Stimuli‐Responsive Purely Organic Room‐Temperature Phosphorescence Materials

This Minireview summarizes the recent progress of stimuli‐responsive purely organic phosphorescence materials. Organic phosphorescence is closely related to the intermolecular interactions, because such interactions are beneficial to promote spin orbital coupling (SOC) and boost intersystem cross (I...

Full description

Saved in:
Bibliographic Details
Published inChemistry : a European journal Vol. 26; no. 52; pp. 11914 - 11930
Main Authors Huang, Lili, Qian, Chen, Ma, Zhiyong
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 16.09.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This Minireview summarizes the recent progress of stimuli‐responsive purely organic phosphorescence materials. Organic phosphorescence is closely related to the intermolecular interactions, because such interactions are beneficial to promote spin orbital coupling (SOC) and boost intersystem cross (ISC) efficiency and finally are conducive to satisfactory phosphorescence. It is found that the intermolecular interactions, which are essential for organic phosphorescence, are easily disturbed by external stimuli such as mechanical force, photon, acid, chemical vapor, leading to the luminescence change. According to this principle, various purely organic phosphorescence materials sensitive to external stimuli have been developed. This Minireview categorizes reported stimuli‐responsive purely organic phosphorescence materials on the basis of different stimuli, including mechanochromism, mechanoluminescence, photoactivity, acid‐responsiveness and other stimuli. Some prospective strategies for constructing stimuli‐responsive purely organic phosphorescence molecules are provided. Stimulus check: The minireview categorizes reported stimuli‐responsive purely organic phosphorescence materials on the basis of different stimuli, including mechanochromism, mechanoluminescence, photoactivity, acid‐responsiveness and other stimuli. Some prospective strategies for constructing stimuli‐responsive purely organic phosphorescence molecules are provided.
AbstractList This Minireview summarizes the recent progress of stimuli-responsive purely organic phosphorescence materials. Organic phosphorescence is closely related to the intermolecular interactions, because such interactions are beneficial to promote spin orbital coupling (SOC) and boost intersystem cross (ISC) efficiency and finally are conducive to satisfactory phosphorescence. It is found that the intermolecular interactions, which are essential for organic phosphorescence, are easily disturbed by external stimuli such as mechanical force, photon, acid, chemical vapor, leading to the luminescence change. According to this principle, various purely organic phosphorescence materials sensitive to external stimuli have been developed. This Minireview categorizes reported stimuli-responsive purely organic phosphorescence materials on the basis of different stimuli, including mechanochromism, mechanoluminescence, photoactivity, acid-responsiveness and other stimuli. Some prospective strategies for constructing stimuli-responsive purely organic phosphorescence molecules are provided.
This Minireview summarizes the recent progress of stimuli-responsive purely organic phosphorescence materials. Organic phosphorescence is closely related to the intermolecular interactions, because such interactions are beneficial to promote spin orbital coupling (SOC) and boost intersystem cross (ISC) efficiency and finally are conducive to satisfactory phosphorescence. It is found that the intermolecular interactions, which are essential for organic phosphorescence, are easily disturbed by external stimuli such as mechanical force, photon, acid, chemical vapor, leading to the luminescence change. According to this principle, various purely organic phosphorescence materials sensitive to external stimuli have been developed. This Minireview categorizes reported stimuli-responsive purely organic phosphorescence materials on the basis of different stimuli, including mechanochromism, mechanoluminescence, photoactivity, acid-responsiveness and other stimuli. Some prospective strategies for constructing stimuli-responsive purely organic phosphorescence molecules are provided.This Minireview summarizes the recent progress of stimuli-responsive purely organic phosphorescence materials. Organic phosphorescence is closely related to the intermolecular interactions, because such interactions are beneficial to promote spin orbital coupling (SOC) and boost intersystem cross (ISC) efficiency and finally are conducive to satisfactory phosphorescence. It is found that the intermolecular interactions, which are essential for organic phosphorescence, are easily disturbed by external stimuli such as mechanical force, photon, acid, chemical vapor, leading to the luminescence change. According to this principle, various purely organic phosphorescence materials sensitive to external stimuli have been developed. This Minireview categorizes reported stimuli-responsive purely organic phosphorescence materials on the basis of different stimuli, including mechanochromism, mechanoluminescence, photoactivity, acid-responsiveness and other stimuli. Some prospective strategies for constructing stimuli-responsive purely organic phosphorescence molecules are provided.
This Minireview summarizes the recent progress of stimuli‐responsive purely organic phosphorescence materials. Organic phosphorescence is closely related to the intermolecular interactions, because such interactions are beneficial to promote spin orbital coupling (SOC) and boost intersystem cross (ISC) efficiency and finally are conducive to satisfactory phosphorescence. It is found that the intermolecular interactions, which are essential for organic phosphorescence, are easily disturbed by external stimuli such as mechanical force, photon, acid, chemical vapor, leading to the luminescence change. According to this principle, various purely organic phosphorescence materials sensitive to external stimuli have been developed. This Minireview categorizes reported stimuli‐responsive purely organic phosphorescence materials on the basis of different stimuli, including mechanochromism, mechanoluminescence, photoactivity, acid‐responsiveness and other stimuli. Some prospective strategies for constructing stimuli‐responsive purely organic phosphorescence molecules are provided. Stimulus check: The minireview categorizes reported stimuli‐responsive purely organic phosphorescence materials on the basis of different stimuli, including mechanochromism, mechanoluminescence, photoactivity, acid‐responsiveness and other stimuli. Some prospective strategies for constructing stimuli‐responsive purely organic phosphorescence molecules are provided.
Author Ma, Zhiyong
Qian, Chen
Huang, Lili
Author_xml – sequence: 1
  givenname: Lili
  surname: Huang
  fullname: Huang, Lili
  organization: Beijing University of, Chemical Technology
– sequence: 2
  givenname: Chen
  surname: Qian
  fullname: Qian, Chen
  organization: Beijing University of, Chemical Technology
– sequence: 3
  givenname: Zhiyong
  orcidid: 0000-0002-2942-6545
  surname: Ma
  fullname: Ma, Zhiyong
  email: mazhy@mail.buct.edu.cn
  organization: Beijing University of, Chemical Technology
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32159896$$D View this record in MEDLINE/PubMed
BookMark eNqFkc9KJDEQh4MoOupePUqDl730mH-d7hxlcFUYcVD3HDJJjRPp7rRJtzI3H2GfcZ_EyIwKwrKnosj3VYr67aPt1reA0BHBY4IxPTVLaMYUU4xxQcUWGpGCkpyVothGIyx5mYuCyT20H-NjYqRgbBftMUoKWUkxQrO73jVD7f6-_rmF2Pk2umfIZkOAepXdhAfdOpPdet8k4B6aDoLu02M2W_rYLX2AaKA1kF3rHoLTdTxEO4tU4MemHqDfv87vJ5f59ObianI2zQ0vhchLMmeEU1Fhm1ohGa6sLBYGz6vCLqzkVlMrS0yAgya6oEZYwVlluSR8Lkp2gH6u53bBPw0Qe9W4tEtd6xb8EBVNN6AMU8oSevINffRDaNN2inJOS0mwwIk63lDDvAGruuAaHVbq41YJGK8BE3yMARafCMHqPQz1Hob6DCMJ_JtgXK9759s-aFf_W5Nr7cXVsPrPJ2pyeX795b4BLxWfKw
CitedBy_id crossref_primary_10_1002_adom_202100411
crossref_primary_10_1246_cl_200874
crossref_primary_10_1016_j_dyepig_2025_112660
crossref_primary_10_3762_bjoc_18_122
crossref_primary_10_1002_advs_202409974
crossref_primary_10_1021_acs_chemmater_3c00193
crossref_primary_10_34133_2022_9782713
crossref_primary_10_1002_adfm_202101312
crossref_primary_10_1016_j_cclet_2021_12_097
crossref_primary_10_1002_adom_202301514
crossref_primary_10_1016_j_dyepig_2023_111899
crossref_primary_10_1016_j_molstruc_2025_141897
crossref_primary_10_1126_sciadv_abl8392
crossref_primary_10_5059_yukigoseikyokaishi_82_1088
crossref_primary_10_1002_adfm_202101719
crossref_primary_10_1039_D4SC01708K
crossref_primary_10_1016_j_dyepig_2023_111651
crossref_primary_10_1002_adma_202311347
crossref_primary_10_1021_acs_jpclett_2c03914
crossref_primary_10_1016_j_cclet_2024_109929
crossref_primary_10_1021_acsami_3c14054
crossref_primary_10_1002_adom_202100421
crossref_primary_10_1039_D1SC00446H
crossref_primary_10_1002_ange_202415312
crossref_primary_10_1002_ange_202413151
crossref_primary_10_1002_anie_202200236
crossref_primary_10_1002_adom_202102449
crossref_primary_10_1021_acs_chemmater_2c03484
crossref_primary_10_1039_D1TC00403D
crossref_primary_10_1039_D4TC05302H
crossref_primary_10_1021_jacs_2c13632
crossref_primary_10_1016_j_cclet_2022_107950
crossref_primary_10_1021_acs_cgd_4c00024
crossref_primary_10_1039_D2SC03729G
crossref_primary_10_1039_D3TC02256K
crossref_primary_10_1002_adom_202303099
crossref_primary_10_1021_accountsmr_1c00084
crossref_primary_10_1002_adom_202200767
crossref_primary_10_1039_D1QM00578B
crossref_primary_10_1016_j_cej_2023_147792
crossref_primary_10_1039_D3CC02836D
crossref_primary_10_1039_D4TC04206A
crossref_primary_10_3390_chemosensors11090489
crossref_primary_10_1039_D3QI01544K
crossref_primary_10_1002_anie_202415312
crossref_primary_10_1039_D0TC05468B
crossref_primary_10_1039_D0TC05816E
crossref_primary_10_1039_D1TC00501D
crossref_primary_10_1039_D2DT02515A
crossref_primary_10_1002_smll_202104073
crossref_primary_10_1002_ange_202200236
crossref_primary_10_1016_j_ccr_2022_214872
crossref_primary_10_3389_fchem_2021_812593
crossref_primary_10_1021_acsami_1c03318
crossref_primary_10_1021_jacs_2c01669
crossref_primary_10_1002_adom_202302671
crossref_primary_10_1039_D1DT01827B
crossref_primary_10_1039_D1TC01751A
crossref_primary_10_1016_j_cclet_2024_110375
crossref_primary_10_1039_D2RA08205E
crossref_primary_10_1039_D4MR00071D
crossref_primary_10_1016_j_carbon_2021_12_077
crossref_primary_10_1016_j_dyepig_2023_111272
crossref_primary_10_1016_j_cej_2022_139806
crossref_primary_10_1016_j_trac_2023_117356
crossref_primary_10_1007_s10853_024_09711_4
crossref_primary_10_1039_D1TC06140B
crossref_primary_10_1039_D1TC03020E
crossref_primary_10_1002_adom_202302935
crossref_primary_10_1039_D3TC03686C
crossref_primary_10_6023_cjoc202204063
crossref_primary_10_1002_cptc_202100016
crossref_primary_10_1016_j_nxmate_2024_100318
crossref_primary_10_3390_molecules29143396
crossref_primary_10_1002_cplu_202000783
crossref_primary_10_1002_chem_202004291
crossref_primary_10_1016_j_cej_2022_136629
crossref_primary_10_1016_j_dyepig_2022_110196
crossref_primary_10_1021_acs_jpcb_1c08607
crossref_primary_10_1038_s41467_022_28011_6
crossref_primary_10_1039_D0SC07058K
crossref_primary_10_1002_anie_202413151
crossref_primary_10_1016_j_dyepig_2021_109708
crossref_primary_10_1002_cjoc_202100843
crossref_primary_10_1021_acsmaterialslett_2c00392
crossref_primary_10_1039_D3SC00568B
Cites_doi 10.1002/adom.201800820
10.1002/anie.201712381
10.1002/adfm.201203706
10.1039/C6SC04863C
10.1002/adfm.201707369
10.1021/acs.jpclett.8b01551
10.1002/smll.201903270
10.1038/s41467-017-00362-5
10.1002/adma.201502442
10.1016/j.dyepig.2019.107963
10.1039/C8TC01007B
10.1002/ange.201708119
10.1002/smll.201801560
10.1016/j.cclet.2016.06.029
10.1002/ange.201509224
10.1021/acs.accounts.8b00620
10.1002/anie.201915164
10.1002/adma.201606829
10.1039/C8CC04734K
10.1038/nchem.984
10.1039/C5CC03114A
10.1002/anie.201507197
10.1038/s41467-018-03236-6
10.1002/ange.201908567
10.1002/anie.201800762
10.1002/ange.201404490
10.1021/ja0720255
10.1021/jacs.7b07738
10.1016/j.ccr.2019.213107
10.1002/adma.201807268
10.1002/chem.201200224
10.1021/ja401769g
10.1038/nature24010
10.1039/C8CC02365D
10.1002/adma.201807887
10.1007/s11426-013-4923-8
10.1002/adma.201803713
10.1038/s41467-019-10033-2
10.1016/j.matt.2019.10.002
10.1002/adfm.201705045
10.1002/anie.201906312
10.1002/ange.201712381
10.1039/C5SC00253B
10.1002/chem.201903100
10.1002/ange.201610453
10.1002/adma.201701244
10.1002/ange.201407402
10.1002/anie.201908567
10.1021/acs.jpclett.8b01697
10.1002/anie.201909076
10.1002/adom.201900511
10.1039/C8TC01417E
10.1021/jacs.9b06237
10.1021/jacs.7b08710
10.1021/ja00974a008
10.1021/jp909388y
10.1039/C8CC03494J
10.1002/anie.201708119
10.1039/C7SC04098A
10.1002/ange.201901672
10.1002/ange.201907572
10.1002/anie.201803947
10.1002/chem.201802819
10.1002/anie.201509224
10.1002/ange.201500426
10.1002/ange.201915164
10.1002/chem.201705391
10.1002/ange.201800697
10.1016/j.chempr.2016.08.010
10.1002/ange.201800762
10.1002/adom.201600427
10.1002/anie.201404490
10.1002/ange.201911648
10.1002/ange.201607653
10.1002/ange.201803947
10.1021/la404436v
10.1002/chem.201904903
10.1002/ange.201811660
10.1002/anie.201901546
10.1039/C5CC03403E
10.1002/anie.201910719
10.1039/c3tc31638f
10.1021/jacs.7b12800
10.1039/C8SC00429C
10.1002/anie.201306503
10.1002/adma.201502589
10.1038/ncomms9947
10.1002/chem.201901116
10.1021/acs.chemmater.9b01304
10.1002/anie.201808861
10.1002/ange.201909076
10.1038/s41467-019-13048-x
10.1039/C7TC04634K
10.1002/anie.201811660
10.1039/C6CC09288H
10.1002/cphc.201500181
10.1002/anie.201610453
10.1021/jacs.8b11224
10.1002/anie.201407402
10.1002/ange.201901546
10.1002/ange.201306503
10.1002/ange.201910719
10.1039/C9MH00220K
10.1038/nmat2509
10.1002/ange.201507197
10.1002/ange.201808861
10.1021/acsami.8b13713
10.1039/C9MH00130A
10.1002/adom.201500115
10.1002/anie.201901672
10.1002/anie.201500426
10.1002/anie.201907572
10.1021/jacs.6b11984
10.1039/C9QM00509A
10.1039/C7TC04452F
10.1002/chem.201801739
10.1039/C6SC03038F
10.1002/anie.201800697
10.1038/s41566-019-0408-4
10.1002/anie.201607653
10.1021/j100535a010
10.1002/anie.201911648
10.1002/adom.201700116
10.1002/ange.201906312
10.1039/C8SC01485J
10.1002/adfm.201600706
10.1021/acsami.9b17554
ContentType Journal Article
Copyright 2020 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim
2020 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
2020 Wiley‐VCH GmbH
Copyright_xml – notice: 2020 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2020 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
– notice: 2020 Wiley‐VCH GmbH
DBID AAYXX
CITATION
NPM
7SR
8BQ
8FD
JG9
K9.
7X8
DOI 10.1002/chem.202000526
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
ProQuest Health & Medical Complete (Alumni)
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList PubMed
CrossRef
MEDLINE - Academic
Materials Research Database

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3765
EndPage 11930
ExternalDocumentID 32159896
10_1002_chem_202000526
CHEM202000526
Genre reviewArticle
Journal Article
Review
GrantInformation_xml – fundername: The National Natural Science Foundation of China
  funderid: 21704002
– fundername: The Big Science Project from BUCT
  funderid: XK180301
– fundername: The Beijing Natural Science Foundation
  funderid: 2182054
– fundername: The National Natural Science Foundation of China
  grantid: 21704002
– fundername: The Big Science Project from BUCT
  grantid: XK180301
– fundername: The Beijing Natural Science Foundation
  grantid: 2182054
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
29B
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6J9
702
77Q
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACNCT
ACPOU
ACUHS
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBD
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RGC
RNS
ROL
RWI
RX1
RYL
SUPJJ
TN5
TWZ
UB1
UPT
V2E
V8K
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YZZ
ZZTAW
~IA
~WT
AAYXX
AEYWJ
AGHNM
AGYGG
CITATION
NPM
7SR
8BQ
8FD
JG9
K9.
7X8
ID FETCH-LOGICAL-c4766-71b3142680d76669308d95fc0b85dfd94da2d9701e4ea1a52c6d6438d4914b673
IEDL.DBID DR2
ISSN 0947-6539
1521-3765
IngestDate Fri Jul 11 16:50:30 EDT 2025
Fri Jul 25 10:47:42 EDT 2025
Wed Feb 19 02:28:57 EST 2025
Tue Jul 01 01:30:08 EDT 2025
Thu Apr 24 22:55:46 EDT 2025
Wed Jan 22 16:33:50 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 52
Keywords organic phosphorescence
intermolecular interactions
stimuli-responsive
photoactivity
mechanical forces
Language English
License 2020 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4766-71b3142680d76669308d95fc0b85dfd94da2d9701e4ea1a52c6d6438d4914b673
Notes These authors contributed equally to this work.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0002-2942-6545
PMID 32159896
PQID 2442791060
PQPubID 986340
PageCount 17
ParticipantIDs proquest_miscellaneous_2376230223
proquest_journals_2442791060
pubmed_primary_32159896
crossref_primary_10_1002_chem_202000526
crossref_citationtrail_10_1002_chem_202000526
wiley_primary_10_1002_chem_202000526_CHEM202000526
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate September 16, 2020
PublicationDateYYYYMMDD 2020-09-16
PublicationDate_xml – month: 09
  year: 2020
  text: September 16, 2020
  day: 16
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationSubtitle A European Journal
PublicationTitle Chemistry : a European journal
PublicationTitleAlternate Chemistry
PublicationYear 2020
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017; 5
2014 2014; 53 126
2017; 8
2019; 52
2019; 11
2013; 23
2019; 10
2019; 13
2019; 15
2020 2020; 59 132
2020; 404
2012; 18
2017; 550
2013 2013; 52 125
2018; 6
2018; 9
2020; 2
2014; 2
2020; 173
2013; 56
2010; 114
2018 2018; 57 130
2019; 25
2015 2015; 54 127
2018; 30
2019; 7
2018; 28
2007; 129
2015; 6
2015; 16
2019; 3
2019; 6
2018; 140
2015; 3
2019; 31
2015; 51
2017; 29
2017 2017; 56 129
2019; 141
2011; 3
2019 2019; 58 131
2017; 139
1977; 81
2018; 24
2016; 4
2017; 53
2016 2016; 55 128
2016; 1
2015; 27
2020; 26
2009; 8
2013; 135
2014; 30
2016; 28
2018; 54
2016; 27
2018; 10
1966; 88
2016; 26
2018; 14
e_1_2_6_72_3
e_1_2_6_114_1
e_1_2_6_72_2
e_1_2_6_76_1
e_1_2_6_53_2
e_1_2_6_95_2
e_1_2_6_118_1
e_1_2_6_118_2
e_1_2_6_30_1
e_1_2_6_91_2
e_1_2_6_110_1
e_1_2_6_19_1
e_1_2_6_57_3
e_1_2_6_34_1
e_1_2_6_11_2
e_1_2_6_53_3
e_1_2_6_38_2
e_1_2_6_15_2
e_1_2_6_57_2
e_1_2_6_99_2
e_1_2_6_64_2
e_1_2_6_106_1
e_1_2_6_41_2
e_1_2_6_83_1
e_1_2_6_60_2
e_1_2_6_121_1
e_1_2_6_102_1
e_1_2_6_9_2
e_1_2_6_5_2
e_1_2_6_1_1
e_1_2_6_22_3
e_1_2_6_22_2
e_1_2_6_49_2
e_1_2_6_49_3
e_1_2_6_64_3
e_1_2_6_26_3
e_1_2_6_87_2
e_1_2_6_26_2
e_1_2_6_45_2
e_1_2_6_68_2
e_1_2_6_50_2
e_1_2_6_73_2
e_1_2_6_96_2
e_1_2_6_113_2
e_1_2_6_117_1
e_1_2_6_31_2
e_1_2_6_92_2
e_1_2_6_117_2
e_1_2_6_113_1
e_1_2_6_12_2
e_1_2_6_35_2
e_1_2_6_58_2
e_1_2_6_58_3
e_1_2_6_16_2
e_1_2_6_39_2
e_1_2_6_54_2
e_1_2_6_77_2
e_1_2_6_16_3
e_1_2_6_54_3
e_1_2_6_77_3
e_1_2_6_61_2
e_1_2_6_84_2
e_1_2_6_105_1
e_1_2_6_42_2
e_1_2_6_80_2
e_1_2_6_109_1
e_1_2_6_120_1
e_1_2_6_120_2
e_1_2_6_101_1
e_1_2_6_6_1
e_1_2_6_23_2
e_1_2_6_69_2
e_1_2_6_2_2
e_1_2_6_65_2
e_1_2_6_27_2
e_1_2_6_88_1
e_1_2_6_46_2
e_1_2_6_51_2
e_1_2_6_97_2
e_1_2_6_74_3
e_1_2_6_116_1
e_1_2_6_74_2
e_1_2_6_93_2
e_1_2_6_70_2
e_1_2_6_112_1
e_1_2_6_112_2
e_1_2_6_13_1
e_1_2_6_59_1
e_1_2_6_32_2
e_1_2_6_17_2
e_1_2_6_55_2
e_1_2_6_78_3
e_1_2_6_36_2
e_1_2_6_78_2
e_1_2_6_62_2
e_1_2_6_104_1
e_1_2_6_85_2
e_1_2_6_20_2
e_1_2_6_81_3
e_1_2_6_108_2
e_1_2_6_81_2
e_1_2_6_100_2
e_1_2_6_123_1
e_1_2_6_7_2
e_1_2_6_3_2
e_1_2_6_24_1
e_1_2_6_28_2
e_1_2_6_43_2
e_1_2_6_66_1
e_1_2_6_47_1
e_1_2_6_89_2
e_1_2_6_52_1
e_1_2_6_98_1
e_1_2_6_115_1
e_1_2_6_75_2
e_1_2_6_115_2
e_1_2_6_10_1
e_1_2_6_94_1
e_1_2_6_119_1
e_1_2_6_71_2
e_1_2_6_90_2
e_1_2_6_119_2
e_1_2_6_111_1
e_1_2_6_111_2
e_1_2_6_18_2
e_1_2_6_33_2
e_1_2_6_14_2
e_1_2_6_37_2
e_1_2_6_56_2
e_1_2_6_79_2
e_1_2_6_103_1
e_1_2_6_103_2
e_1_2_6_63_2
e_1_2_6_86_2
e_1_2_6_107_2
e_1_2_6_82_2
e_1_2_6_40_1
e_1_2_6_122_1
e_1_2_6_122_2
e_1_2_6_8_2
e_1_2_6_29_2
e_1_2_6_4_2
e_1_2_6_48_2
e_1_2_6_21_2
e_1_2_6_44_1
e_1_2_6_67_2
e_1_2_6_25_2
References_xml – volume: 13
  start-page: 406
  year: 2019
  end-page: 411
  publication-title: Nat. Photonics
– volume: 3
  start-page: 2151
  year: 2019
  end-page: 2156
  publication-title: Mater. Chem. Front.
– volume: 58 131
  start-page: 12102 12230
  year: 2019 2019
  end-page: 12106 12234
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 55 128
  start-page: 2181 2221
  year: 2016 2016
  end-page: 2185 2225
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 6
  start-page: 11785
  year: 2018
  end-page: 11794
  publication-title: J. Mater. Chem. C
– volume: 58 131
  start-page: 17651 17815
  year: 2019 2019
  end-page: 17655 17819
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 14
  year: 2018
  publication-title: Small
– volume: 53
  start-page: 2081
  year: 2017
  end-page: 2093
  publication-title: Chem. Commun.
– volume: 81
  start-page: 1932
  year: 1977
  end-page: 1939
  publication-title: J. Phys. Chem.
– volume: 9
  start-page: 3939
  year: 2018
  end-page: 3945
  publication-title: J. Phys. Chem. Lett.
– volume: 57 130
  start-page: 16046 16278
  year: 2018 2018
  end-page: 16050 16282
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 58 131
  start-page: 6982 7056
  year: 2019 2019
  end-page: 6986 7060
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 139
  start-page: 16036
  year: 2017
  end-page: 16039
  publication-title: J. Am. Chem. Soc.
– volume: 129
  start-page: 8942
  year: 2007
  end-page: 8943
  publication-title: J. Am. Chem. Soc.
– volume: 2
  start-page: 2243
  year: 2014
  end-page: 2250
  publication-title: J. Mater. Chem. C
– volume: 23
  start-page: 3386
  year: 2013
  end-page: 3397
  publication-title: Adv. Funct. Mater.
– volume: 3
  start-page: 1184
  year: 2015
  end-page: 1190
  publication-title: Adv. Opt. Mater.
– volume: 8
  start-page: 8336
  year: 2017
  end-page: 8344
  publication-title: Chem. Sci.
– volume: 6
  start-page: 1215
  year: 2019
  end-page: 1221
  publication-title: Mater. Horiz.
– volume: 10
  start-page: 2111
  year: 2019
  publication-title: Nat. Commun.
– volume: 550
  start-page: 384
  year: 2017
  end-page: 387
  publication-title: Nature
– volume: 30
  start-page: 2351
  year: 2014
  end-page: 2359
  publication-title: Langmuir
– volume: 31
  start-page: 5584
  year: 2019
  end-page: 5591
  publication-title: Chem. Mater.
– volume: 173
  year: 2020
  publication-title: Dyes and Pigm.
– volume: 58 131
  start-page: 16445 16597
  year: 2019 2019
  end-page: 16450 16602
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 27
  start-page: 1231
  year: 2016
  end-page: 1240
  publication-title: Chin. Chem. Lett.
– volume: 18
  start-page: 8100
  year: 2012
  end-page: 8112
  publication-title: Chem. Eur. J.
– volume: 28
  start-page: 1073
  year: 2016
  end-page: 1095
  publication-title: Adv. Mater.
– volume: 9
  start-page: 3782
  year: 2018
  end-page: 3787
  publication-title: Chem. Sci.
– volume: 58 131
  start-page: 6645 6717
  year: 2019 2019
  end-page: 6649 6721
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 55 128
  start-page: 519 529
  year: 2016 2016
  end-page: 522 532
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 54
  start-page: 6028
  year: 2018
  end-page: 6031
  publication-title: Chem. Commun.
– volume: 31
  year: 2019
  publication-title: Adv. Mater.
– volume: 88
  start-page: 5087
  year: 1966
  end-page: 5097
  publication-title: J. Am. Chem. Soc.
– volume: 8
  start-page: 747
  year: 2009
  end-page: 751
  publication-title: Nat. Mater.
– volume: 27
  start-page: 6195
  year: 2015
  end-page: 6201
  publication-title: Adv. Mater.
– volume: 54
  start-page: 9226
  year: 2018
  end-page: 9229
  publication-title: Chem. Commun.
– volume: 6
  start-page: 226
  year: 2018
  end-page: 233
  publication-title: J. Mater. Chem. C
– volume: 141
  start-page: 1010
  year: 2019
  end-page: 1015
  publication-title: J. Am. Chem. Soc.
– volume: 9
  start-page: 3808
  year: 2018
  end-page: 3813
  publication-title: J. Phys. Chem. Lett.
– volume: 52 125
  start-page: 12268 12494
  year: 2013 2013
  end-page: 12272 12498
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 56
  start-page: 1178
  year: 2013
  end-page: 1182
  publication-title: Sci. China Chem.
– volume: 59 132
  start-page: 4756 4786
  year: 2020 2020
  end-page: 4762 4792
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 135
  start-page: 6325
  year: 2013
  end-page: 6329
  publication-title: J. Am. Chem. Soc.
– volume: 6
  start-page: 1259
  year: 2019
  end-page: 1264
  publication-title: Mater. Horiz.
– volume: 25
  start-page: 714
  year: 2019
  end-page: 723
  publication-title: Chem. Eur. J.
– volume: 10
  start-page: 33730
  year: 2018
  end-page: 33736
  publication-title: ACS Appl. Mater. Interfaces
– volume: 25
  start-page: 16294
  year: 2019
  end-page: 16300
  publication-title: Chem. Eur. J.
– volume: 11
  start-page: 47162
  year: 2019
  end-page: 47169
  publication-title: ACS Appl. Mater. Interfaces
– volume: 10
  start-page: 5161
  year: 2019
  publication-title: Nat. Commun.
– volume: 53 126
  start-page: 14149 14373
  year: 2014 2014
  end-page: 14152 14376
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 404
  year: 2020
  publication-title: Coord. Chem. Rev.
– volume: 52
  start-page: 738
  year: 2019
  end-page: 748
  publication-title: Acc. Chem. Res.
– volume: 8
  start-page: 1909
  year: 2017
  end-page: 1914
  publication-title: Chem. Sci.
– volume: 54
  start-page: 6847
  year: 2018
  end-page: 6850
  publication-title: Chem. Commun.
– volume: 8
  start-page: 416
  year: 2017
  publication-title: Nat. Commun.
– volume: 56 129
  start-page: 880 898
  year: 2017 2017
  end-page: 884 902
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 5
  start-page: 12547
  year: 2017
  end-page: 12552
  publication-title: J. Mater. Chem. C
– volume: 2
  start-page: 181
  year: 2020
  end-page: 193
  publication-title: Matter
– volume: 8
  start-page: 2677
  year: 2017
  end-page: 2686
  publication-title: Chem. Sci.
– volume: 114
  start-page: 6090
  year: 2010
  end-page: 6099
  publication-title: J. Phys. Chem. C
– volume: 6
  start-page: 8947
  year: 2015
  publication-title: Nat. Commun.
– volume: 141
  start-page: 14699
  year: 2019
  end-page: 14706
  publication-title: J. Am. Chem. Soc.
– volume: 24
  start-page: 12773
  year: 2018
  end-page: 12778
  publication-title: Chem. Eur. J.
– volume: 140
  start-page: 1916
  year: 2018
  end-page: 1923
  publication-title: J. Am. Chem. Soc.
– volume: 53 126
  start-page: 11177 11359
  year: 2014 2014
  end-page: 11181 11363
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 57 130
  start-page: 10854 11020
  year: 2018 2018
  end-page: 10858 11024
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 55 128
  start-page: 15589 15818
  year: 2016 2016
  end-page: 15593 15822
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 9
  start-page: 6150
  year: 2018
  end-page: 6155
  publication-title: Chem. Sci.
– volume: 16
  start-page: 1811
  year: 2015
  end-page: 1828
  publication-title: ChemPhysChem
– volume: 28
  year: 2018
  publication-title: Adv. Funct. Mater.
– volume: 139
  start-page: 2728
  year: 2017
  end-page: 2733
  publication-title: J. Am. Chem. Soc.
– volume: 26
  start-page: 4437
  year: 2020
  end-page: 4448
  publication-title: Chem. Eur. J.
– volume: 58 131
  start-page: 14140 14278
  year: 2019 2019
  end-page: 14145 14283
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 57 130
  start-page: 8425 8561
  year: 2018 2018
  end-page: 8431 8567
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 7
  year: 2019
  publication-title: Adv. Opt. Mater.
– volume: 4
  start-page: 1397
  year: 2016
  end-page: 1401
  publication-title: Adv. Opt. Mater.
– volume: 51
  start-page: 10988
  year: 2015
  end-page: 11003
  publication-title: Chem. Commun.
– volume: 58 131
  start-page: 17220 17380
  year: 2019 2019
  end-page: 17225 17385
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 6
  start-page: 4438
  year: 2015
  end-page: 4444
  publication-title: Chem. Sci.
– volume: 29
  year: 2017
  publication-title: Adv. Mater.
– volume: 1
  start-page: 592
  year: 2016
  end-page: 602
  publication-title: Chem
– volume: 54 127
  start-page: 6270 6368
  year: 2015 2015
  end-page: 6273 6371
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 57 130
  start-page: 6449 6559
  year: 2018 2018
  end-page: 6453 6563
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 3
  start-page: 205
  year: 2011
  end-page: 210
  publication-title: Nat. Chem.
– volume: 26
  start-page: 4386
  year: 2016
  end-page: 4396
  publication-title: Adv. Funct. Mater.
– volume: 58 131
  start-page: 17297 17457
  year: 2019 2019
  end-page: 17302 17462
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 56 129
  start-page: 15299 15501
  year: 2017 2017
  end-page: 15303 15505
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 24
  start-page: 1801
  year: 2018
  end-page: 1805
  publication-title: Chem. Eur. J.
– volume: 15
  year: 2019
  publication-title: Small
– volume: 57 130
  start-page: 4005 4069
  year: 2018 2018
  end-page: 4009 4073
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 25
  start-page: 7031
  year: 2019
  end-page: 7037
  publication-title: Chem. Eur. J.
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 51
  start-page: 10381
  year: 2015
  end-page: 10384
  publication-title: Chem. Commun.
– volume: 5
  year: 2017
  publication-title: Adv. Opt. Mater.
– volume: 139
  start-page: 14792
  year: 2017
  end-page: 14799
  publication-title: J. Am. Chem. Soc.
– volume: 57 130
  start-page: 16821 17063
  year: 2018 2018
  end-page: 16826 17068
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 9
  start-page: 840
  year: 2018
  publication-title: Nat. Commun.
– volume: 6
  start-page: 4603
  year: 2018
  end-page: 4626
  publication-title: J. Mater. Chem. C
– ident: e_1_2_6_107_2
  doi: 10.1002/adom.201800820
– ident: e_1_2_6_117_1
  doi: 10.1002/anie.201712381
– ident: e_1_2_6_76_1
– ident: e_1_2_6_7_2
  doi: 10.1002/adfm.201203706
– ident: e_1_2_6_97_2
  doi: 10.1039/C6SC04863C
– ident: e_1_2_6_56_2
  doi: 10.1002/adfm.201707369
– ident: e_1_2_6_63_2
  doi: 10.1021/acs.jpclett.8b01551
– ident: e_1_2_6_65_2
  doi: 10.1002/smll.201903270
– ident: e_1_2_6_20_2
  doi: 10.1038/s41467-017-00362-5
– ident: e_1_2_6_101_1
  doi: 10.1002/adma.201502442
– ident: e_1_2_6_110_1
  doi: 10.1016/j.dyepig.2019.107963
– ident: e_1_2_6_59_1
– ident: e_1_2_6_90_2
  doi: 10.1039/C8TC01007B
– ident: e_1_2_6_112_2
  doi: 10.1002/ange.201708119
– ident: e_1_2_6_86_2
  doi: 10.1002/smll.201801560
– ident: e_1_2_6_94_1
– ident: e_1_2_6_84_2
  doi: 10.1016/j.cclet.2016.06.029
– ident: e_1_2_6_26_3
  doi: 10.1002/ange.201509224
– ident: e_1_2_6_44_1
– ident: e_1_2_6_100_2
  doi: 10.1021/acs.accounts.8b00620
– ident: e_1_2_6_81_2
  doi: 10.1002/anie.201915164
– ident: e_1_2_6_47_1
– ident: e_1_2_6_39_2
  doi: 10.1002/adma.201606829
– ident: e_1_2_6_29_2
  doi: 10.1039/C8CC04734K
– ident: e_1_2_6_41_2
  doi: 10.1038/nchem.984
– ident: e_1_2_6_12_2
  doi: 10.1039/C5CC03114A
– ident: e_1_2_6_74_2
  doi: 10.1002/anie.201507197
– ident: e_1_2_6_116_1
  doi: 10.1038/s41467-018-03236-6
– ident: e_1_2_6_119_2
  doi: 10.1002/ange.201908567
– ident: e_1_2_6_118_1
  doi: 10.1002/anie.201800762
– ident: e_1_2_6_49_3
  doi: 10.1002/ange.201404490
– ident: e_1_2_6_88_1
– ident: e_1_2_6_14_2
  doi: 10.1021/ja0720255
– ident: e_1_2_6_95_2
  doi: 10.1021/jacs.7b07738
– ident: e_1_2_6_93_2
  doi: 10.1016/j.ccr.2019.213107
– ident: e_1_2_6_9_2
  doi: 10.1002/adma.201807268
– ident: e_1_2_6_11_2
  doi: 10.1002/chem.201200224
– ident: e_1_2_6_34_1
– ident: e_1_2_6_48_2
  doi: 10.1021/ja401769g
– ident: e_1_2_6_42_2
  doi: 10.1038/nature24010
– ident: e_1_2_6_96_2
  doi: 10.1039/C8CC02365D
– ident: e_1_2_6_50_2
  doi: 10.1002/adma.201807887
– ident: e_1_2_6_36_2
  doi: 10.1007/s11426-013-4923-8
– ident: e_1_2_6_51_2
  doi: 10.1002/adma.201803713
– ident: e_1_2_6_87_2
  doi: 10.1038/s41467-019-10033-2
– ident: e_1_2_6_67_2
  doi: 10.1016/j.matt.2019.10.002
– ident: e_1_2_6_61_2
  doi: 10.1002/adfm.201705045
– ident: e_1_2_6_122_1
  doi: 10.1002/anie.201906312
– ident: e_1_2_6_52_1
– ident: e_1_2_6_117_2
  doi: 10.1002/ange.201712381
– ident: e_1_2_6_37_2
  doi: 10.1039/C5SC00253B
– ident: e_1_2_6_30_1
– ident: e_1_2_6_23_2
  doi: 10.1002/chem.201903100
– ident: e_1_2_6_78_3
  doi: 10.1002/ange.201610453
– ident: e_1_2_6_60_2
  doi: 10.1002/adma.201701244
– ident: e_1_2_6_24_1
– ident: e_1_2_6_77_3
  doi: 10.1002/ange.201407402
– ident: e_1_2_6_119_1
  doi: 10.1002/anie.201908567
– ident: e_1_2_6_28_2
  doi: 10.1021/acs.jpclett.8b01697
– ident: e_1_2_6_57_2
  doi: 10.1002/anie.201909076
– ident: e_1_2_6_55_2
  doi: 10.1002/adom.201900511
– ident: e_1_2_6_85_2
  doi: 10.1039/C8TC01417E
– ident: e_1_2_6_71_2
  doi: 10.1021/jacs.9b06237
– ident: e_1_2_6_17_2
  doi: 10.1021/jacs.7b08710
– ident: e_1_2_6_25_2
  doi: 10.1021/ja00974a008
– ident: e_1_2_6_35_2
  doi: 10.1021/jp909388y
– ident: e_1_2_6_109_1
  doi: 10.1039/C8CC03494J
– ident: e_1_2_6_112_1
  doi: 10.1002/anie.201708119
– ident: e_1_2_6_108_2
  doi: 10.1039/C7SC04098A
– ident: e_1_2_6_54_3
  doi: 10.1002/ange.201901672
– ident: e_1_2_6_53_3
  doi: 10.1002/ange.201907572
– ident: e_1_2_6_58_2
  doi: 10.1002/anie.201803947
– ident: e_1_2_6_91_2
  doi: 10.1002/chem.201802819
– ident: e_1_2_6_26_2
  doi: 10.1002/anie.201509224
– ident: e_1_2_6_103_2
  doi: 10.1002/ange.201500426
– ident: e_1_2_6_81_3
  doi: 10.1002/ange.201915164
– ident: e_1_2_6_121_1
  doi: 10.1002/chem.201705391
– ident: e_1_2_6_40_1
– ident: e_1_2_6_64_3
  doi: 10.1002/ange.201800697
– ident: e_1_2_6_89_2
  doi: 10.1016/j.chempr.2016.08.010
– ident: e_1_2_6_98_1
– ident: e_1_2_6_118_2
  doi: 10.1002/ange.201800762
– ident: e_1_2_6_2_2
  doi: 10.1002/adom.201600427
– ident: e_1_2_6_49_2
  doi: 10.1002/anie.201404490
– ident: e_1_2_6_111_2
  doi: 10.1002/ange.201911648
– ident: e_1_2_6_16_3
  doi: 10.1002/ange.201607653
– ident: e_1_2_6_58_3
  doi: 10.1002/ange.201803947
– ident: e_1_2_6_69_2
  doi: 10.1021/la404436v
– ident: e_1_2_6_83_1
– ident: e_1_2_6_92_2
  doi: 10.1002/chem.201904903
– ident: e_1_2_6_113_2
  doi: 10.1002/ange.201811660
– ident: e_1_2_6_66_1
– ident: e_1_2_6_22_2
  doi: 10.1002/anie.201901546
– ident: e_1_2_6_102_1
  doi: 10.1039/C5CC03403E
– ident: e_1_2_6_115_1
  doi: 10.1002/anie.201910719
– ident: e_1_2_6_45_2
  doi: 10.1039/c3tc31638f
– ident: e_1_2_6_99_2
  doi: 10.1021/jacs.7b12800
– ident: e_1_2_6_114_1
  doi: 10.1039/C8SC00429C
– ident: e_1_2_6_72_2
  doi: 10.1002/anie.201306503
– ident: e_1_2_6_6_1
– ident: e_1_2_6_75_2
  doi: 10.1002/adma.201502589
– ident: e_1_2_6_106_1
– ident: e_1_2_6_32_2
  doi: 10.1038/ncomms9947
– ident: e_1_2_6_79_2
  doi: 10.1002/chem.201901116
– ident: e_1_2_6_18_2
  doi: 10.1021/acs.chemmater.9b01304
– ident: e_1_2_6_120_1
  doi: 10.1002/anie.201808861
– ident: e_1_2_6_57_3
  doi: 10.1002/ange.201909076
– ident: e_1_2_6_43_2
  doi: 10.1038/s41467-019-13048-x
– ident: e_1_2_6_27_2
  doi: 10.1039/C7TC04634K
– ident: e_1_2_6_113_1
  doi: 10.1002/anie.201811660
– ident: e_1_2_6_1_1
– ident: e_1_2_6_8_2
  doi: 10.1039/C6CC09288H
– ident: e_1_2_6_73_2
  doi: 10.1002/cphc.201500181
– ident: e_1_2_6_78_2
  doi: 10.1002/anie.201610453
– ident: e_1_2_6_21_2
  doi: 10.1021/jacs.8b11224
– ident: e_1_2_6_77_2
  doi: 10.1002/anie.201407402
– ident: e_1_2_6_22_3
  doi: 10.1002/ange.201901546
– ident: e_1_2_6_72_3
  doi: 10.1002/ange.201306503
– ident: e_1_2_6_115_2
  doi: 10.1002/ange.201910719
– ident: e_1_2_6_4_2
  doi: 10.1039/C9MH00220K
– ident: e_1_2_6_15_2
  doi: 10.1038/nmat2509
– ident: e_1_2_6_74_3
  doi: 10.1002/ange.201507197
– ident: e_1_2_6_120_2
  doi: 10.1002/ange.201808861
– ident: e_1_2_6_123_1
  doi: 10.1021/acsami.8b13713
– ident: e_1_2_6_3_2
  doi: 10.1039/C9MH00130A
– ident: e_1_2_6_38_2
  doi: 10.1002/adom.201500115
– ident: e_1_2_6_54_2
  doi: 10.1002/anie.201901672
– ident: e_1_2_6_103_1
  doi: 10.1002/anie.201500426
– ident: e_1_2_6_53_2
  doi: 10.1002/anie.201907572
– ident: e_1_2_6_105_1
  doi: 10.1021/jacs.6b11984
– ident: e_1_2_6_82_2
  doi: 10.1039/C9QM00509A
– ident: e_1_2_6_19_1
– ident: e_1_2_6_62_2
  doi: 10.1039/C7TC04452F
– ident: e_1_2_6_80_2
  doi: 10.1002/chem.201801739
– ident: e_1_2_6_10_1
– ident: e_1_2_6_104_1
  doi: 10.1039/C6SC03038F
– ident: e_1_2_6_13_1
– ident: e_1_2_6_64_2
  doi: 10.1002/anie.201800697
– ident: e_1_2_6_5_2
  doi: 10.1038/s41566-019-0408-4
– ident: e_1_2_6_16_2
  doi: 10.1002/anie.201607653
– ident: e_1_2_6_31_2
  doi: 10.1021/j100535a010
– ident: e_1_2_6_111_1
  doi: 10.1002/anie.201911648
– ident: e_1_2_6_33_2
  doi: 10.1002/adom.201700116
– ident: e_1_2_6_122_2
  doi: 10.1002/ange.201906312
– ident: e_1_2_6_70_2
  doi: 10.1039/C8SC01485J
– ident: e_1_2_6_68_2
  doi: 10.1002/adfm.201600706
– ident: e_1_2_6_46_2
  doi: 10.1021/acsami.9b17554
SSID ssj0009633
Score 2.5942593
SecondaryResourceType review_article
Snippet This Minireview summarizes the recent progress of stimuli‐responsive purely organic phosphorescence materials. Organic phosphorescence is closely related to...
This Minireview summarizes the recent progress of stimuli-responsive purely organic phosphorescence materials. Organic phosphorescence is closely related to...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 11914
SubjectTerms Chemistry
Coupling (molecular)
External stimuli
intermolecular interactions
mechanical forces
Mechanoluminescence
organic phosphorescence
Phosphorescence
photoactivity
Stimuli
stimuli-responsive
Title Stimuli‐Responsive Purely Organic Room‐Temperature Phosphorescence Materials
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fchem.202000526
https://www.ncbi.nlm.nih.gov/pubmed/32159896
https://www.proquest.com/docview/2442791060
https://www.proquest.com/docview/2376230223
Volume 26
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF6kF734fkSrRBA8pd0km9dRRClCpVQFb2FfoaK0pU0FPfkT_I3-EmeySbSKCHrLktlkHzOz3yaz3xByxPxYaSF8x-dBBhuUQDmCKupQ8AtKRDzxixPe3cuwc8MuboPbT6f4DT9E_cENLaPw12jgXEzbH6Sh0Cc8Se4ZyhJwwhiwhaio_8EfBdplcsmzyEEO1oq1kXrt-erzq9I3qDmPXIul53yF8KrRJuLkvjXLRUs-f-Fz_E-vVslyiUvtE6NIa2RBD9fJ4mmVDm6D9K7yOwylent57ZdxtY_a7iEf85NtTnRKuw8wHASuNYBxQ9Zs9waj6XgwmhS0UVLbXZ4bpd8kN-dn16cdp0zH4EgWhaETucJ3YUGPqYIiplCMVRJkkoo4UJlKmOKeSiLqaqa5ywNPhipEXWCJy0QY-VukMRwN9Q6xKXcTmUmNqY8Z17GAK80LKnyPAmKziFNNRypLrnJMmfGQGpZlL8VxSutxsshxLT82LB0_Sjar2U1La52mAHG8CHBTSC1yWN-G8cWfJ3yoRzOQAU8M2zVAUxbZNlpRv8oH3JTECTzcK-b2lzakyHZRl3b_UmmPLOE1Bq64YZM08slM7wM6ysVBYQHvhZsG3Q
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB6V9BAulJZX2lJcCYmTk7W9fh1RIUpLEkUhkbhZ-7KKQEnVOJXKiZ_Q39hf0hmv7SgghAQ3rz1r72N299v1zDcAb3mQaCNl4AYizHGDEmpXMs1chvOClrFIg9LDezSOBnN-8SWsrQnJF8byQzQHbjQyyvmaBjgdSPc2rKFYKXIl9y1nySPYpbDeRJ__YbphkEL9stHkeewSC2vN28j83nb-7XXpN7C5jV3Lxae_B7IutrU5-dZdF7KrfvzC6Phf9XoKTypo6ry3urQPO2ZxAO2zOiLcM5h8Lr6SNdX9z7tpZVp7Y5wJUTLfOtapUzlTROIoMDOIxy1fszO5XK6uLpfXJXOUMs5IFFbvn8O8_3F2NnCriAyu4nEUubEnAw_X9IRpTFIUxUSnYa6YTEKd65Rr4es0Zp7hRngi9FWkI1IHnnpcRnHwAlqL5cK8AocJL1W5MhT9mAuTSLwyomTD9xmCtg64dX9kqqIrp6gZ3zNLtOxn1E5Z004deNfIX1mijj9KHtfdm1UDdpUhyvFjhE4R68Bp8xjbl_6fiIVZrlEGJ2PcsSGg6sBLqxbNpwKETmmS4sv9snP_UoaMCC-a1OG_ZHoD7cFsNMyG5-NPR_CY7pMdixcdQ6u4XpvXCJYKeVIOhwf0lAr5
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB5RkIBLeZTHUgpBQuIUcBLHiY8VsOKt1QISt8ivCATaXUEWqT31J_Ab-SWM4yR0QRUSvcXJJPFjxv6czHwDsEmjVBspIz8ScY4blFj7kmjiE5wXtEwEj8oI79MzdnBJj67iq7-i-B0_RPPBzVpGOV9bAx_ofOeVNBTbZCPJQ0dZ8gUmKCPcJm_Y674SSKF6uWTyNPEtCWtN20jCndH7R5eld1hzFLqWa097BkRda-dycrs9LOS2-v2G0PF_mjULXytg6v10mjQHY6Y3D1O7dT64b9A5L26sL9Xzn6du5Vj7aLyOJWT-5bmQTuV1EYejwIVBNO7Ymr3Odf9hcN2_L3mjlPFOReG0fgEu2_sXuwd-lY_BVzRhzE8CGQW4oqdEY9HmUEw1j3NFZBrrXHOqRah5QgJDjQhEHCqmmVUGygMqWRItwniv3zPL4BERcJUrY3MfU2FSiUdGlFz4IUHI1gK_Ho5MVWTlNmfGXeZolsPM9lPW9FMLthr5gaPp-Kfkaj26WWWuDxlinDBB4MRICzaay9i_9u-J6Jn-EGVwKsb9GsKpFiw5rWheFSFw4inHh4fl2H5Qh8zSXTSllc_ctA6Tnb12dnJ4dvwdpu1p68QSsFUYL-6H5gcipUKulcbwAsZmCag
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stimuli%E2%80%90Responsive+Purely+Organic+Room%E2%80%90Temperature+Phosphorescence+Materials&rft.jtitle=Chemistry+%3A+a+European+journal&rft.au=Huang%2C+Lili&rft.au=Qian%2C+Chen&rft.au=Ma%2C+Zhiyong&rft.date=2020-09-16&rft.issn=0947-6539&rft.eissn=1521-3765&rft.volume=26&rft.issue=52&rft.spage=11914&rft.epage=11930&rft_id=info:doi/10.1002%2Fchem.202000526&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_chem_202000526
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0947-6539&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0947-6539&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0947-6539&client=summon