Nitriding‐Interface‐Regulated Lithium Plating Enables Flame‐Retardant Electrolytes for High‐Voltage Lithium Metal Batteries
Safety concerns are impeding the applications of lithium metal batteries. Flame‐retardant electrolytes, such as organic phosphates electrolytes (OPEs), could intrinsically eliminate fire hazards and improve battery safety. However, OPEs show poor compatibility with Li metal though the exact reason h...
Saved in:
Published in | Angewandte Chemie International Edition Vol. 58; no. 23; pp. 7802 - 7807 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
03.06.2019
|
Edition | International ed. in English |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Safety concerns are impeding the applications of lithium metal batteries. Flame‐retardant electrolytes, such as organic phosphates electrolytes (OPEs), could intrinsically eliminate fire hazards and improve battery safety. However, OPEs show poor compatibility with Li metal though the exact reason has yet to be identified. Here, the lithium plating process in OPEs and Li/OPEs interface chemistry were investigated through ex situ and in situ techniques, and the cause for this incompatibility was revealed to be the highly resistive and inhomogeneous interfaces. Further, a nitriding interface strategy was proposed to ameliorate this issue and a Li metal anode with an improved Li cycling stability (300 h) and dendrite‐free morphology is achieved. Meanwhile, the full batteries coupled with nickel‐rich cathodes, such as LiNi0.8Co0.1Mn0.1O2, show excellent cycling stability and outstanding safety (passed the nail penetration test). This successful nitriding‐interface strategy paves a new way to handle the incompatibility between electrode and electrolyte.
A nitriding interface has been developed for the successful application of flame‐retardant electrolytes in high‐energy‐density cells using a Li metal anode and a high‐voltage, high‐capacity cathode. The homogeneity of the solid electrolyte interface (SEI) layer is crucially important for the uniform Li deposition required for high‐voltage batteries. |
---|---|
AbstractList | Safety concerns are impeding the applications of lithium metal batteries. Flame‐retardant electrolytes, such as organic phosphates electrolytes (OPEs), could intrinsically eliminate fire hazards and improve battery safety. However, OPEs show poor compatibility with Li metal though the exact reason has yet to be identified. Here, the lithium plating process in OPEs and Li/OPEs interface chemistry were investigated through ex situ and in situ techniques, and the cause for this incompatibility was revealed to be the highly resistive and inhomogeneous interfaces. Further, a nitriding interface strategy was proposed to ameliorate this issue and a Li metal anode with an improved Li cycling stability (300 h) and dendrite‐free morphology is achieved. Meanwhile, the full batteries coupled with nickel‐rich cathodes, such as LiNi0.8Co0.1Mn0.1O2, show excellent cycling stability and outstanding safety (passed the nail penetration test). This successful nitriding‐interface strategy paves a new way to handle the incompatibility between electrode and electrolyte. Safety concerns are impeding the applications of lithium metal batteries. Flame-retardant electrolytes, such as organic phosphates electrolytes (OPEs), could intrinsically eliminate fire hazards and improve battery safety. However, OPEs show poor compatibility with Li metal though the exact reason has yet to be identified. Here, the lithium plating process in OPEs and Li/OPEs interface chemistry were investigated through ex situ and in situ techniques, and the cause for this incompatibility was revealed to be the highly resistive and inhomogeneous interfaces. Further, a nitriding interface strategy was proposed to ameliorate this issue and a Li metal anode with an improved Li cycling stability (300 h) and dendrite-free morphology is achieved. Meanwhile, the full batteries coupled with nickel-rich cathodes, such as LiNi Co Mn O , show excellent cycling stability and outstanding safety (passed the nail penetration test). This successful nitriding-interface strategy paves a new way to handle the incompatibility between electrode and electrolyte. Safety concerns are impeding the applications of lithium metal batteries. Flame‐retardant electrolytes, such as organic phosphates electrolytes (OPEs), could intrinsically eliminate fire hazards and improve battery safety. However, OPEs show poor compatibility with Li metal though the exact reason has yet to be identified. Here, the lithium plating process in OPEs and Li/OPEs interface chemistry were investigated through ex situ and in situ techniques, and the cause for this incompatibility was revealed to be the highly resistive and inhomogeneous interfaces. Further, a nitriding interface strategy was proposed to ameliorate this issue and a Li metal anode with an improved Li cycling stability (300 h) and dendrite‐free morphology is achieved. Meanwhile, the full batteries coupled with nickel‐rich cathodes, such as LiNi0.8Co0.1Mn0.1O2, show excellent cycling stability and outstanding safety (passed the nail penetration test). This successful nitriding‐interface strategy paves a new way to handle the incompatibility between electrode and electrolyte. A nitriding interface has been developed for the successful application of flame‐retardant electrolytes in high‐energy‐density cells using a Li metal anode and a high‐voltage, high‐capacity cathode. The homogeneity of the solid electrolyte interface (SEI) layer is crucially important for the uniform Li deposition required for high‐voltage batteries. Safety concerns are impeding the applications of lithium metal batteries. Flame‐retardant electrolytes, such as organic phosphates electrolytes (OPEs), could intrinsically eliminate fire hazards and improve battery safety. However, OPEs show poor compatibility with Li metal though the exact reason has yet to be identified. Here, the lithium plating process in OPEs and Li/OPEs interface chemistry were investigated through ex situ and in situ techniques, and the cause for this incompatibility was revealed to be the highly resistive and inhomogeneous interfaces. Further, a nitriding interface strategy was proposed to ameliorate this issue and a Li metal anode with an improved Li cycling stability (300 h) and dendrite‐free morphology is achieved. Meanwhile, the full batteries coupled with nickel‐rich cathodes, such as LiNi 0.8 Co 0.1 Mn 0.1 O 2 , show excellent cycling stability and outstanding safety (passed the nail penetration test). This successful nitriding‐interface strategy paves a new way to handle the incompatibility between electrode and electrolyte. Safety concerns are impeding the applications of lithium metal batteries. Flame-retardant electrolytes, such as organic phosphates electrolytes (OPEs), could intrinsically eliminate fire hazards and improve battery safety. However, OPEs show poor compatibility with Li metal though the exact reason has yet to be identified. Here, the lithium plating process in OPEs and Li/OPEs interface chemistry were investigated through ex situ and in situ techniques, and the cause for this incompatibility was revealed to be the highly resistive and inhomogeneous interfaces. Further, a nitriding interface strategy was proposed to ameliorate this issue and a Li metal anode with an improved Li cycling stability (300 h) and dendrite-free morphology is achieved. Meanwhile, the full batteries coupled with nickel-rich cathodes, such as LiNi0.8 Co0.1 Mn0.1 O2 , show excellent cycling stability and outstanding safety (passed the nail penetration test). This successful nitriding-interface strategy paves a new way to handle the incompatibility between electrode and electrolyte.Safety concerns are impeding the applications of lithium metal batteries. Flame-retardant electrolytes, such as organic phosphates electrolytes (OPEs), could intrinsically eliminate fire hazards and improve battery safety. However, OPEs show poor compatibility with Li metal though the exact reason has yet to be identified. Here, the lithium plating process in OPEs and Li/OPEs interface chemistry were investigated through ex situ and in situ techniques, and the cause for this incompatibility was revealed to be the highly resistive and inhomogeneous interfaces. Further, a nitriding interface strategy was proposed to ameliorate this issue and a Li metal anode with an improved Li cycling stability (300 h) and dendrite-free morphology is achieved. Meanwhile, the full batteries coupled with nickel-rich cathodes, such as LiNi0.8 Co0.1 Mn0.1 O2 , show excellent cycling stability and outstanding safety (passed the nail penetration test). This successful nitriding-interface strategy paves a new way to handle the incompatibility between electrode and electrolyte. |
Author | Li, Jin‐Yi Yin, Ya‐Xia Yue, Junpei Wang, Wen‐Peng Zuo, Tong‐Tong Xiao, Yao Guo, Yu‐Guo Hu, Xin‐Cheng Tan, Shuang‐Jie Shen, Zhen‐Zhen Duan, Hui Wen, Rui |
Author_xml | – sequence: 1 givenname: Shuang‐Jie surname: Tan fullname: Tan, Shuang‐Jie organization: University of Chinese Academy of Sciences – sequence: 2 givenname: Junpei surname: Yue fullname: Yue, Junpei organization: Chinese Academy of Sciences (CAS) – sequence: 3 givenname: Xin‐Cheng surname: Hu fullname: Hu, Xin‐Cheng organization: University of Chinese Academy of Sciences – sequence: 4 givenname: Zhen‐Zhen surname: Shen fullname: Shen, Zhen‐Zhen organization: University of Chinese Academy of Sciences – sequence: 5 givenname: Wen‐Peng surname: Wang fullname: Wang, Wen‐Peng organization: University of Chinese Academy of Sciences – sequence: 6 givenname: Jin‐Yi surname: Li fullname: Li, Jin‐Yi organization: University of Chinese Academy of Sciences – sequence: 7 givenname: Tong‐Tong surname: Zuo fullname: Zuo, Tong‐Tong organization: University of Chinese Academy of Sciences – sequence: 8 givenname: Hui surname: Duan fullname: Duan, Hui organization: University of Chinese Academy of Sciences – sequence: 9 givenname: Yao surname: Xiao fullname: Xiao, Yao organization: Chinese Academy of Sciences (CAS) – sequence: 10 givenname: Ya‐Xia surname: Yin fullname: Yin, Ya‐Xia organization: University of Chinese Academy of Sciences – sequence: 11 givenname: Rui surname: Wen fullname: Wen, Rui organization: University of Chinese Academy of Sciences – sequence: 12 givenname: Yu‐Guo orcidid: 0000-0003-0322-8476 surname: Guo fullname: Guo, Yu‐Guo email: ygguo@iccas.ac.cn organization: University of Chinese Academy of Sciences |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30977231$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkU1v1DAQhi1URD_gyhFF4sIli7_i2MdSbduVloIQcI0myWTrynGK7QjtDYk_0N_IL8HVlkWqhDh5LD_PjDXvMTnwk0dCXjK6YJTyt-AtLjhlhgqp1BNyxCrOSlHX4iDXUoiy1hU7JMcx3mRea6qekUNBTV1zwY7Izyubgu2t3_z6cbfyCcMAHeb6E25mBwn7Ym3TtZ3H4mO-Zq5YemgdxuLcwbgjE4QefCqWDrsUJrdN-XmYQnFpN9eZ-Dq5BBvcd3qfDVe8g5THWYzPydMBXMQXD-cJ-XK-_Hx2Wa4_XKzOTtdlJ2ulSqO62rTMINUtaKAou4EjqLYVFKTUtB8qrVsJ0Bktu4pWhvNe15T2FaiqFyfkza7vbZi-zRhTM9rYoXPgcZpjwzk1ispamIy-foTeTHPw-XeZ4qaqGFciU68eqLkdsW9ugx0hbJs_683AYgd0YYox4LBHGG3u82vu82v2-WVBPhI6m_LaJ58CWPdvzey079bh9j9DmtOr1fKv-xtZHLR4 |
CitedBy_id | crossref_primary_10_1016_j_cej_2021_129739 crossref_primary_10_1002_smll_202103679 crossref_primary_10_34133_2020_1469301 crossref_primary_10_1016_j_enchem_2022_100082 crossref_primary_10_1093_oxfmat_itac005 crossref_primary_10_1021_acsami_2c21849 crossref_primary_10_1002_smll_202106395 crossref_primary_10_1002_smll_202402123 crossref_primary_10_1016_j_jechem_2021_03_046 crossref_primary_10_1016_j_cej_2021_133562 crossref_primary_10_1002_adma_202206228 crossref_primary_10_1360_TB_2023_0273 crossref_primary_10_1002_aenm_202200244 crossref_primary_10_1002_ange_202106027 crossref_primary_10_1002_ange_202206682 crossref_primary_10_1016_j_ensm_2022_10_037 crossref_primary_10_1016_j_nanoen_2024_109406 crossref_primary_10_1021_acsami_0c06830 crossref_primary_10_1016_j_surfin_2024_105540 crossref_primary_10_1021_acsaem_2c00682 crossref_primary_10_1002_er_5972 crossref_primary_10_1021_acsami_0c05623 crossref_primary_10_1016_j_scib_2023_11_039 crossref_primary_10_1002_smsc_202100058 crossref_primary_10_1002_aenm_202101057 crossref_primary_10_1002_anie_202108397 crossref_primary_10_1021_acsami_1c15483 crossref_primary_10_1002_smll_202202349 crossref_primary_10_1002_anie_202318369 crossref_primary_10_1021_acsami_2c11380 crossref_primary_10_1002_anie_202304978 crossref_primary_10_1002_anie_202000375 crossref_primary_10_1021_acscentsci_0c01035 crossref_primary_10_1021_acssuschemeng_4c06125 crossref_primary_10_1002_adma_202004128 crossref_primary_10_1021_acsami_3c01998 crossref_primary_10_1002_adma_201904537 crossref_primary_10_1039_D3QM00362K crossref_primary_10_1142_S1793604721410034 crossref_primary_10_1002_adfm_202300892 crossref_primary_10_1016_j_ensm_2020_09_003 crossref_primary_10_1039_D0QM01134G crossref_primary_10_1016_j_jcis_2023_08_153 crossref_primary_10_1016_j_apsusc_2021_150589 crossref_primary_10_1016_j_ensm_2023_01_016 crossref_primary_10_1021_acsenergylett_0c00804 crossref_primary_10_1002_ange_202000375 crossref_primary_10_3390_molecules28104106 crossref_primary_10_1002_ange_202103850 crossref_primary_10_1021_acsmaterialslett_9b00423 crossref_primary_10_1002_aenm_202003285 crossref_primary_10_1016_j_nanoen_2021_106353 crossref_primary_10_1039_D0EE01638A crossref_primary_10_1016_j_jssc_2022_123072 crossref_primary_10_1002_anie_202212744 crossref_primary_10_1016_j_ensm_2021_04_020 crossref_primary_10_1360_TB_2024_0223 crossref_primary_10_1016_j_ensm_2022_02_045 crossref_primary_10_1016_j_joule_2020_06_016 crossref_primary_10_1016_j_mtnano_2019_100057 crossref_primary_10_1002_bkcs_12884 crossref_primary_10_1016_j_ensm_2024_103263 crossref_primary_10_1002_advs_202003241 crossref_primary_10_1016_j_esci_2024_100291 crossref_primary_10_1021_acsami_9b05235 crossref_primary_10_1039_D2CS00873D crossref_primary_10_1002_aenm_202202493 crossref_primary_10_1021_acsami_0c19075 crossref_primary_10_1002_smll_201905737 crossref_primary_10_3390_batteries10040117 crossref_primary_10_1039_D0CS01017K crossref_primary_10_2139_ssrn_4141410 crossref_primary_10_1002_anie_202106027 crossref_primary_10_1016_j_cej_2022_138369 crossref_primary_10_1021_acsaem_1c03333 crossref_primary_10_1002_adfm_202001334 crossref_primary_10_1016_j_memsci_2024_123590 crossref_primary_10_1021_acsami_0c05479 crossref_primary_10_1021_acsami_2c17547 crossref_primary_10_1002_anie_201912101 crossref_primary_10_1002_adfm_202002824 crossref_primary_10_1002_aenm_202100935 crossref_primary_10_1002_aenm_202300443 crossref_primary_10_1016_j_esci_2021_12_003 crossref_primary_10_1021_acsami_0c17406 crossref_primary_10_1021_acsami_4c04937 crossref_primary_10_1016_j_ensm_2021_11_037 crossref_primary_10_1016_j_ensm_2024_103499 crossref_primary_10_1021_acsenergylett_0c02121 crossref_primary_10_1021_acsnano_9b08141 crossref_primary_10_1149_2_0991912jes crossref_primary_10_1016_j_electacta_2023_143689 crossref_primary_10_1039_D3CS00929G crossref_primary_10_1016_j_esci_2021_12_006 crossref_primary_10_1002_aenm_201901764 crossref_primary_10_1002_adma_202202695 crossref_primary_10_1021_acsami_1c00745 crossref_primary_10_1002_ange_202304978 crossref_primary_10_3866_PKU_WHXB202307034 crossref_primary_10_1039_D4YA00507D crossref_primary_10_1002_adfm_202201038 crossref_primary_10_1002_celc_202300009 crossref_primary_10_1039_D1SC01806J crossref_primary_10_1002_ange_202318197 crossref_primary_10_1002_batt_202200453 crossref_primary_10_1016_j_apsusc_2020_148294 crossref_primary_10_1002_aenm_202000791 crossref_primary_10_1002_aenm_202101518 crossref_primary_10_1016_j_cej_2023_141382 crossref_primary_10_1002_ange_201912101 crossref_primary_10_1021_acsami_1c08478 crossref_primary_10_1002_ange_202103909 crossref_primary_10_1002_smtd_202300228 crossref_primary_10_1016_j_esci_2021_10_003 crossref_primary_10_1002_advs_202203178 crossref_primary_10_1016_j_ensm_2022_05_051 crossref_primary_10_1021_acsenergylett_1c00149 crossref_primary_10_1016_j_ensm_2021_05_035 crossref_primary_10_1016_j_xcrp_2021_100722 crossref_primary_10_34133_2022_9837586 crossref_primary_10_1002_anie_202103850 crossref_primary_10_1016_j_electacta_2021_138632 crossref_primary_10_1007_s10118_023_2970_y crossref_primary_10_1021_acsnano_3c09643 crossref_primary_10_1002_adma_202312302 crossref_primary_10_1039_D1TA03343C crossref_primary_10_1016_j_ensm_2021_08_015 crossref_primary_10_1360_SSC_2024_0082 crossref_primary_10_1021_acsaem_2c00511 crossref_primary_10_1002_ange_202212744 crossref_primary_10_1016_j_ensm_2020_04_010 crossref_primary_10_1016_j_apt_2021_02_033 crossref_primary_10_2139_ssrn_3994258 crossref_primary_10_1016_j_jpowsour_2024_235090 crossref_primary_10_1002_anie_202103909 crossref_primary_10_1002_adfm_202105253 crossref_primary_10_1002_ange_202318369 crossref_primary_10_1016_j_apsusc_2020_146601 crossref_primary_10_1002_smsc_202100066 crossref_primary_10_1016_j_ensm_2023_02_019 crossref_primary_10_1002_ange_202108397 crossref_primary_10_1002_cnl2_70003 crossref_primary_10_1002_aenm_202200139 crossref_primary_10_1002_nano_202000164 crossref_primary_10_1002_cnl2_184 crossref_primary_10_1002_asia_202200929 crossref_primary_10_1016_j_nanoen_2021_105744 crossref_primary_10_1016_j_cclet_2023_108812 crossref_primary_10_1002_anie_202302505 crossref_primary_10_1021_acssuschemeng_3c05371 crossref_primary_10_1016_j_nanoen_2019_103989 crossref_primary_10_1021_acsnano_3c06088 crossref_primary_10_1007_s11581_023_04952_w crossref_primary_10_1016_j_mtnano_2021_100128 crossref_primary_10_1016_j_est_2024_115080 crossref_primary_10_1002_adfm_202213811 crossref_primary_10_1002_adfm_202102158 crossref_primary_10_1002_adma_202007945 crossref_primary_10_1016_j_esci_2022_06_005 crossref_primary_10_1002_cphc_202200527 crossref_primary_10_1016_j_jpowsour_2021_229934 crossref_primary_10_1002_aenm_201903376 crossref_primary_10_1021_acsami_2c05016 crossref_primary_10_1021_acscentsci_0c00449 crossref_primary_10_1016_j_xcrp_2021_100547 crossref_primary_10_1021_acs_iecr_2c00897 crossref_primary_10_1021_acsaem_2c03528 crossref_primary_10_34133_energymatadv_0076 crossref_primary_10_1002_anie_202318197 crossref_primary_10_1002_inf2_12166 crossref_primary_10_1021_acsami_1c04735 crossref_primary_10_3389_fenrg_2023_1325316 crossref_primary_10_1002_ange_202302505 crossref_primary_10_1002_anie_202206682 crossref_primary_10_1002_adfm_202003557 crossref_primary_10_1007_s11426_021_1235_2 crossref_primary_10_1002_adma_202300350 crossref_primary_10_1002_smll_202412389 crossref_primary_10_1021_acs_nanolett_2c01961 |
Cites_doi | 10.1002/anie.201807034 10.1007/s41918-018-0011-2 10.1002/ange.201304762 10.1002/ente.201800132 10.1039/C8CC00994E 10.1038/nenergy.2016.10 10.1038/s41560-018-0237-6 10.1126/science.1212741 10.1038/natrevmats.2016.103 10.1016/j.jpowsour.2007.12.089 10.1002/ange.201702099 10.1016/j.electacta.2006.03.016 10.1149/1.1490356 10.1038/nnano.2017.16 10.1002/aenm.201702097 10.1038/451652a 10.1002/ange.201807034 10.1149/1.2136078 10.1002/ange.201811955 10.1016/j.electacta.2013.10.104 10.1002/ange.201710806 10.1038/s41560-017-0033-8 10.1039/C3EE40795K 10.1038/s41565-018-0183-2 10.1021/acs.nanolett.8b03902 10.1038/s41560-018-0196-y 10.1002/anie.201811955 10.1038/nenergy.2016.114 10.1002/anie.201710806 10.1021/cr030203g 10.1038/s41560-018-0312-z 10.1126/science.aab1595 10.1016/j.jpowsour.2014.09.086 10.1016/j.jpowsour.2012.02.038 10.1002/anie.201304762 10.1038/ncomms8436 10.1038/s41560-018-0108-1 10.1002/ente.201800133 10.1063/1.89283 10.1002/adma.201504526 10.1021/acs.chemrev.7b00115 10.1002/anie.201702099 |
ContentType | Journal Article |
Copyright | 2019 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. |
Copyright_xml | – notice: 2019 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. |
DBID | AAYXX CITATION NPM 7TM K9. 7X8 |
DOI | 10.1002/anie.201903466 |
DatabaseName | CrossRef PubMed Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed ProQuest Health & Medical Complete (Alumni) Nucleic Acids Abstracts MEDLINE - Academic |
DatabaseTitleList | ProQuest Health & Medical Complete (Alumni) PubMed CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3773 |
Edition | International ed. in English |
EndPage | 7807 |
ExternalDocumentID | 30977231 10_1002_anie_201903466 ANIE201903466 |
Genre | shortCommunication Journal Article |
GrantInformation_xml | – fundername: Basic Science Center Project of National Natural Science Foundation of China funderid: 51788104 – fundername: "Transformational Technologies for Clean Energy and Demonstration", Strategic Priority Research Program of the Chinese Academy of Sciences funderid: XDA 21070300 – fundername: National Key R&D Program of China funderid: 2016YFA0202500 – fundername: Beijing Natural Science Foundation funderid: L172023; L182051 – fundername: National Natural Science Foundation of China funderid: 21773264; 21805062 – fundername: National Key R&D Program of China grantid: 2016YFA0202500 – fundername: National Natural Science Foundation of China grantid: 21773264 – fundername: National Natural Science Foundation of China grantid: 21805062 – fundername: Basic Science Center Project of National Natural Science Foundation of China grantid: 51788104 – fundername: "Transformational Technologies for Clean Energy and Demonstration", Strategic Priority Research Program of the Chinese Academy of Sciences grantid: XDA 21070300 – fundername: Beijing Natural Science Foundation grantid: L182051 – fundername: Beijing Natural Science Foundation grantid: L172023 |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABLJU ABPPZ ABPVW ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BTSUX BY8 CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS EJD F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES M53 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ TN5 UB1 UPT UQL V2E VQA W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XSW XV2 YZZ ZZTAW ~IA ~KM ~WT AAYXX ABDBF ABJNI AEYWJ AGHNM AGYGG CITATION NPM 7TM K9. 7X8 |
ID | FETCH-LOGICAL-c4766-96c79b19e08ba8a0e4cf2ea6bb30a4480df588b4aac984c505922d8700d5a65d3 |
IEDL.DBID | DR2 |
ISSN | 1433-7851 1521-3773 |
IngestDate | Thu Jul 10 22:21:17 EDT 2025 Fri Jul 25 10:22:39 EDT 2025 Thu Apr 03 06:54:49 EDT 2025 Tue Jul 01 02:26:47 EDT 2025 Thu Apr 24 22:56:59 EDT 2025 Wed Jan 22 16:21:25 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 23 |
Keywords | interfaces lithium metal anodes batteries nonflammable electrolytes |
Language | English |
License | 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4766-96c79b19e08ba8a0e4cf2ea6bb30a4480df588b4aac984c505922d8700d5a65d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-0322-8476 |
PMID | 30977231 |
PQID | 2229551263 |
PQPubID | 946352 |
PageCount | 6 |
ParticipantIDs | proquest_miscellaneous_2209604739 proquest_journals_2229551263 pubmed_primary_30977231 crossref_primary_10_1002_anie_201903466 crossref_citationtrail_10_1002_anie_201903466 wiley_primary_10_1002_anie_201903466_ANIE201903466 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | June 3, 2019 |
PublicationDateYYYYMMDD | 2019-06-03 |
PublicationDate_xml | – month: 06 year: 2019 text: June 3, 2019 day: 03 |
PublicationDecade | 2010 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Angewandte Chemie International Edition |
PublicationTitleAlternate | Angew Chem Int Ed Engl |
PublicationYear | 2019 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2011; 334 2015; 6 2019; 4 2017; 2 2004; 104 2006; 51 2006; 153 2017 2017; 56 129 2019 2019; 58 131 2013 2013; 52 125 2017; 117 2012; 208 2015; 273 2015; 350 2018; 6 2018; 18 2018; 8 2018; 3 2016; 1 2018; 1 2018 2018; 57 130 2017; 12 2013; 114 2002; 149 1977; 30 2008; 179 2016; 28 2008; 451 2014; 7 2018; 54 2018; 13 e_1_2_2_47_2 e_1_2_2_4_2 e_1_2_2_24_1 e_1_2_2_6_2 e_1_2_2_22_1 e_1_2_2_20_2 e_1_2_2_2_2 e_1_2_2_41_1 e_1_2_2_41_2 e_1_2_2_43_1 e_1_2_2_28_2 e_1_2_2_8_1 e_1_2_2_45_1 e_1_2_2_26_2 e_1_2_2_13_2 e_1_2_2_38_2 e_1_2_2_11_1 e_1_2_2_30_2 e_1_2_2_19_1 e_1_2_2_32_1 e_1_2_2_17_2 e_1_2_2_34_1 e_1_2_2_15_1 e_1_2_2_36_1 e_1_2_2_3_2 e_1_2_2_25_1 e_1_2_2_5_1 e_1_2_2_23_1 e_1_2_2_21_2 e_1_2_2_1_1 e_1_2_2_40_1 e_1_2_2_42_1 e_1_2_2_7_2 e_1_2_2_29_1 e_1_2_2_44_1 e_1_2_2_7_3 e_1_2_2_27_2 e_1_2_2_9_2 e_1_2_2_46_2 e_1_2_2_37_1 e_1_2_2_12_1 e_1_2_2_10_2 e_1_2_2_39_2 e_1_2_2_18_2 e_1_2_2_31_2 e_1_2_2_16_3 e_1_2_2_18_1 e_1_2_2_33_1 e_1_2_2_16_2 e_1_2_2_14_3 e_1_2_2_35_1 e_1_2_2_14_2 |
References_xml | – volume: 6 start-page: 2023 year: 2018 end-page: 2035 publication-title: Energy Technol. – volume: 3 start-page: 22 year: 2018 end-page: 29 publication-title: Nat. Energy – volume: 58 131 start-page: 1094 1106 year: 2019 2019 end-page: 1099 1111 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 52 125 start-page: 13186 13426 year: 2013 2013 end-page: 13200 13441 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 114 start-page: 688 year: 2013 end-page: 692 publication-title: Electrochim. Acta – volume: 3 start-page: 889 year: 2018 end-page: 898 publication-title: Nat. Energy – volume: 104 start-page: 4303 year: 2004 end-page: 4417 publication-title: Chem. Rev. – volume: 3 start-page: 279 year: 2018 end-page: 289 publication-title: Nat. Energy – volume: 18 start-page: 7414 year: 2018 end-page: 7418 publication-title: Nano Lett. – volume: 57 130 start-page: 1505 1521 year: 2018 2018 end-page: 1509 1525 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 350 start-page: 938 year: 2015 end-page: 943 publication-title: Science – volume: 13 start-page: 715 year: 2018 end-page: 722 publication-title: Nat. Nanotechnol. – volume: 57 130 start-page: 14055 14251 year: 2018 2018 end-page: 14059 14255 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 117 start-page: 10403 year: 2017 end-page: 10473 publication-title: Chem. Rev. – volume: 51 start-page: 5567 year: 2006 end-page: 5580 publication-title: Electrochim. Acta – volume: 3 start-page: 674 year: 2018 end-page: 681 publication-title: Nat. Energy – volume: 28 start-page: 1853 year: 2016 end-page: 1858 publication-title: Adv. Mater. – volume: 334 start-page: 928 year: 2011 end-page: 935 publication-title: Science – volume: 1 start-page: 16114 year: 2016 publication-title: Nat. Energy – volume: 6 start-page: 7436 year: 2015 publication-title: Nat. Commun. – volume: 56 129 start-page: 7764 7872 year: 2017 2017 end-page: 7768 7876 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 2 start-page: 16103 year: 2017 publication-title: Nat. Rev. Mater. – volume: 273 start-page: 954 year: 2015 end-page: 958 publication-title: J. Power Sources – volume: 4 start-page: 187 year: 2019 end-page: 196 publication-title: Nat. Energy – volume: 153 start-page: 135 year: 2006 end-page: 139 publication-title: J. Electrochem. Soc. – volume: 179 start-page: 351 year: 2008 end-page: 356 publication-title: J. Power Sources – volume: 54 start-page: 4453 year: 2018 end-page: 4456 publication-title: Chem. Commun. – volume: 7 start-page: 513 year: 2014 end-page: 537 publication-title: Energy Environ. Sci. – volume: 30 start-page: 621 year: 1977 end-page: 623 publication-title: Appl. Phys. Lett. – volume: 6 start-page: 2011 year: 2018 end-page: 2022 publication-title: Energy Technol. – volume: 149 start-page: 1079 year: 2002 end-page: 1082 publication-title: J. Electrochem. Soc. – volume: 451 start-page: 652 year: 2008 end-page: 657 publication-title: Nature – volume: 8 start-page: 1702097 year: 2018 publication-title: Adv. Energy Mater. – volume: 208 start-page: 210 year: 2012 end-page: 224 publication-title: J. Power Sources – volume: 1 start-page: 113 year: 2018 end-page: 138 publication-title: Electrochem. Energ. Rev. – volume: 1 start-page: 16010 year: 2016 publication-title: Nat. Energy – volume: 12 start-page: 194 year: 2017 end-page: 206 publication-title: Nat. Nanotechnol. – ident: e_1_2_2_41_1 doi: 10.1002/anie.201807034 – ident: e_1_2_2_21_2 doi: 10.1007/s41918-018-0011-2 – ident: e_1_2_2_7_3 doi: 10.1002/ange.201304762 – ident: e_1_2_2_30_2 doi: 10.1002/ente.201800132 – ident: e_1_2_2_39_2 doi: 10.1039/C8CC00994E – ident: e_1_2_2_42_1 doi: 10.1038/nenergy.2016.10 – ident: e_1_2_2_37_1 – ident: e_1_2_2_17_2 doi: 10.1038/s41560-018-0237-6 – ident: e_1_2_2_3_2 doi: 10.1126/science.1212741 – ident: e_1_2_2_20_2 doi: 10.1038/natrevmats.2016.103 – ident: e_1_2_2_28_2 doi: 10.1016/j.jpowsour.2007.12.089 – ident: e_1_2_2_45_1 – ident: e_1_2_2_15_1 – ident: e_1_2_2_29_1 – ident: e_1_2_2_14_3 doi: 10.1002/ange.201702099 – ident: e_1_2_2_23_1 doi: 10.1016/j.electacta.2006.03.016 – ident: e_1_2_2_27_2 doi: 10.1149/1.1490356 – ident: e_1_2_2_25_1 – ident: e_1_2_2_6_2 doi: 10.1038/nnano.2017.16 – ident: e_1_2_2_43_1 doi: 10.1002/aenm.201702097 – ident: e_1_2_2_2_2 doi: 10.1038/451652a – ident: e_1_2_2_41_2 doi: 10.1002/ange.201807034 – ident: e_1_2_2_32_1 doi: 10.1149/1.2136078 – ident: e_1_2_2_18_2 doi: 10.1002/ange.201811955 – ident: e_1_2_2_35_1 doi: 10.1016/j.electacta.2013.10.104 – ident: e_1_2_2_16_3 doi: 10.1002/ange.201710806 – ident: e_1_2_2_33_1 doi: 10.1038/s41560-017-0033-8 – ident: e_1_2_2_9_2 doi: 10.1039/C3EE40795K – ident: e_1_2_2_1_1 – ident: e_1_2_2_12_1 – ident: e_1_2_2_24_1 doi: 10.1038/s41565-018-0183-2 – ident: e_1_2_2_47_2 doi: 10.1021/acs.nanolett.8b03902 – ident: e_1_2_2_38_2 doi: 10.1038/s41560-018-0196-y – ident: e_1_2_2_18_1 doi: 10.1002/anie.201811955 – ident: e_1_2_2_40_1 doi: 10.1038/nenergy.2016.114 – ident: e_1_2_2_16_2 doi: 10.1002/anie.201710806 – ident: e_1_2_2_34_1 doi: 10.1021/cr030203g – ident: e_1_2_2_22_1 doi: 10.1038/s41560-018-0312-z – ident: e_1_2_2_36_1 doi: 10.1126/science.aab1595 – ident: e_1_2_2_26_2 doi: 10.1016/j.jpowsour.2014.09.086 – ident: e_1_2_2_11_1 doi: 10.1016/j.jpowsour.2012.02.038 – ident: e_1_2_2_7_2 doi: 10.1002/anie.201304762 – ident: e_1_2_2_13_2 doi: 10.1038/ncomms8436 – ident: e_1_2_2_8_1 – ident: e_1_2_2_4_2 doi: 10.1038/s41560-018-0108-1 – ident: e_1_2_2_31_2 doi: 10.1002/ente.201800133 – ident: e_1_2_2_19_1 – ident: e_1_2_2_5_1 – ident: e_1_2_2_46_2 doi: 10.1063/1.89283 – ident: e_1_2_2_44_1 doi: 10.1002/adma.201504526 – ident: e_1_2_2_10_2 doi: 10.1021/acs.chemrev.7b00115 – ident: e_1_2_2_14_2 doi: 10.1002/anie.201702099 |
SSID | ssj0028806 |
Score | 2.636942 |
Snippet | Safety concerns are impeding the applications of lithium metal batteries. Flame‐retardant electrolytes, such as organic phosphates electrolytes (OPEs), could... Safety concerns are impeding the applications of lithium metal batteries. Flame-retardant electrolytes, such as organic phosphates electrolytes (OPEs), could... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 7802 |
SubjectTerms | Batteries Cathodes Cycles Dendritic structure Electrolytes Fire hazards Hazard mitigation Incompatibility Interfaces Lithium Lithium batteries lithium metal anodes Metals Morphology Nickel Nitriding nonflammable electrolytes Organic chemistry Phosphates Product safety Safety Stability |
Title | Nitriding‐Interface‐Regulated Lithium Plating Enables Flame‐Retardant Electrolytes for High‐Voltage Lithium Metal Batteries |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.201903466 https://www.ncbi.nlm.nih.gov/pubmed/30977231 https://www.proquest.com/docview/2229551263 https://www.proquest.com/docview/2209604739 |
Volume | 58 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZQL3Dh_QgUZCQkTm6N7XjjY1XtqlR0hSqKeov8Cqy6ZFE3e4ATUv9AfyO_hBl7E7oghAQ3Rxknjmdsf3ZmviHkRQwRVllbsqgrxVSjDHOvTMPKKggTnTUyHeYcTfXBiTo8LU-vRPFnfojhwA1HRpqvcYBbt9z9SRqKEdjommW4VBo5t9FhC1HR8cAfJcA4c3iRlAyz0PesjVzsblbfXJV-g5qbyDUtPZNbxPaNzh4nZzurzu34r7_wOf7PV90mN9e4lO5lQ7pDrsX2Lrm-36eDu0cuprPufIYr3fdvl-kcsbE-Qvk4Z7OPgb6ZdR9nq0_0LfrXtR_oOMVlLekErC5LdmCPoEo6zsl35l8A6FKAzRTdTUDi_WLewQQ3POkIasxp5gCFLf19cjIZv9s_YOsMDsyrkdbMaD8yoPvIK2cry6PyjYhWOye5hY0hD01ZVU5Z602lPKAxI0SAKYSH0uoyyAdkq1208RGhXJqgufBOKKeaGKsyjHjQBvnRdCldQVivwdqv6c0xy8a8zsTMosaurYeuLcjLQf5zJvb4o-R2bxD1eoAv65QGHcCSlgV5PtwGleD_FtvGxQplcH-oRtIU5GE2pOFVkgPwBmxdEJHM4S9tqPemr8fD1eN_qfSE3MBycnOT22SrO1_FpwCoOvcsDZofN6McCQ |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB5BOZRL-YdAASMhcXJrbMcbH6tqV1vYXaGqRdwiO3bKiiVbtdkDnJB4AZ6RJ2Fsb4IWhJDglp9x4tgzns_O-BuA59559LImp14Vkspaampf6prmhePaW6NFXMyZztT4VL56l3fRhGEvTOKH6BfcgmXE8ToYeFiQ3v_JGhq2YIfYLM2EVOoqXAtpveOs6rhnkOKonmmDkRA05KHveBsZ398sv-mXfgObm9g1Op_RDbBdtVPMyYe9VWv3qs-_MDr-13fdhJ01NCUHSZduwRXf3Ibtwy4j3B34Opu3F_Pg7L5_-RaXEmtTeTw-TgntvSOTeft-vvpI3oQQu-aMDOPWrEsyQsVLki2qJPYmGab8O4tPiHUJImcSIk5Q4u1y0eIY1z9piiUWJNGA4qz-LpyOhieHY7pO4kArOVCKalUNNHa_Z4U1hWFeVjX3RlkrmMG5IXN1XhRWGlPpQlYIyDTnDkcR5nKjcifuwVazbPwDIExopxivLJdW1t4XuRswp3SgSFO5sBnQrgvLas1wHhJtLMrEzczL0LRl37QZvOjlzxO3xx8ldzuNKNc2flnGTOiIl5TI4Fl_G7sk_HIxjV-ugkyYIsqB0BncT5rUv0owxN4IrzPgUR_-UofyYHY07M8e_kuhp7A9PplOysnR7PUjuB6ux6g3sQtb7cXKP0Z81don0YJ-AN3xICQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BkYAL70eggJGQOLk1tuONj1W7qxbaVVVR1Ftkxw6sWLJVmz3ACal_oL-xv6RjexNYEEKCWx7jxPHM2J-d8TcAr7zzOMqanHpVSCprqal9o2uaF45rb40WcTFnb6y2D-Xbo_zop138iR-iX3ALnhH76-Dgx65e_0EaGnZgh9AszYRU6ipck4oVwa63DnoCKY7WmfYXCUFDGvqOtpHx9eXyy8PSb1hzGbrGsWd0G0xX6xRy8nlt3tq16tsvhI7_81l34NYCmJKNZEl34Ypv7sGNzS4f3H04G0_ak0kY6i6-n8eFxNpUHo8PUjp778jupP00mX8h-yHArvlIhnFj1ikZodklyRYNEnVJhin7zvQrIl2CuJmEeBOU-DCbttjD9U_awxJTkkhAcU7_AA5Hw_eb23SRwoFWcqAU1aoaaFS-Z4U1hWFeVjX3RlkrmMGZIXN1XhRWGlPpQlYIxzTnDvsQ5nKjcicewkoza_xjIExopxivLJdW1t4XuRswp3QgSFO5sBnQToNlteA3D2k2pmViZuZlaNqyb9oMXvfyx4nZ44-Sq51BlAsPPy1jHnRES0pk8LK_jSoJP1xM42fzIBMmiHIgdAaPkiH1rxIMkTeC6wx4NIe_1KHcGO8M-7Mn_1LoBVzf3xqVuzvjd0_hZrgcQ97EKqy0J3P_DMFVa59H_7kEh5Me3A |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nitriding-Interface-Regulated+Lithium+Plating+Enables+Flame-Retardant+Electrolytes+for+High-Voltage+Lithium+Metal+Batteries&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Tan%2C+Shuang-Jie&rft.au=Yue%2C+Junpei&rft.au=Hu%2C+Xin-Cheng&rft.au=Shen%2C+Zhen-Zhen&rft.date=2019-06-03&rft.issn=1521-3773&rft.eissn=1521-3773&rft.volume=58&rft.issue=23&rft.spage=7802&rft_id=info:doi/10.1002%2Fanie.201903466&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon |