Nano‐Ferroelectric for High Efficiency Overall Water Splitting under Ultrasonic Vibration
Piezocatalysis, converting mechanical vibration into chemical energy, has emerged as a promising candidate for water‐splitting technology. However, the efficiency of the hydrogen production is quite limited. We herein report well‐defined 10 nm BaTiO3 nanoparticles (NPs) characterized by a large elec...
Saved in:
Published in | Angewandte Chemie International Edition Vol. 58; no. 42; pp. 15076 - 15081 |
---|---|
Main Authors | , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
14.10.2019
|
Edition | International ed. in English |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Piezocatalysis, converting mechanical vibration into chemical energy, has emerged as a promising candidate for water‐splitting technology. However, the efficiency of the hydrogen production is quite limited. We herein report well‐defined 10 nm BaTiO3 nanoparticles (NPs) characterized by a large electro‐mechanical coefficient which induces a high piezoelectric effect. Atomic‐resolution high angle annular dark field scanning transmission electron microscopy (HAADF‐STEM) and scanning probe microscopy (SPM) suggests that piezoelectric BaTiO3 NPs display a coexistence of multiple phases with low energy barriers and polarization anisotropy which results in a high electro‐mechanical coefficient. Landau free energy modeling also confirms that the greatly reduced polarization anisotropy facilitates polarization rotation. Employing the high piezoelectric properties of BaTiO3 NPs, we demonstrate an overall water‐splitting process with the highest hydrogen production efficiency hitherto reported, with a H2 production rate of 655 μmol g−1 h−1, which could rival excellent photocatalysis system. This study highlights the potential of piezoelectric catalysis for overall water splitting.
The oscillatory polarization state of a nano‐ferroelectric with the coexistence of three ferroelectric phases (T+O+R) leads to an imbalanced charge state on the sample surface and creates an alternating cascade of a space charge release and attraction under ultrasonic vibration, thus generating hydrogen and oxygen via direct water decomposition. |
---|---|
AbstractList | Piezocatalysis, converting mechanical vibration into chemical energy, has emerged as a promising candidate for water-splitting technology. However, the efficiency of the hydrogen production is quite limited. We herein report well-defined 10 nm BaTiO
nanoparticles (NPs) characterized by a large electro-mechanical coefficient which induces a high piezoelectric effect. Atomic-resolution high angle annular dark field scanning transmission electron microscopy (HAADF-STEM) and scanning probe microscopy (SPM) suggests that piezoelectric BaTiO
NPs display a coexistence of multiple phases with low energy barriers and polarization anisotropy which results in a high electro-mechanical coefficient. Landau free energy modeling also confirms that the greatly reduced polarization anisotropy facilitates polarization rotation. Employing the high piezoelectric properties of BaTiO
NPs, we demonstrate an overall water-splitting process with the highest hydrogen production efficiency hitherto reported, with a H
production rate of 655 μmol g
h
, which could rival excellent photocatalysis system. This study highlights the potential of piezoelectric catalysis for overall water splitting. Piezocatalysis, converting mechanical vibration into chemical energy, has emerged as a promising candidate for water‐splitting technology. However, the efficiency of the hydrogen production is quite limited. We herein report well‐defined 10 nm BaTiO3 nanoparticles (NPs) characterized by a large electro‐mechanical coefficient which induces a high piezoelectric effect. Atomic‐resolution high angle annular dark field scanning transmission electron microscopy (HAADF‐STEM) and scanning probe microscopy (SPM) suggests that piezoelectric BaTiO3 NPs display a coexistence of multiple phases with low energy barriers and polarization anisotropy which results in a high electro‐mechanical coefficient. Landau free energy modeling also confirms that the greatly reduced polarization anisotropy facilitates polarization rotation. Employing the high piezoelectric properties of BaTiO3 NPs, we demonstrate an overall water‐splitting process with the highest hydrogen production efficiency hitherto reported, with a H2 production rate of 655 μmol g−1 h−1, which could rival excellent photocatalysis system. This study highlights the potential of piezoelectric catalysis for overall water splitting. Piezocatalysis, converting mechanical vibration into chemical energy, has emerged as a promising candidate for water-splitting technology. However, the efficiency of the hydrogen production is quite limited. We herein report well-defined 10 nm BaTiO3 nanoparticles (NPs) characterized by a large electro-mechanical coefficient which induces a high piezoelectric effect. Atomic-resolution high angle annular dark field scanning transmission electron microscopy (HAADF-STEM) and scanning probe microscopy (SPM) suggests that piezoelectric BaTiO3 NPs display a coexistence of multiple phases with low energy barriers and polarization anisotropy which results in a high electro-mechanical coefficient. Landau free energy modeling also confirms that the greatly reduced polarization anisotropy facilitates polarization rotation. Employing the high piezoelectric properties of BaTiO3 NPs, we demonstrate an overall water-splitting process with the highest hydrogen production efficiency hitherto reported, with a H2 production rate of 655 μmol g-1 h-1 , which could rival excellent photocatalysis system. This study highlights the potential of piezoelectric catalysis for overall water splitting.Piezocatalysis, converting mechanical vibration into chemical energy, has emerged as a promising candidate for water-splitting technology. However, the efficiency of the hydrogen production is quite limited. We herein report well-defined 10 nm BaTiO3 nanoparticles (NPs) characterized by a large electro-mechanical coefficient which induces a high piezoelectric effect. Atomic-resolution high angle annular dark field scanning transmission electron microscopy (HAADF-STEM) and scanning probe microscopy (SPM) suggests that piezoelectric BaTiO3 NPs display a coexistence of multiple phases with low energy barriers and polarization anisotropy which results in a high electro-mechanical coefficient. Landau free energy modeling also confirms that the greatly reduced polarization anisotropy facilitates polarization rotation. Employing the high piezoelectric properties of BaTiO3 NPs, we demonstrate an overall water-splitting process with the highest hydrogen production efficiency hitherto reported, with a H2 production rate of 655 μmol g-1 h-1 , which could rival excellent photocatalysis system. This study highlights the potential of piezoelectric catalysis for overall water splitting. Piezocatalysis, converting mechanical vibration into chemical energy, has emerged as a promising candidate for water‐splitting technology. However, the efficiency of the hydrogen production is quite limited. We herein report well‐defined 10 nm BaTiO3 nanoparticles (NPs) characterized by a large electro‐mechanical coefficient which induces a high piezoelectric effect. Atomic‐resolution high angle annular dark field scanning transmission electron microscopy (HAADF‐STEM) and scanning probe microscopy (SPM) suggests that piezoelectric BaTiO3 NPs display a coexistence of multiple phases with low energy barriers and polarization anisotropy which results in a high electro‐mechanical coefficient. Landau free energy modeling also confirms that the greatly reduced polarization anisotropy facilitates polarization rotation. Employing the high piezoelectric properties of BaTiO3 NPs, we demonstrate an overall water‐splitting process with the highest hydrogen production efficiency hitherto reported, with a H2 production rate of 655 μmol g−1 h−1, which could rival excellent photocatalysis system. This study highlights the potential of piezoelectric catalysis for overall water splitting. The oscillatory polarization state of a nano‐ferroelectric with the coexistence of three ferroelectric phases (T+O+R) leads to an imbalanced charge state on the sample surface and creates an alternating cascade of a space charge release and attraction under ultrasonic vibration, thus generating hydrogen and oxygen via direct water decomposition. Piezocatalysis, converting mechanical vibration into chemical energy, has emerged as a promising candidate for water‐splitting technology. However, the efficiency of the hydrogen production is quite limited. We herein report well‐defined 10 nm BaTiO 3 nanoparticles (NPs) characterized by a large electro‐mechanical coefficient which induces a high piezoelectric effect. Atomic‐resolution high angle annular dark field scanning transmission electron microscopy (HAADF‐STEM) and scanning probe microscopy (SPM) suggests that piezoelectric BaTiO 3 NPs display a coexistence of multiple phases with low energy barriers and polarization anisotropy which results in a high electro‐mechanical coefficient. Landau free energy modeling also confirms that the greatly reduced polarization anisotropy facilitates polarization rotation. Employing the high piezoelectric properties of BaTiO 3 NPs, we demonstrate an overall water‐splitting process with the highest hydrogen production efficiency hitherto reported, with a H 2 production rate of 655 μmol g −1 h −1 , which could rival excellent photocatalysis system. This study highlights the potential of piezoelectric catalysis for overall water splitting. |
Author | Su, Ran Chen, Xuemin Yang, Yaodong Li, Fa‐tang Wang, Zhipeng Hu, Xinghao Zhang, Dawei Zhu, Lina Pennycook, Stephen J. Hsain, H. Alex Wu, Ming Wang, Xiaojing Lou, Xiaojie Yang, Yong |
Author_xml | – sequence: 1 givenname: Ran surname: Su fullname: Su, Ran organization: Hebei University of Science and Technology – sequence: 2 givenname: H. Alex surname: Hsain fullname: Hsain, H. Alex organization: North Carolina State University – sequence: 3 givenname: Ming surname: Wu fullname: Wu, Ming organization: Xi'an Jiaotong University – sequence: 4 givenname: Dawei surname: Zhang fullname: Zhang, Dawei organization: University of New South Wales – sequence: 5 givenname: Xinghao surname: Hu fullname: Hu, Xinghao organization: Jiangsu University – sequence: 6 givenname: Zhipeng surname: Wang fullname: Wang, Zhipeng organization: Sungkyunkwan University – sequence: 7 givenname: Xiaojing surname: Wang fullname: Wang, Xiaojing organization: Hebei University of Science and Technology – sequence: 8 givenname: Fa‐tang orcidid: 0000-0002-8777-090X surname: Li fullname: Li, Fa‐tang email: lifatang@126.com organization: Hebei University of Science and Technology – sequence: 9 givenname: Xuemin surname: Chen fullname: Chen, Xuemin organization: Hebei University of Science and Technology – sequence: 10 givenname: Lina surname: Zhu fullname: Zhu, Lina organization: Hebei University of Science and Technology – sequence: 11 givenname: Yong surname: Yang fullname: Yang, Yong organization: Northwestern Polytechnical University – sequence: 12 givenname: Yaodong surname: Yang fullname: Yang, Yaodong organization: Xi'an Jiaotong University – sequence: 13 givenname: Xiaojie surname: Lou fullname: Lou, Xiaojie organization: Xi'an Jiaotong University – sequence: 14 givenname: Stephen J. surname: Pennycook fullname: Pennycook, Stephen J. organization: National University of Singapore |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31404487$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkU1rFTEUhoNU7IduXcqAGzdzzddMMstSbm2htAurLlyEJHNSU3KTazJTuTt_Qn9jf4mpt1YoiKsk8DznhPfdRzsxRUDoNcELgjF9r6OHBcVkwKIfumdoj3SUtEwItlPvnLFWyI7sov1SrisvJe5foF1GOOZcij309VzHdPfz9hhyThDATtnbxqXcnPirb83SOW89RLtpLm4g6xCaL3qC3HxcBz9NPl41cxzr-1OYsi4pVvmzN1lPPsWX6LnTocCrh_MAXR4vL49O2rOLD6dHh2et5aLvWm6d6KQTRoxODyC160dOBNW9M5ZKZzBQGIx0ZDRY9poa12tGBafackPZAXq3HbvO6fsMZVIrXyyEoCOkuShKBRWMS9JV9O0T9DrNOdbPKcowYcOAMavUmwdqNisY1Tr7lc4b9Se1Ciy2gM2plAzuESFY3dei7mtRj7VUgT8RrJ9-Z1RT8-Hf2rDVfvgAm_8sUYfnp8u_7i9jI6N_ |
CitedBy_id | crossref_primary_10_1016_j_ces_2021_116707 crossref_primary_10_1016_j_jcis_2023_03_159 crossref_primary_10_1002_adfm_202209365 crossref_primary_10_1002_adfm_202009594 crossref_primary_10_1016_j_jhazmat_2025_137774 crossref_primary_10_1016_j_jwpe_2023_104312 crossref_primary_10_1063_5_0218539 crossref_primary_10_1002_advs_202404483 crossref_primary_10_1016_j_jclepro_2023_139847 crossref_primary_10_1021_acsnano_2c07900 crossref_primary_10_1016_j_apcatb_2021_120763 crossref_primary_10_1002_adma_202311429 crossref_primary_10_1039_D2NR05302K crossref_primary_10_1016_j_nanoen_2022_106930 crossref_primary_10_1016_j_nanoen_2020_104990 crossref_primary_10_1002_smll_202412576 crossref_primary_10_1021_acscatal_4c02243 crossref_primary_10_1002_cjoc_202200443 crossref_primary_10_1002_adfm_202210127 crossref_primary_10_1016_j_cplett_2023_140998 crossref_primary_10_1039_D3QI00571B crossref_primary_10_1016_j_jhazmat_2020_122448 crossref_primary_10_1016_j_chemosphere_2023_137828 crossref_primary_10_1016_j_optmat_2023_114174 crossref_primary_10_1002_adfm_202408838 crossref_primary_10_1021_acs_macromol_2c00701 crossref_primary_10_1016_j_nanoen_2022_107218 crossref_primary_10_1016_j_apcatb_2020_119250 crossref_primary_10_1002_aenm_202200253 crossref_primary_10_1002_anie_202410381 crossref_primary_10_1016_j_apcatb_2020_119823 crossref_primary_10_1002_adma_202303018 crossref_primary_10_1021_acssuschemeng_2c06573 crossref_primary_10_1016_j_nanoen_2022_107919 crossref_primary_10_1002_smll_202402421 crossref_primary_10_1021_acsaem_4c01501 crossref_primary_10_26599_JAC_2024_9220970 crossref_primary_10_1016_j_apcatb_2023_123335 crossref_primary_10_1016_j_jcis_2024_02_058 crossref_primary_10_1021_acs_chemmater_4c00828 crossref_primary_10_1039_D2CC03976A crossref_primary_10_1016_j_apcata_2021_118406 crossref_primary_10_1002_advs_202105248 crossref_primary_10_1002_sus2_232 crossref_primary_10_1002_advs_202105368 crossref_primary_10_1016_j_seppur_2024_128919 crossref_primary_10_1016_j_cej_2022_139456 crossref_primary_10_1016_S1872_2067_23_64635_2 crossref_primary_10_1088_1361_6528_abd5e6 crossref_primary_10_1002_adfm_202411464 crossref_primary_10_1016_j_nanoen_2023_108508 crossref_primary_10_1021_acsami_1c20448 crossref_primary_10_1039_D2NR01202B crossref_primary_10_1016_j_ceramint_2019_10_145 crossref_primary_10_1016_j_nanoen_2020_105371 crossref_primary_10_1021_acsmacrolett_0c00477 crossref_primary_10_1016_j_jcis_2022_04_139 crossref_primary_10_1016_j_jcis_2022_09_150 crossref_primary_10_1016_j_jcis_2021_03_040 crossref_primary_10_1039_D2CC02484E crossref_primary_10_1039_D3TA07815A crossref_primary_10_1016_j_nanoen_2021_106290 crossref_primary_10_1016_j_jallcom_2024_176074 crossref_primary_10_1016_j_seppur_2022_123058 crossref_primary_10_1002_adma_202308726 crossref_primary_10_1016_j_ces_2024_120174 crossref_primary_10_1016_j_chemosphere_2024_143008 crossref_primary_10_1016_j_ccr_2024_216430 crossref_primary_10_1039_D4NR04415K crossref_primary_10_1016_j_jallcom_2023_171339 crossref_primary_10_1016_j_giant_2024_100349 crossref_primary_10_1002_smll_202412815 crossref_primary_10_3390_met12050800 crossref_primary_10_1039_D4CP01047G crossref_primary_10_1002_cctc_202200312 crossref_primary_10_1021_acsami_3c04959 crossref_primary_10_1002_smll_202001573 crossref_primary_10_1002_adfm_202502822 crossref_primary_10_1002_anie_202210700 crossref_primary_10_1002_smll_202309359 crossref_primary_10_1088_1361_6528_ac1a96 crossref_primary_10_1039_D2CP05631C crossref_primary_10_1039_D4CS01322K crossref_primary_10_1039_D3DT02328A crossref_primary_10_1016_j_apcata_2023_119550 crossref_primary_10_1002_smll_202303129 crossref_primary_10_1002_smll_202302717 crossref_primary_10_1002_adfm_202210726 crossref_primary_10_1016_j_ceramint_2021_05_264 crossref_primary_10_1016_j_ces_2022_117855 crossref_primary_10_1002_adfm_202303736 crossref_primary_10_1016_j_ceramint_2023_11_013 crossref_primary_10_1016_j_jece_2023_109419 crossref_primary_10_1002_asia_202300090 crossref_primary_10_1021_acs_jpcc_2c05404 crossref_primary_10_1016_j_checat_2024_100901 crossref_primary_10_1016_j_nanoen_2022_108093 crossref_primary_10_1016_j_apcatb_2022_121747 crossref_primary_10_1016_j_cej_2021_128986 crossref_primary_10_1039_D1TA02531G crossref_primary_10_1016_j_jcis_2024_12_013 crossref_primary_10_1021_acsaem_0c02104 crossref_primary_10_1002_smtd_202100269 crossref_primary_10_1038_s41467_023_39791_w crossref_primary_10_1039_D4EY00245H crossref_primary_10_1016_j_jcis_2023_12_055 crossref_primary_10_1016_j_nanoen_2024_110090 crossref_primary_10_1016_j_cej_2022_137868 crossref_primary_10_1186_s12951_024_02320_y crossref_primary_10_1021_acsami_0c21976 crossref_primary_10_1016_j_nanoen_2021_106036 crossref_primary_10_1002_ep_14298 crossref_primary_10_1021_acs_jpcc_0c00321 crossref_primary_10_1016_j_jechem_2021_06_004 crossref_primary_10_1021_acscatal_1c02874 crossref_primary_10_1002_eem2_12705 crossref_primary_10_1016_j_mattod_2023_03_011 crossref_primary_10_1016_j_colsurfa_2024_133563 crossref_primary_10_1039_D2TA07907K crossref_primary_10_1002_advs_202303448 crossref_primary_10_1002_smll_202303586 crossref_primary_10_1016_j_nanoen_2024_110518 crossref_primary_10_1002_smll_202307946 crossref_primary_10_1002_ange_202210700 crossref_primary_10_1016_j_jcis_2020_11_049 crossref_primary_10_1002_cssc_202201551 crossref_primary_10_1016_S1872_2067_21_63976_1 crossref_primary_10_1016_j_ijhydene_2024_07_168 crossref_primary_10_1016_j_enconman_2024_119069 crossref_primary_10_1021_acs_analchem_9b05611 crossref_primary_10_1002_advs_202105792 crossref_primary_10_1038_s43246_023_00371_6 crossref_primary_10_1002_adfm_202415660 crossref_primary_10_1007_s40544_021_0505_5 crossref_primary_10_1039_D1TA05151B crossref_primary_10_1111_ijac_14721 crossref_primary_10_1002_ange_202410381 crossref_primary_10_1002_adma_202309298 crossref_primary_10_1002_admt_202101484 crossref_primary_10_1016_j_ccr_2023_215272 crossref_primary_10_1002_cctc_202201316 crossref_primary_10_1039_C9CY02509J crossref_primary_10_1016_j_nanoen_2021_106028 crossref_primary_10_1021_acsami_1c01407 crossref_primary_10_1002_advs_202410400 crossref_primary_10_1002_adfm_202005158 crossref_primary_10_1016_j_apcatb_2022_121281 crossref_primary_10_1016_j_seppur_2022_120814 crossref_primary_10_1039_D3EY00313B crossref_primary_10_1039_C9TA14007G crossref_primary_10_1002_adma_202008452 crossref_primary_10_1007_s10854_024_12982_x crossref_primary_10_1039_D0CC07064E crossref_primary_10_1039_D3TA01995K crossref_primary_10_1002_adfm_202213568 crossref_primary_10_1016_j_apcatb_2021_120019 crossref_primary_10_1016_j_jece_2024_113164 crossref_primary_10_1016_j_snb_2023_134170 crossref_primary_10_1002_ange_202110429 crossref_primary_10_1002_cssc_202401909 crossref_primary_10_1016_j_nanoen_2022_107400 crossref_primary_10_1007_s12274_023_5610_5 crossref_primary_10_1016_j_apcatb_2023_123058 crossref_primary_10_3390_nano14030276 crossref_primary_10_1002_adfm_202402477 crossref_primary_10_1021_acsestwater_1c00411 crossref_primary_10_1016_j_mtchem_2023_101486 crossref_primary_10_1016_j_nanoen_2023_108342 crossref_primary_10_1126_sciadv_adm9561 crossref_primary_10_1039_D3MA00620D crossref_primary_10_1039_D1MA00284H crossref_primary_10_1016_j_egyr_2023_03_077 crossref_primary_10_1016_j_jallcom_2022_166291 crossref_primary_10_1016_j_nanoen_2021_105831 crossref_primary_10_1016_j_apcatb_2023_123504 crossref_primary_10_1021_acs_analchem_4c06538 crossref_primary_10_1016_j_jcis_2021_05_151 crossref_primary_10_1016_j_jece_2024_114312 crossref_primary_10_1016_j_nanoen_2022_107141 crossref_primary_10_1002_adma_202300964 crossref_primary_10_1016_j_nanoen_2024_110270 crossref_primary_10_1039_D1MH01973B crossref_primary_10_1002_anie_202110429 crossref_primary_10_1021_acssuschemeng_4c02771 crossref_primary_10_1002_adfm_202108350 crossref_primary_10_1002_ange_202103112 crossref_primary_10_1016_j_seppur_2023_124142 crossref_primary_10_1038_s41467_024_51106_1 crossref_primary_10_1016_j_seppur_2022_122928 crossref_primary_10_1002_adsu_202300652 crossref_primary_10_1021_acsanm_0c00039 crossref_primary_10_1016_j_ceja_2021_100133 crossref_primary_10_1016_j_snb_2024_136575 crossref_primary_10_1016_j_jallcom_2024_176474 crossref_primary_10_1002_cphc_202400227 crossref_primary_10_1109_TAES_2024_3400940 crossref_primary_10_1016_j_nanoen_2022_107251 crossref_primary_10_1002_asia_202200278 crossref_primary_10_1016_j_envpol_2025_125778 crossref_primary_10_1002_smll_202205257 crossref_primary_10_1016_S1872_2067_23_64557_7 crossref_primary_10_1016_j_cej_2024_157440 crossref_primary_10_1021_acsanm_4c03071 crossref_primary_10_1016_j_jmat_2021_03_002 crossref_primary_10_1016_j_cej_2022_134624 crossref_primary_10_1016_j_jallcom_2025_178825 crossref_primary_10_1002_smll_202003361 crossref_primary_10_1039_D4TB02489C crossref_primary_10_1002_adma_202101751 crossref_primary_10_1016_j_nanoen_2020_104783 crossref_primary_10_1016_j_nanoen_2023_109059 crossref_primary_10_1016_j_surfin_2022_102056 crossref_primary_10_1016_j_nanoen_2020_105180 crossref_primary_10_1016_j_surfin_2024_105245 crossref_primary_10_1039_D3BM01944F crossref_primary_10_1039_D4CC00889H crossref_primary_10_1016_j_pmatsci_2023_101161 crossref_primary_10_1021_acscatal_4c00918 crossref_primary_10_1016_j_jwpe_2024_106195 crossref_primary_10_1134_S0023158424602407 crossref_primary_10_12677_ACM_2024_142590 crossref_primary_10_1002_smll_202401650 crossref_primary_10_1016_j_apcatb_2022_121471 crossref_primary_10_1016_j_apcatb_2020_119340 crossref_primary_10_1002_advs_202410357 crossref_primary_10_1002_aenm_202201199 crossref_primary_10_1021_acs_est_3c09579 crossref_primary_10_1002_smll_202301693 crossref_primary_10_1016_j_nanoen_2022_106993 crossref_primary_10_1016_j_ijhydene_2023_03_414 crossref_primary_10_1016_j_nanoen_2024_109495 crossref_primary_10_2147_IJN_S505526 crossref_primary_10_1016_j_fuel_2021_122758 crossref_primary_10_1007_s40145_022_0637_8 crossref_primary_10_1016_j_scitotenv_2023_161767 crossref_primary_10_1016_j_cej_2024_148609 crossref_primary_10_1016_j_jechem_2022_01_009 crossref_primary_10_1039_D2NR03828E crossref_primary_10_1016_j_ijhydene_2024_06_209 crossref_primary_10_1039_D3RA04014C crossref_primary_10_3389_fphy_2025_1562239 crossref_primary_10_1038_s41467_023_44395_5 crossref_primary_10_1039_D0TA00955E crossref_primary_10_1002_anie_202103112 crossref_primary_10_1007_s10311_023_01621_2 crossref_primary_10_1021_acsaem_3c00762 crossref_primary_10_1002_cjoc_202300273 |
Cites_doi | 10.1038/414625a 10.1021/acscatal.5b00507 10.1002/ange.201712925 10.1002/ange.201811709 10.1557/mrs.2018.155 10.1039/C9CS90020A 10.1021/nl504630j 10.1002/anie.201901361 10.1088/1361-6633/aa915a 10.1038/nmat2317 10.1021/cr100454n 10.1021/jacs.8b07844 10.1016/j.actamat.2016.11.064 10.1126/science.1129564 10.1002/anie.201702223 10.1103/PhysRevLett.105.014503 10.1021/jacs.8b07855 10.1021/jz100027t 10.1002/anie.201704358 10.1039/C7CS00387K 10.1038/s41467-018-05640-4 10.1063/1.4927597 10.1038/249724a0 10.1002/ppsc.201700075 10.1039/C6CP05462E 10.1038/nmat3649 10.1002/ange.201702223 10.1038/s41467-018-06369-w 10.1021/nn102385e 10.1002/ange.201201424 10.1002/adma.201804883 10.1126/science.aaw2781 10.1126/science.1200605 10.1038/nmat3371 10.1017/S1431927616007856 10.1103/PhysRevLett.103.257602 10.1002/smll.201401437 10.1038/s41563-018-0034-4 10.1021/acsami.8b01991 10.1002/ange.201704358 10.1002/anie.201712925 10.1063/1.5031134 10.1016/j.nanoen.2017.07.037 10.1002/anie.201811709 10.1002/anie.201201424 10.1002/ange.201901361 10.1038/s41929-018-0134-1 |
ContentType | Journal Article |
Copyright | 2019 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. |
Copyright_xml | – notice: 2019 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. |
DBID | AAYXX CITATION NPM 7TM K9. 7X8 |
DOI | 10.1002/anie.201907695 |
DatabaseName | CrossRef PubMed Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed ProQuest Health & Medical Complete (Alumni) Nucleic Acids Abstracts MEDLINE - Academic |
DatabaseTitleList | PubMed ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3773 |
Edition | International ed. in English |
EndPage | 15081 |
ExternalDocumentID | 31404487 10_1002_anie_201907695 ANIE201907695 |
Genre | reviewArticle Journal Article Review |
GrantInformation_xml | – fundername: Natural Science Foundation of Hebei Province funderid: B2018208093; E2019208243 – fundername: National Natural Science Foundation of China funderid: 21776059; 51802075 – fundername: Natural Science Foundation of Hebei Province grantid: B2018208093 – fundername: Natural Science Foundation of Hebei Province grantid: E2019208243 – fundername: National Natural Science Foundation of China grantid: 51802075 – fundername: National Natural Science Foundation of China grantid: 21776059 |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABLJU ABPPZ ABPVW ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BTSUX BY8 CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS EJD F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES M53 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ TN5 UB1 UPT UQL V2E VQA W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XSW XV2 YZZ ZZTAW ~IA ~KM ~WT AAYXX ABDBF ABJNI AEYWJ AGHNM AGYGG CITATION NPM YIN 7TM K9. 7X8 |
ID | FETCH-LOGICAL-c4765-4cf758f7b7dfa9e8af6d4172a6fbc28fb0e2e9b8f1db086a2bf6a32742ac4b23 |
IEDL.DBID | DR2 |
ISSN | 1433-7851 1521-3773 |
IngestDate | Fri Jul 11 08:46:56 EDT 2025 Fri Jul 25 10:26:11 EDT 2025 Wed Feb 19 02:30:37 EST 2025 Thu Apr 24 22:51:06 EDT 2025 Tue Jul 01 02:26:55 EDT 2025 Wed Jan 22 16:39:54 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 42 |
Keywords | ferroelectric piezocatalysis phase coexistence piezoelectric effect water splitting |
Language | English |
License | 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4765-4cf758f7b7dfa9e8af6d4172a6fbc28fb0e2e9b8f1db086a2bf6a32742ac4b23 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0002-8777-090X |
PMID | 31404487 |
PQID | 2301399003 |
PQPubID | 946352 |
PageCount | 6 |
ParticipantIDs | proquest_miscellaneous_2272734815 proquest_journals_2301399003 pubmed_primary_31404487 crossref_primary_10_1002_anie_201907695 crossref_citationtrail_10_1002_anie_201907695 wiley_primary_10_1002_anie_201907695_ANIE201907695 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | October 14, 2019 |
PublicationDateYYYYMMDD | 2019-10-14 |
PublicationDate_xml | – month: 10 year: 2019 text: October 14, 2019 day: 14 |
PublicationDecade | 2010 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Angewandte Chemie International Edition |
PublicationTitleAlternate | Angew Chem Int Ed Engl |
PublicationYear | 2019 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2015; 15 2015; 5 2018; 140 2010; 105 2017; 46 2015; 11 1974; 249 2018; 81 2008; 8 2017 2017; 56 129 2015; 107 2016; 18 2018; 43 2011; 5 2012; 11 2019; 364 2019 2019; 58 131 2011; 331 2018; 9 2018; 17 2012; 112 2010; 1 2007; 315 2018; 1 2017; 39 2013; 12 2012 2012; 51 124 2018 2018; 57 130 2018; 113 2019; 48 2017; 34 2016 2018; 10 2018; 31 2017; 125 2009; 103 2001; 414 2016; 22 e_1_2_6_51_1 e_1_2_6_30_1 e_1_2_6_19_2 e_1_2_6_13_2 e_1_2_6_34_2 e_1_2_6_11_2 e_1_2_6_32_2 e_1_2_6_17_2 e_1_2_6_38_1 e_1_2_6_15_2 e_1_2_6_36_2 e_1_2_6_20_2 e_1_2_6_20_1 e_1_2_6_41_1 Sharma P. (e_1_2_6_37_2) 2016 e_1_2_6_7_2 e_1_2_6_9_2 e_1_2_6_3_2 e_1_2_6_5_2 e_1_2_6_1_1 e_1_2_6_47_2 e_1_2_6_24_1 e_1_2_6_49_1 e_1_2_6_22_2 e_1_2_6_22_1 e_1_2_6_43_2 e_1_2_6_28_1 e_1_2_6_45_1 e_1_2_6_26_2 e_1_2_6_26_1 e_1_2_6_52_1 e_1_2_6_31_1 e_1_2_6_50_1 e_1_2_6_18_2 e_1_2_6_35_1 e_1_2_6_10_2 e_1_2_6_33_2 e_1_2_6_12_1 e_1_2_6_39_2 e_1_2_6_14_2 e_1_2_6_16_1 e_1_2_6_42_2 e_1_2_6_21_1 e_1_2_6_40_2 e_1_2_6_6_3 e_1_2_6_8_1 e_1_2_6_4_1 e_1_2_6_6_2 e_1_2_6_25_1 e_1_2_6_48_1 e_1_2_6_23_2 e_1_2_6_2_2 e_1_2_6_23_1 e_1_2_6_29_1 e_1_2_6_44_1 e_1_2_6_27_1 e_1_2_6_25_2 e_1_2_6_46_2 |
References_xml | – volume: 43 start-page: 595 year: 2018 end-page: 599 publication-title: MRS Bull. – volume: 56 129 start-page: 5299 5383 year: 2017 2017 end-page: 5303 5387 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 103 start-page: 257602 year: 2009 publication-title: Phys. Rev. Lett. – volume: 105 start-page: 014503 year: 2010 publication-title: Phys. Rev. Lett. – volume: 48 start-page: 1862 year: 2019 end-page: 1864 publication-title: Chem. Soc. Rev. – volume: 1 start-page: 997 year: 2010 end-page: 1002 publication-title: J. Phys. Chem. Lett. – volume: 315 start-page: 954 year: 2007 end-page: 959 publication-title: Science – volume: 58 131 start-page: 10061 10164 year: 2019 2019 end-page: 10073 10176 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 10 start-page: 17842 year: 2018 end-page: 17849 publication-title: ACS Appl. Mater. Interfaces – volume: 11 start-page: 700 year: 2012 end-page: 709 publication-title: Nat. Mater. – volume: 58 131 start-page: 7526 7606 year: 2019 2019 end-page: 7536 7616 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 51 124 start-page: 5962 6064 year: 2012 2012 end-page: 5966 6068 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 11 start-page: 202 year: 2015 end-page: 207 publication-title: Small – volume: 18 start-page: 29033 year: 2016 end-page: 29040 publication-title: Phys. Chem. Chem. Phys. – volume: 113 start-page: 022905 year: 2018 publication-title: Appl. Phys. Lett. – start-page: 63 year: 2016 end-page: 125 – volume: 46 start-page: 7757 year: 2017 end-page: 7786 publication-title: Chem. Soc. Rev. – volume: 331 start-page: 1420 year: 2011 end-page: 1423 publication-title: Science – volume: 12 start-page: 617 year: 2013 end-page: 621 publication-title: Nat. Mater. – volume: 39 start-page: 461 year: 2017 end-page: 469 publication-title: Nano Energy – volume: 249 start-page: 724 year: 1974 end-page: 726 publication-title: Nature – volume: 81 start-page: 036502 year: 2018 publication-title: Rep. Prog. Phys. – volume: 56 129 start-page: 9312 9440 year: 2017 2017 end-page: 9317 9445 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 5 start-page: 4537 year: 2015 end-page: 4545 publication-title: ACS Catal. – volume: 22 start-page: 1402 year: 2016 end-page: 1403 publication-title: Microsc. Microanal. – volume: 5 start-page: 507 year: 2011 end-page: 515 publication-title: ACS Nano – volume: 107 start-page: 042903 year: 2015 publication-title: Appl. Phys. Lett. – volume: 140 start-page: 15252 year: 2018 end-page: 15260 publication-title: J. Am. Chem. Soc. – volume: 414 start-page: 625 year: 2001 end-page: 627 publication-title: Nature – volume: 125 start-page: 177 year: 2017 end-page: 186 publication-title: Acta Mater. – volume: 112 start-page: 1555 year: 2012 end-page: 1614 publication-title: Chem. Rev. – volume: 17 start-page: 349 year: 2018 end-page: 354 publication-title: Nat. Mater. – volume: 1 start-page: 756 year: 2018 end-page: 763 publication-title: Nat. Catal. – volume: 31 start-page: 1804883 year: 2018 publication-title: Adv. Mater. – volume: 9 start-page: 3809 year: 2018 publication-title: Nat. Commun. – volume: 9 start-page: 3344 year: 2018 publication-title: Nat. Commun. – volume: 34 start-page: 1700075 year: 2017 publication-title: Part. Part. Syst. Charact. – volume: 364 start-page: 264 year: 2019 end-page: 268 publication-title: Science – volume: 140 start-page: 12256 year: 2018 end-page: 12262 publication-title: J. Am. Chem. Soc. – volume: 8 start-page: 76 year: 2008 end-page: 80 publication-title: Nat. Mater. – volume: 57 130 start-page: 3222 3276 year: 2018 2018 end-page: 3227 3281 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 15 start-page: 2372 year: 2015 end-page: 2379 publication-title: Nano Lett. – ident: e_1_2_6_31_1 – ident: e_1_2_6_7_2 doi: 10.1038/414625a – ident: e_1_2_6_15_2 doi: 10.1021/acscatal.5b00507 – ident: e_1_2_6_45_1 – ident: e_1_2_6_25_2 doi: 10.1002/ange.201712925 – ident: e_1_2_6_22_2 doi: 10.1002/ange.201811709 – ident: e_1_2_6_51_1 doi: 10.1557/mrs.2018.155 – ident: e_1_2_6_4_1 – ident: e_1_2_6_5_2 doi: 10.1039/C9CS90020A – ident: e_1_2_6_42_2 doi: 10.1021/nl504630j – ident: e_1_2_6_20_1 doi: 10.1002/anie.201901361 – ident: e_1_2_6_21_1 doi: 10.1088/1361-6633/aa915a – ident: e_1_2_6_9_2 doi: 10.1038/nmat2317 – ident: e_1_2_6_2_2 doi: 10.1021/cr100454n – ident: e_1_2_6_46_2 doi: 10.1021/jacs.8b07844 – start-page: 63 volume-title: Scanning probe microscopy of functional materials surfaces and interfaces year: 2016 ident: e_1_2_6_37_2 – ident: e_1_2_6_50_1 doi: 10.1016/j.actamat.2016.11.064 – ident: e_1_2_6_17_2 doi: 10.1126/science.1129564 – ident: e_1_2_6_6_2 doi: 10.1002/anie.201702223 – ident: e_1_2_6_52_1 doi: 10.1103/PhysRevLett.105.014503 – ident: e_1_2_6_12_1 – ident: e_1_2_6_44_1 doi: 10.1021/jacs.8b07855 – ident: e_1_2_6_1_1 – ident: e_1_2_6_14_2 doi: 10.1021/jz100027t – ident: e_1_2_6_26_1 doi: 10.1002/anie.201704358 – ident: e_1_2_6_13_2 doi: 10.1039/C7CS00387K – ident: e_1_2_6_36_2 doi: 10.1038/s41467-018-05640-4 – ident: e_1_2_6_40_2 doi: 10.1063/1.4927597 – ident: e_1_2_6_3_2 doi: 10.1038/249724a0 – ident: e_1_2_6_29_1 doi: 10.1002/ppsc.201700075 – ident: e_1_2_6_30_1 doi: 10.1039/C6CP05462E – ident: e_1_2_6_33_2 doi: 10.1038/nmat3649 – ident: e_1_2_6_6_3 doi: 10.1002/ange.201702223 – ident: e_1_2_6_32_2 doi: 10.1038/s41467-018-06369-w – ident: e_1_2_6_28_1 doi: 10.1021/nn102385e – ident: e_1_2_6_23_2 doi: 10.1002/ange.201201424 – ident: e_1_2_6_10_2 doi: 10.1002/adma.201804883 – ident: e_1_2_6_41_1 – ident: e_1_2_6_19_2 doi: 10.1126/science.aaw2781 – ident: e_1_2_6_47_2 doi: 10.1126/science.1200605 – ident: e_1_2_6_34_2 doi: 10.1038/nmat3371 – ident: e_1_2_6_49_1 doi: 10.1017/S1431927616007856 – ident: e_1_2_6_18_2 doi: 10.1103/PhysRevLett.103.257602 – ident: e_1_2_6_27_1 doi: 10.1002/smll.201401437 – ident: e_1_2_6_16_1 – ident: e_1_2_6_48_1 doi: 10.1038/s41563-018-0034-4 – ident: e_1_2_6_8_1 – ident: e_1_2_6_24_1 doi: 10.1021/acsami.8b01991 – ident: e_1_2_6_26_2 doi: 10.1002/ange.201704358 – ident: e_1_2_6_25_1 doi: 10.1002/anie.201712925 – ident: e_1_2_6_39_2 doi: 10.1063/1.5031134 – ident: e_1_2_6_38_1 – ident: e_1_2_6_35_1 – ident: e_1_2_6_43_2 doi: 10.1016/j.nanoen.2017.07.037 – ident: e_1_2_6_22_1 doi: 10.1002/anie.201811709 – ident: e_1_2_6_23_1 doi: 10.1002/anie.201201424 – ident: e_1_2_6_20_2 doi: 10.1002/ange.201901361 – ident: e_1_2_6_11_2 doi: 10.1038/s41929-018-0134-1 |
SSID | ssj0028806 |
Score | 2.6715481 |
SecondaryResourceType | review_article |
Snippet | Piezocatalysis, converting mechanical vibration into chemical energy, has emerged as a promising candidate for water‐splitting technology. However, the... Piezocatalysis, converting mechanical vibration into chemical energy, has emerged as a promising candidate for water-splitting technology. However, the... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 15076 |
SubjectTerms | Anisotropy Barium titanates Catalysis Chemical energy Coexistence Efficiency ferroelectric Ferroelectric materials Ferroelectricity Free energy Hydrogen production Microscopy Nanoparticles Organic chemistry phase coexistence piezocatalysis piezoelectric effect Piezoelectricity Polarization Scanning probe microscopy Scanning transmission electron microscopy Splitting Transmission electron microscopy Ultrasonic vibration Water splitting |
Title | Nano‐Ferroelectric for High Efficiency Overall Water Splitting under Ultrasonic Vibration |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.201907695 https://www.ncbi.nlm.nih.gov/pubmed/31404487 https://www.proquest.com/docview/2301399003 https://www.proquest.com/docview/2272734815 |
Volume | 58 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1PS8MwFA-yi178_6c6JYLgqduadG1zHGNjCk7QTQceStImII5Nus2DJz-Cn9FP4nvtWp0igt5amrRp8l7ye8l7v0fICXM8FWtRtyWPmA34P7CViUHdPS4FqJMj01iYi67X6bvng_rgUxR_xg9RbLihZqTzNSq4VJPqB2koRmCjaxZYd57AKHN02EJUdFXwRzEQziy8iHMbs9DnrI01Vl2svrgqfYOai8g1XXraa0Tmjc48Th4qs6mqRM9f-Bz_81frZHWOS2kjE6QNsqRHm2S5maeD2yJ3MA-P315e2zpJxlnynPuIAuSl6CpCWykVBcZx0ssn3Oca0luAsQm9BpSb-lZTDFdLaH84TeQECXnpDbYUBWOb9NqtXrNjzzMz2JHre3XbjQzYGcZXfmyk0IE0XuwCFJKeURELjKpppoUKjBMrsJkkU8aTHE-FZeQqxndIaTQe6T1CHa5hDjGMC1ODt4J5IxjTbl3URODDbGMROx-YMJqzlmPyjGGY8S2zEHssLHrMIqdF-ceMr-PHkuV8nMO53k5CMMgAEuPurkWOi8fQ03iMIkd6PIMyzE85gRx4xW4mH8WnOLIVgQ1oEZaO8i9tCBvds1Zxt_-XSgdkBa9xOXXcMilNk5k-BJw0VUepLrwDd3AKkw |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fb9MwED_BeBgv2_izrVsHRkLiKVtj558fp6pVB22RoAOkPUR2YkuIKp2ydA972kfgM_JJduc0QQVNk-AxiZ04ts_-3fnudwBvuR_p3MjQUyLjHuL_xNM2R3GPhJIoTr5ysTCTaTQ6D95_CxtvQoqFqfkhWoMbSYZbr0nAySB98ps1lEKwyTcL1btIho_hCaX1dlrVp5ZBiuP0rAOMhPAoD33D29jjJ-v11_elv8DmOnZ1m89wG3TT7Nrn5MfxstLH2c0fjI7_9V87sLWCpuy0nkvP4JEpnsNmv8kI9wIucCle_Lr9OTRluajz53zPGKJeRt4ibODYKCiUk328JlPXnH1FJFuyzwh0nXs1o4i1kp3Pq1JdEScv-0JNpbnxEmbDwaw_8lbJGbwsiKPQCzKLqoaNdZxbJU2ibJQHiIZUZHXGE6t7hhupE-vnGtUmxbWNlKCDYZUFmotd2CgWhdkH5guDy4jlQtoevhU1HMm5CULZk0mMC04HvGZk0mxFXE75M-ZpTbnMU-qxtO2xDrxry1_WlB33luw2A52uRPcqRZ0MUTEZeDvwpn2MPU0nKaowiyWW4bGjBfLxFXv1BGk_JYiwCNXADnA3zA-0IT2dng3aq4N_qfQaNkezyTgdn00_HMJTuk-7qx90YaMql-YIYVOlXznBuAMbyQ6u |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB7xkAqXAi0tW16uVIlTILETJz4i2BX0sa1aKEgcIjuxJcRqF4XdHnrqT-hv5Jcwk2wCC0JIcExiJ449Y39jz3wD8IkH0uRWRZ4WGfcQ_yeecTmquxRaoToFuoyF-daVB8fh59Po9E4Uf8UP0Wy4kWaU8zUp-GXudm5JQykCm1yz0LqTKpqG2VD6Ccn1_s-GQIqjdFbxRUJ4lIa-pm30-c5k_cll6QHWnISu5drTWQBdt7pyObnYHg3Ndvb3HqHjS35rEV6PgSnbrSRpCaZs_w3M7dX54N7CGU7Eg-t__zu2KAZV9pzzjCHmZeQrwtolFwUFcrLvf2ijq8dOEMcW7BfC3NK5mlG8WsGOe8NCXxEjL_tNLSXJWIajTvto78Abp2bwsjCWkRdmDg0NF5s4d1rZRDuZh4iFtHQm44kzvuVWmcQFuUGjSXPjpBZ0LKyz0HDxDmb6g75dARYIi5OI40I5H9-K9o3i3IaR8lUS43TTAq8emDQb05ZT9oxeWhEu85R6LG16rAVbTfnLirDj0ZJr9TinY8W9StEiQ0xM27st-Ng8xp6mcxTdt4MRluFxSQoU4CveV_LRfEoQXREagS3g5Sg_0YZ0t3vYbq4-PKfSJrz6sd9Jvx52v6zCPN2mpTUI12BmWIzsOmKmodko1eIG_GsNZg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nano-Ferroelectric+for+High+Efficiency+Overall+Water+Splitting+under+Ultrasonic+Vibration&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Su%2C+Ran&rft.au=Hsain%2C+H+Alex&rft.au=Wu%2C+Ming&rft.au=Zhang%2C+Dawei&rft.date=2019-10-14&rft.issn=1521-3773&rft.eissn=1521-3773&rft.volume=58&rft.issue=42&rft.spage=15076&rft_id=info:doi/10.1002%2Fanie.201907695&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon |