A population genomic unveiling of a new cryptic mosquito taxon within the malaria‐transmitting Anopheles gambiae complex
The Anopheles gambiae complex consists of multiple morphologically indistinguishable mosquito species including the most important vectors of the malaria parasite Plasmodium falciparum in sub‐Saharan Africa. Nine cryptic species have been described so far within the complex. The ecological, immunolo...
Saved in:
Published in | Molecular ecology Vol. 30; no. 3; pp. 775 - 790 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Blackwell Publishing Ltd
01.02.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The Anopheles gambiae complex consists of multiple morphologically indistinguishable mosquito species including the most important vectors of the malaria parasite Plasmodium falciparum in sub‐Saharan Africa. Nine cryptic species have been described so far within the complex. The ecological, immunological and reproductive differences among these species will critically impact population responses to disease control strategies and environmental changes. Here, we examine whole‐genome sequencing data from a longitudinal study of putative A. coluzzii in western Burkina Faso. Surprisingly, many specimens are genetically divergent from A. coluzzii and all other Anopheles species and represent a new taxon, here designated Anopheles TENGRELA (AT). Population genetic analysis suggests that the cryptic GOUNDRY subgroup, previously collected as larvae in central Burkina Faso, represents an admixed population descended from both A. coluzzii and AT. AT harbours low nucleotide diversity except for the 2La inversion polymorphism which is maintained by overdominance. It shows numerous fixed differences with A. coluzzii concentrated in several regions reflecting selective sweeps, but the two taxa are identical at standard diagnostic loci used for taxon identification, and thus, AT may often go unnoticed. We present an amplicon‐based genotyping assay for identifying AT which could be usefully applied to numerous existing samples. Misidentified cryptic taxa could seriously confound ongoing studies of Anopheles ecology and evolution in western Africa, including phenotypic and genotypic surveys of insecticide resistance. Reproductive barriers between cryptic species may also complicate novel vector control efforts, for example gene drives, and hinder predictions about evolutionary dynamics of Anopheles and Plasmodium. |
---|---|
AbstractList | The Anopheles gambiae complex consists of multiple morphologically indistinguishable mosquito species including the most important vectors of the malaria parasite Plasmodium falciparum in sub‐Saharan Africa. Nine cryptic species have been described so far within the complex. The ecological, immunological and reproductive differences among these species will critically impact population responses to disease control strategies and environmental changes. Here, we examine whole‐genome sequencing data from a longitudinal study of putative A. coluzzii in western Burkina Faso. Surprisingly, many specimens are genetically divergent from A. coluzzii and all other Anopheles species and represent a new taxon, here designated Anopheles TENGRELA (AT). Population genetic analysis suggests that the cryptic GOUNDRY subgroup, previously collected as larvae in central Burkina Faso, represents an admixed population descended from both A. coluzzii and AT. AT harbours low nucleotide diversity except for the 2La inversion polymorphism which is maintained by overdominance. It shows numerous fixed differences with A. coluzzii concentrated in several regions reflecting selective sweeps, but the two taxa are identical at standard diagnostic loci used for taxon identification, and thus, AT may often go unnoticed. We present an amplicon‐based genotyping assay for identifying AT which could be usefully applied to numerous existing samples. Misidentified cryptic taxa could seriously confound ongoing studies of Anopheles ecology and evolution in western Africa, including phenotypic and genotypic surveys of insecticide resistance. Reproductive barriers between cryptic species may also complicate novel vector control efforts, for example gene drives, and hinder predictions about evolutionary dynamics of Anopheles and Plasmodium. The Anopheles gambiae complex consists of multiple morphologically indistinguishable mosquito species including the most important vectors of the malaria parasite Plasmodium falciparum in sub-Saharan Africa. Nine cryptic species have been described so far within the complex. The ecological, immunological and reproductive differences among these species will critically impact population responses to disease control strategies and environmental changes. Here, we examine whole-genome sequencing data from a longitudinal study of putative A. coluzzii in western Burkina Faso. Surprisingly, many specimens are genetically divergent from A. coluzzii and all other Anopheles species and represent a new taxon, here designated Anopheles TENGRELA (AT). Population genetic analysis suggests that the cryptic GOUNDRY subgroup, previously collected as larvae in central Burkina Faso, represents an admixed population descended from both A. coluzzii and AT. AT harbours low nucleotide diversity except for the 2La inversion polymorphism which is maintained by overdominance. It shows numerous fixed differences with A. coluzzii concentrated in several regions reflecting selective sweeps, but the two taxa are identical at standard diagnostic loci used for taxon identification, and thus, AT may often go unnoticed. We present an amplicon-based genotyping assay for identifying AT which could be usefully applied to numerous existing samples. Misidentified cryptic taxa could seriously confound ongoing studies of Anopheles ecology and evolution in western Africa, including phenotypic and genotypic surveys of insecticide resistance. Reproductive barriers between cryptic species may also complicate novel vector control efforts, for example gene drives, and hinder predictions about evolutionary dynamics of Anopheles and Plasmodium.The Anopheles gambiae complex consists of multiple morphologically indistinguishable mosquito species including the most important vectors of the malaria parasite Plasmodium falciparum in sub-Saharan Africa. Nine cryptic species have been described so far within the complex. The ecological, immunological and reproductive differences among these species will critically impact population responses to disease control strategies and environmental changes. Here, we examine whole-genome sequencing data from a longitudinal study of putative A. coluzzii in western Burkina Faso. Surprisingly, many specimens are genetically divergent from A. coluzzii and all other Anopheles species and represent a new taxon, here designated Anopheles TENGRELA (AT). Population genetic analysis suggests that the cryptic GOUNDRY subgroup, previously collected as larvae in central Burkina Faso, represents an admixed population descended from both A. coluzzii and AT. AT harbours low nucleotide diversity except for the 2La inversion polymorphism which is maintained by overdominance. It shows numerous fixed differences with A. coluzzii concentrated in several regions reflecting selective sweeps, but the two taxa are identical at standard diagnostic loci used for taxon identification, and thus, AT may often go unnoticed. We present an amplicon-based genotyping assay for identifying AT which could be usefully applied to numerous existing samples. Misidentified cryptic taxa could seriously confound ongoing studies of Anopheles ecology and evolution in western Africa, including phenotypic and genotypic surveys of insecticide resistance. Reproductive barriers between cryptic species may also complicate novel vector control efforts, for example gene drives, and hinder predictions about evolutionary dynamics of Anopheles and Plasmodium. The Anopheles gambiae complex consists of multiple morphologically indistinguishable mosquito species including the most important vectors of the malaria parasite Plasmodium falciparum in sub-Saharan Africa. Nine cryptic species have been described so far within the complex. The ecological, immunological, and reproductive differences among these species will critically impact population responses to disease control strategies and environmental changes. Here we examine whole-genome sequencing data from a longitudinal study of putative A. coluzzii in western Burkina Faso. Surprisingly, many specimens are genetically divergent from A. coluzzii and all other Anopheles species and represent a new taxon, here designated Anopheles TENGRELA (AT). Population genetic analysis suggests that the cryptic GOUNDRY subgroup, previously collected as larvae in central Burkina Faso, represents an admixed population descended from both A. coluzzii and AT. AT harbors low nucleotide diversity except for the 2La inversion polymorphism which is maintained by overdominance. It shows numerous fixed differences with A. coluzzii concentrated in several regions reflecting selective sweeps, but the two taxa are identical at standard diagnostic loci used for taxon identification and thus AT may often go unnoticed. We present an amplicon-based genotyping assay for identifying AT which could be usefully applied to numerous existing samples. Misidentified cryptic taxa could seriously confound ongoing studies of Anopheles ecology and evolution in western Africa, including phenotypic and genotypic surveys of insecticide resistance. Reproductive barriers between cryptic species may also complicate novel vector control efforts, for example gene drives, and hinder predictions about evolutionary dynamics of Anopheles and Plasmodium . The Anopheles gambiae complex consists of multiple morphologically indistinguishable mosquito species including the most important vectors of the malaria parasite Plasmodium falciparum in sub‐Saharan Africa. Nine cryptic species have been described so far within the complex. The ecological, immunological and reproductive differences among these species will critically impact population responses to disease control strategies and environmental changes. Here, we examine whole‐genome sequencing data from a longitudinal study of putative A. coluzzii in western Burkina Faso. Surprisingly, many specimens are genetically divergent from A. coluzzii and all other Anopheles species and represent a new taxon, here designated Anopheles TENGRELA (AT). Population genetic analysis suggests that the cryptic GOUNDRY subgroup, previously collected as larvae in central Burkina Faso, represents an admixed population descended from both A. coluzzii and AT. AT harbours low nucleotide diversity except for the 2La inversion polymorphism which is maintained by overdominance. It shows numerous fixed differences with A. coluzzii concentrated in several regions reflecting selective sweeps, but the two taxa are identical at standard diagnostic loci used for taxon identification, and thus, AT may often go unnoticed. We present an amplicon‐based genotyping assay for identifying AT which could be usefully applied to numerous existing samples. Misidentified cryptic taxa could seriously confound ongoing studies of Anopheles ecology and evolution in western Africa, including phenotypic and genotypic surveys of insecticide resistance. Reproductive barriers between cryptic species may also complicate novel vector control efforts, for example gene drives, and hinder predictions about evolutionary dynamics of Anopheles and Plasmodium . The Anopheles gambiae complex consists of multiple morphologically indistinguishable mosquito species including the most important vectors of the malaria parasite Plasmodium falciparum in sub-Saharan Africa. Nine cryptic species have been described so far within the complex. The ecological, immunological and reproductive differences among these species will critically impact population responses to disease control strategies and environmental changes. Here, we examine whole-genome sequencing data from a longitudinal study of putative A. coluzzii in western Burkina Faso. Surprisingly, many specimens are genetically divergent from A. coluzzii and all other Anopheles species and represent a new taxon, here designated Anopheles TENGRELA (AT). Population genetic analysis suggests that the cryptic GOUNDRY subgroup, previously collected as larvae in central Burkina Faso, represents an admixed population descended from both A. coluzzii and AT. AT harbours low nucleotide diversity except for the 2La inversion polymorphism which is maintained by overdominance. It shows numerous fixed differences with A. coluzzii concentrated in several regions reflecting selective sweeps, but the two taxa are identical at standard diagnostic loci used for taxon identification, and thus, AT may often go unnoticed. We present an amplicon-based genotyping assay for identifying AT which could be usefully applied to numerous existing samples. Misidentified cryptic taxa could seriously confound ongoing studies of Anopheles ecology and evolution in western Africa, including phenotypic and genotypic surveys of insecticide resistance. Reproductive barriers between cryptic species may also complicate novel vector control efforts, for example gene drives, and hinder predictions about evolutionary dynamics of Anopheles and Plasmodium. |
Author | Neafsey, Daniel E. Toé, Kobié Hyacinthe Ingham, Victoria A. Ranson, Hilary Sagnon, N’Falé Tennessen, Jacob A. Kuzma, Rebecca Guelbéogo, Wamdaogo Moussa |
AuthorAffiliation | 1 Harvard T.H. Chan School of Public Health, Boston, MA USA 4 Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso 3 Liverpool School of Tropical Medicine, Liverpool, UK 2 Broad Institute, Cambridge, MA USA |
AuthorAffiliation_xml | – name: 4 Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso – name: 2 Broad Institute, Cambridge, MA USA – name: 3 Liverpool School of Tropical Medicine, Liverpool, UK – name: 1 Harvard T.H. Chan School of Public Health, Boston, MA USA |
Author_xml | – sequence: 1 givenname: Jacob A. orcidid: 0000-0002-5015-4740 surname: Tennessen fullname: Tennessen, Jacob A. email: jacob.tennessen@gmail.com organization: Broad Institute – sequence: 2 givenname: Victoria A. surname: Ingham fullname: Ingham, Victoria A. organization: Liverpool School of Tropical Medicine – sequence: 3 givenname: Kobié Hyacinthe surname: Toé fullname: Toé, Kobié Hyacinthe organization: Centre National de Recherche et de Formation sur le Paludisme – sequence: 4 givenname: Wamdaogo Moussa surname: Guelbéogo fullname: Guelbéogo, Wamdaogo Moussa organization: Centre National de Recherche et de Formation sur le Paludisme – sequence: 5 givenname: N’Falé surname: Sagnon fullname: Sagnon, N’Falé organization: Centre National de Recherche et de Formation sur le Paludisme – sequence: 6 givenname: Rebecca surname: Kuzma fullname: Kuzma, Rebecca organization: Broad Institute – sequence: 7 givenname: Hilary surname: Ranson fullname: Ranson, Hilary organization: Liverpool School of Tropical Medicine – sequence: 8 givenname: Daniel E. surname: Neafsey fullname: Neafsey, Daniel E. organization: Broad Institute |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33253481$$D View this record in MEDLINE/PubMed |
BookMark | eNqFks9uEzEQxi1URNPCgRdAlriUw7Zre-14L0hRVP5IRVxA4mZ5ndnEldferr1Nw4lH6DP2SXCSUkElwD7MYX7zzdjfHKEDHzwg9JKUpySfsw7MKeFTLp6gCWGCF7Suvh2gSVkLWpBSskN0FONlWRJGOX-GDlmOrJJkgr7PcB_60elkg8dL8KGzBo_-GqyzfolDizX2sMZm2PQpp7oQr0abAk76JlesbVpZj9MKcKedHqy--3GbBu1jZ1PaKsx86FfgIOKl7hqrAZvQ9Q5unqOnrXYRXtzHY_T13fmX-Yfi4vP7j_PZRWGqqRAFAShbzitGmlpqI6RZ5Ks5k5qKtuWCNqKuRcNaKtmingpNOJBprakpgTQtO0Zv97r92HSwMODzfE71g-30sFFBW_VnxtuVWoZrNZVc0opkgZN7gSFcjRCT6mw04Jz2EMaoaC0F46Ik8v9oJURZUSa36OtH6GUYB59_IlMy28PIrver34d_mPqXgxl4swfMEGIcoH1ASKm226HydqjddmT27BFrbNo5n99t3b8q1tbB5u_S6tP5fF_xE75DzoY |
CitedBy_id | crossref_primary_10_7554_eLife_78775 crossref_primary_10_1093_gigascience_giab017 crossref_primary_10_1038_s41598_024_58906_x crossref_primary_10_1186_s12936_024_04871_9 crossref_primary_10_1016_j_pt_2021_06_007 crossref_primary_10_1093_jme_tjac063 crossref_primary_10_1016_j_meegid_2024_105647 crossref_primary_10_1111_mve_12761 crossref_primary_10_3390_tropicalmed8040187 crossref_primary_10_1111_imb_12813 crossref_primary_10_1016_j_pt_2021_05_002 crossref_primary_10_3390_insects13121090 crossref_primary_10_1016_j_tibtech_2022_06_013 crossref_primary_10_3390_genes12121995 crossref_primary_10_1093_gbe_evae172 crossref_primary_10_1038_s42003_024_06809_y crossref_primary_10_3390_genes14071453 |
Cites_doi | 10.1073/pnas.1418892112 10.1186/s13071‐014‐0480‐z 10.1093/molbev/msh252 10.1111/j.1365‐2583.2005.00544.x 10.1038/nature15535 10.1126/science.1196759 10.1038/178705a0 10.11646/zootaxa.3619.3.2 10.1111/mec.13572 10.1371/journal.pgen.1002967 10.1101/gr.094052.109 10.1126/science.1258524 10.1046/j.1365-2915.2002.00393.x 10.1093/nar/gku1117 10.1101/gr.107524.110 10.1073/pnas.1525164113 10.1093/gbe/evv203 10.1073/pnas.1013648108 10.1111/1755‐0998.13009 10.1016/j.pt.2009.02.007 10.1038/ncomms5248 10.1038/s41598‐019‐49065‐5 10.1093/bioinformatics/btp324 10.1534/genetics.113.158758 10.1186/1471‐2105‐9‐253 10.1073/pnas.1316851110 10.1016/j.pt.2015.11.010 10.1534/genetics.111.137794 10.1371/journal.pgen.1000695 10.1371/journal.pbio.1000600 10.1186/s13071‐017‐2567‐9 10.1371/journal.pgen.0030217 10.1186/gb-2007-8-1-r5 10.1126/science.1076181 10.1038/nature24995 10.1371/journal.pbio.1001388 10.1186/1475‐2875‐7‐163 10.1126/science.1077769 10.1186/s13742‐015‐0047‐8 10.4269/ajtmh.1993.49.520 10.1126/science.1193036 10.1038/s41564‐019‐0414‐9 10.3389/fgene.2019.01072 10.1126/science.aay9847 10.1038/415673a 10.1111/mec.13382 10.1093/bioinformatics/btr509 10.1093/bioinformatics/btl446 |
ContentType | Journal Article |
Copyright | 2020 John Wiley & Sons Ltd 2020 John Wiley & Sons Ltd. Copyright © 2021 John Wiley & Sons Ltd |
Copyright_xml | – notice: 2020 John Wiley & Sons Ltd – notice: 2020 John Wiley & Sons Ltd. – notice: Copyright © 2021 John Wiley & Sons Ltd |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7SN 7SS 8FD C1K FR3 M7N P64 RC3 7X8 7S9 L.6 5PM |
DOI | 10.1111/mec.15756 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Ecology Abstracts Entomology Abstracts (Full archive) Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Entomology Abstracts Genetics Abstracts Technology Research Database Algology Mycology and Protozoology Abstracts (Microbiology C) Engineering Research Database Ecology Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Entomology Abstracts MEDLINE - Academic CrossRef AGRICOLA MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology Ecology |
EISSN | 1365-294X |
EndPage | 790 |
ExternalDocumentID | PMC7858241 33253481 10_1111_mec_15756 MEC15756 |
Genre | article Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GeographicLocations | Burkina Faso Africa |
GeographicLocations_xml | – name: Burkina Faso – name: Africa |
GrantInformation_xml | – fundername: Wellcome Trust funderid: 200222/Z/15/Z – fundername: National Institute of Allergy and Infectious Diseases, National Institutes of Health funderid: U19AI110818 – fundername: EC FP7‐Health funderid: 265660 – fundername: NIAID NIH HHS grantid: U19 AI110818 – fundername: Wellcome Trust – fundername: Wellcome Trust grantid: 200222/Z/15/Z |
GroupedDBID | --- .3N .GA .Y3 05W 0R~ 10A 123 1OB 1OC 29M 31~ 33P 36B 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHBH AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABJNI ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFO ACGFS ACNCT ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHEFC AIAGR AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BIYOS BMNLL BMXJE BNHUX BROTX BRXPI BY8 CAG COF CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS ECGQY EJD ESX F00 F01 F04 F5P FEDTE FZ0 G-S G.N GODZA H.T H.X HF~ HGLYW HVGLF HZI HZ~ IHE IX1 J0M K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MVM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 R.K RIWAO RJQFR ROL RX1 SAMSI SUPJJ TN5 UB1 V8K W8V W99 WBKPD WH7 WIH WIK WNSPC WOHZO WQJ WRC WXSBR WYISQ XG1 XJT Y6R ZZTAW ~02 ~IA ~KM ~WT AAYXX AETEA AEYWJ AGHNM AGQPQ AGYGG CITATION AAMMB AEFGJ AGXDD AIDQK AIDYY CGR CUY CVF ECM EIF NPM 7SN 7SS 8FD C1K FR3 M7N P64 RC3 7X8 7S9 L.6 5PM |
ID | FETCH-LOGICAL-c4766-1ee0f55431b98ac68cdcdca538a26ff562b6996b3f283d976a15e179a2c0e1bf3 |
IEDL.DBID | DR2 |
ISSN | 0962-1083 1365-294X |
IngestDate | Thu Aug 21 13:56:33 EDT 2025 Fri Jul 11 18:32:29 EDT 2025 Fri Jul 11 16:26:54 EDT 2025 Wed Aug 13 03:51:31 EDT 2025 Mon Jul 21 05:58:36 EDT 2025 Tue Jul 01 03:22:09 EDT 2025 Thu Apr 24 22:51:38 EDT 2025 Wed Jan 22 16:32:06 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | Anopheles vector admixture reproductive barrier selective sweep cryptic taxa |
Language | English |
License | 2020 John Wiley & Sons Ltd. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4766-1ee0f55431b98ac68cdcdca538a26ff562b6996b3f283d976a15e179a2c0e1bf3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 JAT performed all data analyses and wrote the paper with the assistance of all co-authors. RK headed the development and testing of the amplicon panel. VAI, KHT, WMG, NS, and HR provided samples and assisted with data interpretation. DEN oversaw the project and assisted with data interpretation. Author contributions |
ORCID | 0000-0002-5015-4740 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/7858241 |
PMID | 33253481 |
PQID | 2485343141 |
PQPubID | 31465 |
PageCount | 16 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7858241 proquest_miscellaneous_2986356018 proquest_miscellaneous_2466042388 proquest_journals_2485343141 pubmed_primary_33253481 crossref_primary_10_1111_mec_15756 crossref_citationtrail_10_1111_mec_15756 wiley_primary_10_1111_mec_15756_MEC15756 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | February 2021 |
PublicationDateYYYYMMDD | 2021-02-01 |
PublicationDate_xml | – month: 02 year: 2021 text: February 2021 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Oxford |
PublicationTitle | Molecular ecology |
PublicationTitleAlternate | Mol Ecol |
PublicationYear | 2021 |
Publisher | Blackwell Publishing Ltd |
Publisher_xml | – name: Blackwell Publishing Ltd |
References | 2002; 16 2015; 347 2020; 20 2019; 10 2016; 32 2008; 9 2008; 7 2020; 367 2017; 552 2012; 10 2005; 22 1956; 178 2010; 20 2014; 5 2006; 22 2015; 43 2016; 113 2007; 8 2013; 110 2007; 3 2009; 19 2011; 27 2014; 7 2009; 25 2019; 9 2019; 4 2015; 4 1993; 49 2002; 298 2002; 415 2015; 526 2014; 196 1972; 6 2015; 7 2013; 3619 2011; 331 2011; 9 2015; 24 2011; 108 2020 2012; 190 2015; 112 1962; 27 2010; 330 2019 2009; 5 2018; 11 2016; 25 1968 2012; 8 2005; 14 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_3_1 e_1_2_8_5_1 e_1_2_8_7_1 e_1_2_8_9_1 e_1_2_8_43_1 e_1_2_8_22_1 e_1_2_8_45_1 Davidson G. (e_1_2_8_14_1) 1962; 27 WHO (e_1_2_8_54_1) 2019 e_1_2_8_41_1 e_1_2_8_17_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_15_1 e_1_2_8_38_1 Shaw T. (e_1_2_8_47_1) 1972; 6 Gillies M. T. (e_1_2_8_20_1) 1968 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_51_1 e_1_2_8_30_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_46_1 e_1_2_8_27_1 R Core Team (e_1_2_8_40_1) 2019 e_1_2_8_48_1 e_1_2_8_2_1 e_1_2_8_4_1 e_1_2_8_6_1 e_1_2_8_8_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_52_1 e_1_2_8_50_1 |
References_xml | – volume: 11 start-page: 6 year: 2018 article-title: cuticular protein CPLCG5 participates in pyrethroid resistance by forming a rigid matrix publication-title: Parasites & Vectors – volume: 8 year: 2012 article-title: Inference of population splits and mixtures from genome‐wide allele frequency data publication-title: PLoS Genetics – volume: 3619 start-page: 246 year: 2013 end-page: 274 article-title: and , new members of the complex publication-title: Zootaxa – volume: 20 start-page: 1297 year: 2010 end-page: 1303 article-title: The Genome Analysis Toolkit: A MapReduce framework for analyzing next‐generation DNA sequencing data publication-title: Genome Research – volume: 178 start-page: 705 year: 1956 end-page: 706 article-title: Insecticide resistance in Giles publication-title: Nature – volume: 367 start-page: 681 year: 2020 end-page: 684 article-title: Mosquito heat seeking is driven by an ancestral cooling receptor publication-title: Science – volume: 298 start-page: 129 year: 2002 end-page: 149 article-title: The genome sequence of the malaria mosquito publication-title: Science – volume: 415 start-page: 673 issue: 6872 year: 2002 end-page: 679 article-title: The pathogenic basis of malaria publication-title: Nature – volume: 25 start-page: 213 year: 2009 end-page: 219 article-title: Does kdr genotype predict insecticide‐resistance phenotype in mosquitoes? publication-title: Trends in Parasitology – volume: 10 start-page: 1072 year: 2019 article-title: Winning the tug‐of‐war between effector gene design and pathogen evolution in vector population replacement strategies publication-title: Frontiers in Genetics – volume: 4 start-page: 7 year: 2015 article-title: Second‐generation PLINK: Rising to the challenge of larger and richer datasets publication-title: Gigascience – volume: 14 start-page: 179 year: 2005 end-page: 183 article-title: Independent mutations in the locus confer dieldrin resistance to and publication-title: Insect Molecular Biology – volume: 110 start-page: 19854 year: 2013 end-page: 19859 article-title: Spatiotemporal dynamics of gene flow and hybrid fitness between the M and S forms of the malaria mosquito, publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 7 start-page: 3116 year: 2015 end-page: 3131 article-title: Reticulate speciation and barriers to introgression in the species complex publication-title: Genome Biology and Evolution – volume: 10 year: 2012 article-title: Revisiting an old riddle: What determines genetic diversity levels within species? publication-title: PLoS Biology – volume: 32 start-page: 187 year: 2016 end-page: 196 article-title: Insecticide resistance in African mosquitoes: A worsening situation that needs urgent action to maintain malaria control publication-title: Trends in Parasitology – volume: 25 start-page: 1494 year: 2016 end-page: 1510 article-title: Evolution of GOUNDRY, a cryptic subgroup of s.l., and its impact on susceptibility to publication-title: Molecular Ecology – volume: 49 start-page: 520 year: 1993 end-page: 529 article-title: Identification of single specimens of the complex by the polymerase chain reaction publication-title: The American Journal of Tropical Medicine and Hygiene – volume: 4 start-page: 941 year: 2019 end-page: 947 article-title: Mosquito microevolution drives dynamics publication-title: Nature Microbiology – volume: 526 start-page: 207 year: 2015 end-page: 211 article-title: The effect of malaria control on in Africa between 2000 and 2015 publication-title: Nature – volume: 27 start-page: 2987 year: 2011 end-page: 2993 article-title: A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data publication-title: Bioinformatics – volume: 6 start-page: 143 year: 1972 end-page: 191 article-title: Early agriculture in Africa publication-title: Journal of the Historical Society of Nigeria – volume: 298 start-page: 1415 year: 2002 end-page: 1418 article-title: A polytene chromosome analysis of the species complex publication-title: Science – year: 2019 – volume: 7 start-page: 480 year: 2014 article-title: Impact of agriculture on the selection of insecticide resistance in the malaria vector : A multigenerational study in controlled conditions publication-title: Parasites & Vectors – volume: 5 year: 2009 article-title: Inferring the joint demographic history of multiple populations from multidimensional SNP frequency data publication-title: PLoS Genetics – volume: 9 start-page: 253 year: 2008 article-title: BatchPrimer3: A high throughput web application for PCR and sequencing primer design publication-title: BMC Bioinformatics – volume: 24 start-page: 5145 year: 2015 end-page: 5157 article-title: Complex genome evolution in associated with increased insecticide usage in Mali publication-title: Molecular Ecology – volume: 20 start-page: 1171 year: 2020 end-page: 1181 article-title: Index hopping on the Illumina HiseqX platform and its consequences for ancient DNA studies publication-title: Molecular Ecology Resources – volume: 5 start-page: 4248 year: 2014 article-title: Adaptive introgression between sibling species eliminates a major genomic island but not reproductive isolation publication-title: Nature Communications – year: 1968 – volume: 19 start-page: 1655 year: 2009 end-page: 1664 article-title: Fast model‐based estimation of ancestry in unrelated individuals publication-title: Genome Research – volume: 108 start-page: 244 year: 2011 end-page: 249 article-title: Adaptive divergence between incipient species of increases resistance to publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 330 start-page: 514 year: 2010 end-page: 517 article-title: SNP genotyping defines complex gene‐flow boundaries among African malaria vector mosquitoes publication-title: Science – volume: 196 start-page: 313 year: 2014 end-page: 320 article-title: Estimation of the spontaneous mutation rate per nucleotide site in a full‐sib family publication-title: Genetics – volume: 190 start-page: 1417 year: 2012 end-page: 1432 article-title: Ecological genomics of along a latitudinal cline: A population‐resequencing approach publication-title: Genetics – volume: 113 start-page: E2114 year: 2016 end-page: 2123 article-title: Radical remodeling of the Y chromosome in a recent radiation of malaria mosquitoes publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 7 start-page: 163 year: 2008 article-title: Insertion polymorphisms of SINE200 retrotransposons within speciation islands of molecular forms publication-title: Malaria Journal – volume: 347 start-page: 1258524 year: 2015 article-title: Mosquito genomics. Extensive introgression in a malaria vector species complex revealed by phylogenomics publication-title: Science – volume: 8 start-page: R5 year: 2007 article-title: Update of the PEST genome assembly publication-title: Genome Biology – volume: 22 start-page: 2688 year: 2006 end-page: 2690 article-title: RAxML‐VI‐HPC: Maximum likelihood‐based phylogenetic analyses with thousands of taxa and mixed models publication-title: Bioinformatics – volume: 16 start-page: 461 year: 2002 end-page: 464 article-title: Simultaneous identification of species and molecular forms of the complex by PCR‐RFLP publication-title: Medical and Veterinary Entomology – volume: 9 year: 2011 article-title: Exceptional diversity, maintenance of polymorphism, and recent directional selection on the malaria resistance genes of publication-title: PLoS Biology – volume: 112 start-page: 815 year: 2015 end-page: 820 article-title: Adaptive introgression in an African malaria mosquito coincident with the increased usage of insecticide‐treated bed nets publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 25 start-page: 1754 year: 2009 end-page: 1760 article-title: Fast and accurate short read alignment with Burrows‐Wheeler Transform publication-title: Bioinformatics – volume: 552 start-page: 96 year: 2017 end-page: 100 article-title: Genetic diversity of the African malaria vector publication-title: Nature – year: 2020 – volume: 3 start-page: e217 year: 2007 article-title: Localization of candidate regions maintaining a common polymorphic inversion (2La) in publication-title: PLoS Genetics – volume: 22 start-page: 63 year: 2005 end-page: 73 article-title: Disentangling the effects of demography and selection in human history publication-title: Molecular Biology and Evolution – volume: 9 start-page: 14753 year: 2019 article-title: A new species in the major malaria vector complex sheds light on reticulated species evolution publication-title: Scientific Reports – volume: 27 start-page: 303 year: 1962 end-page: 305 article-title: Incipient speciation in Giles publication-title: Bulletin of the World Health Organization – volume: 43 start-page: D707 year: 2015 end-page: D713 article-title: VectorBase: An updated bioinformatics resource for invertebrate vectors and other organisms related with human diseases publication-title: Nucleic Acids Research – volume: 331 start-page: 596 year: 2011 end-page: 598 article-title: A cryptic subgroup of is highly susceptible to human malaria parasites publication-title: Science – ident: e_1_2_8_38_1 doi: 10.1073/pnas.1418892112 – ident: e_1_2_8_37_1 doi: 10.1186/s13071‐014‐0480‐z – ident: e_1_2_8_48_1 doi: 10.1093/molbev/msh252 – ident: e_1_2_8_16_1 doi: 10.1111/j.1365‐2583.2005.00544.x – ident: e_1_2_8_5_1 doi: 10.1038/nature15535 – volume-title: World malaria report 2019 year: 2019 ident: e_1_2_8_54_1 – ident: e_1_2_8_42_1 doi: 10.1126/science.1196759 – ident: e_1_2_8_13_1 doi: 10.1038/178705a0 – volume-title: R: A language and environment for statistical computing year: 2019 ident: e_1_2_8_40_1 – ident: e_1_2_8_9_1 doi: 10.11646/zootaxa.3619.3.2 – ident: e_1_2_8_12_1 doi: 10.1111/mec.13572 – ident: e_1_2_8_39_1 doi: 10.1371/journal.pgen.1002967 – ident: e_1_2_8_2_1 doi: 10.1101/gr.094052.109 – ident: e_1_2_8_18_1 doi: 10.1126/science.1258524 – ident: e_1_2_8_17_1 doi: 10.1046/j.1365-2915.2002.00393.x – ident: e_1_2_8_21_1 doi: 10.1093/nar/gku1117 – ident: e_1_2_8_34_1 doi: 10.1101/gr.107524.110 – volume: 27 start-page: 303 year: 1962 ident: e_1_2_8_14_1 article-title: Incipient speciation in Anopheles gambiae Giles publication-title: Bulletin of the World Health Organization – ident: e_1_2_8_24_1 doi: 10.1073/pnas.1525164113 – ident: e_1_2_8_11_1 doi: 10.1093/gbe/evv203 – ident: e_1_2_8_53_1 doi: 10.1073/pnas.1013648108 – ident: e_1_2_8_51_1 doi: 10.1111/1755‐0998.13009 – ident: e_1_2_8_15_1 doi: 10.1016/j.pt.2009.02.007 – ident: e_1_2_8_8_1 doi: 10.1038/ncomms5248 – ident: e_1_2_8_4_1 doi: 10.1038/s41598‐019‐49065‐5 – ident: e_1_2_8_31_1 doi: 10.1093/bioinformatics/btp324 – ident: e_1_2_8_27_1 doi: 10.1534/genetics.113.158758 – ident: e_1_2_8_55_1 doi: 10.1186/1471‐2105‐9‐253 – ident: e_1_2_8_50_1 – ident: e_1_2_8_28_1 doi: 10.1073/pnas.1316851110 – ident: e_1_2_8_41_1 doi: 10.1016/j.pt.2015.11.010 – volume: 6 start-page: 143 year: 1972 ident: e_1_2_8_47_1 article-title: Early agriculture in Africa publication-title: Journal of the Historical Society of Nigeria – ident: e_1_2_8_7_1 doi: 10.1534/genetics.111.137794 – ident: e_1_2_8_23_1 doi: 10.1371/journal.pgen.1000695 – ident: e_1_2_8_43_1 doi: 10.1371/journal.pbio.1000600 – volume-title: The Anophelinae of Africa South of the Sahara (Ethiopian Zoogeographical Region) year: 1968 ident: e_1_2_8_20_1 – ident: e_1_2_8_26_1 doi: 10.1186/s13071‐017‐2567‐9 – ident: e_1_2_8_52_1 doi: 10.1371/journal.pgen.0030217 – ident: e_1_2_8_46_1 doi: 10.1186/gb-2007-8-1-r5 – ident: e_1_2_8_25_1 doi: 10.1126/science.1076181 – ident: e_1_2_8_3_1 doi: 10.1038/nature24995 – ident: e_1_2_8_29_1 doi: 10.1371/journal.pbio.1001388 – ident: e_1_2_8_44_1 doi: 10.1186/1475‐2875‐7‐163 – ident: e_1_2_8_10_1 doi: 10.1126/science.1077769 – ident: e_1_2_8_6_1 doi: 10.1186/s13742‐015‐0047‐8 – ident: e_1_2_8_45_1 doi: 10.4269/ajtmh.1993.49.520 – ident: e_1_2_8_36_1 doi: 10.1126/science.1193036 – ident: e_1_2_8_19_1 doi: 10.1038/s41564‐019‐0414‐9 – ident: e_1_2_8_33_1 doi: 10.3389/fgene.2019.01072 – ident: e_1_2_8_22_1 doi: 10.1126/science.aay9847 – ident: e_1_2_8_35_1 doi: 10.1038/415673a – ident: e_1_2_8_32_1 doi: 10.1111/mec.13382 – ident: e_1_2_8_30_1 doi: 10.1093/bioinformatics/btr509 – ident: e_1_2_8_49_1 doi: 10.1093/bioinformatics/btl446 |
SSID | ssj0013255 |
Score | 2.4465327 |
Snippet | The Anopheles gambiae complex consists of multiple morphologically indistinguishable mosquito species including the most important vectors of the malaria... The Anopheles gambiae complex consists of multiple morphologically indistinguishable mosquito species including the most important vectors of the malaria... |
SourceID | pubmedcentral proquest pubmed crossref wiley |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 775 |
SubjectTerms | admixture Animals Anopheles Anopheles - genetics Anopheles gambiae Aquatic insects Burkina Faso Correlation analysis Cryptic species cryptic taxa Diagnostic systems Disease control Divergence Environmental changes evolution Gene sequencing genes Genetic analysis genetic variation Genomes genomics Genotyping Immunology Insecticide resistance Insecticides inversion polymorphism Larvae Longitudinal Studies Malaria Metagenomics Mosquito Vectors - genetics Mosquitoes Nucleotides overdominance Parasites Pesticide resistance phenotype Plasmodium falciparum Polymorphism Population Population genetics reproductive barrier selective sweep Species Subgroups Taxa vector vector control Vector-borne diseases Vectors Whole genome sequencing |
Title | A population genomic unveiling of a new cryptic mosquito taxon within the malaria‐transmitting Anopheles gambiae complex |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fmec.15756 https://www.ncbi.nlm.nih.gov/pubmed/33253481 https://www.proquest.com/docview/2485343141 https://www.proquest.com/docview/2466042388 https://www.proquest.com/docview/2986356018 https://pubmed.ncbi.nlm.nih.gov/PMC7858241 |
Volume | 30 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Li9RAEG6WBcGL78foKq142EuGyavTg6dhmWUR1oO4sAchVPdUa3CTWXcS2dmTP8Hf6C-xqvNgxlURySWQCnQn9fgqqfpKiFeawvICFQah0ZSgUEAIwKILFhC71FH2hsANzsdv1dFJ8uY0Pd0Rr_temJYfYvjgxpbh_TUbOJjVhpGXaMchgQ2m2-ZaLQZE76KNPwh-4ikh9IhcjY47ViGu4hnu3I5F1wDm9TrJTfzqA9DhbfGhX3pbd_J53NRmbK9-YXX8z73dEbc6YCpnrSbdFTtY3RM32lGVazqbe3rr9X1xNZPnw9QvyRyvZWFlU33Fglvb5dJJkATWpb1Ykz-yslyuvjTkOGQNl3QHf_ktKknAU5ZAeXUBP759rzlkloUvwpaziskOznAlP0JpCkDpC9_x8oE4OZy_PzgKugkOgU0ypYIQceJSbrc3Uw1WabugA8jJQqScI-xlFCVcJnaEchaEjCBMkVwERHaCoXHxQ7FbLSt8LCSm1iwylwAH1ASURusYvxg0OtPTZCT2-3eZ247enKdsnOV9mkMPNfcPdSReDqLnLafH74T2eoXIO7Ne5cz_FtNuknAkXgyXySD5LwtUuGxYRikuNtL6LzJTzbyAk5BkHrU6NqwkJs3l7uiRyLa0bxBgQvDtK1XxyRODZzrVEa9t3yvXnzeXH88P_MmTfxd9Km5GXM_jK9b3xG590eAzAmS1ee4t7yfGyDaj |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6VIkQvvCmBAgvi0Iuj-LXeSFyiKlWApgfUSr0ga3c9Cxa1UxobNT3xE_iN_BJm1o6VUEAI5WLJY2nXmcc365lvGHslMSxnIMDztcQEBQOCpwxYL1OhjS1mb6CowXl6KCbH0duT-GSDvV72wjT8EN2BG1mG89dk4HQgvWLlBZi-j2hDXGPXaaK3S6jeByvfENzMU8ToATobGba8QlTH0z26Ho2uQMyrlZKrCNaFoP3b7MNy8U3lyed-Xem-ufyF1_F_d3eH3WqxKR81ynSXbUB5j91oplUu8GrsGK4X99nliJ91g7840bwWueF1-RVy6m7nM8sVR7zOzfkCXZLhxWz-pUbfwSt1gU_Q4W9ecsSevFCYWufqx7fvFUXNInd12HxUEt_BKcz5R1XoXAF3te9w8YAd74-P9iZeO8TBM1EihOcDDGxMHfd6KJUR0mT4U-hnVSCsRfilBeZcOrQIdDIER8qPAb2ECswAfG3Dh2yznJXwiHGIjc4SGymKqZESEowlCKNBy0QOox7bXf6ZqWkZzmnQxmm6zHTwpabupfbYy070rKH1-J3QzlIj0tay5ylRwIW4m8jvsRfdbbRJ-tCiSpjVJCME1RtJ-ReZoSRqwIGPMtuNknUrCVF1qUG6x5I19esEiBN8_U6Zf3Lc4ImMZUBr23Xa9efNpdPxnrt4_O-iz9nNydH0ID14c_juCdsKqLzHFbDvsM3qvIaniM8q_cyZ4U_7rzq- |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6VIhAX3oVAgQVx6MVR_FpvxClqE5VHK4So1AOStbueBYvaCY2Dmp74CfxGfgkz64cSCgghXyx5LO3a8_jGnvmGsecSw3IGAjxfS0xQMCB4yoD1MhXa2GL2BooanA8Oxf5R9Oo4Pt5gL9pemJofovvgRpbh_DUZ-CyzK0ZegOn7CDbEJXY5EgNJKr33Llj5heBGniJED9DXyLChFaIynu7W9WB0AWFeLJRcBbAuAk1usA_t2uvCk8_9RaX75vwXWsf_3NxNdr1BpnxUq9IttgHlbXalnlW5xLOx47de3mHnIz7rxn5xInktcsMX5VfIqbedTy1XHNE6N6dLdEiGF9P5lwV6Dl6pM7yDPv3mJUfkyQuFiXWufnz7XlHMLHJXhc1HJbEdnMCcf1SFzhVwV_kOZ3fZ0WT8fnffa0Y4eCZKhPB8gIGNqd9eD6UyQpoMD4VeVgXCWgRfWmDGpUOLMCdDaKT8GNBHqMAMwNc23GKb5bSE-4xDbHSW2EhRRI2UkGAsARgNWiZyGPXYTvsuU9Pwm9OYjZO0zXPwoabuofbYs050VpN6_E5ou1WItLHreUoEcCHuJvJ77Gl3GS2SfrOoEqYLkhGCqo2k_IvMUBIx4MBHmXu1jnUrCVFzqT26x5I17esEiBF8_UqZf3LM4ImMZUBr23HK9efNpQfjXXfy4N9Fn7Crb_cm6ZuXh68fsmsB1fa46vVttlmdLuARgrNKP3ZG-BNN_zl2 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+population+genomic+unveiling+of+a+new+cryptic+mosquito+taxon+within+the+malaria-transmitting+Anopheles+gambiae+complex&rft.jtitle=Molecular+ecology&rft.au=Tennessen%2C+Jacob+A.&rft.au=Ingham%2C+Victoria+A.&rft.au=To%C3%A9%2C+Kobi%C3%A9+Hyacinthe&rft.au=Guelb%C3%A9ogo%2C+Wamdaogo+Moussa&rft.date=2021-02-01&rft.issn=0962-1083&rft.eissn=1365-294X&rft.volume=30&rft.issue=3&rft.spage=775&rft.epage=790&rft_id=info:doi/10.1111%2Fmec.15756&rft_id=info%3Apmid%2F33253481&rft.externalDocID=PMC7858241 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0962-1083&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0962-1083&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0962-1083&client=summon |