Strongly Coupled CoO Nanoclusters/CoFe LDHs Hybrid as a Synergistic Catalyst for Electrochemical Water Oxidation
Exploiting high‐performance, robust, and cost‐effective electrocatalysts for the oxygen evolution reaction (OER) is crucial for electrochemical energy storage and conversion technologies. Engineering the interfacial structure of hybrid catalysts often induces synergistically enhanced electrocatalyti...
Saved in:
Published in | Small (Weinheim an der Bergstrasse, Germany) Vol. 14; no. 17; pp. e1800195 - n/a |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.04.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Exploiting high‐performance, robust, and cost‐effective electrocatalysts for the oxygen evolution reaction (OER) is crucial for electrochemical energy storage and conversion technologies. Engineering the interfacial structure of hybrid catalysts often induces synergistically enhanced electrocatalytic performance. Herein, a new strongly coupled heterogeneous catalyst with proper interfacial structures, i.e., CoO nanoclusters decorated on CoFe layered double hydroxides (LDHs) nanosheets, is prepared via a simple one‐step pulsed laser ablation in liquid method. Thorough spectroscopic characterizations reveal that strong chemical couplings at the hybrid interface trigger charge transfer from CoII in the oxide to FeIII in the LDHs through the interfacial FeOCo bond, leading to considerable amounts of high oxidation state CoIII sites present in the hybrid. Interestingly, the CoO/CoFe LDHs exhibit pronounced synergistic effects in electrocatalytic water oxidation, with substantially enhanced intrinsic catalytic activity and stability relative to both components. The hybrid catalyst achieves remarkably low OER overpotential and Tafel slope in alkaline medium, outperforming that of Ru/C and manifesting itself among the most active Co‐based OER catalysts.
A strongly coupled CoO/CoFe layered double hydroxides heterogeneous catalyst with proper interfacial structures is prepared via a one‐step laser ablation method. The strong chemical coupling at the hybrid interface triggers charge transfer through the interfacial FeOCo bond, resulting in abundant high oxidation state CoIII sites. The hybrid catalyst exhibits pronounced synergistic effects for the oxygen evolution reaction, with substantially enhanced intrinsic activity, turnover frequency, and stability. |
---|---|
AbstractList | Exploiting high-performance, robust, and cost-effective electrocatalysts for the oxygen evolution reaction (OER) is crucial for electrochemical energy storage and conversion technologies. Engineering the interfacial structure of hybrid catalysts often induces synergistically enhanced electrocatalytic performance. Herein, a new strongly coupled heterogeneous catalyst with proper interfacial structures, i.e., CoO nanoclusters decorated on CoFe layered double hydroxides (LDHs) nanosheets, is prepared via a simple one-step pulsed laser ablation in liquid method. Thorough spectroscopic characterizations reveal that strong chemical couplings at the hybrid interface trigger charge transfer from Co
in the oxide to Fe
in the LDHs through the interfacial FeOCo bond, leading to considerable amounts of high oxidation state Co
sites present in the hybrid. Interestingly, the CoO/CoFe LDHs exhibit pronounced synergistic effects in electrocatalytic water oxidation, with substantially enhanced intrinsic catalytic activity and stability relative to both components. The hybrid catalyst achieves remarkably low OER overpotential and Tafel slope in alkaline medium, outperforming that of Ru/C and manifesting itself among the most active Co-based OER catalysts. Exploiting high‐performance, robust, and cost‐effective electrocatalysts for the oxygen evolution reaction (OER) is crucial for electrochemical energy storage and conversion technologies. Engineering the interfacial structure of hybrid catalysts often induces synergistically enhanced electrocatalytic performance. Herein, a new strongly coupled heterogeneous catalyst with proper interfacial structures, i.e., CoO nanoclusters decorated on CoFe layered double hydroxides (LDHs) nanosheets, is prepared via a simple one‐step pulsed laser ablation in liquid method. Thorough spectroscopic characterizations reveal that strong chemical couplings at the hybrid interface trigger charge transfer from CoII in the oxide to FeIII in the LDHs through the interfacial FeOCo bond, leading to considerable amounts of high oxidation state CoIII sites present in the hybrid. Interestingly, the CoO/CoFe LDHs exhibit pronounced synergistic effects in electrocatalytic water oxidation, with substantially enhanced intrinsic catalytic activity and stability relative to both components. The hybrid catalyst achieves remarkably low OER overpotential and Tafel slope in alkaline medium, outperforming that of Ru/C and manifesting itself among the most active Co‐based OER catalysts. Exploiting high‐performance, robust, and cost‐effective electrocatalysts for the oxygen evolution reaction (OER) is crucial for electrochemical energy storage and conversion technologies. Engineering the interfacial structure of hybrid catalysts often induces synergistically enhanced electrocatalytic performance. Herein, a new strongly coupled heterogeneous catalyst with proper interfacial structures, i.e., CoO nanoclusters decorated on CoFe layered double hydroxides (LDHs) nanosheets, is prepared via a simple one‐step pulsed laser ablation in liquid method. Thorough spectroscopic characterizations reveal that strong chemical couplings at the hybrid interface trigger charge transfer from CoII in the oxide to FeIII in the LDHs through the interfacial FeOCo bond, leading to considerable amounts of high oxidation state CoIII sites present in the hybrid. Interestingly, the CoO/CoFe LDHs exhibit pronounced synergistic effects in electrocatalytic water oxidation, with substantially enhanced intrinsic catalytic activity and stability relative to both components. The hybrid catalyst achieves remarkably low OER overpotential and Tafel slope in alkaline medium, outperforming that of Ru/C and manifesting itself among the most active Co‐based OER catalysts. A strongly coupled CoO/CoFe layered double hydroxides heterogeneous catalyst with proper interfacial structures is prepared via a one‐step laser ablation method. The strong chemical coupling at the hybrid interface triggers charge transfer through the interfacial FeOCo bond, resulting in abundant high oxidation state CoIII sites. The hybrid catalyst exhibits pronounced synergistic effects for the oxygen evolution reaction, with substantially enhanced intrinsic activity, turnover frequency, and stability. Exploiting high-performance, robust, and cost-effective electrocatalysts for the oxygen evolution reaction (OER) is crucial for electrochemical energy storage and conversion technologies. Engineering the interfacial structure of hybrid catalysts often induces synergistically enhanced electrocatalytic performance. Herein, a new strongly coupled heterogeneous catalyst with proper interfacial structures, i.e., CoO nanoclusters decorated on CoFe layered double hydroxides (LDHs) nanosheets, is prepared via a simple one-step pulsed laser ablation in liquid method. Thorough spectroscopic characterizations reveal that strong chemical couplings at the hybrid interface trigger charge transfer from CoII in the oxide to FeIII in the LDHs through the interfacial FeOCo bond, leading to considerable amounts of high oxidation state CoIII sites present in the hybrid. Interestingly, the CoO/CoFe LDHs exhibit pronounced synergistic effects in electrocatalytic water oxidation, with substantially enhanced intrinsic catalytic activity and stability relative to both components. The hybrid catalyst achieves remarkably low OER overpotential and Tafel slope in alkaline medium, outperforming that of Ru/C and manifesting itself among the most active Co-based OER catalysts.Exploiting high-performance, robust, and cost-effective electrocatalysts for the oxygen evolution reaction (OER) is crucial for electrochemical energy storage and conversion technologies. Engineering the interfacial structure of hybrid catalysts often induces synergistically enhanced electrocatalytic performance. Herein, a new strongly coupled heterogeneous catalyst with proper interfacial structures, i.e., CoO nanoclusters decorated on CoFe layered double hydroxides (LDHs) nanosheets, is prepared via a simple one-step pulsed laser ablation in liquid method. Thorough spectroscopic characterizations reveal that strong chemical couplings at the hybrid interface trigger charge transfer from CoII in the oxide to FeIII in the LDHs through the interfacial FeOCo bond, leading to considerable amounts of high oxidation state CoIII sites present in the hybrid. Interestingly, the CoO/CoFe LDHs exhibit pronounced synergistic effects in electrocatalytic water oxidation, with substantially enhanced intrinsic catalytic activity and stability relative to both components. The hybrid catalyst achieves remarkably low OER overpotential and Tafel slope in alkaline medium, outperforming that of Ru/C and manifesting itself among the most active Co-based OER catalysts. Exploiting high‐performance, robust, and cost‐effective electrocatalysts for the oxygen evolution reaction (OER) is crucial for electrochemical energy storage and conversion technologies. Engineering the interfacial structure of hybrid catalysts often induces synergistically enhanced electrocatalytic performance. Herein, a new strongly coupled heterogeneous catalyst with proper interfacial structures, i.e., CoO nanoclusters decorated on CoFe layered double hydroxides (LDHs) nanosheets, is prepared via a simple one‐step pulsed laser ablation in liquid method. Thorough spectroscopic characterizations reveal that strong chemical couplings at the hybrid interface trigger charge transfer from Co II in the oxide to Fe III in the LDHs through the interfacial FeOCo bond, leading to considerable amounts of high oxidation state Co III sites present in the hybrid. Interestingly, the CoO/CoFe LDHs exhibit pronounced synergistic effects in electrocatalytic water oxidation, with substantially enhanced intrinsic catalytic activity and stability relative to both components. The hybrid catalyst achieves remarkably low OER overpotential and Tafel slope in alkaline medium, outperforming that of Ru/C and manifesting itself among the most active Co‐based OER catalysts. |
Author | Gao, Zhi‐Wen Yang, Jing Liu, Hui Qiao, Shi‐Zhang Ma, Tian Du, Xi‐Wen Chen, Xue‐Min Cui, Lan |
Author_xml | – sequence: 1 givenname: Zhi‐Wen surname: Gao fullname: Gao, Zhi‐Wen organization: Tianjin University – sequence: 2 givenname: Tian surname: Ma fullname: Ma, Tian organization: Tianjin University – sequence: 3 givenname: Xue‐Min surname: Chen fullname: Chen, Xue‐Min organization: Hebei University of Science & Technology – sequence: 4 givenname: Hui surname: Liu fullname: Liu, Hui organization: Tianjin University – sequence: 5 givenname: Lan surname: Cui fullname: Cui, Lan organization: Tianjin University – sequence: 6 givenname: Shi‐Zhang surname: Qiao fullname: Qiao, Shi‐Zhang organization: The University of Adelaide – sequence: 7 givenname: Jing orcidid: 0000-0002-3731-368X surname: Yang fullname: Yang, Jing email: yang_jing@tju.edu.cn organization: Tianjin University – sequence: 8 givenname: Xi‐Wen surname: Du fullname: Du, Xi‐Wen email: xwdu@tju.edu.cn organization: Tianjin University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29577621$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkb1v2zAQxYkiQfPRrh0LAl2y2OGHRFpjoSZxAaUe3KKjQFLnlAEluiSFRv996DpxgABFp7vh994d3jtDR4MfAKEPlMwpIewy9s7NGaELQmhVvkGnVFA-EwtWHR12Sk7QWYz3hHDKCvkWnbCqlFIweoq26xT8cOcmXPtx66DLc4W_qcEbN8YEIV7W_hpw82UZ8XLSwXZYRazwehog3NmYrMG1SspNMeGND_jKgcme5hf01iiHf6rsglcPtlPJ-uEdOt4oF-H90zxHP66vvtfLWbO6-Vp_bmamkKKcMc5LrQtDS1FyLqimhHYLqAAodJ1Q0JlSKslJpZQu5AKY0dpwwjQxm0oJfo4u9r7b4H-PEFPb22jAOTWAH2O7y0wISbjM6KdX6L0fw5C_yxQnUhAuWKY-PlGj7qFrt8H2Kkztc5YZmO8BE3yMATYHhJJ2V1a7K6s9lJUFxSuBselvSCko6_4tq_ayP9bB9J8j7fq2aV60jzaBqYA |
CitedBy_id | crossref_primary_10_1016_j_mtener_2022_100968 crossref_primary_10_1039_D2RA04253C crossref_primary_10_1039_D1EE02105B crossref_primary_10_1016_j_electacta_2019_03_118 crossref_primary_10_1016_j_jallcom_2022_163994 crossref_primary_10_1016_j_jelechem_2020_114235 crossref_primary_10_1016_j_electacta_2019_134595 crossref_primary_10_1088_2515_7647_ac0bfd crossref_primary_10_1039_D3TA06995H crossref_primary_10_1002_cssc_201802437 crossref_primary_10_1016_j_cej_2022_136031 crossref_primary_10_1016_j_ijhydene_2024_05_151 crossref_primary_10_1039_C9TA09229C crossref_primary_10_1016_j_jiec_2022_12_030 crossref_primary_10_1007_s40843_020_1541_9 crossref_primary_10_1016_j_apcatb_2021_120284 crossref_primary_10_1016_j_apsusc_2020_147203 crossref_primary_10_1016_j_jcis_2024_06_057 crossref_primary_10_1002_admi_201802052 crossref_primary_10_3390_ma15124170 crossref_primary_10_1002_aic_17785 crossref_primary_10_1016_j_carbon_2022_08_074 crossref_primary_10_1016_j_electacta_2020_137038 crossref_primary_10_1016_j_jiec_2022_05_002 crossref_primary_10_1016_j_ijhydene_2021_08_235 crossref_primary_10_3390_molecules28031475 crossref_primary_10_1039_D0NR05941B crossref_primary_10_1016_j_apcatb_2022_121917 crossref_primary_10_1016_j_cej_2023_145134 crossref_primary_10_1016_j_jssc_2021_122156 crossref_primary_10_1016_j_jallcom_2022_166754 crossref_primary_10_1007_s40843_022_2234_5 crossref_primary_10_1016_j_electacta_2018_08_046 crossref_primary_10_1016_j_ijhydene_2021_08_116 crossref_primary_10_1016_j_scib_2020_08_037 crossref_primary_10_1039_D3SE00221G crossref_primary_10_1002_advs_202002446 crossref_primary_10_1002_cctc_202101258 crossref_primary_10_1149_2_0581906jes crossref_primary_10_1016_j_apsusc_2021_149108 crossref_primary_10_1039_D3DT01179H crossref_primary_10_1002_cnma_202300125 crossref_primary_10_1016_j_ijhydene_2023_09_312 crossref_primary_10_1002_cctc_202200347 crossref_primary_10_1016_j_jcis_2023_07_048 crossref_primary_10_1039_C9QI00400A crossref_primary_10_1007_s11581_023_04904_4 crossref_primary_10_1002_cssc_202400997 crossref_primary_10_1016_j_jpowsour_2019_02_024 crossref_primary_10_1039_C9CC04481G crossref_primary_10_1002_aenm_202002863 crossref_primary_10_1039_C9CY01440C crossref_primary_10_1039_D1CP00701G crossref_primary_10_1039_D1MH01987B crossref_primary_10_1007_s40820_020_00577_0 crossref_primary_10_1016_j_nanoen_2018_11_047 crossref_primary_10_1002_celc_202000958 crossref_primary_10_1021_acs_chemrev_0c01069 crossref_primary_10_1002_admi_202400317 crossref_primary_10_1021_acsaem_1c01030 crossref_primary_10_1016_j_ijhydene_2019_03_151 crossref_primary_10_1016_j_apcatb_2021_120063 crossref_primary_10_1039_D0QM00729C crossref_primary_10_1002_advs_202207519 crossref_primary_10_1039_C9DT04633J crossref_primary_10_1021_acsenergylett_4c01412 crossref_primary_10_1007_s12274_022_4618_6 crossref_primary_10_1039_D2SE00929C crossref_primary_10_1038_s41377_022_00904_7 crossref_primary_10_1016_j_electacta_2020_136125 crossref_primary_10_1007_s10562_021_03766_7 crossref_primary_10_1002_adfm_202202068 crossref_primary_10_1002_chem_201904510 crossref_primary_10_1016_j_ijhydene_2019_12_160 crossref_primary_10_1016_j_cej_2023_144344 crossref_primary_10_1016_j_jcat_2020_03_009 crossref_primary_10_3390_su11195186 crossref_primary_10_1002_er_5428 crossref_primary_10_1016_j_ijhydene_2019_01_075 crossref_primary_10_3390_nano11061388 crossref_primary_10_1002_adma_202302979 crossref_primary_10_1016_j_ijhydene_2023_07_276 crossref_primary_10_1021_acssuschemeng_9b07237 crossref_primary_10_1002_aenm_202402046 crossref_primary_10_3389_fchem_2019_00224 crossref_primary_10_1016_j_cej_2022_134641 crossref_primary_10_1002_cssc_201901424 crossref_primary_10_1021_acsanm_1c02398 crossref_primary_10_1016_j_ijhydene_2022_09_111 crossref_primary_10_1016_j_cej_2021_133578 crossref_primary_10_1016_j_ijhydene_2019_06_018 crossref_primary_10_1039_C8DT04419H crossref_primary_10_1016_j_seppur_2023_125147 crossref_primary_10_1002_smll_201804832 crossref_primary_10_1007_s10562_023_04302_5 |
Cites_doi | 10.1021/ja104587v 10.1002/adma.201601019 10.1021/jacs.5b00281 10.1021/cr200434v 10.1016/S1293-2558(00)80081-3 10.1016/S1452-3981(23)15306-5 10.1021/ja400555q 10.1039/C4CS00160E 10.1039/C6EE00377J 10.1021/acs.accounts.6b00041 10.1039/c1jm12670a 10.1073/pnas.0603395103 10.1073/pnas.1001859107 10.1021/ja405997s 10.1021/cm403115t 10.1002/anie.201411322 10.1021/jacs.6b10657 10.1039/C3CS60248F 10.1016/j.ijhydene.2013.01.151 10.1038/ncomms5477 10.1039/C7CC06086F 10.1039/C4CS00236A 10.1021/acsnano.5b00158 10.1021/cr100246c 10.1002/adma.201506197 10.1039/C6NR09545C 10.1038/nenergy.2016.184 10.1002/anie.201701531 10.1002/anie.201511032 10.1038/srep10279 10.1021/jacs.6b12529 10.1002/admi.201500782 10.1038/ncomms11981 10.1021/acs.accounts.6b00635 10.1038/ncomms2812 10.1021/ja4027715 10.1039/C6TA02537D 10.1038/ncomms2637 10.1002/anie.201502226 10.1021/ja407115p 10.1039/C4CS00470A 10.1016/j.pmatsci.2006.10.016 10.1016/j.electacta.2016.03.082 10.1016/j.ccr.2013.02.027 10.1002/adfm.201102295 10.1002/ange.201602237 10.1002/adfm.201605703 10.1002/cctc.201000126 10.1038/nmat3087 10.1016/j.jelechem.2010.10.004 10.1021/ja5096733 10.1039/C4TA03789H 10.1126/science.1162018 10.1038/ncomms9106 |
ContentType | Journal Article |
Copyright | 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
Copyright_xml | – notice: 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
DBID | AAYXX CITATION NPM 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
DOI | 10.1002/smll.201800195 |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX MEDLINE - Academic |
DatabaseTitleList | PubMed Materials Research Database MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1613-6829 |
EndPage | n/a |
ExternalDocumentID | 29577621 10_1002_smll_201800195 SMLL201800195 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: Natural Science Foundation of China funderid: 51671141; 51571149; 51471115; 51572188 – fundername: National Basic Research Program of China funderid: 2014CB931703 – fundername: National Natural Science Foundation of Hebei Province funderid: B2018208090 |
GroupedDBID | --- 05W 0R~ 123 1L6 1OC 33P 3SF 3WU 4.4 50Y 52U 53G 5VS 66C 8-0 8-1 8UM A00 AAESR AAEVG AAHHS AAHQN AAIHA AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCUV ABIJN ABJNI ABLJU ABRTZ ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZVAB BFHJK BHBCM BMNLL BMXJE BNHUX BOGZA BRXPI CS3 DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBD EBS EJD EMOBN F5P G-S GNP HBH HGLYW HHY HHZ HZ~ IX1 KQQ LATKE LAW LEEKS LITHE LOXES LUTES LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM MY~ O66 O9- OIG P2P P2W P4E QRW R.K RIWAO RNS ROL RWI RX1 RYL SUPJJ SV3 V2E W99 WBKPD WFSAM WIH WIK WJL WOHZO WXSBR WYISQ WYJ XV2 Y6R ZZTAW ~S- 31~ AANHP AAYOK AAYXX ACBWZ ACRPL ACYXJ ADNMO AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN BDRZF CITATION FEDTE GODZA HVGLF NPM 7SR 7U5 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 L7M 7X8 |
ID | FETCH-LOGICAL-c4765-2335bb4c15653361b101d8e9ee1edd6aedc57a7309aab478e2cbbc302b0cf9a63 |
IEDL.DBID | DR2 |
ISSN | 1613-6810 1613-6829 |
IngestDate | Fri Jul 11 09:13:18 EDT 2025 Fri Jul 25 12:11:41 EDT 2025 Wed Feb 19 02:34:50 EST 2025 Tue Jul 01 02:10:34 EDT 2025 Thu Apr 24 22:58:48 EDT 2025 Wed Jan 22 16:59:01 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 17 |
Keywords | heterogeneous catalysts oxygen evolution reaction interfacial structures synergistic effects CoFe LDHs |
Language | English |
License | 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4765-2335bb4c15653361b101d8e9ee1edd6aedc57a7309aab478e2cbbc302b0cf9a63 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-3731-368X |
PMID | 29577621 |
PQID | 2030760362 |
PQPubID | 1046358 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_2018667037 proquest_journals_2030760362 pubmed_primary_29577621 crossref_primary_10_1002_smll_201800195 crossref_citationtrail_10_1002_smll_201800195 wiley_primary_10_1002_smll_201800195_SMLL201800195 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-Apr |
PublicationDateYYYYMMDD | 2018-04-01 |
PublicationDate_xml | – month: 04 year: 2018 text: 2018-Apr |
PublicationDecade | 2010 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Small (Weinheim an der Bergstrasse, Germany) |
PublicationTitleAlternate | Small |
PublicationYear | 2018 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2015; 6 2015; 5 2013; 4 2010; 107 2017; 27 2015; 54 2014; 26 2011; 10 2016; 128 2007; 52 1999; 1 2008; 321 2015; 9 2014; 136 2017; 9 2014; 43 2017; 139 2016; 55 2016; 4 2017; 50 2017; 53 2016; 7 2014; 5 2016; 1 2012; 112 2013; 38 2014; 2 2016; 3 2015; 137 2015; 44 2017; 56 2010; 110 2010; 132 2013; 257 2013; 135 2011; 21 2016; 198 2010; 2 2016; 28 2016; 49 2010; 5 2012; 22 2016; 9 2006; 103 2011; 660 e_1_2_5_27_1 e_1_2_5_25_1 e_1_2_5_48_1 e_1_2_5_23_1 e_1_2_5_46_1 e_1_2_5_21_1 e_1_2_5_44_1 e_1_2_5_29_1 e_1_2_5_42_1 e_1_2_5_40_1 e_1_2_5_15_1 e_1_2_5_38_1 e_1_2_5_17_1 e_1_2_5_36_1 e_1_2_5_9_1 e_1_2_5_11_1 e_1_2_5_34_1 e_1_2_5_7_1 e_1_2_5_13_1 e_1_2_5_32_1 e_1_2_5_55_1 e_1_2_5_5_1 e_1_2_5_3_1 e_1_2_5_1_1 e_1_2_5_19_1 e_1_2_5_30_1 e_1_2_5_53_1 e_1_2_5_51_1 Gong M. (e_1_2_5_18_1) 2013; 135 e_1_2_5_28_1 e_1_2_5_26_1 e_1_2_5_47_1 e_1_2_5_24_1 e_1_2_5_45_1 e_1_2_5_22_1 e_1_2_5_43_1 Hamdani M. (e_1_2_5_49_1) 2010; 5 e_1_2_5_20_1 e_1_2_5_41_1 e_1_2_5_14_1 e_1_2_5_39_1 e_1_2_5_16_1 e_1_2_5_37_1 e_1_2_5_8_1 e_1_2_5_10_1 e_1_2_5_35_1 e_1_2_5_6_1 e_1_2_5_12_1 e_1_2_5_33_1 e_1_2_5_54_1 e_1_2_5_4_1 e_1_2_5_2_1 e_1_2_5_31_1 e_1_2_5_52_1 e_1_2_5_50_1 |
References_xml | – volume: 135 start-page: 4516 year: 2013 publication-title: J. Am. Chem. Soc. – volume: 44 start-page: 2060 year: 2015 publication-title: Chem. Soc. Rev. – volume: 43 start-page: 7040 year: 2014 publication-title: Chem. Soc. Rev. – volume: 10 start-page: 780 year: 2011 publication-title: Nat. Mater. – volume: 43 start-page: 7746 year: 2014 publication-title: Chem. Soc. Rev. – volume: 321 start-page: 1072 year: 2008 publication-title: Science – volume: 28 start-page: 7640 year: 2016 publication-title: Adv. Mater. – volume: 28 start-page: 3777 year: 2016 publication-title: Adv. Mater. – volume: 44 start-page: 623 year: 2015 publication-title: Chem. Soc. Rev. – volume: 55 start-page: 2488 year: 2016 publication-title: Angew. Chem., Int. Ed. – volume: 9 start-page: 2445 year: 2015 publication-title: ACS Nano – volume: 26 start-page: 1040 year: 2014 publication-title: Chem. Mater. – volume: 5 start-page: 4477 year: 2014 publication-title: Nat. Commun. – volume: 38 start-page: 4901 year: 2013 publication-title: Int. J. Hydrogen Energy – volume: 139 start-page: 1077 year: 2017 publication-title: J. Am. Chem. Soc. – volume: 2 start-page: 724 year: 2010 publication-title: ChemCatChem – volume: 137 start-page: 3638 year: 2015 publication-title: J. Am. Chem. Soc. – volume: 7 start-page: 11981 year: 2016 publication-title: Nat. Commun. – volume: 132 start-page: 13612 year: 2010 publication-title: J. Am. Chem. Soc. – volume: 2 start-page: 17066 year: 2014 publication-title: J. Mater. Chem. A – volume: 198 start-page: 231 year: 2016 publication-title: Electrochim. Acta – volume: 3 start-page: 1500782 year: 2016 publication-title: Adv. Mater. Interfaces – volume: 135 start-page: 13521 year: 2013 publication-title: J. Am. Chem. Soc. – volume: 136 start-page: 16481 year: 2014 publication-title: J. Am. Chem. Soc. – volume: 9 start-page: 4143 year: 2017 publication-title: Nanoscale – volume: 103 start-page: 15729 year: 2006 publication-title: Proc. Natl. Acad. Sci. USA – volume: 54 start-page: 4787 year: 2015 publication-title: Angew. Chem., Int. Ed. – volume: 107 start-page: 10337 year: 2010 publication-title: Proc. Natl. Acad. Sci. USA – volume: 56 start-page: 8539 year: 2017 publication-title: Angew. Chem., Int. Ed. – volume: 22 start-page: 1333 year: 2012 publication-title: Adv. Funct. Mater. – volume: 27 start-page: 1605703 year: 2017 publication-title: Adv. Funct. Mater. – volume: 135 start-page: 8452 year: 2013 publication-title: J. Am. Chem. Soc. – volume: 4 start-page: 1695 year: 2013 publication-title: Nat. Commun. – volume: 4 start-page: 11516 year: 2016 publication-title: J. Mater. Chem. A – volume: 50 start-page: 915 year: 2017 publication-title: Acc. Chem. Res. – volume: 5 start-page: 10279 year: 2015 publication-title: Sci. Rep. – volume: 21 start-page: 15969 year: 2011 publication-title: J. Mater. Chem. – volume: 6 start-page: 8106 year: 2015 publication-title: Nat. Commun. – volume: 135 start-page: 8452 year: 2013 publication-title: J. Mater. Chem. A – volume: 660 start-page: 254 year: 2011 publication-title: J. Electroanal. Chem. – volume: 52 start-page: 648 year: 2007 publication-title: Prog. Mater. Sci. – volume: 257 start-page: 2607 year: 2013 publication-title: Coord. Chem. Rev. – volume: 1 start-page: 267 year: 1999 publication-title: Solid State Sci. – volume: 9 start-page: 1734 year: 2016 publication-title: Energy Environ. Sci. – volume: 112 start-page: 4124 year: 2012 publication-title: Chem. Rev. – volume: 110 start-page: 6474 year: 2010 publication-title: Chem. Rev. – volume: 53 start-page: 9809 year: 2017 publication-title: Chem. Commun. – volume: 54 start-page: 7399 year: 2015 publication-title: Angew. Chem., Int. Ed. – volume: 135 start-page: 16977 year: 2013 publication-title: J. Am. Chem. Soc. – volume: 4 start-page: 1805 year: 2013 publication-title: Nat. Commun. – volume: 49 start-page: 678 year: 2016 publication-title: Acc. Chem. Res. – volume: 5 start-page: 556 year: 2010 publication-title: Int. J. Electrochem. Sci. – volume: 1 start-page: 16184 year: 2016 publication-title: Nat. Energy – volume: 139 start-page: 2277 year: 2017 publication-title: J. Am. Chem. Soc. – volume: 128 start-page: 6814 year: 2016 publication-title: Angew. Chem. – ident: e_1_2_5_9_1 doi: 10.1021/ja104587v – ident: e_1_2_5_15_1 doi: 10.1002/adma.201601019 – ident: e_1_2_5_14_1 doi: 10.1021/jacs.5b00281 – ident: e_1_2_5_36_1 doi: 10.1021/cr200434v – ident: e_1_2_5_48_1 doi: 10.1016/S1293-2558(00)80081-3 – volume: 5 start-page: 556 year: 2010 ident: e_1_2_5_49_1 publication-title: Int. J. Electrochem. Sci. doi: 10.1016/S1452-3981(23)15306-5 – ident: e_1_2_5_51_1 doi: 10.1021/ja400555q – ident: e_1_2_5_17_1 doi: 10.1039/C4CS00160E – ident: e_1_2_5_29_1 doi: 10.1039/C6EE00377J – ident: e_1_2_5_30_1 doi: 10.1021/acs.accounts.6b00041 – ident: e_1_2_5_37_1 doi: 10.1039/c1jm12670a – ident: e_1_2_5_1_1 doi: 10.1073/pnas.0603395103 – ident: e_1_2_5_8_1 doi: 10.1073/pnas.1001859107 – ident: e_1_2_5_41_1 doi: 10.1021/ja405997s – ident: e_1_2_5_44_1 doi: 10.1021/cm403115t – ident: e_1_2_5_32_1 doi: 10.1002/anie.201411322 – ident: e_1_2_5_11_1 doi: 10.1021/jacs.6b10657 – ident: e_1_2_5_4_1 doi: 10.1039/C3CS60248F – ident: e_1_2_5_7_1 doi: 10.1016/j.ijhydene.2013.01.151 – ident: e_1_2_5_55_1 doi: 10.1038/ncomms5477 – ident: e_1_2_5_22_1 doi: 10.1039/C7CC06086F – ident: e_1_2_5_50_1 doi: 10.1039/C4CS00236A – ident: e_1_2_5_26_1 doi: 10.1021/acsnano.5b00158 – ident: e_1_2_5_3_1 doi: 10.1021/cr100246c – ident: e_1_2_5_23_1 doi: 10.1002/adma.201506197 – volume: 135 start-page: 8452 year: 2013 ident: e_1_2_5_18_1 publication-title: J. Mater. Chem. A – ident: e_1_2_5_46_1 doi: 10.1039/C6NR09545C – ident: e_1_2_5_54_1 doi: 10.1038/nenergy.2016.184 – ident: e_1_2_5_21_1 doi: 10.1002/anie.201701531 – ident: e_1_2_5_53_1 doi: 10.1002/anie.201511032 – ident: e_1_2_5_12_1 doi: 10.1038/srep10279 – ident: e_1_2_5_25_1 doi: 10.1021/jacs.6b12529 – ident: e_1_2_5_40_1 doi: 10.1002/admi.201500782 – ident: e_1_2_5_20_1 doi: 10.1038/ncomms11981 – ident: e_1_2_5_28_1 doi: 10.1021/acs.accounts.6b00635 – ident: e_1_2_5_52_1 doi: 10.1038/ncomms2812 – ident: e_1_2_5_43_1 doi: 10.1021/ja4027715 – ident: e_1_2_5_19_1 doi: 10.1039/C6TA02537D – ident: e_1_2_5_31_1 doi: 10.1038/ncomms2637 – ident: e_1_2_5_45_1 doi: 10.1002/anie.201502226 – ident: e_1_2_5_16_1 doi: 10.1021/ja407115p – ident: e_1_2_5_47_1 doi: 10.1039/C4CS00470A – ident: e_1_2_5_34_1 doi: 10.1016/j.pmatsci.2006.10.016 – ident: e_1_2_5_39_1 doi: 10.1016/j.electacta.2016.03.082 – ident: e_1_2_5_10_1 doi: 10.1016/j.ccr.2013.02.027 – ident: e_1_2_5_35_1 doi: 10.1002/adfm.201102295 – ident: e_1_2_5_27_1 doi: 10.1002/ange.201602237 – ident: e_1_2_5_33_1 doi: 10.1002/adfm.201605703 – ident: e_1_2_5_5_1 doi: 10.1002/cctc.201000126 – ident: e_1_2_5_24_1 doi: 10.1038/nmat3087 – ident: e_1_2_5_6_1 doi: 10.1016/j.jelechem.2010.10.004 – ident: e_1_2_5_13_1 doi: 10.1021/ja5096733 – ident: e_1_2_5_38_1 doi: 10.1039/C4TA03789H – ident: e_1_2_5_2_1 doi: 10.1126/science.1162018 – ident: e_1_2_5_42_1 doi: 10.1038/ncomms9106 |
SSID | ssj0031247 |
Score | 2.5565822 |
Snippet | Exploiting high‐performance, robust, and cost‐effective electrocatalysts for the oxygen evolution reaction (OER) is crucial for electrochemical energy storage... Exploiting high-performance, robust, and cost-effective electrocatalysts for the oxygen evolution reaction (OER) is crucial for electrochemical energy storage... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e1800195 |
SubjectTerms | Catalysis Catalysts Catalytic activity Charge transfer CoFe LDHs Couplings Electrocatalysts Energy storage heterogeneous catalysts Hydroxides interfacial structures Laser ablation Nanoclusters Nanotechnology Oxidation oxygen evolution reaction Oxygen evolution reactions Pulsed lasers synergistic effects Valence |
Title | Strongly Coupled CoO Nanoclusters/CoFe LDHs Hybrid as a Synergistic Catalyst for Electrochemical Water Oxidation |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.201800195 https://www.ncbi.nlm.nih.gov/pubmed/29577621 https://www.proquest.com/docview/2030760362 https://www.proquest.com/docview/2018667037 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED-hPY0HYHyGDWQkJJ6yNrHz4cepW1WhjkmUib1FtuOgidBUSyOt_PXc2WlYQQgJnpLIH3F8vo_4fL8DeKtFhXojkmHJkQwiESbUlbShFRmuhrjKtfOYnn9IZ5fi_VVydSeK3-NDDBtuxBlOXhODK92OfoKGtt9qch1EuYt5QyFMB7bIKvo44EdxVF4uuwrqrJCAt7aojeN4tNt8Vyv9ZmruWq5O9UwfgtoO2p84-XrcrfWx-f4LnuP_fNUjeNDbpezEL6QDuGeXj-H-HbTCJ7Ba0Lb5l3rDJk23qm2J1wuG4rkxdUd4C-1o0kwtm5_OWjbbUCgYUy1TbLGhAEOHCM0mtF20adcMjWV25nPwmB60gH1Gw_eGXdxe-0RPT-FyevZpMgv7hA2hERmdluM80VoY_CdEKzKNNPJ7mVtpbWTLMlW2NEmmUKZIpbTIchsbrQ0fx3psKqlS_gz2ls3SvgCWWBNxzUtlc5IxUgplolLG2E1iK2ECCLcEK0yPZk5JNerC4zDHBc1kMcxkAO-G-iuP4_HHmkdb-hc9P7dYysmFido-gDdDMXIiuVfU0jZd63pIU5SgWQDP_boZXhXLJEO1EwUQO-r_ZQzF4nw-H55e_kujQ9ine3_I6Aj21jedfYX201q_djzyA0MGEnQ |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dj5QwEJ_o-aD34LcnempNTHzidoHy0UezdxtU9i5x76JvpC3FGHHZHEvi-tc7QwFdjTHRJwL9oLTzxXT6G4AXipeoNzzhFgEuAw-5dlUpjGt4jNTgl4nqdkwXp1F6wd98CIdoQjoLY_EhRocbcUYnr4nBySE9-YEa2nypaO_AS7pDb1fhGqX1Jvj843cjglSA6qvLr4JayyXorQG3cepPdtvv6qXfjM1d27VTPvNboIZh25iTz0ftRh3pb78gOv7Xd92Gm71pyl5ZWroDV8zqLuz_BFh4D9ZL8px_rLZsVrfryhR4PWMooWtdtQS50Exm9dyw7DhtWLql02BMNkyy5ZbOGHag0GxGHqNts2FoL7MTm4ZH97gF7D3avpfs7Osnm-vpPlzMT85nqdvnbHA1jylgLghCpbjG30I0JCNPIcsXiRHGeKYoImkKHcYSxYqQUvE4Mb5WSgdTX011KWQUPIC9Vb0yD4GFRnuBCgppEhIzQnCpvUL42E1oSq4dcIcVy3UPaE55NarcQjH7Oc1kPs6kAy_H-msL5fHHmocDAeQ9SzdYGtAuJip8B56PxciMtMMiV6Zum66HKEIhGjtwYAlnfJUvwhg1j-eA3y3_X8aQLxdZNt49-pdGz-B6er7I8uz16dvHcIOe25ijQ9jbXLbmCZpTG_W0Y5jvZKkWkA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFD6CISF42LgTNsBISDxlbWLn4kfUrirQbYgysbfItyBEaKqlkVZ-Pcd2GlYQQoKnKPEljo_PJT4-3wF4KVmJeiPioaZIBpYwFcqSm9CwDFdDXObSeUyPT9LpGXt7npxfieL3-BD9hpvlDCevLYMvdTn4CRrafKus6yDKXczbdbjB0iG3yRvGH3oAKYray6VXQaUVWuStDWzjMB5st99WS7_Zmtumq9M9kz0Qm1H7IydfD9uVPFTffwF0_J_PugO7nWFKXvuVdBeumcU9uH0FrvA-LOd23_xztSajul1WRuP1lKB8rlXVWsCFZjCqJ4bMxtOGTNc2FoyIhggyX9sIQwcJTUZ2v2jdrAhay-TIJ-FRHWoB-YSW7wU5vfziMz09gLPJ0cfRNOwyNoSKZfa4HKWJlEzhTyGakWkkkeF1brgxkdE6FUarJBMoVLgQkmW5iZWUig5jOVQlFyl9CDuLemEeA0mMiqikWpjcChnOmVCR5jF2k5iSqQDCDcEK1cGZ26waVeGBmOPCzmTRz2QAr_r6Sw_k8ceaBxv6Fx1DN1hKrQ8T1X0AL_piZEXrXxELU7eN6yFNUYRmATzy66Z_VcyTDPVOFEDsqP-XMRTz49msv3vyL42ew83340kxe3Pybh9u2cf-wNEB7KwuWvMUbamVfObY5QcLOxU_ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Strongly+Coupled+CoO+Nanoclusters%2FCoFe+LDHs+Hybrid+as+a+Synergistic+Catalyst+for+Electrochemical+Water+Oxidation&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Zhi%E2%80%90Wen+Gao&rft.au=Tian%2C+Ma&rft.au=Xue%E2%80%90Min+Chen&rft.au=Liu%2C+Hui&rft.date=2018-04-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1613-6810&rft.eissn=1613-6829&rft.volume=14&rft.issue=17&rft_id=info:doi/10.1002%2Fsmll.201800195&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon |