miR444a has multiple functions in the rice nitrate‐signaling pathway

Nitrate (NO3−) is a key signaling molecule in plant metabolism and development, in addition to its role as a nutrient. It has been shown previously in Arabidopsis that ANR1, a MADS‐box transcription factor, is a major component in the NO3−‐signaling pathway that triggers lateral root growth and that...

Full description

Saved in:
Bibliographic Details
Published inThe Plant journal : for cell and molecular biology Vol. 78; no. 1; pp. 44 - 55
Main Authors Yan, Yongsheng, Wang, Huacai, Hamera, Sadia, Chen, Xiaoying, Fang, Rongxiang
Format Journal Article
LanguageEnglish
Published England Blackwell Publishing Ltd 01.04.2014
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Nitrate (NO3−) is a key signaling molecule in plant metabolism and development, in addition to its role as a nutrient. It has been shown previously in Arabidopsis that ANR1, a MADS‐box transcription factor, is a major component in the NO3−‐signaling pathway that triggers lateral root growth and that miR444, which is specific to monocots, targets four genes that are homologous to ANR1 in rice. Here, we show that miR444a plays multiple roles in the rice NO3−‐signaling pathway – not only in root development, but also involving nitrate accumulation and even Pᵢ‐starvation responses. miR444a overexpression resulted in reduced rice lateral root elongation, but promoted rice primary and adventitious root growth, in a nitrate‐dependent manner. In addition, overexpression of miR444a improved nitrate accumulation and expression of nitrate transporter genes under high nitrate concentration conditions, but reduced the remobilization of nitrate from old leaves to young leaves thus affecting the plant's ability to adapt to nitrogen‐limitating conditions. Intriguingly, we found that Pᵢ starvation strongly induced miR444 accumulation in rice roots and that overexpression of miR444a altered Pᵢ‐starvation‐induced root architecture and enhanced Pᵢ accumulation and expression of three Pᵢ transporter genes. We further provide evidence that miR444a is involved in the interaction between the NO3−‐signaling and Pᵢ‐signaling pathways in rice. Taken together, our observations demonstrated that miR444a plays multiple roles in the rice NO3−‐signaling pathway in nitrate‐dependent root growth, nitrate accumulation and phosphate‐starvation responses.
AbstractList Summary Nitrate (NO3−) is a key signaling molecule in plant metabolism and development, in addition to its role as a nutrient. It has been shown previously in Arabidopsis that ANR1, a MADS‐box transcription factor, is a major component in the NO3−‐signaling pathway that triggers lateral root growth and that miR444, which is specific to monocots, targets four genes that are homologous to ANR1 in rice. Here, we show that miR444a plays multiple roles in the rice NO3−‐signaling pathway – not only in root development, but also involving nitrate accumulation and even Pi‐starvation responses. miR444a overexpression resulted in reduced rice lateral root elongation, but promoted rice primary and adventitious root growth, in a nitrate‐dependent manner. In addition, overexpression of miR444a improved nitrate accumulation and expression of nitrate transporter genes under high nitrate concentration conditions, but reduced the remobilization of nitrate from old leaves to young leaves thus affecting the plant's ability to adapt to nitrogen‐limitating conditions. Intriguingly, we found that Pi starvation strongly induced miR444 accumulation in rice roots and that overexpression of miR444a altered Pi‐starvation‐induced root architecture and enhanced Pi accumulation and expression of three Pi transporter genes. We further provide evidence that miR444a is involved in the interaction between the NO3−‐signaling and Pi‐signaling pathways in rice. Taken together, our observations demonstrated that miR444a plays multiple roles in the rice NO3−‐signaling pathway in nitrate‐dependent root growth, nitrate accumulation and phosphate‐starvation responses.
Summary Nitrate (NO 3 -) is a key signaling molecule in plant metabolism and development, in addition to its role as a nutrient. It has been shown previously in Arabidopsis that ANR1, a MADS-box transcription factor, is a major component in the NO 3 --signaling pathway that triggers lateral root growth and that miR444, which is specific to monocots, targets four genes that are homologous to ANR1 in rice. Here, we show that miR444a plays multiple roles in the rice NO 3 --signaling pathway - not only in root development, but also involving nitrate accumulation and even Pi-starvation responses. miR444a overexpression resulted in reduced rice lateral root elongation, but promoted rice primary and adventitious root growth, in a nitrate-dependent manner. In addition, overexpression of miR444a improved nitrate accumulation and expression of nitrate transporter genes under high nitrate concentration conditions, but reduced the remobilization of nitrate from old leaves to young leaves thus affecting the plant's ability to adapt to nitrogen-limitating conditions. Intriguingly, we found that Pi starvation strongly induced miR444 accumulation in rice roots and that overexpression of miR444a altered Pi-starvation-induced root architecture and enhanced Pi accumulation and expression of three Pi transporter genes. We further provide evidence that miR444a is involved in the interaction between the NO 3 --signaling and Pi-signaling pathways in rice. Taken together, our observations demonstrated that miR444a plays multiple roles in the rice NO 3 --signaling pathway in nitrate-dependent root growth, nitrate accumulation and phosphate-starvation responses. [PUBLICATION ABSTRACT]
Nitrate (NO3−) is a key signaling molecule in plant metabolism and development, in addition to its role as a nutrient. It has been shown previously in Arabidopsis that ANR1, a MADS‐box transcription factor, is a major component in the NO3−‐signaling pathway that triggers lateral root growth and that miR444, which is specific to monocots, targets four genes that are homologous to ANR1 in rice. Here, we show that miR444a plays multiple roles in the rice NO3−‐signaling pathway – not only in root development, but also involving nitrate accumulation and even Pᵢ‐starvation responses. miR444a overexpression resulted in reduced rice lateral root elongation, but promoted rice primary and adventitious root growth, in a nitrate‐dependent manner. In addition, overexpression of miR444a improved nitrate accumulation and expression of nitrate transporter genes under high nitrate concentration conditions, but reduced the remobilization of nitrate from old leaves to young leaves thus affecting the plant's ability to adapt to nitrogen‐limitating conditions. Intriguingly, we found that Pᵢ starvation strongly induced miR444 accumulation in rice roots and that overexpression of miR444a altered Pᵢ‐starvation‐induced root architecture and enhanced Pᵢ accumulation and expression of three Pᵢ transporter genes. We further provide evidence that miR444a is involved in the interaction between the NO3−‐signaling and Pᵢ‐signaling pathways in rice. Taken together, our observations demonstrated that miR444a plays multiple roles in the rice NO3−‐signaling pathway in nitrate‐dependent root growth, nitrate accumulation and phosphate‐starvation responses.
Nitrate (NO3-) is a key signaling molecule in plant metabolism and development, in addition to its role as a nutrient. It has been shown previously in Arabidopsis that ANR1, a MADS-box transcription factor, is a major component in the NO3--signaling pathway that triggers lateral root growth and that miR444, which is specific to monocots, targets four genes that are homologous to ANR1 in rice. Here, we show that miR444a plays multiple roles in the rice NO3--signaling pathway - not only in root development, but also involving nitrate accumulation and even Pi -starvation responses. miR444a overexpression resulted in reduced rice lateral root elongation, but promoted rice primary and adventitious root growth, in a nitrate-dependent manner. In addition, overexpression of miR444a improved nitrate accumulation and expression of nitrate transporter genes under high nitrate concentration conditions, but reduced the remobilization of nitrate from old leaves to young leaves thus affecting the plant's ability to adapt to nitrogen-limitating conditions. Intriguingly, we found that Pi starvation strongly induced miR444 accumulation in rice roots and that overexpression of miR444a altered Pi -starvation-induced root architecture and enhanced Pi accumulation and expression of three Pi transporter genes. We further provide evidence that miR444a is involved in the interaction between the NO3--signaling and Pi -signaling pathways in rice. Taken together, our observations demonstrated that miR444a plays multiple roles in the rice NO3--signaling pathway in nitrate-dependent root growth, nitrate accumulation and phosphate-starvation responses.
Nitrate (NO3-) is a key signaling molecule in plant metabolism and development, in addition to its role as a nutrient. It has been shown previously in Arabidopsis that ANR1, a MADS-box transcription factor, is a major component in the NO3--signaling pathway that triggers lateral root growth and that miR444, which is specific to monocots, targets four genes that are homologous to ANR1 in rice. Here, we show that miR444a plays multiple roles in the rice NO3--signaling pathway - not only in root development, but also involving nitrate accumulation and even Pi -starvation responses. miR444a overexpression resulted in reduced rice lateral root elongation, but promoted rice primary and adventitious root growth, in a nitrate-dependent manner. In addition, overexpression of miR444a improved nitrate accumulation and expression of nitrate transporter genes under high nitrate concentration conditions, but reduced the remobilization of nitrate from old leaves to young leaves thus affecting the plant's ability to adapt to nitrogen-limitating conditions. Intriguingly, we found that Pi starvation strongly induced miR444 accumulation in rice roots and that overexpression of miR444a altered Pi -starvation-induced root architecture and enhanced Pi accumulation and expression of three Pi transporter genes. We further provide evidence that miR444a is involved in the interaction between the NO3--signaling and Pi -signaling pathways in rice. Taken together, our observations demonstrated that miR444a plays multiple roles in the rice NO3--signaling pathway in nitrate-dependent root growth, nitrate accumulation and phosphate-starvation responses.Nitrate (NO3-) is a key signaling molecule in plant metabolism and development, in addition to its role as a nutrient. It has been shown previously in Arabidopsis that ANR1, a MADS-box transcription factor, is a major component in the NO3--signaling pathway that triggers lateral root growth and that miR444, which is specific to monocots, targets four genes that are homologous to ANR1 in rice. Here, we show that miR444a plays multiple roles in the rice NO3--signaling pathway - not only in root development, but also involving nitrate accumulation and even Pi -starvation responses. miR444a overexpression resulted in reduced rice lateral root elongation, but promoted rice primary and adventitious root growth, in a nitrate-dependent manner. In addition, overexpression of miR444a improved nitrate accumulation and expression of nitrate transporter genes under high nitrate concentration conditions, but reduced the remobilization of nitrate from old leaves to young leaves thus affecting the plant's ability to adapt to nitrogen-limitating conditions. Intriguingly, we found that Pi starvation strongly induced miR444 accumulation in rice roots and that overexpression of miR444a altered Pi -starvation-induced root architecture and enhanced Pi accumulation and expression of three Pi transporter genes. We further provide evidence that miR444a is involved in the interaction between the NO3--signaling and Pi -signaling pathways in rice. Taken together, our observations demonstrated that miR444a plays multiple roles in the rice NO3--signaling pathway in nitrate-dependent root growth, nitrate accumulation and phosphate-starvation responses.
Nitrate ( ) is a key signaling molecule in plant metabolism and development, in addition to its role as a nutrient. It has been shown previously in Arabidopsis that ANR 1, a MADS ‐box transcription factor, is a major component in the ‐signaling pathway that triggers lateral root growth and that miR444, which is specific to monocots, targets four genes that are homologous to ANR 1 in rice. Here, we show that miR444a plays multiple roles in the rice ‐signaling pathway – not only in root development, but also involving nitrate accumulation and even P i ‐starvation responses. miR444a overexpression resulted in reduced rice lateral root elongation, but promoted rice primary and adventitious root growth, in a nitrate‐dependent manner. In addition, overexpression of miR444a improved nitrate accumulation and expression of nitrate transporter genes under high nitrate concentration conditions, but reduced the remobilization of nitrate from old leaves to young leaves thus affecting the plant's ability to adapt to nitrogen‐limitating conditions. Intriguingly, we found that P i starvation strongly induced miR444 accumulation in rice roots and that overexpression of miR444a altered P i ‐starvation‐induced root architecture and enhanced P i accumulation and expression of three P i transporter genes. We further provide evidence that miR444a is involved in the interaction between the ‐signaling and P i ‐signaling pathways in rice. Taken together, our observations demonstrated that miR444a plays multiple roles in the rice ‐signaling pathway in nitrate‐dependent root growth, nitrate accumulation and phosphate‐starvation responses.
Author Hamera, Sadia
Wang, Huacai
Yan, Yongsheng
Chen, Xiaoying
Fang, Rongxiang
Author_xml – sequence: 1
  fullname: Yan, Yongsheng
– sequence: 2
  fullname: Wang, Huacai
– sequence: 3
  fullname: Hamera, Sadia
– sequence: 4
  fullname: Chen, Xiaoying
– sequence: 5
  fullname: Fang, Rongxiang
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24460537$$D View this record in MEDLINE/PubMed
BookMark eNqFkc1u1DAUhS3Uik4LC14AIrGhi2l9479kiSpKqSqBoJXYWY7nesajxAl2omp2PEKfsU-Ch2lZVALu5m6-c3TvOYdkL_QBCXkF9ATynI7D-gRKzuUzMgMmxZwB-75HZrSWdK44lAfkMKU1paCY5M_JwZalgqkZOe_8V865KVYmFd3Ujn5osXBTsKPvQyp8KMYVFtFbLIIfoxnx_udd8stgWh-WxWDG1a3ZvCD7zrQJXz7sI3Jz_uH67GJ-9fnjp7P3V3PLlZT5lpoLoww2FRq3WKgGKiUaV_NKGcotRSYtVLJBpRphGAPh0LmSN3ahECg7Iu92vkPsf0yYRt35ZLFtTcB-ShrqPJyDqv6PCqAKqBRlRt8-Qdf9FPOHO4ryUsDW8PUDNTUdLvQQfWfiRj-GmYHjHWBjn1JE9wcBqrdF6VyU_l1UZk-fsNaPZpt5zti3_1Lc-hY3f7fW118uHxVvdgpnem2W0Sd9862kwCmlqpZSsl8_ZKxc
CitedBy_id crossref_primary_10_1093_jxb_eraa033
crossref_primary_10_1111_tpj_16361
crossref_primary_10_3390_ijms241411364
crossref_primary_10_1016_j_jplph_2021_153591
crossref_primary_10_3390_plants5040039
crossref_primary_10_1038_srep18192
crossref_primary_10_1186_s12284_019_0364_0
crossref_primary_10_1016_j_pbi_2017_05_010
crossref_primary_10_1371_journal_pone_0105597
crossref_primary_10_3389_fpls_2020_574246
crossref_primary_10_1016_j_stress_2024_100674
crossref_primary_10_1186_s12864_018_5104_0
crossref_primary_10_1007_s11738_015_2022_5
crossref_primary_10_3389_fpls_2017_00485
crossref_primary_10_1007_s11738_017_2530_6
crossref_primary_10_1186_s12864_018_4953_x
crossref_primary_10_3389_fpls_2021_657629
crossref_primary_10_1016_j_copbio_2022_102682
crossref_primary_10_1016_j_scienta_2014_12_016
crossref_primary_10_1016_j_envexpbot_2022_105040
crossref_primary_10_1016_j_jgg_2015_12_002
crossref_primary_10_1016_j_plaphy_2023_107823
crossref_primary_10_1371_journal_pone_0224962
crossref_primary_10_1016_j_jplph_2019_01_011
crossref_primary_10_1111_jipb_12559
crossref_primary_10_1186_s12284_021_00455_2
crossref_primary_10_3389_fpls_2017_00928
crossref_primary_10_3389_fpls_2015_00629
crossref_primary_10_1186_s12864_017_3999_5
crossref_primary_10_1111_ppl_14018
crossref_primary_10_1016_j_fmre_2023_02_020
crossref_primary_10_1186_s12864_018_4897_1
crossref_primary_10_1007_s11103_017_0638_0
crossref_primary_10_1016_j_cj_2020_07_005
crossref_primary_10_1093_aob_mcad155
crossref_primary_10_1186_s12870_022_03723_5
crossref_primary_10_1016_j_plaphy_2023_107933
crossref_primary_10_3390_f15071191
crossref_primary_10_3389_fpls_2024_1418119
crossref_primary_10_3390_genes13091632
crossref_primary_10_1016_j_ijbiomac_2018_06_009
crossref_primary_10_1038_s41598_020_72642_y
crossref_primary_10_3390_ijms232012339
crossref_primary_10_1016_j_plgene_2021_100312
crossref_primary_10_1186_s12870_018_1462_7
crossref_primary_10_1038_nplants_2017_77
crossref_primary_10_1016_j_pbi_2015_08_002
crossref_primary_10_1016_j_envexpbot_2022_105146
crossref_primary_10_3390_agronomy12030582
crossref_primary_10_1016_j_gpb_2019_11_007
crossref_primary_10_1111_ppl_12409
crossref_primary_10_1016_j_pbi_2014_06_004
crossref_primary_10_3389_fgene_2020_581993
crossref_primary_10_1007_s00122_019_03527_6
crossref_primary_10_1270_jsbbs_20102
crossref_primary_10_1016_j_xplc_2023_100642
crossref_primary_10_1093_jxb_erz536
crossref_primary_10_3390_ijms21218180
crossref_primary_10_1146_annurev_arplant_050718_100334
crossref_primary_10_1007_s00299_018_2248_y
crossref_primary_10_1371_journal_pone_0300159
crossref_primary_10_1093_jxb_eraa116
crossref_primary_10_3390_ijms241311158
crossref_primary_10_3390_genes15081072
crossref_primary_10_1016_j_eja_2023_126857
crossref_primary_10_1016_j_plantsci_2018_09_004
crossref_primary_10_1016_j_plaphy_2020_02_004
crossref_primary_10_1016_S2095_3119_21_63818_2
crossref_primary_10_1186_s12864_016_2838_4
crossref_primary_10_1016_j_plantsci_2024_111993
crossref_primary_10_1016_j_tplants_2019_06_006
crossref_primary_10_1016_j_xplc_2022_100353
crossref_primary_10_3390_genes8100274
crossref_primary_10_1093_jxb_eru411
crossref_primary_10_3390_genes9090459
crossref_primary_10_1093_jxb_erz148
crossref_primary_10_1093_jxb_erac083
crossref_primary_10_1007_s10142_016_0525_9
crossref_primary_10_1016_j_pbi_2017_06_007
crossref_primary_10_1016_j_pbi_2017_06_008
crossref_primary_10_1016_j_plantsci_2017_09_017
crossref_primary_10_1371_journal_pone_0135196
crossref_primary_10_3389_fpls_2021_721253
crossref_primary_10_3389_fpls_2022_950796
crossref_primary_10_1093_pcp_pcy060
crossref_primary_10_3390_plants14010136
crossref_primary_10_3390_ijms22147687
crossref_primary_10_1016_j_jbiotec_2020_10_001
crossref_primary_10_1111_tpj_14550
crossref_primary_10_3390_ijms232314755
crossref_primary_10_1016_j_plantsci_2020_110608
crossref_primary_10_3390_ijms23052562
crossref_primary_10_1007_s40502_022_00653_0
crossref_primary_10_3390_ijms222011205
crossref_primary_10_3389_fpls_2014_00586
crossref_primary_10_1007_s44154_024_00181_x
crossref_primary_10_1016_j_cpb_2024_100426
crossref_primary_10_3390_ijms241914406
crossref_primary_10_3390_ijms24043143
crossref_primary_10_3390_plants12142725
crossref_primary_10_1093_jxb_erw405
crossref_primary_10_3390_plants10102133
crossref_primary_10_1007_s12010_015_1891_9
crossref_primary_10_1093_treephys_tpaa071
crossref_primary_10_1111_tpj_14007
crossref_primary_10_1093_pcp_pcz061
crossref_primary_10_1007_s10142_016_0487_y
crossref_primary_10_3390_genes11060633
crossref_primary_10_1134_S1021443720040147
crossref_primary_10_1111_tpj_15188
crossref_primary_10_1016_j_rsci_2018_12_007
crossref_primary_10_3389_fpls_2021_656696
crossref_primary_10_1155_2021_8560323
crossref_primary_10_1007_s00299_021_02682_9
crossref_primary_10_3390_ijms24087058
crossref_primary_10_1007_s40502_017_0327_7
crossref_primary_10_3389_fpls_2018_00659
crossref_primary_10_1186_s42483_019_0040_8
crossref_primary_10_3390_ijms24097926
crossref_primary_10_1016_j_plaphy_2021_06_041
crossref_primary_10_1016_j_stress_2024_100347
crossref_primary_10_17097_ataunizfd_655207
crossref_primary_10_3390_ijms20194953
crossref_primary_10_1007_s11103_018_0711_3
crossref_primary_10_3390_genes12060850
Cites_doi 10.1073/pnas.0500778102
10.1104/pp.111.175265
10.1105/tpc.105.031682
10.1073/pnas.0708743105
10.1104/pp.110.170209
10.1105/tpc.111.089045
10.1111/j.1744-7909.2008.00709.x
10.1016/S1369-5266(03)00035-9
10.1104/pp.109.139139
10.1073/pnas.0709559105
10.1073/pnas.0909571107
10.1146/annurev-arplant-042110-103849
10.1111/j.1365-313X.2008.03690.x
10.1105/tpc.109.070938
10.1111/j.1365-313X.2010.04170.x
10.1104/pp.106.079707
10.1046/j.1365-313X.1994.6020271.x
10.1126/science.279.5349.407
10.1111/j.1365-313X.2011.04547.x
10.1016/S0021-9258(18)71178-2
10.1111/j.1365-313X.2010.04467.x
10.1105/tpc.109.067041
10.1111/j.1365-313X.2008.03695.x
10.1093/pcp/pcs050
10.1023/A:1026463307043
10.1146/annurev.arplant.043008.092111
10.1104/pp.107.111443
10.1111/j.1365-313X.2007.03363.x
10.1101/gad.204401
10.1016/j.cell.2009.07.004
10.1146/annurev.arplant.57.032905.105218
10.1093/pcp/pcg156
10.1080/00103627509366547
10.1105/tpc.105.038943
10.1371/journal.pgen.1002021
10.1186/1471-2164-8-242
10.1111/j.1469-8137.2011.03647.x
10.1016/j.pbi.2009.12.003
10.1016/j.pbi.2010.08.005
10.1111/j.1365-313X.2010.04216.x
10.1111/j.1744-7909.2007.00499.x
10.1007/s00425-005-0020-3
10.4161/psb.6.7.15377
10.1111/j.1365-313X.2008.03685.x
10.1104/pp.112.204420
10.1016/j.cell.2009.01.046
10.1111/j.1365-313X.2010.04187.x
ContentType Journal Article
Copyright 2014 The Authors The Plant Journal © 2014 John Wiley & Sons Ltd
2014 The Authors The Plant Journal © 2014 John Wiley & Sons Ltd.
Copyright © 2014 John Wiley & Sons Ltd and the Society for Experimental Biology
Copyright_xml – notice: 2014 The Authors The Plant Journal © 2014 John Wiley & Sons Ltd
– notice: 2014 The Authors The Plant Journal © 2014 John Wiley & Sons Ltd.
– notice: Copyright © 2014 John Wiley & Sons Ltd and the Society for Experimental Biology
DBID FBQ
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7QP
7QR
7TM
8FD
FR3
M7N
P64
RC3
7X8
7S9
L.6
DOI 10.1111/tpj.12446
DatabaseName AGRIS
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Nucleic Acids Abstracts
Technology Research Database
Engineering Research Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Genetics Abstracts
Biotechnology Research Abstracts
Technology Research Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Nucleic Acids Abstracts
Chemoreception Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
Genetics Abstracts

MEDLINE
AGRICOLA
MEDLINE - Academic
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Botany
EISSN 1365-313X
EndPage 55
ExternalDocumentID 3255974851
24460537
10_1111_tpj_12446
TPJ12446
US201400079666
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: National Key Basic Research and Development Plan
  funderid: 2013CBA01403
– fundername: National Natural Science Foundation of China
  funderid: 31101424
GroupedDBID ---
-DZ
.3N
.GA
.Y3
05W
0R~
10A
123
1OC
24P
29O
2WC
31~
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABHUG
ABJNI
ABPTK
ABPVW
ABWRO
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXME
ACXQS
ADAWD
ADBBV
ADDAD
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFRAH
AFVGU
AFZJQ
AGJLS
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BAWUL
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
C45
CAG
COF
CS3
D-E
D-F
DCZOG
DIK
DPXWK
DR2
DRFUL
DRSTM
DU5
E3Z
EBS
ECGQY
EJD
ESX
F00
F01
F04
F5P
FBQ
FIJ
G-S
G.N
GODZA
H.T
H.X
HF~
HZI
HZ~
IHE
IPNFZ
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OK1
OVD
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
R.K
ROL
RX1
SUPJJ
TEORI
TR2
UB1
W8V
W99
WBKPD
WH7
WIH
WIK
WIN
WNSPC
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
YFH
YUY
ZZTAW
~IA
~KM
~WT
AAHBH
AAHQN
AAMNL
AAYCA
AFWVQ
AHBTC
AITYG
ALVPJ
HGLYW
OIG
AAYXX
AEYWJ
AGHNM
AGYGG
CITATION
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7QP
7QR
7TM
8FD
FR3
M7N
P64
RC3
7X8
7S9
L.6
ID FETCH-LOGICAL-c4766-74945a7aeb8eafdd7b1875bf9487a04c0e36c186be77b5a3315feff24bcd7e103
IEDL.DBID DR2
ISSN 0960-7412
1365-313X
IngestDate Fri Jul 11 18:34:05 EDT 2025
Thu Jul 10 22:22:55 EDT 2025
Fri Jul 25 10:48:13 EDT 2025
Mon Jul 21 05:55:11 EDT 2025
Tue Jul 01 03:57:16 EDT 2025
Thu Apr 24 22:48:41 EDT 2025
Wed Jan 22 16:38:52 EST 2025
Wed Dec 27 18:58:54 EST 2023
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Pi-starvation response
miR444a
rice
nitrate signal
root
Language English
License 2014 The Authors The Plant Journal © 2014 John Wiley & Sons Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4766-74945a7aeb8eafdd7b1875bf9487a04c0e36c186be77b5a3315feff24bcd7e103
Notes http://dx.doi.org/10.1111/tpj.12446
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 24460537
PQID 1510042518
PQPubID 31702
PageCount 12
ParticipantIDs proquest_miscellaneous_1999944178
proquest_miscellaneous_1510710652
proquest_journals_1510042518
pubmed_primary_24460537
crossref_primary_10_1111_tpj_12446
crossref_citationtrail_10_1111_tpj_12446
wiley_primary_10_1111_tpj_12446_TPJ12446
fao_agris_US201400079666
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate April 2014
PublicationDateYYYYMMDD 2014-04-01
PublicationDate_xml – month: 04
  year: 2014
  text: April 2014
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: Oxford
PublicationTitle The Plant journal : for cell and molecular biology
PublicationTitleAlternate Plant J
PublicationYear 2014
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References 2009; 21
2010; 13
2009; 20
2010; 107
2006; 57
2009; 60
2011; 62
2012; 160
2006; 18
2008; 105
2009; 150
1998; 279
2011; 190
2008; 53
2008; 146
2008; 50
2011; 6
2011; 156
2012; 53
2011; 7
2010; 62
2009; 138
2009; 57
2005; 222
2000; 226
2005; 102
2003; 6
1957; 211
2007; 8
2006; 141
2011; 66
2011; 65
2001; 15
2011; 23
2005; 17
1975; 6
2003; 44
1994; 6
2007; 49
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_30_1
Moor S. (e_1_2_6_32_1) 1957; 211
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_14_1
e_1_2_6_35_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_17_1
e_1_2_6_18_1
e_1_2_6_39_1
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_16_1
e_1_2_6_37_1
e_1_2_6_42_1
e_1_2_6_43_1
e_1_2_6_21_1
e_1_2_6_20_1
e_1_2_6_41_1
e_1_2_6_40_1
e_1_2_6_9_1
e_1_2_6_8_1
e_1_2_6_5_1
e_1_2_6_4_1
e_1_2_6_7_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_48_1
e_1_2_6_24_1
e_1_2_6_3_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_22_1
e_1_2_6_29_1
e_1_2_6_44_1
e_1_2_6_28_1
e_1_2_6_45_1
e_1_2_6_27_1
e_1_2_6_46_1
e_1_2_6_26_1
e_1_2_6_47_1
References_xml – volume: 21
  start-page: 3421
  year: 2009
  end-page: 3435
  article-title: Rice microRNA effector complexes and targets
  publication-title: Plant Cell
– volume: 65
  start-page: 820
  year: 2011
  end-page: 828
  article-title: Small RNAs from MITE‐derived stem‐loop precursors regulate abscisic acid signaling and abiotic stress responses in rice
  publication-title: Plant J.
– volume: 102
  start-page: 7760
  year: 2005
  end-page: 7765
  article-title: The SUMO E3 ligase SIZ1 controls phosphate deficiency responses
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 8
  start-page: 242
  year: 2007
  article-title: MADS‐box gene family in rice: genome‐wide identification, organization and expression profiling during reproductive development and stress
  publication-title: BMC Genomics
– volume: 6
  start-page: 927
  year: 2011
  end-page: 929
  article-title: Phosphate starvation signaling in rice
  publication-title: Plant Signal. Behav.
– volume: 23
  start-page: 4185
  year: 2011
  end-page: 4207
  article-title: Massive analysis of rice small RNAs: mechanistic implications of regulated miRNAs and variants for differential target RNA cleavage
  publication-title: Plant Cell
– volume: 141
  start-page: 988
  year: 2006
  end-page: 999
  article-title: PHO2, microRNA399, and PHR1 define a phosphate‐signaling pathway in plants
  publication-title: Plant Physiol.
– volume: 226
  start-page: 79
  year: 2000
  end-page: 85
  article-title: Nitrate uptake by bean ( L.) roots under phosphate deficiency
  publication-title: Plant Soil
– volume: 13
  start-page: 266
  year: 2010
  end-page: 273
  article-title: Nitrate signaling: adaptation to fluctuating environments
  publication-title: Curr. Opin. Plant Biol.
– volume: 15
  start-page: 2122
  year: 2001
  end-page: 2133
  article-title: A conserved MYB transcription factor involved in phosphate starvation signaling both in vascular plants and in unicellular algae
  publication-title: Genes Dev.
– volume: 53
  start-page: 731
  year: 2008
  end-page: 738
  article-title: MicroRNA399 is a long‐distance signal for the regulation of plant phosphate homeostasis
  publication-title: Plant J.
– volume: 156
  start-page: 1101
  year: 2011
  end-page: 1115
  article-title: LEAF TIP NECROSIS1 plays a pivotal role in the regulation of multiple phosphate starvation responses in rice
  publication-title: Plant Physiol.
– volume: 105
  start-page: 803
  year: 2008
  end-page: 808
  article-title: Cell‐specific nitrogen responses mediate developmental plasticity
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 62
  start-page: 508
  year: 2010
  end-page: 517
  article-title: OsSPX1 suppresses the function of OsPHR2 in the regulation of expression of and phosphate homeostasis in shoots of rice
  publication-title: Plant J.
– volume: 50
  start-page: 849
  year: 2008
  end-page: 859
  article-title: Signaling components involved in plant responses to phosphate starvation
  publication-title: J. Integr. Plant Biol.
– volume: 146
  start-page: 1673
  year: 2008
  end-page: 1686
  article-title: OsPHR2 is involved in phosphate‐starvation signaling and excessive phosphate accumulation in shoots of plants
  publication-title: Plant Physiol.
– volume: 44
  start-page: 1403
  year: 2003
  end-page: 1411
  article-title: Systematic reverse genetic screening of T‐DNA tagged genes in rice for functional genomic analyses: MADS‐box genes as a test case
  publication-title: Plant Cell Physiol.
– volume: 62
  start-page: 742
  year: 2010
  end-page: 759
  article-title: Transcriptome‐wide identification of microRNA targets in rice
  publication-title: Plant J.
– volume: 62
  start-page: 1046
  year: 2010
  end-page: 1057
  article-title: MicroRNA395 mediates regulation of sulfate accumulation and allocation in Arabidopsis thaliana
  publication-title: Plant J.
– volume: 6
  start-page: 271
  year: 1994
  end-page: 282
  article-title: Efficient transformation of rice ( .) mediated by and sequence analysis of the boundaries of the T‐DNA
  publication-title: Plant J
– volume: 279
  start-page: 407
  year: 1998
  end-page: 409
  article-title: An MADS box gene that controls nutrient‐induced changes in root architecture
  publication-title: Science
– volume: 21
  start-page: 3567
  year: 2009
  end-page: 3584
  article-title: Members of the LBD family of transcription factors repress anthocyanin synthesis and affect additional nitrogen responses in Arabidopsis
  publication-title: Plant Cell
– volume: 17
  start-page: 1397
  year: 2005
  end-page: 1411
  article-title: Cloning and characterization of microRNAs from rice
  publication-title: Plant Cell
– volume: 6
  start-page: 71
  year: 1975
  end-page: 80
  article-title: Rapid colorimetric determination of nitrate in plant tissue by nitration of salicylic acid
  publication-title: Commun. Soil Sci. Plant Anal.
– volume: 57
  start-page: 264
  year: 2009
  end-page: 278
  article-title: AtCIPK8, a CBL‐interacting protein kinase, regulates the low‐affinity phase of the primary nitrate response
  publication-title: Plant J.
– volume: 156
  start-page: 1016
  year: 2011
  end-page: 1024
  article-title: The role of microRNAs in phosphorus deficiency signaling
  publication-title: Plant Physiol.
– volume: 211
  start-page: 907
  year: 1957
  end-page: 913
  article-title: A modified ninhydrin Reagent for the photometric determination of amino acids and related compounds
  publication-title: J. Biol. Chem.
– volume: 7
  start-page: e1002021
  year: 2011
  article-title: Genetic regulation by NLA and microRNA827 for maintaining nitrate‐dependent phosphate homeostasis in Arabidopsis
  publication-title: PLoS Genet.
– volume: 57
  start-page: 19
  year: 2006
  end-page: 53
  article-title: MicroRNAs and their regulatory roles in plants
  publication-title: Annu. Rev. Plant Biol.
– volume: 20
  start-page: 669
  year: 2009
  end-page: 689
  article-title: Origin, biogenesis, and activity of plant microRNAs
  publication-title: Cell
– volume: 18
  start-page: 412
  year: 2006
  end-page: 421
  article-title: Regulation of phosphate homeostasis by microRNA in
  publication-title: Plant Cell
– volume: 57
  start-page: 426
  year: 2009
  end-page: 435
  article-title: The nodule inception‐like protein 7 modulates nitrate sensing and metabolism in Arabidopsis
  publication-title: Plant J.
– volume: 57
  start-page: 313
  year: 2009
  end-page: 321
  article-title: Sulfur starvation induces the expression of microRNA‐395 and one of its target genes but in different cell types
  publication-title: Plant J.
– volume: 62
  start-page: 185
  year: 2011
  end-page: 206
  article-title: Signaling network in sensing phosphate availability in plants
  publication-title: Annu. Rev. Plant Biol.
– volume: 53
  start-page: 1003
  year: 2012
  end-page: 1016
  article-title: Overexpressing the MADS‐Box Gene in transgenic plants provides new insights into its role in the nitrate regulation of root development
  publication-title: Plant Cell Physiol.
– volume: 66
  start-page: 863
  year: 2011
  end-page: 876
  article-title: Interplay of SLIM1 and miR395 in the regulation of sulfate assimilation in Arabidopsis
  publication-title: Plant J.
– volume: 107
  start-page: 4477
  year: 2010
  end-page: 4482
  article-title: Nitrate‐responsive miR393/AFB3 regulatory module controls root system architecture in
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 105
  start-page: 4951
  year: 2008
  end-page: 4956
  article-title: Genome‐wide analysis for discovery of rice microRNAs reveals natural antisense microRNAs (nat‐miRNAs)
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 150
  start-page: 1541
  year: 2009
  end-page: 1555
  article-title: Identification of nutrient‐responsive Arabidopsis and rapeseed microRNAs by comprehensive real‐time PCR profiling and small RNA sequencing
  publication-title: Plant Physiol.
– volume: 160
  start-page: 1384
  year: 2012
  end-page: 1406
  article-title: Maize source leaf adaptation to nitrogen deficiency affects not only nitrogen and carbon metabolism but also control of phosphate homeostasis
  publication-title: Plant Physiol.
– volume: 190
  start-page: 906
  year: 2011
  end-page: 915
  article-title: Involvement of miR169 in the nitrogen‐starvation responses in
  publication-title: New Phytol.
– volume: 60
  start-page: 485
  year: 2009
  end-page: 510
  article-title: Roles of plant small RNAs in biotic stress responses
  publication-title: Annu. Rev. Plant Biol.
– volume: 222
  start-page: 730
  year: 2005
  end-page: 742
  article-title: Nutritional regulation of ANR1 and other root‐expressed MADS‐box genes in
  publication-title: Planta
– volume: 138
  start-page: 1184
  year: 2009
  end-page: 1194
  article-title: CHL1 functions as a nitrate sensor in plants
  publication-title: Cell
– volume: 49
  start-page: 817
  year: 2007
  end-page: 826
  article-title: MicroRNAs and short‐interfering RNAs in plants
  publication-title: J. Integr. Plant Biol.
– volume: 13
  start-page: 604
  year: 2010
  end-page: 610
  article-title: Nitrate, ammonium, and potassium sensing and signaling
  publication-title: Curr. Opin. Plant Biol.
– volume: 6
  start-page: 280
  year: 2003
  end-page: 287
  article-title: The role of nutrient availability in regulating root architecture
  publication-title: Curr. Opin. Plant Biol.
– ident: e_1_2_6_31_1
  doi: 10.1073/pnas.0500778102
– ident: e_1_2_6_24_1
  doi: 10.1104/pp.111.175265
– ident: e_1_2_6_40_1
  doi: 10.1105/tpc.105.031682
– ident: e_1_2_6_30_1
  doi: 10.1073/pnas.0708743105
– ident: e_1_2_6_17_1
  doi: 10.1104/pp.110.170209
– ident: e_1_2_6_18_1
  doi: 10.1105/tpc.111.089045
– ident: e_1_2_6_45_1
  doi: 10.1111/j.1744-7909.2008.00709.x
– ident: e_1_2_6_29_1
  doi: 10.1016/S1369-5266(03)00035-9
– ident: e_1_2_6_34_1
  doi: 10.1104/pp.109.139139
– ident: e_1_2_6_10_1
  doi: 10.1073/pnas.0709559105
– ident: e_1_2_6_41_1
  doi: 10.1073/pnas.0909571107
– ident: e_1_2_6_6_1
  doi: 10.1146/annurev-arplant-042110-103849
– ident: e_1_2_6_21_1
  doi: 10.1111/j.1365-313X.2008.03690.x
– ident: e_1_2_6_43_1
  doi: 10.1105/tpc.109.070938
– ident: e_1_2_6_28_1
  doi: 10.1111/j.1365-313X.2010.04170.x
– ident: e_1_2_6_3_1
  doi: 10.1104/pp.106.079707
– ident: e_1_2_6_12_1
  doi: 10.1046/j.1365-313X.1994.6020271.x
– ident: e_1_2_6_46_1
  doi: 10.1126/science.279.5349.407
– ident: e_1_2_6_22_1
  doi: 10.1111/j.1365-313X.2011.04547.x
– volume: 211
  start-page: 907
  year: 1957
  ident: e_1_2_6_32_1
  article-title: A modified ninhydrin Reagent for the photometric determination of amino acids and related compounds
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(18)71178-2
– ident: e_1_2_6_44_1
  doi: 10.1111/j.1365-313X.2010.04467.x
– ident: e_1_2_6_35_1
  doi: 10.1105/tpc.109.067041
– ident: e_1_2_6_4_1
  doi: 10.1111/j.1365-313X.2008.03695.x
– ident: e_1_2_6_9_1
  doi: 10.1093/pcp/pcs050
– ident: e_1_2_6_11_1
  doi: 10.1023/A:1026463307043
– ident: e_1_2_6_37_1
  doi: 10.1146/annurev.arplant.043008.092111
– ident: e_1_2_6_48_1
  doi: 10.1104/pp.107.111443
– ident: e_1_2_6_33_1
  doi: 10.1111/j.1365-313X.2007.03363.x
– ident: e_1_2_6_36_1
  doi: 10.1101/gad.204401
– ident: e_1_2_6_14_1
  doi: 10.1016/j.cell.2009.07.004
– ident: e_1_2_6_19_1
  doi: 10.1146/annurev.arplant.57.032905.105218
– ident: e_1_2_6_25_1
  doi: 10.1093/pcp/pcg156
– ident: e_1_2_6_5_1
  doi: 10.1080/00103627509366547
– ident: e_1_2_6_7_1
  doi: 10.1105/tpc.105.038943
– ident: e_1_2_6_20_1
  doi: 10.1371/journal.pgen.1002021
– ident: e_1_2_6_2_1
  doi: 10.1186/1471-2164-8-242
– ident: e_1_2_6_47_1
  doi: 10.1111/j.1469-8137.2011.03647.x
– ident: e_1_2_6_23_1
  doi: 10.1016/j.pbi.2009.12.003
– ident: e_1_2_6_13_1
  doi: 10.1016/j.pbi.2010.08.005
– ident: e_1_2_6_27_1
  doi: 10.1111/j.1365-313X.2010.04216.x
– ident: e_1_2_6_39_1
  doi: 10.1111/j.1744-7909.2007.00499.x
– ident: e_1_2_6_8_1
  doi: 10.1007/s00425-005-0020-3
– ident: e_1_2_6_15_1
  doi: 10.4161/psb.6.7.15377
– ident: e_1_2_6_16_1
  doi: 10.1111/j.1365-313X.2008.03685.x
– ident: e_1_2_6_38_1
  doi: 10.1104/pp.112.204420
– ident: e_1_2_6_42_1
  doi: 10.1016/j.cell.2009.01.046
– ident: e_1_2_6_26_1
  doi: 10.1111/j.1365-313X.2010.04187.x
SSID ssj0017364
Score 2.5001307
Snippet Nitrate (NO3−) is a key signaling molecule in plant metabolism and development, in addition to its role as a nutrient. It has been shown previously in...
Summary Nitrate (NO3−) is a key signaling molecule in plant metabolism and development, in addition to its role as a nutrient. It has been shown previously in...
Nitrate ( ) is a key signaling molecule in plant metabolism and development, in addition to its role as a nutrient. It has been shown previously in Arabidopsis...
Nitrate (NO3-) is a key signaling molecule in plant metabolism and development, in addition to its role as a nutrient. It has been shown previously in...
Summary Nitrate (NO 3 -) is a key signaling molecule in plant metabolism and development, in addition to its role as a nutrient. It has been shown previously...
SourceID proquest
pubmed
crossref
wiley
fao
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 44
SubjectTerms Accumulation
Anion Transport Proteins
Anion Transport Proteins - genetics
Anion Transport Proteins - metabolism
Arabidopsis
Gene Expression
Gene Expression Regulation, Plant
gene overexpression
genes
genetics
Leaves
Liliopsida
metabolism
MicroRNAs
MicroRNAs - genetics
MicroRNAs - metabolism
miR444a
Mutation
nitrate signal
Nitrates
Nitrates - metabolism
Oryza
Oryza - genetics
Oryza - physiology
Phosphates
Phosphates - metabolism
physiology
Pi‐starvation response
Plant biology
Plant growth
Plant Leaves
Plant Leaves - genetics
Plant Leaves - physiology
Plant metabolism
Plant Proteins
Plant Proteins - genetics
Plant Proteins - metabolism
Plant Roots
Plant Roots - genetics
Plant Roots - physiology
Plant Shoots
Plant Shoots - genetics
Plant Shoots - physiology
Plants
Plants, Genetically Modified
Rice
RNA, Plant
RNA, Plant - genetics
RNA, Plant - metabolism
root
Root development
root growth
roots
Signal Transduction
Signal Transduction - genetics
starvation
transcription factors
Title miR444a has multiple functions in the rice nitrate‐signaling pathway
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Ftpj.12446
https://www.ncbi.nlm.nih.gov/pubmed/24460537
https://www.proquest.com/docview/1510042518
https://www.proquest.com/docview/1510710652
https://www.proquest.com/docview/1999944178
Volume 78
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBbp0kMvTZM-smlSlNJDLw5-yJJNTm3pEgINJc1CDgUzkkftksQbsruEzak_ob8xv6QzftGUpJTeDBobSaPRfCOPvhHiDbrI6sT4wKPzFKAoDHIwGGgVgvFlgoB8DvnpUO-P1cFJerIi9rq7MA0_RH_gxpZR79ds4GBnvxn5_ILMnJwT021zrhYDoqOeOioySUMdRQg9IK8Zt6xCnMXTv3nLFz3wML0LZt5GrbXbGa2Kr12Hm2yT093F3O666z-4HP9zRE_E4xaOynfN-lkTK1iti4fvpwQZl0_F6HxypJQC-R1msks9lOwK69UqJ5Uk_CiZl0jS1sCsEzc_fnJKCPAtd8nljq9g-UyMRx-PP-wHbeGFwCmjNc1XrlIwgDZD8GVpbERhjfU5RTcQKhdiol2UaYvG2BSSJEo9eh8r60qDUZg8F4NqWuGGkHFoDIKxpgSlSPO5LZ3JykzTlxNaGkPxtlNB4VpWci6OcVZ00QnNSlHPylC87kUvGiqOu4Q2SI8FfKMtshh_iTmAJBhEQR01bXXKLVpDnRUEeOp9K8qGYqdvJhPj_yZQ4XTRyBAQ02n8FxkC2jmXc6PvvGgWTt9J7hfT5tBYa_Xf3_vi-PNB_bD576IvxSMeZZNNtCUG88sFbhNQmttXtUX8AspUDTo
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB61BQkuvEsXChjEgUuqPBw7kbjwWi2lrVDZlXpBlu2MoQKyFd0VKid-Ar-RX8JMXqKoIMQtkieR7fF4vnHG3wA8RJ84lekQBfSBAhSJUWk1RkrGVocqQ4t8Drm7pyYzuX2QH6zA4_4uTMsPMRy4sWU0-zUbOB9I_2LliyOyc_JOahXOcUVvZs5_vj-QRyU6a8mjCKNH5DfTjleI83iGV095o9Vg52cBzdO4tXE848vwtu9ym2_yYWu5cFv-629sjv87pitwqUOk4km7hK7CCtbX4PzTOaHGk-sw_nS4L6W04r09Fn32oWBv2CxYcVgLgpCCqYkE7Q5MPPHj23fOCrF80V1wxeMv9uQGzMYvps8mUVd7IfJSK0UTVsrcaouuQBuqSruEIhsXSgpwbCx9jJnySaEcau1ym2VJHjCEVDpfaUzibB3W6nmNGyDSWGu02unKSknKL13ldVEVir6c0eoYwaNeB8Z3xORcH-Oj6QMUmhXTzMoIHgyiRy0bx1lCG6RIY9_RLmlmb1KOIQkJUVxHTZu9dk1nq8eGME-zdSXFCO4PzWRl_OvE1jhftjKExVSe_kWGsHbJFd3oOzfblTN0kvvFzDk01kb_f-69mb7ebh5u_bvoPbgwme7umJ2Xe69uw0UecZtctAlri89LvEO4aeHuNubxE5YyEVY
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB61BaFeeJcuFDCIA5dUeTh2Ik5AWZUCVVW6Ug9Ilu2MaQVkV3RXqJz4CfxGfgkzeYmighC3SJ5Etsfj-cYZfwPwCH3iVKZDFNAHClAkRqXVGCkZWx2qDC3yOeSbXbU9kTuH-eESPOnvwrT8EMOBG1tGs1-zgc-q8IuRz2dk5uSc1DJckCouuW7D1v7AHZXorOWOIogekdtMO1ohTuMZXj3jjJaDnZ6HM8_C1sbvjK_Au77HbbrJh83F3G36r7-ROf7nkK7C5Q6PiqftAroGS1hfh4vPpoQZT2_A-NPxvpTSiiN7IvrcQ8G-sFmu4rgWBCAFExMJ2huYduLHt--cE2L5mrvgesdf7OlNmIxfHDzfjrrKC5GXWimar1LmVlt0BdpQVdolFNe4UFJ4Y2PpY8yUTwrlUGuX2yxL8oAhpNL5SmMSZ2uwUk9rXAeRxlqj1U5XVkpSfekqr4uqUPTljNbGCB73KjC-oyXn6hgfTR-e0KyYZlZG8HAQnbVcHOcJrZMejX1Pe6SZvE05giQcRFEdNW30yjWdpZ4YQjzNxpUUI3gwNJON8Y8TW-N00coQElN5-hcZQtol13Oj79xqF87QSe4X8-bQWBv1_7n35mBvp3m4_e-i9-HS3tbYvH65--oOrPKA28yiDViZf17gXQJNc3evMY6fVNMQBQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=miR444a+has+multiple+functions+in+the+rice+nitrate-signaling+pathway&rft.jtitle=The+Plant+journal+%3A+for+cell+and+molecular+biology&rft.au=Yan%2C+Yongsheng&rft.au=Wang%2C+Huacai&rft.au=Hamera%2C+Sadia&rft.au=Chen%2C+Xiaoying&rft.date=2014-04-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0960-7412&rft.eissn=1365-313X&rft.volume=78&rft.issue=1&rft.spage=44&rft_id=info:doi/10.1111%2Ftpj.12446&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=3255974851
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-7412&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-7412&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-7412&client=summon