miR444a has multiple functions in the rice nitrate‐signaling pathway
Nitrate (NO3−) is a key signaling molecule in plant metabolism and development, in addition to its role as a nutrient. It has been shown previously in Arabidopsis that ANR1, a MADS‐box transcription factor, is a major component in the NO3−‐signaling pathway that triggers lateral root growth and that...
Saved in:
Published in | The Plant journal : for cell and molecular biology Vol. 78; no. 1; pp. 44 - 55 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
England
Blackwell Publishing Ltd
01.04.2014
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Nitrate (NO3−) is a key signaling molecule in plant metabolism and development, in addition to its role as a nutrient. It has been shown previously in Arabidopsis that ANR1, a MADS‐box transcription factor, is a major component in the NO3−‐signaling pathway that triggers lateral root growth and that miR444, which is specific to monocots, targets four genes that are homologous to ANR1 in rice. Here, we show that miR444a plays multiple roles in the rice NO3−‐signaling pathway – not only in root development, but also involving nitrate accumulation and even Pᵢ‐starvation responses. miR444a overexpression resulted in reduced rice lateral root elongation, but promoted rice primary and adventitious root growth, in a nitrate‐dependent manner. In addition, overexpression of miR444a improved nitrate accumulation and expression of nitrate transporter genes under high nitrate concentration conditions, but reduced the remobilization of nitrate from old leaves to young leaves thus affecting the plant's ability to adapt to nitrogen‐limitating conditions. Intriguingly, we found that Pᵢ starvation strongly induced miR444 accumulation in rice roots and that overexpression of miR444a altered Pᵢ‐starvation‐induced root architecture and enhanced Pᵢ accumulation and expression of three Pᵢ transporter genes. We further provide evidence that miR444a is involved in the interaction between the NO3−‐signaling and Pᵢ‐signaling pathways in rice. Taken together, our observations demonstrated that miR444a plays multiple roles in the rice NO3−‐signaling pathway in nitrate‐dependent root growth, nitrate accumulation and phosphate‐starvation responses. |
---|---|
AbstractList | Summary
Nitrate (NO3−) is a key signaling molecule in plant metabolism and development, in addition to its role as a nutrient. It has been shown previously in Arabidopsis that ANR1, a MADS‐box transcription factor, is a major component in the NO3−‐signaling pathway that triggers lateral root growth and that miR444, which is specific to monocots, targets four genes that are homologous to ANR1 in rice. Here, we show that miR444a plays multiple roles in the rice NO3−‐signaling pathway – not only in root development, but also involving nitrate accumulation and even Pi‐starvation responses. miR444a overexpression resulted in reduced rice lateral root elongation, but promoted rice primary and adventitious root growth, in a nitrate‐dependent manner. In addition, overexpression of miR444a improved nitrate accumulation and expression of nitrate transporter genes under high nitrate concentration conditions, but reduced the remobilization of nitrate from old leaves to young leaves thus affecting the plant's ability to adapt to nitrogen‐limitating conditions. Intriguingly, we found that Pi starvation strongly induced miR444 accumulation in rice roots and that overexpression of miR444a altered Pi‐starvation‐induced root architecture and enhanced Pi accumulation and expression of three Pi transporter genes. We further provide evidence that miR444a is involved in the interaction between the NO3−‐signaling and Pi‐signaling pathways in rice. Taken together, our observations demonstrated that miR444a plays multiple roles in the rice NO3−‐signaling pathway in nitrate‐dependent root growth, nitrate accumulation and phosphate‐starvation responses. Summary Nitrate (NO 3 -) is a key signaling molecule in plant metabolism and development, in addition to its role as a nutrient. It has been shown previously in Arabidopsis that ANR1, a MADS-box transcription factor, is a major component in the NO 3 --signaling pathway that triggers lateral root growth and that miR444, which is specific to monocots, targets four genes that are homologous to ANR1 in rice. Here, we show that miR444a plays multiple roles in the rice NO 3 --signaling pathway - not only in root development, but also involving nitrate accumulation and even Pi-starvation responses. miR444a overexpression resulted in reduced rice lateral root elongation, but promoted rice primary and adventitious root growth, in a nitrate-dependent manner. In addition, overexpression of miR444a improved nitrate accumulation and expression of nitrate transporter genes under high nitrate concentration conditions, but reduced the remobilization of nitrate from old leaves to young leaves thus affecting the plant's ability to adapt to nitrogen-limitating conditions. Intriguingly, we found that Pi starvation strongly induced miR444 accumulation in rice roots and that overexpression of miR444a altered Pi-starvation-induced root architecture and enhanced Pi accumulation and expression of three Pi transporter genes. We further provide evidence that miR444a is involved in the interaction between the NO 3 --signaling and Pi-signaling pathways in rice. Taken together, our observations demonstrated that miR444a plays multiple roles in the rice NO 3 --signaling pathway in nitrate-dependent root growth, nitrate accumulation and phosphate-starvation responses. [PUBLICATION ABSTRACT] Nitrate (NO3−) is a key signaling molecule in plant metabolism and development, in addition to its role as a nutrient. It has been shown previously in Arabidopsis that ANR1, a MADS‐box transcription factor, is a major component in the NO3−‐signaling pathway that triggers lateral root growth and that miR444, which is specific to monocots, targets four genes that are homologous to ANR1 in rice. Here, we show that miR444a plays multiple roles in the rice NO3−‐signaling pathway – not only in root development, but also involving nitrate accumulation and even Pᵢ‐starvation responses. miR444a overexpression resulted in reduced rice lateral root elongation, but promoted rice primary and adventitious root growth, in a nitrate‐dependent manner. In addition, overexpression of miR444a improved nitrate accumulation and expression of nitrate transporter genes under high nitrate concentration conditions, but reduced the remobilization of nitrate from old leaves to young leaves thus affecting the plant's ability to adapt to nitrogen‐limitating conditions. Intriguingly, we found that Pᵢ starvation strongly induced miR444 accumulation in rice roots and that overexpression of miR444a altered Pᵢ‐starvation‐induced root architecture and enhanced Pᵢ accumulation and expression of three Pᵢ transporter genes. We further provide evidence that miR444a is involved in the interaction between the NO3−‐signaling and Pᵢ‐signaling pathways in rice. Taken together, our observations demonstrated that miR444a plays multiple roles in the rice NO3−‐signaling pathway in nitrate‐dependent root growth, nitrate accumulation and phosphate‐starvation responses. Nitrate (NO3-) is a key signaling molecule in plant metabolism and development, in addition to its role as a nutrient. It has been shown previously in Arabidopsis that ANR1, a MADS-box transcription factor, is a major component in the NO3--signaling pathway that triggers lateral root growth and that miR444, which is specific to monocots, targets four genes that are homologous to ANR1 in rice. Here, we show that miR444a plays multiple roles in the rice NO3--signaling pathway - not only in root development, but also involving nitrate accumulation and even Pi -starvation responses. miR444a overexpression resulted in reduced rice lateral root elongation, but promoted rice primary and adventitious root growth, in a nitrate-dependent manner. In addition, overexpression of miR444a improved nitrate accumulation and expression of nitrate transporter genes under high nitrate concentration conditions, but reduced the remobilization of nitrate from old leaves to young leaves thus affecting the plant's ability to adapt to nitrogen-limitating conditions. Intriguingly, we found that Pi starvation strongly induced miR444 accumulation in rice roots and that overexpression of miR444a altered Pi -starvation-induced root architecture and enhanced Pi accumulation and expression of three Pi transporter genes. We further provide evidence that miR444a is involved in the interaction between the NO3--signaling and Pi -signaling pathways in rice. Taken together, our observations demonstrated that miR444a plays multiple roles in the rice NO3--signaling pathway in nitrate-dependent root growth, nitrate accumulation and phosphate-starvation responses. Nitrate (NO3-) is a key signaling molecule in plant metabolism and development, in addition to its role as a nutrient. It has been shown previously in Arabidopsis that ANR1, a MADS-box transcription factor, is a major component in the NO3--signaling pathway that triggers lateral root growth and that miR444, which is specific to monocots, targets four genes that are homologous to ANR1 in rice. Here, we show that miR444a plays multiple roles in the rice NO3--signaling pathway - not only in root development, but also involving nitrate accumulation and even Pi -starvation responses. miR444a overexpression resulted in reduced rice lateral root elongation, but promoted rice primary and adventitious root growth, in a nitrate-dependent manner. In addition, overexpression of miR444a improved nitrate accumulation and expression of nitrate transporter genes under high nitrate concentration conditions, but reduced the remobilization of nitrate from old leaves to young leaves thus affecting the plant's ability to adapt to nitrogen-limitating conditions. Intriguingly, we found that Pi starvation strongly induced miR444 accumulation in rice roots and that overexpression of miR444a altered Pi -starvation-induced root architecture and enhanced Pi accumulation and expression of three Pi transporter genes. We further provide evidence that miR444a is involved in the interaction between the NO3--signaling and Pi -signaling pathways in rice. Taken together, our observations demonstrated that miR444a plays multiple roles in the rice NO3--signaling pathway in nitrate-dependent root growth, nitrate accumulation and phosphate-starvation responses.Nitrate (NO3-) is a key signaling molecule in plant metabolism and development, in addition to its role as a nutrient. It has been shown previously in Arabidopsis that ANR1, a MADS-box transcription factor, is a major component in the NO3--signaling pathway that triggers lateral root growth and that miR444, which is specific to monocots, targets four genes that are homologous to ANR1 in rice. Here, we show that miR444a plays multiple roles in the rice NO3--signaling pathway - not only in root development, but also involving nitrate accumulation and even Pi -starvation responses. miR444a overexpression resulted in reduced rice lateral root elongation, but promoted rice primary and adventitious root growth, in a nitrate-dependent manner. In addition, overexpression of miR444a improved nitrate accumulation and expression of nitrate transporter genes under high nitrate concentration conditions, but reduced the remobilization of nitrate from old leaves to young leaves thus affecting the plant's ability to adapt to nitrogen-limitating conditions. Intriguingly, we found that Pi starvation strongly induced miR444 accumulation in rice roots and that overexpression of miR444a altered Pi -starvation-induced root architecture and enhanced Pi accumulation and expression of three Pi transporter genes. We further provide evidence that miR444a is involved in the interaction between the NO3--signaling and Pi -signaling pathways in rice. Taken together, our observations demonstrated that miR444a plays multiple roles in the rice NO3--signaling pathway in nitrate-dependent root growth, nitrate accumulation and phosphate-starvation responses. Nitrate ( ) is a key signaling molecule in plant metabolism and development, in addition to its role as a nutrient. It has been shown previously in Arabidopsis that ANR 1, a MADS ‐box transcription factor, is a major component in the ‐signaling pathway that triggers lateral root growth and that miR444, which is specific to monocots, targets four genes that are homologous to ANR 1 in rice. Here, we show that miR444a plays multiple roles in the rice ‐signaling pathway – not only in root development, but also involving nitrate accumulation and even P i ‐starvation responses. miR444a overexpression resulted in reduced rice lateral root elongation, but promoted rice primary and adventitious root growth, in a nitrate‐dependent manner. In addition, overexpression of miR444a improved nitrate accumulation and expression of nitrate transporter genes under high nitrate concentration conditions, but reduced the remobilization of nitrate from old leaves to young leaves thus affecting the plant's ability to adapt to nitrogen‐limitating conditions. Intriguingly, we found that P i starvation strongly induced miR444 accumulation in rice roots and that overexpression of miR444a altered P i ‐starvation‐induced root architecture and enhanced P i accumulation and expression of three P i transporter genes. We further provide evidence that miR444a is involved in the interaction between the ‐signaling and P i ‐signaling pathways in rice. Taken together, our observations demonstrated that miR444a plays multiple roles in the rice ‐signaling pathway in nitrate‐dependent root growth, nitrate accumulation and phosphate‐starvation responses. |
Author | Hamera, Sadia Wang, Huacai Yan, Yongsheng Chen, Xiaoying Fang, Rongxiang |
Author_xml | – sequence: 1 fullname: Yan, Yongsheng – sequence: 2 fullname: Wang, Huacai – sequence: 3 fullname: Hamera, Sadia – sequence: 4 fullname: Chen, Xiaoying – sequence: 5 fullname: Fang, Rongxiang |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24460537$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc1u1DAUhS3Uik4LC14AIrGhi2l9479kiSpKqSqBoJXYWY7nesajxAl2omp2PEKfsU-Ch2lZVALu5m6-c3TvOYdkL_QBCXkF9ATynI7D-gRKzuUzMgMmxZwB-75HZrSWdK44lAfkMKU1paCY5M_JwZalgqkZOe_8V865KVYmFd3Ujn5osXBTsKPvQyp8KMYVFtFbLIIfoxnx_udd8stgWh-WxWDG1a3ZvCD7zrQJXz7sI3Jz_uH67GJ-9fnjp7P3V3PLlZT5lpoLoww2FRq3WKgGKiUaV_NKGcotRSYtVLJBpRphGAPh0LmSN3ahECg7Iu92vkPsf0yYRt35ZLFtTcB-ShrqPJyDqv6PCqAKqBRlRt8-Qdf9FPOHO4ryUsDW8PUDNTUdLvQQfWfiRj-GmYHjHWBjn1JE9wcBqrdF6VyU_l1UZk-fsNaPZpt5zti3_1Lc-hY3f7fW118uHxVvdgpnem2W0Sd9862kwCmlqpZSsl8_ZKxc |
CitedBy_id | crossref_primary_10_1093_jxb_eraa033 crossref_primary_10_1111_tpj_16361 crossref_primary_10_3390_ijms241411364 crossref_primary_10_1016_j_jplph_2021_153591 crossref_primary_10_3390_plants5040039 crossref_primary_10_1038_srep18192 crossref_primary_10_1186_s12284_019_0364_0 crossref_primary_10_1016_j_pbi_2017_05_010 crossref_primary_10_1371_journal_pone_0105597 crossref_primary_10_3389_fpls_2020_574246 crossref_primary_10_1016_j_stress_2024_100674 crossref_primary_10_1186_s12864_018_5104_0 crossref_primary_10_1007_s11738_015_2022_5 crossref_primary_10_3389_fpls_2017_00485 crossref_primary_10_1007_s11738_017_2530_6 crossref_primary_10_1186_s12864_018_4953_x crossref_primary_10_3389_fpls_2021_657629 crossref_primary_10_1016_j_copbio_2022_102682 crossref_primary_10_1016_j_scienta_2014_12_016 crossref_primary_10_1016_j_envexpbot_2022_105040 crossref_primary_10_1016_j_jgg_2015_12_002 crossref_primary_10_1016_j_plaphy_2023_107823 crossref_primary_10_1371_journal_pone_0224962 crossref_primary_10_1016_j_jplph_2019_01_011 crossref_primary_10_1111_jipb_12559 crossref_primary_10_1186_s12284_021_00455_2 crossref_primary_10_3389_fpls_2017_00928 crossref_primary_10_3389_fpls_2015_00629 crossref_primary_10_1186_s12864_017_3999_5 crossref_primary_10_1111_ppl_14018 crossref_primary_10_1016_j_fmre_2023_02_020 crossref_primary_10_1186_s12864_018_4897_1 crossref_primary_10_1007_s11103_017_0638_0 crossref_primary_10_1016_j_cj_2020_07_005 crossref_primary_10_1093_aob_mcad155 crossref_primary_10_1186_s12870_022_03723_5 crossref_primary_10_1016_j_plaphy_2023_107933 crossref_primary_10_3390_f15071191 crossref_primary_10_3389_fpls_2024_1418119 crossref_primary_10_3390_genes13091632 crossref_primary_10_1016_j_ijbiomac_2018_06_009 crossref_primary_10_1038_s41598_020_72642_y crossref_primary_10_3390_ijms232012339 crossref_primary_10_1016_j_plgene_2021_100312 crossref_primary_10_1186_s12870_018_1462_7 crossref_primary_10_1038_nplants_2017_77 crossref_primary_10_1016_j_pbi_2015_08_002 crossref_primary_10_1016_j_envexpbot_2022_105146 crossref_primary_10_3390_agronomy12030582 crossref_primary_10_1016_j_gpb_2019_11_007 crossref_primary_10_1111_ppl_12409 crossref_primary_10_1016_j_pbi_2014_06_004 crossref_primary_10_3389_fgene_2020_581993 crossref_primary_10_1007_s00122_019_03527_6 crossref_primary_10_1270_jsbbs_20102 crossref_primary_10_1016_j_xplc_2023_100642 crossref_primary_10_1093_jxb_erz536 crossref_primary_10_3390_ijms21218180 crossref_primary_10_1146_annurev_arplant_050718_100334 crossref_primary_10_1007_s00299_018_2248_y crossref_primary_10_1371_journal_pone_0300159 crossref_primary_10_1093_jxb_eraa116 crossref_primary_10_3390_ijms241311158 crossref_primary_10_3390_genes15081072 crossref_primary_10_1016_j_eja_2023_126857 crossref_primary_10_1016_j_plantsci_2018_09_004 crossref_primary_10_1016_j_plaphy_2020_02_004 crossref_primary_10_1016_S2095_3119_21_63818_2 crossref_primary_10_1186_s12864_016_2838_4 crossref_primary_10_1016_j_plantsci_2024_111993 crossref_primary_10_1016_j_tplants_2019_06_006 crossref_primary_10_1016_j_xplc_2022_100353 crossref_primary_10_3390_genes8100274 crossref_primary_10_1093_jxb_eru411 crossref_primary_10_3390_genes9090459 crossref_primary_10_1093_jxb_erz148 crossref_primary_10_1093_jxb_erac083 crossref_primary_10_1007_s10142_016_0525_9 crossref_primary_10_1016_j_pbi_2017_06_007 crossref_primary_10_1016_j_pbi_2017_06_008 crossref_primary_10_1016_j_plantsci_2017_09_017 crossref_primary_10_1371_journal_pone_0135196 crossref_primary_10_3389_fpls_2021_721253 crossref_primary_10_3389_fpls_2022_950796 crossref_primary_10_1093_pcp_pcy060 crossref_primary_10_3390_plants14010136 crossref_primary_10_3390_ijms22147687 crossref_primary_10_1016_j_jbiotec_2020_10_001 crossref_primary_10_1111_tpj_14550 crossref_primary_10_3390_ijms232314755 crossref_primary_10_1016_j_plantsci_2020_110608 crossref_primary_10_3390_ijms23052562 crossref_primary_10_1007_s40502_022_00653_0 crossref_primary_10_3390_ijms222011205 crossref_primary_10_3389_fpls_2014_00586 crossref_primary_10_1007_s44154_024_00181_x crossref_primary_10_1016_j_cpb_2024_100426 crossref_primary_10_3390_ijms241914406 crossref_primary_10_3390_ijms24043143 crossref_primary_10_3390_plants12142725 crossref_primary_10_1093_jxb_erw405 crossref_primary_10_3390_plants10102133 crossref_primary_10_1007_s12010_015_1891_9 crossref_primary_10_1093_treephys_tpaa071 crossref_primary_10_1111_tpj_14007 crossref_primary_10_1093_pcp_pcz061 crossref_primary_10_1007_s10142_016_0487_y crossref_primary_10_3390_genes11060633 crossref_primary_10_1134_S1021443720040147 crossref_primary_10_1111_tpj_15188 crossref_primary_10_1016_j_rsci_2018_12_007 crossref_primary_10_3389_fpls_2021_656696 crossref_primary_10_1155_2021_8560323 crossref_primary_10_1007_s00299_021_02682_9 crossref_primary_10_3390_ijms24087058 crossref_primary_10_1007_s40502_017_0327_7 crossref_primary_10_3389_fpls_2018_00659 crossref_primary_10_1186_s42483_019_0040_8 crossref_primary_10_3390_ijms24097926 crossref_primary_10_1016_j_plaphy_2021_06_041 crossref_primary_10_1016_j_stress_2024_100347 crossref_primary_10_17097_ataunizfd_655207 crossref_primary_10_3390_ijms20194953 crossref_primary_10_1007_s11103_018_0711_3 crossref_primary_10_3390_genes12060850 |
Cites_doi | 10.1073/pnas.0500778102 10.1104/pp.111.175265 10.1105/tpc.105.031682 10.1073/pnas.0708743105 10.1104/pp.110.170209 10.1105/tpc.111.089045 10.1111/j.1744-7909.2008.00709.x 10.1016/S1369-5266(03)00035-9 10.1104/pp.109.139139 10.1073/pnas.0709559105 10.1073/pnas.0909571107 10.1146/annurev-arplant-042110-103849 10.1111/j.1365-313X.2008.03690.x 10.1105/tpc.109.070938 10.1111/j.1365-313X.2010.04170.x 10.1104/pp.106.079707 10.1046/j.1365-313X.1994.6020271.x 10.1126/science.279.5349.407 10.1111/j.1365-313X.2011.04547.x 10.1016/S0021-9258(18)71178-2 10.1111/j.1365-313X.2010.04467.x 10.1105/tpc.109.067041 10.1111/j.1365-313X.2008.03695.x 10.1093/pcp/pcs050 10.1023/A:1026463307043 10.1146/annurev.arplant.043008.092111 10.1104/pp.107.111443 10.1111/j.1365-313X.2007.03363.x 10.1101/gad.204401 10.1016/j.cell.2009.07.004 10.1146/annurev.arplant.57.032905.105218 10.1093/pcp/pcg156 10.1080/00103627509366547 10.1105/tpc.105.038943 10.1371/journal.pgen.1002021 10.1186/1471-2164-8-242 10.1111/j.1469-8137.2011.03647.x 10.1016/j.pbi.2009.12.003 10.1016/j.pbi.2010.08.005 10.1111/j.1365-313X.2010.04216.x 10.1111/j.1744-7909.2007.00499.x 10.1007/s00425-005-0020-3 10.4161/psb.6.7.15377 10.1111/j.1365-313X.2008.03685.x 10.1104/pp.112.204420 10.1016/j.cell.2009.01.046 10.1111/j.1365-313X.2010.04187.x |
ContentType | Journal Article |
Copyright | 2014 The Authors The Plant Journal © 2014 John Wiley & Sons Ltd 2014 The Authors The Plant Journal © 2014 John Wiley & Sons Ltd. Copyright © 2014 John Wiley & Sons Ltd and the Society for Experimental Biology |
Copyright_xml | – notice: 2014 The Authors The Plant Journal © 2014 John Wiley & Sons Ltd – notice: 2014 The Authors The Plant Journal © 2014 John Wiley & Sons Ltd. – notice: Copyright © 2014 John Wiley & Sons Ltd and the Society for Experimental Biology |
DBID | FBQ AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QO 7QP 7QR 7TM 8FD FR3 M7N P64 RC3 7X8 7S9 L.6 |
DOI | 10.1111/tpj.12446 |
DatabaseName | AGRIS CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Nucleic Acids Abstracts Technology Research Database Engineering Research Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Genetics Abstracts Biotechnology Research Abstracts Technology Research Database Algology Mycology and Protozoology Abstracts (Microbiology C) Nucleic Acids Abstracts Chemoreception Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Biotechnology and BioEngineering Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Genetics Abstracts MEDLINE AGRICOLA MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Botany |
EISSN | 1365-313X |
EndPage | 55 |
ExternalDocumentID | 3255974851 24460537 10_1111_tpj_12446 TPJ12446 US201400079666 |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: National Key Basic Research and Development Plan funderid: 2013CBA01403 – fundername: National Natural Science Foundation of China funderid: 31101424 |
GroupedDBID | --- -DZ .3N .GA .Y3 05W 0R~ 10A 123 1OC 24P 29O 2WC 31~ 33P 36B 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABEML ABHUG ABJNI ABPTK ABPVW ABWRO ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXME ACXQS ADAWD ADBBV ADDAD ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFPM AFGKR AFPWT AFRAH AFVGU AFZJQ AGJLS AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BAWUL BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 C45 CAG COF CS3 D-E D-F DCZOG DIK DPXWK DR2 DRFUL DRSTM DU5 E3Z EBS ECGQY EJD ESX F00 F01 F04 F5P FBQ FIJ G-S G.N GODZA H.T H.X HF~ HZI HZ~ IHE IPNFZ IX1 J0M K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OK1 OVD P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 R.K ROL RX1 SUPJJ TEORI TR2 UB1 W8V W99 WBKPD WH7 WIH WIK WIN WNSPC WOHZO WQJ WRC WXSBR WYISQ XG1 YFH YUY ZZTAW ~IA ~KM ~WT AAHBH AAHQN AAMNL AAYCA AFWVQ AHBTC AITYG ALVPJ HGLYW OIG AAYXX AEYWJ AGHNM AGYGG CITATION AAMMB AEFGJ AGXDD AIDQK AIDYY CGR CUY CVF ECM EIF NPM 7QO 7QP 7QR 7TM 8FD FR3 M7N P64 RC3 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c4766-74945a7aeb8eafdd7b1875bf9487a04c0e36c186be77b5a3315feff24bcd7e103 |
IEDL.DBID | DR2 |
ISSN | 0960-7412 1365-313X |
IngestDate | Fri Jul 11 18:34:05 EDT 2025 Thu Jul 10 22:22:55 EDT 2025 Fri Jul 25 10:48:13 EDT 2025 Mon Jul 21 05:55:11 EDT 2025 Tue Jul 01 03:57:16 EDT 2025 Thu Apr 24 22:48:41 EDT 2025 Wed Jan 22 16:38:52 EST 2025 Wed Dec 27 18:58:54 EST 2023 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Pi-starvation response miR444a rice nitrate signal root |
Language | English |
License | 2014 The Authors The Plant Journal © 2014 John Wiley & Sons Ltd. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4766-74945a7aeb8eafdd7b1875bf9487a04c0e36c186be77b5a3315feff24bcd7e103 |
Notes | http://dx.doi.org/10.1111/tpj.12446 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PMID | 24460537 |
PQID | 1510042518 |
PQPubID | 31702 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_1999944178 proquest_miscellaneous_1510710652 proquest_journals_1510042518 pubmed_primary_24460537 crossref_primary_10_1111_tpj_12446 crossref_citationtrail_10_1111_tpj_12446 wiley_primary_10_1111_tpj_12446_TPJ12446 fao_agris_US201400079666 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | April 2014 |
PublicationDateYYYYMMDD | 2014-04-01 |
PublicationDate_xml | – month: 04 year: 2014 text: April 2014 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Oxford |
PublicationTitle | The Plant journal : for cell and molecular biology |
PublicationTitleAlternate | Plant J |
PublicationYear | 2014 |
Publisher | Blackwell Publishing Ltd |
Publisher_xml | – name: Blackwell Publishing Ltd |
References | 2009; 21 2010; 13 2009; 20 2010; 107 2006; 57 2009; 60 2011; 62 2012; 160 2006; 18 2008; 105 2009; 150 1998; 279 2011; 190 2008; 53 2008; 146 2008; 50 2011; 6 2011; 156 2012; 53 2011; 7 2010; 62 2009; 138 2009; 57 2005; 222 2000; 226 2005; 102 2003; 6 1957; 211 2007; 8 2006; 141 2011; 66 2011; 65 2001; 15 2011; 23 2005; 17 1975; 6 2003; 44 1994; 6 2007; 49 e_1_2_6_10_1 e_1_2_6_31_1 e_1_2_6_30_1 Moor S. (e_1_2_6_32_1) 1957; 211 e_1_2_6_19_1 e_1_2_6_13_1 e_1_2_6_36_1 e_1_2_6_14_1 e_1_2_6_35_1 e_1_2_6_11_1 e_1_2_6_34_1 e_1_2_6_12_1 e_1_2_6_33_1 e_1_2_6_17_1 e_1_2_6_18_1 e_1_2_6_39_1 e_1_2_6_15_1 e_1_2_6_38_1 e_1_2_6_16_1 e_1_2_6_37_1 e_1_2_6_42_1 e_1_2_6_43_1 e_1_2_6_21_1 e_1_2_6_20_1 e_1_2_6_41_1 e_1_2_6_40_1 e_1_2_6_9_1 e_1_2_6_8_1 e_1_2_6_5_1 e_1_2_6_4_1 e_1_2_6_7_1 e_1_2_6_6_1 e_1_2_6_25_1 e_1_2_6_48_1 e_1_2_6_24_1 e_1_2_6_3_1 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_22_1 e_1_2_6_29_1 e_1_2_6_44_1 e_1_2_6_28_1 e_1_2_6_45_1 e_1_2_6_27_1 e_1_2_6_46_1 e_1_2_6_26_1 e_1_2_6_47_1 |
References_xml | – volume: 21 start-page: 3421 year: 2009 end-page: 3435 article-title: Rice microRNA effector complexes and targets publication-title: Plant Cell – volume: 65 start-page: 820 year: 2011 end-page: 828 article-title: Small RNAs from MITE‐derived stem‐loop precursors regulate abscisic acid signaling and abiotic stress responses in rice publication-title: Plant J. – volume: 102 start-page: 7760 year: 2005 end-page: 7765 article-title: The SUMO E3 ligase SIZ1 controls phosphate deficiency responses publication-title: Proc. Natl Acad. Sci. USA – volume: 8 start-page: 242 year: 2007 article-title: MADS‐box gene family in rice: genome‐wide identification, organization and expression profiling during reproductive development and stress publication-title: BMC Genomics – volume: 6 start-page: 927 year: 2011 end-page: 929 article-title: Phosphate starvation signaling in rice publication-title: Plant Signal. Behav. – volume: 23 start-page: 4185 year: 2011 end-page: 4207 article-title: Massive analysis of rice small RNAs: mechanistic implications of regulated miRNAs and variants for differential target RNA cleavage publication-title: Plant Cell – volume: 141 start-page: 988 year: 2006 end-page: 999 article-title: PHO2, microRNA399, and PHR1 define a phosphate‐signaling pathway in plants publication-title: Plant Physiol. – volume: 226 start-page: 79 year: 2000 end-page: 85 article-title: Nitrate uptake by bean ( L.) roots under phosphate deficiency publication-title: Plant Soil – volume: 13 start-page: 266 year: 2010 end-page: 273 article-title: Nitrate signaling: adaptation to fluctuating environments publication-title: Curr. Opin. Plant Biol. – volume: 15 start-page: 2122 year: 2001 end-page: 2133 article-title: A conserved MYB transcription factor involved in phosphate starvation signaling both in vascular plants and in unicellular algae publication-title: Genes Dev. – volume: 53 start-page: 731 year: 2008 end-page: 738 article-title: MicroRNA399 is a long‐distance signal for the regulation of plant phosphate homeostasis publication-title: Plant J. – volume: 156 start-page: 1101 year: 2011 end-page: 1115 article-title: LEAF TIP NECROSIS1 plays a pivotal role in the regulation of multiple phosphate starvation responses in rice publication-title: Plant Physiol. – volume: 105 start-page: 803 year: 2008 end-page: 808 article-title: Cell‐specific nitrogen responses mediate developmental plasticity publication-title: Proc. Natl Acad. Sci. USA – volume: 62 start-page: 508 year: 2010 end-page: 517 article-title: OsSPX1 suppresses the function of OsPHR2 in the regulation of expression of and phosphate homeostasis in shoots of rice publication-title: Plant J. – volume: 50 start-page: 849 year: 2008 end-page: 859 article-title: Signaling components involved in plant responses to phosphate starvation publication-title: J. Integr. Plant Biol. – volume: 146 start-page: 1673 year: 2008 end-page: 1686 article-title: OsPHR2 is involved in phosphate‐starvation signaling and excessive phosphate accumulation in shoots of plants publication-title: Plant Physiol. – volume: 44 start-page: 1403 year: 2003 end-page: 1411 article-title: Systematic reverse genetic screening of T‐DNA tagged genes in rice for functional genomic analyses: MADS‐box genes as a test case publication-title: Plant Cell Physiol. – volume: 62 start-page: 742 year: 2010 end-page: 759 article-title: Transcriptome‐wide identification of microRNA targets in rice publication-title: Plant J. – volume: 62 start-page: 1046 year: 2010 end-page: 1057 article-title: MicroRNA395 mediates regulation of sulfate accumulation and allocation in Arabidopsis thaliana publication-title: Plant J. – volume: 6 start-page: 271 year: 1994 end-page: 282 article-title: Efficient transformation of rice ( .) mediated by and sequence analysis of the boundaries of the T‐DNA publication-title: Plant J – volume: 279 start-page: 407 year: 1998 end-page: 409 article-title: An MADS box gene that controls nutrient‐induced changes in root architecture publication-title: Science – volume: 21 start-page: 3567 year: 2009 end-page: 3584 article-title: Members of the LBD family of transcription factors repress anthocyanin synthesis and affect additional nitrogen responses in Arabidopsis publication-title: Plant Cell – volume: 17 start-page: 1397 year: 2005 end-page: 1411 article-title: Cloning and characterization of microRNAs from rice publication-title: Plant Cell – volume: 6 start-page: 71 year: 1975 end-page: 80 article-title: Rapid colorimetric determination of nitrate in plant tissue by nitration of salicylic acid publication-title: Commun. Soil Sci. Plant Anal. – volume: 57 start-page: 264 year: 2009 end-page: 278 article-title: AtCIPK8, a CBL‐interacting protein kinase, regulates the low‐affinity phase of the primary nitrate response publication-title: Plant J. – volume: 156 start-page: 1016 year: 2011 end-page: 1024 article-title: The role of microRNAs in phosphorus deficiency signaling publication-title: Plant Physiol. – volume: 211 start-page: 907 year: 1957 end-page: 913 article-title: A modified ninhydrin Reagent for the photometric determination of amino acids and related compounds publication-title: J. Biol. Chem. – volume: 7 start-page: e1002021 year: 2011 article-title: Genetic regulation by NLA and microRNA827 for maintaining nitrate‐dependent phosphate homeostasis in Arabidopsis publication-title: PLoS Genet. – volume: 57 start-page: 19 year: 2006 end-page: 53 article-title: MicroRNAs and their regulatory roles in plants publication-title: Annu. Rev. Plant Biol. – volume: 20 start-page: 669 year: 2009 end-page: 689 article-title: Origin, biogenesis, and activity of plant microRNAs publication-title: Cell – volume: 18 start-page: 412 year: 2006 end-page: 421 article-title: Regulation of phosphate homeostasis by microRNA in publication-title: Plant Cell – volume: 57 start-page: 426 year: 2009 end-page: 435 article-title: The nodule inception‐like protein 7 modulates nitrate sensing and metabolism in Arabidopsis publication-title: Plant J. – volume: 57 start-page: 313 year: 2009 end-page: 321 article-title: Sulfur starvation induces the expression of microRNA‐395 and one of its target genes but in different cell types publication-title: Plant J. – volume: 62 start-page: 185 year: 2011 end-page: 206 article-title: Signaling network in sensing phosphate availability in plants publication-title: Annu. Rev. Plant Biol. – volume: 53 start-page: 1003 year: 2012 end-page: 1016 article-title: Overexpressing the MADS‐Box Gene in transgenic plants provides new insights into its role in the nitrate regulation of root development publication-title: Plant Cell Physiol. – volume: 66 start-page: 863 year: 2011 end-page: 876 article-title: Interplay of SLIM1 and miR395 in the regulation of sulfate assimilation in Arabidopsis publication-title: Plant J. – volume: 107 start-page: 4477 year: 2010 end-page: 4482 article-title: Nitrate‐responsive miR393/AFB3 regulatory module controls root system architecture in publication-title: Proc. Natl Acad. Sci. USA – volume: 105 start-page: 4951 year: 2008 end-page: 4956 article-title: Genome‐wide analysis for discovery of rice microRNAs reveals natural antisense microRNAs (nat‐miRNAs) publication-title: Proc. Natl Acad. Sci. USA – volume: 150 start-page: 1541 year: 2009 end-page: 1555 article-title: Identification of nutrient‐responsive Arabidopsis and rapeseed microRNAs by comprehensive real‐time PCR profiling and small RNA sequencing publication-title: Plant Physiol. – volume: 160 start-page: 1384 year: 2012 end-page: 1406 article-title: Maize source leaf adaptation to nitrogen deficiency affects not only nitrogen and carbon metabolism but also control of phosphate homeostasis publication-title: Plant Physiol. – volume: 190 start-page: 906 year: 2011 end-page: 915 article-title: Involvement of miR169 in the nitrogen‐starvation responses in publication-title: New Phytol. – volume: 60 start-page: 485 year: 2009 end-page: 510 article-title: Roles of plant small RNAs in biotic stress responses publication-title: Annu. Rev. Plant Biol. – volume: 222 start-page: 730 year: 2005 end-page: 742 article-title: Nutritional regulation of ANR1 and other root‐expressed MADS‐box genes in publication-title: Planta – volume: 138 start-page: 1184 year: 2009 end-page: 1194 article-title: CHL1 functions as a nitrate sensor in plants publication-title: Cell – volume: 49 start-page: 817 year: 2007 end-page: 826 article-title: MicroRNAs and short‐interfering RNAs in plants publication-title: J. Integr. Plant Biol. – volume: 13 start-page: 604 year: 2010 end-page: 610 article-title: Nitrate, ammonium, and potassium sensing and signaling publication-title: Curr. Opin. Plant Biol. – volume: 6 start-page: 280 year: 2003 end-page: 287 article-title: The role of nutrient availability in regulating root architecture publication-title: Curr. Opin. Plant Biol. – ident: e_1_2_6_31_1 doi: 10.1073/pnas.0500778102 – ident: e_1_2_6_24_1 doi: 10.1104/pp.111.175265 – ident: e_1_2_6_40_1 doi: 10.1105/tpc.105.031682 – ident: e_1_2_6_30_1 doi: 10.1073/pnas.0708743105 – ident: e_1_2_6_17_1 doi: 10.1104/pp.110.170209 – ident: e_1_2_6_18_1 doi: 10.1105/tpc.111.089045 – ident: e_1_2_6_45_1 doi: 10.1111/j.1744-7909.2008.00709.x – ident: e_1_2_6_29_1 doi: 10.1016/S1369-5266(03)00035-9 – ident: e_1_2_6_34_1 doi: 10.1104/pp.109.139139 – ident: e_1_2_6_10_1 doi: 10.1073/pnas.0709559105 – ident: e_1_2_6_41_1 doi: 10.1073/pnas.0909571107 – ident: e_1_2_6_6_1 doi: 10.1146/annurev-arplant-042110-103849 – ident: e_1_2_6_21_1 doi: 10.1111/j.1365-313X.2008.03690.x – ident: e_1_2_6_43_1 doi: 10.1105/tpc.109.070938 – ident: e_1_2_6_28_1 doi: 10.1111/j.1365-313X.2010.04170.x – ident: e_1_2_6_3_1 doi: 10.1104/pp.106.079707 – ident: e_1_2_6_12_1 doi: 10.1046/j.1365-313X.1994.6020271.x – ident: e_1_2_6_46_1 doi: 10.1126/science.279.5349.407 – ident: e_1_2_6_22_1 doi: 10.1111/j.1365-313X.2011.04547.x – volume: 211 start-page: 907 year: 1957 ident: e_1_2_6_32_1 article-title: A modified ninhydrin Reagent for the photometric determination of amino acids and related compounds publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(18)71178-2 – ident: e_1_2_6_44_1 doi: 10.1111/j.1365-313X.2010.04467.x – ident: e_1_2_6_35_1 doi: 10.1105/tpc.109.067041 – ident: e_1_2_6_4_1 doi: 10.1111/j.1365-313X.2008.03695.x – ident: e_1_2_6_9_1 doi: 10.1093/pcp/pcs050 – ident: e_1_2_6_11_1 doi: 10.1023/A:1026463307043 – ident: e_1_2_6_37_1 doi: 10.1146/annurev.arplant.043008.092111 – ident: e_1_2_6_48_1 doi: 10.1104/pp.107.111443 – ident: e_1_2_6_33_1 doi: 10.1111/j.1365-313X.2007.03363.x – ident: e_1_2_6_36_1 doi: 10.1101/gad.204401 – ident: e_1_2_6_14_1 doi: 10.1016/j.cell.2009.07.004 – ident: e_1_2_6_19_1 doi: 10.1146/annurev.arplant.57.032905.105218 – ident: e_1_2_6_25_1 doi: 10.1093/pcp/pcg156 – ident: e_1_2_6_5_1 doi: 10.1080/00103627509366547 – ident: e_1_2_6_7_1 doi: 10.1105/tpc.105.038943 – ident: e_1_2_6_20_1 doi: 10.1371/journal.pgen.1002021 – ident: e_1_2_6_2_1 doi: 10.1186/1471-2164-8-242 – ident: e_1_2_6_47_1 doi: 10.1111/j.1469-8137.2011.03647.x – ident: e_1_2_6_23_1 doi: 10.1016/j.pbi.2009.12.003 – ident: e_1_2_6_13_1 doi: 10.1016/j.pbi.2010.08.005 – ident: e_1_2_6_27_1 doi: 10.1111/j.1365-313X.2010.04216.x – ident: e_1_2_6_39_1 doi: 10.1111/j.1744-7909.2007.00499.x – ident: e_1_2_6_8_1 doi: 10.1007/s00425-005-0020-3 – ident: e_1_2_6_15_1 doi: 10.4161/psb.6.7.15377 – ident: e_1_2_6_16_1 doi: 10.1111/j.1365-313X.2008.03685.x – ident: e_1_2_6_38_1 doi: 10.1104/pp.112.204420 – ident: e_1_2_6_42_1 doi: 10.1016/j.cell.2009.01.046 – ident: e_1_2_6_26_1 doi: 10.1111/j.1365-313X.2010.04187.x |
SSID | ssj0017364 |
Score | 2.5001307 |
Snippet | Nitrate (NO3−) is a key signaling molecule in plant metabolism and development, in addition to its role as a nutrient. It has been shown previously in... Summary Nitrate (NO3−) is a key signaling molecule in plant metabolism and development, in addition to its role as a nutrient. It has been shown previously in... Nitrate ( ) is a key signaling molecule in plant metabolism and development, in addition to its role as a nutrient. It has been shown previously in Arabidopsis... Nitrate (NO3-) is a key signaling molecule in plant metabolism and development, in addition to its role as a nutrient. It has been shown previously in... Summary Nitrate (NO 3 -) is a key signaling molecule in plant metabolism and development, in addition to its role as a nutrient. It has been shown previously... |
SourceID | proquest pubmed crossref wiley fao |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 44 |
SubjectTerms | Accumulation Anion Transport Proteins Anion Transport Proteins - genetics Anion Transport Proteins - metabolism Arabidopsis Gene Expression Gene Expression Regulation, Plant gene overexpression genes genetics Leaves Liliopsida metabolism MicroRNAs MicroRNAs - genetics MicroRNAs - metabolism miR444a Mutation nitrate signal Nitrates Nitrates - metabolism Oryza Oryza - genetics Oryza - physiology Phosphates Phosphates - metabolism physiology Pi‐starvation response Plant biology Plant growth Plant Leaves Plant Leaves - genetics Plant Leaves - physiology Plant metabolism Plant Proteins Plant Proteins - genetics Plant Proteins - metabolism Plant Roots Plant Roots - genetics Plant Roots - physiology Plant Shoots Plant Shoots - genetics Plant Shoots - physiology Plants Plants, Genetically Modified Rice RNA, Plant RNA, Plant - genetics RNA, Plant - metabolism root Root development root growth roots Signal Transduction Signal Transduction - genetics starvation transcription factors |
Title | miR444a has multiple functions in the rice nitrate‐signaling pathway |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Ftpj.12446 https://www.ncbi.nlm.nih.gov/pubmed/24460537 https://www.proquest.com/docview/1510042518 https://www.proquest.com/docview/1510710652 https://www.proquest.com/docview/1999944178 |
Volume | 78 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBbp0kMvTZM-smlSlNJDLw5-yJJNTm3pEgINJc1CDgUzkkftksQbsruEzak_ob8xv6QzftGUpJTeDBobSaPRfCOPvhHiDbrI6sT4wKPzFKAoDHIwGGgVgvFlgoB8DvnpUO-P1cFJerIi9rq7MA0_RH_gxpZR79ds4GBnvxn5_ILMnJwT021zrhYDoqOeOioySUMdRQg9IK8Zt6xCnMXTv3nLFz3wML0LZt5GrbXbGa2Kr12Hm2yT093F3O666z-4HP9zRE_E4xaOynfN-lkTK1iti4fvpwQZl0_F6HxypJQC-R1msks9lOwK69UqJ5Uk_CiZl0jS1sCsEzc_fnJKCPAtd8nljq9g-UyMRx-PP-wHbeGFwCmjNc1XrlIwgDZD8GVpbERhjfU5RTcQKhdiol2UaYvG2BSSJEo9eh8r60qDUZg8F4NqWuGGkHFoDIKxpgSlSPO5LZ3JykzTlxNaGkPxtlNB4VpWci6OcVZ00QnNSlHPylC87kUvGiqOu4Q2SI8FfKMtshh_iTmAJBhEQR01bXXKLVpDnRUEeOp9K8qGYqdvJhPj_yZQ4XTRyBAQ02n8FxkC2jmXc6PvvGgWTt9J7hfT5tBYa_Xf3_vi-PNB_bD576IvxSMeZZNNtCUG88sFbhNQmttXtUX8AspUDTo |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB61BQkuvEsXChjEgUuqPBw7kbjwWi2lrVDZlXpBlu2MoQKyFd0VKid-Ar-RX8JMXqKoIMQtkieR7fF4vnHG3wA8RJ84lekQBfSBAhSJUWk1RkrGVocqQ4t8Drm7pyYzuX2QH6zA4_4uTMsPMRy4sWU0-zUbOB9I_2LliyOyc_JOahXOcUVvZs5_vj-QRyU6a8mjCKNH5DfTjleI83iGV095o9Vg52cBzdO4tXE848vwtu9ym2_yYWu5cFv-629sjv87pitwqUOk4km7hK7CCtbX4PzTOaHGk-sw_nS4L6W04r09Fn32oWBv2CxYcVgLgpCCqYkE7Q5MPPHj23fOCrF80V1wxeMv9uQGzMYvps8mUVd7IfJSK0UTVsrcaouuQBuqSruEIhsXSgpwbCx9jJnySaEcau1ym2VJHjCEVDpfaUzibB3W6nmNGyDSWGu02unKSknKL13ldVEVir6c0eoYwaNeB8Z3xORcH-Oj6QMUmhXTzMoIHgyiRy0bx1lCG6RIY9_RLmlmb1KOIQkJUVxHTZu9dk1nq8eGME-zdSXFCO4PzWRl_OvE1jhftjKExVSe_kWGsHbJFd3oOzfblTN0kvvFzDk01kb_f-69mb7ebh5u_bvoPbgwme7umJ2Xe69uw0UecZtctAlri89LvEO4aeHuNubxE5YyEVY |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB61BaFeeJcuFDCIA5dUeTh2Ik5AWZUCVVW6Ug9Ilu2MaQVkV3RXqJz4CfxGfgkzeYmighC3SJ5Etsfj-cYZfwPwCH3iVKZDFNAHClAkRqXVGCkZWx2qDC3yOeSbXbU9kTuH-eESPOnvwrT8EMOBG1tGs1-zgc-q8IuRz2dk5uSc1DJckCouuW7D1v7AHZXorOWOIogekdtMO1ohTuMZXj3jjJaDnZ6HM8_C1sbvjK_Au77HbbrJh83F3G36r7-ROf7nkK7C5Q6PiqftAroGS1hfh4vPpoQZT2_A-NPxvpTSiiN7IvrcQ8G-sFmu4rgWBCAFExMJ2huYduLHt--cE2L5mrvgesdf7OlNmIxfHDzfjrrKC5GXWimar1LmVlt0BdpQVdolFNe4UFJ4Y2PpY8yUTwrlUGuX2yxL8oAhpNL5SmMSZ2uwUk9rXAeRxlqj1U5XVkpSfekqr4uqUPTljNbGCB73KjC-oyXn6hgfTR-e0KyYZlZG8HAQnbVcHOcJrZMejX1Pe6SZvE05giQcRFEdNW30yjWdpZ4YQjzNxpUUI3gwNJON8Y8TW-N00coQElN5-hcZQtol13Oj79xqF87QSe4X8-bQWBv1_7n35mBvp3m4_e-i9-HS3tbYvH65--oOrPKA28yiDViZf17gXQJNc3evMY6fVNMQBQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=miR444a+has+multiple+functions+in+the+rice+nitrate-signaling+pathway&rft.jtitle=The+Plant+journal+%3A+for+cell+and+molecular+biology&rft.au=Yan%2C+Yongsheng&rft.au=Wang%2C+Huacai&rft.au=Hamera%2C+Sadia&rft.au=Chen%2C+Xiaoying&rft.date=2014-04-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0960-7412&rft.eissn=1365-313X&rft.volume=78&rft.issue=1&rft.spage=44&rft_id=info:doi/10.1111%2Ftpj.12446&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=3255974851 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-7412&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-7412&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-7412&client=summon |