Strongly Coupled CoO Nanoclusters/CoFe LDHs Hybrid as a Synergistic Catalyst for Electrochemical Water Oxidation

Exploiting high‐performance, robust, and cost‐effective electrocatalysts for the oxygen evolution reaction (OER) is crucial for electrochemical energy storage and conversion technologies. Engineering the interfacial structure of hybrid catalysts often induces synergistically enhanced electrocatalyti...

Full description

Saved in:
Bibliographic Details
Published inSmall (Weinheim an der Bergstrasse, Germany) Vol. 14; no. 17; pp. e1800195 - n/a
Main Authors Gao, Zhi‐Wen, Ma, Tian, Chen, Xue‐Min, Liu, Hui, Cui, Lan, Qiao, Shi‐Zhang, Yang, Jing, Du, Xi‐Wen
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.04.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Exploiting high‐performance, robust, and cost‐effective electrocatalysts for the oxygen evolution reaction (OER) is crucial for electrochemical energy storage and conversion technologies. Engineering the interfacial structure of hybrid catalysts often induces synergistically enhanced electrocatalytic performance. Herein, a new strongly coupled heterogeneous catalyst with proper interfacial structures, i.e., CoO nanoclusters decorated on CoFe layered double hydroxides (LDHs) nanosheets, is prepared via a simple one‐step pulsed laser ablation in liquid method. Thorough spectroscopic characterizations reveal that strong chemical couplings at the hybrid interface trigger charge transfer from CoII in the oxide to FeIII in the LDHs through the interfacial FeOCo bond, leading to considerable amounts of high oxidation state CoIII sites present in the hybrid. Interestingly, the CoO/CoFe LDHs exhibit pronounced synergistic effects in electrocatalytic water oxidation, with substantially enhanced intrinsic catalytic activity and stability relative to both components. The hybrid catalyst achieves remarkably low OER overpotential and Tafel slope in alkaline medium, outperforming that of Ru/C and manifesting itself among the most active Co‐based OER catalysts. A strongly coupled CoO/CoFe layered double hydroxides heterogeneous catalyst with proper interfacial structures is prepared via a one‐step laser ablation method. The strong chemical coupling at the hybrid interface triggers charge transfer through the interfacial FeOCo bond, resulting in abundant high oxidation state CoIII sites. The hybrid catalyst exhibits pronounced synergistic effects for the oxygen evolution reaction, with substantially enhanced intrinsic activity, turnover frequency, and stability.
AbstractList Exploiting high-performance, robust, and cost-effective electrocatalysts for the oxygen evolution reaction (OER) is crucial for electrochemical energy storage and conversion technologies. Engineering the interfacial structure of hybrid catalysts often induces synergistically enhanced electrocatalytic performance. Herein, a new strongly coupled heterogeneous catalyst with proper interfacial structures, i.e., CoO nanoclusters decorated on CoFe layered double hydroxides (LDHs) nanosheets, is prepared via a simple one-step pulsed laser ablation in liquid method. Thorough spectroscopic characterizations reveal that strong chemical couplings at the hybrid interface trigger charge transfer from Co in the oxide to Fe in the LDHs through the interfacial FeOCo bond, leading to considerable amounts of high oxidation state Co sites present in the hybrid. Interestingly, the CoO/CoFe LDHs exhibit pronounced synergistic effects in electrocatalytic water oxidation, with substantially enhanced intrinsic catalytic activity and stability relative to both components. The hybrid catalyst achieves remarkably low OER overpotential and Tafel slope in alkaline medium, outperforming that of Ru/C and manifesting itself among the most active Co-based OER catalysts.
Exploiting high‐performance, robust, and cost‐effective electrocatalysts for the oxygen evolution reaction (OER) is crucial for electrochemical energy storage and conversion technologies. Engineering the interfacial structure of hybrid catalysts often induces synergistically enhanced electrocatalytic performance. Herein, a new strongly coupled heterogeneous catalyst with proper interfacial structures, i.e., CoO nanoclusters decorated on CoFe layered double hydroxides (LDHs) nanosheets, is prepared via a simple one‐step pulsed laser ablation in liquid method. Thorough spectroscopic characterizations reveal that strong chemical couplings at the hybrid interface trigger charge transfer from CoII in the oxide to FeIII in the LDHs through the interfacial FeOCo bond, leading to considerable amounts of high oxidation state CoIII sites present in the hybrid. Interestingly, the CoO/CoFe LDHs exhibit pronounced synergistic effects in electrocatalytic water oxidation, with substantially enhanced intrinsic catalytic activity and stability relative to both components. The hybrid catalyst achieves remarkably low OER overpotential and Tafel slope in alkaline medium, outperforming that of Ru/C and manifesting itself among the most active Co‐based OER catalysts.
Exploiting high‐performance, robust, and cost‐effective electrocatalysts for the oxygen evolution reaction (OER) is crucial for electrochemical energy storage and conversion technologies. Engineering the interfacial structure of hybrid catalysts often induces synergistically enhanced electrocatalytic performance. Herein, a new strongly coupled heterogeneous catalyst with proper interfacial structures, i.e., CoO nanoclusters decorated on CoFe layered double hydroxides (LDHs) nanosheets, is prepared via a simple one‐step pulsed laser ablation in liquid method. Thorough spectroscopic characterizations reveal that strong chemical couplings at the hybrid interface trigger charge transfer from CoII in the oxide to FeIII in the LDHs through the interfacial FeOCo bond, leading to considerable amounts of high oxidation state CoIII sites present in the hybrid. Interestingly, the CoO/CoFe LDHs exhibit pronounced synergistic effects in electrocatalytic water oxidation, with substantially enhanced intrinsic catalytic activity and stability relative to both components. The hybrid catalyst achieves remarkably low OER overpotential and Tafel slope in alkaline medium, outperforming that of Ru/C and manifesting itself among the most active Co‐based OER catalysts. A strongly coupled CoO/CoFe layered double hydroxides heterogeneous catalyst with proper interfacial structures is prepared via a one‐step laser ablation method. The strong chemical coupling at the hybrid interface triggers charge transfer through the interfacial FeOCo bond, resulting in abundant high oxidation state CoIII sites. The hybrid catalyst exhibits pronounced synergistic effects for the oxygen evolution reaction, with substantially enhanced intrinsic activity, turnover frequency, and stability.
Exploiting high-performance, robust, and cost-effective electrocatalysts for the oxygen evolution reaction (OER) is crucial for electrochemical energy storage and conversion technologies. Engineering the interfacial structure of hybrid catalysts often induces synergistically enhanced electrocatalytic performance. Herein, a new strongly coupled heterogeneous catalyst with proper interfacial structures, i.e., CoO nanoclusters decorated on CoFe layered double hydroxides (LDHs) nanosheets, is prepared via a simple one-step pulsed laser ablation in liquid method. Thorough spectroscopic characterizations reveal that strong chemical couplings at the hybrid interface trigger charge transfer from CoII in the oxide to FeIII in the LDHs through the interfacial FeOCo bond, leading to considerable amounts of high oxidation state CoIII sites present in the hybrid. Interestingly, the CoO/CoFe LDHs exhibit pronounced synergistic effects in electrocatalytic water oxidation, with substantially enhanced intrinsic catalytic activity and stability relative to both components. The hybrid catalyst achieves remarkably low OER overpotential and Tafel slope in alkaline medium, outperforming that of Ru/C and manifesting itself among the most active Co-based OER catalysts.Exploiting high-performance, robust, and cost-effective electrocatalysts for the oxygen evolution reaction (OER) is crucial for electrochemical energy storage and conversion technologies. Engineering the interfacial structure of hybrid catalysts often induces synergistically enhanced electrocatalytic performance. Herein, a new strongly coupled heterogeneous catalyst with proper interfacial structures, i.e., CoO nanoclusters decorated on CoFe layered double hydroxides (LDHs) nanosheets, is prepared via a simple one-step pulsed laser ablation in liquid method. Thorough spectroscopic characterizations reveal that strong chemical couplings at the hybrid interface trigger charge transfer from CoII in the oxide to FeIII in the LDHs through the interfacial FeOCo bond, leading to considerable amounts of high oxidation state CoIII sites present in the hybrid. Interestingly, the CoO/CoFe LDHs exhibit pronounced synergistic effects in electrocatalytic water oxidation, with substantially enhanced intrinsic catalytic activity and stability relative to both components. The hybrid catalyst achieves remarkably low OER overpotential and Tafel slope in alkaline medium, outperforming that of Ru/C and manifesting itself among the most active Co-based OER catalysts.
Exploiting high‐performance, robust, and cost‐effective electrocatalysts for the oxygen evolution reaction (OER) is crucial for electrochemical energy storage and conversion technologies. Engineering the interfacial structure of hybrid catalysts often induces synergistically enhanced electrocatalytic performance. Herein, a new strongly coupled heterogeneous catalyst with proper interfacial structures, i.e., CoO nanoclusters decorated on CoFe layered double hydroxides (LDHs) nanosheets, is prepared via a simple one‐step pulsed laser ablation in liquid method. Thorough spectroscopic characterizations reveal that strong chemical couplings at the hybrid interface trigger charge transfer from Co II in the oxide to Fe III in the LDHs through the interfacial FeOCo bond, leading to considerable amounts of high oxidation state Co III sites present in the hybrid. Interestingly, the CoO/CoFe LDHs exhibit pronounced synergistic effects in electrocatalytic water oxidation, with substantially enhanced intrinsic catalytic activity and stability relative to both components. The hybrid catalyst achieves remarkably low OER overpotential and Tafel slope in alkaline medium, outperforming that of Ru/C and manifesting itself among the most active Co‐based OER catalysts.
Author Gao, Zhi‐Wen
Yang, Jing
Liu, Hui
Qiao, Shi‐Zhang
Ma, Tian
Du, Xi‐Wen
Chen, Xue‐Min
Cui, Lan
Author_xml – sequence: 1
  givenname: Zhi‐Wen
  surname: Gao
  fullname: Gao, Zhi‐Wen
  organization: Tianjin University
– sequence: 2
  givenname: Tian
  surname: Ma
  fullname: Ma, Tian
  organization: Tianjin University
– sequence: 3
  givenname: Xue‐Min
  surname: Chen
  fullname: Chen, Xue‐Min
  organization: Hebei University of Science & Technology
– sequence: 4
  givenname: Hui
  surname: Liu
  fullname: Liu, Hui
  organization: Tianjin University
– sequence: 5
  givenname: Lan
  surname: Cui
  fullname: Cui, Lan
  organization: Tianjin University
– sequence: 6
  givenname: Shi‐Zhang
  surname: Qiao
  fullname: Qiao, Shi‐Zhang
  organization: The University of Adelaide
– sequence: 7
  givenname: Jing
  orcidid: 0000-0002-3731-368X
  surname: Yang
  fullname: Yang, Jing
  email: yang_jing@tju.edu.cn
  organization: Tianjin University
– sequence: 8
  givenname: Xi‐Wen
  surname: Du
  fullname: Du, Xi‐Wen
  email: xwdu@tju.edu.cn
  organization: Tianjin University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29577621$$D View this record in MEDLINE/PubMed
BookMark eNqFkb1v2zAQxYkiQfPRrh0LAl2y2OGHRFpjoSZxAaUe3KKjQFLnlAEluiSFRv996DpxgABFp7vh994d3jtDR4MfAKEPlMwpIewy9s7NGaELQmhVvkGnVFA-EwtWHR12Sk7QWYz3hHDKCvkWnbCqlFIweoq26xT8cOcmXPtx66DLc4W_qcEbN8YEIV7W_hpw82UZ8XLSwXZYRazwehog3NmYrMG1SspNMeGND_jKgcme5hf01iiHf6rsglcPtlPJ-uEdOt4oF-H90zxHP66vvtfLWbO6-Vp_bmamkKKcMc5LrQtDS1FyLqimhHYLqAAodJ1Q0JlSKslJpZQu5AKY0dpwwjQxm0oJfo4u9r7b4H-PEFPb22jAOTWAH2O7y0wISbjM6KdX6L0fw5C_yxQnUhAuWKY-PlGj7qFrt8H2Kkztc5YZmO8BE3yMATYHhJJ2V1a7K6s9lJUFxSuBselvSCko6_4tq_ayP9bB9J8j7fq2aV60jzaBqYA
CitedBy_id crossref_primary_10_1016_j_mtener_2022_100968
crossref_primary_10_1039_D2RA04253C
crossref_primary_10_1039_D1EE02105B
crossref_primary_10_1016_j_electacta_2019_03_118
crossref_primary_10_1016_j_jallcom_2022_163994
crossref_primary_10_1016_j_jelechem_2020_114235
crossref_primary_10_1016_j_electacta_2019_134595
crossref_primary_10_1088_2515_7647_ac0bfd
crossref_primary_10_1039_D3TA06995H
crossref_primary_10_1002_cssc_201802437
crossref_primary_10_1016_j_cej_2022_136031
crossref_primary_10_1016_j_ijhydene_2024_05_151
crossref_primary_10_1039_C9TA09229C
crossref_primary_10_1016_j_jiec_2022_12_030
crossref_primary_10_1007_s40843_020_1541_9
crossref_primary_10_1016_j_apcatb_2021_120284
crossref_primary_10_1016_j_apsusc_2020_147203
crossref_primary_10_1016_j_jcis_2024_06_057
crossref_primary_10_1002_admi_201802052
crossref_primary_10_3390_ma15124170
crossref_primary_10_1002_aic_17785
crossref_primary_10_1016_j_carbon_2022_08_074
crossref_primary_10_1016_j_electacta_2020_137038
crossref_primary_10_1016_j_jiec_2022_05_002
crossref_primary_10_1016_j_ijhydene_2021_08_235
crossref_primary_10_3390_molecules28031475
crossref_primary_10_1039_D0NR05941B
crossref_primary_10_1016_j_apcatb_2022_121917
crossref_primary_10_1016_j_cej_2023_145134
crossref_primary_10_1016_j_jssc_2021_122156
crossref_primary_10_1016_j_jallcom_2022_166754
crossref_primary_10_1007_s40843_022_2234_5
crossref_primary_10_1016_j_electacta_2018_08_046
crossref_primary_10_1016_j_ijhydene_2021_08_116
crossref_primary_10_1016_j_scib_2020_08_037
crossref_primary_10_1039_D3SE00221G
crossref_primary_10_1002_advs_202002446
crossref_primary_10_1002_cctc_202101258
crossref_primary_10_1149_2_0581906jes
crossref_primary_10_1016_j_apsusc_2021_149108
crossref_primary_10_1039_D3DT01179H
crossref_primary_10_1002_cnma_202300125
crossref_primary_10_1016_j_ijhydene_2023_09_312
crossref_primary_10_1002_cctc_202200347
crossref_primary_10_1016_j_jcis_2023_07_048
crossref_primary_10_1039_C9QI00400A
crossref_primary_10_1007_s11581_023_04904_4
crossref_primary_10_1002_cssc_202400997
crossref_primary_10_1016_j_jpowsour_2019_02_024
crossref_primary_10_1039_C9CC04481G
crossref_primary_10_1002_aenm_202002863
crossref_primary_10_1039_C9CY01440C
crossref_primary_10_1039_D1CP00701G
crossref_primary_10_1039_D1MH01987B
crossref_primary_10_1007_s40820_020_00577_0
crossref_primary_10_1016_j_nanoen_2018_11_047
crossref_primary_10_1002_celc_202000958
crossref_primary_10_1021_acs_chemrev_0c01069
crossref_primary_10_1002_admi_202400317
crossref_primary_10_1021_acsaem_1c01030
crossref_primary_10_1016_j_ijhydene_2019_03_151
crossref_primary_10_1016_j_apcatb_2021_120063
crossref_primary_10_1039_D0QM00729C
crossref_primary_10_1002_advs_202207519
crossref_primary_10_1039_C9DT04633J
crossref_primary_10_1021_acsenergylett_4c01412
crossref_primary_10_1007_s12274_022_4618_6
crossref_primary_10_1039_D2SE00929C
crossref_primary_10_1038_s41377_022_00904_7
crossref_primary_10_1016_j_electacta_2020_136125
crossref_primary_10_1007_s10562_021_03766_7
crossref_primary_10_1002_adfm_202202068
crossref_primary_10_1002_chem_201904510
crossref_primary_10_1016_j_ijhydene_2019_12_160
crossref_primary_10_1016_j_cej_2023_144344
crossref_primary_10_1016_j_jcat_2020_03_009
crossref_primary_10_3390_su11195186
crossref_primary_10_1002_er_5428
crossref_primary_10_1016_j_ijhydene_2019_01_075
crossref_primary_10_3390_nano11061388
crossref_primary_10_1002_adma_202302979
crossref_primary_10_1016_j_ijhydene_2023_07_276
crossref_primary_10_1021_acssuschemeng_9b07237
crossref_primary_10_1002_aenm_202402046
crossref_primary_10_3389_fchem_2019_00224
crossref_primary_10_1016_j_cej_2022_134641
crossref_primary_10_1002_cssc_201901424
crossref_primary_10_1021_acsanm_1c02398
crossref_primary_10_1016_j_ijhydene_2022_09_111
crossref_primary_10_1016_j_cej_2021_133578
crossref_primary_10_1016_j_ijhydene_2019_06_018
crossref_primary_10_1039_C8DT04419H
crossref_primary_10_1016_j_seppur_2023_125147
crossref_primary_10_1002_smll_201804832
crossref_primary_10_1007_s10562_023_04302_5
Cites_doi 10.1021/ja104587v
10.1002/adma.201601019
10.1021/jacs.5b00281
10.1021/cr200434v
10.1016/S1293-2558(00)80081-3
10.1016/S1452-3981(23)15306-5
10.1021/ja400555q
10.1039/C4CS00160E
10.1039/C6EE00377J
10.1021/acs.accounts.6b00041
10.1039/c1jm12670a
10.1073/pnas.0603395103
10.1073/pnas.1001859107
10.1021/ja405997s
10.1021/cm403115t
10.1002/anie.201411322
10.1021/jacs.6b10657
10.1039/C3CS60248F
10.1016/j.ijhydene.2013.01.151
10.1038/ncomms5477
10.1039/C7CC06086F
10.1039/C4CS00236A
10.1021/acsnano.5b00158
10.1021/cr100246c
10.1002/adma.201506197
10.1039/C6NR09545C
10.1038/nenergy.2016.184
10.1002/anie.201701531
10.1002/anie.201511032
10.1038/srep10279
10.1021/jacs.6b12529
10.1002/admi.201500782
10.1038/ncomms11981
10.1021/acs.accounts.6b00635
10.1038/ncomms2812
10.1021/ja4027715
10.1039/C6TA02537D
10.1038/ncomms2637
10.1002/anie.201502226
10.1021/ja407115p
10.1039/C4CS00470A
10.1016/j.pmatsci.2006.10.016
10.1016/j.electacta.2016.03.082
10.1016/j.ccr.2013.02.027
10.1002/adfm.201102295
10.1002/ange.201602237
10.1002/adfm.201605703
10.1002/cctc.201000126
10.1038/nmat3087
10.1016/j.jelechem.2010.10.004
10.1021/ja5096733
10.1039/C4TA03789H
10.1126/science.1162018
10.1038/ncomms9106
ContentType Journal Article
Copyright 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Copyright_xml – notice: 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DBID AAYXX
CITATION
NPM
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
DOI 10.1002/smll.201800195
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
MEDLINE - Academic
DatabaseTitleList PubMed
Materials Research Database

MEDLINE - Academic
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1613-6829
EndPage n/a
ExternalDocumentID 29577621
10_1002_smll_201800195
SMLL201800195
Genre article
Journal Article
GrantInformation_xml – fundername: Natural Science Foundation of China
  funderid: 51671141; 51571149; 51471115; 51572188
– fundername: National Basic Research Program of China
  funderid: 2014CB931703
– fundername: National Natural Science Foundation of Hebei Province
  funderid: B2018208090
GroupedDBID ---
05W
0R~
123
1L6
1OC
33P
3SF
3WU
4.4
50Y
52U
53G
5VS
66C
8-0
8-1
8UM
A00
AAESR
AAEVG
AAHHS
AAHQN
AAIHA
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCUV
ABIJN
ABJNI
ABLJU
ABRTZ
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZVAB
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BOGZA
BRXPI
CS3
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F5P
G-S
GNP
HBH
HGLYW
HHY
HHZ
HZ~
IX1
KQQ
LATKE
LAW
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O66
O9-
OIG
P2P
P2W
P4E
QRW
R.K
RIWAO
RNS
ROL
RWI
RX1
RYL
SUPJJ
SV3
V2E
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WXSBR
WYISQ
WYJ
XV2
Y6R
ZZTAW
~S-
31~
AANHP
AAYOK
AAYXX
ACBWZ
ACRPL
ACYXJ
ADNMO
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
BDRZF
CITATION
FEDTE
GODZA
HVGLF
NPM
7SR
7U5
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
L7M
7X8
ID FETCH-LOGICAL-c4765-2335bb4c15653361b101d8e9ee1edd6aedc57a7309aab478e2cbbc302b0cf9a63
IEDL.DBID DR2
ISSN 1613-6810
1613-6829
IngestDate Fri Jul 11 09:13:18 EDT 2025
Fri Jul 25 12:11:41 EDT 2025
Wed Feb 19 02:34:50 EST 2025
Tue Jul 01 02:10:34 EDT 2025
Thu Apr 24 22:58:48 EDT 2025
Wed Jan 22 16:59:01 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 17
Keywords heterogeneous catalysts
oxygen evolution reaction
interfacial structures
synergistic effects
CoFe LDHs
Language English
License 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4765-2335bb4c15653361b101d8e9ee1edd6aedc57a7309aab478e2cbbc302b0cf9a63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-3731-368X
PMID 29577621
PQID 2030760362
PQPubID 1046358
PageCount 8
ParticipantIDs proquest_miscellaneous_2018667037
proquest_journals_2030760362
pubmed_primary_29577621
crossref_primary_10_1002_smll_201800195
crossref_citationtrail_10_1002_smll_201800195
wiley_primary_10_1002_smll_201800195_SMLL201800195
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-Apr
PublicationDateYYYYMMDD 2018-04-01
PublicationDate_xml – month: 04
  year: 2018
  text: 2018-Apr
PublicationDecade 2010
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Small (Weinheim an der Bergstrasse, Germany)
PublicationTitleAlternate Small
PublicationYear 2018
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2015; 6
2015; 5
2013; 4
2010; 107
2017; 27
2015; 54
2014; 26
2011; 10
2016; 128
2007; 52
1999; 1
2008; 321
2015; 9
2014; 136
2017; 9
2014; 43
2017; 139
2016; 55
2016; 4
2017; 50
2017; 53
2016; 7
2014; 5
2016; 1
2012; 112
2013; 38
2014; 2
2016; 3
2015; 137
2015; 44
2017; 56
2010; 110
2010; 132
2013; 257
2013; 135
2011; 21
2016; 198
2010; 2
2016; 28
2016; 49
2010; 5
2012; 22
2016; 9
2006; 103
2011; 660
e_1_2_5_27_1
e_1_2_5_25_1
e_1_2_5_48_1
e_1_2_5_23_1
e_1_2_5_46_1
e_1_2_5_21_1
e_1_2_5_44_1
e_1_2_5_29_1
e_1_2_5_42_1
e_1_2_5_40_1
e_1_2_5_15_1
e_1_2_5_38_1
e_1_2_5_17_1
e_1_2_5_36_1
e_1_2_5_9_1
e_1_2_5_11_1
e_1_2_5_34_1
e_1_2_5_7_1
e_1_2_5_13_1
e_1_2_5_32_1
e_1_2_5_55_1
e_1_2_5_5_1
e_1_2_5_3_1
e_1_2_5_1_1
e_1_2_5_19_1
e_1_2_5_30_1
e_1_2_5_53_1
e_1_2_5_51_1
Gong M. (e_1_2_5_18_1) 2013; 135
e_1_2_5_28_1
e_1_2_5_26_1
e_1_2_5_47_1
e_1_2_5_24_1
e_1_2_5_45_1
e_1_2_5_22_1
e_1_2_5_43_1
Hamdani M. (e_1_2_5_49_1) 2010; 5
e_1_2_5_20_1
e_1_2_5_41_1
e_1_2_5_14_1
e_1_2_5_39_1
e_1_2_5_16_1
e_1_2_5_37_1
e_1_2_5_8_1
e_1_2_5_10_1
e_1_2_5_35_1
e_1_2_5_6_1
e_1_2_5_12_1
e_1_2_5_33_1
e_1_2_5_54_1
e_1_2_5_4_1
e_1_2_5_2_1
e_1_2_5_31_1
e_1_2_5_52_1
e_1_2_5_50_1
References_xml – volume: 135
  start-page: 4516
  year: 2013
  publication-title: J. Am. Chem. Soc.
– volume: 44
  start-page: 2060
  year: 2015
  publication-title: Chem. Soc. Rev.
– volume: 43
  start-page: 7040
  year: 2014
  publication-title: Chem. Soc. Rev.
– volume: 10
  start-page: 780
  year: 2011
  publication-title: Nat. Mater.
– volume: 43
  start-page: 7746
  year: 2014
  publication-title: Chem. Soc. Rev.
– volume: 321
  start-page: 1072
  year: 2008
  publication-title: Science
– volume: 28
  start-page: 7640
  year: 2016
  publication-title: Adv. Mater.
– volume: 28
  start-page: 3777
  year: 2016
  publication-title: Adv. Mater.
– volume: 44
  start-page: 623
  year: 2015
  publication-title: Chem. Soc. Rev.
– volume: 55
  start-page: 2488
  year: 2016
  publication-title: Angew. Chem., Int. Ed.
– volume: 9
  start-page: 2445
  year: 2015
  publication-title: ACS Nano
– volume: 26
  start-page: 1040
  year: 2014
  publication-title: Chem. Mater.
– volume: 5
  start-page: 4477
  year: 2014
  publication-title: Nat. Commun.
– volume: 38
  start-page: 4901
  year: 2013
  publication-title: Int. J. Hydrogen Energy
– volume: 139
  start-page: 1077
  year: 2017
  publication-title: J. Am. Chem. Soc.
– volume: 2
  start-page: 724
  year: 2010
  publication-title: ChemCatChem
– volume: 137
  start-page: 3638
  year: 2015
  publication-title: J. Am. Chem. Soc.
– volume: 7
  start-page: 11981
  year: 2016
  publication-title: Nat. Commun.
– volume: 132
  start-page: 13612
  year: 2010
  publication-title: J. Am. Chem. Soc.
– volume: 2
  start-page: 17066
  year: 2014
  publication-title: J. Mater. Chem. A
– volume: 198
  start-page: 231
  year: 2016
  publication-title: Electrochim. Acta
– volume: 3
  start-page: 1500782
  year: 2016
  publication-title: Adv. Mater. Interfaces
– volume: 135
  start-page: 13521
  year: 2013
  publication-title: J. Am. Chem. Soc.
– volume: 136
  start-page: 16481
  year: 2014
  publication-title: J. Am. Chem. Soc.
– volume: 9
  start-page: 4143
  year: 2017
  publication-title: Nanoscale
– volume: 103
  start-page: 15729
  year: 2006
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 54
  start-page: 4787
  year: 2015
  publication-title: Angew. Chem., Int. Ed.
– volume: 107
  start-page: 10337
  year: 2010
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 56
  start-page: 8539
  year: 2017
  publication-title: Angew. Chem., Int. Ed.
– volume: 22
  start-page: 1333
  year: 2012
  publication-title: Adv. Funct. Mater.
– volume: 27
  start-page: 1605703
  year: 2017
  publication-title: Adv. Funct. Mater.
– volume: 135
  start-page: 8452
  year: 2013
  publication-title: J. Am. Chem. Soc.
– volume: 4
  start-page: 1695
  year: 2013
  publication-title: Nat. Commun.
– volume: 4
  start-page: 11516
  year: 2016
  publication-title: J. Mater. Chem. A
– volume: 50
  start-page: 915
  year: 2017
  publication-title: Acc. Chem. Res.
– volume: 5
  start-page: 10279
  year: 2015
  publication-title: Sci. Rep.
– volume: 21
  start-page: 15969
  year: 2011
  publication-title: J. Mater. Chem.
– volume: 6
  start-page: 8106
  year: 2015
  publication-title: Nat. Commun.
– volume: 135
  start-page: 8452
  year: 2013
  publication-title: J. Mater. Chem. A
– volume: 660
  start-page: 254
  year: 2011
  publication-title: J. Electroanal. Chem.
– volume: 52
  start-page: 648
  year: 2007
  publication-title: Prog. Mater. Sci.
– volume: 257
  start-page: 2607
  year: 2013
  publication-title: Coord. Chem. Rev.
– volume: 1
  start-page: 267
  year: 1999
  publication-title: Solid State Sci.
– volume: 9
  start-page: 1734
  year: 2016
  publication-title: Energy Environ. Sci.
– volume: 112
  start-page: 4124
  year: 2012
  publication-title: Chem. Rev.
– volume: 110
  start-page: 6474
  year: 2010
  publication-title: Chem. Rev.
– volume: 53
  start-page: 9809
  year: 2017
  publication-title: Chem. Commun.
– volume: 54
  start-page: 7399
  year: 2015
  publication-title: Angew. Chem., Int. Ed.
– volume: 135
  start-page: 16977
  year: 2013
  publication-title: J. Am. Chem. Soc.
– volume: 4
  start-page: 1805
  year: 2013
  publication-title: Nat. Commun.
– volume: 49
  start-page: 678
  year: 2016
  publication-title: Acc. Chem. Res.
– volume: 5
  start-page: 556
  year: 2010
  publication-title: Int. J. Electrochem. Sci.
– volume: 1
  start-page: 16184
  year: 2016
  publication-title: Nat. Energy
– volume: 139
  start-page: 2277
  year: 2017
  publication-title: J. Am. Chem. Soc.
– volume: 128
  start-page: 6814
  year: 2016
  publication-title: Angew. Chem.
– ident: e_1_2_5_9_1
  doi: 10.1021/ja104587v
– ident: e_1_2_5_15_1
  doi: 10.1002/adma.201601019
– ident: e_1_2_5_14_1
  doi: 10.1021/jacs.5b00281
– ident: e_1_2_5_36_1
  doi: 10.1021/cr200434v
– ident: e_1_2_5_48_1
  doi: 10.1016/S1293-2558(00)80081-3
– volume: 5
  start-page: 556
  year: 2010
  ident: e_1_2_5_49_1
  publication-title: Int. J. Electrochem. Sci.
  doi: 10.1016/S1452-3981(23)15306-5
– ident: e_1_2_5_51_1
  doi: 10.1021/ja400555q
– ident: e_1_2_5_17_1
  doi: 10.1039/C4CS00160E
– ident: e_1_2_5_29_1
  doi: 10.1039/C6EE00377J
– ident: e_1_2_5_30_1
  doi: 10.1021/acs.accounts.6b00041
– ident: e_1_2_5_37_1
  doi: 10.1039/c1jm12670a
– ident: e_1_2_5_1_1
  doi: 10.1073/pnas.0603395103
– ident: e_1_2_5_8_1
  doi: 10.1073/pnas.1001859107
– ident: e_1_2_5_41_1
  doi: 10.1021/ja405997s
– ident: e_1_2_5_44_1
  doi: 10.1021/cm403115t
– ident: e_1_2_5_32_1
  doi: 10.1002/anie.201411322
– ident: e_1_2_5_11_1
  doi: 10.1021/jacs.6b10657
– ident: e_1_2_5_4_1
  doi: 10.1039/C3CS60248F
– ident: e_1_2_5_7_1
  doi: 10.1016/j.ijhydene.2013.01.151
– ident: e_1_2_5_55_1
  doi: 10.1038/ncomms5477
– ident: e_1_2_5_22_1
  doi: 10.1039/C7CC06086F
– ident: e_1_2_5_50_1
  doi: 10.1039/C4CS00236A
– ident: e_1_2_5_26_1
  doi: 10.1021/acsnano.5b00158
– ident: e_1_2_5_3_1
  doi: 10.1021/cr100246c
– ident: e_1_2_5_23_1
  doi: 10.1002/adma.201506197
– volume: 135
  start-page: 8452
  year: 2013
  ident: e_1_2_5_18_1
  publication-title: J. Mater. Chem. A
– ident: e_1_2_5_46_1
  doi: 10.1039/C6NR09545C
– ident: e_1_2_5_54_1
  doi: 10.1038/nenergy.2016.184
– ident: e_1_2_5_21_1
  doi: 10.1002/anie.201701531
– ident: e_1_2_5_53_1
  doi: 10.1002/anie.201511032
– ident: e_1_2_5_12_1
  doi: 10.1038/srep10279
– ident: e_1_2_5_25_1
  doi: 10.1021/jacs.6b12529
– ident: e_1_2_5_40_1
  doi: 10.1002/admi.201500782
– ident: e_1_2_5_20_1
  doi: 10.1038/ncomms11981
– ident: e_1_2_5_28_1
  doi: 10.1021/acs.accounts.6b00635
– ident: e_1_2_5_52_1
  doi: 10.1038/ncomms2812
– ident: e_1_2_5_43_1
  doi: 10.1021/ja4027715
– ident: e_1_2_5_19_1
  doi: 10.1039/C6TA02537D
– ident: e_1_2_5_31_1
  doi: 10.1038/ncomms2637
– ident: e_1_2_5_45_1
  doi: 10.1002/anie.201502226
– ident: e_1_2_5_16_1
  doi: 10.1021/ja407115p
– ident: e_1_2_5_47_1
  doi: 10.1039/C4CS00470A
– ident: e_1_2_5_34_1
  doi: 10.1016/j.pmatsci.2006.10.016
– ident: e_1_2_5_39_1
  doi: 10.1016/j.electacta.2016.03.082
– ident: e_1_2_5_10_1
  doi: 10.1016/j.ccr.2013.02.027
– ident: e_1_2_5_35_1
  doi: 10.1002/adfm.201102295
– ident: e_1_2_5_27_1
  doi: 10.1002/ange.201602237
– ident: e_1_2_5_33_1
  doi: 10.1002/adfm.201605703
– ident: e_1_2_5_5_1
  doi: 10.1002/cctc.201000126
– ident: e_1_2_5_24_1
  doi: 10.1038/nmat3087
– ident: e_1_2_5_6_1
  doi: 10.1016/j.jelechem.2010.10.004
– ident: e_1_2_5_13_1
  doi: 10.1021/ja5096733
– ident: e_1_2_5_38_1
  doi: 10.1039/C4TA03789H
– ident: e_1_2_5_2_1
  doi: 10.1126/science.1162018
– ident: e_1_2_5_42_1
  doi: 10.1038/ncomms9106
SSID ssj0031247
Score 2.5565822
Snippet Exploiting high‐performance, robust, and cost‐effective electrocatalysts for the oxygen evolution reaction (OER) is crucial for electrochemical energy storage...
Exploiting high-performance, robust, and cost-effective electrocatalysts for the oxygen evolution reaction (OER) is crucial for electrochemical energy storage...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e1800195
SubjectTerms Catalysis
Catalysts
Catalytic activity
Charge transfer
CoFe LDHs
Couplings
Electrocatalysts
Energy storage
heterogeneous catalysts
Hydroxides
interfacial structures
Laser ablation
Nanoclusters
Nanotechnology
Oxidation
oxygen evolution reaction
Oxygen evolution reactions
Pulsed lasers
synergistic effects
Valence
Title Strongly Coupled CoO Nanoclusters/CoFe LDHs Hybrid as a Synergistic Catalyst for Electrochemical Water Oxidation
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.201800195
https://www.ncbi.nlm.nih.gov/pubmed/29577621
https://www.proquest.com/docview/2030760362
https://www.proquest.com/docview/2018667037
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED-hPY0HYHyGDWQkJJ6yNrHz4cepW1WhjkmUib1FtuOgidBUSyOt_PXc2WlYQQgJnpLIH3F8vo_4fL8DeKtFhXojkmHJkQwiESbUlbShFRmuhrjKtfOYnn9IZ5fi_VVydSeK3-NDDBtuxBlOXhODK92OfoKGtt9qch1EuYt5QyFMB7bIKvo44EdxVF4uuwrqrJCAt7aojeN4tNt8Vyv9ZmruWq5O9UwfgtoO2p84-XrcrfWx-f4LnuP_fNUjeNDbpezEL6QDuGeXj-H-HbTCJ7Ba0Lb5l3rDJk23qm2J1wuG4rkxdUd4C-1o0kwtm5_OWjbbUCgYUy1TbLGhAEOHCM0mtF20adcMjWV25nPwmB60gH1Gw_eGXdxe-0RPT-FyevZpMgv7hA2hERmdluM80VoY_CdEKzKNNPJ7mVtpbWTLMlW2NEmmUKZIpbTIchsbrQ0fx3psKqlS_gz2ls3SvgCWWBNxzUtlc5IxUgplolLG2E1iK2ECCLcEK0yPZk5JNerC4zDHBc1kMcxkAO-G-iuP4_HHmkdb-hc9P7dYysmFido-gDdDMXIiuVfU0jZd63pIU5SgWQDP_boZXhXLJEO1EwUQO-r_ZQzF4nw-H55e_kujQ9ine3_I6Aj21jedfYX201q_djzyA0MGEnQ
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dj5QwEJ_o-aD34LcnempNTHzidoHy0UezdxtU9i5x76JvpC3FGHHZHEvi-tc7QwFdjTHRJwL9oLTzxXT6G4AXipeoNzzhFgEuAw-5dlUpjGt4jNTgl4nqdkwXp1F6wd98CIdoQjoLY_EhRocbcUYnr4nBySE9-YEa2nypaO_AS7pDb1fhGqX1Jvj843cjglSA6qvLr4JayyXorQG3cepPdtvv6qXfjM1d27VTPvNboIZh25iTz0ftRh3pb78gOv7Xd92Gm71pyl5ZWroDV8zqLuz_BFh4D9ZL8px_rLZsVrfryhR4PWMooWtdtQS50Exm9dyw7DhtWLql02BMNkyy5ZbOGHag0GxGHqNts2FoL7MTm4ZH97gF7D3avpfs7Osnm-vpPlzMT85nqdvnbHA1jylgLghCpbjG30I0JCNPIcsXiRHGeKYoImkKHcYSxYqQUvE4Mb5WSgdTX011KWQUPIC9Vb0yD4GFRnuBCgppEhIzQnCpvUL42E1oSq4dcIcVy3UPaE55NarcQjH7Oc1kPs6kAy_H-msL5fHHmocDAeQ9SzdYGtAuJip8B56PxciMtMMiV6Zum66HKEIhGjtwYAlnfJUvwhg1j-eA3y3_X8aQLxdZNt49-pdGz-B6er7I8uz16dvHcIOe25ijQ9jbXLbmCZpTG_W0Y5jvZKkWkA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFD6CISF42LgTNsBISDxlbWLn4kfUrirQbYgysbfItyBEaKqlkVZ-Pcd2GlYQQoKnKPEljo_PJT4-3wF4KVmJeiPioaZIBpYwFcqSm9CwDFdDXObSeUyPT9LpGXt7npxfieL3-BD9hpvlDCevLYMvdTn4CRrafKus6yDKXczbdbjB0iG3yRvGH3oAKYray6VXQaUVWuStDWzjMB5st99WS7_Zmtumq9M9kz0Qm1H7IydfD9uVPFTffwF0_J_PugO7nWFKXvuVdBeumcU9uH0FrvA-LOd23_xztSajul1WRuP1lKB8rlXVWsCFZjCqJ4bMxtOGTNc2FoyIhggyX9sIQwcJTUZ2v2jdrAhay-TIJ-FRHWoB-YSW7wU5vfziMz09gLPJ0cfRNOwyNoSKZfa4HKWJlEzhTyGakWkkkeF1brgxkdE6FUarJBMoVLgQkmW5iZWUig5jOVQlFyl9CDuLemEeA0mMiqikWpjcChnOmVCR5jF2k5iSqQDCDcEK1cGZ26waVeGBmOPCzmTRz2QAr_r6Sw_k8ceaBxv6Fx1DN1hKrQ8T1X0AL_piZEXrXxELU7eN6yFNUYRmATzy66Z_VcyTDPVOFEDsqP-XMRTz49msv3vyL42ew83340kxe3Pybh9u2cf-wNEB7KwuWvMUbamVfObY5QcLOxU_
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Strongly+Coupled+CoO+Nanoclusters%2FCoFe+LDHs+Hybrid+as+a+Synergistic+Catalyst+for+Electrochemical+Water+Oxidation&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Zhi%E2%80%90Wen+Gao&rft.au=Tian%2C+Ma&rft.au=Xue%E2%80%90Min+Chen&rft.au=Liu%2C+Hui&rft.date=2018-04-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1613-6810&rft.eissn=1613-6829&rft.volume=14&rft.issue=17&rft_id=info:doi/10.1002%2Fsmll.201800195&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon