Thermal‐Responsive Phosphorescent Nanoamplifiers Assembled from Two Metallophosphors

Thermal‐responsive phosphorescent nanotubes have been fabricated from the co‐assembly of two neutral iridium complexes, which behave as the antenna chromophores and energy acceptors, respectively, in these highly ordered crystalline superstructures. By tuning the acceptor doping ratio in a range of...

Full description

Saved in:
Bibliographic Details
Published inAngewandte Chemie International Edition Vol. 57; no. 26; pp. 7820 - 7825
Main Authors Sun, Meng‐Jia, Zhong, Yu‐Wu, Yao, Jiannian
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 25.06.2018
EditionInternational ed. in English
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Thermal‐responsive phosphorescent nanotubes have been fabricated from the co‐assembly of two neutral iridium complexes, which behave as the antenna chromophores and energy acceptors, respectively, in these highly ordered crystalline superstructures. By tuning the acceptor doping ratio in a range of 0 to 0.5 %, these tubes display color‐tunable phosphorescence from green to red at room temperature, and it is attributed to the highly efficient light‐harvesting and energy transfer within these materials. For the same reason, the acceptor emission in the nanotubes is amplified more than 800 times with respect to its pure non‐emissive solid sample. The doped tubes show reversible thermal‐responsiveness, in which the energy transfer was completely suppressed at 77 K and reactivated at room temperature. These processes were characterized by the in situ emission color (green, orange, and red) and spectral changes and lifetime measurements of isolated nanotubes. The temperature‐controlled exciton dynamics are responsible for the luminescent thermochromism in these crystalline materials. With flying colors: The co‐assembly of two neutral iridium complexes gives rise to crystalline phosphorescent nanotubes with highly efficient light‐harvesting and energy‐transfer properties. They display color‐tunable and thermal‐responsive phosphorescence from green to red at a low acceptor doping ratio of less than 0.2 %. The acceptor emission in the crystalline nanotubes is amplified more than 800 times with respect to its non‐emissive pure solid sample.
AbstractList Thermal‐responsive phosphorescent nanotubes have been fabricated from the co‐assembly of two neutral iridium complexes, which behave as the antenna chromophores and energy acceptors, respectively, in these highly ordered crystalline superstructures. By tuning the acceptor doping ratio in a range of 0 to 0.5 %, these tubes display color‐tunable phosphorescence from green to red at room temperature, and it is attributed to the highly efficient light‐harvesting and energy transfer within these materials. For the same reason, the acceptor emission in the nanotubes is amplified more than 800 times with respect to its pure non‐emissive solid sample. The doped tubes show reversible thermal‐responsiveness, in which the energy transfer was completely suppressed at 77 K and reactivated at room temperature. These processes were characterized by the in situ emission color (green, orange, and red) and spectral changes and lifetime measurements of isolated nanotubes. The temperature‐controlled exciton dynamics are responsible for the luminescent thermochromism in these crystalline materials.
Thermal-responsive phosphorescent nanotubes have been fabricated from the co-assembly of two neutral iridium complexes, which behave as the antenna chromophores and energy acceptors, respectively, in these highly ordered crystalline superstructures. By tuning the acceptor doping ratio in a range of 0 to 0.5 %, these tubes display color-tunable phosphorescence from green to red at room temperature, and it is attributed to the highly efficient light-harvesting and energy transfer within these materials. For the same reason, the acceptor emission in the nanotubes is amplified more than 800 times with respect to its pure non-emissive solid sample. The doped tubes show reversible thermal-responsiveness, in which the energy transfer was completely suppressed at 77 K and reactivated at room temperature. These processes were characterized by the in situ emission color (green, orange, and red) and spectral changes and lifetime measurements of isolated nanotubes. The temperature-controlled exciton dynamics are responsible for the luminescent thermochromism in these crystalline materials.Thermal-responsive phosphorescent nanotubes have been fabricated from the co-assembly of two neutral iridium complexes, which behave as the antenna chromophores and energy acceptors, respectively, in these highly ordered crystalline superstructures. By tuning the acceptor doping ratio in a range of 0 to 0.5 %, these tubes display color-tunable phosphorescence from green to red at room temperature, and it is attributed to the highly efficient light-harvesting and energy transfer within these materials. For the same reason, the acceptor emission in the nanotubes is amplified more than 800 times with respect to its pure non-emissive solid sample. The doped tubes show reversible thermal-responsiveness, in which the energy transfer was completely suppressed at 77 K and reactivated at room temperature. These processes were characterized by the in situ emission color (green, orange, and red) and spectral changes and lifetime measurements of isolated nanotubes. The temperature-controlled exciton dynamics are responsible for the luminescent thermochromism in these crystalline materials.
Thermal‐responsive phosphorescent nanotubes have been fabricated from the co‐assembly of two neutral iridium complexes, which behave as the antenna chromophores and energy acceptors, respectively, in these highly ordered crystalline superstructures. By tuning the acceptor doping ratio in a range of 0 to 0.5 %, these tubes display color‐tunable phosphorescence from green to red at room temperature, and it is attributed to the highly efficient light‐harvesting and energy transfer within these materials. For the same reason, the acceptor emission in the nanotubes is amplified more than 800 times with respect to its pure non‐emissive solid sample. The doped tubes show reversible thermal‐responsiveness, in which the energy transfer was completely suppressed at 77 K and reactivated at room temperature. These processes were characterized by the in situ emission color (green, orange, and red) and spectral changes and lifetime measurements of isolated nanotubes. The temperature‐controlled exciton dynamics are responsible for the luminescent thermochromism in these crystalline materials. With flying colors: The co‐assembly of two neutral iridium complexes gives rise to crystalline phosphorescent nanotubes with highly efficient light‐harvesting and energy‐transfer properties. They display color‐tunable and thermal‐responsive phosphorescence from green to red at a low acceptor doping ratio of less than 0.2 %. The acceptor emission in the crystalline nanotubes is amplified more than 800 times with respect to its non‐emissive pure solid sample.
Author Sun, Meng‐Jia
Zhong, Yu‐Wu
Yao, Jiannian
Author_xml – sequence: 1
  givenname: Meng‐Jia
  surname: Sun
  fullname: Sun, Meng‐Jia
  organization: University of Chinese Academy of Sciences
– sequence: 2
  givenname: Yu‐Wu
  orcidid: 0000-0003-0712-0374
  surname: Zhong
  fullname: Zhong, Yu‐Wu
  email: zhongyuwu@iccas.ac.cn
  organization: University of Chinese Academy of Sciences
– sequence: 3
  givenname: Jiannian
  surname: Yao
  fullname: Yao, Jiannian
  email: jnyao@iccas.ac.cn
  organization: University of Chinese Academy of Sciences
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29665184$$D View this record in MEDLINE/PubMed
BookMark eNqFkctKxDAUhoMo3rcupeDGTcckTZN2OYiXgfGCjG5LmjllImlSk47izkfwGX0SM8yoIIirk8X35Vz-HbRunQWEDggeEIzpibQaBhSTAmc542tom-SUpJkQ2Xp8syxLRZGTLbQTwmPkiwLzTbRFS85zUrBt9DCZgW-l-Xh7v4PQORv0MyS3Mxe6mfMQFNg-uZbWybYzutHgQzIMAdrawDRpvGuTyYtLrqCXxrhu5YU9tNFIE2B_VXfR_fnZ5PQyHd9cjE6H41QxwXkqWF0qMSVcKSlpzYmijHEicRmXkSVkvGhYVuZTzKFkDGoe1yyVyjFVrBBFtouOl_923j3NIfRVq-PMxkgLbh4qiqnAnAuSR_ToF_ro5t7G6SKVC8LjzRbU4Yqa1y1Mq87rVvrX6utiERgsAeVdCB6ab4TgahFJtYik-o4kCuyXoHQve-1s76U2f2vlUnvRBl7_aVINr0dnP-4nzuOhAw
CitedBy_id crossref_primary_10_1002_ange_202010166
crossref_primary_10_1002_ange_202312844
crossref_primary_10_1002_ange_202206157
crossref_primary_10_1007_s11426_023_1612_y
crossref_primary_10_1002_adom_202201675
crossref_primary_10_1002_ange_201812146
crossref_primary_10_1021_acscentsci_8b00844
crossref_primary_10_1002_anie_201812146
crossref_primary_10_1002_adom_202301540
crossref_primary_10_1021_acsami_2c14168
crossref_primary_10_1016_j_cclet_2024_109903
crossref_primary_10_1002_anie_202103200
crossref_primary_10_1016_j_inoche_2019_01_025
crossref_primary_10_1039_D0CC01505A
crossref_primary_10_1002_ange_202419096
crossref_primary_10_1103_PhysRevLett_122_257402
crossref_primary_10_1016_j_cclet_2022_108081
crossref_primary_10_1021_acs_jpclett_2c00168
crossref_primary_10_1021_acs_inorgchem_1c03322
crossref_primary_10_1021_acs_inorgchem_0c00887
crossref_primary_10_1039_D2TC02789E
crossref_primary_10_1002_anie_202312844
crossref_primary_10_1039_C9SC06518K
crossref_primary_10_1002_anie_202206157
crossref_primary_10_1002_anie_202010166
crossref_primary_10_1021_acs_jpca_0c08649
crossref_primary_10_1021_acs_chemmater_9b01338
crossref_primary_10_1039_D2CS00976E
crossref_primary_10_1039_D1TC04542C
crossref_primary_10_1039_D0QI00779J
crossref_primary_10_1039_D0SC04359A
crossref_primary_10_1002_anie_202419096
crossref_primary_10_1039_D4TA01817F
crossref_primary_10_1002_ange_202103200
crossref_primary_10_1126_sciadv_aaw2953
crossref_primary_10_1002_cjoc_202000477
crossref_primary_10_1002_chem_202100940
crossref_primary_10_1021_acsnano_2c10659
crossref_primary_10_1021_acs_chemmater_1c00015
crossref_primary_10_1002_adom_202200985
crossref_primary_10_1002_adom_202201710
Cites_doi 10.1002/anie.201003015
10.1002/anie.201601516
10.1002/anie.201604508
10.1038/ncomms9646
10.1002/adma.201201493
10.1021/acs.chemrev.6b00419
10.1002/ejic.200400114
10.1021/ja204214t
10.1039/c2cc33279e
10.1021/jp0443355
10.1002/ange.200701925
10.1021/ja0587594
10.1002/anie.201510503
10.1039/C4NR03456B
10.1021/jacs.7b08710
10.1021/acs.chemrev.6b00036
10.1039/c0cp02110e
10.1002/adma.200601500
10.1021/acs.chemrev.7b00425
10.1038/nphoton.2013.82
10.1002/cphc.200900112
10.1002/ange.201003015
10.1002/ange.201601516
10.1002/pssa.201127451
10.1021/acs.accounts.6b00432
10.1021/ja036736o
10.1038/nmat4474
10.1002/ange.201604508
10.1038/nchem.2383
10.1021/jacs.7b12519
10.1039/c2cs15267c
10.1021/nl8034465
10.1002/adma.201404700
10.1002/ange.201510503
10.1002/adma.200802932
10.1038/374517a0
10.1021/ja034732d
10.1021/acs.chemrev.6b00807
10.1021/ja504730j
10.1103/PhysRevB.78.045210
10.1038/s41566-018-0108-5
10.1038/nchem.1145
10.1038/ncomms4372
10.1021/jp077542o
10.1002/anie.200902777
10.1039/B802262N
10.1021/ar500192v
10.1002/adma.201604100
10.1039/c3cs60102a
10.1016/j.ccr.2016.03.016
10.1002/ange.201710487
10.1126/science.285.5426.400
10.1002/anie.201306787
10.1021/acsphotonics.7b01177
10.1002/anie.201712104
10.1002/cphc.200500170
10.1002/anie.201508210
10.1039/C3CS60406C
10.1021/acs.chemrev.5b00263
10.1007/s11426-016-0341-5
10.1039/C7CC06203F
10.1021/ja0621905
10.1002/adma.201701905
10.1002/anie.200701925
10.1016/j.chempr.2017.05.002
10.1002/ange.200902777
10.1002/anie.201710487
10.1021/ja903317w
10.1002/ange.201712104
10.1002/ange.201508210
10.1002/ange.201306787
10.1021/acs.chemrev.6b00002
10.1103/PhysRevLett.96.017404
ContentType Journal Article
Copyright 2018 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim
2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Copyright_xml – notice: 2018 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
DBID AAYXX
CITATION
NPM
7TM
K9.
7X8
DOI 10.1002/anie.201803546
DatabaseName CrossRef
PubMed
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
ProQuest Health & Medical Complete (Alumni)
Nucleic Acids Abstracts
MEDLINE - Academic
DatabaseTitleList ProQuest Health & Medical Complete (Alumni)
CrossRef
MEDLINE - Academic
PubMed

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3773
Edition International ed. in English
EndPage 7825
ExternalDocumentID 29665184
10_1002_anie_201803546
ANIE201803546
Genre shortCommunication
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Ministry of Science and Technology of the People's Republic of China
  funderid: 2012YQ120060
– fundername: Science and Technology Commission of Shanghai Municipality
  funderid: 16DZ1100300
– fundername: National Natural Science Foundation of China
  funderid: 91622120, 21521062, 21601194, and 21472196
– fundername: Chinese Academy of Sciences
  funderid: XDB12010400
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABLJU
ABPPZ
ABPVW
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BTSUX
BY8
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M53
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
VQA
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XSW
XV2
YZZ
ZZTAW
~IA
~KM
~WT
AAYXX
ABDBF
ABJNI
AEYWJ
AGHNM
AGYGG
CITATION
NPM
7TM
K9.
7X8
ID FETCH-LOGICAL-c4766-74b9c7d16ccaa2b61c24461a09546a9e368f4395d06e944eb60359cc502c48783
IEDL.DBID DR2
ISSN 1433-7851
1521-3773
IngestDate Fri Jul 11 11:04:32 EDT 2025
Fri Jul 25 12:06:31 EDT 2025
Thu Apr 03 06:58:39 EDT 2025
Tue Jul 01 02:26:24 EDT 2025
Thu Apr 24 22:58:02 EDT 2025
Wed Jan 22 17:04:05 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 26
Keywords iridium
energy transfer
luminescence
exciton migration
nanostructures
Language English
License 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4766-74b9c7d16ccaa2b61c24461a09546a9e368f4395d06e944eb60359cc502c48783
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-0712-0374
PMID 29665184
PQID 2057167735
PQPubID 946352
PageCount 6
ParticipantIDs proquest_miscellaneous_2027066715
proquest_journals_2057167735
pubmed_primary_29665184
crossref_primary_10_1002_anie_201803546
crossref_citationtrail_10_1002_anie_201803546
wiley_primary_10_1002_anie_201803546_ANIE201803546
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate June 25, 2018
PublicationDateYYYYMMDD 2018-06-25
PublicationDate_xml – month: 06
  year: 2018
  text: June 25, 2018
  day: 25
PublicationDecade 2010
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Angewandte Chemie International Edition
PublicationTitleAlternate Angew Chem Int Ed Engl
PublicationYear 2018
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2014 2014; 53 126
2017; 2
2009 2009; 48 121
1999; 285
2008; 78
2011; 13
2013; 7
1995; 374
2014; 136
2017; 117
2012; 209
2014; 5
2018; 5
2009; 10
2016; 319
2018 2018; 57 130
2005; 109
2008; 112
2003; 125
2012; 24
2006; 128
2014; 6
2007; 19
2015; 6
2006; 96
2017; 60
2018; 140
2009; 21
2013; 42
2014; 47
2017; 29
2004
2009; 131
2011; 3
2016; 15
2011; 133
2014; 43
2017; 139
2017; 50
2017; 53
2015; 27
2016 2016; 55 128
2015; 115
2018; 118
2007 2007; 46 119
2009; 9
2005; 6
2011 2011; 50 123
2012; 48
2018; 12
2009; 38
2016; 8
2012; 41
e_1_2_2_24_2
e_1_2_2_47_2
e_1_2_2_4_2
e_1_2_2_22_3
e_1_2_2_49_1
e_1_2_2_6_1
e_1_2_2_22_2
e_1_2_2_20_1
e_1_2_2_2_2
e_1_2_2_62_1
e_1_2_2_41_2
e_1_2_2_41_3
e_1_2_2_64_1
e_1_2_2_8_2
e_1_2_2_28_2
e_1_2_2_43_2
e_1_2_2_66_2
e_1_2_2_26_2
e_1_2_2_45_2
e_1_2_2_8_3
e_1_2_2_68_1
e_1_2_2_60_2
e_1_2_2_13_2
e_1_2_2_59_2
e_1_2_2_11_2
e_1_2_2_38_2
e_1_2_2_51_2
e_1_2_2_72_2
e_1_2_2_19_2
e_1_2_2_30_2
e_1_2_2_53_2
e_1_2_2_32_1
e_1_2_2_51_3
e_1_2_2_74_1
e_1_2_2_17_2
e_1_2_2_55_2
e_1_2_2_78_2
e_1_2_2_15_2
e_1_2_2_34_2
e_1_2_2_76_2
e_1_2_2_36_1
e_1_2_2_57_1
e_1_2_2_70_2
e_1_2_2_3_2
e_1_2_2_23_3
e_1_2_2_48_1
e_1_2_2_23_2
e_1_2_2_69_2
e_1_2_2_5_2
e_1_2_2_21_3
e_1_2_2_21_2
e_1_2_2_1_1
e_1_2_2_63_1
e_1_2_2_40_2
e_1_2_2_40_3
e_1_2_2_65_1
e_1_2_2_29_2
e_1_2_2_42_2
e_1_2_2_7_2
e_1_2_2_9_1
e_1_2_2_44_1
e_1_2_2_7_3
e_1_2_2_27_2
e_1_2_2_25_2
e_1_2_2_46_2
e_1_2_2_67_2
e_1_2_2_61_1
e_1_2_2_14_1
e_1_2_2_35_3
e_1_2_2_12_2
e_1_2_2_37_2
e_1_2_2_39_1
e_1_2_2_10_1
e_1_2_2_50_2
e_1_2_2_75_2
e_1_2_2_18_2
e_1_2_2_31_2
e_1_2_2_52_2
e_1_2_2_73_2
e_1_2_2_16_2
e_1_2_2_33_2
e_1_2_2_54_2
e_1_2_2_79_2
e_1_2_2_56_3
e_1_2_2_58_1
e_1_2_2_77_1
e_1_2_2_35_2
e_1_2_2_56_2
e_1_2_2_71_1
References_xml – volume: 6
  start-page: 8646
  year: 2015
  publication-title: Nat. Commun.
– volume: 5
  start-page: 3372
  year: 2014
  publication-title: Nat. Commun.
– volume: 118
  start-page: 1770
  year: 2018
  end-page: 1839
  publication-title: Chem. Rev.
– volume: 128
  start-page: 7542
  year: 2006
  end-page: 7550
  publication-title: J. Am. Chem. Soc.
– volume: 15
  start-page: 13
  year: 2016
  end-page: 26
  publication-title: Nat. Mater.
– volume: 125
  start-page: 12971
  year: 2003
  end-page: 12979
  publication-title: J. Am. Chem. Soc.
– volume: 319
  start-page: 180
  year: 2016
  end-page: 195
  publication-title: Coord. Chem. Rev.
– volume: 125
  start-page: 12072
  year: 2003
  end-page: 12073
  publication-title: J. Am. Chem. Soc.
– volume: 78
  start-page: 045210
  year: 2008
  publication-title: Phys. Rev. B
– volume: 115
  start-page: 11718
  year: 2015
  end-page: 11940
  publication-title: Chem. Rev.
– volume: 5
  start-page: 607
  year: 2018
  end-page: 613
  publication-title: ACS Photonics
– volume: 21
  start-page: 2059
  year: 2009
  end-page: 2063
  publication-title: Adv. Mater.
– volume: 2
  start-page: 760
  year: 2017
  end-page: 790
  publication-title: Chem
– volume: 29
  start-page: 1701905
  year: 2017
  publication-title: Adv. Mater.
– volume: 96
  start-page: 017404
  year: 2006
  publication-title: Phys. Rev. Lett.
– volume: 55 128
  start-page: 7952 8084
  year: 2016 2016
  end-page: 7957 8089
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 48 121
  start-page: 7030 7164
  year: 2009 2009
  end-page: 7034 7168
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 6
  start-page: 11387
  year: 2014
  end-page: 11394
  publication-title: Nanoscale
– volume: 46 119
  start-page: 6260 6376
  year: 2007 2007
  end-page: 6265 6381
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 136
  start-page: 8217
  year: 2014
  end-page: 8220
  publication-title: J. Am. Chem. Soc.
– volume: 3
  start-page: 763
  year: 2011
  publication-title: Nat. Chem.
– volume: 140
  start-page: 4269
  year: 2018
  end-page: 4278
  publication-title: J. Am. Chem. Soc.
– volume: 117
  start-page: 10940
  year: 2017
  end-page: 11024
  publication-title: Chem. Rev.
– volume: 133
  start-page: 12940
  year: 2011
  end-page: 12943
  publication-title: J. Am. Chem. Soc.
– volume: 131
  start-page: 9813
  year: 2009
  end-page: 9822
  publication-title: J. Am. Chem. Soc.
– volume: 8
  start-page: 10
  year: 2016
  end-page: 15
  publication-title: Nat. Chem.
– volume: 117
  start-page: 838
  year: 2017
  end-page: 859
  publication-title: Chem. Rev.
– volume: 55 128
  start-page: 2759 2809
  year: 2016 2016
  end-page: 2763 2813
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 57 130
  start-page: 1030 1042
  year: 2018 2018
  end-page: 1033 1045
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 55 128
  start-page: 9961 10115
  year: 2016 2016
  end-page: 9964 10118
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 38
  start-page: 185
  year: 2009
  end-page: 196
  publication-title: Chem. Soc. Rev.
– volume: 29
  start-page: 1604100
  year: 2017
  publication-title: Adv. Mater.
– volume: 285
  start-page: 400
  year: 1999
  publication-title: Science
– volume: 43
  start-page: 4222
  year: 2014
  end-page: 4242
  publication-title: Chem. Soc. Rev.
– volume: 109
  start-page: 12261
  year: 2005
  end-page: 12269
  publication-title: J. Phys. Chem. B
– volume: 53
  start-page: 10976
  year: 2017
  end-page: 10992
  publication-title: Chem. Commun.
– volume: 24
  start-page: 5345
  year: 2012
  end-page: 5351
  publication-title: Adv. Mater.
– volume: 48
  start-page: 7489
  year: 2012
  end-page: 7491
  publication-title: Chem. Commun.
– volume: 27
  start-page: 1420
  year: 2015
  end-page: 1425
  publication-title: Adv. Mater.
– volume: 53 126
  start-page: 365 373
  year: 2014 2014
  end-page: 368 376
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 50
  start-page: 49
  year: 2017
  end-page: 57
  publication-title: Acc. Chem. Res.
– volume: 112
  start-page: 880
  year: 2008
  end-page: 888
  publication-title: J. Phys. Chem. A
– volume: 42
  start-page: 7834
  year: 2013
  end-page: 7869
  publication-title: Chem. Soc. Rev.
– volume: 13
  start-page: 4942
  year: 2011
  end-page: 4949
  publication-title: Phys. Chem. Chem. Phys.
– volume: 19
  start-page: 411
  year: 2007
  end-page: 415
  publication-title: Adv. Mater.
– start-page: 3415
  year: 2004
  end-page: 3423
  publication-title: Eur. J. Inorg. Chem.
– volume: 6
  start-page: 2337
  year: 2005
  end-page: 2342
  publication-title: ChemPhysChem
– volume: 47
  start-page: 3448
  year: 2014
  end-page: 3458
  publication-title: Acc. Chem. Res.
– volume: 57 130
  start-page: 1928 1946
  year: 2018 2018
  end-page: 1932 1950
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 9
  start-page: 453
  year: 2009
  end-page: 456
  publication-title: Nano Lett.
– volume: 117
  start-page: 249
  year: 2017
  end-page: 293
  publication-title: Chem. Rev.
– volume: 50 123
  start-page: 720 746
  year: 2011 2011
  end-page: 723 749
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 10
  start-page: 2096
  year: 2009
  end-page: 2104
  publication-title: ChemPhysChem
– volume: 374
  start-page: 517
  year: 1995
  publication-title: Nature
– volume: 117
  start-page: 712
  year: 2017
  end-page: 757
  publication-title: Chem. Rev.
– volume: 128
  start-page: 7174
  year: 2006
  end-page: 7175
  publication-title: J. Am. Chem. Soc.
– volume: 12
  start-page: 154
  year: 2018
  end-page: 158
  publication-title: Nat. Photonics
– volume: 209
  start-page: 340
  year: 2012
  end-page: 346
  publication-title: Phys. Status Solidi A
– volume: 139
  start-page: 14792
  year: 2017
  end-page: 14799
  publication-title: J. Am. Chem. Soc.
– volume: 7
  start-page: 479
  year: 2013
  publication-title: Nat. Photonics
– volume: 55 128
  start-page: 203 211
  year: 2016 2016
  end-page: 207 215
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 60
  start-page: 583
  year: 2017
  end-page: 590
  publication-title: Sci. China Chem.
– volume: 41
  start-page: 3297
  year: 2012
  end-page: 3317
  publication-title: Chem. Soc. Rev.
– ident: e_1_2_2_7_2
  doi: 10.1002/anie.201003015
– ident: e_1_2_2_23_2
  doi: 10.1002/anie.201601516
– ident: e_1_2_2_32_1
– ident: e_1_2_2_77_1
– ident: e_1_2_2_22_2
  doi: 10.1002/anie.201604508
– ident: e_1_2_2_64_1
  doi: 10.1038/ncomms9646
– ident: e_1_2_2_63_1
  doi: 10.1002/adma.201201493
– ident: e_1_2_2_19_2
  doi: 10.1021/acs.chemrev.6b00419
– ident: e_1_2_2_62_1
  doi: 10.1002/ejic.200400114
– ident: e_1_2_2_26_2
  doi: 10.1021/ja204214t
– ident: e_1_2_2_46_2
  doi: 10.1039/c2cc33279e
– ident: e_1_2_2_66_2
  doi: 10.1021/jp0443355
– ident: e_1_2_2_40_3
  doi: 10.1002/ange.200701925
– ident: e_1_2_2_43_2
  doi: 10.1021/ja0587594
– ident: e_1_2_2_21_2
  doi: 10.1002/anie.201510503
– ident: e_1_2_2_60_2
  doi: 10.1039/C4NR03456B
– ident: e_1_2_2_53_2
  doi: 10.1021/jacs.7b08710
– ident: e_1_2_2_18_2
  doi: 10.1021/acs.chemrev.6b00036
– ident: e_1_2_2_31_2
  doi: 10.1039/c0cp02110e
– ident: e_1_2_2_29_2
  doi: 10.1002/adma.200601500
– ident: e_1_2_2_68_1
– ident: e_1_2_2_48_1
  doi: 10.1021/acs.chemrev.7b00425
– ident: e_1_2_2_37_2
  doi: 10.1038/nphoton.2013.82
– ident: e_1_2_2_76_2
  doi: 10.1002/cphc.200900112
– ident: e_1_2_2_7_3
  doi: 10.1002/ange.201003015
– ident: e_1_2_2_23_3
  doi: 10.1002/ange.201601516
– ident: e_1_2_2_79_2
  doi: 10.1002/pssa.201127451
– ident: e_1_2_2_38_2
  doi: 10.1021/acs.accounts.6b00432
– ident: e_1_2_2_47_2
  doi: 10.1021/ja036736o
– ident: e_1_2_2_36_1
– ident: e_1_2_2_2_2
  doi: 10.1038/nmat4474
– ident: e_1_2_2_22_3
  doi: 10.1002/ange.201604508
– ident: e_1_2_2_14_1
– ident: e_1_2_2_54_2
  doi: 10.1038/nchem.2383
– ident: e_1_2_2_27_2
  doi: 10.1021/jacs.7b12519
– ident: e_1_2_2_58_1
– ident: e_1_2_2_3_2
  doi: 10.1039/c2cs15267c
– ident: e_1_2_2_59_2
  doi: 10.1021/nl8034465
– ident: e_1_2_2_12_2
  doi: 10.1002/adma.201404700
– ident: e_1_2_2_21_3
  doi: 10.1002/ange.201510503
– ident: e_1_2_2_44_1
– ident: e_1_2_2_6_1
– ident: e_1_2_2_30_2
  doi: 10.1002/adma.200802932
– ident: e_1_2_2_69_2
  doi: 10.1038/374517a0
– ident: e_1_2_2_39_1
– ident: e_1_2_2_61_1
  doi: 10.1021/ja034732d
– ident: e_1_2_2_71_1
– ident: e_1_2_2_49_1
– ident: e_1_2_2_74_1
– ident: e_1_2_2_1_1
– ident: e_1_2_2_33_2
  doi: 10.1021/acs.chemrev.6b00807
– ident: e_1_2_2_25_2
  doi: 10.1021/ja504730j
– ident: e_1_2_2_75_2
  doi: 10.1103/PhysRevB.78.045210
– ident: e_1_2_2_9_1
  doi: 10.1038/s41566-018-0108-5
– ident: e_1_2_2_15_2
  doi: 10.1038/nchem.1145
– ident: e_1_2_2_55_2
  doi: 10.1038/ncomms4372
– ident: e_1_2_2_67_2
  doi: 10.1021/jp077542o
– ident: e_1_2_2_8_2
  doi: 10.1002/anie.200902777
– ident: e_1_2_2_17_2
  doi: 10.1039/B802262N
– ident: e_1_2_2_65_1
– ident: e_1_2_2_20_1
– ident: e_1_2_2_50_2
  doi: 10.1021/ar500192v
– ident: e_1_2_2_52_2
  doi: 10.1002/adma.201604100
– ident: e_1_2_2_11_2
  doi: 10.1039/c3cs60102a
– ident: e_1_2_2_5_2
  doi: 10.1016/j.ccr.2016.03.016
– ident: e_1_2_2_41_3
  doi: 10.1002/ange.201710487
– ident: e_1_2_2_70_2
  doi: 10.1126/science.285.5426.400
– ident: e_1_2_2_35_2
  doi: 10.1002/anie.201306787
– ident: e_1_2_2_73_2
  doi: 10.1021/acsphotonics.7b01177
– ident: e_1_2_2_56_2
  doi: 10.1002/anie.201712104
– ident: e_1_2_2_42_2
  doi: 10.1002/cphc.200500170
– ident: e_1_2_2_51_2
  doi: 10.1002/anie.201508210
– ident: e_1_2_2_34_2
  doi: 10.1039/C3CS60406C
– ident: e_1_2_2_57_1
  doi: 10.1021/acs.chemrev.5b00263
– ident: e_1_2_2_4_2
  doi: 10.1007/s11426-016-0341-5
– ident: e_1_2_2_13_2
  doi: 10.1039/C7CC06203F
– ident: e_1_2_2_28_2
  doi: 10.1021/ja0621905
– ident: e_1_2_2_24_2
  doi: 10.1002/adma.201701905
– ident: e_1_2_2_40_2
  doi: 10.1002/anie.200701925
– ident: e_1_2_2_72_2
  doi: 10.1016/j.chempr.2017.05.002
– ident: e_1_2_2_8_3
  doi: 10.1002/ange.200902777
– ident: e_1_2_2_41_2
  doi: 10.1002/anie.201710487
– ident: e_1_2_2_45_2
  doi: 10.1021/ja903317w
– ident: e_1_2_2_56_3
  doi: 10.1002/ange.201712104
– ident: e_1_2_2_51_3
  doi: 10.1002/ange.201508210
– ident: e_1_2_2_10_1
– ident: e_1_2_2_35_3
  doi: 10.1002/ange.201306787
– ident: e_1_2_2_16_2
  doi: 10.1021/acs.chemrev.6b00002
– ident: e_1_2_2_78_2
  doi: 10.1103/PhysRevLett.96.017404
SSID ssj0028806
Score 2.436785
Snippet Thermal‐responsive phosphorescent nanotubes have been fabricated from the co‐assembly of two neutral iridium complexes, which behave as the antenna...
Thermal-responsive phosphorescent nanotubes have been fabricated from the co-assembly of two neutral iridium complexes, which behave as the antenna...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 7820
SubjectTerms Chromophores
Color
Crystal structure
Crystallinity
Emission
Emissions
Energy harvesting
Energy transfer
exciton migration
Iridium
Iridium compounds
luminescence
nanostructures
Nanotechnology
Nanotubes
Phosphorescence
Superstructures
Temperature effects
Thermochromism
Tubes
Title Thermal‐Responsive Phosphorescent Nanoamplifiers Assembled from Two Metallophosphors
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.201803546
https://www.ncbi.nlm.nih.gov/pubmed/29665184
https://www.proquest.com/docview/2057167735
https://www.proquest.com/docview/2027066715
Volume 57
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA7iRS--H-uLCoKnaJukSfe4iKKCIrIr3kqaJgiu22UfCp78Cf5Gf4kzfekqIuitJRPaZjLJN83MN4TsRZFNlU0FDYTmVEQsoABiHeUcjElJp3WeSHtxKU874vw2vP2UxV_wQ9Q_3NAy8vUaDVwnw8MP0lDMwMbQrMjnoUDObQzYQlR0XfNHMZicRXoR5xSr0FesjT47nOw-uSt9g5qTyDXfek7mia5euog4uT8Yj5ID8_yFz_E_X7VA5kpc6rWKibRIpmxvicwcVeXglskNTChYxLtvL6_XZVzto_Wu7rJh_y4bFKRQHqzVmcYYdYcVtj08UX5Iujb1MIvFaz9l3oUd4VF_v-w3XCGdk-P20SktizJQI5SUVImkaVQaSFC9ZokMDAAEGWiAakLqpuUycgBywtSXtimETSSSBBoT-syAcxTxVTLdy3p2nXjcGaGZYsZyLSLnmr51hnPkt9EuMaxBaKWU2JSM5Vg4oxsXXMssxtGK69FqkP1avl9wdfwouVXpOC5tdgitITiPSvGwQXbrZhhlPELRPZuNUYYpDAsOQGatmBv1oxh4jiE4zA3Ccg3_8g5x6_LsuL7b-EunTTKL1xi5xsItMj0ajO02YKRRspPbwTvfYAlW
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fb9MwED-x8bC9jP9QKBCkSXvyltiOnT5WY1MHazVN3bS3yHFsVaI01doOiSc-Ap-RT8Jd_qGCJqTtMfFZcXx39p199zuA3SRxuXa5ZJE0gsmERwyNWM-EQGXSyhtTJtIOR2pwIT9dxU00IeXCVPgQ7YEbaUa5XpOC04H0wR_UUErBptisJBSxVBvwkMp6E3z-x_MWQYqjeFYJRkIwqkPf4DaG_GC9__q-9I-xuW67lpvP8SPImmFXMSdf9lfLbN9-_wvR8V7_9Rh2atM06Fey9AQeuNlT2DpsKsI9g0uUKVzHp79-_DyvQ2tvXHA2KRbzSXFd4UIFuFwXhsLUPRXZDuhS-Ws2dXlAiSzB-FsRDN2Sbvvndb_Fc7g4PhofDlhdl4FZqZViWmY9q_NIIfcNz1Rk0UZQkUFrTSrTc0IlHu2cOA-V60npMkU4gdbGIbfoHyXiBWzOipl7BYHwVhquuXXCyMT7Xui8FYIgbozPLO8Aa7iS2hq0nGpnTNMKbpmnNFtpO1sd2Gvp5xVcx62U3YbJaa22C2yN0X_UWsQd-NA24yzTLYqZuWJFNFxTZHCENC8r4Wg_xdF5jNFn7gAvWfyfMaT90clR-_T6Lp3ew9ZgPDxNT09Gn9_ANr2nQDYed2Fzeb1yb9FkWmbvSqX4DXJRDXI
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTtwwEB5RkNpeCv2hbIGSSpV6MiS2YydHBKyglBVCUHGLHMcWEstmxe5Sqac-Qp-xT9KZ_LVbVCG1x8RjJfF47G_imW8A3ieJK7QrJIukEUwmPGIIYj0TAo1JK29MlUh7MlCHF_LjZXz5WxZ_zQ_R_XAjy6jWazLwceF3fpGGUgY2hWYloYilegRLUoUpFW_YP-sIpDjOzjq_SAhGZehb2saQ78z3n9-W7mHNeeha7T39ZTDtW9chJ9fbs2m-bb_-Qej4P5-1As8aYBrs1jPpOSy40Qt4stfWg3sJn3FG4So-_PHt-1kTWHvngtOrcjK-Km9rVqgAF-vSUJC6pxLbAR0p3-RDVwSUxhKcfymDEzels_5x02_yCi76B-d7h6ypysCs1EoxLfPU6iJSqHvDcxVZRAgqMojVpDKpEyrxiHLiIlQuldLlilgCrY1DbtE7SsQqLI7KkVuDQHgrDdfcOmFk4n0aOm-FIIIb43PLe8BapWS2oSynyhnDrCZb5hmNVtaNVg8-dPLjmqzjr5IbrY6zxmgn2Bqj96i1iHvwrmvGUaYzFDNy5YxkuKa44AhlXtdzo3sUR9cxRo-5B7zS8APvkO0Ojg66qzf_0mkLHp_u97NPR4PjdXhKtymKjccbsDi9nblNxEvT_G1lEj8BPHIMIQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Thermal%E2%80%90Responsive+Phosphorescent+Nanoamplifiers+Assembled+from+Two+Metallophosphors&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Meng%E2%80%90Jia+Sun&rft.au=Yu%E2%80%90Wu+Zhong&rft.au=Yao%2C+Jiannian&rft.date=2018-06-25&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=57&rft.issue=26&rft.spage=7820&rft.epage=7825&rft_id=info:doi/10.1002%2Fanie.201803546&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon