Paintable and Rapidly Bondable Conductive Hydrogels as Therapeutic Cardiac Patches
In recent years, cardiac patches have been developed for the treatment of myocardial infarction. However, the fixation approaches onto the tissue through suture or phototriggered reaction inevitably cause new tissue damage. Herein, a paintable hydrogel is constructed based on Fe3+‐triggered simultan...
Saved in:
Published in | Advanced materials (Weinheim) Vol. 30; no. 23; pp. e1704235 - n/a |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.06.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In recent years, cardiac patches have been developed for the treatment of myocardial infarction. However, the fixation approaches onto the tissue through suture or phototriggered reaction inevitably cause new tissue damage. Herein, a paintable hydrogel is constructed based on Fe3+‐triggered simultaneous polymerization of covalently linked pyrrole and dopamine in the hyperbranched chains where the in situ formed conductive polypyrrole also uniquely serves to crosslink network. This conductive and adhesive hydrogel can be conveniently painted as a patch onto the heart surface without adverse liquid leakage. The functional patch whose conductivity is equivalent to that of normal myocardium is strongly bonded to the beating heart within 4 weeks, accordingly efficiently boosting the transmission of electrophysiological signals. Eventually, the reconstruction of cardiac function and revascularization of the infarct myocardium are remarkably improved. The translatable suture‐free strategy reported in this work is promising to address the human clinical challenges in cardiac tissue engineering.
A paintable conductive hydrogel is constructed based on Fe3+‐triggered polymerization of pyrrole and dopamine chemically linked to hyperbranched polymer chains. The freshly formed hydrogels can be conveniently painted as a suture‐free adhesive patch strongly bondable to the beating heart, thus efficiently boosting the reconstruction of cardiac function after myocardial infarction. |
---|---|
AbstractList | In recent years, cardiac patches have been developed for the treatment of myocardial infarction. However, the fixation approaches onto the tissue through suture or phototriggered reaction inevitably cause new tissue damage. Herein, a paintable hydrogel is constructed based on Fe3+ -triggered simultaneous polymerization of covalently linked pyrrole and dopamine in the hyperbranched chains where the in situ formed conductive polypyrrole also uniquely serves to crosslink network. This conductive and adhesive hydrogel can be conveniently painted as a patch onto the heart surface without adverse liquid leakage. The functional patch whose conductivity is equivalent to that of normal myocardium is strongly bonded to the beating heart within 4 weeks, accordingly efficiently boosting the transmission of electrophysiological signals. Eventually, the reconstruction of cardiac function and revascularization of the infarct myocardium are remarkably improved. The translatable suture-free strategy reported in this work is promising to address the human clinical challenges in cardiac tissue engineering.In recent years, cardiac patches have been developed for the treatment of myocardial infarction. However, the fixation approaches onto the tissue through suture or phototriggered reaction inevitably cause new tissue damage. Herein, a paintable hydrogel is constructed based on Fe3+ -triggered simultaneous polymerization of covalently linked pyrrole and dopamine in the hyperbranched chains where the in situ formed conductive polypyrrole also uniquely serves to crosslink network. This conductive and adhesive hydrogel can be conveniently painted as a patch onto the heart surface without adverse liquid leakage. The functional patch whose conductivity is equivalent to that of normal myocardium is strongly bonded to the beating heart within 4 weeks, accordingly efficiently boosting the transmission of electrophysiological signals. Eventually, the reconstruction of cardiac function and revascularization of the infarct myocardium are remarkably improved. The translatable suture-free strategy reported in this work is promising to address the human clinical challenges in cardiac tissue engineering. In recent years, cardiac patches have been developed for the treatment of myocardial infarction. However, the fixation approaches onto the tissue through suture or phototriggered reaction inevitably cause new tissue damage. Herein, a paintable hydrogel is constructed based on Fe3+‐triggered simultaneous polymerization of covalently linked pyrrole and dopamine in the hyperbranched chains where the in situ formed conductive polypyrrole also uniquely serves to crosslink network. This conductive and adhesive hydrogel can be conveniently painted as a patch onto the heart surface without adverse liquid leakage. The functional patch whose conductivity is equivalent to that of normal myocardium is strongly bonded to the beating heart within 4 weeks, accordingly efficiently boosting the transmission of electrophysiological signals. Eventually, the reconstruction of cardiac function and revascularization of the infarct myocardium are remarkably improved. The translatable suture‐free strategy reported in this work is promising to address the human clinical challenges in cardiac tissue engineering. In recent years, cardiac patches have been developed for the treatment of myocardial infarction. However, the fixation approaches onto the tissue through suture or phototriggered reaction inevitably cause new tissue damage. Herein, a paintable hydrogel is constructed based on Fe 3+ ‐triggered simultaneous polymerization of covalently linked pyrrole and dopamine in the hyperbranched chains where the in situ formed conductive polypyrrole also uniquely serves to crosslink network. This conductive and adhesive hydrogel can be conveniently painted as a patch onto the heart surface without adverse liquid leakage. The functional patch whose conductivity is equivalent to that of normal myocardium is strongly bonded to the beating heart within 4 weeks, accordingly efficiently boosting the transmission of electrophysiological signals. Eventually, the reconstruction of cardiac function and revascularization of the infarct myocardium are remarkably improved. The translatable suture‐free strategy reported in this work is promising to address the human clinical challenges in cardiac tissue engineering. In recent years, cardiac patches have been developed for the treatment of myocardial infarction. However, the fixation approaches onto the tissue through suture or phototriggered reaction inevitably cause new tissue damage. Herein, a paintable hydrogel is constructed based on Fe -triggered simultaneous polymerization of covalently linked pyrrole and dopamine in the hyperbranched chains where the in situ formed conductive polypyrrole also uniquely serves to crosslink network. This conductive and adhesive hydrogel can be conveniently painted as a patch onto the heart surface without adverse liquid leakage. The functional patch whose conductivity is equivalent to that of normal myocardium is strongly bonded to the beating heart within 4 weeks, accordingly efficiently boosting the transmission of electrophysiological signals. Eventually, the reconstruction of cardiac function and revascularization of the infarct myocardium are remarkably improved. The translatable suture-free strategy reported in this work is promising to address the human clinical challenges in cardiac tissue engineering. In recent years, cardiac patches have been developed for the treatment of myocardial infarction. However, the fixation approaches onto the tissue through suture or phototriggered reaction inevitably cause new tissue damage. Herein, a paintable hydrogel is constructed based on Fe3+‐triggered simultaneous polymerization of covalently linked pyrrole and dopamine in the hyperbranched chains where the in situ formed conductive polypyrrole also uniquely serves to crosslink network. This conductive and adhesive hydrogel can be conveniently painted as a patch onto the heart surface without adverse liquid leakage. The functional patch whose conductivity is equivalent to that of normal myocardium is strongly bonded to the beating heart within 4 weeks, accordingly efficiently boosting the transmission of electrophysiological signals. Eventually, the reconstruction of cardiac function and revascularization of the infarct myocardium are remarkably improved. The translatable suture‐free strategy reported in this work is promising to address the human clinical challenges in cardiac tissue engineering. A paintable conductive hydrogel is constructed based on Fe3+‐triggered polymerization of pyrrole and dopamine chemically linked to hyperbranched polymer chains. The freshly formed hydrogels can be conveniently painted as a suture‐free adhesive patch strongly bondable to the beating heart, thus efficiently boosting the reconstruction of cardiac function after myocardial infarction. |
Author | Liu, Wenguang Wang, Hongbo Tan, Baoyu Liang, Shuang Xu, Ziyang Wang, Wei Wang, Wenxin Fan, Guanwei Cui, Yuanlu Zhang, Yinyu Chen, Jingrui Bao, Rui |
Author_xml | – sequence: 1 givenname: Shuang surname: Liang fullname: Liang, Shuang organization: Tianjin University – sequence: 2 givenname: Yinyu surname: Zhang fullname: Zhang, Yinyu organization: Tianjin University – sequence: 3 givenname: Hongbo surname: Wang fullname: Wang, Hongbo organization: Tianjin University – sequence: 4 givenname: Ziyang surname: Xu fullname: Xu, Ziyang organization: Tianjin University – sequence: 5 givenname: Jingrui surname: Chen fullname: Chen, Jingrui organization: Tianjin University of Traditional Chinese Medicine – sequence: 6 givenname: Rui surname: Bao fullname: Bao, Rui organization: Tianjin University – sequence: 7 givenname: Baoyu surname: Tan fullname: Tan, Baoyu organization: Tianjin University – sequence: 8 givenname: Yuanlu surname: Cui fullname: Cui, Yuanlu organization: Tianjin University of Traditional Chinese Medicine – sequence: 9 givenname: Guanwei surname: Fan fullname: Fan, Guanwei organization: Tianjin University of Traditional Chinese Medicine – sequence: 10 givenname: Wenxin surname: Wang fullname: Wang, Wenxin organization: Tianjin University – sequence: 11 givenname: Wei surname: Wang fullname: Wang, Wei email: wwgfz@tju.edu.cn organization: Tianjin University – sequence: 12 givenname: Wenguang surname: Liu fullname: Liu, Wenguang email: wgliu@tju.edu.cn organization: Tianjin University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29687502$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkctLxDAQh4Mouj6uHqXgxUvXyaOPHNf1CYoiei7TZKqRbrsmrbL_vdX1AYLIHDKE78sM-W2y1aZtiLFdDmMOIA7RznAsgGeghExW2IgngscKdLLKRqBlEutU5RtsM4QnANAppOtsQ-g0zxIQI3Z7g67psKwpwsZGtzh3tl5ER21jPy6nQ9Obzr1QdL6wvn2gOkQYortH8jinvnMmmqK3Dk10g515pLDN1iqsA-18nlvs_vTkbnoeX16fXUwnl7FRWZrE3KpKQs5lhjrXWksrKksl5kai0pSWqErFTYJUkpYorZVVarQUUldlpUu5xQ6W7859-9xT6IqZC4bqGhtq-1AIkBxElgg1oPu_0Ke2982w3UCpTA8F-UDtfVJ9OSNbzL2boV8UX781AOMlYHwbgqfqG-FQvMdRvMdRfMcxCOqXYFyHnWubzqOr_9b0Unt1NS3-GVJMjq8mP-4bK7qeVA |
CitedBy_id | crossref_primary_10_1016_j_jare_2024_11_026 crossref_primary_10_1038_s41598_023_29780_w crossref_primary_10_3390_biom9090448 crossref_primary_10_1016_j_ejps_2023_106439 crossref_primary_10_1002_smll_202309793 crossref_primary_10_1021_acsami_1c08429 crossref_primary_10_1002_smll_202200336 crossref_primary_10_3390_ma12152491 crossref_primary_10_1002_wnan_1787 crossref_primary_10_1007_s11431_021_1850_7 crossref_primary_10_1021_acsmaterialslett_0c00309 crossref_primary_10_1039_D0TA00158A crossref_primary_10_1089_bioe_2020_0021 crossref_primary_10_1002_smtd_202301341 crossref_primary_10_1039_D1TA08091A crossref_primary_10_1016_j_actbio_2021_11_022 crossref_primary_10_1038_s41467_021_21869_y crossref_primary_10_1089_bioe_2020_0025 crossref_primary_10_1002_adma_202403642 crossref_primary_10_1039_C9RA10666A crossref_primary_10_1002_advs_202307353 crossref_primary_10_1021_acsnano_2c05168 crossref_primary_10_1515_mr_2023_0059 crossref_primary_10_1039_C9TC04428K crossref_primary_10_1039_D4RA01168F crossref_primary_10_1016_j_ijbiomac_2023_126535 crossref_primary_10_1021_acs_chemmater_9b03919 crossref_primary_10_1002_advs_202105146 crossref_primary_10_1002_advs_202304627 crossref_primary_10_1021_acssuschemeng_0c05754 crossref_primary_10_1089_ten_tea_2019_0286 crossref_primary_10_1002_admt_202000384 crossref_primary_10_1021_acsnano_2c11053 crossref_primary_10_1016_j_porgcoat_2023_107636 crossref_primary_10_1038_s41467_022_35437_5 crossref_primary_10_1016_j_ijbiomac_2024_132360 crossref_primary_10_1021_acsapm_2c00390 crossref_primary_10_1021_acsapm_2c01241 crossref_primary_10_1016_j_cej_2022_140546 crossref_primary_10_1016_j_mattod_2023_09_005 crossref_primary_10_1016_j_addr_2022_114379 crossref_primary_10_1021_acsami_2c15068 crossref_primary_10_1080_1061186X_2020_1818761 crossref_primary_10_1021_acs_chemrev_2c00215 crossref_primary_10_1002_adhm_202201576 crossref_primary_10_1021_acsbiomaterials_4c02061 crossref_primary_10_1016_j_cej_2023_146583 crossref_primary_10_1080_09205063_2023_2265134 crossref_primary_10_1080_09205063_2019_1702276 crossref_primary_10_1002_smll_202101356 crossref_primary_10_1039_C9CS00849G crossref_primary_10_1002_wnan_1568 crossref_primary_10_1039_D3SC00145H crossref_primary_10_1039_D1TB00019E crossref_primary_10_1002_adfm_202008364 crossref_primary_10_1002_mabi_202300302 crossref_primary_10_34133_bmr_0066 crossref_primary_10_1002_mabi_202200051 crossref_primary_10_1016_j_cej_2021_133182 crossref_primary_10_1021_acsnano_3c04817 crossref_primary_10_1016_j_mtbio_2024_101331 crossref_primary_10_1021_acs_chemrev_1c00815 crossref_primary_10_3389_fbioe_2024_1294238 crossref_primary_10_1021_acsami_3c17667 crossref_primary_10_3390_molecules25245795 crossref_primary_10_1038_s41528_023_00274_z crossref_primary_10_1002_adhm_201901358 crossref_primary_10_1016_j_jconrel_2021_02_036 crossref_primary_10_1002_inf2_12113 crossref_primary_10_1016_j_nanoen_2023_108617 crossref_primary_10_1002_adhm_202303219 crossref_primary_10_1002_jbm_b_35293 crossref_primary_10_1039_C9PY01429B crossref_primary_10_1039_C8CS00706C crossref_primary_10_1016_j_cej_2021_129352 crossref_primary_10_1016_j_smaim_2020_07_003 crossref_primary_10_1021_acsami_8b19482 crossref_primary_10_1002_smll_202310194 crossref_primary_10_1002_advs_202202980 crossref_primary_10_1016_j_jcis_2024_12_202 crossref_primary_10_1093_europace_euab187 crossref_primary_10_1016_j_bioactmat_2024_02_012 crossref_primary_10_1016_j_synthmet_2019_04_015 crossref_primary_10_1021_acsami_3c07062 crossref_primary_10_1016_j_cej_2024_155566 crossref_primary_10_1016_j_cej_2022_136988 crossref_primary_10_1039_D2PY01028C crossref_primary_10_1039_D0CC04909C crossref_primary_10_1016_j_bioactmat_2023_07_007 crossref_primary_10_1016_j_biomaterials_2021_120811 crossref_primary_10_1021_acs_chemmater_8b03860 crossref_primary_10_1002_advs_201802112 crossref_primary_10_1155_2022_6042137 crossref_primary_10_1016_j_carbpol_2021_118547 crossref_primary_10_1038_s41467_024_48468_x crossref_primary_10_1002_marc_202400835 crossref_primary_10_1016_j_smaim_2024_12_003 crossref_primary_10_34133_research_0161 crossref_primary_10_1021_acsbiomaterials_2c00454 crossref_primary_10_1021_acsnano_9b06761 crossref_primary_10_1038_s41467_024_48980_0 crossref_primary_10_1002_adhm_202001916 crossref_primary_10_1007_s11814_023_1578_9 crossref_primary_10_1016_j_progpolymsci_2022_101573 crossref_primary_10_1016_j_compositesa_2023_107892 crossref_primary_10_1039_C9CS00285E crossref_primary_10_1557_s43578_022_00706_y crossref_primary_10_1007_s11431_024_2638_x crossref_primary_10_1021_acsnano_2c12448 crossref_primary_10_1007_s11426_022_1243_5 crossref_primary_10_1002_adfm_202000177 crossref_primary_10_1021_acsanm_3c02956 crossref_primary_10_1021_acs_macromol_2c02236 crossref_primary_10_1021_acsmacrolett_0c00621 crossref_primary_10_1021_acsami_1c02089 crossref_primary_10_1021_acsmaterialslett_1c00558 crossref_primary_10_1021_acsami_9b14348 crossref_primary_10_1016_j_mattod_2023_03_029 crossref_primary_10_1002_adfm_202303509 crossref_primary_10_1016_j_progpolymsci_2023_101740 crossref_primary_10_1002_adma_202404264 crossref_primary_10_1016_j_compositesb_2021_109047 crossref_primary_10_2147_IJN_S276001 crossref_primary_10_1016_j_mattod_2022_11_007 crossref_primary_10_1021_cbe_4c00173 crossref_primary_10_1016_j_jcis_2021_08_205 crossref_primary_10_1016_j_mtbio_2024_100978 crossref_primary_10_1186_s12951_022_01432_7 crossref_primary_10_1002_adma_202001628 crossref_primary_10_1021_acsami_9b03346 crossref_primary_10_1039_C9TB02967B crossref_primary_10_1021_acsapm_8b00232 crossref_primary_10_1002_adma_202203431 crossref_primary_10_1002_adhm_202303288 crossref_primary_10_1039_D1RA00903F crossref_primary_10_1002_adfm_201907678 crossref_primary_10_1063_1_5116579 crossref_primary_10_3390_molecules27185843 crossref_primary_10_1016_j_bioactmat_2022_01_038 crossref_primary_10_1016_j_colsurfb_2022_112469 crossref_primary_10_1007_s13367_023_00049_y crossref_primary_10_1021_acsabm_1c00501 crossref_primary_10_1021_acsami_2c11348 crossref_primary_10_1016_j_cej_2025_159294 crossref_primary_10_1016_j_compositesb_2021_108645 crossref_primary_10_1021_acsbiomaterials_8b01507 crossref_primary_10_1021_acsami_9b16675 crossref_primary_10_1002_adfm_202211340 crossref_primary_10_1016_j_actbio_2021_08_031 crossref_primary_10_1038_s41427_021_00330_y crossref_primary_10_1002_adhm_202100012 crossref_primary_10_1021_acs_chemmater_9b01885 crossref_primary_10_1021_acsnano_3c00933 crossref_primary_10_1038_s41563_021_01051_x crossref_primary_10_3390_ijms222313054 crossref_primary_10_1002_adhm_202301990 crossref_primary_10_1016_j_carbpol_2020_116096 crossref_primary_10_1016_j_jelechem_2021_115815 crossref_primary_10_1016_j_bioactmat_2020_12_011 crossref_primary_10_1021_acs_chemmater_0c01589 crossref_primary_10_1186_s40580_023_00389_z crossref_primary_10_1021_acsabm_9b00457 crossref_primary_10_1039_D2RA02299K crossref_primary_10_1016_j_compositesb_2020_108110 crossref_primary_10_3390_mi9100529 crossref_primary_10_1016_j_ijbiomac_2024_133622 crossref_primary_10_3390_ijms22168550 crossref_primary_10_1002_adhm_201900569 crossref_primary_10_1177_08853282211047939 crossref_primary_10_1038_s41551_019_0380_9 crossref_primary_10_1039_D3MH00399J crossref_primary_10_1007_s11431_021_1843_3 crossref_primary_10_1039_D2ME00144F crossref_primary_10_1002_adfm_201909954 crossref_primary_10_1021_acsami_3c18306 crossref_primary_10_1002_adhm_201901423 crossref_primary_10_1038_s41467_021_27463_6 crossref_primary_10_1002_adhm_202201798 crossref_primary_10_1016_j_biomaterials_2021_120855 crossref_primary_10_1021_acs_chemrev_3c00380 crossref_primary_10_1002_adfm_202004407 crossref_primary_10_1021_acsami_1c09239 crossref_primary_10_1021_acsbiomaterials_3c01837 crossref_primary_10_1002_adfm_201910197 crossref_primary_10_1016_j_tibtech_2021_07_001 crossref_primary_10_1002_adfm_202107732 crossref_primary_10_1002_adma_201905761 crossref_primary_10_1186_s12951_023_02063_2 crossref_primary_10_1089_ten_teb_2019_0100 crossref_primary_10_1002_adfm_202201919 crossref_primary_10_1039_D1TB02215F crossref_primary_10_1016_j_bioactmat_2023_05_003 crossref_primary_10_1002_adfm_202005941 crossref_primary_10_1021_acsami_0c20186 crossref_primary_10_1016_j_jconrel_2020_09_006 crossref_primary_10_1557_s43580_024_01004_x crossref_primary_10_1002_adfm_202310233 crossref_primary_10_1016_j_biomaterials_2025_123274 crossref_primary_10_1007_s42114_023_00665_w crossref_primary_10_1016_j_mtbio_2022_100415 crossref_primary_10_1039_D2TB01591A crossref_primary_10_1016_j_progpolymsci_2021_101388 crossref_primary_10_1039_D2BM00433J crossref_primary_10_1002_advs_202203096 crossref_primary_10_1016_j_jcis_2023_09_190 crossref_primary_10_1021_acsaem_9b01629 crossref_primary_10_1002_adfm_201809009 crossref_primary_10_1021_acsami_9b01886 crossref_primary_10_1038_s41467_024_52418_y crossref_primary_10_1002_adma_202201971 crossref_primary_10_3390_bios13010093 crossref_primary_10_1021_acs_chemrev_0c00798 crossref_primary_10_1016_j_cej_2024_150182 crossref_primary_10_1021_acs_macromol_3c00724 crossref_primary_10_1002_adhm_202200526 crossref_primary_10_1002_anbr_202200008 crossref_primary_10_1038_s41467_024_51111_4 crossref_primary_10_1002_adhm_202000735 crossref_primary_10_1002_elsc_202100087 crossref_primary_10_1016_j_cej_2023_145891 crossref_primary_10_1007_s40843_021_1677_3 crossref_primary_10_1002_smll_202101518 crossref_primary_10_1039_D2SC04962G crossref_primary_10_1007_s11010_024_05145_3 crossref_primary_10_1021_acsami_9b20612 crossref_primary_10_1016_j_actbio_2021_04_018 crossref_primary_10_1016_j_compscitech_2020_108294 crossref_primary_10_1002_smll_202303153 crossref_primary_10_1016_j_progpolymsci_2024_101792 crossref_primary_10_1016_j_biomaterials_2022_121382 crossref_primary_10_1002_advs_202003627 crossref_primary_10_1016_j_nantod_2024_102625 crossref_primary_10_1016_j_compositesb_2020_108285 crossref_primary_10_3390_polym14091902 crossref_primary_10_1038_s41563_020_00814_2 crossref_primary_10_1002_admi_202101038 crossref_primary_10_1016_j_addr_2021_113870 crossref_primary_10_1002_smll_202403350 crossref_primary_10_1039_D3TA06779C crossref_primary_10_1002_adfm_202109144 crossref_primary_10_1016_j_compositesb_2023_111022 crossref_primary_10_1038_s41586_023_06628_x crossref_primary_10_1002_adfm_202007664 crossref_primary_10_1016_j_biomaterials_2019_119726 crossref_primary_10_1002_adfm_202312631 crossref_primary_10_1038_s41467_021_22675_2 crossref_primary_10_1002_smll_202005038 crossref_primary_10_1016_j_compositesb_2019_04_043 crossref_primary_10_1016_j_carbpol_2022_119404 crossref_primary_10_1016_j_actbio_2021_04_027 crossref_primary_10_1039_D0RA02017F crossref_primary_10_1002_admt_202100293 crossref_primary_10_1002_adfm_202207590 crossref_primary_10_1039_D1TB00523E crossref_primary_10_1016_j_matlet_2023_135569 crossref_primary_10_1002_btm2_10347 crossref_primary_10_1016_j_fmre_2025_01_008 crossref_primary_10_1038_s41467_023_42008_9 crossref_primary_10_1039_D3MH00056G crossref_primary_10_1002_pat_70009 crossref_primary_10_1021_acs_chemrev_0c00897 crossref_primary_10_1016_j_ijbiomac_2024_137985 crossref_primary_10_1016_j_nantod_2023_102105 crossref_primary_10_1038_s41467_023_44419_0 crossref_primary_10_1002_marc_201800837 crossref_primary_10_1021_acsbiomaterials_3c00194 crossref_primary_10_1039_D0TB02929G crossref_primary_10_1039_D3TB00450C crossref_primary_10_1002_adfm_201901474 crossref_primary_10_1002_INMD_20230008 crossref_primary_10_1002_adma_202300394 crossref_primary_10_1016_j_actbio_2021_03_073 crossref_primary_10_1016_j_polymer_2024_126929 crossref_primary_10_1002_adhm_202000876 crossref_primary_10_1039_D1TB01503F crossref_primary_10_1016_j_cej_2019_121915 crossref_primary_10_1021_acsmaterialslett_1c00167 crossref_primary_10_1016_j_bioactmat_2022_06_001 crossref_primary_10_3390_molecules24030603 crossref_primary_10_1016_j_eurpolymj_2022_111332 crossref_primary_10_1007_s11426_022_1345_3 crossref_primary_10_1002_inf2_12419 crossref_primary_10_1002_adfm_202416398 crossref_primary_10_1002_adhm_202101089 crossref_primary_10_1016_j_eurpolymj_2022_111336 crossref_primary_10_1002_adfm_202006432 crossref_primary_10_1002_adma_202207634 crossref_primary_10_1016_j_apmt_2021_101117 crossref_primary_10_1016_j_bioactmat_2021_11_032 crossref_primary_10_1007_s42114_025_01271_8 crossref_primary_10_1016_j_bioactmat_2021_11_038 crossref_primary_10_1080_17425247_2024_2409906 crossref_primary_10_1039_D0BM01466D crossref_primary_10_1016_j_bioadv_2022_212974 crossref_primary_10_1021_acsnano_2c07823 crossref_primary_10_1016_j_bioactmat_2022_03_034 crossref_primary_10_1016_j_porgcoat_2023_108001 crossref_primary_10_1021_acsmacrolett_1c00559 crossref_primary_10_1016_j_bioactmat_2023_08_020 crossref_primary_10_1016_j_colsurfb_2022_112509 crossref_primary_10_1016_j_actbio_2022_08_048 crossref_primary_10_1002_adhm_202403734 crossref_primary_10_1002_adfm_202308113 crossref_primary_10_1039_C8CS00595H crossref_primary_10_1088_1361_6528_ad857d crossref_primary_10_1016_j_bioactmat_2021_11_021 crossref_primary_10_1021_acsami_1c00637 crossref_primary_10_1021_acsami_9b17907 crossref_primary_10_1016_j_matdes_2022_111086 crossref_primary_10_1073_pnas_2301364120 crossref_primary_10_2147_IJN_S386763 crossref_primary_10_3390_bioengineering10020165 crossref_primary_10_1016_j_msec_2019_109921 crossref_primary_10_1126_sciadv_abe8739 crossref_primary_10_1016_j_ijbiomac_2024_130764 crossref_primary_10_1021_acs_biomac_1c00349 crossref_primary_10_1021_acsnano_4c00509 crossref_primary_10_1038_s41551_021_00796_9 crossref_primary_10_1002_adfm_202104440 crossref_primary_10_3390_gels8010041 crossref_primary_10_1016_j_cej_2023_142457 crossref_primary_10_1016_j_cej_2022_138675 crossref_primary_10_1002_adma_202404071 crossref_primary_10_1016_j_carbpol_2023_120600 crossref_primary_10_1016_j_cej_2021_133260 crossref_primary_10_1002_adhm_201900065 crossref_primary_10_1016_j_carbpol_2021_118753 crossref_primary_10_1039_D4TA02586E crossref_primary_10_1016_j_polymertesting_2023_108089 crossref_primary_10_1002_advs_202410590 crossref_primary_10_1039_D3TC02166A crossref_primary_10_1016_j_snb_2023_134652 crossref_primary_10_1002_adhm_202200055 crossref_primary_10_1002_adhm_202401218 crossref_primary_10_1002_adhm_202402549 crossref_primary_10_1002_adma_202007429 crossref_primary_10_1002_advs_202000726 crossref_primary_10_3390_pharmaceutics14081616 crossref_primary_10_1038_s41467_025_57102_3 crossref_primary_10_1021_acs_molpharmaceut_2c00650 crossref_primary_10_1002_smll_202201597 crossref_primary_10_1039_D0TA04084C crossref_primary_10_1016_j_biomaterials_2019_03_015 crossref_primary_10_1002_flm2_31 crossref_primary_10_1080_23746149_2021_1899850 crossref_primary_10_1021_acsmacrolett_4c00075 crossref_primary_10_1021_acssensors_4c00245 crossref_primary_10_1021_acs_chemmater_9b01239 crossref_primary_10_1016_j_carbpol_2020_116141 crossref_primary_10_1021_acsnano_3c08811 crossref_primary_10_1002_adma_202007663 crossref_primary_10_1016_j_cej_2022_140640 crossref_primary_10_1016_j_biomaterials_2024_122732 crossref_primary_10_1016_j_mtcomm_2023_105791 crossref_primary_10_1016_j_bioactmat_2022_07_029 crossref_primary_10_1039_D3MH00813D crossref_primary_10_1002_app_50527 |
Cites_doi | 10.1016/j.biomaterials.2010.08.097 10.1073/pnas.1015862108 10.1038/nmat4539 10.1002/anie.201700628 10.1021/acs.nanolett.5b03891 10.1161/CIR.0000000000000485 10.1126/science.aah6362 10.1016/j.biomaterials.2017.02.020 10.1016/j.biomaterials.2017.04.015 10.1002/adma.201602606 10.1038/nature12806 10.1126/science.aag1213 10.1016/j.biomaterials.2013.08.031 10.1002/adma.201700533 10.1016/j.biomaterials.2014.03.067 10.5966/sctm.2014-0049 10.1039/c3py01634j 10.1002/adfm.201606497 10.1161/CIRCULATIONAHA.114.014937 10.1126/sciadv.1601007 10.1038/nmat4463 10.1001/jamacardio.2016.1326 10.1021/acs.chemmater.6b03676 10.1007/s10409-017-0661-z 10.1038/nature15372 10.1016/j.biomaterials.2016.07.039 10.1002/adfm.201500006 10.1002/adfm.201505372 10.1038/ncomms4002 10.1002/adma.201604743 10.1016/S0022-3476(86)80928-3 10.1007/s11431-017-9064-7 10.1002/adma.200600529 10.1016/j.biomaterials.2013.10.017 10.1039/C4TA00484A 10.1039/C4RA15258A 10.1016/j.biomaterials.2009.09.062 |
ContentType | Journal Article |
Copyright | 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
Copyright_xml | – notice: 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7SR 8BQ 8FD JG9 7X8 |
DOI | 10.1002/adma.201704235 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Materials Research Database CrossRef MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1521-4095 |
EndPage | n/a |
ExternalDocumentID | 29687502 10_1002_adma_201704235 ADMA201704235 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: National Natural Science Funds for Distinguished Young Scholar funderid: 51325305 – fundername: National Key Research and Development Program funderid: 2016YFC1101301 – fundername: Tianjin Municipal Natural Science Foundation funderid: 15JCQNJC03300 – fundername: National Natural Science Foundation of China funderid: 51473117; 31771030 |
GroupedDBID | --- .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHQN AAMMB AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABLJU ABPVW ACAHQ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADMLS ADOZA ADXAS ADZMN AEFGJ AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFFPM AFGKR AFWVQ AFZJQ AGHNM AGXDD AGYGG AHBTC AIDQK AIDYY AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS EJD F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RX1 RYL SUPJJ TN5 UB1 UPT V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WXSBR WYISQ XG1 XPP XV2 YR2 ZZTAW ~02 ~IA ~WT .Y3 31~ 6TJ 8WZ A6W AAHHS AANHP AAYOK AAYXX ABEML ACBWZ ACCFJ ACRPL ACSCC ACYXJ ADNMO ADZOD AEEZP AEQDE AETEA AFFNX AGQPQ AIWBW AJBDE ASPBG AVWKF AZFZN CITATION FEDTE FOJGT HF~ HVGLF M6K NDZJH PALCI RIWAO RJQFR SAMSI WTY ZY4 ABTAH AEUQT AFPWT CGR CUY CVF ECM EIF NPM RWI RWM WRC 7SR 8BQ 8FD JG9 7X8 |
ID | FETCH-LOGICAL-c4765-1d4f308137a989993d2fdeba8c3a49e6ba4b41c5aebe93a3dd3f6c93239fbf9b3 |
IEDL.DBID | DR2 |
ISSN | 0935-9648 1521-4095 |
IngestDate | Fri Jul 11 02:06:53 EDT 2025 Mon Jul 14 08:54:37 EDT 2025 Wed Feb 19 02:35:38 EST 2025 Thu Apr 24 23:12:24 EDT 2025 Tue Jul 01 00:44:41 EDT 2025 Wed Aug 20 07:26:54 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 23 |
Keywords | Ppy conductive hydrogel cardiac patch dopamine myocardial infarction |
Language | English |
License | 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4765-1d4f308137a989993d2fdeba8c3a49e6ba4b41c5aebe93a3dd3f6c93239fbf9b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PMID | 29687502 |
PQID | 2047979708 |
PQPubID | 2045203 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_2031027524 proquest_journals_2047979708 pubmed_primary_29687502 crossref_primary_10_1002_adma_201704235 crossref_citationtrail_10_1002_adma_201704235 wiley_primary_10_1002_adma_201704235_ADMA201704235 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-Jun |
PublicationDateYYYYMMDD | 2018-06-01 |
PublicationDate_xml | – month: 06 year: 2018 text: 2018-Jun |
PublicationDecade | 2010 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Advanced materials (Weinheim) |
PublicationTitleAlternate | Adv Mater |
PublicationYear | 2018 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2015; 15 2010; 31 2015; 5 2017; 60 2016; 107 2017; 27 2006; 18 2011; 32 2017; 29 2015; 525 2017; 133 2017; 135 2016; 15 2017; 357 2015; 25 1986; 108 2014; 5 2016; 1 2011; 108 2014; 3 2016; 2 2014; 505 2014; 2 2013; 34 2017; 33 2015; 132 2017; 56 2016; 352 2014; 35 2016; 28 2016; 26 2017; 125 e_1_2_4_21_1 e_1_2_4_20_1 e_1_2_4_23_1 e_1_2_4_22_1 e_1_2_4_25_1 e_1_2_4_24_1 e_1_2_4_27_1 e_1_2_4_26_1 e_1_2_4_29_1 e_1_2_4_28_1 e_1_2_4_1_1 e_1_2_4_3_1 e_1_2_4_2_1 e_1_2_4_5_1 e_1_2_4_4_1 e_1_2_4_7_1 e_1_2_4_6_1 e_1_2_4_9_1 e_1_2_4_8_1 e_1_2_4_30_1 e_1_2_4_32_1 e_1_2_4_10_1 e_1_2_4_31_1 e_1_2_4_11_1 e_1_2_4_34_1 e_1_2_4_12_1 e_1_2_4_33_1 e_1_2_4_13_1 e_1_2_4_36_1 e_1_2_4_14_1 e_1_2_4_35_1 e_1_2_4_15_1 e_1_2_4_16_1 e_1_2_4_37_1 e_1_2_4_18_1 e_1_2_4_17_1 e_1_2_4_19_1 |
References_xml | – volume: 60 start-page: 1278 year: 2017 publication-title: Sci. China: Technol. Sci. – volume: 18 start-page: 2614 year: 2006 publication-title: Adv. Mater. – volume: 357 start-page: 378 year: 2017 publication-title: Science – volume: 2 start-page: e1601007 year: 2016 publication-title: Sci. Adv. – volume: 108 start-page: 2651 year: 2011 publication-title: Proc. Natl. Acad. Sci. USA – volume: 125 start-page: 65 year: 2017 publication-title: Biomaterials – volume: 5 start-page: 15096 year: 2015 publication-title: RSC Adv. – volume: 108 start-page: 923 year: 1986 publication-title: J. Pediatr. – volume: 352 start-page: 1400 year: 2016 publication-title: Science – volume: 25 start-page: 3814 year: 2015 publication-title: Adv. Funct. Mater. – volume: 505 start-page: 382 year: 2014 publication-title: Nature – volume: 33 start-page: 543 year: 2017 publication-title: Acta Mech. Sin. – volume: 26 start-page: 4293 year: 2016 publication-title: Adv. Funct. Mater. – volume: 29 start-page: 1700533 year: 2017 publication-title: Adv. Mater. – volume: 28 start-page: 7982 year: 2016 publication-title: Chem. Mater. – volume: 525 start-page: 479 year: 2015 publication-title: Nature – volume: 133 start-page: 132 year: 2017 publication-title: Biomaterials – volume: 107 start-page: 1 year: 2016 publication-title: Biomaterials – volume: 15 start-page: 190 year: 2016 publication-title: Nat. Mater. – volume: 5 start-page: 2880 year: 2014 publication-title: Polym. Chem. – volume: 29 start-page: 1604743 year: 2017 publication-title: Adv. Mater. – volume: 135 start-page: e146 year: 2017 publication-title: Circulation – volume: 35 start-page: 711 year: 2014 publication-title: Biomaterials – volume: 132 start-page: 772 year: 2015 publication-title: Circulation – volume: 35 start-page: 5679 year: 2014 publication-title: Biomaterials – volume: 3 start-page: 1090 year: 2014 publication-title: Stem Cells Transl. Med. – volume: 2 start-page: 6086 year: 2014 publication-title: J. Mater. Chem. A – volume: 5 start-page: 3002 year: 2014 publication-title: Nat. Commun. – volume: 32 start-page: 565 year: 2011 publication-title: Biomaterials – volume: 15 start-page: 407 year: 2016 publication-title: Nat. Mater. – volume: 1 start-page: 594 year: 2016 publication-title: JAMA Cardiol. – volume: 28 start-page: 8675 year: 2016 publication-title: Adv. Mater. – volume: 34 start-page: 9071 year: 2013 publication-title: Biomaterials – volume: 56 start-page: 4224 year: 2017 publication-title: Angew. Chem., Int. Ed. Engl. – volume: 15 start-page: 7736 year: 2015 publication-title: Nano Lett. – volume: 31 start-page: 420 year: 2010 publication-title: Biomaterials – volume: 27 start-page: 1606497 year: 2017 publication-title: Adv. Funct. Mater. – ident: e_1_2_4_4_1 doi: 10.1016/j.biomaterials.2010.08.097 – ident: e_1_2_4_22_1 doi: 10.1073/pnas.1015862108 – ident: e_1_2_4_32_1 doi: 10.1038/nmat4539 – ident: e_1_2_4_14_1 doi: 10.1002/anie.201700628 – ident: e_1_2_4_21_1 doi: 10.1021/acs.nanolett.5b03891 – ident: e_1_2_4_1_1 doi: 10.1161/CIR.0000000000000485 – ident: e_1_2_4_26_1 doi: 10.1126/science.aah6362 – ident: e_1_2_4_37_1 doi: 10.1016/j.biomaterials.2017.02.020 – ident: e_1_2_4_11_1 doi: 10.1016/j.biomaterials.2017.04.015 – ident: e_1_2_4_24_1 doi: 10.1002/adma.201602606 – ident: e_1_2_4_27_1 doi: 10.1038/nature12806 – ident: e_1_2_4_2_1 doi: 10.1126/science.aag1213 – ident: e_1_2_4_5_1 doi: 10.1016/j.biomaterials.2013.08.031 – ident: e_1_2_4_20_1 doi: 10.1002/adma.201700533 – ident: e_1_2_4_7_1 doi: 10.1016/j.biomaterials.2014.03.067 – ident: e_1_2_4_8_1 doi: 10.5966/sctm.2014-0049 – ident: e_1_2_4_34_1 doi: 10.1039/c3py01634j – ident: e_1_2_4_19_1 doi: 10.1002/adfm.201606497 – ident: e_1_2_4_6_1 doi: 10.1161/CIRCULATIONAHA.114.014937 – ident: e_1_2_4_13_1 doi: 10.1126/sciadv.1601007 – ident: e_1_2_4_25_1 doi: 10.1038/nmat4463 – ident: e_1_2_4_3_1 doi: 10.1001/jamacardio.2016.1326 – ident: e_1_2_4_23_1 doi: 10.1021/acs.chemmater.6b03676 – ident: e_1_2_4_31_1 doi: 10.1007/s10409-017-0661-z – ident: e_1_2_4_10_1 doi: 10.1038/nature15372 – ident: e_1_2_4_9_1 doi: 10.1016/j.biomaterials.2016.07.039 – ident: e_1_2_4_30_1 doi: 10.1002/adfm.201500006 – ident: e_1_2_4_12_1 doi: 10.1002/adfm.201505372 – ident: e_1_2_4_17_1 doi: 10.1038/ncomms4002 – ident: e_1_2_4_29_1 doi: 10.1002/adma.201604743 – ident: e_1_2_4_36_1 doi: 10.1016/S0022-3476(86)80928-3 – ident: e_1_2_4_33_1 doi: 10.1007/s11431-017-9064-7 – ident: e_1_2_4_35_1 doi: 10.1002/adma.200600529 – ident: e_1_2_4_16_1 doi: 10.1016/j.biomaterials.2013.10.017 – ident: e_1_2_4_18_1 doi: 10.1039/C4TA00484A – ident: e_1_2_4_28_1 doi: 10.1039/C4RA15258A – ident: e_1_2_4_15_1 doi: 10.1016/j.biomaterials.2009.09.062 |
SSID | ssj0009606 |
Score | 2.6708357 |
Snippet | In recent years, cardiac patches have been developed for the treatment of myocardial infarction. However, the fixation approaches onto the tissue through... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e1704235 |
SubjectTerms | Adhesive bonding Bonding strength cardiac patch conductive hydrogel Conductivity Crosslinking Dopamine Heart Humans Hydrogels Hydrogels - chemistry Materials science Myocardial Infarction Myocardium Myocytes, Cardiac Patches (structures) Polypyrroles Ppy Tissue Engineering |
Title | Paintable and Rapidly Bondable Conductive Hydrogels as Therapeutic Cardiac Patches |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.201704235 https://www.ncbi.nlm.nih.gov/pubmed/29687502 https://www.proquest.com/docview/2047979708 https://www.proquest.com/docview/2031027524 |
Volume | 30 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La-MwEB6WnLqHvra7dR-LFgo9ObX1sK1jSBvCQpcSWujNSJa0lAanNMmh_fXVyInTdCkLLb7IlmzL0ozmkzzzCeDECkZ14XQshcClG57G2o-BMZp3a1jhssAze_knG97w37fi9lUUf8MP0S64oWaE8RoVXOnp2Yo0VJnAG5Tm6NmBUebosIWoaLTij0J4Hsj2mIhlxosla2NCz9ZvX7dK_0DNdeQaTM9gC9Sy0o3HyX13PtPd6vkNn-NnvmobNhe4lPQaQdqBL7beha-v2Aq_wehK3dUzDLUiqjZkpB7uzPiJ4MbE4WLfJ-Zh-CTDJ_M4-evNLlFTcr0K8SL9IJAVuVIoLdM9uBlcXPeH8WJLhrjieSbi1HDHPIpguZJ-piaZoc5YrYqKKS5tphXXPK2E8rIhmWLGMJdVHiMy6bSTmn2HTj2p7T4Qm7rcpZWTIkdMl0hjaKpEYvzTbCpdBPGyS8pqwVeO22aMy4ZpmZbYVmXbVhGctuUfGqaOd0seLXu4XGjs1OfyXPojKSL41WZ7XcMfKKq2kzmW8WCY5oLyCH40ktG-isrMT_0SGgEN_fufOpS988tee3bwkZsOYcOni8Zv7Qg6s8e5PfYIaaZ_Bi14AUwEBgw |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NT9swFH9icNh2GOyTbLB50qSdAok_kvhYFVDZKEJVkXaL7NhGaChFtD3AXz8_p0kp0zQJlEtiO4ljv-f3s_P8ewDfrGBUF07HUghcuuFprP0YGKN5t4YVLgs8s8PTbHDOf_wSrTch7oVp-CG6BTfUjDBeo4LjgvT-kjVUmUAclObo2iGewQaG9Q6zqtGSQQoBeqDbYyKWGS9a3saE7q_ev2qX_gKbq9g1GJ-jTdBttRufk99785neq-4eMDo-6bu24NUCmpJeI0uvYc3Wb-DlPcLCtzA6U5f1DHdbEVUbMlLXl-bqlmBs4pDY9yfzMIKSwa25mVx4y0vUlIyXu7xIP8hkRc4UCsz0HZwfHY77g3gRlSGueJ6JODXcMQ8kWK6kn6xJZqgzVquiYopLm2nFNU8robx4SKaYMcxllYeJTDrtpGbvYb2e1HYbiE1d7tLKSZEjrEukMTRVIjH-aTaVLoK47ZOyWlCWY-SMq7IhW6YltlXZtVUE37vy1w1Zxz9L7rRdXC6UdupzeS79kRQRfO2yvbrhPxRV28kcy3g8THNBeQQfGtHoXkVl5md_CY2Ahg7-Tx3K3sGw1119fMxNX-D5YDw8KU-OT39-ghc-vWjc2HZgfXYzt7seMM3056ASfwCv-Aon |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JT-MwGP3EIiE4wAwzQICZMRLSnAKJlyQ-Vi1VZwFVFUjcIju2EQKlVZdD-fXYTptSEBqJUS6Jtzj2tzw79jPAqWYEy8zIkDPmpm5oHEprA0Pn3rUimUk8z-zlVdK5ob9v2e2LXfwVP0Q94eY0w9trp-ADZc4XpKFCed6gOHUrO9gqrNMkypxct3oLAimHzz3bHmEhT2g2p22M8Ply_mW39AZrLkNX73vaOyDmta6WnDycTcbyrHh6Rej4P5_1CbZnwBQ1Kkn6DCu63IWtF3SFX6DXFffl2O21QqJUqCcG9-pxitzJxD6waW8m3n6izlQN-3fW7yIxQteLPV6o6SWyQF3hxGX0FW7aF9fNTjg7kyEsaJqwMFbUEAsjSCq4HapxorBRWoqsIIJynUhBJY0LJqxwcCKIUsQkhQWJhBtpuCR7sFb2S30ASMcmNXFhOEsdqIu4UjgWLFK2NB1zE0A475K8mBGWu3MzHvOKahnnrq3yuq0C-FmnH1RUHe-mPJ73cD5T2ZGNpSm3V5QFcFJHW2Vzf1BEqfsTl8aiYZwyTAPYrySjfhXmiR37RTgA7Pv3H3XIG63LRv10-JFMP2Cj22rnf39d_TmCTRucVWvYjmFtPJzobxYtjeV3rxDPnJ0I3w |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Paintable+and+Rapidly+Bondable+Conductive+Hydrogels+as+Therapeutic+Cardiac+Patches&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Liang%2C+Shuang&rft.au=Zhang%2C+Yinyu&rft.au=Wang%2C+Hongbo&rft.au=Xu%2C+Ziyang&rft.date=2018-06-01&rft.issn=1521-4095&rft.eissn=1521-4095&rft.volume=30&rft.issue=23&rft.spage=e1704235&rft_id=info:doi/10.1002%2Fadma.201704235&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon |