An Update on Formic Acid Dehydrogenation by Homogeneous Catalysis

Formic acid (FA) has been extensively studied as one of the most promising hydrogen energy carriers today. The catalytic decarboxylation of FA ideally leads to the formation of CO2 and H2 that can be applied in fuel cells. A large number of transition‐metal based homogeneous catalysts with high acti...

Full description

Saved in:
Bibliographic Details
Published inChemistry, an Asian journal Vol. 15; no. 7; pp. 937 - 946
Main Authors Guan, Chao, Pan, Yupeng, Zhang, Tonghuan, Ajitha, Manjaly J., Huang, Kuo‐Wei
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.04.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Formic acid (FA) has been extensively studied as one of the most promising hydrogen energy carriers today. The catalytic decarboxylation of FA ideally leads to the formation of CO2 and H2 that can be applied in fuel cells. A large number of transition‐metal based homogeneous catalysts with high activity and selectivity have been reported for the selective FA dehydrogentaion. In this review, we discussed the recent development of C,N/N,N‐ligand and pincer ligand‐based homogeneous catalysts for the FA dehydrogenation reaction. Some representative catalysts are further evaluated by the CON/COF assessment (catalyst on‐cost number)/(catalyst on‐cost frequency). Conclusive remarks are provided with future challenges and opportunities. Fueling the future: Formic acid (FA) has been extensively studied as one of the most promising hydrogen energy carriers today. In this review, we discussed the recent development of C,N/N,N‐ligand and pincer ligand‐based homogeneous catalysts for the FA dehydrogenation reaction. The CON/COF assessment (catalyst on‐cost number)/(catalyst on‐cost frequency) was highlighted with conclusive remarks on the future challenges and opportunities.
AbstractList Formic acid (FA) has been extensively studied as one of the most promising hydrogen energy carriers today. The catalytic decarboxylation of FA ideally leads to the formation of CO2 and H2 that can be applied in fuel cells. A large number of transition-metal based homogeneous catalysts with high activity and selectivity have been reported for the selective FA dehydrogentaion. In this review, we discussed the recent development of C,N/N,N-ligand and pincer ligand-based homogeneous catalysts for the FA dehydrogenation reaction. Some representative catalysts are further evaluated by the CON/COF assessment (catalyst on-cost number)/(catalyst on-cost frequency). Conclusive remarks are provided with future challenges and opportunities.Formic acid (FA) has been extensively studied as one of the most promising hydrogen energy carriers today. The catalytic decarboxylation of FA ideally leads to the formation of CO2 and H2 that can be applied in fuel cells. A large number of transition-metal based homogeneous catalysts with high activity and selectivity have been reported for the selective FA dehydrogentaion. In this review, we discussed the recent development of C,N/N,N-ligand and pincer ligand-based homogeneous catalysts for the FA dehydrogenation reaction. Some representative catalysts are further evaluated by the CON/COF assessment (catalyst on-cost number)/(catalyst on-cost frequency). Conclusive remarks are provided with future challenges and opportunities.
Formic acid (FA) has been extensively studied as one of the most promising hydrogen energy carriers today. The catalytic decarboxylation of FA ideally leads to the formation of CO2 and H2 that can be applied in fuel cells. A large number of transition‐metal based homogeneous catalysts with high activity and selectivity have been reported for the selective FA dehydrogentaion. In this review, we discussed the recent development of C,N/N,N‐ligand and pincer ligand‐based homogeneous catalysts for the FA dehydrogenation reaction. Some representative catalysts are further evaluated by the CON/COF assessment (catalyst on‐cost number)/(catalyst on‐cost frequency). Conclusive remarks are provided with future challenges and opportunities.
Formic acid (FA) has been extensively studied as one of the most promising hydrogen energy carriers today. The catalytic decarboxylation of FA ideally leads to the formation of CO 2 and H 2 that can be applied in fuel cells. A large number of transition‐metal based homogeneous catalysts with high activity and selectivity have been reported for the selective FA dehydrogentaion. In this review, we discussed the recent development of C,N/N,N‐ligand and pincer ligand‐based homogeneous catalysts for the FA dehydrogenation reaction. Some representative catalysts are further evaluated by the CON/COF assessment (catalyst on‐cost number)/(catalyst on‐cost frequency). Conclusive remarks are provided with future challenges and opportunities.
Formic acid (FA) has been extensively studied as one of the most promising hydrogen energy carriers today. The catalytic decarboxylation of FA ideally leads to the formation of CO2 and H2 that can be applied in fuel cells. A large number of transition‐metal based homogeneous catalysts with high activity and selectivity have been reported for the selective FA dehydrogentaion. In this review, we discussed the recent development of C,N/N,N‐ligand and pincer ligand‐based homogeneous catalysts for the FA dehydrogenation reaction. Some representative catalysts are further evaluated by the CON/COF assessment (catalyst on‐cost number)/(catalyst on‐cost frequency). Conclusive remarks are provided with future challenges and opportunities. Fueling the future: Formic acid (FA) has been extensively studied as one of the most promising hydrogen energy carriers today. In this review, we discussed the recent development of C,N/N,N‐ligand and pincer ligand‐based homogeneous catalysts for the FA dehydrogenation reaction. The CON/COF assessment (catalyst on‐cost number)/(catalyst on‐cost frequency) was highlighted with conclusive remarks on the future challenges and opportunities.
Formic acid (FA) has been extensively studied as one of the most promising hydrogen energy carriers today. The catalytic decarboxylation of FA ideally leads to the formation of CO and H that can be applied in fuel cells. A large number of transition-metal based homogeneous catalysts with high activity and selectivity have been reported for the selective FA dehydrogentaion. In this review, we discussed the recent development of C,N/N,N-ligand and pincer ligand-based homogeneous catalysts for the FA dehydrogenation reaction. Some representative catalysts are further evaluated by the CON/COF assessment (catalyst on-cost number)/(catalyst on-cost frequency). Conclusive remarks are provided with future challenges and opportunities.
Author Pan, Yupeng
Huang, Kuo‐Wei
Guan, Chao
Ajitha, Manjaly J.
Zhang, Tonghuan
Author_xml – sequence: 1
  givenname: Chao
  orcidid: 0000-0002-9430-3488
  surname: Guan
  fullname: Guan, Chao
  organization: King Abdullah University of Science and Technology
– sequence: 2
  givenname: Yupeng
  orcidid: 0000-0002-4471-3219
  surname: Pan
  fullname: Pan, Yupeng
  organization: Southern University of Science and Technology (SUSTech)
– sequence: 3
  givenname: Tonghuan
  orcidid: 0000-0002-6636-0469
  surname: Zhang
  fullname: Zhang, Tonghuan
  organization: Peking University Shenzhen Graduate School
– sequence: 4
  givenname: Manjaly J.
  orcidid: 0000-0002-0613-6270
  surname: Ajitha
  fullname: Ajitha, Manjaly J.
  organization: King Abdullah University of Science and Technology
– sequence: 5
  givenname: Kuo‐Wei
  orcidid: 0000-0003-1900-2658
  surname: Huang
  fullname: Huang, Kuo‐Wei
  email: hkw@kaust.edu.sa
  organization: King Abdullah University of Science and Technology
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32030903$$D View this record in MEDLINE/PubMed
BookMark eNqFkM1LwzAYh4NM3IdePUrBi5fNNx9N22OZTgeCBxW8hTRNNaNtZtIh_e_tVp0wEE9JyPO874_fGA1qW2uEzjHMMAC5lt7IGQGcAOYRP0IjHHM8ZRF-HezvJB6isfcrgJBAEp-gISVAIQE6QmlaBy_rXDY6sHWwsK4yKkiVyYMb_d7mzr7pWjam-8va4N5W27e2Gx_MZSPL1ht_io4LWXp99n1O0Mvi9nl-P314vFvO04epYhHnU8alJBkPGcOK6SjHYaFC0EksFcUxMJ0xJnMJGSG0i01lWCSQQV5kPFYq5HSCrvq5a2c_Nto3ojJe6bKUu0CC0JBwyqIIOvTyAF3Zjau7dKIfDhBFHXXxTW2ySudi7UwlXSt-yumAWQ8oZ713utgjGMS2fbFtX-zb7wR2ICjT7NprnDTl31rSa5-m1O0_S0T6tEx_3S_ZJZdW
CitedBy_id crossref_primary_10_1016_j_jcat_2023_07_014
crossref_primary_10_1021_acs_inorgchem_3c02611
crossref_primary_10_1039_D4DT03521F
crossref_primary_10_1039_D1CC01712H
crossref_primary_10_3390_catal11111288
crossref_primary_10_3390_catal12020240
crossref_primary_10_1021_acscatal_3c02060
crossref_primary_10_1016_j_rechem_2022_100554
crossref_primary_10_1021_acscatal_4c01708
crossref_primary_10_1002_ange_202423661
crossref_primary_10_1016_j_ica_2024_122314
crossref_primary_10_1016_j_ijhydene_2023_06_163
crossref_primary_10_1021_acs_inorgchem_4c05024
crossref_primary_10_1016_j_apcatb_2023_123439
crossref_primary_10_1016_j_ijhydene_2022_01_184
crossref_primary_10_1038_s41467_023_39309_4
crossref_primary_10_1039_D3DT00744H
crossref_primary_10_1021_acs_inorgchem_1c01784
crossref_primary_10_1021_acs_organomet_0c00777
crossref_primary_10_1016_j_ensm_2020_12_007
crossref_primary_10_1016_j_jcis_2024_06_216
crossref_primary_10_1039_D1RA01460A
crossref_primary_10_3390_en16041723
crossref_primary_10_1002_cssc_202301282
crossref_primary_10_1021_acscatal_0c04772
crossref_primary_10_1002_asia_202001253
crossref_primary_10_1016_j_apcatb_2024_123750
crossref_primary_10_1002_chem_202402870
crossref_primary_10_1039_D2EY00049K
crossref_primary_10_1627_jpi_67_147
crossref_primary_10_1002_cssc_202001190
crossref_primary_10_1021_acscatal_4c04109
crossref_primary_10_1002_adma_202404980
crossref_primary_10_1016_j_fuel_2024_131170
crossref_primary_10_1021_acs_organomet_3c00302
crossref_primary_10_1021_acs_inorgchem_2c01027
crossref_primary_10_1039_D2DT04079D
crossref_primary_10_3390_catal10070773
crossref_primary_10_1039_D0EE03011B
crossref_primary_10_1039_D4EY00281D
crossref_primary_10_1021_acs_jpca_1c05542
crossref_primary_10_1021_acsomega_3c05286
crossref_primary_10_1039_D3GC01299A
crossref_primary_10_1021_acs_accounts_5c00038
crossref_primary_10_1016_j_jcis_2024_09_130
crossref_primary_10_1002_ange_202416530
crossref_primary_10_1021_acs_inorgchem_4c03815
crossref_primary_10_1002_cctc_202400393
crossref_primary_10_1016_j_chempr_2022_10_011
crossref_primary_10_1021_acscatal_2c04137
crossref_primary_10_1016_j_jorganchem_2024_123471
crossref_primary_10_1021_acscatal_1c04684
crossref_primary_10_1002_cssc_202100874
crossref_primary_10_1039_D4CC05164E
crossref_primary_10_1039_D4CY01346H
crossref_primary_10_1016_j_ijhydene_2021_09_191
crossref_primary_10_1039_D1CC06445B
crossref_primary_10_1039_D1GC02012A
crossref_primary_10_1021_acs_inorgchem_3c03125
crossref_primary_10_1021_acs_iecr_3c01500
crossref_primary_10_1039_D1DT04335H
crossref_primary_10_1002_cctc_202401202
crossref_primary_10_1021_acs_inorgchem_1c00757
crossref_primary_10_1002_aenm_202103799
crossref_primary_10_1021_acs_chemrev_1c00412
crossref_primary_10_1002_anie_202416530
crossref_primary_10_1021_acs_inorgchem_1c02132
crossref_primary_10_1021_acs_organomet_0c00679
crossref_primary_10_1016_j_ijhydene_2022_05_021
crossref_primary_10_1021_acscatal_3c00476
crossref_primary_10_1021_acs_organomet_3c00286
crossref_primary_10_1016_j_fuel_2021_122636
crossref_primary_10_1002_cssc_202100602
crossref_primary_10_1016_j_mcat_2022_112860
crossref_primary_10_1021_acs_inorgchem_2c04079
crossref_primary_10_1021_acs_organomet_4c00357
crossref_primary_10_1016_j_cej_2021_129569
crossref_primary_10_1002_anie_202423661
crossref_primary_10_1016_j_fuel_2024_131908
crossref_primary_10_1021_acs_organomet_3c00125
crossref_primary_10_1002_cssc_202202250
crossref_primary_10_1016_j_ica_2024_122423
crossref_primary_10_1016_j_ijhydene_2024_04_106
crossref_primary_10_1002_asia_202300758
crossref_primary_10_2174_1570178620666230608160836
crossref_primary_10_1021_acs_organomet_2c00423
crossref_primary_10_1016_j_ijhydene_2022_04_220
crossref_primary_10_1021_jacs_2c04905
crossref_primary_10_1016_j_apcatb_2022_121228
crossref_primary_10_1002_aoc_70016
crossref_primary_10_1039_D2CC00247G
crossref_primary_10_1038_s41929_021_00575_4
crossref_primary_10_3390_fire7080290
crossref_primary_10_1002_ajoc_202100562
crossref_primary_10_1016_j_poly_2024_117235
Cites_doi 10.1021/ja200122f
10.1039/B405878J
10.1039/C4SC01035C
10.1016/j.jphotochem.2006.04.025
10.1039/b701563c
10.1002/chem.201703766
10.1021/cm101285f
10.1016/j.ccr.2014.11.010
10.1039/b907569k
10.1021/acs.organomet.6b00806
10.1039/C6DT04638J
10.1002/adsc.200900431
10.1016/j.ijhydene.2019.01.153
10.1002/ange.200705972
10.1039/B904495G
10.1016/S0022-328X(01)01218-9
10.1002/aenm.201801275
10.1002/cctc.201500359
10.1021/om500356e
10.1016/j.ijhydene.2019.02.227
10.1016/j.bbabio.2012.11.004
10.1021/acs.organomet.6b00551
10.1039/b004234j
10.1002/cssc.200800093
10.1002/cssc.201802275
10.1039/c1ee01551f
10.1002/cctc.201200782
10.1038/ncomms11308
10.1039/C5CY01276G
10.1002/anie.201004621
10.1002/ejic.201000879
10.1021/ja954126l
10.1021/ja511511q
10.1002/chem.201301383
10.1016/S1381-1169(02)00576-9
10.1002/anie.201300276
10.1021/acscatal.5b01663
10.1021/cs4007974
10.1039/C3CY00830D
10.1002/cssc.201000182
10.1039/a805789c
10.1021/cr00002a004
10.1039/C5CS00618J
10.1073/pnas.0603395103
10.1021/acscatal.6b00564
10.1039/c2ee22937d
10.1016/j.tetlet.2009.01.101
10.1002/anie.200800320
10.1002/tcr.201700023
10.1039/C5CY01505G
10.1021/acscatal.6b01605
10.1002/ange.201300276
10.1021/acs.inorgchem.8b02164
10.1016/j.ijhydene.2010.08.060
10.1126/science.1206613
10.1039/C8GC02794C
10.1021/acscatal.7b01068
10.1002/cssc.201801980
10.1021/ja054236k
10.1021/acs.chemrev.5b00197
10.1002/asia.201600169
10.1002/ange.201301009
10.1007/s11244-010-9522-8
10.1002/cssc.200800147
10.1021/jacs.9b03532
10.1002/chem.201403602
10.1002/cssc.201300186
10.3390/catal7110348
10.1002/chem.200801824
10.1016/j.ccr.2017.11.021
10.1021/ja00376a058
10.1021/acs.chemrev.7b00182
10.1039/C4RA11031E
10.1002/cctc.201402716
10.1002/chem.201502412
10.1039/C2DT32043F
10.1002/anie.201301009
10.1002/chem.201504573
10.1002/ejic.201501030
10.1002/chem.201302230
10.1039/C4SC02555E
10.1039/C4SC00130C
10.1126/science.1103197
10.1002/ange.201004621
10.1002/cctc.201300740
10.1002/asia.201701474
10.1002/zaac.201800107
10.1021/ja505241x
10.1021/om060899e
10.1002/chem.201805612
10.1021/acs.inorgchem.6b02334
10.1021/acscatal.7b02482
10.1002/cssc.201000327
10.1002/ejic.201800159
10.1021/ja301696e
10.1002/ange.200800320
10.1038/nchem.1295
10.1021/jo01333a048
10.1002/anie.200705972
10.1002/cssc.201801072
10.1021/cs400148n
10.1002/adsc.201801323
10.1021/ja100925n
10.1002/ejic.200701369
10.1021/om900099u
10.1016/j.ijhydene.2008.10.060
10.1002/cctc.201801897
10.1002/cctc.201501296
10.1039/c2ee21888g
10.1126/science.1140362
10.1039/b914442k
10.1021/ja051486s
10.1002/cctc.201402410
10.1021/om2010172
10.1039/b803661f
10.1021/cs500655x
10.1039/C3SC52448E
10.1002/chem.201200576
10.1021/cs501998t
10.1039/c2ee03315a
10.1039/C6DT01499B
10.1002/cssc.201301414
10.1002/chem.201502086
10.1002/cctc.201100391
10.1021/ja5008917
10.1039/C5CY01865J
10.1002/cssc.201601437
10.1016/j.ijhydene.2019.04.272
10.1021/acs.accounts.5b00027
10.1021/acscatal.8b04495
10.1039/c2ee21928j
10.1021/acscatal.7b02425
10.1073/pnas.1809342115
10.1021/cr9804644
10.1039/C8GC02186D
10.1021/ja910349w
10.1002/ejoc.201801226
10.1002/cssc.201600697
10.1038/nnano.2011.42
10.1002/cssc.201800408
10.1039/c2sc21923a
10.1039/C8GC00495A
10.1002/cctc.201402119
10.1039/C9DT01319A
10.1021/acsenergylett.6b00574
ContentType Journal Article
Copyright 2020 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim
2020 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Copyright_xml – notice: 2020 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2020 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
DBID AAYXX
CITATION
NPM
K9.
7X8
DOI 10.1002/asia.201901676
DatabaseName CrossRef
PubMed
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
ProQuest Health & Medical Complete (Alumni)
CrossRef

PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1861-471X
EndPage 946
ExternalDocumentID 32030903
10_1002_asia_201901676
ASIA201901676
Genre reviewArticle
Journal Article
Review
GrantInformation_xml – fundername: King Abdullah University of Science and Technology (KAUST)
GroupedDBID ---
05W
0R~
1L6
1OC
29B
33P
3WU
4.4
5GY
6J9
8-1
87K
8UM
A00
AAESR
AAHQN
AAIHA
AAMNL
AANLZ
AASGY
AAXRX
AAYCA
AAZKR
ABCUV
ABDBF
ABIJN
ABJNI
ACAHQ
ACCZN
ACGFS
ACIWK
ACPOU
ACUHS
ACXBN
ACXQS
ADBBV
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEGXH
AEIGN
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFWVQ
AHBTC
AHMBA
AITYG
AIURR
ALMA_UNASSIGNED_HOLDINGS
ALVPJ
AMYDB
AZVAB
BDRZF
BFHJK
BMXJE
BRXPI
CS3
DCZOG
DRFUL
DRSTM
EBD
EBS
F5P
G-S
HBH
HGLYW
HHY
HHZ
HZ~
LATKE
LAW
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MXFUL
MXSTM
MY~
O66
O9-
OIG
P2W
P4E
PQQKQ
QRW
ROL
RWI
SUPJJ
WBKPD
WHG
WOHZO
WXSBR
WYJ
XSW
XV2
ZZTAW
~S-
31~
AANHP
AAYXX
ACBWZ
ACRPL
ACYXJ
ADNMO
AEYWJ
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
GODZA
HF~
HVGLF
LH4
NPM
K9.
7X8
ID FETCH-LOGICAL-c4766-46aa2b65441c4e7d15fc50e98ac31804eb44ada0b2238613a5f90b0dfb68cc563
ISSN 1861-4728
1861-471X
IngestDate Fri Jul 11 03:02:22 EDT 2025
Mon Jun 30 10:13:27 EDT 2025
Wed Feb 19 02:30:14 EST 2025
Tue Jul 01 00:53:30 EDT 2025
Thu Apr 24 22:59:36 EDT 2025
Wed Jan 22 16:36:14 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords formic acid
homogeneous catalysis
hydrogen energy carrier
Language English
License 2020 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c4766-46aa2b65441c4e7d15fc50e98ac31804eb44ada0b2238613a5f90b0dfb68cc563
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0003-1900-2658
0000-0002-0613-6270
0000-0002-4471-3219
0000-0002-9430-3488
0000-0002-6636-0469
PMID 32030903
PQID 2386130077
PQPubID 986338
PageCount 10
ParticipantIDs proquest_miscellaneous_2352634770
proquest_journals_2386130077
pubmed_primary_32030903
crossref_primary_10_1002_asia_201901676
crossref_citationtrail_10_1002_asia_201901676
wiley_primary_10_1002_asia_201901676_ASIA201901676
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate April 1, 2020
PublicationDateYYYYMMDD 2020-04-01
PublicationDate_xml – month: 04
  year: 2020
  text: April 1, 2020
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Chemistry, an Asian journal
PublicationTitleAlternate Chem Asian J
PublicationYear 2020
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2019; 2019
2013; 3
2013; 4
2019; 11
2019; 12
2012; 18
2008 2008; 47 120
2009; 351
2013; 5
2013; 6
2014; 136
2016; 35
2014; 20
2010; 22
2009; 11
2012; 134
2015; 137
2019; 25
2007; 9
1991; 91
2010; 3
2009; 15
2016; 45
2019; 9
2010; 2010
2010; 35
2010; 39
2010 2010; 49 122
2011; 4
2004; 305
2011; 6
2018; 20
2011; 133
2016; 11
2016; 6
2016; 7
2007; 315
2015; 115
2019; 44
2002; 642
2018; 115
2005; 127
2019; 48
2017; 56
2015; 2015
2000; 100
2006; 182
2018; 11
2016; 8
2016; 9
2014; 33
1996; 118
2006; 103
2018; 13
2016; 22
2017; 7
2010; 53
2017; 2
2018; 644
2017; 46
2003; 195
1982; 104
2008; 1
2019; 361
2008; 2008
2013 2013; 52 125
2017; 118
2018; 373
2013; 19
2015; 48
2015; 293
2014; 5
2014; 4
2017; 36
2009; 50
2014; 7
2014; 6
2007; 26
2011; 333
2015; 6
2015; 5
2013; 42
2017; 23
2011; 30
2004
2019; 141
2015; 7
2009; 28
2009; 34
2017; 17
2017; 10
2015; 21
2010; 132
2012; 4
1979; 44
2012; 5
2013; 1827
2018; 57
e_1_2_8_49_2
e_1_2_8_45_2
e_1_2_8_26_2
e_1_2_8_68_2
e_1_2_8_132_2
e_1_2_8_151_2
e_1_2_8_5_2
e_1_2_8_9_1
e_1_2_8_117_1
e_1_2_8_41_2
e_1_2_8_64_1
e_1_2_8_87_1
e_1_2_8_22_2
e_1_2_8_113_1
e_1_2_8_159_1
e_1_2_8_83_2
e_1_2_8_136_2
e_1_2_8_1_1
e_1_2_8_60_2
e_1_2_8_155_2
e_1_2_8_38_2
e_1_2_8_19_2
e_1_2_8_34_2
e_1_2_8_109_1
e_1_2_8_15_2
e_1_2_8_57_2
e_1_2_8_91_2
e_1_2_8_120_1
e_1_2_8_143_1
e_1_2_8_166_1
e_1_2_8_95_1
e_1_2_8_162_1
e_1_2_8_99_2
e_1_2_8_105_1
e_1_2_8_30_2
e_1_2_8_76_2
e_1_2_8_11_2
e_1_2_8_53_2
e_1_2_8_128_2
e_1_2_8_72_2
e_1_2_8_101_2
e_1_2_8_147_2
e_1_2_8_124_2
e_1_2_8_29_2
e_1_2_8_25_2
e_1_2_8_48_2
e_1_2_8_67_2
e_1_2_8_2_1
e_1_2_8_152_2
e_1_2_8_110_1
e_1_2_8_6_2
e_1_2_8_21_2
e_1_2_8_44_2
e_1_2_8_63_2
e_1_2_8_86_2
e_1_2_8_137_2
e_1_2_8_118_1
e_1_2_8_40_2
e_1_2_8_82_2
e_1_2_8_133_2
e_1_2_8_156_2
e_1_2_8_114_1
e_1_2_8_18_2
e_1_2_8_14_2
e_1_2_8_37_2
e_1_2_8_56_2
e_1_2_8_79_2
e_1_2_8_90_2
e_1_2_8_144_1
e_1_2_8_94_2
e_1_2_8_121_1
e_1_2_8_163_1
e_1_2_8_140_1
e_1_2_8_98_2
e_1_2_8_106_1
e_1_2_8_10_2
e_1_2_8_33_2
e_1_2_8_52_2
e_1_2_8_75_2
e_1_2_8_129_2
e_1_2_8_148_2
e_1_2_8_71_2
e_1_2_8_102_2
e_1_2_8_125_2
e_1_2_8_28_2
e_1_2_8_24_1
e_1_2_8_66_3
e_1_2_8_47_2
e_1_2_8_89_2
e_1_2_8_3_1
e_1_2_8_153_1
e_1_2_8_130_2
e_1_2_8_7_2
e_1_2_8_43_1
e_1_2_8_20_2
e_1_2_8_66_2
e_1_2_8_115_2
e_1_2_8_119_1
e_1_2_8_85_2
e_1_2_8_138_2
e_1_2_8_62_2
e_1_2_8_111_2
e_1_2_8_157_1
e_1_2_8_81_2
e_1_2_8_134_2
e_1_2_8_17_2
e_1_2_8_36_1
e_1_2_8_13_2
e_1_2_8_59_2
e_1_2_8_78_2
e_1_2_8_141_1
e_1_2_8_164_1
e_1_2_8_97_2
e_1_2_8_160_1
e_1_2_8_55_2
e_1_2_8_126_2
e_1_2_8_32_3
e_1_2_8_149_1
e_1_2_8_32_2
e_1_2_8_74_2
e_1_2_8_107_2
e_1_2_8_51_2
e_1_2_8_122_2
e_1_2_8_93_2
e_1_2_8_103_1
e_1_2_8_145_1
e_1_2_8_70_2
e_1_2_8_27_2
e_1_2_8_23_2
e_1_2_8_46_2
e_1_2_8_69_2
e_1_2_8_80_2
e_1_2_8_154_2
e_1_2_8_4_2
e_1_2_8_131_1
e_1_2_8_150_2
e_1_2_8_8_2
e_1_2_8_42_2
e_1_2_8_65_2
e_1_2_8_88_2
e_1_2_8_116_2
e_1_2_8_65_3
e_1_2_8_139_1
e_1_2_8_61_2
e_1_2_8_84_2
e_1_2_8_112_2
e_1_2_8_135_2
e_1_2_8_158_1
e_1_2_8_16_2
e_1_2_8_39_2
e_1_2_8_35_2
e_1_2_8_58_2
e_1_2_8_108_2
e_1_2_8_165_1
e_1_2_8_142_1
e_1_2_8_96_2
e_1_2_8_96_3
e_1_2_8_161_1
e_1_2_8_31_2
e_1_2_8_54_2
e_1_2_8_77_2
e_1_2_8_127_1
e_1_2_8_12_1
e_1_2_8_31_3
e_1_2_8_50_2
e_1_2_8_73_2
e_1_2_8_100_2
e_1_2_8_123_2
e_1_2_8_92_2
e_1_2_8_104_1
e_1_2_8_146_1
References_xml – volume: 6
  start-page: 7475
  year: 2016
  end-page: 7484
  publication-title: ACS Catal.
– volume: 4
  start-page: 34
  year: 2014
  end-page: 37
  publication-title: Catal. Sci. Technol.
– volume: 49 122
  start-page: 8993 9177
  year: 2010 2010
  end-page: 8996 9181
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 21
  start-page: 13513
  year: 2015
  end-page: 13517
  publication-title: Chem. Eur. J.
– volume: 118
  start-page: 372
  year: 2017
  end-page: 433
  publication-title: Chem. Rev.
– volume: 182
  start-page: 306
  year: 2006
  end-page: 309
  publication-title: J. Photochem. Photobiol. A: Chem.
– volume: 133
  start-page: 11822
  year: 2011
  end-page: 11825
  publication-title: J. Am. Chem. Soc.
– volume: 47 120
  start-page: 3966 4030
  year: 2008 2008
  end-page: 3968 4032
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 39
  start-page: 81
  year: 2010
  end-page: 88
  publication-title: Chem. Soc. Rev.
– volume: 1827
  start-page: 1031
  year: 2013
  end-page: 1038
  publication-title: Biochim. Biophys. Acta
– volume: 15
  start-page: 3752
  year: 2009
  end-page: 3760
  publication-title: Chem. Eur. J.
– volume: 28
  start-page: 4133
  year: 2009
  end-page: 4140
  publication-title: Organometallics
– volume: 315
  start-page: 796
  year: 2007
  end-page: 798
  publication-title: Science
– volume: 7
  start-page: 65
  year: 2015
  end-page: 69
  publication-title: ChemCatChem
– volume: 642
  start-page: 9
  year: 2002
  end-page: 15
  publication-title: J. Organomet. Chem.
– volume: 5
  start-page: 9698
  year: 2012
  end-page: 9725
  publication-title: Energy Environ. Sci.
– volume: 7
  start-page: 1976
  year: 2014
  end-page: 1983
  publication-title: ChemSusChem
– volume: 6
  start-page: 3146
  year: 2014
  end-page: 3152
  publication-title: ChemCatChem
– volume: 4
  start-page: 487
  year: 2011
  end-page: 493
  publication-title: ChemSusChem
– volume: 141
  start-page: 8732
  year: 2019
  end-page: 8736
  publication-title: J. Am. Chem. Soc.
– start-page: 2336
  year: 2004
  end-page: 2340
  publication-title: Dalton Trans.
– volume: 137
  start-page: 106
  year: 2015
  end-page: 109
  publication-title: J. Am. Chem. Soc.
– volume: 644
  start-page: 740
  year: 2018
  end-page: 744
  publication-title: Z. Anorg. Allg. Chem.
– volume: 9
  start-page: 2749
  year: 2016
  end-page: 2753
  publication-title: ChemSusChem
– volume: 2019
  start-page: 591
  year: 2019
  end-page: 597
  publication-title: Eur. J. Org. Chem.
– volume: 20
  start-page: 13589
  year: 2014
  end-page: 13602
  publication-title: Chem. Eur. J.
– volume: 4
  start-page: 21
  year: 2011
  end-page: 36
  publication-title: ChemSusChem
– volume: 52 125
  start-page: 3681 3769
  year: 2013 2013
  end-page: 3684 3772
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 2015
  start-page: 5591
  year: 2015
  end-page: 5594
  publication-title: Eur. J. Inorg. Chem.
– volume: 305
  start-page: 972
  year: 2004
  end-page: 974
  publication-title: Science
– volume: 8
  start-page: 886
  year: 2016
  end-page: 890
  publication-title: ChemCatChem
– volume: 30
  start-page: 6742
  year: 2011
  end-page: 6750
  publication-title: Organometallics
– volume: 44
  start-page: 3442
  year: 1979
  end-page: 3444
  publication-title: J. Org. Chem.
– volume: 6
  start-page: 302
  year: 2011
  end-page: 307
  publication-title: Nat. Nanotechnol.
– volume: 19
  start-page: 8068
  year: 2013
  end-page: 8072
  publication-title: Chem. Eur. J.
– volume: 132
  start-page: 1496
  year: 2010
  end-page: 1497
  publication-title: J. Am. Chem. Soc.
– volume: 18
  start-page: 9397
  year: 2012
  end-page: 9404
  publication-title: Chem. Eur. J.
– volume: 118
  start-page: 2521
  year: 1996
  end-page: 2522
  publication-title: J. Am. Chem. Soc.
– volume: 5
  start-page: 2771
  year: 2014
  end-page: 2777
  publication-title: Chem. Sci.
– volume: 293
  start-page: 116
  year: 2015
  end-page: 138
  publication-title: Coord. Chem. Rev.
– volume: 7
  start-page: 348
  year: 2017
  publication-title: Catalysts
– volume: 5
  start-page: 195
  year: 2014
  end-page: 199
  publication-title: Chem. Sci.
– volume: 10
  start-page: 1071
  year: 2017
  end-page: 1075
  publication-title: ChemSusChem.
– volume: 134
  start-page: 8926
  year: 2012
  end-page: 8933
  publication-title: J. Am. Chem. Soc.
– volume: 47 120
  start-page: 3962 4026
  year: 2008 2008
  end-page: 3965 4029
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 11
  start-page: 1357
  year: 2016
  end-page: 1360
  publication-title: Chem. Asian J.
– volume: 7
  start-page: 4479
  year: 2017
  end-page: 4484
  publication-title: ACS Catal.
– volume: 11
  start-page: 1910
  year: 2019
  end-page: 1914
  publication-title: ChemCatChem
– volume: 5
  start-page: 1254
  year: 2015
  end-page: 1265
  publication-title: ACS Catal.
– volume: 5
  start-page: 7923
  year: 2012
  end-page: 7926
  publication-title: Energy Environ. Sci.
– volume: 19
  start-page: 11507
  year: 2013
  end-page: 11511
  publication-title: Chem. Eur. J.
– volume: 6
  start-page: 1027
  year: 2015
  end-page: 1034
  publication-title: Chem. Sci.
– volume: 7
  start-page: 8413
  year: 2017
  end-page: 8419
  publication-title: ACS Catal.
– volume: 373
  start-page: 317
  year: 2018
  end-page: 332
  publication-title: Coord. Chem. Rev.
– volume: 5
  start-page: 8171
  year: 2012
  end-page: 8181
  publication-title: Energy Environ. Sci.
– volume: 136
  start-page: 10234
  year: 2014
  end-page: 10237
  publication-title: J. Am. Chem. Soc.
– volume: 3
  start-page: 1207
  year: 2010
  end-page: 1217
  publication-title: Energy Environ. Sci.
– volume: 42
  start-page: 2495
  year: 2013
  end-page: 2501
  publication-title: Dalton Trans.
– volume: 35
  start-page: 12374
  year: 2010
  end-page: 12380
  publication-title: Int. J. Hydrogen Energy
– volume: 22
  start-page: 4584
  year: 2016
  end-page: 4591
  publication-title: Chem. Eur. J.
– volume: 11
  start-page: 3092
  year: 2018
  end-page: 3095
  publication-title: ChemSusChem
– volume: 1
  start-page: 827
  year: 2008
  end-page: 834
  publication-title: ChemSusChem
– volume: 7
  start-page: 11308
  year: 2016
  publication-title: Nat. Commun.
– volume: 333
  start-page: 1733
  year: 2011
  end-page: 1736
  publication-title: Science
– volume: 115
  start-page: 12395
  year: 2018
  end-page: 12400
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 91
  start-page: 165
  year: 1991
  end-page: 195
  publication-title: Chem. Rev.
– volume: 21
  start-page: 12592
  year: 2015
  end-page: 12595
  publication-title: Chem. Eur. J.
– volume: 44
  start-page: 28533
  year: 2019
  end-page: 28541
  publication-title: Int. J. Hydrogen Energy
– volume: 22
  start-page: 5122
  year: 2010
  end-page: 5128
  publication-title: Chem. Mater.
– volume: 45
  start-page: 3954
  year: 2016
  end-page: 3988
  publication-title: Chem. Soc. Rev.
– volume: 4
  start-page: 383
  year: 2012
  end-page: 388
  publication-title: Nat. Chem.
– volume: 6
  start-page: 4746
  year: 2016
  end-page: 4754
  publication-title: ACS Catal.
– volume: 48
  start-page: 12812
  year: 2019
  end-page: 12816
  publication-title: Dalton Trans.
– volume: 2008
  start-page: 1351
  year: 2008
  end-page: 1362
  publication-title: Eur. J. Inorg. Chem.
– volume: 127
  start-page: 7318
  year: 2005
  end-page: 7319
  publication-title: J. Am. Chem. Soc.
– volume: 36
  start-page: 1091
  year: 2017
  end-page: 1106
  publication-title: Organometallics
– volume: 4
  start-page: 323
  year: 2012
  end-page: 325
  publication-title: ChemCatChem
– volume: 6
  start-page: 96
  year: 2014
  end-page: 99
  publication-title: ChemCatChem
– volume: 23
  start-page: 17788
  year: 2017
  end-page: 17793
  publication-title: Chem. Eur. J.
– volume: 6
  start-page: 1320
  year: 2016
  end-page: 1327
  publication-title: Catal. Sci. Technol.
– volume: 104
  start-page: 3529
  year: 1982
  end-page: 3530
  publication-title: J. Am. Chem. Soc.
– volume: 195
  start-page: 95
  year: 2003
  end-page: 100
  publication-title: J. Mol. Catal. A
– volume: 4
  start-page: 3002
  year: 2014
  end-page: 3012
  publication-title: ACS Catal.
– volume: 20
  start-page: 4875
  year: 2018
  end-page: 4879
  publication-title: Green Chem.
– volume: 4
  start-page: 2754
  year: 2011
  end-page: 2766
  publication-title: Energy Environ. Sci.
– volume: 6
  start-page: 600
  year: 2016
  end-page: 609
  publication-title: ACS Catal.
– volume: 1
  start-page: 751
  year: 2008
  end-page: 758
  publication-title: ChemSusChem
– volume: 5
  start-page: 2043
  year: 2014
  end-page: 2051
  publication-title: Chem. Sci.
– volume: 9
  start-page: 2643
  year: 2007
  end-page: 2653
  publication-title: Phys. Chem. Chem. Phys.
– volume: 132
  start-page: 8924
  year: 2010
  end-page: 8934
  publication-title: J. Am. Chem. Soc.
– volume: 25
  start-page: 8459
  year: 2019
  end-page: 8464
  publication-title: Chem. Eur. J.
– volume: 127
  start-page: 13118
  year: 2005
  end-page: 13119
  publication-title: J. Am. Chem. Soc.
– volume: 4
  start-page: 311
  year: 2013
  end-page: 320
  publication-title: ACS Catal.
– volume: 46
  start-page: 1670
  year: 2017
  end-page: 1676
  publication-title: Dalton Trans.
– volume: 351
  start-page: 2517
  year: 2009
  end-page: 2520
  publication-title: Adv. Synth. Catal.
– volume: 20
  start-page: 4201
  year: 2018
  end-page: 4205
  publication-title: Green Chem.
– volume: 2
  start-page: 188
  year: 2017
  end-page: 195
  publication-title: ACS Energy Lett.
– volume: 13
  start-page: 73
  year: 2018
  end-page: 80
  publication-title: Chem. Asian J.
– volume: 2010
  start-page: 4757
  year: 2010
  end-page: 4761
  publication-title: Eur. J. Inorg. Chem.
– volume: 115
  start-page: 12936
  year: 2015
  end-page: 12973
  publication-title: Chem. Rev.
– volume: 44
  start-page: 28507
  year: 2019
  end-page: 28513
  publication-title: Int. J. Hydrogen Energy
– volume: 6
  start-page: 988
  year: 2016
  end-page: 992
  publication-title: Catal. Sci. Technol.
– volume: 9
  start-page: 1619
  year: 2019
  end-page: 29
  publication-title: ACS Catal.
– volume: 6
  start-page: 12
  year: 2016
  end-page: 40
  publication-title: Catal. Sci. Technol.
– volume: 12
  start-page: 179
  year: 2019
  end-page: 184
  publication-title: ChemSusChem
– volume: 33
  start-page: 3433
  year: 2014
  end-page: 3442
  publication-title: Organometallics
– volume: 35
  start-page: 3344
  year: 2016
  end-page: 3349
  publication-title: Organometallics
– volume: 53
  start-page: 902
  year: 2010
  end-page: 914
  publication-title: Top. Catal.
– volume: 3
  start-page: 1114
  year: 2013
  end-page: 1119
  publication-title: ACS Catal.
– volume: 5
  start-page: 1126
  year: 2013
  end-page: 1132
  publication-title: ChemCatChem
– volume: 4
  start-page: 1234
  year: 2013
  end-page: 1244
  publication-title: Chem. Sci.
– volume: 6
  start-page: 1172
  year: 2013
  end-page: 1176
  publication-title: ChemSusChem
– volume: 5
  start-page: 7360
  year: 2012
  end-page: 7367
  publication-title: Energy Environ. Sci.
– volume: 136
  start-page: 4861
  year: 2014
  end-page: 4864
  publication-title: J. Am. Chem. Soc.
– volume: 44
  start-page: 28421
  year: 2019
  end-page: 28429
  publication-title: Int. J. Hydrogen Energy
– volume: 17
  start-page: 1071
  year: 2017
  end-page: 1094
  publication-title: Chem. Rec.
– volume: 103
  start-page: 15729
  year: 2006
  end-page: 15735
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 34
  start-page: 31
  year: 2009
  end-page: 39
  publication-title: Int. J. Hydrogen Energy
– volume: 11
  start-page: 2018
  year: 2009
  end-page: 2022
  publication-title: Green Chem.
– volume: 52 125
  start-page: 4406 4502
  year: 2013 2013
  end-page: 4409 4505
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 20
  start-page: 1835
  year: 2018
  end-page: 1840
  publication-title: Green Chem.
– volume: 7
  start-page: 8139
  year: 2017
  end-page: 46
  publication-title: ACS Catal.
– volume: 56
  start-page: 438
  year: 2017
  end-page: 445
  publication-title: Inorg. Chem.
– volume: 50
  start-page: 1603
  year: 2009
  end-page: 1606
  publication-title: Tetrahedron Lett.
– volume: 6
  start-page: 1526
  year: 2014
  end-page: 1530
  publication-title: ChemCatChem
– volume: 11
  start-page: 2077
  year: 2018
  end-page: 2082
  publication-title: ChemSusChem
– volume: 48
  start-page: 1979
  year: 2015
  end-page: 1994
  publication-title: Acc. Chem. Res.
– volume: 100
  start-page: 1169
  year: 2000
  end-page: 1204
  publication-title: Chem. Rev.
– volume: 361
  start-page: 289
  year: 2019
  end-page: 296
  publication-title: Adv. Synth. Catal.
– volume: 26
  start-page: 702
  year: 2007
  end-page: 712
  publication-title: Organometallics
– volume: 57
  start-page: 14186
  year: 2018
  end-page: 14198
  publication-title: Inorg. Chem.
– volume: 4
  start-page: 61514
  year: 2014
  end-page: 61517
  publication-title: RSC Adv.
– volume: 7
  start-page: 2332
  year: 2015
  end-page: 2339
  publication-title: ChemCatChem
– volume: 11
  start-page: 3591
  year: 2018
  end-page: 3598
  publication-title: ChemSusChem
– volume: 45
  start-page: 14645
  year: 2016
  end-page: 14650
  publication-title: Dalton Trans.
– ident: e_1_2_8_27_2
  doi: 10.1021/ja200122f
– ident: e_1_2_8_117_1
  doi: 10.1039/B405878J
– ident: e_1_2_8_135_2
  doi: 10.1039/C4SC01035C
– ident: e_1_2_8_112_2
  doi: 10.1016/j.jphotochem.2006.04.025
– ident: e_1_2_8_10_2
  doi: 10.1039/b701563c
– ident: e_1_2_8_59_2
  doi: 10.1002/chem.201703766
– ident: e_1_2_8_26_2
  doi: 10.1021/cm101285f
– ident: e_1_2_8_151_2
  doi: 10.1016/j.ccr.2014.11.010
– ident: e_1_2_8_14_2
  doi: 10.1039/b907569k
– ident: e_1_2_8_79_2
  doi: 10.1021/acs.organomet.6b00806
– ident: e_1_2_8_92_2
  doi: 10.1039/C6DT04638J
– ident: e_1_2_8_67_2
  doi: 10.1002/adsc.200900431
– ident: e_1_2_8_159_1
  doi: 10.1016/j.ijhydene.2019.01.153
– ident: e_1_2_8_36_1
– ident: e_1_2_8_66_3
  doi: 10.1002/ange.200705972
– ident: e_1_2_8_15_2
  doi: 10.1039/B904495G
– ident: e_1_2_8_132_2
  doi: 10.1016/S0022-328X(01)01218-9
– ident: e_1_2_8_41_2
  doi: 10.1002/aenm.201801275
– ident: e_1_2_8_75_2
  doi: 10.1002/cctc.201500359
– ident: e_1_2_8_90_2
  doi: 10.1021/om500356e
– ident: e_1_2_8_94_2
  doi: 10.1016/j.ijhydene.2019.02.227
– ident: e_1_2_8_110_1
– ident: e_1_2_8_47_2
  doi: 10.1016/j.bbabio.2012.11.004
– ident: e_1_2_8_102_2
  doi: 10.1021/acs.organomet.6b00551
– ident: e_1_2_8_108_2
  doi: 10.1039/b004234j
– ident: e_1_2_8_115_2
  doi: 10.1002/cssc.200800093
– ident: e_1_2_8_63_2
  doi: 10.1002/cssc.201802275
– ident: e_1_2_8_17_2
  doi: 10.1039/c1ee01551f
– ident: e_1_2_8_120_1
  doi: 10.1002/cctc.201200782
– ident: e_1_2_8_53_2
  doi: 10.1038/ncomms11308
– ident: e_1_2_8_127_1
– ident: e_1_2_8_22_2
  doi: 10.1039/C5CY01276G
– ident: e_1_2_8_96_2
  doi: 10.1002/anie.201004621
– ident: e_1_2_8_134_2
  doi: 10.1002/ejic.201000879
– ident: e_1_2_8_105_1
  doi: 10.1021/ja954126l
– ident: e_1_2_8_35_2
  doi: 10.1021/ja511511q
– ident: e_1_2_8_99_2
  doi: 10.1002/chem.201301383
– ident: e_1_2_8_9_1
– ident: e_1_2_8_111_2
  doi: 10.1016/S1381-1169(02)00576-9
– ident: e_1_2_8_32_2
  doi: 10.1002/anie.201300276
– ident: e_1_2_8_150_2
– ident: e_1_2_8_126_2
  doi: 10.1021/acscatal.5b01663
– ident: e_1_2_8_69_2
  doi: 10.1021/cs4007974
– ident: e_1_2_8_49_2
  doi: 10.1039/C3CY00830D
– ident: e_1_2_8_11_2
  doi: 10.1002/cssc.201000182
– ident: e_1_2_8_107_2
  doi: 10.1039/a805789c
– ident: e_1_2_8_143_1
  doi: 10.1021/cr00002a004
– ident: e_1_2_8_38_2
  doi: 10.1039/C5CS00618J
– ident: e_1_2_8_5_2
  doi: 10.1073/pnas.0603395103
– ident: e_1_2_8_144_1
  doi: 10.1021/acscatal.6b00564
– ident: e_1_2_8_114_1
– ident: e_1_2_8_19_2
  doi: 10.1039/c2ee22937d
– ident: e_1_2_8_116_2
  doi: 10.1016/j.tetlet.2009.01.101
– ident: e_1_2_8_65_2
  doi: 10.1002/anie.200800320
– ident: e_1_2_8_146_1
– ident: e_1_2_8_40_2
  doi: 10.1002/tcr.201700023
– ident: e_1_2_8_91_2
  doi: 10.1039/C5CY01505G
– ident: e_1_2_8_54_2
  doi: 10.1021/acscatal.6b01605
– ident: e_1_2_8_32_3
  doi: 10.1002/ange.201300276
– ident: e_1_2_8_1_1
– ident: e_1_2_8_93_2
  doi: 10.1021/acs.inorgchem.8b02164
– ident: e_1_2_8_8_2
  doi: 10.1016/j.ijhydene.2010.08.060
– ident: e_1_2_8_98_2
  doi: 10.1126/science.1206613
– ident: e_1_2_8_162_1
  doi: 10.1039/C8GC02794C
– ident: e_1_2_8_60_2
  doi: 10.1021/acscatal.7b01068
– ident: e_1_2_8_82_2
  doi: 10.1002/cssc.201801980
– ident: e_1_2_8_142_1
  doi: 10.1021/ja054236k
– ident: e_1_2_8_20_2
  doi: 10.1021/acs.chemrev.5b00197
– ident: e_1_2_8_77_2
  doi: 10.1002/asia.201600169
– ident: e_1_2_8_158_1
– ident: e_1_2_8_31_3
  doi: 10.1002/ange.201301009
– ident: e_1_2_8_16_2
  doi: 10.1007/s11244-010-9522-8
– ident: e_1_2_8_88_2
  doi: 10.1002/cssc.200800147
– ident: e_1_2_8_138_2
  doi: 10.1021/jacs.9b03532
– ident: e_1_2_8_139_1
  doi: 10.1002/chem.201403602
– ident: e_1_2_8_71_2
  doi: 10.1002/cssc.201300186
– ident: e_1_2_8_78_2
  doi: 10.3390/catal7110348
– ident: e_1_2_8_95_1
– ident: e_1_2_8_118_1
  doi: 10.1002/chem.200801824
– ident: e_1_2_8_42_2
  doi: 10.1016/j.ccr.2017.11.021
– ident: e_1_2_8_104_1
  doi: 10.1021/ja00376a058
– ident: e_1_2_8_39_2
  doi: 10.1021/acs.chemrev.7b00182
– ident: e_1_2_8_136_2
  doi: 10.1039/C4RA11031E
– ident: e_1_2_8_129_2
  doi: 10.1002/cctc.201402716
– ident: e_1_2_8_50_2
  doi: 10.1002/chem.201502412
– ident: e_1_2_8_70_2
  doi: 10.1039/C2DT32043F
– ident: e_1_2_8_31_2
  doi: 10.1002/anie.201301009
– ident: e_1_2_8_160_1
  doi: 10.1002/chem.201504573
– ident: e_1_2_8_3_1
– ident: e_1_2_8_103_1
– ident: e_1_2_8_147_2
  doi: 10.1002/ejic.201501030
– ident: e_1_2_8_48_2
  doi: 10.1002/chem.201302230
– ident: e_1_2_8_51_2
  doi: 10.1039/C4SC02555E
– ident: e_1_2_8_128_2
  doi: 10.1039/C4SC00130C
– ident: e_1_2_8_4_2
  doi: 10.1126/science.1103197
– ident: e_1_2_8_96_3
  doi: 10.1002/ange.201004621
– ident: e_1_2_8_149_1
– ident: e_1_2_8_165_1
– ident: e_1_2_8_74_2
  doi: 10.1002/cctc.201300740
– ident: e_1_2_8_81_2
  doi: 10.1002/asia.201701474
– ident: e_1_2_8_80_2
  doi: 10.1002/zaac.201800107
– ident: e_1_2_8_100_2
  doi: 10.1021/ja505241x
– ident: e_1_2_8_121_1
– ident: e_1_2_8_141_1
  doi: 10.1021/om060899e
– ident: e_1_2_8_163_1
  doi: 10.1002/chem.201805612
– ident: e_1_2_8_76_2
  doi: 10.1021/acs.inorgchem.6b02334
– ident: e_1_2_8_156_2
– ident: e_1_2_8_161_1
  doi: 10.1021/acscatal.7b02482
– ident: e_1_2_8_89_2
  doi: 10.1002/cssc.201000327
– ident: e_1_2_8_23_2
  doi: 10.1002/ejic.201800159
– ident: e_1_2_8_29_2
  doi: 10.1021/ja301696e
– ident: e_1_2_8_65_3
  doi: 10.1002/ange.200800320
– ident: e_1_2_8_45_2
  doi: 10.1038/nchem.1295
– ident: e_1_2_8_12_1
– ident: e_1_2_8_64_1
– ident: e_1_2_8_109_1
  doi: 10.1021/jo01333a048
– ident: e_1_2_8_66_2
  doi: 10.1002/anie.200705972
– ident: e_1_2_8_86_2
  doi: 10.1002/cssc.201801072
– ident: e_1_2_8_30_2
  doi: 10.1021/cs400148n
– ident: e_1_2_8_62_2
  doi: 10.1002/adsc.201801323
– ident: e_1_2_8_97_2
  doi: 10.1021/ja100925n
– ident: e_1_2_8_13_2
  doi: 10.1002/ejic.200701369
– ident: e_1_2_8_133_2
  doi: 10.1021/om900099u
– ident: e_1_2_8_7_2
  doi: 10.1016/j.ijhydene.2008.10.060
– ident: e_1_2_8_164_1
  doi: 10.1002/cctc.201801897
– ident: e_1_2_8_56_2
  doi: 10.1002/cctc.201501296
– ident: e_1_2_8_124_2
  doi: 10.1039/c2ee21888g
– ident: e_1_2_8_6_2
  doi: 10.1126/science.1140362
– ident: e_1_2_8_122_2
  doi: 10.1039/b914442k
– ident: e_1_2_8_106_1
– ident: e_1_2_8_113_1
  doi: 10.1021/ja051486s
– ident: e_1_2_8_119_1
  doi: 10.1002/cctc.201402410
– ident: e_1_2_8_44_2
  doi: 10.1021/om2010172
– ident: e_1_2_8_25_2
  doi: 10.1039/b803661f
– ident: e_1_2_8_43_1
– ident: e_1_2_8_73_2
  doi: 10.1021/cs500655x
– ident: e_1_2_8_34_2
  doi: 10.1039/C3SC52448E
– ident: e_1_2_8_123_2
  doi: 10.1002/chem.201200576
– ident: e_1_2_8_101_2
  doi: 10.1021/cs501998t
– ident: e_1_2_8_140_1
  doi: 10.1039/c2ee03315a
– ident: e_1_2_8_153_1
– ident: e_1_2_8_137_2
  doi: 10.1039/C6DT01499B
– ident: e_1_2_8_125_2
  doi: 10.1002/cssc.201301414
– ident: e_1_2_8_52_2
  doi: 10.1002/chem.201502086
– ident: e_1_2_8_18_2
  doi: 10.1002/cctc.201100391
– ident: e_1_2_8_33_2
  doi: 10.1021/ja5008917
– ident: e_1_2_8_57_2
  doi: 10.1039/C5CY01865J
– ident: e_1_2_8_131_1
– ident: e_1_2_8_2_1
– ident: e_1_2_8_166_1
– ident: e_1_2_8_148_2
  doi: 10.1002/cssc.201601437
– ident: e_1_2_8_24_1
– ident: e_1_2_8_157_1
  doi: 10.1016/j.ijhydene.2019.04.272
– ident: e_1_2_8_130_2
  doi: 10.1021/acs.accounts.5b00027
– ident: e_1_2_8_152_2
  doi: 10.1021/acscatal.8b04495
– ident: e_1_2_8_37_2
  doi: 10.1039/c2ee21928j
– ident: e_1_2_8_58_2
  doi: 10.1021/acscatal.7b02425
– ident: e_1_2_8_84_2
  doi: 10.1073/pnas.1809342115
– ident: e_1_2_8_145_1
  doi: 10.1021/cr9804644
– ident: e_1_2_8_154_2
  doi: 10.1039/C8GC02186D
– ident: e_1_2_8_68_2
  doi: 10.1021/ja910349w
– ident: e_1_2_8_85_2
  doi: 10.1002/ejoc.201801226
– ident: e_1_2_8_55_2
  doi: 10.1002/cssc.201600697
– ident: e_1_2_8_28_2
  doi: 10.1038/nnano.2011.42
– ident: e_1_2_8_83_2
  doi: 10.1002/cssc.201800408
– ident: e_1_2_8_46_2
  doi: 10.1039/c2sc21923a
– ident: e_1_2_8_61_2
  doi: 10.1039/C8GC00495A
– ident: e_1_2_8_72_2
  doi: 10.1002/cctc.201402119
– ident: e_1_2_8_155_2
  doi: 10.1039/C9DT01319A
– ident: e_1_2_8_21_2
  doi: 10.1021/acsenergylett.6b00574
– ident: e_1_2_8_87_1
SSID ssj0052098
Score 2.5634208
SecondaryResourceType review_article
Snippet Formic acid (FA) has been extensively studied as one of the most promising hydrogen energy carriers today. The catalytic decarboxylation of FA ideally leads to...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 937
SubjectTerms Catalysis
Catalysts
Chemistry
Decarboxylation
Dehydrogenation
Formic acid
Fuel cells
homogeneous catalysis
hydrogen energy carrier
Hydrogen-based energy
Ligands
Selectivity
Title An Update on Formic Acid Dehydrogenation by Homogeneous Catalysis
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fasia.201901676
https://www.ncbi.nlm.nih.gov/pubmed/32030903
https://www.proquest.com/docview/2386130077
https://www.proquest.com/docview/2352634770
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1Nb9Mw1CrbAS6IbwIDGQmJQ5XhOrbTHLNCVSbBhVYap8h2nK0TJNVoD-PX816cpCkbX7tEreMkznsv7_s9E_J6VIezklEoQVqHIipEaEAxCbkDWR3nwJVdnSD7Sc0W4vhEngwG_aylzdoc2h_X1pXcBKswBnjFKtn_wGx3UxiA34BfOAKG4fhPOE7L4WKFJju6_KegfS7tMLVLzC0-u8wvKrjQ4xd0zFn1Df87THmdoM8GW5H0VdNJu_WbT-gExC0bJ327DkzT2eg2Sl9to0_10JfNyjVisO-Inlfl6dlmS4Pp-XLtg0wfdXkOyxgeH_ZdD5z1MlY8txwrMEDjprrb9cfqfXC2LFb2SCnu8cvEd3xpRG_ivZFXuLrvEotVpZiLl2DlxDXts7uZ8s9zfbffzx_S7vwtss_BygA2uZ8evTuatqIcU4TqWsr2Pduun4y_3X3CrlZzxVTZtXxq1WV-j9xtbA6aegK6TwaufEBud_h-SNK0pJ6QaFVST0gUCYn-QkjUXNIeIdGOkB6RxfT9fDILm701QitipUKhtOZG4Q50Vrg4H8nCSuaSsbbA5ZlwRgida2ZAfYS3j7QsEmZYXhg1tlaq6DHZK6vSPSXUKc6c4Xasily4CCRAJI2OtYgLBsq4C0jYwiazTeN53P_ka-ZbZvMMYZl1sAzIm27-yrdc-e3MgxbUWfM5fM_8erFNVUBedacBoBgJ0zV0YI7kKhJxzALyxKOoe1TEMerIooDwGmd_WUO2Q0nPbnLRc3Jn-3UdkL31xca9AFV3bV42BPkTMNad7A
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Update+on+Formic+Acid+Dehydrogenation+by+Homogeneous+Catalysis&rft.jtitle=Chemistry%2C+an+Asian+journal&rft.au=Guan%2C+Chao&rft.au=Pan%2C+Yupeng&rft.au=Zhang%2C+Tonghuan&rft.au=Ajitha%2C+Manjaly+J.&rft.date=2020-04-01&rft.issn=1861-4728&rft.eissn=1861-471X&rft.volume=15&rft.issue=7&rft.spage=937&rft.epage=946&rft_id=info:doi/10.1002%2Fasia.201901676&rft.externalDBID=10.1002%252Fasia.201901676&rft.externalDocID=ASIA201901676
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1861-4728&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1861-4728&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1861-4728&client=summon