Assembly‐Induced Strong Circularly Polarized Luminescence of Spirocyclic Chiral Silver(I) Clusters

Spirocyclic Ag9 clusters, as a new form of intrinsically chiral metal clusters, were constructed through vertex‐sharing of two in‐situ‐generated heteroaryl diide‐centered metal rings. Such core‐peripheral type clusters exhibit versatile photoluminescent and chiroptical behavior under different aggre...

Full description

Saved in:
Bibliographic Details
Published inAngewandte Chemie International Edition Vol. 60; no. 3; pp. 1535 - 1539
Main Authors Wu, Han, He, Xin, Yang, Biao, Li, Cui‐Cui, Zhao, Liang
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 18.01.2021
EditionInternational ed. in English
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Spirocyclic Ag9 clusters, as a new form of intrinsically chiral metal clusters, were constructed through vertex‐sharing of two in‐situ‐generated heteroaryl diide‐centered metal rings. Such core‐peripheral type clusters exhibit versatile photoluminescent and chiroptical behavior under different aggregation conditions. In contrast to a ligand‐based fluorescence emission in a diluted solution of the clusters, a solvent polarity‐caused assembly gives rise to new cluster‐based phosphorous luminescence owing to radiative mode switching and aggregation‐induced emission. Assembly of cluster enantiomers leads to micrometer‐long helical nanofibers, whose handedness is determined by absolute configuration of individual spirocyclic clusters. Benefiting from exciton couplings of helical arrangements of chelating ligands at molecular and microscopic levels, the assembled film of cluster enantiomers exhibits circularly polarized luminescence with a high anisotropy factor (0.16). Two spirocyclic Ag9 chiral clusters, as a new form of intrinsic chiral metal clusters, have been constructed. They show unique fluorescence‐to‐phosphorescence switching and aggregation‐induced emission under different aggregation conditions. The assembly of cluster enantiomers leads to micrometer‐long helical nanofibers and superior circularly polarized luminescence performance with a remarkably high anisotropy factor of 0.16.
AbstractList Spirocyclic Ag clusters, as a new form of intrinsically chiral metal clusters, were constructed through vertex-sharing of two in-situ-generated heteroaryl diide-centered metal rings. Such core-peripheral type clusters exhibit versatile photoluminescent and chiroptical behavior under different aggregation conditions. In contrast to a ligand-based fluorescence emission in a diluted solution of the clusters, a solvent polarity-caused assembly gives rise to new cluster-based phosphorous luminescence owing to radiative mode switching and aggregation-induced emission. Assembly of cluster enantiomers leads to micrometer-long helical nanofibers, whose handedness is determined by absolute configuration of individual spirocyclic clusters. Benefiting from exciton couplings of helical arrangements of chelating ligands at molecular and microscopic levels, the assembled film of cluster enantiomers exhibits circularly polarized luminescence with a high anisotropy factor (0.16).
Spirocyclic Ag 9 clusters, as a new form of intrinsically chiral metal clusters, were constructed through vertex‐sharing of two in‐situ‐generated heteroaryl diide‐centered metal rings. Such core‐peripheral type clusters exhibit versatile photoluminescent and chiroptical behavior under different aggregation conditions. In contrast to a ligand‐based fluorescence emission in a diluted solution of the clusters, a solvent polarity‐caused assembly gives rise to new cluster‐based phosphorous luminescence owing to radiative mode switching and aggregation‐induced emission. Assembly of cluster enantiomers leads to micrometer‐long helical nanofibers, whose handedness is determined by absolute configuration of individual spirocyclic clusters. Benefiting from exciton couplings of helical arrangements of chelating ligands at molecular and microscopic levels, the assembled film of cluster enantiomers exhibits circularly polarized luminescence with a high anisotropy factor (0.16).
Spirocyclic Ag9 clusters, as a new form of intrinsically chiral metal clusters, were constructed through vertex‐sharing of two in‐situ‐generated heteroaryl diide‐centered metal rings. Such core‐peripheral type clusters exhibit versatile photoluminescent and chiroptical behavior under different aggregation conditions. In contrast to a ligand‐based fluorescence emission in a diluted solution of the clusters, a solvent polarity‐caused assembly gives rise to new cluster‐based phosphorous luminescence owing to radiative mode switching and aggregation‐induced emission. Assembly of cluster enantiomers leads to micrometer‐long helical nanofibers, whose handedness is determined by absolute configuration of individual spirocyclic clusters. Benefiting from exciton couplings of helical arrangements of chelating ligands at molecular and microscopic levels, the assembled film of cluster enantiomers exhibits circularly polarized luminescence with a high anisotropy factor (0.16).
Spirocyclic Ag9 clusters, as a new form of intrinsically chiral metal clusters, were constructed through vertex‐sharing of two in‐situ‐generated heteroaryl diide‐centered metal rings. Such core‐peripheral type clusters exhibit versatile photoluminescent and chiroptical behavior under different aggregation conditions. In contrast to a ligand‐based fluorescence emission in a diluted solution of the clusters, a solvent polarity‐caused assembly gives rise to new cluster‐based phosphorous luminescence owing to radiative mode switching and aggregation‐induced emission. Assembly of cluster enantiomers leads to micrometer‐long helical nanofibers, whose handedness is determined by absolute configuration of individual spirocyclic clusters. Benefiting from exciton couplings of helical arrangements of chelating ligands at molecular and microscopic levels, the assembled film of cluster enantiomers exhibits circularly polarized luminescence with a high anisotropy factor (0.16). Two spirocyclic Ag9 chiral clusters, as a new form of intrinsic chiral metal clusters, have been constructed. They show unique fluorescence‐to‐phosphorescence switching and aggregation‐induced emission under different aggregation conditions. The assembly of cluster enantiomers leads to micrometer‐long helical nanofibers and superior circularly polarized luminescence performance with a remarkably high anisotropy factor of 0.16.
Spirocyclic Ag9 clusters, as a new form of intrinsically chiral metal clusters, were constructed through vertex-sharing of two in-situ-generated heteroaryl diide-centered metal rings. Such core-peripheral type clusters exhibit versatile photoluminescent and chiroptical behavior under different aggregation conditions. In contrast to a ligand-based fluorescence emission in a diluted solution of the clusters, a solvent polarity-caused assembly gives rise to new cluster-based phosphorous luminescence owing to radiative mode switching and aggregation-induced emission. Assembly of cluster enantiomers leads to micrometer-long helical nanofibers, whose handedness is determined by absolute configuration of individual spirocyclic clusters. Benefiting from exciton couplings of helical arrangements of chelating ligands at molecular and microscopic levels, the assembled film of cluster enantiomers exhibits circularly polarized luminescence with a high anisotropy factor (0.16).Spirocyclic Ag9 clusters, as a new form of intrinsically chiral metal clusters, were constructed through vertex-sharing of two in-situ-generated heteroaryl diide-centered metal rings. Such core-peripheral type clusters exhibit versatile photoluminescent and chiroptical behavior under different aggregation conditions. In contrast to a ligand-based fluorescence emission in a diluted solution of the clusters, a solvent polarity-caused assembly gives rise to new cluster-based phosphorous luminescence owing to radiative mode switching and aggregation-induced emission. Assembly of cluster enantiomers leads to micrometer-long helical nanofibers, whose handedness is determined by absolute configuration of individual spirocyclic clusters. Benefiting from exciton couplings of helical arrangements of chelating ligands at molecular and microscopic levels, the assembled film of cluster enantiomers exhibits circularly polarized luminescence with a high anisotropy factor (0.16).
Author He, Xin
Wu, Han
Yang, Biao
Li, Cui‐Cui
Zhao, Liang
Author_xml – sequence: 1
  givenname: Han
  surname: Wu
  fullname: Wu, Han
  organization: Tsinghua University
– sequence: 2
  givenname: Xin
  surname: He
  fullname: He, Xin
  organization: Tsinghua University
– sequence: 3
  givenname: Biao
  surname: Yang
  fullname: Yang, Biao
  organization: Tsinghua University
– sequence: 4
  givenname: Cui‐Cui
  surname: Li
  fullname: Li, Cui‐Cui
  organization: Tsinghua University
– sequence: 5
  givenname: Liang
  orcidid: 0000-0003-4646-2887
  surname: Zhao
  fullname: Zhao, Liang
  email: zhaolchem@mail.tsinghua.edu.cn
  organization: Tsinghua University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32959488$$D View this record in MEDLINE/PubMed
BookMark eNqFkUtr3DAUhUVIyavZZlkM2aQLT_XwQ14OJmkHhrYw7VrI8lWqIEtTyU5wVv0J_Y39JVWYpIFAyeoK9J3Dufcco33nHSB0RvCCYEw_SGdgQTHFmNdVuYeOSElJzuqa7ad3wVhe85IcouMYbxLPOa4O0CGjTdkUnB-hfhkjDJ2d__z6vXL9pKDPNmPw7jprTVCTlcHO2VefprlPf-tpMA6iAqcg8zrbbE3walbWqKz9YYK02cbYWwgXq_dZa6c4Qohv0RstbYTTx3mCvl9dfms_5esvH1ftcp2rIoXPSa-BUF40mimuallpxmitQWHFmqYsOsJ4J6tagta94mlRpTHVFHhPulJqdoIudr7b4H9OEEcxmBTVWunAT1HQokhLk-Sa0PMX6I2fgkvpElVXvMKMkUS9e6SmboBebIMZZJjF0_0SUOwAFXyMAbRQZpSj8W4M0lhBsHioSTzUJP7VlGSLF7In5_8Kmp3gzliYX6HF8vPq8ln7F2Mupp0
CitedBy_id crossref_primary_10_1016_j_isci_2025_111982
crossref_primary_10_1002_anie_202314515
crossref_primary_10_1021_acssuschemeng_2c03488
crossref_primary_10_1002_advs_202207660
crossref_primary_10_1039_D1CC01162F
crossref_primary_10_1002_chem_202005320
crossref_primary_10_1002_anie_202407034
crossref_primary_10_1002_anie_202210542
crossref_primary_10_1002_adma_202417089
crossref_primary_10_1016_j_ccr_2022_214729
crossref_primary_10_1002_ange_202404545
crossref_primary_10_1016_j_chempr_2024_01_028
crossref_primary_10_1021_acsnano_2c06492
crossref_primary_10_1039_D1CC05135K
crossref_primary_10_1016_j_ccr_2021_214329
crossref_primary_10_1021_acs_inorgchem_3c02806
crossref_primary_10_1007_s11426_021_1146_6
crossref_primary_10_1002_adom_202201229
crossref_primary_10_1007_s12274_022_5308_0
crossref_primary_10_1002_anie_202100934
crossref_primary_10_1021_jacs_3c08241
crossref_primary_10_1002_adma_202403329
crossref_primary_10_1002_agt2_148
crossref_primary_10_1016_j_matt_2022_01_001
crossref_primary_10_1021_acs_inorgchem_2c00256
crossref_primary_10_1021_jacs_3c04953
crossref_primary_10_1016_j_foodchem_2023_136376
crossref_primary_10_1039_D1CC04011A
crossref_primary_10_1002_ange_202407034
crossref_primary_10_1007_s11426_024_2356_9
crossref_primary_10_1002_anie_202404545
crossref_primary_10_1039_D2CC04623G
crossref_primary_10_1021_jacs_1c03208
crossref_primary_10_1016_j_cclet_2024_110402
crossref_primary_10_1002_ejic_202100336
crossref_primary_10_1021_acsnano_2c06623
crossref_primary_10_1039_D3SC06810B
crossref_primary_10_1002_agt2_598
crossref_primary_10_1038_s41467_021_25789_9
crossref_primary_10_1364_PRJ_446416
crossref_primary_10_1039_D2CS00876A
crossref_primary_10_1021_acs_nanolett_3c00655
crossref_primary_10_1007_s40843_023_2731_0
crossref_primary_10_1039_D1QM00808K
crossref_primary_10_1002_anie_202407887
crossref_primary_10_1002_bio_4880
crossref_primary_10_1016_j_poly_2021_115580
crossref_primary_10_1021_acsanm_2c02496
crossref_primary_10_1021_acs_nanolett_3c04698
crossref_primary_10_1039_D3QM00747B
crossref_primary_10_1021_acsaom_3c00209
crossref_primary_10_1002_cjoc_202100139
crossref_primary_10_1002_ange_202100934
crossref_primary_10_1080_15421406_2024_2324627
crossref_primary_10_1126_sciadv_adh5083
crossref_primary_10_1002_ange_202314515
crossref_primary_10_1002_agt2_48
crossref_primary_10_1021_jacs_1c02098
crossref_primary_10_1016_j_molliq_2025_127323
crossref_primary_10_1002_ange_202407887
crossref_primary_10_1039_D2QI00982J
crossref_primary_10_1016_j_molliq_2024_125290
crossref_primary_10_1021_acsami_2c13267
crossref_primary_10_1039_D2NR07223H
crossref_primary_10_1002_adom_202300161
crossref_primary_10_1016_j_ica_2023_121834
crossref_primary_10_1038_s41570_021_00350_w
crossref_primary_10_1002_ange_202210542
crossref_primary_10_1039_D2DT02194C
crossref_primary_10_1002_smll_202305366
crossref_primary_10_1002_agt2_331
crossref_primary_10_1016_j_snb_2021_131356
crossref_primary_10_1039_D4TC01280A
Cites_doi 10.1016/j.ccr.2017.10.031
10.1007/128_033
10.1038/nphoton.2013.176
10.1021/ja037733e
10.1016/j.mattod.2019.08.010
10.1021/jp2053019
10.1021/acs.accounts.8b00371
10.1002/ange.201915844
10.1002/ange.201907856
10.1002/ange.201007849
10.1021/jz402615n
10.1039/c1cs15119c
10.1021/acs.organomet.6b00771
10.1002/adom.201902152
10.1021/jacs.7b02039
10.1002/ange.201002307
10.1002/anie.201803833
10.1039/b909430j
10.1039/C9CC06861A
10.1073/pnas.1418824111
10.1039/c3cc49851d
10.1007/s11164-011-0342-7
10.1016/j.bmcl.2014.06.081
10.1021/ja0422108
10.1002/ange.201709827
10.1002/ange.201803833
10.1021/acs.chemrev.5b00703
10.1039/C9CS00250B
10.1021/jacs.7b10448
10.1039/C7SC04503D
10.1002/ange.201908909
10.1039/c3cc46524a
10.1002/anie.202000073
10.1021/ja306199p
10.1016/j.tetlet.2010.01.036
10.1002/anie.201002307
10.1021/jacs.7b09770
10.1002/adsc.200800409
10.1021/acs.chemrev.5b00263
10.1021/jacs.6b01658
10.1021/jacs.8b01860
10.1002/ange.200454162
10.1002/ange.201804087
10.1021/ja203920w
10.1038/ncomms1802
10.1021/ja0565727
10.1002/anie.201405936
10.1021/ar2001952
10.1002/ange.201408193
10.1002/anie.201308599
10.1021/jacs.7b10201
10.1002/anie.201709827
10.1039/C7CS00173H
10.1002/anie.201814387
10.1002/anie.201915844
10.1021/acs.accounts.8b00297
10.1021/ja011706b
10.1039/C1CS15196G
10.1002/anie.201007849
10.1002/ange.201904681
10.1021/acs.chemrev.6b00755
10.1021/ar5000924
10.1021/ja203206g
10.1021/ar400295d
10.1002/anie.200454162
10.1021/ja067321g
10.1002/anie.201804087
10.1002/anie.201904681
10.1002/adma.201404891
10.1002/asia.201700023
10.1021/ja412197j
10.1002/ange.201405936
10.1021/ar50129a003
10.1002/anie.201907856
10.1002/anie.201408193
10.1002/ange.201308599
10.1039/C6CS00604C
10.1002/ange.202000073
ContentType Journal Article
Copyright 2020 Wiley‐VCH GmbH
2020 Wiley-VCH GmbH.
2021 Wiley‐VCH GmbH
Copyright_xml – notice: 2020 Wiley‐VCH GmbH
– notice: 2020 Wiley-VCH GmbH.
– notice: 2021 Wiley‐VCH GmbH
DBID AAYXX
CITATION
NPM
7TM
K9.
7X8
DOI 10.1002/anie.202008765
DatabaseName CrossRef
PubMed
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
ProQuest Health & Medical Complete (Alumni)
Nucleic Acids Abstracts
MEDLINE - Academic
DatabaseTitleList PubMed
CrossRef
ProQuest Health & Medical Complete (Alumni)

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3773
Edition International ed. in English
EndPage 1539
ExternalDocumentID 32959488
10_1002_anie_202008765
ANIE202008765
Genre shortCommunication
Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 21772111, 21821001, 91956125, 22025105, 21661132006
– fundername: National Natural Science Foundation of China
  grantid: 21772111, 21821001, 91956125, 22025105, 21661132006
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABLJU
ABPPZ
ABPVW
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BTSUX
BY8
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
M53
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
TN5
UB1
UPT
UQL
V2E
VQA
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XSW
XV2
YZZ
ZZTAW
~IA
~KM
~WT
AAYXX
ABDBF
ABJNI
AEYWJ
AGHNM
AGYGG
CITATION
NPM
7TM
K9.
7X8
ID FETCH-LOGICAL-c4765-1dfe12849f3c8c7a6f3327fec0c39954b138ba67aeffdc8521cf02f2e8d1b5af3
IEDL.DBID DR2
ISSN 1433-7851
1521-3773
IngestDate Thu Jul 10 23:53:37 EDT 2025
Sun Jul 13 05:20:44 EDT 2025
Thu Apr 03 07:03:11 EDT 2025
Tue Jul 01 01:17:48 EDT 2025
Thu Apr 24 23:09:15 EDT 2025
Wed Jan 22 16:30:27 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords aggregation-induced emission
supramolecular assembly
cluster compounds
circularly polarized luminescence (CPL)
chirality
Language English
License 2020 Wiley-VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4765-1dfe12849f3c8c7a6f3327fec0c39954b138ba67aeffdc8521cf02f2e8d1b5af3
Notes Dedicated to Professor Youqi Tang at Peking University on the occasion of his 100th birthday
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-4646-2887
PMID 32959488
PQID 2476860331
PQPubID 946352
PageCount 5
ParticipantIDs proquest_miscellaneous_2444881332
proquest_journals_2476860331
pubmed_primary_32959488
crossref_citationtrail_10_1002_anie_202008765
crossref_primary_10_1002_anie_202008765
wiley_primary_10_1002_anie_202008765_ANIE202008765
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 18, 2021
PublicationDateYYYYMMDD 2021-01-18
PublicationDate_xml – month: 01
  year: 2021
  text: January 18, 2021
  day: 18
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Angewandte Chemie International Edition
PublicationTitleAlternate Angew Chem Int Ed Engl
PublicationYear 2021
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2014 2014; 53 126
2011; 115
2019 2020; 58 132
2019; 55
2017; 46
2020 2020; 59 132
2014; 24
2013; 7
2014; 136
2017; 117
2020; 8
2018; 9
2014; 5
2012; 134
2017; 36
2018 2018; 57 130
2015 2015; 54 127
2016; 116
2003; 125
2014; 50
2008; 350
2016; 45
2001; 123
2004 2004; 43 116
2007; 129
2018; 140
2013; 49
1978; 11
2011; 40
2009
2014; 47
2011; 37
2020; 32
2017 2017; 56 129
2014; 111
2019 2019; 58 131
2011; 133
2017; 139
2012; 3
2015; 27
2015; 115
2005; 127
2019; 48
2017; 12
2019; 378
2018; 51
2016; 138
2011 2011; 50 123
2012; 45
2006; 265
2010; 51
2012; 41
e_1_2_2_24_2
e_1_2_2_47_2
e_1_2_2_6_1
e_1_2_2_20_2
e_1_2_2_2_2
e_1_2_2_62_2
e_1_2_2_43_1
e_1_2_2_85_1
e_1_2_2_28_2
e_1_2_2_66_2
e_1_2_2_66_3
e_1_2_2_81_2
e_1_2_2_13_2
e_1_2_2_59_2
e_1_2_2_74_2
e_1_2_2_51_1
e_1_2_2_32_1
e_1_2_2_17_2
e_1_2_2_78_2
e_1_2_2_55_1
e_1_2_2_78_3
e_1_2_2_36_1
e_1_2_2_70_3
e_1_2_2_70_2
e_1_2_2_48_1
e_1_2_2_5_2
e_1_2_2_21_3
e_1_2_2_21_2
e_1_2_2_1_1
e_1_2_2_40_1
e_1_2_2_29_2
e_1_2_2_63_2
e_1_2_2_44_2
e_1_2_2_9_3
e_1_2_2_9_2
e_1_2_2_25_2
e_1_2_2_67_2
e_1_2_2_82_2
e_1_2_2_37_2
e_1_2_2_10_3
e_1_2_2_10_2
e_1_2_2_75_2
e_1_2_2_18_2
e_1_2_2_52_2
e_1_2_2_33_2
e_1_2_2_79_2
e_1_2_2_14_2
e_1_2_2_56_2
e_1_2_2_71_2
e_1_2_2_4_2
e_1_2_2_49_1
e_1_2_2_22_1
e_1_2_2_41_2
e_1_2_2_64_2
e_1_2_2_83_2
e_1_2_2_41_3
e_1_2_2_83_3
e_1_2_2_8_1
e_1_2_2_26_2
e_1_2_2_45_2
e_1_2_2_68_1
e_1_2_2_60_2
e_1_2_2_38_2
e_1_2_2_11_1
e_1_2_2_72_3
e_1_2_2_72_2
e_1_2_2_30_2
e_1_2_2_53_2
e_1_2_2_19_1
e_1_2_2_15_3
e_1_2_2_15_2
e_1_2_2_34_2
e_1_2_2_57_2
e_1_2_2_76_2
e_1_2_2_3_2
e_1_2_2_69_3
e_1_2_2_69_2
e_1_2_2_23_1
e_1_2_2_7_1
e_1_2_2_84_3
e_1_2_2_65_1
e_1_2_2_42_2
e_1_2_2_84_2
e_1_2_2_27_1
e_1_2_2_46_2
e_1_2_2_61_1
e_1_2_2_80_1
e_1_2_2_12_2
e_1_2_2_39_1
e_1_2_2_50_2
e_1_2_2_73_1
e_1_2_2_31_2
e_1_2_2_54_3
e_1_2_2_54_2
e_1_2_2_16_1
e_1_2_2_35_1
e_1_2_2_58_1
e_1_2_2_77_1
e_1_2_2_50_1
References_xml – volume: 127
  start-page: 3274
  year: 2005
  end-page: 3275
  publication-title: J. Am. Chem. Soc.
– volume: 55
  start-page: 13793
  year: 2019
  end-page: 13803
  publication-title: Chem. Commun.
– volume: 12
  start-page: 1839
  year: 2017
  end-page: 1850
  publication-title: Chem. Asian J.
– volume: 58 132
  start-page: 10052 10138
  year: 2019 2020
  end-page: 10058 10144
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 36
  start-page: 964
  year: 2017
  end-page: 974
  publication-title: Organometallics
– volume: 125
  start-page: 14032
  year: 2003
  end-page: 14038
  publication-title: J. Am. Chem. Soc.
– volume: 57 130
  start-page: 7855 7981
  year: 2018 2018
  end-page: 7859 7985
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 265
  start-page: 147
  year: 2006
  end-page: 183
  publication-title: Top. Curr. Chem.
– volume: 140
  start-page: 5334
  year: 2018
  end-page: 5338
  publication-title: J. Am. Chem. Soc.
– volume: 115
  start-page: 11718
  year: 2015
  end-page: 11940
  publication-title: Chem. Rev.
– volume: 8
  year: 2020
  publication-title: Adv. Opt. Mater.
– volume: 134
  start-page: 16662
  year: 2012
  end-page: 16670
  publication-title: J. Am. Chem. Soc.
– volume: 378
  start-page: 333
  year: 2019
  end-page: 349
  publication-title: Coord. Chem. Rev.
– volume: 56 129
  start-page: 15397 15599
  year: 2017 2017
  end-page: 15401 15603
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 27
  start-page: 1791
  year: 2015
  end-page: 1795
  publication-title: Adv. Mater.
– volume: 37
  start-page: 691
  year: 2011
  end-page: 703
  publication-title: Res. Chem. Intermed.
– volume: 54 127
  start-page: 746 756
  year: 2015 2015
  end-page: 784 797
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 127
  start-page: 17994
  year: 2005
  end-page: 17995
  publication-title: J. Am. Chem. Soc.
– volume: 53 126
  start-page: 2923 2967
  year: 2014 2014
  end-page: 2926 2970
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 111
  start-page: 15900
  year: 2014
  end-page: 15905
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 129
  start-page: 7044
  year: 2007
  end-page: 7054
  publication-title: J. Am. Chem. Soc.
– volume: 123
  start-page: 11899
  year: 2001
  end-page: 11907
  publication-title: J. Am. Chem. Soc.
– volume: 138
  start-page: 5634
  year: 2016
  end-page: 5643
  publication-title: J. Am. Chem. Soc.
– volume: 139
  start-page: 16113
  year: 2017
  end-page: 16116
  publication-title: J. Am. Chem. Soc.
– volume: 40
  start-page: 5514
  year: 2011
  end-page: 5533
  publication-title: Chem. Soc. Rev.
– volume: 57 130
  start-page: 8973 9111
  year: 2018 2018
  end-page: 8978 9116
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 51
  start-page: 2129
  year: 2018
  end-page: 2138
  publication-title: Acc. Chem. Res.
– volume: 46
  start-page: 2555
  year: 2017
  end-page: 2576
  publication-title: Chem. Soc. Rev.
– volume: 136
  start-page: 3350
  year: 2014
  end-page: 3353
  publication-title: J. Am. Chem. Soc.
– volume: 50
  start-page: 3024
  year: 2014
  end-page: 3026
  publication-title: Chem. Commun.
– volume: 45
  start-page: 6799
  year: 2016
  end-page: 6811
  publication-title: Chem. Soc. Rev.
– volume: 350
  start-page: 2153
  year: 2008
  end-page: 2167
  publication-title: Adv. Synth. Catal.
– volume: 133
  start-page: 12136
  year: 2011
  end-page: 12143
  publication-title: J. Am. Chem. Soc.
– volume: 116
  start-page: 10346
  year: 2016
  end-page: 10413
  publication-title: Chem. Rev.
– volume: 48
  start-page: 4823
  year: 2019
  end-page: 4853
  publication-title: Chem. Soc. Rev.
– volume: 59 132
  start-page: 5336 5374
  year: 2020 2020
  end-page: 5340 5378
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 139
  start-page: 5039
  year: 2017
  end-page: 5042
  publication-title: J. Am. Chem. Soc.
– volume: 7
  start-page: 634
  year: 2013
  end-page: 638
  publication-title: Nat. Photonics
– volume: 5
  start-page: 316
  year: 2014
  end-page: 321
  publication-title: J. Phys. Chem. Lett.
– volume: 53 126
  start-page: 14392 14620
  year: 2014 2014
  end-page: 14396 14624
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 139
  start-page: 17731
  year: 2017
  end-page: 17734
  publication-title: J. Am. Chem. Soc.
– volume: 47
  start-page: 1318
  year: 2014
  end-page: 1326
  publication-title: Acc. Chem. Res.
– volume: 58 131
  start-page: 14334 14472
  year: 2019 2019
  end-page: 14340 14478
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 41
  start-page: 1677
  year: 2012
  end-page: 1695
  publication-title: Chem. Soc. Rev.
– volume: 11
  start-page: 334
  year: 1978
  end-page: 341
  publication-title: Acc. Chem. Res.
– volume: 24
  start-page: 3673
  year: 2014
  end-page: 3682
  publication-title: Bioorg. Med. Chem. Lett.
– volume: 9
  start-page: 1481
  year: 2018
  end-page: 1487
  publication-title: Chem. Sci.
– volume: 45
  start-page: 544
  year: 2012
  end-page: 554
  publication-title: Acc. Chem. Res.
– volume: 59 132
  start-page: 7542 7612
  year: 2020 2020
  end-page: 7547 7617
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 51
  start-page: 3084
  year: 2018
  end-page: 3093
  publication-title: Acc. Chem. Res.
– volume: 50 123
  start-page: 3376 3436
  year: 2011 2011
  end-page: 3410 3473
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– start-page: 9692
  year: 2009
  end-page: 9707
  publication-title: Dalton Trans.
– volume: 51
  start-page: 1493
  year: 2010
  end-page: 1496
  publication-title: Tetrahedron Lett.
– volume: 50 123
  start-page: 3684 3768
  year: 2011 2011
  end-page: 3687 3771
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 3
  start-page: 798
  year: 2012
  end-page: 803
  publication-title: Nat. Commun.
– volume: 43 116
  start-page: 4490 4590
  year: 2004 2004
  end-page: 4492 4592
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 140
  start-page: 657
  year: 2018
  end-page: 666
  publication-title: J. Am. Chem. Soc.
– volume: 47
  start-page: 2063
  year: 2014
  end-page: 2073
  publication-title: Acc. Chem. Res.
– volume: 133
  start-page: 9266
  year: 2011
  end-page: 9269
  publication-title: J. Am. Chem. Soc.
– volume: 58 131
  start-page: 9625 9727
  year: 2019 2019
  end-page: 9631 9733
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 49
  start-page: 11794
  year: 2013
  end-page: 11796
  publication-title: Chem. Commun.
– volume: 117
  start-page: 8041
  year: 2017
  end-page: 8093
  publication-title: Chem. Rev.
– volume: 32
  start-page: 275
  year: 2020
  end-page: 292
  publication-title: Mater. Today
– volume: 115
  start-page: 10592
  year: 2011
  end-page: 10603
  publication-title: J. Phys. Chem. B
– ident: e_1_2_2_30_2
  doi: 10.1016/j.ccr.2017.10.031
– ident: e_1_2_2_24_2
  doi: 10.1007/128_033
– ident: e_1_2_2_35_1
  doi: 10.1038/nphoton.2013.176
– ident: e_1_2_2_32_1
– ident: e_1_2_2_37_2
  doi: 10.1021/ja037733e
– ident: e_1_2_2_60_2
  doi: 10.1016/j.mattod.2019.08.010
– ident: e_1_2_2_77_1
– ident: e_1_2_2_82_2
  doi: 10.1021/jp2053019
– ident: e_1_2_2_5_2
  doi: 10.1021/acs.accounts.8b00371
– ident: e_1_2_2_10_3
  doi: 10.1002/ange.201915844
– ident: e_1_2_2_54_3
  doi: 10.1002/ange.201907856
– ident: e_1_2_2_78_3
  doi: 10.1002/ange.201007849
– ident: e_1_2_2_79_2
  doi: 10.1021/jz402615n
– ident: e_1_2_2_17_2
  doi: 10.1039/c1cs15119c
– ident: e_1_2_2_49_1
  doi: 10.1021/acs.organomet.6b00771
– ident: e_1_2_2_80_1
– ident: e_1_2_2_71_2
  doi: 10.1002/adom.201902152
– ident: e_1_2_2_20_2
  doi: 10.1021/jacs.7b02039
– ident: e_1_2_2_66_3
  doi: 10.1002/ange.201002307
– ident: e_1_2_2_84_2
  doi: 10.1002/anie.201803833
– ident: e_1_2_2_39_1
  doi: 10.1039/b909430j
– ident: e_1_2_2_58_1
– ident: e_1_2_2_76_2
  doi: 10.1039/C9CC06861A
– ident: e_1_2_2_63_2
  doi: 10.1073/pnas.1418824111
– ident: e_1_2_2_47_2
  doi: 10.1039/c3cc49851d
– ident: e_1_2_2_53_2
  doi: 10.1007/s11164-011-0342-7
– ident: e_1_2_2_18_2
  doi: 10.1016/j.bmcl.2014.06.081
– ident: e_1_2_2_42_2
  doi: 10.1021/ja0422108
– ident: e_1_2_2_69_3
  doi: 10.1002/ange.201709827
– ident: e_1_2_2_43_1
– ident: e_1_2_2_84_3
  doi: 10.1002/ange.201803833
– ident: e_1_2_2_13_2
  doi: 10.1021/acs.chemrev.5b00703
– ident: e_1_2_2_31_2
  doi: 10.1039/C9CS00250B
– ident: e_1_2_2_14_2
  doi: 10.1021/jacs.7b10448
– ident: e_1_2_2_48_1
  doi: 10.1039/C7SC04503D
– ident: e_1_2_2_27_1
– ident: e_1_2_2_70_3
  doi: 10.1002/ange.201908909
– ident: e_1_2_2_46_2
  doi: 10.1039/c3cc46524a
– ident: e_1_2_2_72_2
  doi: 10.1002/anie.202000073
– ident: e_1_2_2_62_2
  doi: 10.1021/ja306199p
– ident: e_1_2_2_65_1
– ident: e_1_2_2_45_2
  doi: 10.1016/j.tetlet.2010.01.036
– ident: e_1_2_2_66_2
  doi: 10.1002/anie.201002307
– ident: e_1_2_2_57_2
  doi: 10.1021/jacs.7b09770
– ident: e_1_2_2_44_2
  doi: 10.1002/adsc.200800409
– ident: e_1_2_2_59_2
  doi: 10.1021/acs.chemrev.5b00263
– ident: e_1_2_2_7_1
  doi: 10.1021/jacs.6b01658
– ident: e_1_2_2_34_2
  doi: 10.1021/jacs.8b01860
– ident: e_1_2_2_41_3
  doi: 10.1002/ange.200454162
– ident: e_1_2_2_8_1
– ident: e_1_2_2_15_3
  doi: 10.1002/ange.201804087
– ident: e_1_2_2_56_2
  doi: 10.1021/ja203920w
– ident: e_1_2_2_12_2
  doi: 10.1038/ncomms1802
– ident: e_1_2_2_6_1
  doi: 10.1021/ja0565727
– ident: e_1_2_2_50_1
  doi: 10.1002/anie.201405936
– ident: e_1_2_2_40_1
– ident: e_1_2_2_67_2
  doi: 10.1021/ar2001952
– ident: e_1_2_2_85_1
– ident: e_1_2_2_83_3
  doi: 10.1002/ange.201408193
– ident: e_1_2_2_9_2
  doi: 10.1002/anie.201308599
– ident: e_1_2_2_64_2
  doi: 10.1021/jacs.7b10201
– ident: e_1_2_2_23_1
– ident: e_1_2_2_68_1
– ident: e_1_2_2_69_2
  doi: 10.1002/anie.201709827
– ident: e_1_2_2_26_2
  doi: 10.1039/C7CS00173H
– ident: e_1_2_2_11_1
– ident: e_1_2_2_70_2
  doi: 10.1002/anie.201814387
– ident: e_1_2_2_36_1
– ident: e_1_2_2_10_2
  doi: 10.1002/anie.201915844
– ident: e_1_2_2_29_2
  doi: 10.1021/acs.accounts.8b00297
– ident: e_1_2_2_74_2
  doi: 10.1021/ja011706b
– ident: e_1_2_2_28_2
  doi: 10.1039/C1CS15196G
– ident: e_1_2_2_78_2
  doi: 10.1002/anie.201007849
– ident: e_1_2_2_21_3
  doi: 10.1002/ange.201904681
– ident: e_1_2_2_55_1
– ident: e_1_2_2_4_2
  doi: 10.1021/acs.chemrev.6b00755
– ident: e_1_2_2_25_2
  doi: 10.1021/ar5000924
– ident: e_1_2_2_33_2
  doi: 10.1021/ja203206g
– ident: e_1_2_2_1_1
– ident: e_1_2_2_2_2
  doi: 10.1021/ar400295d
– ident: e_1_2_2_41_2
  doi: 10.1002/anie.200454162
– ident: e_1_2_2_51_1
– ident: e_1_2_2_81_2
  doi: 10.1021/ja067321g
– ident: e_1_2_2_15_2
  doi: 10.1002/anie.201804087
– ident: e_1_2_2_21_2
  doi: 10.1002/anie.201904681
– ident: e_1_2_2_38_2
  doi: 10.1002/adma.201404891
– ident: e_1_2_2_73_1
– ident: e_1_2_2_3_2
  doi: 10.1002/asia.201700023
– ident: e_1_2_2_75_2
  doi: 10.1021/ja412197j
– ident: e_1_2_2_50_2
  doi: 10.1002/ange.201405936
– ident: e_1_2_2_61_1
– ident: e_1_2_2_52_2
  doi: 10.1021/ar50129a003
– ident: e_1_2_2_54_2
  doi: 10.1002/anie.201907856
– ident: e_1_2_2_83_2
  doi: 10.1002/anie.201408193
– ident: e_1_2_2_19_1
– ident: e_1_2_2_9_3
  doi: 10.1002/ange.201308599
– ident: e_1_2_2_16_1
– ident: e_1_2_2_22_1
  doi: 10.1039/C6CS00604C
– ident: e_1_2_2_72_3
  doi: 10.1002/ange.202000073
SSID ssj0028806
Score 2.5826852
Snippet Spirocyclic Ag9 clusters, as a new form of intrinsically chiral metal clusters, were constructed through vertex‐sharing of two in‐situ‐generated heteroaryl...
Spirocyclic Ag 9 clusters, as a new form of intrinsically chiral metal clusters, were constructed through vertex‐sharing of two in‐situ‐generated heteroaryl...
Spirocyclic Ag clusters, as a new form of intrinsically chiral metal clusters, were constructed through vertex-sharing of two in-situ-generated heteroaryl...
Spirocyclic Ag9 clusters, as a new form of intrinsically chiral metal clusters, were constructed through vertex-sharing of two in-situ-generated heteroaryl...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1535
SubjectTerms Absolute configuration
Agglomeration
Aggregation behavior
aggregation-induced emission
Anisotropy
Assembly
Chelation
chirality
Circular polarization
circularly polarized luminescence (CPL)
cluster compounds
Couplings
Emission
Emissions
Enantiomers
Excitons
Fluorescence
Handedness
Ligands
Luminescence
Metal clusters
Nanofibers
Photoluminescence
Polarity
Silver
supramolecular assembly
Title Assembly‐Induced Strong Circularly Polarized Luminescence of Spirocyclic Chiral Silver(I) Clusters
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202008765
https://www.ncbi.nlm.nih.gov/pubmed/32959488
https://www.proquest.com/docview/2476860331
https://www.proquest.com/docview/2444881332
Volume 60
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwELZQL3Dhp_wtLZWRkICD28R2Eu-xirraRVAhlkp7i-yJ3UZNd6vdzWF76iP0GfskeJJN2gUhJDhGtuWJ7fF8tme-IeS9lUlkI8eZ1iCYNHnMjNOaJdDP-yp3ICUGJ389jocn8vMkmtyL4m_4IboLN9SMer9GBddmcXBHGooR2P58x2tSNYwyR4ctREXfO_4o7hdnE14kBMMs9C1rY8APNptvWqXfoOYmcq1Nz-AJ0a3QjcfJ-X61NPtw9Quf4__81VPyeI1L6WGzkJ6RB3a6TR6mbTq45yTH5-ELU65ur28w3wfYnI7xHv2UpsW89mYtV_QbnpSLK1_2pbpAj3rAnYPOHB1fFt5WrqAsgKZnxdx3Ni7QLfvj6BNNywoJGxYvyMng6Ec6ZOsUDQykl4-FubNo4fpOgIJEx04InjgLAWDMrDShUEbHibbO5aA8VgAXcMetykMTaSdekq3pbGpfEwo2iXwj6RGbk4kODb7ZhRArj1GNcmGPsHaKMljzl2MajTJrmJd5hmOXdWPXIx-6-pcNc8cfa-62M56tNXiRcf9_Kg6E8B2_64r9mOODip7aWYV1_OHWyyd4j7xqVkrXleB9ZMJRPcLr-f6LDNnh8eio-3rzL412yCOODjdByEK1S7aW88q-9YhpafZqrfgJRBIO_Q
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VcigX_n8WChgJBBzcJnZ-vAcOVdpql25XiG2l3oLt2BCR7la7G6HtiUfgVXgVHoEnwZNsghaEkJB64BjZjv9mxmPPzDcAT00Qhya0jEqpOQ1UFlFlpaSx7mZdkVkdBBicfDiMesfB65PwZA2-NrEwNT5E--CGnFHJa2RwfJDe_okaiiHY7oLHKlS1xq_ywCw-uVvb7FV_123xM8b2946SHl0mFqA6cFWpn1mDcrlruRY6lpHlnMXWaE9jpGegfC6UjGJprM20cCecth6zzIjMV6G03P33ElzGNOII17_7tkWsYo4d6oAmzinmvW9wIj22vTre1XPwN-V2VVeuDrv9a_CtWabax-XjVjlXW_r8FwTJ_2odr8PVpepNdmpeuQFrZnwTNpIm490tyNACfqqKxffPXzCliTYZGaGp4D1J8mnlsFssyBt8DMjPXdmgPMWgAY3CkUwsGZ3lTh1Y6CLXJPmQT11noxw9z1_0X5KkKBGTYnYbji9kkndgfTwZm3tAtIlD1yhwSqkNYukrNEv6OhJODVfC-h2gDU2kegnRjplCirQGl2Yp7lXa7lUHnrf1z2pwkj_W3GxILF0KqVnK3PxE5HHuOn7SFrs1R5uRHJtJiXXc_d2Nj7MO3K1Js-2Ksy6C_YgOsIrA_jKGdGfY32u_7v9Lo8ew0Ts6HKSD_vDgAVxh6F_k-dQXm7A-n5bmoVMQ5-pRxZIE3l007f4ANTRvLg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwELZKkYAL_z8LBYwEgh7cJraTOAcOVbarLi2riqVSb8F27DYi3V3tboS2Jx6BR-FVeAWeBE-yCVoQQkLqgWNkO_6bGY89M98g9NzwKDCBpURKzQhXWUiUlZJEOs5ikVnNOQQnvx2Ee0f8zXFwvIa-NrEwNT5E--AGnFHJa2DwSWa3f4KGQgS2u9_RClStcavcN4tP7tI2e93vuh1-QWlv932yR5Z5BYjmrirxM2tALMeWaaEjGVrGaGSN9jQEenLlM6FkGEljbaaFO-C09ailRmS-CqRl7r-X0GUeejEki-i-awGrqOOGOp6JMQJp7xuYSI9ur4539Rj8TbddVZWrs653A31rVql2cfm4Vc7Vlj7_BUDyf1rGm-j6UvHGOzWn3EJrZnQbXU2afHd3UAb27zNVLL5__gIJTbTJ8BAMBSc4yaeVu26xwIfwFJCfu7KD8gxCBjSIRjy2eDjJnTKw0EWucXKaT11nwxz8zl_1N3FSlIBIMbuLji5kkvfQ-mg8Mg8Q1iYKXCPuVFLLI-krMEr6OhROCVfC-h1EGpJI9RKgHfKEFGkNLU1T2Ku03asOetnWn9TQJH-sudFQWLoUUbOUuvmJ0GPMdfysLXZrDhYjOTLjEuq427sbH6MddL-mzLYrRmOA-hEdRCv6-ssY0p1Bf7f9evgvjZ6iK4fdXnrQH-w_QtcoOBd5PvHFBlqfT0vz2GmHc_WkYkiMPlw06f4AY8Nt3Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Assembly%E2%80%90Induced+Strong+Circularly+Polarized+Luminescence+of+Spirocyclic+Chiral+Silver%28I%29+Clusters&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Wu%2C+Han&rft.au=He%2C+Xin&rft.au=Yang%2C+Biao&rft.au=Li%2C+Cui%E2%80%90Cui&rft.date=2021-01-18&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=60&rft.issue=3&rft.spage=1535&rft.epage=1539&rft_id=info:doi/10.1002%2Fanie.202008765&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_anie_202008765
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon