Nitriding‐Interface‐Regulated Lithium Plating Enables Flame‐Retardant Electrolytes for High‐Voltage Lithium Metal Batteries

Safety concerns are impeding the applications of lithium metal batteries. Flame‐retardant electrolytes, such as organic phosphates electrolytes (OPEs), could intrinsically eliminate fire hazards and improve battery safety. However, OPEs show poor compatibility with Li metal though the exact reason h...

Full description

Saved in:
Bibliographic Details
Published inAngewandte Chemie International Edition Vol. 58; no. 23; pp. 7802 - 7807
Main Authors Tan, Shuang‐Jie, Yue, Junpei, Hu, Xin‐Cheng, Shen, Zhen‐Zhen, Wang, Wen‐Peng, Li, Jin‐Yi, Zuo, Tong‐Tong, Duan, Hui, Xiao, Yao, Yin, Ya‐Xia, Wen, Rui, Guo, Yu‐Guo
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 03.06.2019
EditionInternational ed. in English
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Safety concerns are impeding the applications of lithium metal batteries. Flame‐retardant electrolytes, such as organic phosphates electrolytes (OPEs), could intrinsically eliminate fire hazards and improve battery safety. However, OPEs show poor compatibility with Li metal though the exact reason has yet to be identified. Here, the lithium plating process in OPEs and Li/OPEs interface chemistry were investigated through ex situ and in situ techniques, and the cause for this incompatibility was revealed to be the highly resistive and inhomogeneous interfaces. Further, a nitriding interface strategy was proposed to ameliorate this issue and a Li metal anode with an improved Li cycling stability (300 h) and dendrite‐free morphology is achieved. Meanwhile, the full batteries coupled with nickel‐rich cathodes, such as LiNi0.8Co0.1Mn0.1O2, show excellent cycling stability and outstanding safety (passed the nail penetration test). This successful nitriding‐interface strategy paves a new way to handle the incompatibility between electrode and electrolyte. A nitriding interface has been developed for the successful application of flame‐retardant electrolytes in high‐energy‐density cells using a Li metal anode and a high‐voltage, high‐capacity cathode. The homogeneity of the solid electrolyte interface (SEI) layer is crucially important for the uniform Li deposition required for high‐voltage batteries.
AbstractList Safety concerns are impeding the applications of lithium metal batteries. Flame‐retardant electrolytes, such as organic phosphates electrolytes (OPEs), could intrinsically eliminate fire hazards and improve battery safety. However, OPEs show poor compatibility with Li metal though the exact reason has yet to be identified. Here, the lithium plating process in OPEs and Li/OPEs interface chemistry were investigated through ex situ and in situ techniques, and the cause for this incompatibility was revealed to be the highly resistive and inhomogeneous interfaces. Further, a nitriding interface strategy was proposed to ameliorate this issue and a Li metal anode with an improved Li cycling stability (300 h) and dendrite‐free morphology is achieved. Meanwhile, the full batteries coupled with nickel‐rich cathodes, such as LiNi0.8Co0.1Mn0.1O2, show excellent cycling stability and outstanding safety (passed the nail penetration test). This successful nitriding‐interface strategy paves a new way to handle the incompatibility between electrode and electrolyte.
Safety concerns are impeding the applications of lithium metal batteries. Flame-retardant electrolytes, such as organic phosphates electrolytes (OPEs), could intrinsically eliminate fire hazards and improve battery safety. However, OPEs show poor compatibility with Li metal though the exact reason has yet to be identified. Here, the lithium plating process in OPEs and Li/OPEs interface chemistry were investigated through ex situ and in situ techniques, and the cause for this incompatibility was revealed to be the highly resistive and inhomogeneous interfaces. Further, a nitriding interface strategy was proposed to ameliorate this issue and a Li metal anode with an improved Li cycling stability (300 h) and dendrite-free morphology is achieved. Meanwhile, the full batteries coupled with nickel-rich cathodes, such as LiNi Co Mn O , show excellent cycling stability and outstanding safety (passed the nail penetration test). This successful nitriding-interface strategy paves a new way to handle the incompatibility between electrode and electrolyte.
Safety concerns are impeding the applications of lithium metal batteries. Flame‐retardant electrolytes, such as organic phosphates electrolytes (OPEs), could intrinsically eliminate fire hazards and improve battery safety. However, OPEs show poor compatibility with Li metal though the exact reason has yet to be identified. Here, the lithium plating process in OPEs and Li/OPEs interface chemistry were investigated through ex situ and in situ techniques, and the cause for this incompatibility was revealed to be the highly resistive and inhomogeneous interfaces. Further, a nitriding interface strategy was proposed to ameliorate this issue and a Li metal anode with an improved Li cycling stability (300 h) and dendrite‐free morphology is achieved. Meanwhile, the full batteries coupled with nickel‐rich cathodes, such as LiNi0.8Co0.1Mn0.1O2, show excellent cycling stability and outstanding safety (passed the nail penetration test). This successful nitriding‐interface strategy paves a new way to handle the incompatibility between electrode and electrolyte. A nitriding interface has been developed for the successful application of flame‐retardant electrolytes in high‐energy‐density cells using a Li metal anode and a high‐voltage, high‐capacity cathode. The homogeneity of the solid electrolyte interface (SEI) layer is crucially important for the uniform Li deposition required for high‐voltage batteries.
Safety concerns are impeding the applications of lithium metal batteries. Flame‐retardant electrolytes, such as organic phosphates electrolytes (OPEs), could intrinsically eliminate fire hazards and improve battery safety. However, OPEs show poor compatibility with Li metal though the exact reason has yet to be identified. Here, the lithium plating process in OPEs and Li/OPEs interface chemistry were investigated through ex situ and in situ techniques, and the cause for this incompatibility was revealed to be the highly resistive and inhomogeneous interfaces. Further, a nitriding interface strategy was proposed to ameliorate this issue and a Li metal anode with an improved Li cycling stability (300 h) and dendrite‐free morphology is achieved. Meanwhile, the full batteries coupled with nickel‐rich cathodes, such as LiNi 0.8 Co 0.1 Mn 0.1 O 2 , show excellent cycling stability and outstanding safety (passed the nail penetration test). This successful nitriding‐interface strategy paves a new way to handle the incompatibility between electrode and electrolyte.
Safety concerns are impeding the applications of lithium metal batteries. Flame-retardant electrolytes, such as organic phosphates electrolytes (OPEs), could intrinsically eliminate fire hazards and improve battery safety. However, OPEs show poor compatibility with Li metal though the exact reason has yet to be identified. Here, the lithium plating process in OPEs and Li/OPEs interface chemistry were investigated through ex situ and in situ techniques, and the cause for this incompatibility was revealed to be the highly resistive and inhomogeneous interfaces. Further, a nitriding interface strategy was proposed to ameliorate this issue and a Li metal anode with an improved Li cycling stability (300 h) and dendrite-free morphology is achieved. Meanwhile, the full batteries coupled with nickel-rich cathodes, such as LiNi0.8 Co0.1 Mn0.1 O2 , show excellent cycling stability and outstanding safety (passed the nail penetration test). This successful nitriding-interface strategy paves a new way to handle the incompatibility between electrode and electrolyte.Safety concerns are impeding the applications of lithium metal batteries. Flame-retardant electrolytes, such as organic phosphates electrolytes (OPEs), could intrinsically eliminate fire hazards and improve battery safety. However, OPEs show poor compatibility with Li metal though the exact reason has yet to be identified. Here, the lithium plating process in OPEs and Li/OPEs interface chemistry were investigated through ex situ and in situ techniques, and the cause for this incompatibility was revealed to be the highly resistive and inhomogeneous interfaces. Further, a nitriding interface strategy was proposed to ameliorate this issue and a Li metal anode with an improved Li cycling stability (300 h) and dendrite-free morphology is achieved. Meanwhile, the full batteries coupled with nickel-rich cathodes, such as LiNi0.8 Co0.1 Mn0.1 O2 , show excellent cycling stability and outstanding safety (passed the nail penetration test). This successful nitriding-interface strategy paves a new way to handle the incompatibility between electrode and electrolyte.
Author Li, Jin‐Yi
Yin, Ya‐Xia
Yue, Junpei
Wang, Wen‐Peng
Zuo, Tong‐Tong
Xiao, Yao
Guo, Yu‐Guo
Hu, Xin‐Cheng
Tan, Shuang‐Jie
Shen, Zhen‐Zhen
Duan, Hui
Wen, Rui
Author_xml – sequence: 1
  givenname: Shuang‐Jie
  surname: Tan
  fullname: Tan, Shuang‐Jie
  organization: University of Chinese Academy of Sciences
– sequence: 2
  givenname: Junpei
  surname: Yue
  fullname: Yue, Junpei
  organization: Chinese Academy of Sciences (CAS)
– sequence: 3
  givenname: Xin‐Cheng
  surname: Hu
  fullname: Hu, Xin‐Cheng
  organization: University of Chinese Academy of Sciences
– sequence: 4
  givenname: Zhen‐Zhen
  surname: Shen
  fullname: Shen, Zhen‐Zhen
  organization: University of Chinese Academy of Sciences
– sequence: 5
  givenname: Wen‐Peng
  surname: Wang
  fullname: Wang, Wen‐Peng
  organization: University of Chinese Academy of Sciences
– sequence: 6
  givenname: Jin‐Yi
  surname: Li
  fullname: Li, Jin‐Yi
  organization: University of Chinese Academy of Sciences
– sequence: 7
  givenname: Tong‐Tong
  surname: Zuo
  fullname: Zuo, Tong‐Tong
  organization: University of Chinese Academy of Sciences
– sequence: 8
  givenname: Hui
  surname: Duan
  fullname: Duan, Hui
  organization: University of Chinese Academy of Sciences
– sequence: 9
  givenname: Yao
  surname: Xiao
  fullname: Xiao, Yao
  organization: Chinese Academy of Sciences (CAS)
– sequence: 10
  givenname: Ya‐Xia
  surname: Yin
  fullname: Yin, Ya‐Xia
  organization: University of Chinese Academy of Sciences
– sequence: 11
  givenname: Rui
  surname: Wen
  fullname: Wen, Rui
  organization: University of Chinese Academy of Sciences
– sequence: 12
  givenname: Yu‐Guo
  orcidid: 0000-0003-0322-8476
  surname: Guo
  fullname: Guo, Yu‐Guo
  email: ygguo@iccas.ac.cn
  organization: University of Chinese Academy of Sciences
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30977231$$D View this record in MEDLINE/PubMed
BookMark eNqFkU1v1DAQhi1URD_gyhFF4sIli7_i2MdSbduVloIQcI0myWTrynGK7QjtDYk_0N_IL8HVlkWqhDh5LD_PjDXvMTnwk0dCXjK6YJTyt-AtLjhlhgqp1BNyxCrOSlHX4iDXUoiy1hU7JMcx3mRea6qekUNBTV1zwY7Izyubgu2t3_z6cbfyCcMAHeb6E25mBwn7Ym3TtZ3H4mO-Zq5YemgdxuLcwbgjE4QefCqWDrsUJrdN-XmYQnFpN9eZ-Dq5BBvcd3qfDVe8g5THWYzPydMBXMQXD-cJ-XK-_Hx2Wa4_XKzOTtdlJ2ulSqO62rTMINUtaKAou4EjqLYVFKTUtB8qrVsJ0Bktu4pWhvNe15T2FaiqFyfkza7vbZi-zRhTM9rYoXPgcZpjwzk1ispamIy-foTeTHPw-XeZ4qaqGFciU68eqLkdsW9ugx0hbJs_683AYgd0YYox4LBHGG3u82vu82v2-WVBPhI6m_LaJ58CWPdvzey079bh9j9DmtOr1fKv-xtZHLR4
CitedBy_id crossref_primary_10_1016_j_cej_2021_129739
crossref_primary_10_1002_smll_202103679
crossref_primary_10_34133_2020_1469301
crossref_primary_10_1016_j_enchem_2022_100082
crossref_primary_10_1093_oxfmat_itac005
crossref_primary_10_1021_acsami_2c21849
crossref_primary_10_1002_smll_202106395
crossref_primary_10_1002_smll_202402123
crossref_primary_10_1016_j_jechem_2021_03_046
crossref_primary_10_1016_j_cej_2021_133562
crossref_primary_10_1002_adma_202206228
crossref_primary_10_1360_TB_2023_0273
crossref_primary_10_1002_aenm_202200244
crossref_primary_10_1002_ange_202106027
crossref_primary_10_1002_ange_202206682
crossref_primary_10_1016_j_ensm_2022_10_037
crossref_primary_10_1016_j_nanoen_2024_109406
crossref_primary_10_1021_acsami_0c06830
crossref_primary_10_1016_j_surfin_2024_105540
crossref_primary_10_1021_acsaem_2c00682
crossref_primary_10_1002_er_5972
crossref_primary_10_1021_acsami_0c05623
crossref_primary_10_1016_j_scib_2023_11_039
crossref_primary_10_1002_smsc_202100058
crossref_primary_10_1002_aenm_202101057
crossref_primary_10_1002_anie_202108397
crossref_primary_10_1021_acsami_1c15483
crossref_primary_10_1002_smll_202202349
crossref_primary_10_1002_anie_202318369
crossref_primary_10_1021_acsami_2c11380
crossref_primary_10_1002_anie_202304978
crossref_primary_10_1002_anie_202000375
crossref_primary_10_1021_acscentsci_0c01035
crossref_primary_10_1021_acssuschemeng_4c06125
crossref_primary_10_1002_adma_202004128
crossref_primary_10_1021_acsami_3c01998
crossref_primary_10_1002_adma_201904537
crossref_primary_10_1039_D3QM00362K
crossref_primary_10_1142_S1793604721410034
crossref_primary_10_1002_adfm_202300892
crossref_primary_10_1016_j_ensm_2020_09_003
crossref_primary_10_1039_D0QM01134G
crossref_primary_10_1016_j_jcis_2023_08_153
crossref_primary_10_1016_j_apsusc_2021_150589
crossref_primary_10_1016_j_ensm_2023_01_016
crossref_primary_10_1021_acsenergylett_0c00804
crossref_primary_10_1002_ange_202000375
crossref_primary_10_3390_molecules28104106
crossref_primary_10_1002_ange_202103850
crossref_primary_10_1021_acsmaterialslett_9b00423
crossref_primary_10_1002_aenm_202003285
crossref_primary_10_1016_j_nanoen_2021_106353
crossref_primary_10_1039_D0EE01638A
crossref_primary_10_1016_j_jssc_2022_123072
crossref_primary_10_1002_anie_202212744
crossref_primary_10_1016_j_ensm_2021_04_020
crossref_primary_10_1360_TB_2024_0223
crossref_primary_10_1016_j_ensm_2022_02_045
crossref_primary_10_1016_j_joule_2020_06_016
crossref_primary_10_1016_j_mtnano_2019_100057
crossref_primary_10_1002_bkcs_12884
crossref_primary_10_1016_j_ensm_2024_103263
crossref_primary_10_1002_advs_202003241
crossref_primary_10_1016_j_esci_2024_100291
crossref_primary_10_1021_acsami_9b05235
crossref_primary_10_1039_D2CS00873D
crossref_primary_10_1002_aenm_202202493
crossref_primary_10_1021_acsami_0c19075
crossref_primary_10_1002_smll_201905737
crossref_primary_10_3390_batteries10040117
crossref_primary_10_1039_D0CS01017K
crossref_primary_10_2139_ssrn_4141410
crossref_primary_10_1002_anie_202106027
crossref_primary_10_1016_j_cej_2022_138369
crossref_primary_10_1021_acsaem_1c03333
crossref_primary_10_1002_adfm_202001334
crossref_primary_10_1016_j_memsci_2024_123590
crossref_primary_10_1021_acsami_0c05479
crossref_primary_10_1021_acsami_2c17547
crossref_primary_10_1002_anie_201912101
crossref_primary_10_1002_adfm_202002824
crossref_primary_10_1002_aenm_202100935
crossref_primary_10_1002_aenm_202300443
crossref_primary_10_1016_j_esci_2021_12_003
crossref_primary_10_1021_acsami_0c17406
crossref_primary_10_1021_acsami_4c04937
crossref_primary_10_1016_j_ensm_2021_11_037
crossref_primary_10_1016_j_ensm_2024_103499
crossref_primary_10_1021_acsenergylett_0c02121
crossref_primary_10_1021_acsnano_9b08141
crossref_primary_10_1149_2_0991912jes
crossref_primary_10_1016_j_electacta_2023_143689
crossref_primary_10_1039_D3CS00929G
crossref_primary_10_1016_j_esci_2021_12_006
crossref_primary_10_1002_aenm_201901764
crossref_primary_10_1002_adma_202202695
crossref_primary_10_1021_acsami_1c00745
crossref_primary_10_1002_ange_202304978
crossref_primary_10_3866_PKU_WHXB202307034
crossref_primary_10_1039_D4YA00507D
crossref_primary_10_1002_adfm_202201038
crossref_primary_10_1002_celc_202300009
crossref_primary_10_1039_D1SC01806J
crossref_primary_10_1002_ange_202318197
crossref_primary_10_1002_batt_202200453
crossref_primary_10_1016_j_apsusc_2020_148294
crossref_primary_10_1002_aenm_202000791
crossref_primary_10_1002_aenm_202101518
crossref_primary_10_1016_j_cej_2023_141382
crossref_primary_10_1002_ange_201912101
crossref_primary_10_1021_acsami_1c08478
crossref_primary_10_1002_ange_202103909
crossref_primary_10_1002_smtd_202300228
crossref_primary_10_1016_j_esci_2021_10_003
crossref_primary_10_1002_advs_202203178
crossref_primary_10_1016_j_ensm_2022_05_051
crossref_primary_10_1021_acsenergylett_1c00149
crossref_primary_10_1016_j_ensm_2021_05_035
crossref_primary_10_1016_j_xcrp_2021_100722
crossref_primary_10_34133_2022_9837586
crossref_primary_10_1002_anie_202103850
crossref_primary_10_1016_j_electacta_2021_138632
crossref_primary_10_1007_s10118_023_2970_y
crossref_primary_10_1021_acsnano_3c09643
crossref_primary_10_1002_adma_202312302
crossref_primary_10_1039_D1TA03343C
crossref_primary_10_1016_j_ensm_2021_08_015
crossref_primary_10_1360_SSC_2024_0082
crossref_primary_10_1021_acsaem_2c00511
crossref_primary_10_1002_ange_202212744
crossref_primary_10_1016_j_ensm_2020_04_010
crossref_primary_10_1016_j_apt_2021_02_033
crossref_primary_10_2139_ssrn_3994258
crossref_primary_10_1016_j_jpowsour_2024_235090
crossref_primary_10_1002_anie_202103909
crossref_primary_10_1002_adfm_202105253
crossref_primary_10_1002_ange_202318369
crossref_primary_10_1016_j_apsusc_2020_146601
crossref_primary_10_1002_smsc_202100066
crossref_primary_10_1016_j_ensm_2023_02_019
crossref_primary_10_1002_ange_202108397
crossref_primary_10_1002_cnl2_70003
crossref_primary_10_1002_aenm_202200139
crossref_primary_10_1002_nano_202000164
crossref_primary_10_1002_cnl2_184
crossref_primary_10_1002_asia_202200929
crossref_primary_10_1016_j_nanoen_2021_105744
crossref_primary_10_1016_j_cclet_2023_108812
crossref_primary_10_1002_anie_202302505
crossref_primary_10_1021_acssuschemeng_3c05371
crossref_primary_10_1016_j_nanoen_2019_103989
crossref_primary_10_1021_acsnano_3c06088
crossref_primary_10_1007_s11581_023_04952_w
crossref_primary_10_1016_j_mtnano_2021_100128
crossref_primary_10_1016_j_est_2024_115080
crossref_primary_10_1002_adfm_202213811
crossref_primary_10_1002_adfm_202102158
crossref_primary_10_1002_adma_202007945
crossref_primary_10_1016_j_esci_2022_06_005
crossref_primary_10_1002_cphc_202200527
crossref_primary_10_1016_j_jpowsour_2021_229934
crossref_primary_10_1002_aenm_201903376
crossref_primary_10_1021_acsami_2c05016
crossref_primary_10_1021_acscentsci_0c00449
crossref_primary_10_1016_j_xcrp_2021_100547
crossref_primary_10_1021_acs_iecr_2c00897
crossref_primary_10_1021_acsaem_2c03528
crossref_primary_10_34133_energymatadv_0076
crossref_primary_10_1002_anie_202318197
crossref_primary_10_1002_inf2_12166
crossref_primary_10_1021_acsami_1c04735
crossref_primary_10_3389_fenrg_2023_1325316
crossref_primary_10_1002_ange_202302505
crossref_primary_10_1002_anie_202206682
crossref_primary_10_1002_adfm_202003557
crossref_primary_10_1007_s11426_021_1235_2
crossref_primary_10_1002_adma_202300350
crossref_primary_10_1002_smll_202412389
crossref_primary_10_1021_acs_nanolett_2c01961
Cites_doi 10.1002/anie.201807034
10.1007/s41918-018-0011-2
10.1002/ange.201304762
10.1002/ente.201800132
10.1039/C8CC00994E
10.1038/nenergy.2016.10
10.1038/s41560-018-0237-6
10.1126/science.1212741
10.1038/natrevmats.2016.103
10.1016/j.jpowsour.2007.12.089
10.1002/ange.201702099
10.1016/j.electacta.2006.03.016
10.1149/1.1490356
10.1038/nnano.2017.16
10.1002/aenm.201702097
10.1038/451652a
10.1002/ange.201807034
10.1149/1.2136078
10.1002/ange.201811955
10.1016/j.electacta.2013.10.104
10.1002/ange.201710806
10.1038/s41560-017-0033-8
10.1039/C3EE40795K
10.1038/s41565-018-0183-2
10.1021/acs.nanolett.8b03902
10.1038/s41560-018-0196-y
10.1002/anie.201811955
10.1038/nenergy.2016.114
10.1002/anie.201710806
10.1021/cr030203g
10.1038/s41560-018-0312-z
10.1126/science.aab1595
10.1016/j.jpowsour.2014.09.086
10.1016/j.jpowsour.2012.02.038
10.1002/anie.201304762
10.1038/ncomms8436
10.1038/s41560-018-0108-1
10.1002/ente.201800133
10.1063/1.89283
10.1002/adma.201504526
10.1021/acs.chemrev.7b00115
10.1002/anie.201702099
ContentType Journal Article
Copyright 2019 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim
2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Copyright_xml – notice: 2019 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
DBID AAYXX
CITATION
NPM
7TM
K9.
7X8
DOI 10.1002/anie.201903466
DatabaseName CrossRef
PubMed
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
ProQuest Health & Medical Complete (Alumni)
Nucleic Acids Abstracts
MEDLINE - Academic
DatabaseTitleList ProQuest Health & Medical Complete (Alumni)
PubMed

CrossRef
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3773
Edition International ed. in English
EndPage 7807
ExternalDocumentID 30977231
10_1002_anie_201903466
ANIE201903466
Genre shortCommunication
Journal Article
GrantInformation_xml – fundername: Basic Science Center Project of National Natural Science Foundation of China
  funderid: 51788104
– fundername: "Transformational Technologies for Clean Energy and Demonstration", Strategic Priority Research Program of the Chinese Academy of Sciences
  funderid: XDA 21070300
– fundername: National Key R&D Program of China
  funderid: 2016YFA0202500
– fundername: Beijing Natural Science Foundation
  funderid: L172023; L182051
– fundername: National Natural Science Foundation of China
  funderid: 21773264; 21805062
– fundername: National Key R&D Program of China
  grantid: 2016YFA0202500
– fundername: National Natural Science Foundation of China
  grantid: 21773264
– fundername: National Natural Science Foundation of China
  grantid: 21805062
– fundername: Basic Science Center Project of National Natural Science Foundation of China
  grantid: 51788104
– fundername: "Transformational Technologies for Clean Energy and Demonstration", Strategic Priority Research Program of the Chinese Academy of Sciences
  grantid: XDA 21070300
– fundername: Beijing Natural Science Foundation
  grantid: L182051
– fundername: Beijing Natural Science Foundation
  grantid: L172023
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABLJU
ABPPZ
ABPVW
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BTSUX
BY8
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
M53
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
TN5
UB1
UPT
UQL
V2E
VQA
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XSW
XV2
YZZ
ZZTAW
~IA
~KM
~WT
AAYXX
ABDBF
ABJNI
AEYWJ
AGHNM
AGYGG
CITATION
NPM
7TM
K9.
7X8
ID FETCH-LOGICAL-c4766-96c79b19e08ba8a0e4cf2ea6bb30a4480df588b4aac984c505922d8700d5a65d3
IEDL.DBID DR2
ISSN 1433-7851
1521-3773
IngestDate Thu Jul 10 22:21:17 EDT 2025
Fri Jul 25 10:22:39 EDT 2025
Thu Apr 03 06:54:49 EDT 2025
Tue Jul 01 02:26:47 EDT 2025
Thu Apr 24 22:56:59 EDT 2025
Wed Jan 22 16:21:25 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 23
Keywords interfaces
lithium metal anodes
batteries
nonflammable electrolytes
Language English
License 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4766-96c79b19e08ba8a0e4cf2ea6bb30a4480df588b4aac984c505922d8700d5a65d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-0322-8476
PMID 30977231
PQID 2229551263
PQPubID 946352
PageCount 6
ParticipantIDs proquest_miscellaneous_2209604739
proquest_journals_2229551263
pubmed_primary_30977231
crossref_primary_10_1002_anie_201903466
crossref_citationtrail_10_1002_anie_201903466
wiley_primary_10_1002_anie_201903466_ANIE201903466
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate June 3, 2019
PublicationDateYYYYMMDD 2019-06-03
PublicationDate_xml – month: 06
  year: 2019
  text: June 3, 2019
  day: 03
PublicationDecade 2010
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Angewandte Chemie International Edition
PublicationTitleAlternate Angew Chem Int Ed Engl
PublicationYear 2019
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2011; 334
2015; 6
2019; 4
2017; 2
2004; 104
2006; 51
2006; 153
2017 2017; 56 129
2019 2019; 58 131
2013 2013; 52 125
2017; 117
2012; 208
2015; 273
2015; 350
2018; 6
2018; 18
2018; 8
2018; 3
2016; 1
2018; 1
2018 2018; 57 130
2017; 12
2013; 114
2002; 149
1977; 30
2008; 179
2016; 28
2008; 451
2014; 7
2018; 54
2018; 13
e_1_2_2_47_2
e_1_2_2_4_2
e_1_2_2_24_1
e_1_2_2_6_2
e_1_2_2_22_1
e_1_2_2_20_2
e_1_2_2_2_2
e_1_2_2_41_1
e_1_2_2_41_2
e_1_2_2_43_1
e_1_2_2_28_2
e_1_2_2_8_1
e_1_2_2_45_1
e_1_2_2_26_2
e_1_2_2_13_2
e_1_2_2_38_2
e_1_2_2_11_1
e_1_2_2_30_2
e_1_2_2_19_1
e_1_2_2_32_1
e_1_2_2_17_2
e_1_2_2_34_1
e_1_2_2_15_1
e_1_2_2_36_1
e_1_2_2_3_2
e_1_2_2_25_1
e_1_2_2_5_1
e_1_2_2_23_1
e_1_2_2_21_2
e_1_2_2_1_1
e_1_2_2_40_1
e_1_2_2_42_1
e_1_2_2_7_2
e_1_2_2_29_1
e_1_2_2_44_1
e_1_2_2_7_3
e_1_2_2_27_2
e_1_2_2_9_2
e_1_2_2_46_2
e_1_2_2_37_1
e_1_2_2_12_1
e_1_2_2_10_2
e_1_2_2_39_2
e_1_2_2_18_2
e_1_2_2_31_2
e_1_2_2_16_3
e_1_2_2_18_1
e_1_2_2_33_1
e_1_2_2_16_2
e_1_2_2_14_3
e_1_2_2_35_1
e_1_2_2_14_2
References_xml – volume: 6
  start-page: 2023
  year: 2018
  end-page: 2035
  publication-title: Energy Technol.
– volume: 3
  start-page: 22
  year: 2018
  end-page: 29
  publication-title: Nat. Energy
– volume: 58 131
  start-page: 1094 1106
  year: 2019 2019
  end-page: 1099 1111
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 52 125
  start-page: 13186 13426
  year: 2013 2013
  end-page: 13200 13441
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 114
  start-page: 688
  year: 2013
  end-page: 692
  publication-title: Electrochim. Acta
– volume: 3
  start-page: 889
  year: 2018
  end-page: 898
  publication-title: Nat. Energy
– volume: 104
  start-page: 4303
  year: 2004
  end-page: 4417
  publication-title: Chem. Rev.
– volume: 3
  start-page: 279
  year: 2018
  end-page: 289
  publication-title: Nat. Energy
– volume: 18
  start-page: 7414
  year: 2018
  end-page: 7418
  publication-title: Nano Lett.
– volume: 57 130
  start-page: 1505 1521
  year: 2018 2018
  end-page: 1509 1525
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 350
  start-page: 938
  year: 2015
  end-page: 943
  publication-title: Science
– volume: 13
  start-page: 715
  year: 2018
  end-page: 722
  publication-title: Nat. Nanotechnol.
– volume: 57 130
  start-page: 14055 14251
  year: 2018 2018
  end-page: 14059 14255
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 117
  start-page: 10403
  year: 2017
  end-page: 10473
  publication-title: Chem. Rev.
– volume: 51
  start-page: 5567
  year: 2006
  end-page: 5580
  publication-title: Electrochim. Acta
– volume: 3
  start-page: 674
  year: 2018
  end-page: 681
  publication-title: Nat. Energy
– volume: 28
  start-page: 1853
  year: 2016
  end-page: 1858
  publication-title: Adv. Mater.
– volume: 334
  start-page: 928
  year: 2011
  end-page: 935
  publication-title: Science
– volume: 1
  start-page: 16114
  year: 2016
  publication-title: Nat. Energy
– volume: 6
  start-page: 7436
  year: 2015
  publication-title: Nat. Commun.
– volume: 56 129
  start-page: 7764 7872
  year: 2017 2017
  end-page: 7768 7876
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 2
  start-page: 16103
  year: 2017
  publication-title: Nat. Rev. Mater.
– volume: 273
  start-page: 954
  year: 2015
  end-page: 958
  publication-title: J. Power Sources
– volume: 4
  start-page: 187
  year: 2019
  end-page: 196
  publication-title: Nat. Energy
– volume: 153
  start-page: 135
  year: 2006
  end-page: 139
  publication-title: J. Electrochem. Soc.
– volume: 179
  start-page: 351
  year: 2008
  end-page: 356
  publication-title: J. Power Sources
– volume: 54
  start-page: 4453
  year: 2018
  end-page: 4456
  publication-title: Chem. Commun.
– volume: 7
  start-page: 513
  year: 2014
  end-page: 537
  publication-title: Energy Environ. Sci.
– volume: 30
  start-page: 621
  year: 1977
  end-page: 623
  publication-title: Appl. Phys. Lett.
– volume: 6
  start-page: 2011
  year: 2018
  end-page: 2022
  publication-title: Energy Technol.
– volume: 149
  start-page: 1079
  year: 2002
  end-page: 1082
  publication-title: J. Electrochem. Soc.
– volume: 451
  start-page: 652
  year: 2008
  end-page: 657
  publication-title: Nature
– volume: 8
  start-page: 1702097
  year: 2018
  publication-title: Adv. Energy Mater.
– volume: 208
  start-page: 210
  year: 2012
  end-page: 224
  publication-title: J. Power Sources
– volume: 1
  start-page: 113
  year: 2018
  end-page: 138
  publication-title: Electrochem. Energ. Rev.
– volume: 1
  start-page: 16010
  year: 2016
  publication-title: Nat. Energy
– volume: 12
  start-page: 194
  year: 2017
  end-page: 206
  publication-title: Nat. Nanotechnol.
– ident: e_1_2_2_41_1
  doi: 10.1002/anie.201807034
– ident: e_1_2_2_21_2
  doi: 10.1007/s41918-018-0011-2
– ident: e_1_2_2_7_3
  doi: 10.1002/ange.201304762
– ident: e_1_2_2_30_2
  doi: 10.1002/ente.201800132
– ident: e_1_2_2_39_2
  doi: 10.1039/C8CC00994E
– ident: e_1_2_2_42_1
  doi: 10.1038/nenergy.2016.10
– ident: e_1_2_2_37_1
– ident: e_1_2_2_17_2
  doi: 10.1038/s41560-018-0237-6
– ident: e_1_2_2_3_2
  doi: 10.1126/science.1212741
– ident: e_1_2_2_20_2
  doi: 10.1038/natrevmats.2016.103
– ident: e_1_2_2_28_2
  doi: 10.1016/j.jpowsour.2007.12.089
– ident: e_1_2_2_45_1
– ident: e_1_2_2_15_1
– ident: e_1_2_2_29_1
– ident: e_1_2_2_14_3
  doi: 10.1002/ange.201702099
– ident: e_1_2_2_23_1
  doi: 10.1016/j.electacta.2006.03.016
– ident: e_1_2_2_27_2
  doi: 10.1149/1.1490356
– ident: e_1_2_2_25_1
– ident: e_1_2_2_6_2
  doi: 10.1038/nnano.2017.16
– ident: e_1_2_2_43_1
  doi: 10.1002/aenm.201702097
– ident: e_1_2_2_2_2
  doi: 10.1038/451652a
– ident: e_1_2_2_41_2
  doi: 10.1002/ange.201807034
– ident: e_1_2_2_32_1
  doi: 10.1149/1.2136078
– ident: e_1_2_2_18_2
  doi: 10.1002/ange.201811955
– ident: e_1_2_2_35_1
  doi: 10.1016/j.electacta.2013.10.104
– ident: e_1_2_2_16_3
  doi: 10.1002/ange.201710806
– ident: e_1_2_2_33_1
  doi: 10.1038/s41560-017-0033-8
– ident: e_1_2_2_9_2
  doi: 10.1039/C3EE40795K
– ident: e_1_2_2_1_1
– ident: e_1_2_2_12_1
– ident: e_1_2_2_24_1
  doi: 10.1038/s41565-018-0183-2
– ident: e_1_2_2_47_2
  doi: 10.1021/acs.nanolett.8b03902
– ident: e_1_2_2_38_2
  doi: 10.1038/s41560-018-0196-y
– ident: e_1_2_2_18_1
  doi: 10.1002/anie.201811955
– ident: e_1_2_2_40_1
  doi: 10.1038/nenergy.2016.114
– ident: e_1_2_2_16_2
  doi: 10.1002/anie.201710806
– ident: e_1_2_2_34_1
  doi: 10.1021/cr030203g
– ident: e_1_2_2_22_1
  doi: 10.1038/s41560-018-0312-z
– ident: e_1_2_2_36_1
  doi: 10.1126/science.aab1595
– ident: e_1_2_2_26_2
  doi: 10.1016/j.jpowsour.2014.09.086
– ident: e_1_2_2_11_1
  doi: 10.1016/j.jpowsour.2012.02.038
– ident: e_1_2_2_7_2
  doi: 10.1002/anie.201304762
– ident: e_1_2_2_13_2
  doi: 10.1038/ncomms8436
– ident: e_1_2_2_8_1
– ident: e_1_2_2_4_2
  doi: 10.1038/s41560-018-0108-1
– ident: e_1_2_2_31_2
  doi: 10.1002/ente.201800133
– ident: e_1_2_2_19_1
– ident: e_1_2_2_5_1
– ident: e_1_2_2_46_2
  doi: 10.1063/1.89283
– ident: e_1_2_2_44_1
  doi: 10.1002/adma.201504526
– ident: e_1_2_2_10_2
  doi: 10.1021/acs.chemrev.7b00115
– ident: e_1_2_2_14_2
  doi: 10.1002/anie.201702099
SSID ssj0028806
Score 2.636942
Snippet Safety concerns are impeding the applications of lithium metal batteries. Flame‐retardant electrolytes, such as organic phosphates electrolytes (OPEs), could...
Safety concerns are impeding the applications of lithium metal batteries. Flame-retardant electrolytes, such as organic phosphates electrolytes (OPEs), could...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 7802
SubjectTerms Batteries
Cathodes
Cycles
Dendritic structure
Electrolytes
Fire hazards
Hazard mitigation
Incompatibility
Interfaces
Lithium
Lithium batteries
lithium metal anodes
Metals
Morphology
Nickel
Nitriding
nonflammable electrolytes
Organic chemistry
Phosphates
Product safety
Safety
Stability
Title Nitriding‐Interface‐Regulated Lithium Plating Enables Flame‐Retardant Electrolytes for High‐Voltage Lithium Metal Batteries
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.201903466
https://www.ncbi.nlm.nih.gov/pubmed/30977231
https://www.proquest.com/docview/2229551263
https://www.proquest.com/docview/2209604739
Volume 58
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZQL3Dh_QgUZCQkTm6N7XjjY1XtqlR0hSqKeov8Cqy6ZFE3e4ATUv9AfyO_hBl7E7oghAQ3Rxknjmdsf3ZmviHkRQwRVllbsqgrxVSjDHOvTMPKKggTnTUyHeYcTfXBiTo8LU-vRPFnfojhwA1HRpqvcYBbt9z9SRqKEdjommW4VBo5t9FhC1HR8cAfJcA4c3iRlAyz0PesjVzsblbfXJV-g5qbyDUtPZNbxPaNzh4nZzurzu34r7_wOf7PV90mN9e4lO5lQ7pDrsX2Lrm-36eDu0cuprPufIYr3fdvl-kcsbE-Qvk4Z7OPgb6ZdR9nq0_0LfrXtR_oOMVlLekErC5LdmCPoEo6zsl35l8A6FKAzRTdTUDi_WLewQQ3POkIasxp5gCFLf19cjIZv9s_YOsMDsyrkdbMaD8yoPvIK2cry6PyjYhWOye5hY0hD01ZVU5Z602lPKAxI0SAKYSH0uoyyAdkq1208RGhXJqgufBOKKeaGKsyjHjQBvnRdCldQVivwdqv6c0xy8a8zsTMosaurYeuLcjLQf5zJvb4o-R2bxD1eoAv65QGHcCSlgV5PtwGleD_FtvGxQplcH-oRtIU5GE2pOFVkgPwBmxdEJHM4S9tqPemr8fD1eN_qfSE3MBycnOT22SrO1_FpwCoOvcsDZofN6McCQ
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB5BOZRL-YdAASMhcXJrbMcbH6tqV1vYXaGqRdwiO3bKiiVbtdkDnJB4AZ6RJ2Fsb4IWhJDglp9x4tgzns_O-BuA59559LImp14Vkspaampf6prmhePaW6NFXMyZztT4VL56l3fRhGEvTOKH6BfcgmXE8ToYeFiQ3v_JGhq2YIfYLM2EVOoqXAtpveOs6rhnkOKonmmDkRA05KHveBsZ398sv-mXfgObm9g1Op_RDbBdtVPMyYe9VWv3qs-_MDr-13fdhJ01NCUHSZduwRXf3Ibtwy4j3B34Opu3F_Pg7L5_-RaXEmtTeTw-TgntvSOTeft-vvpI3oQQu-aMDOPWrEsyQsVLki2qJPYmGab8O4tPiHUJImcSIk5Q4u1y0eIY1z9piiUWJNGA4qz-LpyOhieHY7pO4kArOVCKalUNNHa_Z4U1hWFeVjX3RlkrmMG5IXN1XhRWGlPpQlYIyDTnDkcR5nKjcifuwVazbPwDIExopxivLJdW1t4XuRswp3SgSFO5sBnQrgvLas1wHhJtLMrEzczL0LRl37QZvOjlzxO3xx8ldzuNKNc2flnGTOiIl5TI4Fl_G7sk_HIxjV-ugkyYIsqB0BncT5rUv0owxN4IrzPgUR_-UofyYHY07M8e_kuhp7A9PplOysnR7PUjuB6ux6g3sQtb7cXKP0Z81don0YJ-AN3xICQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BkYAL70eggJGQOLk1tuONj1W7qxbaVVVR1Ftkxw6sWLJVmz3ACal_oL-xv6RjexNYEEKCWx7jxPHM2J-d8TcAr7zzOMqanHpVSCprqal9o2uaF45rb40WcTFnb6y2D-Xbo_zop138iR-iX3ALnhH76-Dgx65e_0EaGnZgh9AszYRU6ipck4oVwa63DnoCKY7WmfYXCUFDGvqOtpHx9eXyy8PSb1hzGbrGsWd0G0xX6xRy8nlt3tq16tsvhI7_81l34NYCmJKNZEl34Ypv7sGNzS4f3H04G0_ak0kY6i6-n8eFxNpUHo8PUjp778jupP00mX8h-yHArvlIhnFj1ikZodklyRYNEnVJhin7zvQrIl2CuJmEeBOU-DCbttjD9U_awxJTkkhAcU7_AA5Hw_eb23SRwoFWcqAU1aoaaFS-Z4U1hWFeVjX3RlkrmMGZIXN1XhRWGlPpQlYIxzTnDvsQ5nKjcicewkoza_xjIExopxivLJdW1t4XuRswp3QgSFO5sBnQToNlteA3D2k2pmViZuZlaNqyb9oMXvfyx4nZ44-Sq51BlAsPPy1jHnRES0pk8LK_jSoJP1xM42fzIBMmiHIgdAaPkiH1rxIMkTeC6wx4NIe_1KHcGO8M-7Mn_1LoBVzf3xqVuzvjd0_hZrgcQ97EKqy0J3P_DMFVa59H_7kEh5Me3A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nitriding-Interface-Regulated+Lithium+Plating+Enables+Flame-Retardant+Electrolytes+for+High-Voltage+Lithium+Metal+Batteries&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Tan%2C+Shuang-Jie&rft.au=Yue%2C+Junpei&rft.au=Hu%2C+Xin-Cheng&rft.au=Shen%2C+Zhen-Zhen&rft.date=2019-06-03&rft.issn=1521-3773&rft.eissn=1521-3773&rft.volume=58&rft.issue=23&rft.spage=7802&rft_id=info:doi/10.1002%2Fanie.201903466&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon