Nano‐Ferroelectric for High Efficiency Overall Water Splitting under Ultrasonic Vibration

Piezocatalysis, converting mechanical vibration into chemical energy, has emerged as a promising candidate for water‐splitting technology. However, the efficiency of the hydrogen production is quite limited. We herein report well‐defined 10 nm BaTiO3 nanoparticles (NPs) characterized by a large elec...

Full description

Saved in:
Bibliographic Details
Published inAngewandte Chemie International Edition Vol. 58; no. 42; pp. 15076 - 15081
Main Authors Su, Ran, Hsain, H. Alex, Wu, Ming, Zhang, Dawei, Hu, Xinghao, Wang, Zhipeng, Wang, Xiaojing, Li, Fa‐tang, Chen, Xuemin, Zhu, Lina, Yang, Yong, Yang, Yaodong, Lou, Xiaojie, Pennycook, Stephen J.
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 14.10.2019
EditionInternational ed. in English
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Piezocatalysis, converting mechanical vibration into chemical energy, has emerged as a promising candidate for water‐splitting technology. However, the efficiency of the hydrogen production is quite limited. We herein report well‐defined 10 nm BaTiO3 nanoparticles (NPs) characterized by a large electro‐mechanical coefficient which induces a high piezoelectric effect. Atomic‐resolution high angle annular dark field scanning transmission electron microscopy (HAADF‐STEM) and scanning probe microscopy (SPM) suggests that piezoelectric BaTiO3 NPs display a coexistence of multiple phases with low energy barriers and polarization anisotropy which results in a high electro‐mechanical coefficient. Landau free energy modeling also confirms that the greatly reduced polarization anisotropy facilitates polarization rotation. Employing the high piezoelectric properties of BaTiO3 NPs, we demonstrate an overall water‐splitting process with the highest hydrogen production efficiency hitherto reported, with a H2 production rate of 655 μmol g−1 h−1, which could rival excellent photocatalysis system. This study highlights the potential of piezoelectric catalysis for overall water splitting. The oscillatory polarization state of a nano‐ferroelectric with the coexistence of three ferroelectric phases (T+O+R) leads to an imbalanced charge state on the sample surface and creates an alternating cascade of a space charge release and attraction under ultrasonic vibration, thus generating hydrogen and oxygen via direct water decomposition.
AbstractList Piezocatalysis, converting mechanical vibration into chemical energy, has emerged as a promising candidate for water-splitting technology. However, the efficiency of the hydrogen production is quite limited. We herein report well-defined 10 nm BaTiO nanoparticles (NPs) characterized by a large electro-mechanical coefficient which induces a high piezoelectric effect. Atomic-resolution high angle annular dark field scanning transmission electron microscopy (HAADF-STEM) and scanning probe microscopy (SPM) suggests that piezoelectric BaTiO NPs display a coexistence of multiple phases with low energy barriers and polarization anisotropy which results in a high electro-mechanical coefficient. Landau free energy modeling also confirms that the greatly reduced polarization anisotropy facilitates polarization rotation. Employing the high piezoelectric properties of BaTiO NPs, we demonstrate an overall water-splitting process with the highest hydrogen production efficiency hitherto reported, with a H production rate of 655 μmol g  h , which could rival excellent photocatalysis system. This study highlights the potential of piezoelectric catalysis for overall water splitting.
Piezocatalysis, converting mechanical vibration into chemical energy, has emerged as a promising candidate for water‐splitting technology. However, the efficiency of the hydrogen production is quite limited. We herein report well‐defined 10 nm BaTiO3 nanoparticles (NPs) characterized by a large electro‐mechanical coefficient which induces a high piezoelectric effect. Atomic‐resolution high angle annular dark field scanning transmission electron microscopy (HAADF‐STEM) and scanning probe microscopy (SPM) suggests that piezoelectric BaTiO3 NPs display a coexistence of multiple phases with low energy barriers and polarization anisotropy which results in a high electro‐mechanical coefficient. Landau free energy modeling also confirms that the greatly reduced polarization anisotropy facilitates polarization rotation. Employing the high piezoelectric properties of BaTiO3 NPs, we demonstrate an overall water‐splitting process with the highest hydrogen production efficiency hitherto reported, with a H2 production rate of 655 μmol g−1 h−1, which could rival excellent photocatalysis system. This study highlights the potential of piezoelectric catalysis for overall water splitting.
Piezocatalysis, converting mechanical vibration into chemical energy, has emerged as a promising candidate for water-splitting technology. However, the efficiency of the hydrogen production is quite limited. We herein report well-defined 10 nm BaTiO3 nanoparticles (NPs) characterized by a large electro-mechanical coefficient which induces a high piezoelectric effect. Atomic-resolution high angle annular dark field scanning transmission electron microscopy (HAADF-STEM) and scanning probe microscopy (SPM) suggests that piezoelectric BaTiO3 NPs display a coexistence of multiple phases with low energy barriers and polarization anisotropy which results in a high electro-mechanical coefficient. Landau free energy modeling also confirms that the greatly reduced polarization anisotropy facilitates polarization rotation. Employing the high piezoelectric properties of BaTiO3 NPs, we demonstrate an overall water-splitting process with the highest hydrogen production efficiency hitherto reported, with a H2 production rate of 655 μmol g-1  h-1 , which could rival excellent photocatalysis system. This study highlights the potential of piezoelectric catalysis for overall water splitting.Piezocatalysis, converting mechanical vibration into chemical energy, has emerged as a promising candidate for water-splitting technology. However, the efficiency of the hydrogen production is quite limited. We herein report well-defined 10 nm BaTiO3 nanoparticles (NPs) characterized by a large electro-mechanical coefficient which induces a high piezoelectric effect. Atomic-resolution high angle annular dark field scanning transmission electron microscopy (HAADF-STEM) and scanning probe microscopy (SPM) suggests that piezoelectric BaTiO3 NPs display a coexistence of multiple phases with low energy barriers and polarization anisotropy which results in a high electro-mechanical coefficient. Landau free energy modeling also confirms that the greatly reduced polarization anisotropy facilitates polarization rotation. Employing the high piezoelectric properties of BaTiO3 NPs, we demonstrate an overall water-splitting process with the highest hydrogen production efficiency hitherto reported, with a H2 production rate of 655 μmol g-1  h-1 , which could rival excellent photocatalysis system. This study highlights the potential of piezoelectric catalysis for overall water splitting.
Piezocatalysis, converting mechanical vibration into chemical energy, has emerged as a promising candidate for water‐splitting technology. However, the efficiency of the hydrogen production is quite limited. We herein report well‐defined 10 nm BaTiO3 nanoparticles (NPs) characterized by a large electro‐mechanical coefficient which induces a high piezoelectric effect. Atomic‐resolution high angle annular dark field scanning transmission electron microscopy (HAADF‐STEM) and scanning probe microscopy (SPM) suggests that piezoelectric BaTiO3 NPs display a coexistence of multiple phases with low energy barriers and polarization anisotropy which results in a high electro‐mechanical coefficient. Landau free energy modeling also confirms that the greatly reduced polarization anisotropy facilitates polarization rotation. Employing the high piezoelectric properties of BaTiO3 NPs, we demonstrate an overall water‐splitting process with the highest hydrogen production efficiency hitherto reported, with a H2 production rate of 655 μmol g−1 h−1, which could rival excellent photocatalysis system. This study highlights the potential of piezoelectric catalysis for overall water splitting. The oscillatory polarization state of a nano‐ferroelectric with the coexistence of three ferroelectric phases (T+O+R) leads to an imbalanced charge state on the sample surface and creates an alternating cascade of a space charge release and attraction under ultrasonic vibration, thus generating hydrogen and oxygen via direct water decomposition.
Piezocatalysis, converting mechanical vibration into chemical energy, has emerged as a promising candidate for water‐splitting technology. However, the efficiency of the hydrogen production is quite limited. We herein report well‐defined 10 nm BaTiO 3 nanoparticles (NPs) characterized by a large electro‐mechanical coefficient which induces a high piezoelectric effect. Atomic‐resolution high angle annular dark field scanning transmission electron microscopy (HAADF‐STEM) and scanning probe microscopy (SPM) suggests that piezoelectric BaTiO 3 NPs display a coexistence of multiple phases with low energy barriers and polarization anisotropy which results in a high electro‐mechanical coefficient. Landau free energy modeling also confirms that the greatly reduced polarization anisotropy facilitates polarization rotation. Employing the high piezoelectric properties of BaTiO 3 NPs, we demonstrate an overall water‐splitting process with the highest hydrogen production efficiency hitherto reported, with a H 2 production rate of 655 μmol g −1  h −1 , which could rival excellent photocatalysis system. This study highlights the potential of piezoelectric catalysis for overall water splitting.
Author Su, Ran
Chen, Xuemin
Yang, Yaodong
Li, Fa‐tang
Wang, Zhipeng
Hu, Xinghao
Zhang, Dawei
Zhu, Lina
Pennycook, Stephen J.
Hsain, H. Alex
Wu, Ming
Wang, Xiaojing
Lou, Xiaojie
Yang, Yong
Author_xml – sequence: 1
  givenname: Ran
  surname: Su
  fullname: Su, Ran
  organization: Hebei University of Science and Technology
– sequence: 2
  givenname: H. Alex
  surname: Hsain
  fullname: Hsain, H. Alex
  organization: North Carolina State University
– sequence: 3
  givenname: Ming
  surname: Wu
  fullname: Wu, Ming
  organization: Xi'an Jiaotong University
– sequence: 4
  givenname: Dawei
  surname: Zhang
  fullname: Zhang, Dawei
  organization: University of New South Wales
– sequence: 5
  givenname: Xinghao
  surname: Hu
  fullname: Hu, Xinghao
  organization: Jiangsu University
– sequence: 6
  givenname: Zhipeng
  surname: Wang
  fullname: Wang, Zhipeng
  organization: Sungkyunkwan University
– sequence: 7
  givenname: Xiaojing
  surname: Wang
  fullname: Wang, Xiaojing
  organization: Hebei University of Science and Technology
– sequence: 8
  givenname: Fa‐tang
  orcidid: 0000-0002-8777-090X
  surname: Li
  fullname: Li, Fa‐tang
  email: lifatang@126.com
  organization: Hebei University of Science and Technology
– sequence: 9
  givenname: Xuemin
  surname: Chen
  fullname: Chen, Xuemin
  organization: Hebei University of Science and Technology
– sequence: 10
  givenname: Lina
  surname: Zhu
  fullname: Zhu, Lina
  organization: Hebei University of Science and Technology
– sequence: 11
  givenname: Yong
  surname: Yang
  fullname: Yang, Yong
  organization: Northwestern Polytechnical University
– sequence: 12
  givenname: Yaodong
  surname: Yang
  fullname: Yang, Yaodong
  organization: Xi'an Jiaotong University
– sequence: 13
  givenname: Xiaojie
  surname: Lou
  fullname: Lou, Xiaojie
  organization: Xi'an Jiaotong University
– sequence: 14
  givenname: Stephen J.
  surname: Pennycook
  fullname: Pennycook, Stephen J.
  organization: National University of Singapore
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31404487$$D View this record in MEDLINE/PubMed
BookMark eNqFkU1rFTEUhoNU7IduXcqAGzdzzddMMstSbm2htAurLlyEJHNSU3KTazJTuTt_Qn9jf4mpt1YoiKsk8DznhPfdRzsxRUDoNcELgjF9r6OHBcVkwKIfumdoj3SUtEwItlPvnLFWyI7sov1SrisvJe5foF1GOOZcij309VzHdPfz9hhyThDATtnbxqXcnPirb83SOW89RLtpLm4g6xCaL3qC3HxcBz9NPl41cxzr-1OYsi4pVvmzN1lPPsWX6LnTocCrh_MAXR4vL49O2rOLD6dHh2et5aLvWm6d6KQTRoxODyC160dOBNW9M5ZKZzBQGIx0ZDRY9poa12tGBafackPZAXq3HbvO6fsMZVIrXyyEoCOkuShKBRWMS9JV9O0T9DrNOdbPKcowYcOAMavUmwdqNisY1Tr7lc4b9Se1Ciy2gM2plAzuESFY3dei7mtRj7VUgT8RrJ9-Z1RT8-Hf2rDVfvgAm_8sUYfnp8u_7i9jI6N_
CitedBy_id crossref_primary_10_1016_j_ces_2021_116707
crossref_primary_10_1016_j_jcis_2023_03_159
crossref_primary_10_1002_adfm_202209365
crossref_primary_10_1002_adfm_202009594
crossref_primary_10_1016_j_jhazmat_2025_137774
crossref_primary_10_1016_j_jwpe_2023_104312
crossref_primary_10_1063_5_0218539
crossref_primary_10_1002_advs_202404483
crossref_primary_10_1016_j_jclepro_2023_139847
crossref_primary_10_1021_acsnano_2c07900
crossref_primary_10_1016_j_apcatb_2021_120763
crossref_primary_10_1002_adma_202311429
crossref_primary_10_1039_D2NR05302K
crossref_primary_10_1016_j_nanoen_2022_106930
crossref_primary_10_1016_j_nanoen_2020_104990
crossref_primary_10_1002_smll_202412576
crossref_primary_10_1021_acscatal_4c02243
crossref_primary_10_1002_cjoc_202200443
crossref_primary_10_1002_adfm_202210127
crossref_primary_10_1016_j_cplett_2023_140998
crossref_primary_10_1039_D3QI00571B
crossref_primary_10_1016_j_jhazmat_2020_122448
crossref_primary_10_1016_j_chemosphere_2023_137828
crossref_primary_10_1016_j_optmat_2023_114174
crossref_primary_10_1002_adfm_202408838
crossref_primary_10_1021_acs_macromol_2c00701
crossref_primary_10_1016_j_nanoen_2022_107218
crossref_primary_10_1016_j_apcatb_2020_119250
crossref_primary_10_1002_aenm_202200253
crossref_primary_10_1002_anie_202410381
crossref_primary_10_1016_j_apcatb_2020_119823
crossref_primary_10_1002_adma_202303018
crossref_primary_10_1021_acssuschemeng_2c06573
crossref_primary_10_1016_j_nanoen_2022_107919
crossref_primary_10_1002_smll_202402421
crossref_primary_10_1021_acsaem_4c01501
crossref_primary_10_26599_JAC_2024_9220970
crossref_primary_10_1016_j_apcatb_2023_123335
crossref_primary_10_1016_j_jcis_2024_02_058
crossref_primary_10_1021_acs_chemmater_4c00828
crossref_primary_10_1039_D2CC03976A
crossref_primary_10_1016_j_apcata_2021_118406
crossref_primary_10_1002_advs_202105248
crossref_primary_10_1002_sus2_232
crossref_primary_10_1002_advs_202105368
crossref_primary_10_1016_j_seppur_2024_128919
crossref_primary_10_1016_j_cej_2022_139456
crossref_primary_10_1016_S1872_2067_23_64635_2
crossref_primary_10_1088_1361_6528_abd5e6
crossref_primary_10_1002_adfm_202411464
crossref_primary_10_1016_j_nanoen_2023_108508
crossref_primary_10_1021_acsami_1c20448
crossref_primary_10_1039_D2NR01202B
crossref_primary_10_1016_j_ceramint_2019_10_145
crossref_primary_10_1016_j_nanoen_2020_105371
crossref_primary_10_1021_acsmacrolett_0c00477
crossref_primary_10_1016_j_jcis_2022_04_139
crossref_primary_10_1016_j_jcis_2022_09_150
crossref_primary_10_1016_j_jcis_2021_03_040
crossref_primary_10_1039_D2CC02484E
crossref_primary_10_1039_D3TA07815A
crossref_primary_10_1016_j_nanoen_2021_106290
crossref_primary_10_1016_j_jallcom_2024_176074
crossref_primary_10_1016_j_seppur_2022_123058
crossref_primary_10_1002_adma_202308726
crossref_primary_10_1016_j_ces_2024_120174
crossref_primary_10_1016_j_chemosphere_2024_143008
crossref_primary_10_1016_j_ccr_2024_216430
crossref_primary_10_1039_D4NR04415K
crossref_primary_10_1016_j_jallcom_2023_171339
crossref_primary_10_1016_j_giant_2024_100349
crossref_primary_10_1002_smll_202412815
crossref_primary_10_3390_met12050800
crossref_primary_10_1039_D4CP01047G
crossref_primary_10_1002_cctc_202200312
crossref_primary_10_1021_acsami_3c04959
crossref_primary_10_1002_smll_202001573
crossref_primary_10_1002_adfm_202502822
crossref_primary_10_1002_anie_202210700
crossref_primary_10_1002_smll_202309359
crossref_primary_10_1088_1361_6528_ac1a96
crossref_primary_10_1039_D2CP05631C
crossref_primary_10_1039_D4CS01322K
crossref_primary_10_1039_D3DT02328A
crossref_primary_10_1016_j_apcata_2023_119550
crossref_primary_10_1002_smll_202303129
crossref_primary_10_1002_smll_202302717
crossref_primary_10_1002_adfm_202210726
crossref_primary_10_1016_j_ceramint_2021_05_264
crossref_primary_10_1016_j_ces_2022_117855
crossref_primary_10_1002_adfm_202303736
crossref_primary_10_1016_j_ceramint_2023_11_013
crossref_primary_10_1016_j_jece_2023_109419
crossref_primary_10_1002_asia_202300090
crossref_primary_10_1021_acs_jpcc_2c05404
crossref_primary_10_1016_j_checat_2024_100901
crossref_primary_10_1016_j_nanoen_2022_108093
crossref_primary_10_1016_j_apcatb_2022_121747
crossref_primary_10_1016_j_cej_2021_128986
crossref_primary_10_1039_D1TA02531G
crossref_primary_10_1016_j_jcis_2024_12_013
crossref_primary_10_1021_acsaem_0c02104
crossref_primary_10_1002_smtd_202100269
crossref_primary_10_1038_s41467_023_39791_w
crossref_primary_10_1039_D4EY00245H
crossref_primary_10_1016_j_jcis_2023_12_055
crossref_primary_10_1016_j_nanoen_2024_110090
crossref_primary_10_1016_j_cej_2022_137868
crossref_primary_10_1186_s12951_024_02320_y
crossref_primary_10_1021_acsami_0c21976
crossref_primary_10_1016_j_nanoen_2021_106036
crossref_primary_10_1002_ep_14298
crossref_primary_10_1021_acs_jpcc_0c00321
crossref_primary_10_1016_j_jechem_2021_06_004
crossref_primary_10_1021_acscatal_1c02874
crossref_primary_10_1002_eem2_12705
crossref_primary_10_1016_j_mattod_2023_03_011
crossref_primary_10_1016_j_colsurfa_2024_133563
crossref_primary_10_1039_D2TA07907K
crossref_primary_10_1002_advs_202303448
crossref_primary_10_1002_smll_202303586
crossref_primary_10_1016_j_nanoen_2024_110518
crossref_primary_10_1002_smll_202307946
crossref_primary_10_1002_ange_202210700
crossref_primary_10_1016_j_jcis_2020_11_049
crossref_primary_10_1002_cssc_202201551
crossref_primary_10_1016_S1872_2067_21_63976_1
crossref_primary_10_1016_j_ijhydene_2024_07_168
crossref_primary_10_1016_j_enconman_2024_119069
crossref_primary_10_1021_acs_analchem_9b05611
crossref_primary_10_1002_advs_202105792
crossref_primary_10_1038_s43246_023_00371_6
crossref_primary_10_1002_adfm_202415660
crossref_primary_10_1007_s40544_021_0505_5
crossref_primary_10_1039_D1TA05151B
crossref_primary_10_1111_ijac_14721
crossref_primary_10_1002_ange_202410381
crossref_primary_10_1002_adma_202309298
crossref_primary_10_1002_admt_202101484
crossref_primary_10_1016_j_ccr_2023_215272
crossref_primary_10_1002_cctc_202201316
crossref_primary_10_1039_C9CY02509J
crossref_primary_10_1016_j_nanoen_2021_106028
crossref_primary_10_1021_acsami_1c01407
crossref_primary_10_1002_advs_202410400
crossref_primary_10_1002_adfm_202005158
crossref_primary_10_1016_j_apcatb_2022_121281
crossref_primary_10_1016_j_seppur_2022_120814
crossref_primary_10_1039_D3EY00313B
crossref_primary_10_1039_C9TA14007G
crossref_primary_10_1002_adma_202008452
crossref_primary_10_1007_s10854_024_12982_x
crossref_primary_10_1039_D0CC07064E
crossref_primary_10_1039_D3TA01995K
crossref_primary_10_1002_adfm_202213568
crossref_primary_10_1016_j_apcatb_2021_120019
crossref_primary_10_1016_j_jece_2024_113164
crossref_primary_10_1016_j_snb_2023_134170
crossref_primary_10_1002_ange_202110429
crossref_primary_10_1002_cssc_202401909
crossref_primary_10_1016_j_nanoen_2022_107400
crossref_primary_10_1007_s12274_023_5610_5
crossref_primary_10_1016_j_apcatb_2023_123058
crossref_primary_10_3390_nano14030276
crossref_primary_10_1002_adfm_202402477
crossref_primary_10_1021_acsestwater_1c00411
crossref_primary_10_1016_j_mtchem_2023_101486
crossref_primary_10_1016_j_nanoen_2023_108342
crossref_primary_10_1126_sciadv_adm9561
crossref_primary_10_1039_D3MA00620D
crossref_primary_10_1039_D1MA00284H
crossref_primary_10_1016_j_egyr_2023_03_077
crossref_primary_10_1016_j_jallcom_2022_166291
crossref_primary_10_1016_j_nanoen_2021_105831
crossref_primary_10_1016_j_apcatb_2023_123504
crossref_primary_10_1021_acs_analchem_4c06538
crossref_primary_10_1016_j_jcis_2021_05_151
crossref_primary_10_1016_j_jece_2024_114312
crossref_primary_10_1016_j_nanoen_2022_107141
crossref_primary_10_1002_adma_202300964
crossref_primary_10_1016_j_nanoen_2024_110270
crossref_primary_10_1039_D1MH01973B
crossref_primary_10_1002_anie_202110429
crossref_primary_10_1021_acssuschemeng_4c02771
crossref_primary_10_1002_adfm_202108350
crossref_primary_10_1002_ange_202103112
crossref_primary_10_1016_j_seppur_2023_124142
crossref_primary_10_1038_s41467_024_51106_1
crossref_primary_10_1016_j_seppur_2022_122928
crossref_primary_10_1002_adsu_202300652
crossref_primary_10_1021_acsanm_0c00039
crossref_primary_10_1016_j_ceja_2021_100133
crossref_primary_10_1016_j_snb_2024_136575
crossref_primary_10_1016_j_jallcom_2024_176474
crossref_primary_10_1002_cphc_202400227
crossref_primary_10_1109_TAES_2024_3400940
crossref_primary_10_1016_j_nanoen_2022_107251
crossref_primary_10_1002_asia_202200278
crossref_primary_10_1016_j_envpol_2025_125778
crossref_primary_10_1002_smll_202205257
crossref_primary_10_1016_S1872_2067_23_64557_7
crossref_primary_10_1016_j_cej_2024_157440
crossref_primary_10_1021_acsanm_4c03071
crossref_primary_10_1016_j_jmat_2021_03_002
crossref_primary_10_1016_j_cej_2022_134624
crossref_primary_10_1016_j_jallcom_2025_178825
crossref_primary_10_1002_smll_202003361
crossref_primary_10_1039_D4TB02489C
crossref_primary_10_1002_adma_202101751
crossref_primary_10_1016_j_nanoen_2020_104783
crossref_primary_10_1016_j_nanoen_2023_109059
crossref_primary_10_1016_j_surfin_2022_102056
crossref_primary_10_1016_j_nanoen_2020_105180
crossref_primary_10_1016_j_surfin_2024_105245
crossref_primary_10_1039_D3BM01944F
crossref_primary_10_1039_D4CC00889H
crossref_primary_10_1016_j_pmatsci_2023_101161
crossref_primary_10_1021_acscatal_4c00918
crossref_primary_10_1016_j_jwpe_2024_106195
crossref_primary_10_1134_S0023158424602407
crossref_primary_10_12677_ACM_2024_142590
crossref_primary_10_1002_smll_202401650
crossref_primary_10_1016_j_apcatb_2022_121471
crossref_primary_10_1016_j_apcatb_2020_119340
crossref_primary_10_1002_advs_202410357
crossref_primary_10_1002_aenm_202201199
crossref_primary_10_1021_acs_est_3c09579
crossref_primary_10_1002_smll_202301693
crossref_primary_10_1016_j_nanoen_2022_106993
crossref_primary_10_1016_j_ijhydene_2023_03_414
crossref_primary_10_1016_j_nanoen_2024_109495
crossref_primary_10_2147_IJN_S505526
crossref_primary_10_1016_j_fuel_2021_122758
crossref_primary_10_1007_s40145_022_0637_8
crossref_primary_10_1016_j_scitotenv_2023_161767
crossref_primary_10_1016_j_cej_2024_148609
crossref_primary_10_1016_j_jechem_2022_01_009
crossref_primary_10_1039_D2NR03828E
crossref_primary_10_1016_j_ijhydene_2024_06_209
crossref_primary_10_1039_D3RA04014C
crossref_primary_10_3389_fphy_2025_1562239
crossref_primary_10_1038_s41467_023_44395_5
crossref_primary_10_1039_D0TA00955E
crossref_primary_10_1002_anie_202103112
crossref_primary_10_1007_s10311_023_01621_2
crossref_primary_10_1021_acsaem_3c00762
crossref_primary_10_1002_cjoc_202300273
Cites_doi 10.1038/414625a
10.1021/acscatal.5b00507
10.1002/ange.201712925
10.1002/ange.201811709
10.1557/mrs.2018.155
10.1039/C9CS90020A
10.1021/nl504630j
10.1002/anie.201901361
10.1088/1361-6633/aa915a
10.1038/nmat2317
10.1021/cr100454n
10.1021/jacs.8b07844
10.1016/j.actamat.2016.11.064
10.1126/science.1129564
10.1002/anie.201702223
10.1103/PhysRevLett.105.014503
10.1021/jacs.8b07855
10.1021/jz100027t
10.1002/anie.201704358
10.1039/C7CS00387K
10.1038/s41467-018-05640-4
10.1063/1.4927597
10.1038/249724a0
10.1002/ppsc.201700075
10.1039/C6CP05462E
10.1038/nmat3649
10.1002/ange.201702223
10.1038/s41467-018-06369-w
10.1021/nn102385e
10.1002/ange.201201424
10.1002/adma.201804883
10.1126/science.aaw2781
10.1126/science.1200605
10.1038/nmat3371
10.1017/S1431927616007856
10.1103/PhysRevLett.103.257602
10.1002/smll.201401437
10.1038/s41563-018-0034-4
10.1021/acsami.8b01991
10.1002/ange.201704358
10.1002/anie.201712925
10.1063/1.5031134
10.1016/j.nanoen.2017.07.037
10.1002/anie.201811709
10.1002/anie.201201424
10.1002/ange.201901361
10.1038/s41929-018-0134-1
ContentType Journal Article
Copyright 2019 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim
2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Copyright_xml – notice: 2019 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
DBID AAYXX
CITATION
NPM
7TM
K9.
7X8
DOI 10.1002/anie.201907695
DatabaseName CrossRef
PubMed
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
ProQuest Health & Medical Complete (Alumni)
Nucleic Acids Abstracts
MEDLINE - Academic
DatabaseTitleList PubMed
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic

CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3773
Edition International ed. in English
EndPage 15081
ExternalDocumentID 31404487
10_1002_anie_201907695
ANIE201907695
Genre reviewArticle
Journal Article
Review
GrantInformation_xml – fundername: Natural Science Foundation of Hebei Province
  funderid: B2018208093; E2019208243
– fundername: National Natural Science Foundation of China
  funderid: 21776059; 51802075
– fundername: Natural Science Foundation of Hebei Province
  grantid: B2018208093
– fundername: Natural Science Foundation of Hebei Province
  grantid: E2019208243
– fundername: National Natural Science Foundation of China
  grantid: 51802075
– fundername: National Natural Science Foundation of China
  grantid: 21776059
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABLJU
ABPPZ
ABPVW
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BTSUX
BY8
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
M53
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
TN5
UB1
UPT
UQL
V2E
VQA
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XSW
XV2
YZZ
ZZTAW
~IA
~KM
~WT
AAYXX
ABDBF
ABJNI
AEYWJ
AGHNM
AGYGG
CITATION
NPM
YIN
7TM
K9.
7X8
ID FETCH-LOGICAL-c4765-4cf758f7b7dfa9e8af6d4172a6fbc28fb0e2e9b8f1db086a2bf6a32742ac4b23
IEDL.DBID DR2
ISSN 1433-7851
1521-3773
IngestDate Fri Jul 11 08:46:56 EDT 2025
Fri Jul 25 10:26:11 EDT 2025
Wed Feb 19 02:30:37 EST 2025
Thu Apr 24 22:51:06 EDT 2025
Tue Jul 01 02:26:55 EDT 2025
Wed Jan 22 16:39:54 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 42
Keywords ferroelectric
piezocatalysis
phase coexistence
piezoelectric effect
water splitting
Language English
License 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4765-4cf758f7b7dfa9e8af6d4172a6fbc28fb0e2e9b8f1db086a2bf6a32742ac4b23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0002-8777-090X
PMID 31404487
PQID 2301399003
PQPubID 946352
PageCount 6
ParticipantIDs proquest_miscellaneous_2272734815
proquest_journals_2301399003
pubmed_primary_31404487
crossref_primary_10_1002_anie_201907695
crossref_citationtrail_10_1002_anie_201907695
wiley_primary_10_1002_anie_201907695_ANIE201907695
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate October 14, 2019
PublicationDateYYYYMMDD 2019-10-14
PublicationDate_xml – month: 10
  year: 2019
  text: October 14, 2019
  day: 14
PublicationDecade 2010
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Angewandte Chemie International Edition
PublicationTitleAlternate Angew Chem Int Ed Engl
PublicationYear 2019
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2015; 15
2015; 5
2018; 140
2010; 105
2017; 46
2015; 11
1974; 249
2018; 81
2008; 8
2017 2017; 56 129
2015; 107
2016; 18
2018; 43
2011; 5
2012; 11
2019; 364
2019 2019; 58 131
2011; 331
2018; 9
2018; 17
2012; 112
2010; 1
2007; 315
2018; 1
2017; 39
2013; 12
2012 2012; 51 124
2018 2018; 57 130
2018; 113
2019; 48
2017; 34
2016
2018; 10
2018; 31
2017; 125
2009; 103
2001; 414
2016; 22
e_1_2_6_51_1
e_1_2_6_30_1
e_1_2_6_19_2
e_1_2_6_13_2
e_1_2_6_34_2
e_1_2_6_11_2
e_1_2_6_32_2
e_1_2_6_17_2
e_1_2_6_38_1
e_1_2_6_15_2
e_1_2_6_36_2
e_1_2_6_20_2
e_1_2_6_20_1
e_1_2_6_41_1
Sharma P. (e_1_2_6_37_2) 2016
e_1_2_6_7_2
e_1_2_6_9_2
e_1_2_6_3_2
e_1_2_6_5_2
e_1_2_6_1_1
e_1_2_6_47_2
e_1_2_6_24_1
e_1_2_6_49_1
e_1_2_6_22_2
e_1_2_6_22_1
e_1_2_6_43_2
e_1_2_6_28_1
e_1_2_6_45_1
e_1_2_6_26_2
e_1_2_6_26_1
e_1_2_6_52_1
e_1_2_6_31_1
e_1_2_6_50_1
e_1_2_6_18_2
e_1_2_6_35_1
e_1_2_6_10_2
e_1_2_6_33_2
e_1_2_6_12_1
e_1_2_6_39_2
e_1_2_6_14_2
e_1_2_6_16_1
e_1_2_6_42_2
e_1_2_6_21_1
e_1_2_6_40_2
e_1_2_6_6_3
e_1_2_6_8_1
e_1_2_6_4_1
e_1_2_6_6_2
e_1_2_6_25_1
e_1_2_6_48_1
e_1_2_6_23_2
e_1_2_6_2_2
e_1_2_6_23_1
e_1_2_6_29_1
e_1_2_6_44_1
e_1_2_6_27_1
e_1_2_6_25_2
e_1_2_6_46_2
References_xml – volume: 43
  start-page: 595
  year: 2018
  end-page: 599
  publication-title: MRS Bull.
– volume: 56 129
  start-page: 5299 5383
  year: 2017 2017
  end-page: 5303 5387
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 103
  start-page: 257602
  year: 2009
  publication-title: Phys. Rev. Lett.
– volume: 105
  start-page: 014503
  year: 2010
  publication-title: Phys. Rev. Lett.
– volume: 48
  start-page: 1862
  year: 2019
  end-page: 1864
  publication-title: Chem. Soc. Rev.
– volume: 1
  start-page: 997
  year: 2010
  end-page: 1002
  publication-title: J. Phys. Chem. Lett.
– volume: 315
  start-page: 954
  year: 2007
  end-page: 959
  publication-title: Science
– volume: 58 131
  start-page: 10061 10164
  year: 2019 2019
  end-page: 10073 10176
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 10
  start-page: 17842
  year: 2018
  end-page: 17849
  publication-title: ACS Appl. Mater. Interfaces
– volume: 11
  start-page: 700
  year: 2012
  end-page: 709
  publication-title: Nat. Mater.
– volume: 58 131
  start-page: 7526 7606
  year: 2019 2019
  end-page: 7536 7616
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 51 124
  start-page: 5962 6064
  year: 2012 2012
  end-page: 5966 6068
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 11
  start-page: 202
  year: 2015
  end-page: 207
  publication-title: Small
– volume: 18
  start-page: 29033
  year: 2016
  end-page: 29040
  publication-title: Phys. Chem. Chem. Phys.
– volume: 113
  start-page: 022905
  year: 2018
  publication-title: Appl. Phys. Lett.
– start-page: 63
  year: 2016
  end-page: 125
– volume: 46
  start-page: 7757
  year: 2017
  end-page: 7786
  publication-title: Chem. Soc. Rev.
– volume: 331
  start-page: 1420
  year: 2011
  end-page: 1423
  publication-title: Science
– volume: 12
  start-page: 617
  year: 2013
  end-page: 621
  publication-title: Nat. Mater.
– volume: 39
  start-page: 461
  year: 2017
  end-page: 469
  publication-title: Nano Energy
– volume: 249
  start-page: 724
  year: 1974
  end-page: 726
  publication-title: Nature
– volume: 81
  start-page: 036502
  year: 2018
  publication-title: Rep. Prog. Phys.
– volume: 56 129
  start-page: 9312 9440
  year: 2017 2017
  end-page: 9317 9445
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 5
  start-page: 4537
  year: 2015
  end-page: 4545
  publication-title: ACS Catal.
– volume: 22
  start-page: 1402
  year: 2016
  end-page: 1403
  publication-title: Microsc. Microanal.
– volume: 5
  start-page: 507
  year: 2011
  end-page: 515
  publication-title: ACS Nano
– volume: 107
  start-page: 042903
  year: 2015
  publication-title: Appl. Phys. Lett.
– volume: 140
  start-page: 15252
  year: 2018
  end-page: 15260
  publication-title: J. Am. Chem. Soc.
– volume: 414
  start-page: 625
  year: 2001
  end-page: 627
  publication-title: Nature
– volume: 125
  start-page: 177
  year: 2017
  end-page: 186
  publication-title: Acta Mater.
– volume: 112
  start-page: 1555
  year: 2012
  end-page: 1614
  publication-title: Chem. Rev.
– volume: 17
  start-page: 349
  year: 2018
  end-page: 354
  publication-title: Nat. Mater.
– volume: 1
  start-page: 756
  year: 2018
  end-page: 763
  publication-title: Nat. Catal.
– volume: 31
  start-page: 1804883
  year: 2018
  publication-title: Adv. Mater.
– volume: 9
  start-page: 3809
  year: 2018
  publication-title: Nat. Commun.
– volume: 9
  start-page: 3344
  year: 2018
  publication-title: Nat. Commun.
– volume: 34
  start-page: 1700075
  year: 2017
  publication-title: Part. Part. Syst. Charact.
– volume: 364
  start-page: 264
  year: 2019
  end-page: 268
  publication-title: Science
– volume: 140
  start-page: 12256
  year: 2018
  end-page: 12262
  publication-title: J. Am. Chem. Soc.
– volume: 8
  start-page: 76
  year: 2008
  end-page: 80
  publication-title: Nat. Mater.
– volume: 57 130
  start-page: 3222 3276
  year: 2018 2018
  end-page: 3227 3281
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 15
  start-page: 2372
  year: 2015
  end-page: 2379
  publication-title: Nano Lett.
– ident: e_1_2_6_31_1
– ident: e_1_2_6_7_2
  doi: 10.1038/414625a
– ident: e_1_2_6_15_2
  doi: 10.1021/acscatal.5b00507
– ident: e_1_2_6_45_1
– ident: e_1_2_6_25_2
  doi: 10.1002/ange.201712925
– ident: e_1_2_6_22_2
  doi: 10.1002/ange.201811709
– ident: e_1_2_6_51_1
  doi: 10.1557/mrs.2018.155
– ident: e_1_2_6_4_1
– ident: e_1_2_6_5_2
  doi: 10.1039/C9CS90020A
– ident: e_1_2_6_42_2
  doi: 10.1021/nl504630j
– ident: e_1_2_6_20_1
  doi: 10.1002/anie.201901361
– ident: e_1_2_6_21_1
  doi: 10.1088/1361-6633/aa915a
– ident: e_1_2_6_9_2
  doi: 10.1038/nmat2317
– ident: e_1_2_6_2_2
  doi: 10.1021/cr100454n
– ident: e_1_2_6_46_2
  doi: 10.1021/jacs.8b07844
– start-page: 63
  volume-title: Scanning probe microscopy of functional materials surfaces and interfaces
  year: 2016
  ident: e_1_2_6_37_2
– ident: e_1_2_6_50_1
  doi: 10.1016/j.actamat.2016.11.064
– ident: e_1_2_6_17_2
  doi: 10.1126/science.1129564
– ident: e_1_2_6_6_2
  doi: 10.1002/anie.201702223
– ident: e_1_2_6_52_1
  doi: 10.1103/PhysRevLett.105.014503
– ident: e_1_2_6_12_1
– ident: e_1_2_6_44_1
  doi: 10.1021/jacs.8b07855
– ident: e_1_2_6_1_1
– ident: e_1_2_6_14_2
  doi: 10.1021/jz100027t
– ident: e_1_2_6_26_1
  doi: 10.1002/anie.201704358
– ident: e_1_2_6_13_2
  doi: 10.1039/C7CS00387K
– ident: e_1_2_6_36_2
  doi: 10.1038/s41467-018-05640-4
– ident: e_1_2_6_40_2
  doi: 10.1063/1.4927597
– ident: e_1_2_6_3_2
  doi: 10.1038/249724a0
– ident: e_1_2_6_29_1
  doi: 10.1002/ppsc.201700075
– ident: e_1_2_6_30_1
  doi: 10.1039/C6CP05462E
– ident: e_1_2_6_33_2
  doi: 10.1038/nmat3649
– ident: e_1_2_6_6_3
  doi: 10.1002/ange.201702223
– ident: e_1_2_6_32_2
  doi: 10.1038/s41467-018-06369-w
– ident: e_1_2_6_28_1
  doi: 10.1021/nn102385e
– ident: e_1_2_6_23_2
  doi: 10.1002/ange.201201424
– ident: e_1_2_6_10_2
  doi: 10.1002/adma.201804883
– ident: e_1_2_6_41_1
– ident: e_1_2_6_19_2
  doi: 10.1126/science.aaw2781
– ident: e_1_2_6_47_2
  doi: 10.1126/science.1200605
– ident: e_1_2_6_34_2
  doi: 10.1038/nmat3371
– ident: e_1_2_6_49_1
  doi: 10.1017/S1431927616007856
– ident: e_1_2_6_18_2
  doi: 10.1103/PhysRevLett.103.257602
– ident: e_1_2_6_27_1
  doi: 10.1002/smll.201401437
– ident: e_1_2_6_16_1
– ident: e_1_2_6_48_1
  doi: 10.1038/s41563-018-0034-4
– ident: e_1_2_6_8_1
– ident: e_1_2_6_24_1
  doi: 10.1021/acsami.8b01991
– ident: e_1_2_6_26_2
  doi: 10.1002/ange.201704358
– ident: e_1_2_6_25_1
  doi: 10.1002/anie.201712925
– ident: e_1_2_6_39_2
  doi: 10.1063/1.5031134
– ident: e_1_2_6_38_1
– ident: e_1_2_6_35_1
– ident: e_1_2_6_43_2
  doi: 10.1016/j.nanoen.2017.07.037
– ident: e_1_2_6_22_1
  doi: 10.1002/anie.201811709
– ident: e_1_2_6_23_1
  doi: 10.1002/anie.201201424
– ident: e_1_2_6_20_2
  doi: 10.1002/ange.201901361
– ident: e_1_2_6_11_2
  doi: 10.1038/s41929-018-0134-1
SSID ssj0028806
Score 2.6715481
SecondaryResourceType review_article
Snippet Piezocatalysis, converting mechanical vibration into chemical energy, has emerged as a promising candidate for water‐splitting technology. However, the...
Piezocatalysis, converting mechanical vibration into chemical energy, has emerged as a promising candidate for water-splitting technology. However, the...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 15076
SubjectTerms Anisotropy
Barium titanates
Catalysis
Chemical energy
Coexistence
Efficiency
ferroelectric
Ferroelectric materials
Ferroelectricity
Free energy
Hydrogen production
Microscopy
Nanoparticles
Organic chemistry
phase coexistence
piezocatalysis
piezoelectric effect
Piezoelectricity
Polarization
Scanning probe microscopy
Scanning transmission electron microscopy
Splitting
Transmission electron microscopy
Ultrasonic vibration
Water splitting
Title Nano‐Ferroelectric for High Efficiency Overall Water Splitting under Ultrasonic Vibration
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.201907695
https://www.ncbi.nlm.nih.gov/pubmed/31404487
https://www.proquest.com/docview/2301399003
https://www.proquest.com/docview/2272734815
Volume 58
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1PS8MwFA-yi178_6c6JYLgqduadG1zHGNjCk7QTQceStImII5Nus2DJz-Cn9FP4nvtWp0igt5amrRp8l7ye8l7v0fICXM8FWtRtyWPmA34P7CViUHdPS4FqJMj01iYi67X6bvng_rgUxR_xg9RbLihZqTzNSq4VJPqB2koRmCjaxZYd57AKHN02EJUdFXwRzEQziy8iHMbs9DnrI01Vl2svrgqfYOai8g1XXraa0Tmjc48Th4qs6mqRM9f-Bz_81frZHWOS2kjE6QNsqRHm2S5maeD2yJ3MA-P315e2zpJxlnynPuIAuSl6CpCWykVBcZx0ssn3Oca0luAsQm9BpSb-lZTDFdLaH84TeQECXnpDbYUBWOb9NqtXrNjzzMz2JHre3XbjQzYGcZXfmyk0IE0XuwCFJKeURELjKpppoUKjBMrsJkkU8aTHE-FZeQqxndIaTQe6T1CHa5hDjGMC1ODt4J5IxjTbl3URODDbGMROx-YMJqzlmPyjGGY8S2zEHssLHrMIqdF-ceMr-PHkuV8nMO53k5CMMgAEuPurkWOi8fQ03iMIkd6PIMyzE85gRx4xW4mH8WnOLIVgQ1oEZaO8i9tCBvds1Zxt_-XSgdkBa9xOXXcMilNk5k-BJw0VUepLrwDd3AKkw
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fb9MwED_BeBgv2_izrVsHRkLiKVtj558fp6pVB22RoAOkPUR2YkuIKp2ydA972kfgM_JJduc0QQVNk-AxiZ04ts_-3fnudwBvuR_p3MjQUyLjHuL_xNM2R3GPhJIoTr5ysTCTaTQ6D95_CxtvQoqFqfkhWoMbSYZbr0nAySB98ps1lEKwyTcL1btIho_hCaX1dlrVp5ZBiuP0rAOMhPAoD33D29jjJ-v11_elv8DmOnZ1m89wG3TT7Nrn5MfxstLH2c0fjI7_9V87sLWCpuy0nkvP4JEpnsNmv8kI9wIucCle_Lr9OTRluajz53zPGKJeRt4ibODYKCiUk328JlPXnH1FJFuyzwh0nXs1o4i1kp3Pq1JdEScv-0JNpbnxEmbDwaw_8lbJGbwsiKPQCzKLqoaNdZxbJU2ibJQHiIZUZHXGE6t7hhupE-vnGtUmxbWNlKCDYZUFmotd2CgWhdkH5guDy4jlQtoevhU1HMm5CULZk0mMC04HvGZk0mxFXE75M-ZpTbnMU-qxtO2xDrxry1_WlB33luw2A52uRPcqRZ0MUTEZeDvwpn2MPU0nKaowiyWW4bGjBfLxFXv1BGk_JYiwCNXADnA3zA-0IT2dng3aq4N_qfQaNkezyTgdn00_HMJTuk-7qx90YaMql-YIYVOlXznBuAMbyQ6u
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB7xkAqXAi0tW16uVIlTILETJz4i2BX0sa1aKEgcIjuxJcRqF4XdHnrqT-hv5Jcwk2wCC0JIcExiJ449Y39jz3wD8IkH0uRWRZ4WGfcQ_yeecTmquxRaoToFuoyF-daVB8fh59Po9E4Uf8UP0Wy4kWaU8zUp-GXudm5JQykCm1yz0LqTKpqG2VD6Ccn1_s-GQIqjdFbxRUJ4lIa-pm30-c5k_cll6QHWnISu5drTWQBdt7pyObnYHg3Ndvb3HqHjS35rEV6PgSnbrSRpCaZs_w3M7dX54N7CGU7Eg-t__zu2KAZV9pzzjCHmZeQrwtolFwUFcrLvf2ijq8dOEMcW7BfC3NK5mlG8WsGOe8NCXxEjL_tNLSXJWIajTvto78Abp2bwsjCWkRdmDg0NF5s4d1rZRDuZh4iFtHQm44kzvuVWmcQFuUGjSXPjpBZ0LKyz0HDxDmb6g75dARYIi5OI40I5H9-K9o3i3IaR8lUS43TTAq8emDQb05ZT9oxeWhEu85R6LG16rAVbTfnLirDj0ZJr9TinY8W9StEiQ0xM27st-Ng8xp6mcxTdt4MRluFxSQoU4CveV_LRfEoQXREagS3g5Sg_0YZ0t3vYbq4-PKfSJrz6sd9Jvx52v6zCPN2mpTUI12BmWIzsOmKmodko1eIG_GsNZg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nano-Ferroelectric+for+High+Efficiency+Overall+Water+Splitting+under+Ultrasonic+Vibration&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Su%2C+Ran&rft.au=Hsain%2C+H+Alex&rft.au=Wu%2C+Ming&rft.au=Zhang%2C+Dawei&rft.date=2019-10-14&rft.issn=1521-3773&rft.eissn=1521-3773&rft.volume=58&rft.issue=42&rft.spage=15076&rft_id=info:doi/10.1002%2Fanie.201907695&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon