Assembly‐Induced Strong Circularly Polarized Luminescence of Spirocyclic Chiral Silver(I) Clusters
Spirocyclic Ag9 clusters, as a new form of intrinsically chiral metal clusters, were constructed through vertex‐sharing of two in‐situ‐generated heteroaryl diide‐centered metal rings. Such core‐peripheral type clusters exhibit versatile photoluminescent and chiroptical behavior under different aggre...
Saved in:
Published in | Angewandte Chemie International Edition Vol. 60; no. 3; pp. 1535 - 1539 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
18.01.2021
|
Edition | International ed. in English |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Spirocyclic Ag9 clusters, as a new form of intrinsically chiral metal clusters, were constructed through vertex‐sharing of two in‐situ‐generated heteroaryl diide‐centered metal rings. Such core‐peripheral type clusters exhibit versatile photoluminescent and chiroptical behavior under different aggregation conditions. In contrast to a ligand‐based fluorescence emission in a diluted solution of the clusters, a solvent polarity‐caused assembly gives rise to new cluster‐based phosphorous luminescence owing to radiative mode switching and aggregation‐induced emission. Assembly of cluster enantiomers leads to micrometer‐long helical nanofibers, whose handedness is determined by absolute configuration of individual spirocyclic clusters. Benefiting from exciton couplings of helical arrangements of chelating ligands at molecular and microscopic levels, the assembled film of cluster enantiomers exhibits circularly polarized luminescence with a high anisotropy factor (0.16).
Two spirocyclic Ag9 chiral clusters, as a new form of intrinsic chiral metal clusters, have been constructed. They show unique fluorescence‐to‐phosphorescence switching and aggregation‐induced emission under different aggregation conditions. The assembly of cluster enantiomers leads to micrometer‐long helical nanofibers and superior circularly polarized luminescence performance with a remarkably high anisotropy factor of 0.16. |
---|---|
AbstractList | Spirocyclic Ag
clusters, as a new form of intrinsically chiral metal clusters, were constructed through vertex-sharing of two in-situ-generated heteroaryl diide-centered metal rings. Such core-peripheral type clusters exhibit versatile photoluminescent and chiroptical behavior under different aggregation conditions. In contrast to a ligand-based fluorescence emission in a diluted solution of the clusters, a solvent polarity-caused assembly gives rise to new cluster-based phosphorous luminescence owing to radiative mode switching and aggregation-induced emission. Assembly of cluster enantiomers leads to micrometer-long helical nanofibers, whose handedness is determined by absolute configuration of individual spirocyclic clusters. Benefiting from exciton couplings of helical arrangements of chelating ligands at molecular and microscopic levels, the assembled film of cluster enantiomers exhibits circularly polarized luminescence with a high anisotropy factor (0.16). Spirocyclic Ag 9 clusters, as a new form of intrinsically chiral metal clusters, were constructed through vertex‐sharing of two in‐situ‐generated heteroaryl diide‐centered metal rings. Such core‐peripheral type clusters exhibit versatile photoluminescent and chiroptical behavior under different aggregation conditions. In contrast to a ligand‐based fluorescence emission in a diluted solution of the clusters, a solvent polarity‐caused assembly gives rise to new cluster‐based phosphorous luminescence owing to radiative mode switching and aggregation‐induced emission. Assembly of cluster enantiomers leads to micrometer‐long helical nanofibers, whose handedness is determined by absolute configuration of individual spirocyclic clusters. Benefiting from exciton couplings of helical arrangements of chelating ligands at molecular and microscopic levels, the assembled film of cluster enantiomers exhibits circularly polarized luminescence with a high anisotropy factor (0.16). Spirocyclic Ag9 clusters, as a new form of intrinsically chiral metal clusters, were constructed through vertex‐sharing of two in‐situ‐generated heteroaryl diide‐centered metal rings. Such core‐peripheral type clusters exhibit versatile photoluminescent and chiroptical behavior under different aggregation conditions. In contrast to a ligand‐based fluorescence emission in a diluted solution of the clusters, a solvent polarity‐caused assembly gives rise to new cluster‐based phosphorous luminescence owing to radiative mode switching and aggregation‐induced emission. Assembly of cluster enantiomers leads to micrometer‐long helical nanofibers, whose handedness is determined by absolute configuration of individual spirocyclic clusters. Benefiting from exciton couplings of helical arrangements of chelating ligands at molecular and microscopic levels, the assembled film of cluster enantiomers exhibits circularly polarized luminescence with a high anisotropy factor (0.16). Spirocyclic Ag9 clusters, as a new form of intrinsically chiral metal clusters, were constructed through vertex‐sharing of two in‐situ‐generated heteroaryl diide‐centered metal rings. Such core‐peripheral type clusters exhibit versatile photoluminescent and chiroptical behavior under different aggregation conditions. In contrast to a ligand‐based fluorescence emission in a diluted solution of the clusters, a solvent polarity‐caused assembly gives rise to new cluster‐based phosphorous luminescence owing to radiative mode switching and aggregation‐induced emission. Assembly of cluster enantiomers leads to micrometer‐long helical nanofibers, whose handedness is determined by absolute configuration of individual spirocyclic clusters. Benefiting from exciton couplings of helical arrangements of chelating ligands at molecular and microscopic levels, the assembled film of cluster enantiomers exhibits circularly polarized luminescence with a high anisotropy factor (0.16). Two spirocyclic Ag9 chiral clusters, as a new form of intrinsic chiral metal clusters, have been constructed. They show unique fluorescence‐to‐phosphorescence switching and aggregation‐induced emission under different aggregation conditions. The assembly of cluster enantiomers leads to micrometer‐long helical nanofibers and superior circularly polarized luminescence performance with a remarkably high anisotropy factor of 0.16. Spirocyclic Ag9 clusters, as a new form of intrinsically chiral metal clusters, were constructed through vertex-sharing of two in-situ-generated heteroaryl diide-centered metal rings. Such core-peripheral type clusters exhibit versatile photoluminescent and chiroptical behavior under different aggregation conditions. In contrast to a ligand-based fluorescence emission in a diluted solution of the clusters, a solvent polarity-caused assembly gives rise to new cluster-based phosphorous luminescence owing to radiative mode switching and aggregation-induced emission. Assembly of cluster enantiomers leads to micrometer-long helical nanofibers, whose handedness is determined by absolute configuration of individual spirocyclic clusters. Benefiting from exciton couplings of helical arrangements of chelating ligands at molecular and microscopic levels, the assembled film of cluster enantiomers exhibits circularly polarized luminescence with a high anisotropy factor (0.16).Spirocyclic Ag9 clusters, as a new form of intrinsically chiral metal clusters, were constructed through vertex-sharing of two in-situ-generated heteroaryl diide-centered metal rings. Such core-peripheral type clusters exhibit versatile photoluminescent and chiroptical behavior under different aggregation conditions. In contrast to a ligand-based fluorescence emission in a diluted solution of the clusters, a solvent polarity-caused assembly gives rise to new cluster-based phosphorous luminescence owing to radiative mode switching and aggregation-induced emission. Assembly of cluster enantiomers leads to micrometer-long helical nanofibers, whose handedness is determined by absolute configuration of individual spirocyclic clusters. Benefiting from exciton couplings of helical arrangements of chelating ligands at molecular and microscopic levels, the assembled film of cluster enantiomers exhibits circularly polarized luminescence with a high anisotropy factor (0.16). |
Author | He, Xin Wu, Han Yang, Biao Li, Cui‐Cui Zhao, Liang |
Author_xml | – sequence: 1 givenname: Han surname: Wu fullname: Wu, Han organization: Tsinghua University – sequence: 2 givenname: Xin surname: He fullname: He, Xin organization: Tsinghua University – sequence: 3 givenname: Biao surname: Yang fullname: Yang, Biao organization: Tsinghua University – sequence: 4 givenname: Cui‐Cui surname: Li fullname: Li, Cui‐Cui organization: Tsinghua University – sequence: 5 givenname: Liang orcidid: 0000-0003-4646-2887 surname: Zhao fullname: Zhao, Liang email: zhaolchem@mail.tsinghua.edu.cn organization: Tsinghua University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32959488$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkUtr3DAUhUVIyavZZlkM2aQLT_XwQ14OJmkHhrYw7VrI8lWqIEtTyU5wVv0J_Y39JVWYpIFAyeoK9J3Dufcco33nHSB0RvCCYEw_SGdgQTHFmNdVuYeOSElJzuqa7ad3wVhe85IcouMYbxLPOa4O0CGjTdkUnB-hfhkjDJ2d__z6vXL9pKDPNmPw7jprTVCTlcHO2VefprlPf-tpMA6iAqcg8zrbbE3walbWqKz9YYK02cbYWwgXq_dZa6c4Qohv0RstbYTTx3mCvl9dfms_5esvH1ftcp2rIoXPSa-BUF40mimuallpxmitQWHFmqYsOsJ4J6tagta94mlRpTHVFHhPulJqdoIudr7b4H9OEEcxmBTVWunAT1HQokhLk-Sa0PMX6I2fgkvpElVXvMKMkUS9e6SmboBebIMZZJjF0_0SUOwAFXyMAbRQZpSj8W4M0lhBsHioSTzUJP7VlGSLF7In5_8Kmp3gzliYX6HF8vPq8ln7F2Mupp0 |
CitedBy_id | crossref_primary_10_1016_j_isci_2025_111982 crossref_primary_10_1002_anie_202314515 crossref_primary_10_1021_acssuschemeng_2c03488 crossref_primary_10_1002_advs_202207660 crossref_primary_10_1039_D1CC01162F crossref_primary_10_1002_chem_202005320 crossref_primary_10_1002_anie_202407034 crossref_primary_10_1002_anie_202210542 crossref_primary_10_1002_adma_202417089 crossref_primary_10_1016_j_ccr_2022_214729 crossref_primary_10_1002_ange_202404545 crossref_primary_10_1016_j_chempr_2024_01_028 crossref_primary_10_1021_acsnano_2c06492 crossref_primary_10_1039_D1CC05135K crossref_primary_10_1016_j_ccr_2021_214329 crossref_primary_10_1021_acs_inorgchem_3c02806 crossref_primary_10_1007_s11426_021_1146_6 crossref_primary_10_1002_adom_202201229 crossref_primary_10_1007_s12274_022_5308_0 crossref_primary_10_1002_anie_202100934 crossref_primary_10_1021_jacs_3c08241 crossref_primary_10_1002_adma_202403329 crossref_primary_10_1002_agt2_148 crossref_primary_10_1016_j_matt_2022_01_001 crossref_primary_10_1021_acs_inorgchem_2c00256 crossref_primary_10_1021_jacs_3c04953 crossref_primary_10_1016_j_foodchem_2023_136376 crossref_primary_10_1039_D1CC04011A crossref_primary_10_1002_ange_202407034 crossref_primary_10_1007_s11426_024_2356_9 crossref_primary_10_1002_anie_202404545 crossref_primary_10_1039_D2CC04623G crossref_primary_10_1021_jacs_1c03208 crossref_primary_10_1016_j_cclet_2024_110402 crossref_primary_10_1002_ejic_202100336 crossref_primary_10_1021_acsnano_2c06623 crossref_primary_10_1039_D3SC06810B crossref_primary_10_1002_agt2_598 crossref_primary_10_1038_s41467_021_25789_9 crossref_primary_10_1364_PRJ_446416 crossref_primary_10_1039_D2CS00876A crossref_primary_10_1021_acs_nanolett_3c00655 crossref_primary_10_1007_s40843_023_2731_0 crossref_primary_10_1039_D1QM00808K crossref_primary_10_1002_anie_202407887 crossref_primary_10_1002_bio_4880 crossref_primary_10_1016_j_poly_2021_115580 crossref_primary_10_1021_acsanm_2c02496 crossref_primary_10_1021_acs_nanolett_3c04698 crossref_primary_10_1039_D3QM00747B crossref_primary_10_1021_acsaom_3c00209 crossref_primary_10_1002_cjoc_202100139 crossref_primary_10_1002_ange_202100934 crossref_primary_10_1080_15421406_2024_2324627 crossref_primary_10_1126_sciadv_adh5083 crossref_primary_10_1002_ange_202314515 crossref_primary_10_1002_agt2_48 crossref_primary_10_1021_jacs_1c02098 crossref_primary_10_1016_j_molliq_2025_127323 crossref_primary_10_1002_ange_202407887 crossref_primary_10_1039_D2QI00982J crossref_primary_10_1016_j_molliq_2024_125290 crossref_primary_10_1021_acsami_2c13267 crossref_primary_10_1039_D2NR07223H crossref_primary_10_1002_adom_202300161 crossref_primary_10_1016_j_ica_2023_121834 crossref_primary_10_1038_s41570_021_00350_w crossref_primary_10_1002_ange_202210542 crossref_primary_10_1039_D2DT02194C crossref_primary_10_1002_smll_202305366 crossref_primary_10_1002_agt2_331 crossref_primary_10_1016_j_snb_2021_131356 crossref_primary_10_1039_D4TC01280A |
Cites_doi | 10.1016/j.ccr.2017.10.031 10.1007/128_033 10.1038/nphoton.2013.176 10.1021/ja037733e 10.1016/j.mattod.2019.08.010 10.1021/jp2053019 10.1021/acs.accounts.8b00371 10.1002/ange.201915844 10.1002/ange.201907856 10.1002/ange.201007849 10.1021/jz402615n 10.1039/c1cs15119c 10.1021/acs.organomet.6b00771 10.1002/adom.201902152 10.1021/jacs.7b02039 10.1002/ange.201002307 10.1002/anie.201803833 10.1039/b909430j 10.1039/C9CC06861A 10.1073/pnas.1418824111 10.1039/c3cc49851d 10.1007/s11164-011-0342-7 10.1016/j.bmcl.2014.06.081 10.1021/ja0422108 10.1002/ange.201709827 10.1002/ange.201803833 10.1021/acs.chemrev.5b00703 10.1039/C9CS00250B 10.1021/jacs.7b10448 10.1039/C7SC04503D 10.1002/ange.201908909 10.1039/c3cc46524a 10.1002/anie.202000073 10.1021/ja306199p 10.1016/j.tetlet.2010.01.036 10.1002/anie.201002307 10.1021/jacs.7b09770 10.1002/adsc.200800409 10.1021/acs.chemrev.5b00263 10.1021/jacs.6b01658 10.1021/jacs.8b01860 10.1002/ange.200454162 10.1002/ange.201804087 10.1021/ja203920w 10.1038/ncomms1802 10.1021/ja0565727 10.1002/anie.201405936 10.1021/ar2001952 10.1002/ange.201408193 10.1002/anie.201308599 10.1021/jacs.7b10201 10.1002/anie.201709827 10.1039/C7CS00173H 10.1002/anie.201814387 10.1002/anie.201915844 10.1021/acs.accounts.8b00297 10.1021/ja011706b 10.1039/C1CS15196G 10.1002/anie.201007849 10.1002/ange.201904681 10.1021/acs.chemrev.6b00755 10.1021/ar5000924 10.1021/ja203206g 10.1021/ar400295d 10.1002/anie.200454162 10.1021/ja067321g 10.1002/anie.201804087 10.1002/anie.201904681 10.1002/adma.201404891 10.1002/asia.201700023 10.1021/ja412197j 10.1002/ange.201405936 10.1021/ar50129a003 10.1002/anie.201907856 10.1002/anie.201408193 10.1002/ange.201308599 10.1039/C6CS00604C 10.1002/ange.202000073 |
ContentType | Journal Article |
Copyright | 2020 Wiley‐VCH GmbH 2020 Wiley-VCH GmbH. 2021 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2020 Wiley‐VCH GmbH – notice: 2020 Wiley-VCH GmbH. – notice: 2021 Wiley‐VCH GmbH |
DBID | AAYXX CITATION NPM 7TM K9. 7X8 |
DOI | 10.1002/anie.202008765 |
DatabaseName | CrossRef PubMed Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed ProQuest Health & Medical Complete (Alumni) Nucleic Acids Abstracts MEDLINE - Academic |
DatabaseTitleList | PubMed CrossRef ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3773 |
Edition | International ed. in English |
EndPage | 1539 |
ExternalDocumentID | 32959488 10_1002_anie_202008765 ANIE202008765 |
Genre | shortCommunication Journal Article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 21772111, 21821001, 91956125, 22025105, 21661132006 – fundername: National Natural Science Foundation of China grantid: 21772111, 21821001, 91956125, 22025105, 21661132006 |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABLJU ABPPZ ABPVW ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BTSUX BY8 CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES M53 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ TN5 UB1 UPT UQL V2E VQA W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XSW XV2 YZZ ZZTAW ~IA ~KM ~WT AAYXX ABDBF ABJNI AEYWJ AGHNM AGYGG CITATION NPM 7TM K9. 7X8 |
ID | FETCH-LOGICAL-c4765-1dfe12849f3c8c7a6f3327fec0c39954b138ba67aeffdc8521cf02f2e8d1b5af3 |
IEDL.DBID | DR2 |
ISSN | 1433-7851 1521-3773 |
IngestDate | Thu Jul 10 23:53:37 EDT 2025 Sun Jul 13 05:20:44 EDT 2025 Thu Apr 03 07:03:11 EDT 2025 Tue Jul 01 01:17:48 EDT 2025 Thu Apr 24 23:09:15 EDT 2025 Wed Jan 22 16:30:27 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | aggregation-induced emission supramolecular assembly cluster compounds circularly polarized luminescence (CPL) chirality |
Language | English |
License | 2020 Wiley-VCH GmbH. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4765-1dfe12849f3c8c7a6f3327fec0c39954b138ba67aeffdc8521cf02f2e8d1b5af3 |
Notes | Dedicated to Professor Youqi Tang at Peking University on the occasion of his 100th birthday ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-4646-2887 |
PMID | 32959488 |
PQID | 2476860331 |
PQPubID | 946352 |
PageCount | 5 |
ParticipantIDs | proquest_miscellaneous_2444881332 proquest_journals_2476860331 pubmed_primary_32959488 crossref_citationtrail_10_1002_anie_202008765 crossref_primary_10_1002_anie_202008765 wiley_primary_10_1002_anie_202008765_ANIE202008765 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 18, 2021 |
PublicationDateYYYYMMDD | 2021-01-18 |
PublicationDate_xml | – month: 01 year: 2021 text: January 18, 2021 day: 18 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Angewandte Chemie International Edition |
PublicationTitleAlternate | Angew Chem Int Ed Engl |
PublicationYear | 2021 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2014 2014; 53 126 2011; 115 2019 2020; 58 132 2019; 55 2017; 46 2020 2020; 59 132 2014; 24 2013; 7 2014; 136 2017; 117 2020; 8 2018; 9 2014; 5 2012; 134 2017; 36 2018 2018; 57 130 2015 2015; 54 127 2016; 116 2003; 125 2014; 50 2008; 350 2016; 45 2001; 123 2004 2004; 43 116 2007; 129 2018; 140 2013; 49 1978; 11 2011; 40 2009 2014; 47 2011; 37 2020; 32 2017 2017; 56 129 2014; 111 2019 2019; 58 131 2011; 133 2017; 139 2012; 3 2015; 27 2015; 115 2005; 127 2019; 48 2017; 12 2019; 378 2018; 51 2016; 138 2011 2011; 50 123 2012; 45 2006; 265 2010; 51 2012; 41 e_1_2_2_24_2 e_1_2_2_47_2 e_1_2_2_6_1 e_1_2_2_20_2 e_1_2_2_2_2 e_1_2_2_62_2 e_1_2_2_43_1 e_1_2_2_85_1 e_1_2_2_28_2 e_1_2_2_66_2 e_1_2_2_66_3 e_1_2_2_81_2 e_1_2_2_13_2 e_1_2_2_59_2 e_1_2_2_74_2 e_1_2_2_51_1 e_1_2_2_32_1 e_1_2_2_17_2 e_1_2_2_78_2 e_1_2_2_55_1 e_1_2_2_78_3 e_1_2_2_36_1 e_1_2_2_70_3 e_1_2_2_70_2 e_1_2_2_48_1 e_1_2_2_5_2 e_1_2_2_21_3 e_1_2_2_21_2 e_1_2_2_1_1 e_1_2_2_40_1 e_1_2_2_29_2 e_1_2_2_63_2 e_1_2_2_44_2 e_1_2_2_9_3 e_1_2_2_9_2 e_1_2_2_25_2 e_1_2_2_67_2 e_1_2_2_82_2 e_1_2_2_37_2 e_1_2_2_10_3 e_1_2_2_10_2 e_1_2_2_75_2 e_1_2_2_18_2 e_1_2_2_52_2 e_1_2_2_33_2 e_1_2_2_79_2 e_1_2_2_14_2 e_1_2_2_56_2 e_1_2_2_71_2 e_1_2_2_4_2 e_1_2_2_49_1 e_1_2_2_22_1 e_1_2_2_41_2 e_1_2_2_64_2 e_1_2_2_83_2 e_1_2_2_41_3 e_1_2_2_83_3 e_1_2_2_8_1 e_1_2_2_26_2 e_1_2_2_45_2 e_1_2_2_68_1 e_1_2_2_60_2 e_1_2_2_38_2 e_1_2_2_11_1 e_1_2_2_72_3 e_1_2_2_72_2 e_1_2_2_30_2 e_1_2_2_53_2 e_1_2_2_19_1 e_1_2_2_15_3 e_1_2_2_15_2 e_1_2_2_34_2 e_1_2_2_57_2 e_1_2_2_76_2 e_1_2_2_3_2 e_1_2_2_69_3 e_1_2_2_69_2 e_1_2_2_23_1 e_1_2_2_7_1 e_1_2_2_84_3 e_1_2_2_65_1 e_1_2_2_42_2 e_1_2_2_84_2 e_1_2_2_27_1 e_1_2_2_46_2 e_1_2_2_61_1 e_1_2_2_80_1 e_1_2_2_12_2 e_1_2_2_39_1 e_1_2_2_50_2 e_1_2_2_73_1 e_1_2_2_31_2 e_1_2_2_54_3 e_1_2_2_54_2 e_1_2_2_16_1 e_1_2_2_35_1 e_1_2_2_58_1 e_1_2_2_77_1 e_1_2_2_50_1 |
References_xml | – volume: 127 start-page: 3274 year: 2005 end-page: 3275 publication-title: J. Am. Chem. Soc. – volume: 55 start-page: 13793 year: 2019 end-page: 13803 publication-title: Chem. Commun. – volume: 12 start-page: 1839 year: 2017 end-page: 1850 publication-title: Chem. Asian J. – volume: 58 132 start-page: 10052 10138 year: 2019 2020 end-page: 10058 10144 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 36 start-page: 964 year: 2017 end-page: 974 publication-title: Organometallics – volume: 125 start-page: 14032 year: 2003 end-page: 14038 publication-title: J. Am. Chem. Soc. – volume: 57 130 start-page: 7855 7981 year: 2018 2018 end-page: 7859 7985 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 265 start-page: 147 year: 2006 end-page: 183 publication-title: Top. Curr. Chem. – volume: 140 start-page: 5334 year: 2018 end-page: 5338 publication-title: J. Am. Chem. Soc. – volume: 115 start-page: 11718 year: 2015 end-page: 11940 publication-title: Chem. Rev. – volume: 8 year: 2020 publication-title: Adv. Opt. Mater. – volume: 134 start-page: 16662 year: 2012 end-page: 16670 publication-title: J. Am. Chem. Soc. – volume: 378 start-page: 333 year: 2019 end-page: 349 publication-title: Coord. Chem. Rev. – volume: 56 129 start-page: 15397 15599 year: 2017 2017 end-page: 15401 15603 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 27 start-page: 1791 year: 2015 end-page: 1795 publication-title: Adv. Mater. – volume: 37 start-page: 691 year: 2011 end-page: 703 publication-title: Res. Chem. Intermed. – volume: 54 127 start-page: 746 756 year: 2015 2015 end-page: 784 797 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 127 start-page: 17994 year: 2005 end-page: 17995 publication-title: J. Am. Chem. Soc. – volume: 53 126 start-page: 2923 2967 year: 2014 2014 end-page: 2926 2970 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 111 start-page: 15900 year: 2014 end-page: 15905 publication-title: Proc. Natl. Acad. Sci. USA – volume: 129 start-page: 7044 year: 2007 end-page: 7054 publication-title: J. Am. Chem. Soc. – volume: 123 start-page: 11899 year: 2001 end-page: 11907 publication-title: J. Am. Chem. Soc. – volume: 138 start-page: 5634 year: 2016 end-page: 5643 publication-title: J. Am. Chem. Soc. – volume: 139 start-page: 16113 year: 2017 end-page: 16116 publication-title: J. Am. Chem. Soc. – volume: 40 start-page: 5514 year: 2011 end-page: 5533 publication-title: Chem. Soc. Rev. – volume: 57 130 start-page: 8973 9111 year: 2018 2018 end-page: 8978 9116 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 51 start-page: 2129 year: 2018 end-page: 2138 publication-title: Acc. Chem. Res. – volume: 46 start-page: 2555 year: 2017 end-page: 2576 publication-title: Chem. Soc. Rev. – volume: 136 start-page: 3350 year: 2014 end-page: 3353 publication-title: J. Am. Chem. Soc. – volume: 50 start-page: 3024 year: 2014 end-page: 3026 publication-title: Chem. Commun. – volume: 45 start-page: 6799 year: 2016 end-page: 6811 publication-title: Chem. Soc. Rev. – volume: 350 start-page: 2153 year: 2008 end-page: 2167 publication-title: Adv. Synth. Catal. – volume: 133 start-page: 12136 year: 2011 end-page: 12143 publication-title: J. Am. Chem. Soc. – volume: 116 start-page: 10346 year: 2016 end-page: 10413 publication-title: Chem. Rev. – volume: 48 start-page: 4823 year: 2019 end-page: 4853 publication-title: Chem. Soc. Rev. – volume: 59 132 start-page: 5336 5374 year: 2020 2020 end-page: 5340 5378 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 139 start-page: 5039 year: 2017 end-page: 5042 publication-title: J. Am. Chem. Soc. – volume: 7 start-page: 634 year: 2013 end-page: 638 publication-title: Nat. Photonics – volume: 5 start-page: 316 year: 2014 end-page: 321 publication-title: J. Phys. Chem. Lett. – volume: 53 126 start-page: 14392 14620 year: 2014 2014 end-page: 14396 14624 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 139 start-page: 17731 year: 2017 end-page: 17734 publication-title: J. Am. Chem. Soc. – volume: 47 start-page: 1318 year: 2014 end-page: 1326 publication-title: Acc. Chem. Res. – volume: 58 131 start-page: 14334 14472 year: 2019 2019 end-page: 14340 14478 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 41 start-page: 1677 year: 2012 end-page: 1695 publication-title: Chem. Soc. Rev. – volume: 11 start-page: 334 year: 1978 end-page: 341 publication-title: Acc. Chem. Res. – volume: 24 start-page: 3673 year: 2014 end-page: 3682 publication-title: Bioorg. Med. Chem. Lett. – volume: 9 start-page: 1481 year: 2018 end-page: 1487 publication-title: Chem. Sci. – volume: 45 start-page: 544 year: 2012 end-page: 554 publication-title: Acc. Chem. Res. – volume: 59 132 start-page: 7542 7612 year: 2020 2020 end-page: 7547 7617 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 51 start-page: 3084 year: 2018 end-page: 3093 publication-title: Acc. Chem. Res. – volume: 50 123 start-page: 3376 3436 year: 2011 2011 end-page: 3410 3473 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – start-page: 9692 year: 2009 end-page: 9707 publication-title: Dalton Trans. – volume: 51 start-page: 1493 year: 2010 end-page: 1496 publication-title: Tetrahedron Lett. – volume: 50 123 start-page: 3684 3768 year: 2011 2011 end-page: 3687 3771 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 3 start-page: 798 year: 2012 end-page: 803 publication-title: Nat. Commun. – volume: 43 116 start-page: 4490 4590 year: 2004 2004 end-page: 4492 4592 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 140 start-page: 657 year: 2018 end-page: 666 publication-title: J. Am. Chem. Soc. – volume: 47 start-page: 2063 year: 2014 end-page: 2073 publication-title: Acc. Chem. Res. – volume: 133 start-page: 9266 year: 2011 end-page: 9269 publication-title: J. Am. Chem. Soc. – volume: 58 131 start-page: 9625 9727 year: 2019 2019 end-page: 9631 9733 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 49 start-page: 11794 year: 2013 end-page: 11796 publication-title: Chem. Commun. – volume: 117 start-page: 8041 year: 2017 end-page: 8093 publication-title: Chem. Rev. – volume: 32 start-page: 275 year: 2020 end-page: 292 publication-title: Mater. Today – volume: 115 start-page: 10592 year: 2011 end-page: 10603 publication-title: J. Phys. Chem. B – ident: e_1_2_2_30_2 doi: 10.1016/j.ccr.2017.10.031 – ident: e_1_2_2_24_2 doi: 10.1007/128_033 – ident: e_1_2_2_35_1 doi: 10.1038/nphoton.2013.176 – ident: e_1_2_2_32_1 – ident: e_1_2_2_37_2 doi: 10.1021/ja037733e – ident: e_1_2_2_60_2 doi: 10.1016/j.mattod.2019.08.010 – ident: e_1_2_2_77_1 – ident: e_1_2_2_82_2 doi: 10.1021/jp2053019 – ident: e_1_2_2_5_2 doi: 10.1021/acs.accounts.8b00371 – ident: e_1_2_2_10_3 doi: 10.1002/ange.201915844 – ident: e_1_2_2_54_3 doi: 10.1002/ange.201907856 – ident: e_1_2_2_78_3 doi: 10.1002/ange.201007849 – ident: e_1_2_2_79_2 doi: 10.1021/jz402615n – ident: e_1_2_2_17_2 doi: 10.1039/c1cs15119c – ident: e_1_2_2_49_1 doi: 10.1021/acs.organomet.6b00771 – ident: e_1_2_2_80_1 – ident: e_1_2_2_71_2 doi: 10.1002/adom.201902152 – ident: e_1_2_2_20_2 doi: 10.1021/jacs.7b02039 – ident: e_1_2_2_66_3 doi: 10.1002/ange.201002307 – ident: e_1_2_2_84_2 doi: 10.1002/anie.201803833 – ident: e_1_2_2_39_1 doi: 10.1039/b909430j – ident: e_1_2_2_58_1 – ident: e_1_2_2_76_2 doi: 10.1039/C9CC06861A – ident: e_1_2_2_63_2 doi: 10.1073/pnas.1418824111 – ident: e_1_2_2_47_2 doi: 10.1039/c3cc49851d – ident: e_1_2_2_53_2 doi: 10.1007/s11164-011-0342-7 – ident: e_1_2_2_18_2 doi: 10.1016/j.bmcl.2014.06.081 – ident: e_1_2_2_42_2 doi: 10.1021/ja0422108 – ident: e_1_2_2_69_3 doi: 10.1002/ange.201709827 – ident: e_1_2_2_43_1 – ident: e_1_2_2_84_3 doi: 10.1002/ange.201803833 – ident: e_1_2_2_13_2 doi: 10.1021/acs.chemrev.5b00703 – ident: e_1_2_2_31_2 doi: 10.1039/C9CS00250B – ident: e_1_2_2_14_2 doi: 10.1021/jacs.7b10448 – ident: e_1_2_2_48_1 doi: 10.1039/C7SC04503D – ident: e_1_2_2_27_1 – ident: e_1_2_2_70_3 doi: 10.1002/ange.201908909 – ident: e_1_2_2_46_2 doi: 10.1039/c3cc46524a – ident: e_1_2_2_72_2 doi: 10.1002/anie.202000073 – ident: e_1_2_2_62_2 doi: 10.1021/ja306199p – ident: e_1_2_2_65_1 – ident: e_1_2_2_45_2 doi: 10.1016/j.tetlet.2010.01.036 – ident: e_1_2_2_66_2 doi: 10.1002/anie.201002307 – ident: e_1_2_2_57_2 doi: 10.1021/jacs.7b09770 – ident: e_1_2_2_44_2 doi: 10.1002/adsc.200800409 – ident: e_1_2_2_59_2 doi: 10.1021/acs.chemrev.5b00263 – ident: e_1_2_2_7_1 doi: 10.1021/jacs.6b01658 – ident: e_1_2_2_34_2 doi: 10.1021/jacs.8b01860 – ident: e_1_2_2_41_3 doi: 10.1002/ange.200454162 – ident: e_1_2_2_8_1 – ident: e_1_2_2_15_3 doi: 10.1002/ange.201804087 – ident: e_1_2_2_56_2 doi: 10.1021/ja203920w – ident: e_1_2_2_12_2 doi: 10.1038/ncomms1802 – ident: e_1_2_2_6_1 doi: 10.1021/ja0565727 – ident: e_1_2_2_50_1 doi: 10.1002/anie.201405936 – ident: e_1_2_2_40_1 – ident: e_1_2_2_67_2 doi: 10.1021/ar2001952 – ident: e_1_2_2_85_1 – ident: e_1_2_2_83_3 doi: 10.1002/ange.201408193 – ident: e_1_2_2_9_2 doi: 10.1002/anie.201308599 – ident: e_1_2_2_64_2 doi: 10.1021/jacs.7b10201 – ident: e_1_2_2_23_1 – ident: e_1_2_2_68_1 – ident: e_1_2_2_69_2 doi: 10.1002/anie.201709827 – ident: e_1_2_2_26_2 doi: 10.1039/C7CS00173H – ident: e_1_2_2_11_1 – ident: e_1_2_2_70_2 doi: 10.1002/anie.201814387 – ident: e_1_2_2_36_1 – ident: e_1_2_2_10_2 doi: 10.1002/anie.201915844 – ident: e_1_2_2_29_2 doi: 10.1021/acs.accounts.8b00297 – ident: e_1_2_2_74_2 doi: 10.1021/ja011706b – ident: e_1_2_2_28_2 doi: 10.1039/C1CS15196G – ident: e_1_2_2_78_2 doi: 10.1002/anie.201007849 – ident: e_1_2_2_21_3 doi: 10.1002/ange.201904681 – ident: e_1_2_2_55_1 – ident: e_1_2_2_4_2 doi: 10.1021/acs.chemrev.6b00755 – ident: e_1_2_2_25_2 doi: 10.1021/ar5000924 – ident: e_1_2_2_33_2 doi: 10.1021/ja203206g – ident: e_1_2_2_1_1 – ident: e_1_2_2_2_2 doi: 10.1021/ar400295d – ident: e_1_2_2_41_2 doi: 10.1002/anie.200454162 – ident: e_1_2_2_51_1 – ident: e_1_2_2_81_2 doi: 10.1021/ja067321g – ident: e_1_2_2_15_2 doi: 10.1002/anie.201804087 – ident: e_1_2_2_21_2 doi: 10.1002/anie.201904681 – ident: e_1_2_2_38_2 doi: 10.1002/adma.201404891 – ident: e_1_2_2_73_1 – ident: e_1_2_2_3_2 doi: 10.1002/asia.201700023 – ident: e_1_2_2_75_2 doi: 10.1021/ja412197j – ident: e_1_2_2_50_2 doi: 10.1002/ange.201405936 – ident: e_1_2_2_61_1 – ident: e_1_2_2_52_2 doi: 10.1021/ar50129a003 – ident: e_1_2_2_54_2 doi: 10.1002/anie.201907856 – ident: e_1_2_2_83_2 doi: 10.1002/anie.201408193 – ident: e_1_2_2_19_1 – ident: e_1_2_2_9_3 doi: 10.1002/ange.201308599 – ident: e_1_2_2_16_1 – ident: e_1_2_2_22_1 doi: 10.1039/C6CS00604C – ident: e_1_2_2_72_3 doi: 10.1002/ange.202000073 |
SSID | ssj0028806 |
Score | 2.5826852 |
Snippet | Spirocyclic Ag9 clusters, as a new form of intrinsically chiral metal clusters, were constructed through vertex‐sharing of two in‐situ‐generated heteroaryl... Spirocyclic Ag 9 clusters, as a new form of intrinsically chiral metal clusters, were constructed through vertex‐sharing of two in‐situ‐generated heteroaryl... Spirocyclic Ag clusters, as a new form of intrinsically chiral metal clusters, were constructed through vertex-sharing of two in-situ-generated heteroaryl... Spirocyclic Ag9 clusters, as a new form of intrinsically chiral metal clusters, were constructed through vertex-sharing of two in-situ-generated heteroaryl... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1535 |
SubjectTerms | Absolute configuration Agglomeration Aggregation behavior aggregation-induced emission Anisotropy Assembly Chelation chirality Circular polarization circularly polarized luminescence (CPL) cluster compounds Couplings Emission Emissions Enantiomers Excitons Fluorescence Handedness Ligands Luminescence Metal clusters Nanofibers Photoluminescence Polarity Silver supramolecular assembly |
Title | Assembly‐Induced Strong Circularly Polarized Luminescence of Spirocyclic Chiral Silver(I) Clusters |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202008765 https://www.ncbi.nlm.nih.gov/pubmed/32959488 https://www.proquest.com/docview/2476860331 https://www.proquest.com/docview/2444881332 |
Volume | 60 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwELZQL3Dhp_wtLZWRkICD28R2Eu-xirraRVAhlkp7i-yJ3UZNd6vdzWF76iP0GfskeJJN2gUhJDhGtuWJ7fF8tme-IeS9lUlkI8eZ1iCYNHnMjNOaJdDP-yp3ICUGJ389jocn8vMkmtyL4m_4IboLN9SMer9GBddmcXBHGooR2P58x2tSNYwyR4ctREXfO_4o7hdnE14kBMMs9C1rY8APNptvWqXfoOYmcq1Nz-AJ0a3QjcfJ-X61NPtw9Quf4__81VPyeI1L6WGzkJ6RB3a6TR6mbTq45yTH5-ELU65ur28w3wfYnI7xHv2UpsW89mYtV_QbnpSLK1_2pbpAj3rAnYPOHB1fFt5WrqAsgKZnxdx3Ni7QLfvj6BNNywoJGxYvyMng6Ec6ZOsUDQykl4-FubNo4fpOgIJEx04InjgLAWDMrDShUEbHibbO5aA8VgAXcMetykMTaSdekq3pbGpfEwo2iXwj6RGbk4kODb7ZhRArj1GNcmGPsHaKMljzl2MajTJrmJd5hmOXdWPXIx-6-pcNc8cfa-62M56tNXiRcf9_Kg6E8B2_64r9mOODip7aWYV1_OHWyyd4j7xqVkrXleB9ZMJRPcLr-f6LDNnh8eio-3rzL412yCOODjdByEK1S7aW88q-9YhpafZqrfgJRBIO_Q |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VcigX_n8WChgJBBzcJnZ-vAcOVdpql25XiG2l3oLt2BCR7la7G6HtiUfgVXgVHoEnwZNsghaEkJB64BjZjv9mxmPPzDcAT00Qhya0jEqpOQ1UFlFlpaSx7mZdkVkdBBicfDiMesfB65PwZA2-NrEwNT5E--CGnFHJa2RwfJDe_okaiiHY7oLHKlS1xq_ywCw-uVvb7FV_123xM8b2946SHl0mFqA6cFWpn1mDcrlruRY6lpHlnMXWaE9jpGegfC6UjGJprM20cCecth6zzIjMV6G03P33ElzGNOII17_7tkWsYo4d6oAmzinmvW9wIj22vTre1XPwN-V2VVeuDrv9a_CtWabax-XjVjlXW_r8FwTJ_2odr8PVpepNdmpeuQFrZnwTNpIm490tyNACfqqKxffPXzCliTYZGaGp4D1J8mnlsFssyBt8DMjPXdmgPMWgAY3CkUwsGZ3lTh1Y6CLXJPmQT11noxw9z1_0X5KkKBGTYnYbji9kkndgfTwZm3tAtIlD1yhwSqkNYukrNEv6OhJODVfC-h2gDU2kegnRjplCirQGl2Yp7lXa7lUHnrf1z2pwkj_W3GxILF0KqVnK3PxE5HHuOn7SFrs1R5uRHJtJiXXc_d2Nj7MO3K1Js-2Ksy6C_YgOsIrA_jKGdGfY32u_7v9Lo8ew0Ts6HKSD_vDgAVxh6F_k-dQXm7A-n5bmoVMQ5-pRxZIE3l007f4ANTRvLg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwELZKkYAL_z8LBYwEgh7cJraTOAcOVbarLi2riqVSb8F27DYi3V3tboS2Jx6BR-FVeAWeBE-yCVoQQkLqgWNkO_6bGY89M98g9NzwKDCBpURKzQhXWUiUlZJEOs5ikVnNOQQnvx2Ee0f8zXFwvIa-NrEwNT5E--AGnFHJa2DwSWa3f4KGQgS2u9_RClStcavcN4tP7tI2e93vuh1-QWlv932yR5Z5BYjmrirxM2tALMeWaaEjGVrGaGSN9jQEenLlM6FkGEljbaaFO-C09ailRmS-CqRl7r-X0GUeejEki-i-awGrqOOGOp6JMQJp7xuYSI9ur4539Rj8TbddVZWrs653A31rVql2cfm4Vc7Vlj7_BUDyf1rGm-j6UvHGOzWn3EJrZnQbXU2afHd3UAb27zNVLL5__gIJTbTJ8BAMBSc4yaeVu26xwIfwFJCfu7KD8gxCBjSIRjy2eDjJnTKw0EWucXKaT11nwxz8zl_1N3FSlIBIMbuLji5kkvfQ-mg8Mg8Q1iYKXCPuVFLLI-krMEr6OhROCVfC-h1EGpJI9RKgHfKEFGkNLU1T2Ku03asOetnWn9TQJH-sudFQWLoUUbOUuvmJ0GPMdfysLXZrDhYjOTLjEuq427sbH6MddL-mzLYrRmOA-hEdRCv6-ssY0p1Bf7f9evgvjZ6iK4fdXnrQH-w_QtcoOBd5PvHFBlqfT0vz2GmHc_WkYkiMPlw06f4AY8Nt3Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Assembly%E2%80%90Induced+Strong+Circularly+Polarized+Luminescence+of+Spirocyclic+Chiral+Silver%28I%29+Clusters&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Wu%2C+Han&rft.au=He%2C+Xin&rft.au=Yang%2C+Biao&rft.au=Li%2C+Cui%E2%80%90Cui&rft.date=2021-01-18&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=60&rft.issue=3&rft.spage=1535&rft.epage=1539&rft_id=info:doi/10.1002%2Fanie.202008765&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_anie_202008765 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon |