A population genomic unveiling of a new cryptic mosquito taxon within the malaria‐transmitting Anopheles gambiae complex

The Anopheles gambiae complex consists of multiple morphologically indistinguishable mosquito species including the most important vectors of the malaria parasite Plasmodium falciparum in sub‐Saharan Africa. Nine cryptic species have been described so far within the complex. The ecological, immunolo...

Full description

Saved in:
Bibliographic Details
Published inMolecular ecology Vol. 30; no. 3; pp. 775 - 790
Main Authors Tennessen, Jacob A., Ingham, Victoria A., Toé, Kobié Hyacinthe, Guelbéogo, Wamdaogo Moussa, Sagnon, N’Falé, Kuzma, Rebecca, Ranson, Hilary, Neafsey, Daniel E.
Format Journal Article
LanguageEnglish
Published England Blackwell Publishing Ltd 01.02.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The Anopheles gambiae complex consists of multiple morphologically indistinguishable mosquito species including the most important vectors of the malaria parasite Plasmodium falciparum in sub‐Saharan Africa. Nine cryptic species have been described so far within the complex. The ecological, immunological and reproductive differences among these species will critically impact population responses to disease control strategies and environmental changes. Here, we examine whole‐genome sequencing data from a longitudinal study of putative A. coluzzii in western Burkina Faso. Surprisingly, many specimens are genetically divergent from A. coluzzii and all other Anopheles species and represent a new taxon, here designated Anopheles TENGRELA (AT). Population genetic analysis suggests that the cryptic GOUNDRY subgroup, previously collected as larvae in central Burkina Faso, represents an admixed population descended from both A. coluzzii and AT. AT harbours low nucleotide diversity except for the 2La inversion polymorphism which is maintained by overdominance. It shows numerous fixed differences with A. coluzzii concentrated in several regions reflecting selective sweeps, but the two taxa are identical at standard diagnostic loci used for taxon identification, and thus, AT may often go unnoticed. We present an amplicon‐based genotyping assay for identifying AT which could be usefully applied to numerous existing samples. Misidentified cryptic taxa could seriously confound ongoing studies of Anopheles ecology and evolution in western Africa, including phenotypic and genotypic surveys of insecticide resistance. Reproductive barriers between cryptic species may also complicate novel vector control efforts, for example gene drives, and hinder predictions about evolutionary dynamics of Anopheles and Plasmodium.
AbstractList The Anopheles gambiae complex consists of multiple morphologically indistinguishable mosquito species including the most important vectors of the malaria parasite Plasmodium falciparum in sub‐Saharan Africa. Nine cryptic species have been described so far within the complex. The ecological, immunological and reproductive differences among these species will critically impact population responses to disease control strategies and environmental changes. Here, we examine whole‐genome sequencing data from a longitudinal study of putative A. coluzzii in western Burkina Faso. Surprisingly, many specimens are genetically divergent from A. coluzzii and all other Anopheles species and represent a new taxon, here designated Anopheles TENGRELA (AT). Population genetic analysis suggests that the cryptic GOUNDRY subgroup, previously collected as larvae in central Burkina Faso, represents an admixed population descended from both A. coluzzii and AT. AT harbours low nucleotide diversity except for the 2La inversion polymorphism which is maintained by overdominance. It shows numerous fixed differences with A. coluzzii concentrated in several regions reflecting selective sweeps, but the two taxa are identical at standard diagnostic loci used for taxon identification, and thus, AT may often go unnoticed. We present an amplicon‐based genotyping assay for identifying AT which could be usefully applied to numerous existing samples. Misidentified cryptic taxa could seriously confound ongoing studies of Anopheles ecology and evolution in western Africa, including phenotypic and genotypic surveys of insecticide resistance. Reproductive barriers between cryptic species may also complicate novel vector control efforts, for example gene drives, and hinder predictions about evolutionary dynamics of Anopheles and Plasmodium.
The Anopheles gambiae complex consists of multiple morphologically indistinguishable mosquito species including the most important vectors of the malaria parasite Plasmodium falciparum in sub-Saharan Africa. Nine cryptic species have been described so far within the complex. The ecological, immunological and reproductive differences among these species will critically impact population responses to disease control strategies and environmental changes. Here, we examine whole-genome sequencing data from a longitudinal study of putative A. coluzzii in western Burkina Faso. Surprisingly, many specimens are genetically divergent from A. coluzzii and all other Anopheles species and represent a new taxon, here designated Anopheles TENGRELA (AT). Population genetic analysis suggests that the cryptic GOUNDRY subgroup, previously collected as larvae in central Burkina Faso, represents an admixed population descended from both A. coluzzii and AT. AT harbours low nucleotide diversity except for the 2La inversion polymorphism which is maintained by overdominance. It shows numerous fixed differences with A. coluzzii concentrated in several regions reflecting selective sweeps, but the two taxa are identical at standard diagnostic loci used for taxon identification, and thus, AT may often go unnoticed. We present an amplicon-based genotyping assay for identifying AT which could be usefully applied to numerous existing samples. Misidentified cryptic taxa could seriously confound ongoing studies of Anopheles ecology and evolution in western Africa, including phenotypic and genotypic surveys of insecticide resistance. Reproductive barriers between cryptic species may also complicate novel vector control efforts, for example gene drives, and hinder predictions about evolutionary dynamics of Anopheles and Plasmodium.The Anopheles gambiae complex consists of multiple morphologically indistinguishable mosquito species including the most important vectors of the malaria parasite Plasmodium falciparum in sub-Saharan Africa. Nine cryptic species have been described so far within the complex. The ecological, immunological and reproductive differences among these species will critically impact population responses to disease control strategies and environmental changes. Here, we examine whole-genome sequencing data from a longitudinal study of putative A. coluzzii in western Burkina Faso. Surprisingly, many specimens are genetically divergent from A. coluzzii and all other Anopheles species and represent a new taxon, here designated Anopheles TENGRELA (AT). Population genetic analysis suggests that the cryptic GOUNDRY subgroup, previously collected as larvae in central Burkina Faso, represents an admixed population descended from both A. coluzzii and AT. AT harbours low nucleotide diversity except for the 2La inversion polymorphism which is maintained by overdominance. It shows numerous fixed differences with A. coluzzii concentrated in several regions reflecting selective sweeps, but the two taxa are identical at standard diagnostic loci used for taxon identification, and thus, AT may often go unnoticed. We present an amplicon-based genotyping assay for identifying AT which could be usefully applied to numerous existing samples. Misidentified cryptic taxa could seriously confound ongoing studies of Anopheles ecology and evolution in western Africa, including phenotypic and genotypic surveys of insecticide resistance. Reproductive barriers between cryptic species may also complicate novel vector control efforts, for example gene drives, and hinder predictions about evolutionary dynamics of Anopheles and Plasmodium.
The Anopheles gambiae complex consists of multiple morphologically indistinguishable mosquito species including the most important vectors of the malaria parasite Plasmodium falciparum in sub-Saharan Africa. Nine cryptic species have been described so far within the complex. The ecological, immunological, and reproductive differences among these species will critically impact population responses to disease control strategies and environmental changes. Here we examine whole-genome sequencing data from a longitudinal study of putative A. coluzzii in western Burkina Faso. Surprisingly, many specimens are genetically divergent from A. coluzzii and all other Anopheles species and represent a new taxon, here designated Anopheles TENGRELA (AT). Population genetic analysis suggests that the cryptic GOUNDRY subgroup, previously collected as larvae in central Burkina Faso, represents an admixed population descended from both A. coluzzii and AT. AT harbors low nucleotide diversity except for the 2La inversion polymorphism which is maintained by overdominance. It shows numerous fixed differences with A. coluzzii concentrated in several regions reflecting selective sweeps, but the two taxa are identical at standard diagnostic loci used for taxon identification and thus AT may often go unnoticed. We present an amplicon-based genotyping assay for identifying AT which could be usefully applied to numerous existing samples. Misidentified cryptic taxa could seriously confound ongoing studies of Anopheles ecology and evolution in western Africa, including phenotypic and genotypic surveys of insecticide resistance. Reproductive barriers between cryptic species may also complicate novel vector control efforts, for example gene drives, and hinder predictions about evolutionary dynamics of Anopheles and Plasmodium .
The Anopheles gambiae complex consists of multiple morphologically indistinguishable mosquito species including the most important vectors of the malaria parasite Plasmodium falciparum in sub‐Saharan Africa. Nine cryptic species have been described so far within the complex. The ecological, immunological and reproductive differences among these species will critically impact population responses to disease control strategies and environmental changes. Here, we examine whole‐genome sequencing data from a longitudinal study of putative A. coluzzii in western Burkina Faso. Surprisingly, many specimens are genetically divergent from A. coluzzii and all other Anopheles species and represent a new taxon, here designated Anopheles TENGRELA (AT). Population genetic analysis suggests that the cryptic GOUNDRY subgroup, previously collected as larvae in central Burkina Faso, represents an admixed population descended from both A. coluzzii and AT. AT harbours low nucleotide diversity except for the 2La inversion polymorphism which is maintained by overdominance. It shows numerous fixed differences with A. coluzzii concentrated in several regions reflecting selective sweeps, but the two taxa are identical at standard diagnostic loci used for taxon identification, and thus, AT may often go unnoticed. We present an amplicon‐based genotyping assay for identifying AT which could be usefully applied to numerous existing samples. Misidentified cryptic taxa could seriously confound ongoing studies of Anopheles ecology and evolution in western Africa, including phenotypic and genotypic surveys of insecticide resistance. Reproductive barriers between cryptic species may also complicate novel vector control efforts, for example gene drives, and hinder predictions about evolutionary dynamics of Anopheles and Plasmodium .
The Anopheles gambiae complex consists of multiple morphologically indistinguishable mosquito species including the most important vectors of the malaria parasite Plasmodium falciparum in sub-Saharan Africa. Nine cryptic species have been described so far within the complex. The ecological, immunological and reproductive differences among these species will critically impact population responses to disease control strategies and environmental changes. Here, we examine whole-genome sequencing data from a longitudinal study of putative A. coluzzii in western Burkina Faso. Surprisingly, many specimens are genetically divergent from A. coluzzii and all other Anopheles species and represent a new taxon, here designated Anopheles TENGRELA (AT). Population genetic analysis suggests that the cryptic GOUNDRY subgroup, previously collected as larvae in central Burkina Faso, represents an admixed population descended from both A. coluzzii and AT. AT harbours low nucleotide diversity except for the 2La inversion polymorphism which is maintained by overdominance. It shows numerous fixed differences with A. coluzzii concentrated in several regions reflecting selective sweeps, but the two taxa are identical at standard diagnostic loci used for taxon identification, and thus, AT may often go unnoticed. We present an amplicon-based genotyping assay for identifying AT which could be usefully applied to numerous existing samples. Misidentified cryptic taxa could seriously confound ongoing studies of Anopheles ecology and evolution in western Africa, including phenotypic and genotypic surveys of insecticide resistance. Reproductive barriers between cryptic species may also complicate novel vector control efforts, for example gene drives, and hinder predictions about evolutionary dynamics of Anopheles and Plasmodium.
Author Neafsey, Daniel E.
Toé, Kobié Hyacinthe
Ingham, Victoria A.
Ranson, Hilary
Sagnon, N’Falé
Tennessen, Jacob A.
Kuzma, Rebecca
Guelbéogo, Wamdaogo Moussa
AuthorAffiliation 1 Harvard T.H. Chan School of Public Health, Boston, MA USA
4 Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso
3 Liverpool School of Tropical Medicine, Liverpool, UK
2 Broad Institute, Cambridge, MA USA
AuthorAffiliation_xml – name: 4 Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso
– name: 2 Broad Institute, Cambridge, MA USA
– name: 3 Liverpool School of Tropical Medicine, Liverpool, UK
– name: 1 Harvard T.H. Chan School of Public Health, Boston, MA USA
Author_xml – sequence: 1
  givenname: Jacob A.
  orcidid: 0000-0002-5015-4740
  surname: Tennessen
  fullname: Tennessen, Jacob A.
  email: jacob.tennessen@gmail.com
  organization: Broad Institute
– sequence: 2
  givenname: Victoria A.
  surname: Ingham
  fullname: Ingham, Victoria A.
  organization: Liverpool School of Tropical Medicine
– sequence: 3
  givenname: Kobié Hyacinthe
  surname: Toé
  fullname: Toé, Kobié Hyacinthe
  organization: Centre National de Recherche et de Formation sur le Paludisme
– sequence: 4
  givenname: Wamdaogo Moussa
  surname: Guelbéogo
  fullname: Guelbéogo, Wamdaogo Moussa
  organization: Centre National de Recherche et de Formation sur le Paludisme
– sequence: 5
  givenname: N’Falé
  surname: Sagnon
  fullname: Sagnon, N’Falé
  organization: Centre National de Recherche et de Formation sur le Paludisme
– sequence: 6
  givenname: Rebecca
  surname: Kuzma
  fullname: Kuzma, Rebecca
  organization: Broad Institute
– sequence: 7
  givenname: Hilary
  surname: Ranson
  fullname: Ranson, Hilary
  organization: Liverpool School of Tropical Medicine
– sequence: 8
  givenname: Daniel E.
  surname: Neafsey
  fullname: Neafsey, Daniel E.
  organization: Broad Institute
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33253481$$D View this record in MEDLINE/PubMed
BookMark eNqFks9uEzEQxi1URNPCgRdAlriUw7Zre-14L0hRVP5IRVxA4mZ5ndnEldferr1Nw4lH6DP2SXCSUkElwD7MYX7zzdjfHKEDHzwg9JKUpySfsw7MKeFTLp6gCWGCF7Suvh2gSVkLWpBSskN0FONlWRJGOX-GDlmOrJJkgr7PcB_60elkg8dL8KGzBo_-GqyzfolDizX2sMZm2PQpp7oQr0abAk76JlesbVpZj9MKcKedHqy--3GbBu1jZ1PaKsx86FfgIOKl7hqrAZvQ9Q5unqOnrXYRXtzHY_T13fmX-Yfi4vP7j_PZRWGqqRAFAShbzitGmlpqI6RZ5Ks5k5qKtuWCNqKuRcNaKtmingpNOJBprakpgTQtO0Zv97r92HSwMODzfE71g-30sFFBW_VnxtuVWoZrNZVc0opkgZN7gSFcjRCT6mw04Jz2EMaoaC0F46Ik8v9oJURZUSa36OtH6GUYB59_IlMy28PIrver34d_mPqXgxl4swfMEGIcoH1ASKm226HydqjddmT27BFrbNo5n99t3b8q1tbB5u_S6tP5fF_xE75DzoY
CitedBy_id crossref_primary_10_7554_eLife_78775
crossref_primary_10_1093_gigascience_giab017
crossref_primary_10_1038_s41598_024_58906_x
crossref_primary_10_1186_s12936_024_04871_9
crossref_primary_10_1016_j_pt_2021_06_007
crossref_primary_10_1093_jme_tjac063
crossref_primary_10_1016_j_meegid_2024_105647
crossref_primary_10_1111_mve_12761
crossref_primary_10_3390_tropicalmed8040187
crossref_primary_10_1111_imb_12813
crossref_primary_10_1016_j_pt_2021_05_002
crossref_primary_10_3390_insects13121090
crossref_primary_10_1016_j_tibtech_2022_06_013
crossref_primary_10_3390_genes12121995
crossref_primary_10_1093_gbe_evae172
crossref_primary_10_1038_s42003_024_06809_y
crossref_primary_10_3390_genes14071453
Cites_doi 10.1073/pnas.1418892112
10.1186/s13071‐014‐0480‐z
10.1093/molbev/msh252
10.1111/j.1365‐2583.2005.00544.x
10.1038/nature15535
10.1126/science.1196759
10.1038/178705a0
10.11646/zootaxa.3619.3.2
10.1111/mec.13572
10.1371/journal.pgen.1002967
10.1101/gr.094052.109
10.1126/science.1258524
10.1046/j.1365-2915.2002.00393.x
10.1093/nar/gku1117
10.1101/gr.107524.110
10.1073/pnas.1525164113
10.1093/gbe/evv203
10.1073/pnas.1013648108
10.1111/1755‐0998.13009
10.1016/j.pt.2009.02.007
10.1038/ncomms5248
10.1038/s41598‐019‐49065‐5
10.1093/bioinformatics/btp324
10.1534/genetics.113.158758
10.1186/1471‐2105‐9‐253
10.1073/pnas.1316851110
10.1016/j.pt.2015.11.010
10.1534/genetics.111.137794
10.1371/journal.pgen.1000695
10.1371/journal.pbio.1000600
10.1186/s13071‐017‐2567‐9
10.1371/journal.pgen.0030217
10.1186/gb-2007-8-1-r5
10.1126/science.1076181
10.1038/nature24995
10.1371/journal.pbio.1001388
10.1186/1475‐2875‐7‐163
10.1126/science.1077769
10.1186/s13742‐015‐0047‐8
10.4269/ajtmh.1993.49.520
10.1126/science.1193036
10.1038/s41564‐019‐0414‐9
10.3389/fgene.2019.01072
10.1126/science.aay9847
10.1038/415673a
10.1111/mec.13382
10.1093/bioinformatics/btr509
10.1093/bioinformatics/btl446
ContentType Journal Article
Copyright 2020 John Wiley & Sons Ltd
2020 John Wiley & Sons Ltd.
Copyright © 2021 John Wiley & Sons Ltd
Copyright_xml – notice: 2020 John Wiley & Sons Ltd
– notice: 2020 John Wiley & Sons Ltd.
– notice: Copyright © 2021 John Wiley & Sons Ltd
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7SN
7SS
8FD
C1K
FR3
M7N
P64
RC3
7X8
7S9
L.6
5PM
DOI 10.1111/mec.15756
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Ecology Abstracts
Entomology Abstracts (Full archive)
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Entomology Abstracts
Genetics Abstracts
Technology Research Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Engineering Research Database
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Entomology Abstracts
MEDLINE - Academic

CrossRef
AGRICOLA
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Ecology
EISSN 1365-294X
EndPage 790
ExternalDocumentID PMC7858241
33253481
10_1111_mec_15756
MEC15756
Genre article
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GeographicLocations Burkina Faso
Africa
GeographicLocations_xml – name: Burkina Faso
– name: Africa
GrantInformation_xml – fundername: Wellcome Trust
  funderid: 200222/Z/15/Z
– fundername: National Institute of Allergy and Infectious Diseases, National Institutes of Health
  funderid: U19AI110818
– fundername: EC FP7‐Health
  funderid: 265660
– fundername: NIAID NIH HHS
  grantid: U19 AI110818
– fundername: Wellcome Trust
– fundername: Wellcome Trust
  grantid: 200222/Z/15/Z
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
123
1OB
1OC
29M
31~
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACNCT
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHEFC
AIAGR
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BIYOS
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CAG
COF
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
ECGQY
EJD
ESX
F00
F01
F04
F5P
FEDTE
FZ0
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
IHE
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TN5
UB1
V8K
W8V
W99
WBKPD
WH7
WIH
WIK
WNSPC
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XJT
Y6R
ZZTAW
~02
~IA
~KM
~WT
AAYXX
AETEA
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
CGR
CUY
CVF
ECM
EIF
NPM
7SN
7SS
8FD
C1K
FR3
M7N
P64
RC3
7X8
7S9
L.6
5PM
ID FETCH-LOGICAL-c4766-1ee0f55431b98ac68cdcdca538a26ff562b6996b3f283d976a15e179a2c0e1bf3
IEDL.DBID DR2
ISSN 0962-1083
1365-294X
IngestDate Thu Aug 21 13:56:33 EDT 2025
Fri Jul 11 18:32:29 EDT 2025
Fri Jul 11 16:26:54 EDT 2025
Wed Aug 13 03:51:31 EDT 2025
Mon Jul 21 05:58:36 EDT 2025
Tue Jul 01 03:22:09 EDT 2025
Thu Apr 24 22:51:38 EDT 2025
Wed Jan 22 16:32:06 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Anopheles
vector
admixture
reproductive barrier
selective sweep
cryptic taxa
Language English
License 2020 John Wiley & Sons Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4766-1ee0f55431b98ac68cdcdca538a26ff562b6996b3f283d976a15e179a2c0e1bf3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
JAT performed all data analyses and wrote the paper with the assistance of all co-authors. RK headed the development and testing of the amplicon panel. VAI, KHT, WMG, NS, and HR provided samples and assisted with data interpretation. DEN oversaw the project and assisted with data interpretation.
Author contributions
ORCID 0000-0002-5015-4740
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/7858241
PMID 33253481
PQID 2485343141
PQPubID 31465
PageCount 16
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7858241
proquest_miscellaneous_2986356018
proquest_miscellaneous_2466042388
proquest_journals_2485343141
pubmed_primary_33253481
crossref_primary_10_1111_mec_15756
crossref_citationtrail_10_1111_mec_15756
wiley_primary_10_1111_mec_15756_MEC15756
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate February 2021
PublicationDateYYYYMMDD 2021-02-01
PublicationDate_xml – month: 02
  year: 2021
  text: February 2021
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Oxford
PublicationTitle Molecular ecology
PublicationTitleAlternate Mol Ecol
PublicationYear 2021
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References 2002; 16
2015; 347
2020; 20
2019; 10
2016; 32
2008; 9
2008; 7
2020; 367
2017; 552
2012; 10
2005; 22
1956; 178
2010; 20
2014; 5
2006; 22
2015; 43
2016; 113
2007; 8
2013; 110
2007; 3
2009; 19
2011; 27
2014; 7
2009; 25
2019; 9
2019; 4
2015; 4
1993; 49
2002; 298
2002; 415
2015; 526
2014; 196
1972; 6
2015; 7
2013; 3619
2011; 331
2011; 9
2015; 24
2011; 108
2020
2012; 190
2015; 112
1962; 27
2010; 330
2019
2009; 5
2018; 11
2016; 25
1968
2012; 8
2005; 14
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_3_1
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_43_1
e_1_2_8_22_1
e_1_2_8_45_1
Davidson G. (e_1_2_8_14_1) 1962; 27
WHO (e_1_2_8_54_1) 2019
e_1_2_8_41_1
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_15_1
e_1_2_8_38_1
Shaw T. (e_1_2_8_47_1) 1972; 6
Gillies M. T. (e_1_2_8_20_1) 1968
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_51_1
e_1_2_8_30_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_27_1
R Core Team (e_1_2_8_40_1) 2019
e_1_2_8_48_1
e_1_2_8_2_1
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_52_1
e_1_2_8_50_1
References_xml – volume: 11
  start-page: 6
  year: 2018
  article-title: cuticular protein CPLCG5 participates in pyrethroid resistance by forming a rigid matrix
  publication-title: Parasites & Vectors
– volume: 8
  year: 2012
  article-title: Inference of population splits and mixtures from genome‐wide allele frequency data
  publication-title: PLoS Genetics
– volume: 3619
  start-page: 246
  year: 2013
  end-page: 274
  article-title: and , new members of the complex
  publication-title: Zootaxa
– volume: 20
  start-page: 1297
  year: 2010
  end-page: 1303
  article-title: The Genome Analysis Toolkit: A MapReduce framework for analyzing next‐generation DNA sequencing data
  publication-title: Genome Research
– volume: 178
  start-page: 705
  year: 1956
  end-page: 706
  article-title: Insecticide resistance in Giles
  publication-title: Nature
– volume: 367
  start-page: 681
  year: 2020
  end-page: 684
  article-title: Mosquito heat seeking is driven by an ancestral cooling receptor
  publication-title: Science
– volume: 298
  start-page: 129
  year: 2002
  end-page: 149
  article-title: The genome sequence of the malaria mosquito
  publication-title: Science
– volume: 415
  start-page: 673
  issue: 6872
  year: 2002
  end-page: 679
  article-title: The pathogenic basis of malaria
  publication-title: Nature
– volume: 25
  start-page: 213
  year: 2009
  end-page: 219
  article-title: Does kdr genotype predict insecticide‐resistance phenotype in mosquitoes?
  publication-title: Trends in Parasitology
– volume: 10
  start-page: 1072
  year: 2019
  article-title: Winning the tug‐of‐war between effector gene design and pathogen evolution in vector population replacement strategies
  publication-title: Frontiers in Genetics
– volume: 4
  start-page: 7
  year: 2015
  article-title: Second‐generation PLINK: Rising to the challenge of larger and richer datasets
  publication-title: Gigascience
– volume: 14
  start-page: 179
  year: 2005
  end-page: 183
  article-title: Independent mutations in the locus confer dieldrin resistance to and
  publication-title: Insect Molecular Biology
– volume: 110
  start-page: 19854
  year: 2013
  end-page: 19859
  article-title: Spatiotemporal dynamics of gene flow and hybrid fitness between the M and S forms of the malaria mosquito,
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 7
  start-page: 3116
  year: 2015
  end-page: 3131
  article-title: Reticulate speciation and barriers to introgression in the species complex
  publication-title: Genome Biology and Evolution
– volume: 10
  year: 2012
  article-title: Revisiting an old riddle: What determines genetic diversity levels within species?
  publication-title: PLoS Biology
– volume: 32
  start-page: 187
  year: 2016
  end-page: 196
  article-title: Insecticide resistance in African mosquitoes: A worsening situation that needs urgent action to maintain malaria control
  publication-title: Trends in Parasitology
– volume: 25
  start-page: 1494
  year: 2016
  end-page: 1510
  article-title: Evolution of GOUNDRY, a cryptic subgroup of s.l., and its impact on susceptibility to
  publication-title: Molecular Ecology
– volume: 49
  start-page: 520
  year: 1993
  end-page: 529
  article-title: Identification of single specimens of the complex by the polymerase chain reaction
  publication-title: The American Journal of Tropical Medicine and Hygiene
– volume: 4
  start-page: 941
  year: 2019
  end-page: 947
  article-title: Mosquito microevolution drives dynamics
  publication-title: Nature Microbiology
– volume: 526
  start-page: 207
  year: 2015
  end-page: 211
  article-title: The effect of malaria control on in Africa between 2000 and 2015
  publication-title: Nature
– volume: 27
  start-page: 2987
  year: 2011
  end-page: 2993
  article-title: A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data
  publication-title: Bioinformatics
– volume: 6
  start-page: 143
  year: 1972
  end-page: 191
  article-title: Early agriculture in Africa
  publication-title: Journal of the Historical Society of Nigeria
– volume: 298
  start-page: 1415
  year: 2002
  end-page: 1418
  article-title: A polytene chromosome analysis of the species complex
  publication-title: Science
– year: 2019
– volume: 7
  start-page: 480
  year: 2014
  article-title: Impact of agriculture on the selection of insecticide resistance in the malaria vector : A multigenerational study in controlled conditions
  publication-title: Parasites & Vectors
– volume: 5
  year: 2009
  article-title: Inferring the joint demographic history of multiple populations from multidimensional SNP frequency data
  publication-title: PLoS Genetics
– volume: 9
  start-page: 253
  year: 2008
  article-title: BatchPrimer3: A high throughput web application for PCR and sequencing primer design
  publication-title: BMC Bioinformatics
– volume: 24
  start-page: 5145
  year: 2015
  end-page: 5157
  article-title: Complex genome evolution in associated with increased insecticide usage in Mali
  publication-title: Molecular Ecology
– volume: 20
  start-page: 1171
  year: 2020
  end-page: 1181
  article-title: Index hopping on the Illumina HiseqX platform and its consequences for ancient DNA studies
  publication-title: Molecular Ecology Resources
– volume: 5
  start-page: 4248
  year: 2014
  article-title: Adaptive introgression between sibling species eliminates a major genomic island but not reproductive isolation
  publication-title: Nature Communications
– year: 1968
– volume: 19
  start-page: 1655
  year: 2009
  end-page: 1664
  article-title: Fast model‐based estimation of ancestry in unrelated individuals
  publication-title: Genome Research
– volume: 108
  start-page: 244
  year: 2011
  end-page: 249
  article-title: Adaptive divergence between incipient species of increases resistance to
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 330
  start-page: 514
  year: 2010
  end-page: 517
  article-title: SNP genotyping defines complex gene‐flow boundaries among African malaria vector mosquitoes
  publication-title: Science
– volume: 196
  start-page: 313
  year: 2014
  end-page: 320
  article-title: Estimation of the spontaneous mutation rate per nucleotide site in a full‐sib family
  publication-title: Genetics
– volume: 190
  start-page: 1417
  year: 2012
  end-page: 1432
  article-title: Ecological genomics of along a latitudinal cline: A population‐resequencing approach
  publication-title: Genetics
– volume: 113
  start-page: E2114
  year: 2016
  end-page: 2123
  article-title: Radical remodeling of the Y chromosome in a recent radiation of malaria mosquitoes
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 7
  start-page: 163
  year: 2008
  article-title: Insertion polymorphisms of SINE200 retrotransposons within speciation islands of molecular forms
  publication-title: Malaria Journal
– volume: 347
  start-page: 1258524
  year: 2015
  article-title: Mosquito genomics. Extensive introgression in a malaria vector species complex revealed by phylogenomics
  publication-title: Science
– volume: 8
  start-page: R5
  year: 2007
  article-title: Update of the PEST genome assembly
  publication-title: Genome Biology
– volume: 22
  start-page: 2688
  year: 2006
  end-page: 2690
  article-title: RAxML‐VI‐HPC: Maximum likelihood‐based phylogenetic analyses with thousands of taxa and mixed models
  publication-title: Bioinformatics
– volume: 16
  start-page: 461
  year: 2002
  end-page: 464
  article-title: Simultaneous identification of species and molecular forms of the complex by PCR‐RFLP
  publication-title: Medical and Veterinary Entomology
– volume: 9
  year: 2011
  article-title: Exceptional diversity, maintenance of polymorphism, and recent directional selection on the malaria resistance genes of
  publication-title: PLoS Biology
– volume: 112
  start-page: 815
  year: 2015
  end-page: 820
  article-title: Adaptive introgression in an African malaria mosquito coincident with the increased usage of insecticide‐treated bed nets
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 25
  start-page: 1754
  year: 2009
  end-page: 1760
  article-title: Fast and accurate short read alignment with Burrows‐Wheeler Transform
  publication-title: Bioinformatics
– volume: 552
  start-page: 96
  year: 2017
  end-page: 100
  article-title: Genetic diversity of the African malaria vector
  publication-title: Nature
– year: 2020
– volume: 3
  start-page: e217
  year: 2007
  article-title: Localization of candidate regions maintaining a common polymorphic inversion (2La) in
  publication-title: PLoS Genetics
– volume: 22
  start-page: 63
  year: 2005
  end-page: 73
  article-title: Disentangling the effects of demography and selection in human history
  publication-title: Molecular Biology and Evolution
– volume: 9
  start-page: 14753
  year: 2019
  article-title: A new species in the major malaria vector complex sheds light on reticulated species evolution
  publication-title: Scientific Reports
– volume: 27
  start-page: 303
  year: 1962
  end-page: 305
  article-title: Incipient speciation in Giles
  publication-title: Bulletin of the World Health Organization
– volume: 43
  start-page: D707
  year: 2015
  end-page: D713
  article-title: VectorBase: An updated bioinformatics resource for invertebrate vectors and other organisms related with human diseases
  publication-title: Nucleic Acids Research
– volume: 331
  start-page: 596
  year: 2011
  end-page: 598
  article-title: A cryptic subgroup of is highly susceptible to human malaria parasites
  publication-title: Science
– ident: e_1_2_8_38_1
  doi: 10.1073/pnas.1418892112
– ident: e_1_2_8_37_1
  doi: 10.1186/s13071‐014‐0480‐z
– ident: e_1_2_8_48_1
  doi: 10.1093/molbev/msh252
– ident: e_1_2_8_16_1
  doi: 10.1111/j.1365‐2583.2005.00544.x
– ident: e_1_2_8_5_1
  doi: 10.1038/nature15535
– volume-title: World malaria report 2019
  year: 2019
  ident: e_1_2_8_54_1
– ident: e_1_2_8_42_1
  doi: 10.1126/science.1196759
– ident: e_1_2_8_13_1
  doi: 10.1038/178705a0
– volume-title: R: A language and environment for statistical computing
  year: 2019
  ident: e_1_2_8_40_1
– ident: e_1_2_8_9_1
  doi: 10.11646/zootaxa.3619.3.2
– ident: e_1_2_8_12_1
  doi: 10.1111/mec.13572
– ident: e_1_2_8_39_1
  doi: 10.1371/journal.pgen.1002967
– ident: e_1_2_8_2_1
  doi: 10.1101/gr.094052.109
– ident: e_1_2_8_18_1
  doi: 10.1126/science.1258524
– ident: e_1_2_8_17_1
  doi: 10.1046/j.1365-2915.2002.00393.x
– ident: e_1_2_8_21_1
  doi: 10.1093/nar/gku1117
– ident: e_1_2_8_34_1
  doi: 10.1101/gr.107524.110
– volume: 27
  start-page: 303
  year: 1962
  ident: e_1_2_8_14_1
  article-title: Incipient speciation in Anopheles gambiae Giles
  publication-title: Bulletin of the World Health Organization
– ident: e_1_2_8_24_1
  doi: 10.1073/pnas.1525164113
– ident: e_1_2_8_11_1
  doi: 10.1093/gbe/evv203
– ident: e_1_2_8_53_1
  doi: 10.1073/pnas.1013648108
– ident: e_1_2_8_51_1
  doi: 10.1111/1755‐0998.13009
– ident: e_1_2_8_15_1
  doi: 10.1016/j.pt.2009.02.007
– ident: e_1_2_8_8_1
  doi: 10.1038/ncomms5248
– ident: e_1_2_8_4_1
  doi: 10.1038/s41598‐019‐49065‐5
– ident: e_1_2_8_31_1
  doi: 10.1093/bioinformatics/btp324
– ident: e_1_2_8_27_1
  doi: 10.1534/genetics.113.158758
– ident: e_1_2_8_55_1
  doi: 10.1186/1471‐2105‐9‐253
– ident: e_1_2_8_50_1
– ident: e_1_2_8_28_1
  doi: 10.1073/pnas.1316851110
– ident: e_1_2_8_41_1
  doi: 10.1016/j.pt.2015.11.010
– volume: 6
  start-page: 143
  year: 1972
  ident: e_1_2_8_47_1
  article-title: Early agriculture in Africa
  publication-title: Journal of the Historical Society of Nigeria
– ident: e_1_2_8_7_1
  doi: 10.1534/genetics.111.137794
– ident: e_1_2_8_23_1
  doi: 10.1371/journal.pgen.1000695
– ident: e_1_2_8_43_1
  doi: 10.1371/journal.pbio.1000600
– volume-title: The Anophelinae of Africa South of the Sahara (Ethiopian Zoogeographical Region)
  year: 1968
  ident: e_1_2_8_20_1
– ident: e_1_2_8_26_1
  doi: 10.1186/s13071‐017‐2567‐9
– ident: e_1_2_8_52_1
  doi: 10.1371/journal.pgen.0030217
– ident: e_1_2_8_46_1
  doi: 10.1186/gb-2007-8-1-r5
– ident: e_1_2_8_25_1
  doi: 10.1126/science.1076181
– ident: e_1_2_8_3_1
  doi: 10.1038/nature24995
– ident: e_1_2_8_29_1
  doi: 10.1371/journal.pbio.1001388
– ident: e_1_2_8_44_1
  doi: 10.1186/1475‐2875‐7‐163
– ident: e_1_2_8_10_1
  doi: 10.1126/science.1077769
– ident: e_1_2_8_6_1
  doi: 10.1186/s13742‐015‐0047‐8
– ident: e_1_2_8_45_1
  doi: 10.4269/ajtmh.1993.49.520
– ident: e_1_2_8_36_1
  doi: 10.1126/science.1193036
– ident: e_1_2_8_19_1
  doi: 10.1038/s41564‐019‐0414‐9
– ident: e_1_2_8_33_1
  doi: 10.3389/fgene.2019.01072
– ident: e_1_2_8_22_1
  doi: 10.1126/science.aay9847
– ident: e_1_2_8_35_1
  doi: 10.1038/415673a
– ident: e_1_2_8_32_1
  doi: 10.1111/mec.13382
– ident: e_1_2_8_30_1
  doi: 10.1093/bioinformatics/btr509
– ident: e_1_2_8_49_1
  doi: 10.1093/bioinformatics/btl446
SSID ssj0013255
Score 2.4465327
Snippet The Anopheles gambiae complex consists of multiple morphologically indistinguishable mosquito species including the most important vectors of the malaria...
The Anopheles gambiae complex consists of multiple morphologically indistinguishable mosquito species including the most important vectors of the malaria...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 775
SubjectTerms admixture
Animals
Anopheles
Anopheles - genetics
Anopheles gambiae
Aquatic insects
Burkina Faso
Correlation analysis
Cryptic species
cryptic taxa
Diagnostic systems
Disease control
Divergence
Environmental changes
evolution
Gene sequencing
genes
Genetic analysis
genetic variation
Genomes
genomics
Genotyping
Immunology
Insecticide resistance
Insecticides
inversion polymorphism
Larvae
Longitudinal Studies
Malaria
Metagenomics
Mosquito Vectors - genetics
Mosquitoes
Nucleotides
overdominance
Parasites
Pesticide resistance
phenotype
Plasmodium falciparum
Polymorphism
Population
Population genetics
reproductive barrier
selective sweep
Species
Subgroups
Taxa
vector
vector control
Vector-borne diseases
Vectors
Whole genome sequencing
Title A population genomic unveiling of a new cryptic mosquito taxon within the malaria‐transmitting Anopheles gambiae complex
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fmec.15756
https://www.ncbi.nlm.nih.gov/pubmed/33253481
https://www.proquest.com/docview/2485343141
https://www.proquest.com/docview/2466042388
https://www.proquest.com/docview/2986356018
https://pubmed.ncbi.nlm.nih.gov/PMC7858241
Volume 30
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Li9RAEG6WBcGL78foKq142EuGyavTg6dhmWUR1oO4sAchVPdUa3CTWXcS2dmTP8Hf6C-xqvNgxlURySWQCnQn9fgqqfpKiFeawvICFQah0ZSgUEAIwKILFhC71FH2hsANzsdv1dFJ8uY0Pd0Rr_temJYfYvjgxpbh_TUbOJjVhpGXaMchgQ2m2-ZaLQZE76KNPwh-4ikh9IhcjY47ViGu4hnu3I5F1wDm9TrJTfzqA9DhbfGhX3pbd_J53NRmbK9-YXX8z73dEbc6YCpnrSbdFTtY3RM32lGVazqbe3rr9X1xNZPnw9QvyRyvZWFlU33Fglvb5dJJkATWpb1Ykz-yslyuvjTkOGQNl3QHf_ktKknAU5ZAeXUBP759rzlkloUvwpaziskOznAlP0JpCkDpC9_x8oE4OZy_PzgKugkOgU0ypYIQceJSbrc3Uw1WabugA8jJQqScI-xlFCVcJnaEchaEjCBMkVwERHaCoXHxQ7FbLSt8LCSm1iwylwAH1ASURusYvxg0OtPTZCT2-3eZ247enKdsnOV9mkMPNfcPdSReDqLnLafH74T2eoXIO7Ne5cz_FtNuknAkXgyXySD5LwtUuGxYRikuNtL6LzJTzbyAk5BkHrU6NqwkJs3l7uiRyLa0bxBgQvDtK1XxyRODZzrVEa9t3yvXnzeXH88P_MmTfxd9Km5GXM_jK9b3xG590eAzAmS1ee4t7yfGyDaj
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6VIkQvvCmBAgvi0Iuj-LXeSFyiKlWApgfUSr0ga3c9Cxa1UxobNT3xE_iN_BJm1o6VUEAI5WLJY2nXmcc365lvGHslMSxnIMDztcQEBQOCpwxYL1OhjS1mb6CowXl6KCbH0duT-GSDvV72wjT8EN2BG1mG89dk4HQgvWLlBZi-j2hDXGPXaaK3S6jeByvfENzMU8ToATobGba8QlTH0z26Ho2uQMyrlZKrCNaFoP3b7MNy8U3lyed-Xem-ufyF1_F_d3eH3WqxKR81ynSXbUB5j91oplUu8GrsGK4X99nliJ91g7840bwWueF1-RVy6m7nM8sVR7zOzfkCXZLhxWz-pUbfwSt1gU_Q4W9ecsSevFCYWufqx7fvFUXNInd12HxUEt_BKcz5R1XoXAF3te9w8YAd74-P9iZeO8TBM1EihOcDDGxMHfd6KJUR0mT4U-hnVSCsRfilBeZcOrQIdDIER8qPAb2ECswAfG3Dh2yznJXwiHGIjc4SGymKqZESEowlCKNBy0QOox7bXf6ZqWkZzmnQxmm6zHTwpabupfbYy070rKH1-J3QzlIj0tay5ylRwIW4m8jvsRfdbbRJ-tCiSpjVJCME1RtJ-ReZoSRqwIGPMtuNknUrCVF1qUG6x5I19esEiBN8_U6Zf3Lc4ImMZUBr23Xa9efNpdPxnrt4_O-iz9nNydH0ID14c_juCdsKqLzHFbDvsM3qvIaniM8q_cyZ4U_7rzq-
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6VIhAX3oVAgQVx6MVR_FpvxClqE5VHK4So1AOStbueBYvaCY2Dmp74CfxGfgkz64cSCgghXyx5LO3a8_jGnvmGsecSw3IGAjxfS0xQMCB4yoD1MhXa2GL2BooanA8Oxf5R9Oo4Pt5gL9pemJofovvgRpbh_DUZ-CyzK0ZegOn7CDbEJXY5EgNJKr33Llj5heBGniJED9DXyLChFaIynu7W9WB0AWFeLJRcBbAuAk1usA_t2uvCk8_9RaX75vwXWsf_3NxNdr1BpnxUq9IttgHlbXalnlW5xLOx47de3mHnIz7rxn5xInktcsMX5VfIqbedTy1XHNE6N6dLdEiGF9P5lwV6Dl6pM7yDPv3mJUfkyQuFiXWufnz7XlHMLHJXhc1HJbEdnMCcf1SFzhVwV_kOZ3fZ0WT8fnffa0Y4eCZKhPB8gIGNqd9eD6UyQpoMD4VeVgXCWgRfWmDGpUOLMCdDaKT8GNBHqMAMwNc23GKb5bSE-4xDbHSW2EhRRI2UkGAsARgNWiZyGPXYTvsuU9Pwm9OYjZO0zXPwoabuofbYs050VpN6_E5ou1WItLHreUoEcCHuJvJ77Gl3GS2SfrOoEqYLkhGCqo2k_IvMUBIx4MBHmXu1jnUrCVFzqT26x5I17esEiBF8_UqZf3LM4ImMZUBr23HK9efNpQfjXXfy4N9Fn7Crb_cm6ZuXh68fsmsB1fa46vVttlmdLuARgrNKP3ZG-BNN_zl2
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+population+genomic+unveiling+of+a+new+cryptic+mosquito+taxon+within+the+malaria-transmitting+Anopheles+gambiae+complex&rft.jtitle=Molecular+ecology&rft.au=Tennessen%2C+Jacob+A.&rft.au=Ingham%2C+Victoria+A.&rft.au=To%C3%A9%2C+Kobi%C3%A9+Hyacinthe&rft.au=Guelb%C3%A9ogo%2C+Wamdaogo+Moussa&rft.date=2021-02-01&rft.issn=0962-1083&rft.eissn=1365-294X&rft.volume=30&rft.issue=3&rft.spage=775&rft.epage=790&rft_id=info:doi/10.1111%2Fmec.15756&rft_id=info%3Apmid%2F33253481&rft.externalDocID=PMC7858241
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0962-1083&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0962-1083&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0962-1083&client=summon