Wood‐Inspired High‐Performance Ultrathick Bulk Battery Electrodes
Ultrathick electrode design is a promising strategy to enhance the specific energy of Li‐ion batteries (LIBs) without changing the underlying materials chemistry. However, the low Li‐ion conductivity caused by ultralong Li‐ion transport pathway in traditional random microstructured electrode heavily...
Saved in:
Published in | Advanced materials (Weinheim) Vol. 30; no. 20; pp. e1706745 - n/a |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.05.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Ultrathick electrode design is a promising strategy to enhance the specific energy of Li‐ion batteries (LIBs) without changing the underlying materials chemistry. However, the low Li‐ion conductivity caused by ultralong Li‐ion transport pathway in traditional random microstructured electrode heavily deteriorates the rate performance of ultrathick electrodes. Herein, inspired by the vertical microchannels in natural wood as the highway for water transport, the microstructures of wood are successfully duplicated into ultrathick bulk LiCoO2 (LCO) cathode via a sol–gel process to achieve the high areal capacity and excellent rate capability. The X‐ray‐based microtomography demonstrates that the uniform microchannels are built up throughout the whole wood‐templated LCO cathode bringing in 1.5 times lower of tortuosity and ≈2 times higher of Li‐ion conductivity compared to that of random structured LCO cathode. The fabricated wood‐inspired LCO cathode delivers high areal capacity up to 22.7 mAh cm−2 (five times of the existing electrode) and achieves the dynamic stress test at such high areal capacity for the first time. The reported wood‐inspired design will open a new avenue to adopt natural hierarchical structures to improve the performance of LIBs.
Inspired by the vertical microchannels in natural wood as the highway for water transport, an ultra‐thick bulk LiCoO2 (LCO) cathode with vertical channels is fabricated to enhance the transport of Li+. Remarkably, the fabricated LCO cathode shows low tortuosity and high Li‐ion conductivity, and can deliver high areal capacity up to 22.7 mAh cm−2. |
---|---|
AbstractList | Ultrathick electrode design is a promising strategy to enhance the specific energy of Li‐ion batteries (LIBs) without changing the underlying materials chemistry. However, the low Li‐ion conductivity caused by ultralong Li‐ion transport pathway in traditional random microstructured electrode heavily deteriorates the rate performance of ultrathick electrodes. Herein, inspired by the vertical microchannels in natural wood as the highway for water transport, the microstructures of wood are successfully duplicated into ultrathick bulk LiCoO2 (LCO) cathode via a sol–gel process to achieve the high areal capacity and excellent rate capability. The X‐ray‐based microtomography demonstrates that the uniform microchannels are built up throughout the whole wood‐templated LCO cathode bringing in 1.5 times lower of tortuosity and ≈2 times higher of Li‐ion conductivity compared to that of random structured LCO cathode. The fabricated wood‐inspired LCO cathode delivers high areal capacity up to 22.7 mAh cm−2 (five times of the existing electrode) and achieves the dynamic stress test at such high areal capacity for the first time. The reported wood‐inspired design will open a new avenue to adopt natural hierarchical structures to improve the performance of LIBs.
Inspired by the vertical microchannels in natural wood as the highway for water transport, an ultra‐thick bulk LiCoO2 (LCO) cathode with vertical channels is fabricated to enhance the transport of Li+. Remarkably, the fabricated LCO cathode shows low tortuosity and high Li‐ion conductivity, and can deliver high areal capacity up to 22.7 mAh cm−2. Ultrathick electrode design is a promising strategy to enhance the specific energy of Li-ion batteries (LIBs) without changing the underlying materials chemistry. However, the low Li-ion conductivity caused by ultralong Li-ion transport pathway in traditional random microstructured electrode heavily deteriorates the rate performance of ultrathick electrodes. Herein, inspired by the vertical microchannels in natural wood as the highway for water transport, the microstructures of wood are successfully duplicated into ultrathick bulk LiCoO2 (LCO) cathode via a sol-gel process to achieve the high areal capacity and excellent rate capability. The X-ray-based microtomography demonstrates that the uniform microchannels are built up throughout the whole wood-templated LCO cathode bringing in 1.5 times lower of tortuosity and ≈2 times higher of Li-ion conductivity compared to that of random structured LCO cathode. The fabricated wood-inspired LCO cathode delivers high areal capacity up to 22.7 mAh cm-2 (five times of the existing electrode) and achieves the dynamic stress test at such high areal capacity for the first time. The reported wood-inspired design will open a new avenue to adopt natural hierarchical structures to improve the performance of LIBs.Ultrathick electrode design is a promising strategy to enhance the specific energy of Li-ion batteries (LIBs) without changing the underlying materials chemistry. However, the low Li-ion conductivity caused by ultralong Li-ion transport pathway in traditional random microstructured electrode heavily deteriorates the rate performance of ultrathick electrodes. Herein, inspired by the vertical microchannels in natural wood as the highway for water transport, the microstructures of wood are successfully duplicated into ultrathick bulk LiCoO2 (LCO) cathode via a sol-gel process to achieve the high areal capacity and excellent rate capability. The X-ray-based microtomography demonstrates that the uniform microchannels are built up throughout the whole wood-templated LCO cathode bringing in 1.5 times lower of tortuosity and ≈2 times higher of Li-ion conductivity compared to that of random structured LCO cathode. The fabricated wood-inspired LCO cathode delivers high areal capacity up to 22.7 mAh cm-2 (five times of the existing electrode) and achieves the dynamic stress test at such high areal capacity for the first time. The reported wood-inspired design will open a new avenue to adopt natural hierarchical structures to improve the performance of LIBs. Ultrathick electrode design is a promising strategy to enhance the specific energy of Li‐ion batteries (LIBs) without changing the underlying materials chemistry. However, the low Li‐ion conductivity caused by ultralong Li‐ion transport pathway in traditional random microstructured electrode heavily deteriorates the rate performance of ultrathick electrodes. Herein, inspired by the vertical microchannels in natural wood as the highway for water transport, the microstructures of wood are successfully duplicated into ultrathick bulk LiCoO 2 (LCO) cathode via a sol–gel process to achieve the high areal capacity and excellent rate capability. The X‐ray‐based microtomography demonstrates that the uniform microchannels are built up throughout the whole wood‐templated LCO cathode bringing in 1.5 times lower of tortuosity and ≈2 times higher of Li‐ion conductivity compared to that of random structured LCO cathode. The fabricated wood‐inspired LCO cathode delivers high areal capacity up to 22.7 mAh cm −2 (five times of the existing electrode) and achieves the dynamic stress test at such high areal capacity for the first time. The reported wood‐inspired design will open a new avenue to adopt natural hierarchical structures to improve the performance of LIBs. Ultrathick electrode design is a promising strategy to enhance the specific energy of Li-ion batteries (LIBs) without changing the underlying materials chemistry. However, the low Li-ion conductivity caused by ultralong Li-ion transport pathway in traditional random microstructured electrode heavily deteriorates the rate performance of ultrathick electrodes. Herein, inspired by the vertical microchannels in natural wood as the highway for water transport, the microstructures of wood are successfully duplicated into ultrathick bulk LiCoO (LCO) cathode via a sol-gel process to achieve the high areal capacity and excellent rate capability. The X-ray-based microtomography demonstrates that the uniform microchannels are built up throughout the whole wood-templated LCO cathode bringing in 1.5 times lower of tortuosity and ≈2 times higher of Li-ion conductivity compared to that of random structured LCO cathode. The fabricated wood-inspired LCO cathode delivers high areal capacity up to 22.7 mAh cm (five times of the existing electrode) and achieves the dynamic stress test at such high areal capacity for the first time. The reported wood-inspired design will open a new avenue to adopt natural hierarchical structures to improve the performance of LIBs. Ultrathick electrode design is a promising strategy to enhance the specific energy of Li‐ion batteries (LIBs) without changing the underlying materials chemistry. However, the low Li‐ion conductivity caused by ultralong Li‐ion transport pathway in traditional random microstructured electrode heavily deteriorates the rate performance of ultrathick electrodes. Herein, inspired by the vertical microchannels in natural wood as the highway for water transport, the microstructures of wood are successfully duplicated into ultrathick bulk LiCoO2 (LCO) cathode via a sol–gel process to achieve the high areal capacity and excellent rate capability. The X‐ray‐based microtomography demonstrates that the uniform microchannels are built up throughout the whole wood‐templated LCO cathode bringing in 1.5 times lower of tortuosity and ≈2 times higher of Li‐ion conductivity compared to that of random structured LCO cathode. The fabricated wood‐inspired LCO cathode delivers high areal capacity up to 22.7 mAh cm−2 (five times of the existing electrode) and achieves the dynamic stress test at such high areal capacity for the first time. The reported wood‐inspired design will open a new avenue to adopt natural hierarchical structures to improve the performance of LIBs. |
Author | Zhang, Tian‐Wen Ni, Yong Yao, Hong‐Bin Lu, Yu‐Yang Xiao, Zi‐Jian Yu, Shu‐Hong Ma, Tao Zhou, Fei Lu, Lei‐Lei Cui, Yi |
Author_xml | – sequence: 1 givenname: Lei‐Lei surname: Lu fullname: Lu, Lei‐Lei organization: University of Science and Technology of China – sequence: 2 givenname: Yu‐Yang surname: Lu fullname: Lu, Yu‐Yang organization: University of Science and Technology of China – sequence: 3 givenname: Zi‐Jian surname: Xiao fullname: Xiao, Zi‐Jian organization: University of Science and Technology of China – sequence: 4 givenname: Tian‐Wen surname: Zhang fullname: Zhang, Tian‐Wen organization: University of Science and Technology of China – sequence: 5 givenname: Fei surname: Zhou fullname: Zhou, Fei organization: University of Science and Technology of China – sequence: 6 givenname: Tao surname: Ma fullname: Ma, Tao organization: University of Science and Technology of China – sequence: 7 givenname: Yong surname: Ni fullname: Ni, Yong organization: University of Science and Technology of China – sequence: 8 givenname: Hong‐Bin orcidid: 0000-0002-2901-0160 surname: Yao fullname: Yao, Hong‐Bin email: yhb@ustc.edu.cn organization: University of Science and Technology of China – sequence: 9 givenname: Shu‐Hong surname: Yu fullname: Yu, Shu‐Hong email: shyu@ustc.edu.cn organization: University of Science and Technology of China – sequence: 10 givenname: Yi surname: Cui fullname: Cui, Yi email: yicui@stanford.edu organization: Stanford University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29603415$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc9u1DAQhy1URLeFK0e0EhcuWcaO_8THpd3SSkVwoOJoOfaEuiTxYidCe-MReMY-Ca62BakS4jKjkb5vNJrfETkY44iEvKSwogDsrfWDXTGgCqTi4glZUMFoxUGLA7IAXYtKS94ckqOcbwBAS5DPyCErveZULMjmS4z-9uevizFvQ0K_PA9fr8v8CVMX02BHh8urfkp2ug7u2_Ld3JdipwnTbrnp0U0peszPydPO9hlf3PdjcnW2-XxyXl1-fH9xsr6sHFdSVE7RTlGUuq6ttE5I2_rWCqEp9YrTWjDlvUAlG6m1Z6KTpQACNly3rO3qY_Jmv3eb4vcZ82SGkB32vR0xztkwYMA1SNEU9PUj9CbOaSzXFapumKhBiUK9uqfmdkBvtikMNu3Mw4MKwPeASzHnhJ1xYbJTiGP5SegNBXOXg7nLwfzJoWirR9rD5n8Kei_8CD3u_kOb9emH9V_3N3dLmrw |
CitedBy_id | crossref_primary_10_1007_s12274_019_2392_x crossref_primary_10_1016_j_applthermaleng_2023_120555 crossref_primary_10_1002_adfm_201809196 crossref_primary_10_1016_j_apcatb_2020_119367 crossref_primary_10_1007_s12274_023_6102_3 crossref_primary_10_1016_j_cej_2024_153293 crossref_primary_10_1002_batt_202400302 crossref_primary_10_1016_j_xcrp_2021_100654 crossref_primary_10_1007_s00226_023_01461_x crossref_primary_10_1002_adfm_202108669 crossref_primary_10_1021_acs_accounts_8b00391 crossref_primary_10_1002_advs_202200547 crossref_primary_10_1002_cey2_114 crossref_primary_10_1002_aenm_201802930 crossref_primary_10_1021_acsmaterialslett_2c00188 crossref_primary_10_1016_j_jpowsour_2022_230977 crossref_primary_10_1016_j_matdes_2023_111695 crossref_primary_10_1021_acssuschemeng_0c01393 crossref_primary_10_1002_aenm_202003725 crossref_primary_10_1002_aesr_202400148 crossref_primary_10_1007_s41918_020_00093_0 crossref_primary_10_1002_aenm_202002637 crossref_primary_10_1016_j_cej_2023_144720 crossref_primary_10_1039_D1TA10366K crossref_primary_10_1002_celc_201900813 crossref_primary_10_1002_aenm_201901457 crossref_primary_10_1002_adma_202202780 crossref_primary_10_1039_D2GC04271A crossref_primary_10_1016_j_jpowsour_2024_235737 crossref_primary_10_1016_j_ensm_2020_06_042 crossref_primary_10_1149_1945_7111_ad1219 crossref_primary_10_1016_j_jpowsour_2022_232223 crossref_primary_10_1016_j_mtadv_2023_100391 crossref_primary_10_1002_adma_202101275 crossref_primary_10_1002_sstr_202100228 crossref_primary_10_1002_adfm_202002169 crossref_primary_10_1016_j_jpowsour_2021_230588 crossref_primary_10_1007_s10570_020_03509_8 crossref_primary_10_1021_acs_jpcc_2c05643 crossref_primary_10_1021_acs_chemrev_2c00214 crossref_primary_10_1039_D0EE02848G crossref_primary_10_1002_adfm_202301109 crossref_primary_10_3390_mi13091534 crossref_primary_10_1016_j_cplett_2024_141214 crossref_primary_10_1021_acsnano_1c09687 crossref_primary_10_1016_j_carbon_2019_07_060 crossref_primary_10_1021_acs_iecr_2c00447 crossref_primary_10_1007_s12274_024_6567_7 crossref_primary_10_1016_j_enrev_2023_100066 crossref_primary_10_1021_acs_nanolett_2c02100 crossref_primary_10_1002_aenm_201802398 crossref_primary_10_1002_anie_201907708 crossref_primary_10_1016_j_jpowsour_2022_231046 crossref_primary_10_12677_MOS_2023_122126 crossref_primary_10_1039_C9TA07269A crossref_primary_10_1002_smll_202311044 crossref_primary_10_1016_j_jallcom_2020_158071 crossref_primary_10_1016_j_ijbiomac_2023_125902 crossref_primary_10_1016_j_jhazmat_2022_130270 crossref_primary_10_1021_acsaem_0c00354 crossref_primary_10_1016_j_ensm_2020_02_008 crossref_primary_10_1021_acssuschemeng_9b00526 crossref_primary_10_1039_D3CS00572K crossref_primary_10_1021_acs_nanolett_2c03545 crossref_primary_10_1016_j_cej_2020_124761 crossref_primary_10_1016_j_jpowsour_2018_11_037 crossref_primary_10_1039_C8TA07711H crossref_primary_10_1021_acsami_8b17414 crossref_primary_10_1016_j_mset_2022_09_002 crossref_primary_10_1016_j_conbuildmat_2020_119984 crossref_primary_10_1088_2515_7655_ac8e30 crossref_primary_10_1002_smll_202007676 crossref_primary_10_1016_j_cej_2022_140453 crossref_primary_10_1002_adma_202000892 crossref_primary_10_1016_j_mattod_2024_11_009 crossref_primary_10_1016_j_nxmate_2024_100170 crossref_primary_10_1016_j_cej_2020_124637 crossref_primary_10_1021_acsenergylett_4c01889 crossref_primary_10_1016_j_pmatsci_2022_101052 crossref_primary_10_1039_C9ME00084D crossref_primary_10_1016_j_electacta_2019_01_095 crossref_primary_10_1016_j_cogsc_2021_100520 crossref_primary_10_1016_j_electacta_2021_138750 crossref_primary_10_1002_adfm_201806207 crossref_primary_10_1021_acsami_0c19099 crossref_primary_10_1039_C9CP06181A crossref_primary_10_1016_j_ensm_2024_103999 crossref_primary_10_1002_smtd_202100280 crossref_primary_10_1039_D3EE03045H crossref_primary_10_1039_D2CP03301A crossref_primary_10_1002_adfm_201904282 crossref_primary_10_3390_batteries9030151 crossref_primary_10_1039_D4SE01825G crossref_primary_10_1021_acsnano_1c01247 crossref_primary_10_1016_j_xcrp_2020_100079 crossref_primary_10_1002_adma_201901345 crossref_primary_10_1039_D0GC04430J crossref_primary_10_1002_adfm_202301420 crossref_primary_10_1016_j_jmrt_2022_01_100 crossref_primary_10_1021_acsnano_1c06491 crossref_primary_10_1002_ente_202301304 crossref_primary_10_1016_j_joule_2018_09_008 crossref_primary_10_1093_nsr_nwy148 crossref_primary_10_1002_smll_202308928 crossref_primary_10_1016_j_jpowsour_2024_234953 crossref_primary_10_1016_j_jpowsour_2022_232176 crossref_primary_10_1021_acs_nanolett_0c02053 crossref_primary_10_1073_pnas_2308009120 crossref_primary_10_1016_j_indcrop_2025_120715 crossref_primary_10_1016_j_jpowsour_2024_235005 crossref_primary_10_1021_acsami_0c14790 crossref_primary_10_1002_smll_202308126 crossref_primary_10_1002_smll_202305416 crossref_primary_10_1016_j_cej_2023_146891 crossref_primary_10_1016_j_apsusc_2022_154141 crossref_primary_10_3390_batteries10020058 crossref_primary_10_1016_j_cej_2024_157020 crossref_primary_10_1016_j_ijbiomac_2022_12_324 crossref_primary_10_1016_j_jpowsour_2024_234276 crossref_primary_10_1016_j_ensm_2022_11_025 crossref_primary_10_1016_j_cej_2024_157266 crossref_primary_10_1021_acs_nanolett_1c02142 crossref_primary_10_1149_1945_7111_ada4e0 crossref_primary_10_1149_1945_7111_ac30ab crossref_primary_10_1007_s12274_024_6467_y crossref_primary_10_1016_j_electacta_2019_04_052 crossref_primary_10_1016_j_est_2024_115253 crossref_primary_10_1016_j_ensm_2020_06_029 crossref_primary_10_1002_smll_202307027 crossref_primary_10_1021_acsnano_9b04365 crossref_primary_10_1002_eem2_12584 crossref_primary_10_1002_advs_202403797 crossref_primary_10_1002_admt_202000791 crossref_primary_10_1002_admi_202101727 crossref_primary_10_3390_batteries10100364 crossref_primary_10_1039_D1SE01259B crossref_primary_10_1016_j_ceramint_2025_01_449 crossref_primary_10_1016_j_ijhydene_2021_06_081 crossref_primary_10_1039_D1TA02412D crossref_primary_10_1016_j_jpowsour_2019_227030 crossref_primary_10_1002_smtd_202401361 crossref_primary_10_1021_acs_nanolett_1c03724 crossref_primary_10_1002_celc_202100937 crossref_primary_10_1016_j_nanoen_2024_110464 crossref_primary_10_1016_j_matdes_2022_111208 crossref_primary_10_1007_s10853_020_05248_4 crossref_primary_10_1021_accountsmr_1c00281 crossref_primary_10_1002_app_48959 crossref_primary_10_1016_j_cej_2023_141733 crossref_primary_10_1016_j_ensm_2022_07_007 crossref_primary_10_1002_smll_202406058 crossref_primary_10_1016_j_ensm_2020_12_034 crossref_primary_10_1021_acsaem_0c01196 crossref_primary_10_1016_j_cej_2022_141117 crossref_primary_10_1002_smtd_202100518 crossref_primary_10_1039_D3TA07139A crossref_primary_10_1002_eem2_12241 crossref_primary_10_1016_j_cej_2021_129518 crossref_primary_10_1021_acs_nanolett_9b04486 crossref_primary_10_1007_s10853_020_04702_7 crossref_primary_10_1002_sstr_202200159 crossref_primary_10_1016_j_matlet_2022_133537 crossref_primary_10_1039_D2SC04157J crossref_primary_10_1016_j_cej_2021_132810 crossref_primary_10_1016_j_indcrop_2022_114802 crossref_primary_10_3390_nano15030156 crossref_primary_10_1016_j_jpowsour_2021_230955 crossref_primary_10_1016_j_mtener_2022_100951 crossref_primary_10_1021_acsnano_0c04298 crossref_primary_10_1002_adma_202006019 crossref_primary_10_1007_s42765_024_00468_8 crossref_primary_10_1002_smll_201805363 crossref_primary_10_3389_fbael_2023_1272439 crossref_primary_10_1002_ente_202000700 crossref_primary_10_1002_aenm_202201834 crossref_primary_10_1007_s40820_025_01652_0 crossref_primary_10_1016_j_jechem_2022_05_028 crossref_primary_10_1007_s11581_022_04736_8 crossref_primary_10_1002_adfm_202010041 crossref_primary_10_1002_adma_202404689 crossref_primary_10_1016_j_ceramint_2020_08_074 crossref_primary_10_1016_j_jpowsour_2020_227764 crossref_primary_10_1016_j_ensm_2018_11_019 crossref_primary_10_1038_s41578_018_0069_9 crossref_primary_10_1016_j_cej_2022_137562 crossref_primary_10_1016_j_ensm_2024_103373 crossref_primary_10_1002_adfm_202410164 crossref_primary_10_1002_adfm_202204426 crossref_primary_10_1016_j_mtener_2022_101224 crossref_primary_10_1002_adfm_201902255 crossref_primary_10_1002_aenm_202003663 crossref_primary_10_1007_s41918_025_00240_5 crossref_primary_10_1002_adma_202001588 crossref_primary_10_1039_D1QM00286D crossref_primary_10_1002_advs_201903168 crossref_primary_10_1016_j_cej_2022_137331 crossref_primary_10_1002_aenm_201901774 crossref_primary_10_1021_acsaelm_4c01796 crossref_primary_10_1016_j_abs_2024_10_001 crossref_primary_10_1007_s11581_021_03912_6 crossref_primary_10_1002_adsu_202100236 crossref_primary_10_1016_j_carbon_2019_04_102 crossref_primary_10_1002_ange_201907708 crossref_primary_10_1149_1945_7111_ac4843 crossref_primary_10_1063_5_0097389 crossref_primary_10_1002_aenm_201802964 crossref_primary_10_1021_acs_nanolett_9b03824 crossref_primary_10_1002_advs_202400405 crossref_primary_10_1007_s40843_023_2723_1 crossref_primary_10_1016_j_compscitech_2021_109184 crossref_primary_10_1021_jacs_0c12098 crossref_primary_10_1515_ntrev_2023_0215 crossref_primary_10_1002_admi_202300355 crossref_primary_10_1016_j_cej_2023_142332 crossref_primary_10_1002_aenm_202103044 crossref_primary_10_1002_aenm_202000808 crossref_primary_10_1039_D1ME00082A crossref_primary_10_1002_adfm_202310775 crossref_primary_10_1038_s41467_022_30112_1 crossref_primary_10_1073_pnas_2007250117 crossref_primary_10_1021_acsenergylett_2c02208 crossref_primary_10_1016_j_indcrop_2022_114565 crossref_primary_10_1002_advs_202105723 crossref_primary_10_1002_adma_202000596 crossref_primary_10_1016_j_cej_2020_124256 crossref_primary_10_1016_j_carbon_2020_12_018 crossref_primary_10_1021_jacs_2c07296 crossref_primary_10_1002_adma_202002890 crossref_primary_10_1016_j_jpowsour_2021_229777 crossref_primary_10_1002_smll_202102233 crossref_primary_10_1039_D0NR03059G crossref_primary_10_1016_j_xcrp_2024_101974 crossref_primary_10_1021_acs_chemmater_9b05396 crossref_primary_10_3390_cryst14110914 crossref_primary_10_1149_1945_7111_ac0bf6 crossref_primary_10_1016_j_ensm_2020_04_031 crossref_primary_10_1002_aenm_202301295 crossref_primary_10_1007_s41918_023_00198_2 crossref_primary_10_1039_D5EE00202H |
Cites_doi | 10.1016/j.electacta.2012.03.161 10.1002/adfm.200601152 10.1016/j.ceramint.2014.11.101 10.1016/j.apsusc.2012.04.102 10.1149/1.1837571 10.1021/acsnano.7b01172 10.1126/science.aaf8991 10.1016/0013-4686(93)80046-3 10.1038/nmat732 10.1038/nenergy.2016.99 10.1021/nl504676v 10.1016/j.nanoen.2014.11.025 10.1002/aenm.201700595 10.1016/j.jpowsour.2016.12.098 10.1039/C6EE03716J 10.1038/nenergy.2016.97 10.1002/anie.201004748 10.1021/cr020740l 10.1126/science.1120937 10.1002/aenm.201600377 10.1038/nchem.2085 10.1039/a802962h 10.1016/j.cossms.2012.05.002 10.1002/anie.201001626 10.1038/nenergy.2016.30 10.1149/2.F05083IF 10.1007/s11581-011-0611-x 10.1016/j.jpowsour.2013.10.026 10.1002/adma.201204055 10.1038/ncomms2747 10.1038/nature08601 10.1126/science.1164865 10.1016/j.jeurceramsoc.2013.08.004 10.1016/0025-5408(80)90012-4 10.1016/j.jpowsour.2008.12.032 10.1038/nnano.2011.38 10.1002/adma.200903328 10.1016/j.elecom.2009.09.001 10.1039/c2cp40135e 10.1002/adma.200902852 10.1002/adma.200602828 10.1021/nl401729r |
ContentType | Journal Article |
Copyright | 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
Copyright_xml | – notice: 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
DBID | AAYXX CITATION NPM 7SR 8BQ 8FD JG9 7X8 |
DOI | 10.1002/adma.201706745 |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef PubMed Materials Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1521-4095 |
EndPage | n/a |
ExternalDocumentID | 29603415 10_1002_adma_201706745 ADMA201706745 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: National Basic Research Program of China funderid: 2014CB931800; 2013CB931800 – fundername: Chinese Academy of Sciences funderid: KJZD‐EW‐M01‐1; QYZDJ‐SSW‐SLH036; 2015HSC‐UE007; 2015SRG‐HSC038; XDB22040502 – fundername: Defense Industrial Technology Development Program funderid: JCKY2016208B012 – fundername: National Natural Science Foundation of China funderid: 21431006; 51571184; 21501165; 21521001 |
GroupedDBID | --- .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS EJD F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RWM RX1 RYL SUPJJ TN5 UB1 UPT V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 YR2 ZZTAW ~02 ~IA ~WT .Y3 31~ 6TJ 8WZ A6W AANHP AAYOK AAYXX ABEML ACBWZ ACRPL ACSCC ACYXJ ADMLS ADNMO AETEA AEYWJ AFFNX AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION FEDTE FOJGT HF~ HVGLF M6K NDZJH PALCI RIWAO RJQFR SAMSI WTY ZY4 ABTAH NPM 7SR 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 7X8 |
ID | FETCH-LOGICAL-c4765-c71f71e6933a6ac56abdba55911d7413527dd5e768699d25f6d250e0e849b2bf3 |
IEDL.DBID | DR2 |
ISSN | 0935-9648 1521-4095 |
IngestDate | Thu Jul 10 23:48:51 EDT 2025 Fri Jul 25 06:18:44 EDT 2025 Wed Feb 19 02:43:49 EST 2025 Tue Jul 01 00:44:41 EDT 2025 Thu Apr 24 23:03:54 EDT 2025 Wed Jan 22 16:54:34 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 20 |
Keywords | bio-inspired materials wood LiCoO2 areal capacity ultrathick electrodes tortuosity |
Language | English |
License | 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4765-c71f71e6933a6ac56abdba55911d7413527dd5e768699d25f6d250e0e849b2bf3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-2901-0160 |
PMID | 29603415 |
PQID | 2038253075 |
PQPubID | 2045203 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_2020490658 proquest_journals_2038253075 pubmed_primary_29603415 crossref_citationtrail_10_1002_adma_201706745 crossref_primary_10_1002_adma_201706745 wiley_primary_10_1002_adma_201706745_ADMA201706745 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-May |
PublicationDateYYYYMMDD | 2018-05-01 |
PublicationDate_xml | – month: 05 year: 2018 text: 2018-May |
PublicationDecade | 2010 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Advanced materials (Weinheim) |
PublicationTitleAlternate | Adv Mater |
PublicationYear | 2018 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2007; 17 2015; 2 2015; 15 2007; 19 2017; 7 2013; 25 2004; 104 2013; 4 2015; 11 2008; 17 2002; 1 2012; 16 2008; 322 2012; 14 2011; 17 2011; 6 2015; 7 2006; 311 1998; 16 2010; 22 2012; 71 2009; 11 1980; 15 2016; 6 2014; 249 2010; 49 2016; 1 1993; 38 2013; 13 2017; 11 2017; 10 2015; 41 1997; 144 2009; 462 2009; 188 2016; 354 2017; 342 2012; 258 2014; 34 e_1_2_5_27_1 e_1_2_5_28_1 e_1_2_5_25_1 e_1_2_5_26_1 e_1_2_5_23_1 e_1_2_5_21_1 e_1_2_5_22_1 e_1_2_5_43_1 e_1_2_5_29_1 e_1_2_5_42_1 e_1_2_5_20_1 e_1_2_5_41_1 e_1_2_5_40_1 e_1_2_5_15_1 e_1_2_5_38_1 e_1_2_5_14_1 e_1_2_5_39_1 e_1_2_5_17_1 e_1_2_5_36_1 e_1_2_5_9_1 e_1_2_5_16_1 e_1_2_5_37_1 e_1_2_5_8_1 e_1_2_5_11_1 e_1_2_5_34_1 e_1_2_5_7_1 e_1_2_5_10_1 e_1_2_5_35_1 e_1_2_5_6_1 e_1_2_5_13_1 e_1_2_5_32_1 e_1_2_5_5_1 e_1_2_5_12_1 e_1_2_5_33_1 e_1_2_5_4_1 e_1_2_5_3_1 e_1_2_5_2_1 e_1_2_5_1_1 e_1_2_5_19_1 e_1_2_5_18_1 e_1_2_5_30_1 Behr S. (e_1_2_5_24_1) 2015; 2 e_1_2_5_31_1 |
References_xml | – volume: 104 start-page: 4463 year: 2004 publication-title: Chem. Rev. – volume: 249 start-page: 349 year: 2014 publication-title: J. Power Sources – volume: 49 start-page: 10127 year: 2010 publication-title: Angew. Chem., Int. Ed. – volume: 188 start-page: 592 year: 2009 publication-title: J. Power Sources – volume: 19 start-page: 2087 year: 2007 publication-title: Adv. Mater. – volume: 4 start-page: 1732 year: 2013 publication-title: Nat. Commun. – volume: 49 start-page: 6564 year: 2010 publication-title: Angew. Chem., Int. Ed. – volume: 7 start-page: 1700595 year: 2017 publication-title: Adv. Energy Mater. – volume: 11 start-page: 356 year: 2015 publication-title: Nano Energy – volume: 41 start-page: 4070 year: 2015 publication-title: Ceram. Int. – volume: 38 start-page: 1159 year: 1993 publication-title: Electrochim. Acta – volume: 462 start-page: 426 year: 2009 publication-title: Nature – volume: 311 start-page: 515 year: 2006 publication-title: Science – volume: 11 start-page: 4801 year: 2017 publication-title: ACS Nano – volume: 10 start-page: 538 year: 2017 publication-title: Energy Environ. Sci. – volume: 17 start-page: 1873 year: 2007 publication-title: Adv. Funct. Mater. – volume: 1 start-page: 16097 year: 2016 publication-title: Nat. Energy – volume: 16 start-page: 186 year: 2012 publication-title: Curr. Opin. Solid State Mater. Sci. – volume: 1 start-page: 123 year: 2002 publication-title: Nat. Mater. – volume: 22 start-page: 107 year: 2010 publication-title: Adv. Mater. – volume: 15 start-page: 2917 year: 2015 publication-title: Nano Lett. – volume: 16 start-page: 1631 year: 1998 publication-title: Chem. Commun. – volume: 34 start-page: 249 year: 2014 publication-title: J. Eur. Ceram. Soc. – volume: 1 start-page: 16030 year: 2016 publication-title: Nat. Energy – volume: 6 start-page: 277 year: 2011 publication-title: Nat. Nanotechnol. – volume: 25 start-page: 1254 year: 2013 publication-title: Adv. Mater. – volume: 2 start-page: 39 year: 2015 publication-title: Ceram. Forum Int. – volume: 1 start-page: 16099 year: 2016 publication-title: Nat. Energy – volume: 354 start-page: 107 year: 2016 publication-title: Science – volume: 71 start-page: 258 year: 2012 publication-title: Electrochim. Acta – volume: 11 start-page: 2089 year: 2009 publication-title: Electrochem. Commun. – volume: 14 start-page: 7040 year: 2012 publication-title: Phys. Chem. Chem. Phys. – volume: 17 start-page: 49 year: 2008 publication-title: Electrochem. Soc. Interface – volume: 322 start-page: 1516 year: 2008 publication-title: Science – volume: 15 start-page: 783 year: 1980 publication-title: Mater. Res. Bull. – volume: 6 start-page: 1600377 year: 2016 publication-title: Adv. Energy Mater. – volume: 342 start-page: 476 year: 2017 publication-title: J. Power Sources – volume: 144 start-page: 1188 year: 1997 publication-title: J. Electrochem. Soc. – volume: 22 start-page: 28 year: 2010 publication-title: Adv. Mater. – volume: 258 start-page: 7612 year: 2012 publication-title: Appl. Surf. Sci. – volume: 7 start-page: 19 year: 2015 publication-title: Nat. Chem. – volume: 13 start-page: 3385 year: 2013 publication-title: Nano Lett. – volume: 17 start-page: 575 year: 2011 publication-title: Ionics – ident: e_1_2_5_6_1 doi: 10.1016/j.electacta.2012.03.161 – ident: e_1_2_5_22_1 doi: 10.1002/adfm.200601152 – ident: e_1_2_5_35_1 doi: 10.1016/j.ceramint.2014.11.101 – ident: e_1_2_5_43_1 doi: 10.1016/j.apsusc.2012.04.102 – ident: e_1_2_5_5_1 doi: 10.1149/1.1837571 – ident: e_1_2_5_15_1 doi: 10.1021/acsnano.7b01172 – ident: e_1_2_5_32_1 doi: 10.1126/science.aaf8991 – ident: e_1_2_5_38_1 doi: 10.1016/0013-4686(93)80046-3 – ident: e_1_2_5_2_1 doi: 10.1038/nmat732 – ident: e_1_2_5_26_1 doi: 10.1038/nenergy.2016.99 – ident: e_1_2_5_10_1 doi: 10.1021/nl504676v – ident: e_1_2_5_7_1 doi: 10.1016/j.nanoen.2014.11.025 – volume: 2 start-page: 39 year: 2015 ident: e_1_2_5_24_1 publication-title: Ceram. Forum Int. – ident: e_1_2_5_37_1 doi: 10.1002/aenm.201700595 – ident: e_1_2_5_40_1 doi: 10.1016/j.jpowsour.2016.12.098 – ident: e_1_2_5_19_1 doi: 10.1039/C6EE03716J – ident: e_1_2_5_25_1 doi: 10.1038/nenergy.2016.97 – ident: e_1_2_5_31_1 doi: 10.1002/anie.201004748 – ident: e_1_2_5_16_1 doi: 10.1021/cr020740l – ident: e_1_2_5_33_1 doi: 10.1126/science.1120937 – ident: e_1_2_5_12_1 doi: 10.1002/aenm.201600377 – ident: e_1_2_5_1_1 doi: 10.1038/nchem.2085 – ident: e_1_2_5_41_1 doi: 10.1039/a802962h – ident: e_1_2_5_11_1 doi: 10.1016/j.cossms.2012.05.002 – ident: e_1_2_5_27_1 doi: 10.1002/anie.201001626 – ident: e_1_2_5_42_1 doi: 10.1038/nenergy.2016.30 – ident: e_1_2_5_8_1 doi: 10.1149/2.F05083IF – ident: e_1_2_5_39_1 doi: 10.1007/s11581-011-0611-x – ident: e_1_2_5_9_1 doi: 10.1016/j.jpowsour.2013.10.026 – ident: e_1_2_5_14_1 doi: 10.1002/adma.201204055 – ident: e_1_2_5_21_1 doi: 10.1038/ncomms2747 – ident: e_1_2_5_30_1 doi: 10.1038/nature08601 – ident: e_1_2_5_34_1 doi: 10.1126/science.1164865 – ident: e_1_2_5_36_1 doi: 10.1016/j.jeurceramsoc.2013.08.004 – ident: e_1_2_5_4_1 doi: 10.1016/0025-5408(80)90012-4 – ident: e_1_2_5_18_1 doi: 10.1016/j.jpowsour.2008.12.032 – ident: e_1_2_5_17_1 doi: 10.1038/nnano.2011.38 – ident: e_1_2_5_3_1 doi: 10.1002/adma.200903328 – ident: e_1_2_5_13_1 doi: 10.1016/j.elecom.2009.09.001 – ident: e_1_2_5_20_1 doi: 10.1039/c2cp40135e – ident: e_1_2_5_28_1 doi: 10.1002/adma.200902852 – ident: e_1_2_5_23_1 doi: 10.1002/adma.200602828 – ident: e_1_2_5_29_1 doi: 10.1021/nl401729r |
SSID | ssj0009606 |
Score | 2.6506484 |
Snippet | Ultrathick electrode design is a promising strategy to enhance the specific energy of Li‐ion batteries (LIBs) without changing the underlying materials... Ultrathick electrode design is a promising strategy to enhance the specific energy of Li-ion batteries (LIBs) without changing the underlying materials... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e1706745 |
SubjectTerms | areal capacity Batteries bio‐inspired materials Cathodes Electrodes Ion transport LiCoO2 Materials science Microchannels Microtomography Performance enhancement Sol-gel processes Structural hierarchy Tortuosity ultrathick electrodes wood |
Title | Wood‐Inspired High‐Performance Ultrathick Bulk Battery Electrodes |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.201706745 https://www.ncbi.nlm.nih.gov/pubmed/29603415 https://www.proquest.com/docview/2038253075 https://www.proquest.com/docview/2020490658 |
Volume | 30 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFA6yJ33wfplOqSD41G1t03R9nLoxhYmIw72VXE5RNjpx24M--RP8jf4Sz2m3blNE0JeSkKRNk3OS7yQnXxg7AW18AWimIiRSNpfCs6V0pO2aUCluEJMDrXe0r0Wrw6-6fnfuFH_GD5EvuJFmpOM1KbhUw8qMNFSalDeI6F8CTqfMyWGLUNHtjD-K4HlKtuf5dih4bcraWHUri8UXZ6VvUHMRuaZTT3ONyWmlM4-TXnk8UmX9-oXP8T9_tc5WJ7jUqmeCtMGWINlkK3NshVuscT8YmI-398uEdufBWOQjgvGb2dkDq9MnttuHR92zzsZ9fKT0nS9WI7ttx8Bwm3Wajbvzlj25hcHWPBC-rQMnDhwQoedJIbUvpDJKoiHiOAbhCAK4wBgf0GwRYWhcPxb4qEIVajxUroq9HVZIBgnsMYsTHaHWRoOOMSCl4WCEI2N8mQJwisye9kKkJxTldFNGP8rIld2ImifKm6fITvP8Txk5x485S9NOjSZKOsRUD-1jHOQw-ThPRvWiPROZwGBMeVzaG0WcVmS7mTDkn3JRvBAEYGk37dJf6hDVL9r1PLb_l0IHbBnDtczhssQKo-cxHCIoGqmjVPA_AZhpBLQ |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6V9gAc-uBRlrYQJCRO2W4Sx9kcF7rVLu1WCHUFt8iPiai6ShDdHNpTfwK_sb-kM3ltlwpVgouVxHbi2B77G3v8DcB7NDaUSGoqQSLtCiUDVylPub6NtRaWMDnyesfkRI6m4vP3sLEm5LMwFT9Eu-DGklGO1yzgvCC9v2ANVbYkDmL-l0iEj2CN3XqXWtXXBYMUA_SSbi8I3ViKfsPb2PP3l_Mvz0v3wOYydi0nn8MN0E2xK5uT824x111z9Qej43_91yas19DUGVR9aQtWMHsGT-8QFj6H4bc8tzfXv8cZb9CjddhMhO6_LI4fONMZE97-ODPnzsdiRkHJ4HnpDCuHOxYvXsD0cHj6aeTWjhhcIyIZuiby0shDGQeBksqEUmmrFekinmcJkRCGi6wNkTQXGcfWD1NJQQ972Bex9nUavITVLM_wFTiCGQmNsQZNShdKWYFWeiqll2lErwNu0wyJqVnK2VnGLKn4lf2Eqydpq6cDH9r0Pyt-jr-m3G1aNanl9IJiA1KRaZyj6HdtNEkYb5uoDPOC0_i8PUpQrQPbVW9oP-VT_yIcQLn9sk0fKEMyOJgM2rvX_5LpLTwenU6Ok-PxydEOPKHn_cr-chdW578K3COMNNdvSim4BeB3CM8 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB2xSAgO7EuhQJCQOIU2ieM0x0JbsQshKrhFXiYCUaUI2gOc-AS-kS9hnLRpC0JIcLHieIljz9hvvDwD7KLSPkcyUwkSSZsJ7tlCOMJ2dSgl04TJ0cx3nF_woyY7ufVvh07xZ_wQ-YSb0Yy0vzYK_qjj0oA0VOiUN8jQvwTMH4dJxssVI9e1qwGBlMHnKdue59shZ5U-bWPZLY2mHx2WvmHNUeiajj2NORD9UmdbTh72ux25r16_EDr-57fmYbYHTK1qJkkLMIbJIswM0RUuQf2m3dYfb-_HiVmeR22ZTSLkvxwcPrCaLUN3e3evHqyDbouclL_zxapn1-1ofF6GZqN-fXhk965hsBULuG-rwIkDB3noeYIL5XMhtRRkiTiOJjxCCC7Q2keyW3gYatePOTllLGOFhdKVsbcCE0k7wTWwmOEjVEorVDE9CKEZau6ImDKTiE4B7H4rRKrHUW6uymhFGbuyG5nqifLqKcBeHv8xY-f4MWax36hRT0ufKdQjA5l6OQreyYNJv8yiiUiw3TVxXLM4SkCtAKuZMOSfckm8CAVQajdt0l_KEFVr59Xct_6XRNswdVlrRGfHF6cbME2vK9nmyyJMdJ66uEkAqSO3Uh34BNf9B4c |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Wood-Inspired+High-Performance+Ultrathick+Bulk+Battery+Electrodes&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Lu%2C+Lei-Lei&rft.au=Lu%2C+Yu-Yang&rft.au=Xiao%2C+Zi-Jian&rft.au=Zhang%2C+Tian-Wen&rft.date=2018-05-01&rft.eissn=1521-4095&rft.volume=30&rft.issue=20&rft.spage=e1706745&rft_id=info:doi/10.1002%2Fadma.201706745&rft_id=info%3Apmid%2F29603415&rft.externalDocID=29603415 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon |