Thermal‐Responsive Phosphorescent Nanoamplifiers Assembled from Two Metallophosphors
Thermal‐responsive phosphorescent nanotubes have been fabricated from the co‐assembly of two neutral iridium complexes, which behave as the antenna chromophores and energy acceptors, respectively, in these highly ordered crystalline superstructures. By tuning the acceptor doping ratio in a range of...
Saved in:
Published in | Angewandte Chemie International Edition Vol. 57; no. 26; pp. 7820 - 7825 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
25.06.2018
|
Edition | International ed. in English |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Thermal‐responsive phosphorescent nanotubes have been fabricated from the co‐assembly of two neutral iridium complexes, which behave as the antenna chromophores and energy acceptors, respectively, in these highly ordered crystalline superstructures. By tuning the acceptor doping ratio in a range of 0 to 0.5 %, these tubes display color‐tunable phosphorescence from green to red at room temperature, and it is attributed to the highly efficient light‐harvesting and energy transfer within these materials. For the same reason, the acceptor emission in the nanotubes is amplified more than 800 times with respect to its pure non‐emissive solid sample. The doped tubes show reversible thermal‐responsiveness, in which the energy transfer was completely suppressed at 77 K and reactivated at room temperature. These processes were characterized by the in situ emission color (green, orange, and red) and spectral changes and lifetime measurements of isolated nanotubes. The temperature‐controlled exciton dynamics are responsible for the luminescent thermochromism in these crystalline materials.
With flying colors: The co‐assembly of two neutral iridium complexes gives rise to crystalline phosphorescent nanotubes with highly efficient light‐harvesting and energy‐transfer properties. They display color‐tunable and thermal‐responsive phosphorescence from green to red at a low acceptor doping ratio of less than 0.2 %. The acceptor emission in the crystalline nanotubes is amplified more than 800 times with respect to its non‐emissive pure solid sample. |
---|---|
AbstractList | Thermal‐responsive phosphorescent nanotubes have been fabricated from the co‐assembly of two neutral iridium complexes, which behave as the antenna chromophores and energy acceptors, respectively, in these highly ordered crystalline superstructures. By tuning the acceptor doping ratio in a range of 0 to 0.5 %, these tubes display color‐tunable phosphorescence from green to red at room temperature, and it is attributed to the highly efficient light‐harvesting and energy transfer within these materials. For the same reason, the acceptor emission in the nanotubes is amplified more than 800 times with respect to its pure non‐emissive solid sample. The doped tubes show reversible thermal‐responsiveness, in which the energy transfer was completely suppressed at 77 K and reactivated at room temperature. These processes were characterized by the in situ emission color (green, orange, and red) and spectral changes and lifetime measurements of isolated nanotubes. The temperature‐controlled exciton dynamics are responsible for the luminescent thermochromism in these crystalline materials. Thermal-responsive phosphorescent nanotubes have been fabricated from the co-assembly of two neutral iridium complexes, which behave as the antenna chromophores and energy acceptors, respectively, in these highly ordered crystalline superstructures. By tuning the acceptor doping ratio in a range of 0 to 0.5 %, these tubes display color-tunable phosphorescence from green to red at room temperature, and it is attributed to the highly efficient light-harvesting and energy transfer within these materials. For the same reason, the acceptor emission in the nanotubes is amplified more than 800 times with respect to its pure non-emissive solid sample. The doped tubes show reversible thermal-responsiveness, in which the energy transfer was completely suppressed at 77 K and reactivated at room temperature. These processes were characterized by the in situ emission color (green, orange, and red) and spectral changes and lifetime measurements of isolated nanotubes. The temperature-controlled exciton dynamics are responsible for the luminescent thermochromism in these crystalline materials.Thermal-responsive phosphorescent nanotubes have been fabricated from the co-assembly of two neutral iridium complexes, which behave as the antenna chromophores and energy acceptors, respectively, in these highly ordered crystalline superstructures. By tuning the acceptor doping ratio in a range of 0 to 0.5 %, these tubes display color-tunable phosphorescence from green to red at room temperature, and it is attributed to the highly efficient light-harvesting and energy transfer within these materials. For the same reason, the acceptor emission in the nanotubes is amplified more than 800 times with respect to its pure non-emissive solid sample. The doped tubes show reversible thermal-responsiveness, in which the energy transfer was completely suppressed at 77 K and reactivated at room temperature. These processes were characterized by the in situ emission color (green, orange, and red) and spectral changes and lifetime measurements of isolated nanotubes. The temperature-controlled exciton dynamics are responsible for the luminescent thermochromism in these crystalline materials. Thermal‐responsive phosphorescent nanotubes have been fabricated from the co‐assembly of two neutral iridium complexes, which behave as the antenna chromophores and energy acceptors, respectively, in these highly ordered crystalline superstructures. By tuning the acceptor doping ratio in a range of 0 to 0.5 %, these tubes display color‐tunable phosphorescence from green to red at room temperature, and it is attributed to the highly efficient light‐harvesting and energy transfer within these materials. For the same reason, the acceptor emission in the nanotubes is amplified more than 800 times with respect to its pure non‐emissive solid sample. The doped tubes show reversible thermal‐responsiveness, in which the energy transfer was completely suppressed at 77 K and reactivated at room temperature. These processes were characterized by the in situ emission color (green, orange, and red) and spectral changes and lifetime measurements of isolated nanotubes. The temperature‐controlled exciton dynamics are responsible for the luminescent thermochromism in these crystalline materials. With flying colors: The co‐assembly of two neutral iridium complexes gives rise to crystalline phosphorescent nanotubes with highly efficient light‐harvesting and energy‐transfer properties. They display color‐tunable and thermal‐responsive phosphorescence from green to red at a low acceptor doping ratio of less than 0.2 %. The acceptor emission in the crystalline nanotubes is amplified more than 800 times with respect to its non‐emissive pure solid sample. |
Author | Sun, Meng‐Jia Zhong, Yu‐Wu Yao, Jiannian |
Author_xml | – sequence: 1 givenname: Meng‐Jia surname: Sun fullname: Sun, Meng‐Jia organization: University of Chinese Academy of Sciences – sequence: 2 givenname: Yu‐Wu orcidid: 0000-0003-0712-0374 surname: Zhong fullname: Zhong, Yu‐Wu email: zhongyuwu@iccas.ac.cn organization: University of Chinese Academy of Sciences – sequence: 3 givenname: Jiannian surname: Yao fullname: Yao, Jiannian email: jnyao@iccas.ac.cn organization: University of Chinese Academy of Sciences |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29665184$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkctKxDAUhoMo3rcupeDGTcckTZN2OYiXgfGCjG5LmjllImlSk47izkfwGX0SM8yoIIirk8X35Vz-HbRunQWEDggeEIzpibQaBhSTAmc542tom-SUpJkQ2Xp8syxLRZGTLbQTwmPkiwLzTbRFS85zUrBt9DCZgW-l-Xh7v4PQORv0MyS3Mxe6mfMQFNg-uZbWybYzutHgQzIMAdrawDRpvGuTyYtLrqCXxrhu5YU9tNFIE2B_VXfR_fnZ5PQyHd9cjE6H41QxwXkqWF0qMSVcKSlpzYmijHEicRmXkSVkvGhYVuZTzKFkDGoe1yyVyjFVrBBFtouOl_923j3NIfRVq-PMxkgLbh4qiqnAnAuSR_ToF_ro5t7G6SKVC8LjzRbU4Yqa1y1Mq87rVvrX6utiERgsAeVdCB6ab4TgahFJtYik-o4kCuyXoHQve-1s76U2f2vlUnvRBl7_aVINr0dnP-4nzuOhAw |
CitedBy_id | crossref_primary_10_1002_ange_202010166 crossref_primary_10_1002_ange_202312844 crossref_primary_10_1002_ange_202206157 crossref_primary_10_1007_s11426_023_1612_y crossref_primary_10_1002_adom_202201675 crossref_primary_10_1002_ange_201812146 crossref_primary_10_1021_acscentsci_8b00844 crossref_primary_10_1002_anie_201812146 crossref_primary_10_1002_adom_202301540 crossref_primary_10_1021_acsami_2c14168 crossref_primary_10_1016_j_cclet_2024_109903 crossref_primary_10_1002_anie_202103200 crossref_primary_10_1016_j_inoche_2019_01_025 crossref_primary_10_1039_D0CC01505A crossref_primary_10_1002_ange_202419096 crossref_primary_10_1103_PhysRevLett_122_257402 crossref_primary_10_1016_j_cclet_2022_108081 crossref_primary_10_1021_acs_jpclett_2c00168 crossref_primary_10_1021_acs_inorgchem_1c03322 crossref_primary_10_1021_acs_inorgchem_0c00887 crossref_primary_10_1039_D2TC02789E crossref_primary_10_1002_anie_202312844 crossref_primary_10_1039_C9SC06518K crossref_primary_10_1002_anie_202206157 crossref_primary_10_1002_anie_202010166 crossref_primary_10_1021_acs_jpca_0c08649 crossref_primary_10_1021_acs_chemmater_9b01338 crossref_primary_10_1039_D2CS00976E crossref_primary_10_1039_D1TC04542C crossref_primary_10_1039_D0QI00779J crossref_primary_10_1039_D0SC04359A crossref_primary_10_1002_anie_202419096 crossref_primary_10_1039_D4TA01817F crossref_primary_10_1002_ange_202103200 crossref_primary_10_1126_sciadv_aaw2953 crossref_primary_10_1002_cjoc_202000477 crossref_primary_10_1002_chem_202100940 crossref_primary_10_1021_acsnano_2c10659 crossref_primary_10_1021_acs_chemmater_1c00015 crossref_primary_10_1002_adom_202200985 crossref_primary_10_1002_adom_202201710 |
Cites_doi | 10.1002/anie.201003015 10.1002/anie.201601516 10.1002/anie.201604508 10.1038/ncomms9646 10.1002/adma.201201493 10.1021/acs.chemrev.6b00419 10.1002/ejic.200400114 10.1021/ja204214t 10.1039/c2cc33279e 10.1021/jp0443355 10.1002/ange.200701925 10.1021/ja0587594 10.1002/anie.201510503 10.1039/C4NR03456B 10.1021/jacs.7b08710 10.1021/acs.chemrev.6b00036 10.1039/c0cp02110e 10.1002/adma.200601500 10.1021/acs.chemrev.7b00425 10.1038/nphoton.2013.82 10.1002/cphc.200900112 10.1002/ange.201003015 10.1002/ange.201601516 10.1002/pssa.201127451 10.1021/acs.accounts.6b00432 10.1021/ja036736o 10.1038/nmat4474 10.1002/ange.201604508 10.1038/nchem.2383 10.1021/jacs.7b12519 10.1039/c2cs15267c 10.1021/nl8034465 10.1002/adma.201404700 10.1002/ange.201510503 10.1002/adma.200802932 10.1038/374517a0 10.1021/ja034732d 10.1021/acs.chemrev.6b00807 10.1021/ja504730j 10.1103/PhysRevB.78.045210 10.1038/s41566-018-0108-5 10.1038/nchem.1145 10.1038/ncomms4372 10.1021/jp077542o 10.1002/anie.200902777 10.1039/B802262N 10.1021/ar500192v 10.1002/adma.201604100 10.1039/c3cs60102a 10.1016/j.ccr.2016.03.016 10.1002/ange.201710487 10.1126/science.285.5426.400 10.1002/anie.201306787 10.1021/acsphotonics.7b01177 10.1002/anie.201712104 10.1002/cphc.200500170 10.1002/anie.201508210 10.1039/C3CS60406C 10.1021/acs.chemrev.5b00263 10.1007/s11426-016-0341-5 10.1039/C7CC06203F 10.1021/ja0621905 10.1002/adma.201701905 10.1002/anie.200701925 10.1016/j.chempr.2017.05.002 10.1002/ange.200902777 10.1002/anie.201710487 10.1021/ja903317w 10.1002/ange.201712104 10.1002/ange.201508210 10.1002/ange.201306787 10.1021/acs.chemrev.6b00002 10.1103/PhysRevLett.96.017404 |
ContentType | Journal Article |
Copyright | 2018 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. |
Copyright_xml | – notice: 2018 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. |
DBID | AAYXX CITATION NPM 7TM K9. 7X8 |
DOI | 10.1002/anie.201803546 |
DatabaseName | CrossRef PubMed Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed ProQuest Health & Medical Complete (Alumni) Nucleic Acids Abstracts MEDLINE - Academic |
DatabaseTitleList | ProQuest Health & Medical Complete (Alumni) CrossRef MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3773 |
Edition | International ed. in English |
EndPage | 7825 |
ExternalDocumentID | 29665184 10_1002_anie_201803546 ANIE201803546 |
Genre | shortCommunication Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Ministry of Science and Technology of the People's Republic of China funderid: 2012YQ120060 – fundername: Science and Technology Commission of Shanghai Municipality funderid: 16DZ1100300 – fundername: National Natural Science Foundation of China funderid: 91622120, 21521062, 21601194, and 21472196 – fundername: Chinese Academy of Sciences funderid: XDB12010400 |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABLJU ABPPZ ABPVW ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BTSUX BY8 CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS EJD F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M53 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ TN5 UB1 UPT V2E VQA W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XSW XV2 YZZ ZZTAW ~IA ~KM ~WT AAYXX ABDBF ABJNI AEYWJ AGHNM AGYGG CITATION NPM 7TM K9. 7X8 |
ID | FETCH-LOGICAL-c4766-74b9c7d16ccaa2b61c24461a09546a9e368f4395d06e944eb60359cc502c48783 |
IEDL.DBID | DR2 |
ISSN | 1433-7851 1521-3773 |
IngestDate | Fri Jul 11 11:04:32 EDT 2025 Fri Jul 25 12:06:31 EDT 2025 Thu Apr 03 06:58:39 EDT 2025 Tue Jul 01 02:26:24 EDT 2025 Thu Apr 24 22:58:02 EDT 2025 Wed Jan 22 17:04:05 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 26 |
Keywords | iridium energy transfer luminescence exciton migration nanostructures |
Language | English |
License | 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4766-74b9c7d16ccaa2b61c24461a09546a9e368f4395d06e944eb60359cc502c48783 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-0712-0374 |
PMID | 29665184 |
PQID | 2057167735 |
PQPubID | 946352 |
PageCount | 6 |
ParticipantIDs | proquest_miscellaneous_2027066715 proquest_journals_2057167735 pubmed_primary_29665184 crossref_primary_10_1002_anie_201803546 crossref_citationtrail_10_1002_anie_201803546 wiley_primary_10_1002_anie_201803546_ANIE201803546 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | June 25, 2018 |
PublicationDateYYYYMMDD | 2018-06-25 |
PublicationDate_xml | – month: 06 year: 2018 text: June 25, 2018 day: 25 |
PublicationDecade | 2010 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Angewandte Chemie International Edition |
PublicationTitleAlternate | Angew Chem Int Ed Engl |
PublicationYear | 2018 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2014 2014; 53 126 2017; 2 2009 2009; 48 121 1999; 285 2008; 78 2011; 13 2013; 7 1995; 374 2014; 136 2017; 117 2012; 209 2014; 5 2018; 5 2009; 10 2016; 319 2018 2018; 57 130 2005; 109 2008; 112 2003; 125 2012; 24 2006; 128 2014; 6 2007; 19 2015; 6 2006; 96 2017; 60 2018; 140 2009; 21 2013; 42 2014; 47 2017; 29 2004 2009; 131 2011; 3 2016; 15 2011; 133 2014; 43 2017; 139 2017; 50 2017; 53 2015; 27 2016 2016; 55 128 2015; 115 2018; 118 2007 2007; 46 119 2009; 9 2005; 6 2011 2011; 50 123 2012; 48 2018; 12 2009; 38 2016; 8 2012; 41 e_1_2_2_24_2 e_1_2_2_47_2 e_1_2_2_4_2 e_1_2_2_22_3 e_1_2_2_49_1 e_1_2_2_6_1 e_1_2_2_22_2 e_1_2_2_20_1 e_1_2_2_2_2 e_1_2_2_62_1 e_1_2_2_41_2 e_1_2_2_41_3 e_1_2_2_64_1 e_1_2_2_8_2 e_1_2_2_28_2 e_1_2_2_43_2 e_1_2_2_66_2 e_1_2_2_26_2 e_1_2_2_45_2 e_1_2_2_8_3 e_1_2_2_68_1 e_1_2_2_60_2 e_1_2_2_13_2 e_1_2_2_59_2 e_1_2_2_11_2 e_1_2_2_38_2 e_1_2_2_51_2 e_1_2_2_72_2 e_1_2_2_19_2 e_1_2_2_30_2 e_1_2_2_53_2 e_1_2_2_32_1 e_1_2_2_51_3 e_1_2_2_74_1 e_1_2_2_17_2 e_1_2_2_55_2 e_1_2_2_78_2 e_1_2_2_15_2 e_1_2_2_34_2 e_1_2_2_76_2 e_1_2_2_36_1 e_1_2_2_57_1 e_1_2_2_70_2 e_1_2_2_3_2 e_1_2_2_23_3 e_1_2_2_48_1 e_1_2_2_23_2 e_1_2_2_69_2 e_1_2_2_5_2 e_1_2_2_21_3 e_1_2_2_21_2 e_1_2_2_1_1 e_1_2_2_63_1 e_1_2_2_40_2 e_1_2_2_40_3 e_1_2_2_65_1 e_1_2_2_29_2 e_1_2_2_42_2 e_1_2_2_7_2 e_1_2_2_9_1 e_1_2_2_44_1 e_1_2_2_7_3 e_1_2_2_27_2 e_1_2_2_25_2 e_1_2_2_46_2 e_1_2_2_67_2 e_1_2_2_61_1 e_1_2_2_14_1 e_1_2_2_35_3 e_1_2_2_12_2 e_1_2_2_37_2 e_1_2_2_39_1 e_1_2_2_10_1 e_1_2_2_50_2 e_1_2_2_75_2 e_1_2_2_18_2 e_1_2_2_31_2 e_1_2_2_52_2 e_1_2_2_73_2 e_1_2_2_16_2 e_1_2_2_33_2 e_1_2_2_54_2 e_1_2_2_79_2 e_1_2_2_56_3 e_1_2_2_58_1 e_1_2_2_77_1 e_1_2_2_35_2 e_1_2_2_56_2 e_1_2_2_71_1 |
References_xml | – volume: 6 start-page: 8646 year: 2015 publication-title: Nat. Commun. – volume: 5 start-page: 3372 year: 2014 publication-title: Nat. Commun. – volume: 118 start-page: 1770 year: 2018 end-page: 1839 publication-title: Chem. Rev. – volume: 128 start-page: 7542 year: 2006 end-page: 7550 publication-title: J. Am. Chem. Soc. – volume: 15 start-page: 13 year: 2016 end-page: 26 publication-title: Nat. Mater. – volume: 125 start-page: 12971 year: 2003 end-page: 12979 publication-title: J. Am. Chem. Soc. – volume: 319 start-page: 180 year: 2016 end-page: 195 publication-title: Coord. Chem. Rev. – volume: 125 start-page: 12072 year: 2003 end-page: 12073 publication-title: J. Am. Chem. Soc. – volume: 78 start-page: 045210 year: 2008 publication-title: Phys. Rev. B – volume: 115 start-page: 11718 year: 2015 end-page: 11940 publication-title: Chem. Rev. – volume: 5 start-page: 607 year: 2018 end-page: 613 publication-title: ACS Photonics – volume: 21 start-page: 2059 year: 2009 end-page: 2063 publication-title: Adv. Mater. – volume: 2 start-page: 760 year: 2017 end-page: 790 publication-title: Chem – volume: 29 start-page: 1701905 year: 2017 publication-title: Adv. Mater. – volume: 96 start-page: 017404 year: 2006 publication-title: Phys. Rev. Lett. – volume: 55 128 start-page: 7952 8084 year: 2016 2016 end-page: 7957 8089 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 48 121 start-page: 7030 7164 year: 2009 2009 end-page: 7034 7168 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 6 start-page: 11387 year: 2014 end-page: 11394 publication-title: Nanoscale – volume: 46 119 start-page: 6260 6376 year: 2007 2007 end-page: 6265 6381 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 136 start-page: 8217 year: 2014 end-page: 8220 publication-title: J. Am. Chem. Soc. – volume: 3 start-page: 763 year: 2011 publication-title: Nat. Chem. – volume: 140 start-page: 4269 year: 2018 end-page: 4278 publication-title: J. Am. Chem. Soc. – volume: 117 start-page: 10940 year: 2017 end-page: 11024 publication-title: Chem. Rev. – volume: 133 start-page: 12940 year: 2011 end-page: 12943 publication-title: J. Am. Chem. Soc. – volume: 131 start-page: 9813 year: 2009 end-page: 9822 publication-title: J. Am. Chem. Soc. – volume: 8 start-page: 10 year: 2016 end-page: 15 publication-title: Nat. Chem. – volume: 117 start-page: 838 year: 2017 end-page: 859 publication-title: Chem. Rev. – volume: 55 128 start-page: 2759 2809 year: 2016 2016 end-page: 2763 2813 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 57 130 start-page: 1030 1042 year: 2018 2018 end-page: 1033 1045 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 55 128 start-page: 9961 10115 year: 2016 2016 end-page: 9964 10118 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 38 start-page: 185 year: 2009 end-page: 196 publication-title: Chem. Soc. Rev. – volume: 29 start-page: 1604100 year: 2017 publication-title: Adv. Mater. – volume: 285 start-page: 400 year: 1999 publication-title: Science – volume: 43 start-page: 4222 year: 2014 end-page: 4242 publication-title: Chem. Soc. Rev. – volume: 109 start-page: 12261 year: 2005 end-page: 12269 publication-title: J. Phys. Chem. B – volume: 53 start-page: 10976 year: 2017 end-page: 10992 publication-title: Chem. Commun. – volume: 24 start-page: 5345 year: 2012 end-page: 5351 publication-title: Adv. Mater. – volume: 48 start-page: 7489 year: 2012 end-page: 7491 publication-title: Chem. Commun. – volume: 27 start-page: 1420 year: 2015 end-page: 1425 publication-title: Adv. Mater. – volume: 53 126 start-page: 365 373 year: 2014 2014 end-page: 368 376 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 50 start-page: 49 year: 2017 end-page: 57 publication-title: Acc. Chem. Res. – volume: 112 start-page: 880 year: 2008 end-page: 888 publication-title: J. Phys. Chem. A – volume: 42 start-page: 7834 year: 2013 end-page: 7869 publication-title: Chem. Soc. Rev. – volume: 13 start-page: 4942 year: 2011 end-page: 4949 publication-title: Phys. Chem. Chem. Phys. – volume: 19 start-page: 411 year: 2007 end-page: 415 publication-title: Adv. Mater. – start-page: 3415 year: 2004 end-page: 3423 publication-title: Eur. J. Inorg. Chem. – volume: 6 start-page: 2337 year: 2005 end-page: 2342 publication-title: ChemPhysChem – volume: 47 start-page: 3448 year: 2014 end-page: 3458 publication-title: Acc. Chem. Res. – volume: 57 130 start-page: 1928 1946 year: 2018 2018 end-page: 1932 1950 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 9 start-page: 453 year: 2009 end-page: 456 publication-title: Nano Lett. – volume: 117 start-page: 249 year: 2017 end-page: 293 publication-title: Chem. Rev. – volume: 50 123 start-page: 720 746 year: 2011 2011 end-page: 723 749 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 10 start-page: 2096 year: 2009 end-page: 2104 publication-title: ChemPhysChem – volume: 374 start-page: 517 year: 1995 publication-title: Nature – volume: 117 start-page: 712 year: 2017 end-page: 757 publication-title: Chem. Rev. – volume: 128 start-page: 7174 year: 2006 end-page: 7175 publication-title: J. Am. Chem. Soc. – volume: 12 start-page: 154 year: 2018 end-page: 158 publication-title: Nat. Photonics – volume: 209 start-page: 340 year: 2012 end-page: 346 publication-title: Phys. Status Solidi A – volume: 139 start-page: 14792 year: 2017 end-page: 14799 publication-title: J. Am. Chem. Soc. – volume: 7 start-page: 479 year: 2013 publication-title: Nat. Photonics – volume: 55 128 start-page: 203 211 year: 2016 2016 end-page: 207 215 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 60 start-page: 583 year: 2017 end-page: 590 publication-title: Sci. China Chem. – volume: 41 start-page: 3297 year: 2012 end-page: 3317 publication-title: Chem. Soc. Rev. – ident: e_1_2_2_7_2 doi: 10.1002/anie.201003015 – ident: e_1_2_2_23_2 doi: 10.1002/anie.201601516 – ident: e_1_2_2_32_1 – ident: e_1_2_2_77_1 – ident: e_1_2_2_22_2 doi: 10.1002/anie.201604508 – ident: e_1_2_2_64_1 doi: 10.1038/ncomms9646 – ident: e_1_2_2_63_1 doi: 10.1002/adma.201201493 – ident: e_1_2_2_19_2 doi: 10.1021/acs.chemrev.6b00419 – ident: e_1_2_2_62_1 doi: 10.1002/ejic.200400114 – ident: e_1_2_2_26_2 doi: 10.1021/ja204214t – ident: e_1_2_2_46_2 doi: 10.1039/c2cc33279e – ident: e_1_2_2_66_2 doi: 10.1021/jp0443355 – ident: e_1_2_2_40_3 doi: 10.1002/ange.200701925 – ident: e_1_2_2_43_2 doi: 10.1021/ja0587594 – ident: e_1_2_2_21_2 doi: 10.1002/anie.201510503 – ident: e_1_2_2_60_2 doi: 10.1039/C4NR03456B – ident: e_1_2_2_53_2 doi: 10.1021/jacs.7b08710 – ident: e_1_2_2_18_2 doi: 10.1021/acs.chemrev.6b00036 – ident: e_1_2_2_31_2 doi: 10.1039/c0cp02110e – ident: e_1_2_2_29_2 doi: 10.1002/adma.200601500 – ident: e_1_2_2_68_1 – ident: e_1_2_2_48_1 doi: 10.1021/acs.chemrev.7b00425 – ident: e_1_2_2_37_2 doi: 10.1038/nphoton.2013.82 – ident: e_1_2_2_76_2 doi: 10.1002/cphc.200900112 – ident: e_1_2_2_7_3 doi: 10.1002/ange.201003015 – ident: e_1_2_2_23_3 doi: 10.1002/ange.201601516 – ident: e_1_2_2_79_2 doi: 10.1002/pssa.201127451 – ident: e_1_2_2_38_2 doi: 10.1021/acs.accounts.6b00432 – ident: e_1_2_2_47_2 doi: 10.1021/ja036736o – ident: e_1_2_2_36_1 – ident: e_1_2_2_2_2 doi: 10.1038/nmat4474 – ident: e_1_2_2_22_3 doi: 10.1002/ange.201604508 – ident: e_1_2_2_14_1 – ident: e_1_2_2_54_2 doi: 10.1038/nchem.2383 – ident: e_1_2_2_27_2 doi: 10.1021/jacs.7b12519 – ident: e_1_2_2_58_1 – ident: e_1_2_2_3_2 doi: 10.1039/c2cs15267c – ident: e_1_2_2_59_2 doi: 10.1021/nl8034465 – ident: e_1_2_2_12_2 doi: 10.1002/adma.201404700 – ident: e_1_2_2_21_3 doi: 10.1002/ange.201510503 – ident: e_1_2_2_44_1 – ident: e_1_2_2_6_1 – ident: e_1_2_2_30_2 doi: 10.1002/adma.200802932 – ident: e_1_2_2_69_2 doi: 10.1038/374517a0 – ident: e_1_2_2_39_1 – ident: e_1_2_2_61_1 doi: 10.1021/ja034732d – ident: e_1_2_2_71_1 – ident: e_1_2_2_49_1 – ident: e_1_2_2_74_1 – ident: e_1_2_2_1_1 – ident: e_1_2_2_33_2 doi: 10.1021/acs.chemrev.6b00807 – ident: e_1_2_2_25_2 doi: 10.1021/ja504730j – ident: e_1_2_2_75_2 doi: 10.1103/PhysRevB.78.045210 – ident: e_1_2_2_9_1 doi: 10.1038/s41566-018-0108-5 – ident: e_1_2_2_15_2 doi: 10.1038/nchem.1145 – ident: e_1_2_2_55_2 doi: 10.1038/ncomms4372 – ident: e_1_2_2_67_2 doi: 10.1021/jp077542o – ident: e_1_2_2_8_2 doi: 10.1002/anie.200902777 – ident: e_1_2_2_17_2 doi: 10.1039/B802262N – ident: e_1_2_2_65_1 – ident: e_1_2_2_20_1 – ident: e_1_2_2_50_2 doi: 10.1021/ar500192v – ident: e_1_2_2_52_2 doi: 10.1002/adma.201604100 – ident: e_1_2_2_11_2 doi: 10.1039/c3cs60102a – ident: e_1_2_2_5_2 doi: 10.1016/j.ccr.2016.03.016 – ident: e_1_2_2_41_3 doi: 10.1002/ange.201710487 – ident: e_1_2_2_70_2 doi: 10.1126/science.285.5426.400 – ident: e_1_2_2_35_2 doi: 10.1002/anie.201306787 – ident: e_1_2_2_73_2 doi: 10.1021/acsphotonics.7b01177 – ident: e_1_2_2_56_2 doi: 10.1002/anie.201712104 – ident: e_1_2_2_42_2 doi: 10.1002/cphc.200500170 – ident: e_1_2_2_51_2 doi: 10.1002/anie.201508210 – ident: e_1_2_2_34_2 doi: 10.1039/C3CS60406C – ident: e_1_2_2_57_1 doi: 10.1021/acs.chemrev.5b00263 – ident: e_1_2_2_4_2 doi: 10.1007/s11426-016-0341-5 – ident: e_1_2_2_13_2 doi: 10.1039/C7CC06203F – ident: e_1_2_2_28_2 doi: 10.1021/ja0621905 – ident: e_1_2_2_24_2 doi: 10.1002/adma.201701905 – ident: e_1_2_2_40_2 doi: 10.1002/anie.200701925 – ident: e_1_2_2_72_2 doi: 10.1016/j.chempr.2017.05.002 – ident: e_1_2_2_8_3 doi: 10.1002/ange.200902777 – ident: e_1_2_2_41_2 doi: 10.1002/anie.201710487 – ident: e_1_2_2_45_2 doi: 10.1021/ja903317w – ident: e_1_2_2_56_3 doi: 10.1002/ange.201712104 – ident: e_1_2_2_51_3 doi: 10.1002/ange.201508210 – ident: e_1_2_2_10_1 – ident: e_1_2_2_35_3 doi: 10.1002/ange.201306787 – ident: e_1_2_2_16_2 doi: 10.1021/acs.chemrev.6b00002 – ident: e_1_2_2_78_2 doi: 10.1103/PhysRevLett.96.017404 |
SSID | ssj0028806 |
Score | 2.436785 |
Snippet | Thermal‐responsive phosphorescent nanotubes have been fabricated from the co‐assembly of two neutral iridium complexes, which behave as the antenna... Thermal-responsive phosphorescent nanotubes have been fabricated from the co-assembly of two neutral iridium complexes, which behave as the antenna... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 7820 |
SubjectTerms | Chromophores Color Crystal structure Crystallinity Emission Emissions Energy harvesting Energy transfer exciton migration Iridium Iridium compounds luminescence nanostructures Nanotechnology Nanotubes Phosphorescence Superstructures Temperature effects Thermochromism Tubes |
Title | Thermal‐Responsive Phosphorescent Nanoamplifiers Assembled from Two Metallophosphors |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.201803546 https://www.ncbi.nlm.nih.gov/pubmed/29665184 https://www.proquest.com/docview/2057167735 https://www.proquest.com/docview/2027066715 |
Volume | 57 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA7iRS--H-uLCoKnaJukSfe4iKKCIrIr3kqaJgiu22UfCp78Cf5Gf4kzfekqIuitJRPaZjLJN83MN4TsRZFNlU0FDYTmVEQsoABiHeUcjElJp3WeSHtxKU874vw2vP2UxV_wQ9Q_3NAy8vUaDVwnw8MP0lDMwMbQrMjnoUDObQzYQlR0XfNHMZicRXoR5xSr0FesjT47nOw-uSt9g5qTyDXfek7mia5euog4uT8Yj5ID8_yFz_E_X7VA5kpc6rWKibRIpmxvicwcVeXglskNTChYxLtvL6_XZVzto_Wu7rJh_y4bFKRQHqzVmcYYdYcVtj08UX5Iujb1MIvFaz9l3oUd4VF_v-w3XCGdk-P20SktizJQI5SUVImkaVQaSFC9ZokMDAAEGWiAakLqpuUycgBywtSXtimETSSSBBoT-syAcxTxVTLdy3p2nXjcGaGZYsZyLSLnmr51hnPkt9EuMaxBaKWU2JSM5Vg4oxsXXMssxtGK69FqkP1avl9wdfwouVXpOC5tdgitITiPSvGwQXbrZhhlPELRPZuNUYYpDAsOQGatmBv1oxh4jiE4zA3Ccg3_8g5x6_LsuL7b-EunTTKL1xi5xsItMj0ajO02YKRRspPbwTvfYAlW |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fb9MwED-x8bC9jP9QKBCkSXvyltiOnT5WY1MHazVN3bS3yHFsVaI01doOiSc-Ap-RT8Jd_qGCJqTtMfFZcXx39p199zuA3SRxuXa5ZJE0gsmERwyNWM-EQGXSyhtTJtIOR2pwIT9dxU00IeXCVPgQ7YEbaUa5XpOC04H0wR_UUErBptisJBSxVBvwkMp6E3z-x_MWQYqjeFYJRkIwqkPf4DaG_GC9__q-9I-xuW67lpvP8SPImmFXMSdf9lfLbN9-_wvR8V7_9Rh2atM06Fey9AQeuNlT2DpsKsI9g0uUKVzHp79-_DyvQ2tvXHA2KRbzSXFd4UIFuFwXhsLUPRXZDuhS-Ws2dXlAiSzB-FsRDN2Sbvvndb_Fc7g4PhofDlhdl4FZqZViWmY9q_NIIfcNz1Rk0UZQkUFrTSrTc0IlHu2cOA-V60npMkU4gdbGIbfoHyXiBWzOipl7BYHwVhquuXXCyMT7Xui8FYIgbozPLO8Aa7iS2hq0nGpnTNMKbpmnNFtpO1sd2Gvp5xVcx62U3YbJaa22C2yN0X_UWsQd-NA24yzTLYqZuWJFNFxTZHCENC8r4Wg_xdF5jNFn7gAvWfyfMaT90clR-_T6Lp3ew9ZgPDxNT09Gn9_ANr2nQDYed2Fzeb1yb9FkWmbvSqX4DXJRDXI |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTtwwEB5RkNpeCv2hbIGSSpV6MiS2YydHBKyglBVCUHGLHMcWEstmxe5Sqac-Qp-xT9KZ_LVbVCG1x8RjJfF47G_imW8A3ieJK7QrJIukEUwmPGIIYj0TAo1JK29MlUh7MlCHF_LjZXz5WxZ_zQ_R_XAjy6jWazLwceF3fpGGUgY2hWYloYilegRLUoUpFW_YP-sIpDjOzjq_SAhGZehb2saQ78z3n9-W7mHNeeha7T39ZTDtW9chJ9fbs2m-bb_-Qej4P5-1As8aYBrs1jPpOSy40Qt4stfWg3sJn3FG4So-_PHt-1kTWHvngtOrcjK-Km9rVqgAF-vSUJC6pxLbAR0p3-RDVwSUxhKcfymDEzels_5x02_yCi76B-d7h6ypysCs1EoxLfPU6iJSqHvDcxVZRAgqMojVpDKpEyrxiHLiIlQuldLlilgCrY1DbtE7SsQqLI7KkVuDQHgrDdfcOmFk4n0aOm-FIIIb43PLe8BapWS2oSynyhnDrCZb5hmNVtaNVg8-dPLjmqzjr5IbrY6zxmgn2Bqj96i1iHvwrmvGUaYzFDNy5YxkuKa44AhlXtdzo3sUR9cxRo-5B7zS8APvkO0Ojg66qzf_0mkLHp_u97NPR4PjdXhKtymKjccbsDi9nblNxEvT_G1lEj8BPHIMIQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Thermal%E2%80%90Responsive+Phosphorescent+Nanoamplifiers+Assembled+from+Two+Metallophosphors&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Meng%E2%80%90Jia+Sun&rft.au=Yu%E2%80%90Wu+Zhong&rft.au=Yao%2C+Jiannian&rft.date=2018-06-25&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=57&rft.issue=26&rft.spage=7820&rft.epage=7825&rft_id=info:doi/10.1002%2Fanie.201803546&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon |