Wood‐Inspired High‐Performance Ultrathick Bulk Battery Electrodes

Ultrathick electrode design is a promising strategy to enhance the specific energy of Li‐ion batteries (LIBs) without changing the underlying materials chemistry. However, the low Li‐ion conductivity caused by ultralong Li‐ion transport pathway in traditional random microstructured electrode heavily...

Full description

Saved in:
Bibliographic Details
Published inAdvanced materials (Weinheim) Vol. 30; no. 20; pp. e1706745 - n/a
Main Authors Lu, Lei‐Lei, Lu, Yu‐Yang, Xiao, Zi‐Jian, Zhang, Tian‐Wen, Zhou, Fei, Ma, Tao, Ni, Yong, Yao, Hong‐Bin, Yu, Shu‐Hong, Cui, Yi
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.05.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Ultrathick electrode design is a promising strategy to enhance the specific energy of Li‐ion batteries (LIBs) without changing the underlying materials chemistry. However, the low Li‐ion conductivity caused by ultralong Li‐ion transport pathway in traditional random microstructured electrode heavily deteriorates the rate performance of ultrathick electrodes. Herein, inspired by the vertical microchannels in natural wood as the highway for water transport, the microstructures of wood are successfully duplicated into ultrathick bulk LiCoO2 (LCO) cathode via a sol–gel process to achieve the high areal capacity and excellent rate capability. The X‐ray‐based microtomography demonstrates that the uniform microchannels are built up throughout the whole wood‐templated LCO cathode bringing in 1.5 times lower of tortuosity and ≈2 times higher of Li‐ion conductivity compared to that of random structured LCO cathode. The fabricated wood‐inspired LCO cathode delivers high areal capacity up to 22.7 mAh cm−2 (five times of the existing electrode) and achieves the dynamic stress test at such high areal capacity for the first time. The reported wood‐inspired design will open a new avenue to adopt natural hierarchical structures to improve the performance of LIBs. Inspired by the vertical microchannels in natural wood as the highway for water transport, an ultra‐thick bulk LiCoO2 (LCO) cathode with vertical channels is fabricated to enhance the transport of Li+. Remarkably, the fabricated LCO cathode shows low tortuosity and high Li‐ion conductivity, and can deliver high areal capacity up to 22.7 mAh cm−2.
AbstractList Ultrathick electrode design is a promising strategy to enhance the specific energy of Li‐ion batteries (LIBs) without changing the underlying materials chemistry. However, the low Li‐ion conductivity caused by ultralong Li‐ion transport pathway in traditional random microstructured electrode heavily deteriorates the rate performance of ultrathick electrodes. Herein, inspired by the vertical microchannels in natural wood as the highway for water transport, the microstructures of wood are successfully duplicated into ultrathick bulk LiCoO2 (LCO) cathode via a sol–gel process to achieve the high areal capacity and excellent rate capability. The X‐ray‐based microtomography demonstrates that the uniform microchannels are built up throughout the whole wood‐templated LCO cathode bringing in 1.5 times lower of tortuosity and ≈2 times higher of Li‐ion conductivity compared to that of random structured LCO cathode. The fabricated wood‐inspired LCO cathode delivers high areal capacity up to 22.7 mAh cm−2 (five times of the existing electrode) and achieves the dynamic stress test at such high areal capacity for the first time. The reported wood‐inspired design will open a new avenue to adopt natural hierarchical structures to improve the performance of LIBs. Inspired by the vertical microchannels in natural wood as the highway for water transport, an ultra‐thick bulk LiCoO2 (LCO) cathode with vertical channels is fabricated to enhance the transport of Li+. Remarkably, the fabricated LCO cathode shows low tortuosity and high Li‐ion conductivity, and can deliver high areal capacity up to 22.7 mAh cm−2.
Ultrathick electrode design is a promising strategy to enhance the specific energy of Li-ion batteries (LIBs) without changing the underlying materials chemistry. However, the low Li-ion conductivity caused by ultralong Li-ion transport pathway in traditional random microstructured electrode heavily deteriorates the rate performance of ultrathick electrodes. Herein, inspired by the vertical microchannels in natural wood as the highway for water transport, the microstructures of wood are successfully duplicated into ultrathick bulk LiCoO2 (LCO) cathode via a sol-gel process to achieve the high areal capacity and excellent rate capability. The X-ray-based microtomography demonstrates that the uniform microchannels are built up throughout the whole wood-templated LCO cathode bringing in 1.5 times lower of tortuosity and ≈2 times higher of Li-ion conductivity compared to that of random structured LCO cathode. The fabricated wood-inspired LCO cathode delivers high areal capacity up to 22.7 mAh cm-2 (five times of the existing electrode) and achieves the dynamic stress test at such high areal capacity for the first time. The reported wood-inspired design will open a new avenue to adopt natural hierarchical structures to improve the performance of LIBs.Ultrathick electrode design is a promising strategy to enhance the specific energy of Li-ion batteries (LIBs) without changing the underlying materials chemistry. However, the low Li-ion conductivity caused by ultralong Li-ion transport pathway in traditional random microstructured electrode heavily deteriorates the rate performance of ultrathick electrodes. Herein, inspired by the vertical microchannels in natural wood as the highway for water transport, the microstructures of wood are successfully duplicated into ultrathick bulk LiCoO2 (LCO) cathode via a sol-gel process to achieve the high areal capacity and excellent rate capability. The X-ray-based microtomography demonstrates that the uniform microchannels are built up throughout the whole wood-templated LCO cathode bringing in 1.5 times lower of tortuosity and ≈2 times higher of Li-ion conductivity compared to that of random structured LCO cathode. The fabricated wood-inspired LCO cathode delivers high areal capacity up to 22.7 mAh cm-2 (five times of the existing electrode) and achieves the dynamic stress test at such high areal capacity for the first time. The reported wood-inspired design will open a new avenue to adopt natural hierarchical structures to improve the performance of LIBs.
Ultrathick electrode design is a promising strategy to enhance the specific energy of Li‐ion batteries (LIBs) without changing the underlying materials chemistry. However, the low Li‐ion conductivity caused by ultralong Li‐ion transport pathway in traditional random microstructured electrode heavily deteriorates the rate performance of ultrathick electrodes. Herein, inspired by the vertical microchannels in natural wood as the highway for water transport, the microstructures of wood are successfully duplicated into ultrathick bulk LiCoO 2 (LCO) cathode via a sol–gel process to achieve the high areal capacity and excellent rate capability. The X‐ray‐based microtomography demonstrates that the uniform microchannels are built up throughout the whole wood‐templated LCO cathode bringing in 1.5 times lower of tortuosity and ≈2 times higher of Li‐ion conductivity compared to that of random structured LCO cathode. The fabricated wood‐inspired LCO cathode delivers high areal capacity up to 22.7 mAh cm −2 (five times of the existing electrode) and achieves the dynamic stress test at such high areal capacity for the first time. The reported wood‐inspired design will open a new avenue to adopt natural hierarchical structures to improve the performance of LIBs.
Ultrathick electrode design is a promising strategy to enhance the specific energy of Li-ion batteries (LIBs) without changing the underlying materials chemistry. However, the low Li-ion conductivity caused by ultralong Li-ion transport pathway in traditional random microstructured electrode heavily deteriorates the rate performance of ultrathick electrodes. Herein, inspired by the vertical microchannels in natural wood as the highway for water transport, the microstructures of wood are successfully duplicated into ultrathick bulk LiCoO (LCO) cathode via a sol-gel process to achieve the high areal capacity and excellent rate capability. The X-ray-based microtomography demonstrates that the uniform microchannels are built up throughout the whole wood-templated LCO cathode bringing in 1.5 times lower of tortuosity and ≈2 times higher of Li-ion conductivity compared to that of random structured LCO cathode. The fabricated wood-inspired LCO cathode delivers high areal capacity up to 22.7 mAh cm (five times of the existing electrode) and achieves the dynamic stress test at such high areal capacity for the first time. The reported wood-inspired design will open a new avenue to adopt natural hierarchical structures to improve the performance of LIBs.
Ultrathick electrode design is a promising strategy to enhance the specific energy of Li‐ion batteries (LIBs) without changing the underlying materials chemistry. However, the low Li‐ion conductivity caused by ultralong Li‐ion transport pathway in traditional random microstructured electrode heavily deteriorates the rate performance of ultrathick electrodes. Herein, inspired by the vertical microchannels in natural wood as the highway for water transport, the microstructures of wood are successfully duplicated into ultrathick bulk LiCoO2 (LCO) cathode via a sol–gel process to achieve the high areal capacity and excellent rate capability. The X‐ray‐based microtomography demonstrates that the uniform microchannels are built up throughout the whole wood‐templated LCO cathode bringing in 1.5 times lower of tortuosity and ≈2 times higher of Li‐ion conductivity compared to that of random structured LCO cathode. The fabricated wood‐inspired LCO cathode delivers high areal capacity up to 22.7 mAh cm−2 (five times of the existing electrode) and achieves the dynamic stress test at such high areal capacity for the first time. The reported wood‐inspired design will open a new avenue to adopt natural hierarchical structures to improve the performance of LIBs.
Author Zhang, Tian‐Wen
Ni, Yong
Yao, Hong‐Bin
Lu, Yu‐Yang
Xiao, Zi‐Jian
Yu, Shu‐Hong
Ma, Tao
Zhou, Fei
Lu, Lei‐Lei
Cui, Yi
Author_xml – sequence: 1
  givenname: Lei‐Lei
  surname: Lu
  fullname: Lu, Lei‐Lei
  organization: University of Science and Technology of China
– sequence: 2
  givenname: Yu‐Yang
  surname: Lu
  fullname: Lu, Yu‐Yang
  organization: University of Science and Technology of China
– sequence: 3
  givenname: Zi‐Jian
  surname: Xiao
  fullname: Xiao, Zi‐Jian
  organization: University of Science and Technology of China
– sequence: 4
  givenname: Tian‐Wen
  surname: Zhang
  fullname: Zhang, Tian‐Wen
  organization: University of Science and Technology of China
– sequence: 5
  givenname: Fei
  surname: Zhou
  fullname: Zhou, Fei
  organization: University of Science and Technology of China
– sequence: 6
  givenname: Tao
  surname: Ma
  fullname: Ma, Tao
  organization: University of Science and Technology of China
– sequence: 7
  givenname: Yong
  surname: Ni
  fullname: Ni, Yong
  organization: University of Science and Technology of China
– sequence: 8
  givenname: Hong‐Bin
  orcidid: 0000-0002-2901-0160
  surname: Yao
  fullname: Yao, Hong‐Bin
  email: yhb@ustc.edu.cn
  organization: University of Science and Technology of China
– sequence: 9
  givenname: Shu‐Hong
  surname: Yu
  fullname: Yu, Shu‐Hong
  email: shyu@ustc.edu.cn
  organization: University of Science and Technology of China
– sequence: 10
  givenname: Yi
  surname: Cui
  fullname: Cui, Yi
  email: yicui@stanford.edu
  organization: Stanford University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29603415$$D View this record in MEDLINE/PubMed
BookMark eNqFkc9u1DAQhy1URLeFK0e0EhcuWcaO_8THpd3SSkVwoOJoOfaEuiTxYidCe-MReMY-Ca62BakS4jKjkb5vNJrfETkY44iEvKSwogDsrfWDXTGgCqTi4glZUMFoxUGLA7IAXYtKS94ckqOcbwBAS5DPyCErveZULMjmS4z-9uevizFvQ0K_PA9fr8v8CVMX02BHh8urfkp2ug7u2_Ld3JdipwnTbrnp0U0peszPydPO9hlf3PdjcnW2-XxyXl1-fH9xsr6sHFdSVE7RTlGUuq6ttE5I2_rWCqEp9YrTWjDlvUAlG6m1Z6KTpQACNly3rO3qY_Jmv3eb4vcZ82SGkB32vR0xztkwYMA1SNEU9PUj9CbOaSzXFapumKhBiUK9uqfmdkBvtikMNu3Mw4MKwPeASzHnhJ1xYbJTiGP5SegNBXOXg7nLwfzJoWirR9rD5n8Kei_8CD3u_kOb9emH9V_3N3dLmrw
CitedBy_id crossref_primary_10_1007_s12274_019_2392_x
crossref_primary_10_1016_j_applthermaleng_2023_120555
crossref_primary_10_1002_adfm_201809196
crossref_primary_10_1016_j_apcatb_2020_119367
crossref_primary_10_1007_s12274_023_6102_3
crossref_primary_10_1016_j_cej_2024_153293
crossref_primary_10_1002_batt_202400302
crossref_primary_10_1016_j_xcrp_2021_100654
crossref_primary_10_1007_s00226_023_01461_x
crossref_primary_10_1002_adfm_202108669
crossref_primary_10_1021_acs_accounts_8b00391
crossref_primary_10_1002_advs_202200547
crossref_primary_10_1002_cey2_114
crossref_primary_10_1002_aenm_201802930
crossref_primary_10_1021_acsmaterialslett_2c00188
crossref_primary_10_1016_j_jpowsour_2022_230977
crossref_primary_10_1016_j_matdes_2023_111695
crossref_primary_10_1021_acssuschemeng_0c01393
crossref_primary_10_1002_aenm_202003725
crossref_primary_10_1002_aesr_202400148
crossref_primary_10_1007_s41918_020_00093_0
crossref_primary_10_1002_aenm_202002637
crossref_primary_10_1016_j_cej_2023_144720
crossref_primary_10_1039_D1TA10366K
crossref_primary_10_1002_celc_201900813
crossref_primary_10_1002_aenm_201901457
crossref_primary_10_1002_adma_202202780
crossref_primary_10_1039_D2GC04271A
crossref_primary_10_1016_j_jpowsour_2024_235737
crossref_primary_10_1016_j_ensm_2020_06_042
crossref_primary_10_1149_1945_7111_ad1219
crossref_primary_10_1016_j_jpowsour_2022_232223
crossref_primary_10_1016_j_mtadv_2023_100391
crossref_primary_10_1002_adma_202101275
crossref_primary_10_1002_sstr_202100228
crossref_primary_10_1002_adfm_202002169
crossref_primary_10_1016_j_jpowsour_2021_230588
crossref_primary_10_1007_s10570_020_03509_8
crossref_primary_10_1021_acs_jpcc_2c05643
crossref_primary_10_1021_acs_chemrev_2c00214
crossref_primary_10_1039_D0EE02848G
crossref_primary_10_1002_adfm_202301109
crossref_primary_10_3390_mi13091534
crossref_primary_10_1016_j_cplett_2024_141214
crossref_primary_10_1021_acsnano_1c09687
crossref_primary_10_1016_j_carbon_2019_07_060
crossref_primary_10_1021_acs_iecr_2c00447
crossref_primary_10_1007_s12274_024_6567_7
crossref_primary_10_1016_j_enrev_2023_100066
crossref_primary_10_1021_acs_nanolett_2c02100
crossref_primary_10_1002_aenm_201802398
crossref_primary_10_1002_anie_201907708
crossref_primary_10_1016_j_jpowsour_2022_231046
crossref_primary_10_12677_MOS_2023_122126
crossref_primary_10_1039_C9TA07269A
crossref_primary_10_1002_smll_202311044
crossref_primary_10_1016_j_jallcom_2020_158071
crossref_primary_10_1016_j_ijbiomac_2023_125902
crossref_primary_10_1016_j_jhazmat_2022_130270
crossref_primary_10_1021_acsaem_0c00354
crossref_primary_10_1016_j_ensm_2020_02_008
crossref_primary_10_1021_acssuschemeng_9b00526
crossref_primary_10_1039_D3CS00572K
crossref_primary_10_1021_acs_nanolett_2c03545
crossref_primary_10_1016_j_cej_2020_124761
crossref_primary_10_1016_j_jpowsour_2018_11_037
crossref_primary_10_1039_C8TA07711H
crossref_primary_10_1021_acsami_8b17414
crossref_primary_10_1016_j_mset_2022_09_002
crossref_primary_10_1016_j_conbuildmat_2020_119984
crossref_primary_10_1088_2515_7655_ac8e30
crossref_primary_10_1002_smll_202007676
crossref_primary_10_1016_j_cej_2022_140453
crossref_primary_10_1002_adma_202000892
crossref_primary_10_1016_j_mattod_2024_11_009
crossref_primary_10_1016_j_nxmate_2024_100170
crossref_primary_10_1016_j_cej_2020_124637
crossref_primary_10_1021_acsenergylett_4c01889
crossref_primary_10_1016_j_pmatsci_2022_101052
crossref_primary_10_1039_C9ME00084D
crossref_primary_10_1016_j_electacta_2019_01_095
crossref_primary_10_1016_j_cogsc_2021_100520
crossref_primary_10_1016_j_electacta_2021_138750
crossref_primary_10_1002_adfm_201806207
crossref_primary_10_1021_acsami_0c19099
crossref_primary_10_1039_C9CP06181A
crossref_primary_10_1016_j_ensm_2024_103999
crossref_primary_10_1002_smtd_202100280
crossref_primary_10_1039_D3EE03045H
crossref_primary_10_1039_D2CP03301A
crossref_primary_10_1002_adfm_201904282
crossref_primary_10_3390_batteries9030151
crossref_primary_10_1039_D4SE01825G
crossref_primary_10_1021_acsnano_1c01247
crossref_primary_10_1016_j_xcrp_2020_100079
crossref_primary_10_1002_adma_201901345
crossref_primary_10_1039_D0GC04430J
crossref_primary_10_1002_adfm_202301420
crossref_primary_10_1016_j_jmrt_2022_01_100
crossref_primary_10_1021_acsnano_1c06491
crossref_primary_10_1002_ente_202301304
crossref_primary_10_1016_j_joule_2018_09_008
crossref_primary_10_1093_nsr_nwy148
crossref_primary_10_1002_smll_202308928
crossref_primary_10_1016_j_jpowsour_2024_234953
crossref_primary_10_1016_j_jpowsour_2022_232176
crossref_primary_10_1021_acs_nanolett_0c02053
crossref_primary_10_1073_pnas_2308009120
crossref_primary_10_1016_j_indcrop_2025_120715
crossref_primary_10_1016_j_jpowsour_2024_235005
crossref_primary_10_1021_acsami_0c14790
crossref_primary_10_1002_smll_202308126
crossref_primary_10_1002_smll_202305416
crossref_primary_10_1016_j_cej_2023_146891
crossref_primary_10_1016_j_apsusc_2022_154141
crossref_primary_10_3390_batteries10020058
crossref_primary_10_1016_j_cej_2024_157020
crossref_primary_10_1016_j_ijbiomac_2022_12_324
crossref_primary_10_1016_j_jpowsour_2024_234276
crossref_primary_10_1016_j_ensm_2022_11_025
crossref_primary_10_1016_j_cej_2024_157266
crossref_primary_10_1021_acs_nanolett_1c02142
crossref_primary_10_1149_1945_7111_ada4e0
crossref_primary_10_1149_1945_7111_ac30ab
crossref_primary_10_1007_s12274_024_6467_y
crossref_primary_10_1016_j_electacta_2019_04_052
crossref_primary_10_1016_j_est_2024_115253
crossref_primary_10_1016_j_ensm_2020_06_029
crossref_primary_10_1002_smll_202307027
crossref_primary_10_1021_acsnano_9b04365
crossref_primary_10_1002_eem2_12584
crossref_primary_10_1002_advs_202403797
crossref_primary_10_1002_admt_202000791
crossref_primary_10_1002_admi_202101727
crossref_primary_10_3390_batteries10100364
crossref_primary_10_1039_D1SE01259B
crossref_primary_10_1016_j_ceramint_2025_01_449
crossref_primary_10_1016_j_ijhydene_2021_06_081
crossref_primary_10_1039_D1TA02412D
crossref_primary_10_1016_j_jpowsour_2019_227030
crossref_primary_10_1002_smtd_202401361
crossref_primary_10_1021_acs_nanolett_1c03724
crossref_primary_10_1002_celc_202100937
crossref_primary_10_1016_j_nanoen_2024_110464
crossref_primary_10_1016_j_matdes_2022_111208
crossref_primary_10_1007_s10853_020_05248_4
crossref_primary_10_1021_accountsmr_1c00281
crossref_primary_10_1002_app_48959
crossref_primary_10_1016_j_cej_2023_141733
crossref_primary_10_1016_j_ensm_2022_07_007
crossref_primary_10_1002_smll_202406058
crossref_primary_10_1016_j_ensm_2020_12_034
crossref_primary_10_1021_acsaem_0c01196
crossref_primary_10_1016_j_cej_2022_141117
crossref_primary_10_1002_smtd_202100518
crossref_primary_10_1039_D3TA07139A
crossref_primary_10_1002_eem2_12241
crossref_primary_10_1016_j_cej_2021_129518
crossref_primary_10_1021_acs_nanolett_9b04486
crossref_primary_10_1007_s10853_020_04702_7
crossref_primary_10_1002_sstr_202200159
crossref_primary_10_1016_j_matlet_2022_133537
crossref_primary_10_1039_D2SC04157J
crossref_primary_10_1016_j_cej_2021_132810
crossref_primary_10_1016_j_indcrop_2022_114802
crossref_primary_10_3390_nano15030156
crossref_primary_10_1016_j_jpowsour_2021_230955
crossref_primary_10_1016_j_mtener_2022_100951
crossref_primary_10_1021_acsnano_0c04298
crossref_primary_10_1002_adma_202006019
crossref_primary_10_1007_s42765_024_00468_8
crossref_primary_10_1002_smll_201805363
crossref_primary_10_3389_fbael_2023_1272439
crossref_primary_10_1002_ente_202000700
crossref_primary_10_1002_aenm_202201834
crossref_primary_10_1007_s40820_025_01652_0
crossref_primary_10_1016_j_jechem_2022_05_028
crossref_primary_10_1007_s11581_022_04736_8
crossref_primary_10_1002_adfm_202010041
crossref_primary_10_1002_adma_202404689
crossref_primary_10_1016_j_ceramint_2020_08_074
crossref_primary_10_1016_j_jpowsour_2020_227764
crossref_primary_10_1016_j_ensm_2018_11_019
crossref_primary_10_1038_s41578_018_0069_9
crossref_primary_10_1016_j_cej_2022_137562
crossref_primary_10_1016_j_ensm_2024_103373
crossref_primary_10_1002_adfm_202410164
crossref_primary_10_1002_adfm_202204426
crossref_primary_10_1016_j_mtener_2022_101224
crossref_primary_10_1002_adfm_201902255
crossref_primary_10_1002_aenm_202003663
crossref_primary_10_1007_s41918_025_00240_5
crossref_primary_10_1002_adma_202001588
crossref_primary_10_1039_D1QM00286D
crossref_primary_10_1002_advs_201903168
crossref_primary_10_1016_j_cej_2022_137331
crossref_primary_10_1002_aenm_201901774
crossref_primary_10_1021_acsaelm_4c01796
crossref_primary_10_1016_j_abs_2024_10_001
crossref_primary_10_1007_s11581_021_03912_6
crossref_primary_10_1002_adsu_202100236
crossref_primary_10_1016_j_carbon_2019_04_102
crossref_primary_10_1002_ange_201907708
crossref_primary_10_1149_1945_7111_ac4843
crossref_primary_10_1063_5_0097389
crossref_primary_10_1002_aenm_201802964
crossref_primary_10_1021_acs_nanolett_9b03824
crossref_primary_10_1002_advs_202400405
crossref_primary_10_1007_s40843_023_2723_1
crossref_primary_10_1016_j_compscitech_2021_109184
crossref_primary_10_1021_jacs_0c12098
crossref_primary_10_1515_ntrev_2023_0215
crossref_primary_10_1002_admi_202300355
crossref_primary_10_1016_j_cej_2023_142332
crossref_primary_10_1002_aenm_202103044
crossref_primary_10_1002_aenm_202000808
crossref_primary_10_1039_D1ME00082A
crossref_primary_10_1002_adfm_202310775
crossref_primary_10_1038_s41467_022_30112_1
crossref_primary_10_1073_pnas_2007250117
crossref_primary_10_1021_acsenergylett_2c02208
crossref_primary_10_1016_j_indcrop_2022_114565
crossref_primary_10_1002_advs_202105723
crossref_primary_10_1002_adma_202000596
crossref_primary_10_1016_j_cej_2020_124256
crossref_primary_10_1016_j_carbon_2020_12_018
crossref_primary_10_1021_jacs_2c07296
crossref_primary_10_1002_adma_202002890
crossref_primary_10_1016_j_jpowsour_2021_229777
crossref_primary_10_1002_smll_202102233
crossref_primary_10_1039_D0NR03059G
crossref_primary_10_1016_j_xcrp_2024_101974
crossref_primary_10_1021_acs_chemmater_9b05396
crossref_primary_10_3390_cryst14110914
crossref_primary_10_1149_1945_7111_ac0bf6
crossref_primary_10_1016_j_ensm_2020_04_031
crossref_primary_10_1002_aenm_202301295
crossref_primary_10_1007_s41918_023_00198_2
crossref_primary_10_1039_D5EE00202H
Cites_doi 10.1016/j.electacta.2012.03.161
10.1002/adfm.200601152
10.1016/j.ceramint.2014.11.101
10.1016/j.apsusc.2012.04.102
10.1149/1.1837571
10.1021/acsnano.7b01172
10.1126/science.aaf8991
10.1016/0013-4686(93)80046-3
10.1038/nmat732
10.1038/nenergy.2016.99
10.1021/nl504676v
10.1016/j.nanoen.2014.11.025
10.1002/aenm.201700595
10.1016/j.jpowsour.2016.12.098
10.1039/C6EE03716J
10.1038/nenergy.2016.97
10.1002/anie.201004748
10.1021/cr020740l
10.1126/science.1120937
10.1002/aenm.201600377
10.1038/nchem.2085
10.1039/a802962h
10.1016/j.cossms.2012.05.002
10.1002/anie.201001626
10.1038/nenergy.2016.30
10.1149/2.F05083IF
10.1007/s11581-011-0611-x
10.1016/j.jpowsour.2013.10.026
10.1002/adma.201204055
10.1038/ncomms2747
10.1038/nature08601
10.1126/science.1164865
10.1016/j.jeurceramsoc.2013.08.004
10.1016/0025-5408(80)90012-4
10.1016/j.jpowsour.2008.12.032
10.1038/nnano.2011.38
10.1002/adma.200903328
10.1016/j.elecom.2009.09.001
10.1039/c2cp40135e
10.1002/adma.200902852
10.1002/adma.200602828
10.1021/nl401729r
ContentType Journal Article
Copyright 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Copyright_xml – notice: 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DBID AAYXX
CITATION
NPM
7SR
8BQ
8FD
JG9
7X8
DOI 10.1002/adma.201706745
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
CrossRef
PubMed
Materials Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1521-4095
EndPage n/a
ExternalDocumentID 29603415
10_1002_adma_201706745
ADMA201706745
Genre article
Journal Article
GrantInformation_xml – fundername: National Basic Research Program of China
  funderid: 2014CB931800; 2013CB931800
– fundername: Chinese Academy of Sciences
  funderid: KJZD‐EW‐M01‐1; QYZDJ‐SSW‐SLH036; 2015HSC‐UE007; 2015SRG‐HSC038; XDB22040502
– fundername: Defense Industrial Technology Development Program
  funderid: JCKY2016208B012
– fundername: National Natural Science Foundation of China
  funderid: 21431006; 51571184; 21501165; 21521001
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RWM
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YR2
ZZTAW
~02
~IA
~WT
.Y3
31~
6TJ
8WZ
A6W
AANHP
AAYOK
AAYXX
ABEML
ACBWZ
ACRPL
ACSCC
ACYXJ
ADMLS
ADNMO
AETEA
AEYWJ
AFFNX
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
FEDTE
FOJGT
HF~
HVGLF
M6K
NDZJH
PALCI
RIWAO
RJQFR
SAMSI
WTY
ZY4
ABTAH
NPM
7SR
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
7X8
ID FETCH-LOGICAL-c4765-c71f71e6933a6ac56abdba55911d7413527dd5e768699d25f6d250e0e849b2bf3
IEDL.DBID DR2
ISSN 0935-9648
1521-4095
IngestDate Thu Jul 10 23:48:51 EDT 2025
Fri Jul 25 06:18:44 EDT 2025
Wed Feb 19 02:43:49 EST 2025
Tue Jul 01 00:44:41 EDT 2025
Thu Apr 24 23:03:54 EDT 2025
Wed Jan 22 16:54:34 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 20
Keywords bio-inspired materials
wood
LiCoO2
areal capacity
ultrathick electrodes
tortuosity
Language English
License 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4765-c71f71e6933a6ac56abdba55911d7413527dd5e768699d25f6d250e0e849b2bf3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-2901-0160
PMID 29603415
PQID 2038253075
PQPubID 2045203
PageCount 9
ParticipantIDs proquest_miscellaneous_2020490658
proquest_journals_2038253075
pubmed_primary_29603415
crossref_citationtrail_10_1002_adma_201706745
crossref_primary_10_1002_adma_201706745
wiley_primary_10_1002_adma_201706745_ADMA201706745
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-May
PublicationDateYYYYMMDD 2018-05-01
PublicationDate_xml – month: 05
  year: 2018
  text: 2018-May
PublicationDecade 2010
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Advanced materials (Weinheim)
PublicationTitleAlternate Adv Mater
PublicationYear 2018
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2007; 17
2015; 2
2015; 15
2007; 19
2017; 7
2013; 25
2004; 104
2013; 4
2015; 11
2008; 17
2002; 1
2012; 16
2008; 322
2012; 14
2011; 17
2011; 6
2015; 7
2006; 311
1998; 16
2010; 22
2012; 71
2009; 11
1980; 15
2016; 6
2014; 249
2010; 49
2016; 1
1993; 38
2013; 13
2017; 11
2017; 10
2015; 41
1997; 144
2009; 462
2009; 188
2016; 354
2017; 342
2012; 258
2014; 34
e_1_2_5_27_1
e_1_2_5_28_1
e_1_2_5_25_1
e_1_2_5_26_1
e_1_2_5_23_1
e_1_2_5_21_1
e_1_2_5_22_1
e_1_2_5_43_1
e_1_2_5_29_1
e_1_2_5_42_1
e_1_2_5_20_1
e_1_2_5_41_1
e_1_2_5_40_1
e_1_2_5_15_1
e_1_2_5_38_1
e_1_2_5_14_1
e_1_2_5_39_1
e_1_2_5_17_1
e_1_2_5_36_1
e_1_2_5_9_1
e_1_2_5_16_1
e_1_2_5_37_1
e_1_2_5_8_1
e_1_2_5_11_1
e_1_2_5_34_1
e_1_2_5_7_1
e_1_2_5_10_1
e_1_2_5_35_1
e_1_2_5_6_1
e_1_2_5_13_1
e_1_2_5_32_1
e_1_2_5_5_1
e_1_2_5_12_1
e_1_2_5_33_1
e_1_2_5_4_1
e_1_2_5_3_1
e_1_2_5_2_1
e_1_2_5_1_1
e_1_2_5_19_1
e_1_2_5_18_1
e_1_2_5_30_1
Behr S. (e_1_2_5_24_1) 2015; 2
e_1_2_5_31_1
References_xml – volume: 104
  start-page: 4463
  year: 2004
  publication-title: Chem. Rev.
– volume: 249
  start-page: 349
  year: 2014
  publication-title: J. Power Sources
– volume: 49
  start-page: 10127
  year: 2010
  publication-title: Angew. Chem., Int. Ed.
– volume: 188
  start-page: 592
  year: 2009
  publication-title: J. Power Sources
– volume: 19
  start-page: 2087
  year: 2007
  publication-title: Adv. Mater.
– volume: 4
  start-page: 1732
  year: 2013
  publication-title: Nat. Commun.
– volume: 49
  start-page: 6564
  year: 2010
  publication-title: Angew. Chem., Int. Ed.
– volume: 7
  start-page: 1700595
  year: 2017
  publication-title: Adv. Energy Mater.
– volume: 11
  start-page: 356
  year: 2015
  publication-title: Nano Energy
– volume: 41
  start-page: 4070
  year: 2015
  publication-title: Ceram. Int.
– volume: 38
  start-page: 1159
  year: 1993
  publication-title: Electrochim. Acta
– volume: 462
  start-page: 426
  year: 2009
  publication-title: Nature
– volume: 311
  start-page: 515
  year: 2006
  publication-title: Science
– volume: 11
  start-page: 4801
  year: 2017
  publication-title: ACS Nano
– volume: 10
  start-page: 538
  year: 2017
  publication-title: Energy Environ. Sci.
– volume: 17
  start-page: 1873
  year: 2007
  publication-title: Adv. Funct. Mater.
– volume: 1
  start-page: 16097
  year: 2016
  publication-title: Nat. Energy
– volume: 16
  start-page: 186
  year: 2012
  publication-title: Curr. Opin. Solid State Mater. Sci.
– volume: 1
  start-page: 123
  year: 2002
  publication-title: Nat. Mater.
– volume: 22
  start-page: 107
  year: 2010
  publication-title: Adv. Mater.
– volume: 15
  start-page: 2917
  year: 2015
  publication-title: Nano Lett.
– volume: 16
  start-page: 1631
  year: 1998
  publication-title: Chem. Commun.
– volume: 34
  start-page: 249
  year: 2014
  publication-title: J. Eur. Ceram. Soc.
– volume: 1
  start-page: 16030
  year: 2016
  publication-title: Nat. Energy
– volume: 6
  start-page: 277
  year: 2011
  publication-title: Nat. Nanotechnol.
– volume: 25
  start-page: 1254
  year: 2013
  publication-title: Adv. Mater.
– volume: 2
  start-page: 39
  year: 2015
  publication-title: Ceram. Forum Int.
– volume: 1
  start-page: 16099
  year: 2016
  publication-title: Nat. Energy
– volume: 354
  start-page: 107
  year: 2016
  publication-title: Science
– volume: 71
  start-page: 258
  year: 2012
  publication-title: Electrochim. Acta
– volume: 11
  start-page: 2089
  year: 2009
  publication-title: Electrochem. Commun.
– volume: 14
  start-page: 7040
  year: 2012
  publication-title: Phys. Chem. Chem. Phys.
– volume: 17
  start-page: 49
  year: 2008
  publication-title: Electrochem. Soc. Interface
– volume: 322
  start-page: 1516
  year: 2008
  publication-title: Science
– volume: 15
  start-page: 783
  year: 1980
  publication-title: Mater. Res. Bull.
– volume: 6
  start-page: 1600377
  year: 2016
  publication-title: Adv. Energy Mater.
– volume: 342
  start-page: 476
  year: 2017
  publication-title: J. Power Sources
– volume: 144
  start-page: 1188
  year: 1997
  publication-title: J. Electrochem. Soc.
– volume: 22
  start-page: 28
  year: 2010
  publication-title: Adv. Mater.
– volume: 258
  start-page: 7612
  year: 2012
  publication-title: Appl. Surf. Sci.
– volume: 7
  start-page: 19
  year: 2015
  publication-title: Nat. Chem.
– volume: 13
  start-page: 3385
  year: 2013
  publication-title: Nano Lett.
– volume: 17
  start-page: 575
  year: 2011
  publication-title: Ionics
– ident: e_1_2_5_6_1
  doi: 10.1016/j.electacta.2012.03.161
– ident: e_1_2_5_22_1
  doi: 10.1002/adfm.200601152
– ident: e_1_2_5_35_1
  doi: 10.1016/j.ceramint.2014.11.101
– ident: e_1_2_5_43_1
  doi: 10.1016/j.apsusc.2012.04.102
– ident: e_1_2_5_5_1
  doi: 10.1149/1.1837571
– ident: e_1_2_5_15_1
  doi: 10.1021/acsnano.7b01172
– ident: e_1_2_5_32_1
  doi: 10.1126/science.aaf8991
– ident: e_1_2_5_38_1
  doi: 10.1016/0013-4686(93)80046-3
– ident: e_1_2_5_2_1
  doi: 10.1038/nmat732
– ident: e_1_2_5_26_1
  doi: 10.1038/nenergy.2016.99
– ident: e_1_2_5_10_1
  doi: 10.1021/nl504676v
– ident: e_1_2_5_7_1
  doi: 10.1016/j.nanoen.2014.11.025
– volume: 2
  start-page: 39
  year: 2015
  ident: e_1_2_5_24_1
  publication-title: Ceram. Forum Int.
– ident: e_1_2_5_37_1
  doi: 10.1002/aenm.201700595
– ident: e_1_2_5_40_1
  doi: 10.1016/j.jpowsour.2016.12.098
– ident: e_1_2_5_19_1
  doi: 10.1039/C6EE03716J
– ident: e_1_2_5_25_1
  doi: 10.1038/nenergy.2016.97
– ident: e_1_2_5_31_1
  doi: 10.1002/anie.201004748
– ident: e_1_2_5_16_1
  doi: 10.1021/cr020740l
– ident: e_1_2_5_33_1
  doi: 10.1126/science.1120937
– ident: e_1_2_5_12_1
  doi: 10.1002/aenm.201600377
– ident: e_1_2_5_1_1
  doi: 10.1038/nchem.2085
– ident: e_1_2_5_41_1
  doi: 10.1039/a802962h
– ident: e_1_2_5_11_1
  doi: 10.1016/j.cossms.2012.05.002
– ident: e_1_2_5_27_1
  doi: 10.1002/anie.201001626
– ident: e_1_2_5_42_1
  doi: 10.1038/nenergy.2016.30
– ident: e_1_2_5_8_1
  doi: 10.1149/2.F05083IF
– ident: e_1_2_5_39_1
  doi: 10.1007/s11581-011-0611-x
– ident: e_1_2_5_9_1
  doi: 10.1016/j.jpowsour.2013.10.026
– ident: e_1_2_5_14_1
  doi: 10.1002/adma.201204055
– ident: e_1_2_5_21_1
  doi: 10.1038/ncomms2747
– ident: e_1_2_5_30_1
  doi: 10.1038/nature08601
– ident: e_1_2_5_34_1
  doi: 10.1126/science.1164865
– ident: e_1_2_5_36_1
  doi: 10.1016/j.jeurceramsoc.2013.08.004
– ident: e_1_2_5_4_1
  doi: 10.1016/0025-5408(80)90012-4
– ident: e_1_2_5_18_1
  doi: 10.1016/j.jpowsour.2008.12.032
– ident: e_1_2_5_17_1
  doi: 10.1038/nnano.2011.38
– ident: e_1_2_5_3_1
  doi: 10.1002/adma.200903328
– ident: e_1_2_5_13_1
  doi: 10.1016/j.elecom.2009.09.001
– ident: e_1_2_5_20_1
  doi: 10.1039/c2cp40135e
– ident: e_1_2_5_28_1
  doi: 10.1002/adma.200902852
– ident: e_1_2_5_23_1
  doi: 10.1002/adma.200602828
– ident: e_1_2_5_29_1
  doi: 10.1021/nl401729r
SSID ssj0009606
Score 2.6506484
Snippet Ultrathick electrode design is a promising strategy to enhance the specific energy of Li‐ion batteries (LIBs) without changing the underlying materials...
Ultrathick electrode design is a promising strategy to enhance the specific energy of Li-ion batteries (LIBs) without changing the underlying materials...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e1706745
SubjectTerms areal capacity
Batteries
bio‐inspired materials
Cathodes
Electrodes
Ion transport
LiCoO2
Materials science
Microchannels
Microtomography
Performance enhancement
Sol-gel processes
Structural hierarchy
Tortuosity
ultrathick electrodes
wood
Title Wood‐Inspired High‐Performance Ultrathick Bulk Battery Electrodes
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.201706745
https://www.ncbi.nlm.nih.gov/pubmed/29603415
https://www.proquest.com/docview/2038253075
https://www.proquest.com/docview/2020490658
Volume 30
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFA6yJ33wfplOqSD41G1t03R9nLoxhYmIw72VXE5RNjpx24M--RP8jf4Sz2m3blNE0JeSkKRNk3OS7yQnXxg7AW18AWimIiRSNpfCs6V0pO2aUCluEJMDrXe0r0Wrw6-6fnfuFH_GD5EvuJFmpOM1KbhUw8qMNFSalDeI6F8CTqfMyWGLUNHtjD-K4HlKtuf5dih4bcraWHUri8UXZ6VvUHMRuaZTT3ONyWmlM4-TXnk8UmX9-oXP8T9_tc5WJ7jUqmeCtMGWINlkK3NshVuscT8YmI-398uEdufBWOQjgvGb2dkDq9MnttuHR92zzsZ9fKT0nS9WI7ttx8Bwm3Wajbvzlj25hcHWPBC-rQMnDhwQoedJIbUvpDJKoiHiOAbhCAK4wBgf0GwRYWhcPxb4qEIVajxUroq9HVZIBgnsMYsTHaHWRoOOMSCl4WCEI2N8mQJwisye9kKkJxTldFNGP8rIld2ImifKm6fITvP8Txk5x485S9NOjSZKOsRUD-1jHOQw-ThPRvWiPROZwGBMeVzaG0WcVmS7mTDkn3JRvBAEYGk37dJf6hDVL9r1PLb_l0IHbBnDtczhssQKo-cxHCIoGqmjVPA_AZhpBLQ
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6V9gAc-uBRlrYQJCRO2W4Sx9kcF7rVLu1WCHUFt8iPiai6ShDdHNpTfwK_sb-kM3ltlwpVgouVxHbi2B77G3v8DcB7NDaUSGoqQSLtCiUDVylPub6NtRaWMDnyesfkRI6m4vP3sLEm5LMwFT9Eu-DGklGO1yzgvCC9v2ANVbYkDmL-l0iEj2CN3XqXWtXXBYMUA_SSbi8I3ViKfsPb2PP3l_Mvz0v3wOYydi0nn8MN0E2xK5uT824x111z9Qej43_91yas19DUGVR9aQtWMHsGT-8QFj6H4bc8tzfXv8cZb9CjddhMhO6_LI4fONMZE97-ODPnzsdiRkHJ4HnpDCuHOxYvXsD0cHj6aeTWjhhcIyIZuiby0shDGQeBksqEUmmrFekinmcJkRCGi6wNkTQXGcfWD1NJQQ972Bex9nUavITVLM_wFTiCGQmNsQZNShdKWYFWeiqll2lErwNu0wyJqVnK2VnGLKn4lf2Eqydpq6cDH9r0Pyt-jr-m3G1aNanl9IJiA1KRaZyj6HdtNEkYb5uoDPOC0_i8PUpQrQPbVW9oP-VT_yIcQLn9sk0fKEMyOJgM2rvX_5LpLTwenU6Ok-PxydEOPKHn_cr-chdW578K3COMNNdvSim4BeB3CM8
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB2xSAgO7EuhQJCQOIU2ieM0x0JbsQshKrhFXiYCUaUI2gOc-AS-kS9hnLRpC0JIcLHieIljz9hvvDwD7KLSPkcyUwkSSZsJ7tlCOMJ2dSgl04TJ0cx3nF_woyY7ufVvh07xZ_wQ-YSb0Yy0vzYK_qjj0oA0VOiUN8jQvwTMH4dJxssVI9e1qwGBlMHnKdue59shZ5U-bWPZLY2mHx2WvmHNUeiajj2NORD9UmdbTh72ux25r16_EDr-57fmYbYHTK1qJkkLMIbJIswM0RUuQf2m3dYfb-_HiVmeR22ZTSLkvxwcPrCaLUN3e3evHqyDbouclL_zxapn1-1ofF6GZqN-fXhk965hsBULuG-rwIkDB3noeYIL5XMhtRRkiTiOJjxCCC7Q2keyW3gYatePOTllLGOFhdKVsbcCE0k7wTWwmOEjVEorVDE9CKEZau6ImDKTiE4B7H4rRKrHUW6uymhFGbuyG5nqifLqKcBeHv8xY-f4MWax36hRT0ufKdQjA5l6OQreyYNJv8yiiUiw3TVxXLM4SkCtAKuZMOSfckm8CAVQajdt0l_KEFVr59Xct_6XRNswdVlrRGfHF6cbME2vK9nmyyJMdJ66uEkAqSO3Uh34BNf9B4c
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Wood-Inspired+High-Performance+Ultrathick+Bulk+Battery+Electrodes&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Lu%2C+Lei-Lei&rft.au=Lu%2C+Yu-Yang&rft.au=Xiao%2C+Zi-Jian&rft.au=Zhang%2C+Tian-Wen&rft.date=2018-05-01&rft.eissn=1521-4095&rft.volume=30&rft.issue=20&rft.spage=e1706745&rft_id=info:doi/10.1002%2Fadma.201706745&rft_id=info%3Apmid%2F29603415&rft.externalDocID=29603415
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon