Soc. – volume: 139 start-page: 9419 year: 2017 publication-title: J. Am. Chem. Soc. – volume: 54 start-page: 6325 year: 2015 publication-title: Angew. Chem., Int. Ed. – volume: 4 start-page: 3878 year: 2011 publication-title: Energy Environ. Sci. – volume: 6 start-page: 8668 year: 2015 publication-title: Nat. Commun. – volume: 139 start-page: 10976 year: 2017 publication-title: J. Am. Chem. Soc. – volume: 139 start-page: 5285 year: 2017 publication-title: J. Am. Chem. Soc. – volume: 28 start-page: 2427 year: 2016 publication-title: Adv. Mater. – volume: 55 start-page: 10800 year: 2016 publication-title: Angew. Chem., Int. Ed. – volume: 7 start-page: 2608 year: 2014 publication-title: Energy Environ. Sci. – volume: 54 start-page: 52 year: 2015 publication-title: Angew. Chem., Int. Ed. – volume: 13 start-page: 1700191 year: 2017 publication-title: Small – volume: 5 start-page: 145 year: 2015 publication-title: ACS Catal. – volume: 460 start-page: 809 year: 2009 publication-title: Nature – volume: 5 start-page: 765 year: 2017 publication-title: J. Mater. Chem. A – volume: 7 start-page: 13216 year: 2016 publication-title: Nat. Commun. – volume: 46 start-page: 1740 year: 2013 publication-title: Acc. Chem. Res. – volume: 9 start-page: 28 year: 2016 publication-title: Nano Res. – volume: 139 start-page: 356 year: 2017 publication-title: J. Am. Chem. Soc. – volume: 29 start-page: 1703185 year: 2017 publication-title: Adv. Mater. – volume: 12 start-page: 850 year: 2013 publication-title: Nat. Mater. – volume: 3 start-page: 634 year: 2011 publication-title: Nat. Chem. – volume: 6 start-page: 2452 year: 2013 publication-title: Energy Environ. Sci. – volume: 352 start-page: 797 year: 2016 publication-title: Science – volume: 129 start-page: 7041 year: 2017 publication-title: Angew. Chem. – volume: 9 start-page: 1468 year: 2016 publication-title: Energy Environ. Sci. – ident: e_1_2_4_11_1 doi: 10.1039/C5EE03801D – ident: e_1_2_4_15_1 doi: 10.1038/nmat3700 – ident: e_1_2_4_38_1 doi: 10.1002/anie.201604802 – ident: e_1_2_4_2_1 doi: 10.1038/460809a – ident: e_1_2_4_21_1 doi: 10.1016/j.electacta.2015.12.074 – ident: e_1_2_4_14_1 doi: 10.1039/c3ee40600h – ident: e_1_2_4_24_1 doi: 10.1039/c3cc41031e – ident: e_1_2_4_39_1 doi: 10.1002/ange.201702473 – ident: e_1_2_4_8_1 doi: 10.1039/C4CS00448E – ident: e_1_2_4_19_1 doi: 10.1002/anie.201307527 – ident: e_1_2_4_35_1 doi: 10.1002/adma.201703185 – ident: e_1_2_4_46_1 doi: 10.1039/C4CS00470A – ident: e_1_2_4_17_1 doi: 10.1039/C4EE01329H – ident: e_1_2_4_33_1 doi: 10.1021/ar300361m – ident: e_1_2_4_20_1 doi: 10.1002/anie.201400294 – ident: e_1_2_4_12_1 doi: 10.1021/cs5014943 – ident: e_1_2_4_30_1 doi: 10.1038/ncomms10667 – ident: e_1_2_4_31_1 doi: 10.1002/adma.201601960 – ident: e_1_2_4_23_1 doi: 10.1021/acsnano.5b00425 – ident: e_1_2_4_41_1 doi: 10.1021/jacs.5b10666 – ident: e_1_2_4_40_1 doi: 10.1021/jacs.7b02736 – ident: e_1_2_4_36_1 doi: 10.1039/C6EE01867J – ident: e_1_2_4_44_1 doi: 10.1007/s40843-015-0043-4 – ident: e_1_2_4_22_1 doi: 10.1039/C6TA09052D – ident: e_1_2_4_25_1 doi: 10.1038/nchem.1095 – ident: e_1_2_4_28_1 doi: 10.1126/science.aaf5251 – ident: e_1_2_4_27_1 doi: 10.1126/sciadv.1500462 – ident: e_1_2_4_6_1 doi: 10.1007/s12274-015-0965-x – ident: e_1_2_4_48_1 doi: 10.1002/anie.201407031 – ident: e_1_2_4_43_1 doi: 10.1021/jacs.6b11027 – ident: e_1_2_4_32_1 doi: 10.1021/jacs.7b05372 – ident: e_1_2_4_4_1 doi: 10.1021/acs.accounts.6b00635 – ident: e_1_2_4_5_1 doi: 10.1002/smll.201700191 – ident: e_1_2_4_7_1 doi: 10.1002/adma.201502696 – ident: e_1_2_4_3_1 doi: 10.1038/s41570-016-0003 – ident: e_1_2_4_45_1 doi: 10.1021/jacs.7b01686 – ident: e_1_2_4_9_1 doi: 10.1038/ncomms13216 – ident: e_1_2_4_18_1 doi: 10.1021/jacs.7b00165 – ident: e_1_2_4_42_1 doi: 10.1038/nenergy.2016.34 – ident: e_1_2_4_29_1 doi: 10.1002/adma.201505281 – ident: e_1_2_4_34_1 doi: 10.1002/anie.201703864 – ident: e_1_2_4_10_1 doi: 10.1002/anie.201501419 – ident: e_1_2_4_1_1 doi: 10.1038/nature11475 – ident: e_1_2_4_13_1 doi: 10.1039/c1ee01970h – ident: e_1_2_4_26_1 doi: 10.1126/science.1253150 – ident: e_1_2_4_16_1 doi: 10.1002/aenm.201301875 – ident: e_1_2_4_47_1 doi: 10.1021/jacs.7b01530 – ident: e_1_2_4_37_1 doi: 10.1038/ncomms9668 |
SSID | ssj0009606 |
Score | 2.6858368 |
Snippet | Tungsten‐based catalysts are promising candidates to generate hydrogen effectively. In this work, a single‐W‐atom catalyst supported on metal–organic framework... Tungsten-based catalysts are promising candidates to generate hydrogen effectively. In this work, a single-W-atom catalyst supported on metal-organic framework... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e1800396 |
SubjectTerms | Atomic absorption analysis Atomic structure Carbon Catalysis Catalysts Density functional theory electrocatalysts Fine structure hydrogen evolution reaction Hydrogen evolution reactions Metal-organic frameworks N‐doped carbon Scanning electron microscopy Scanning transmission electron microscopy single W atoms Transmission electron microscopy Tungsten |
Title | Single Tungsten Atoms Supported on MOF‐Derived N‐Doped Carbon for Robust Electrochemical Hydrogen Evolution |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.201800396 https://www.ncbi.nlm.nih.gov/pubmed/29888491 https://www.proquest.com/docview/2073260904 https://www.proquest.com/docview/2053270903 |
Volume | 30 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Ja9wwFH6UnNpD98XZUKHQk5OxLMvScUhmGAqTQppAbkabL03tMOMJNKf8hPzG_pK-Z3ucTEsptCfLloRl6S2ftXwP4IOzZZAWrZ_3WseCJybWmQoxD14jXs8zL-js8PxEzs7Fp4vs4sEp_o4fYphwI81o7TUpuLHLw3vSUONb3qBE0fFS4tymDVuEik7v-aMInrdke2kWaynUmrVxxA83q296pd-g5iZybV3P9BmYdaO7HSdfD1aNPXA3v_A5_s9XPYenPS5l406QXsCjUL2EJw_YCl9B_QUvl4GdoX1A2ajYuKm_LRnFBaUdu57VFZt_nv64vTvGGtf44ITS9RWmjszCYjYiZHZa29WyYZMu_o7rCQvY7Ltf1CjNbHLda8NrOJ9Ozo5mcR-vIXYilzI2ROaVm5RnzqHLE_ivl1i0CVlrBfIy5EaWiXJC2oyHkAZEFy7XXI08D86X6RvYquoqvAOmPPepVl57ZYSSSpdS0wqsJkCkpY8gXo9X4Xoyc4qpcVl0NMy8oI4sho6M4ONQ_qqj8fhjyd318Be9Oi8xN0eYO9IjEcH7IRsVkVZXTBXqFZXJUp7TtFcEbzuxGV7FtVJK6CQC3g7-X9pQjI_n4-Fu-18q7cBjStMsNJe7sNUsVmEP4VNj91sV-QkZWxEN |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VcoAe-P8JFDASiFPajeM49oHDqrurLe0uUtlKvYUkdi60SbWbLSonHoFX4VV4BJ6EmfyVBSEkpB44xbGdxLFnxjNj-xuAF2mSWZmg9DNGa1dwL3Z1oKzLrdGor4eBEXR2eDKV40Px5ig4WoOv7VmYGh-ic7gRZ1TymhicHNLbF6ihsamAgzxF50tls69yz55_RKtt8Xp3gEP8kvPRcLYzdpvAAm4qQindmFCnwtjnQZqibBZolHgJEm9QkWuY2TCWmadSIZOAW-tbnAbTUHPVM9ymJvPxvVfgKoURJ7j-wcEFYhUZBBW8nx-4WgrV4kT2-PZqe1fnwd-U21VduZrsRjfhW9tN9R6XD1vLMtlKP_2CIPlf9eMtuNGo3qxf88ptWLP5Hdj4CZDxLhTv8HJs2QxFIJJ_zvplcbJgFPqUNiUbVuRs8nb0_fOXAT5xhhlTShenmNqJ5wkWoxHADopkuSjZsA4xlDaYDGx8buYFMiwbnjUMfw8OL-WP78N6XuT2ITBluPG1MtqoWCipdCY1LTJr0vm0NA64LYFEaYPXTmFDjqMaaZpHNHBRN3AOvOrqn9ZIJX-sudnSW9RIrAWWhqjJ93RPOPC8K0ZZQwtIcW6LJdUJfB6SZ8-BBzWddp_iWikltOcAr6jtL22I-oNJv7t79C8PPYNr49lkP9rfne49huuUT053LjdhvZwv7RPUFsvkacWfDN5fNiH_AMZFbBM |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtQwFL0qRUKw4P0IFDASiFXaxkkce8Fi1MxoSpkBlVbqLiS2s6Eko5lMUVnxCXwKv8Iv8CXcm1cZEEJC6oJVHD8SJz73-vp1LsBTneVWZKj9jFHKDbiXuiqU1uXWKLTXo9AEdHZ4MhXjw-DlUXi0Bl-7szANP0Q_4UaSUetrEvCZybfOSENTU_MGeZKOl4p2W-WePf2Ig7bFi90YW_gZ56Phwc7Ybf0KuDqIhHBTIp2KUp-HWqNqDnBM4mWI3bBGa5TbKBW5J3UgspBb61vsBXWkuNw23GqT-_jcC3ARyylyFhHvnxFW0XigZvfzQ1eJQHY0kdt8a7W-q93gb7btqqlc93Wja_Ct-0vNFpf3m8sq29SffiGQ_J9-43W42hrebNBIyg1Ys8VNuPITHeMtKN_i5diyA1SACP6CDaryw4KR41PakmxYWbDJ69H3z19iLHGCEVMKlzMM7aTzDJNxCMD2y2y5qNiwcTCkW0YGNj418xLFlQ1PWnG_DYfn8sV3YL0oC3sPmDTc-EoaZWQaSCFVLhQtMSuy-JQwDrgdPhLdsrWT05DjpOGZ5gk1XNI3nAPP-_yzhqfkjzk3Orglrb5aYGqEdjziOXDgSZ-MmoaWj9LClkvKE_o8onk9B-42MO1fxZWUMlCeA7wG21_qkAziyaC_u_8vhR7DpTfxKHm1O917AJcpmmbcudiA9Wq-tA_RVKyyR7V0Mnh33jj-Ae1casI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Single+Tungsten+Atoms+Supported+on+MOF-Derived+N-Doped+Carbon+for+Robust+Electrochemical+Hydrogen+Evolution&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Chen%2C+Wenxing&rft.au=Pei%2C+Jiajing&rft.au=He%2C+Chun-Ting&rft.au=Wan%2C+Jiawei&rft.date=2018-07-26&rft.issn=1521-4095&rft.eissn=1521-4095&rft.volume=30&rft.issue=30&rft.spage=e1800396&rft_id=info:doi/10.1002%2Fadma.201800396&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon |