Paintable and Rapidly Bondable Conductive Hydrogels as Therapeutic Cardiac Patches

In recent years, cardiac patches have been developed for the treatment of myocardial infarction. However, the fixation approaches onto the tissue through suture or phototriggered reaction inevitably cause new tissue damage. Herein, a paintable hydrogel is constructed based on Fe3+‐triggered simultan...

Full description

Saved in:
Bibliographic Details
Published inAdvanced materials (Weinheim) Vol. 30; no. 23; pp. e1704235 - n/a
Main Authors Liang, Shuang, Zhang, Yinyu, Wang, Hongbo, Xu, Ziyang, Chen, Jingrui, Bao, Rui, Tan, Baoyu, Cui, Yuanlu, Fan, Guanwei, Wang, Wenxin, Wang, Wei, Liu, Wenguang
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.06.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In recent years, cardiac patches have been developed for the treatment of myocardial infarction. However, the fixation approaches onto the tissue through suture or phototriggered reaction inevitably cause new tissue damage. Herein, a paintable hydrogel is constructed based on Fe3+‐triggered simultaneous polymerization of covalently linked pyrrole and dopamine in the hyperbranched chains where the in situ formed conductive polypyrrole also uniquely serves to crosslink network. This conductive and adhesive hydrogel can be conveniently painted as a patch onto the heart surface without adverse liquid leakage. The functional patch whose conductivity is equivalent to that of normal myocardium is strongly bonded to the beating heart within 4 weeks, accordingly efficiently boosting the transmission of electrophysiological signals. Eventually, the reconstruction of cardiac function and revascularization of the infarct myocardium are remarkably improved. The translatable suture‐free strategy reported in this work is promising to address the human clinical challenges in cardiac tissue engineering. A paintable conductive hydrogel is constructed based on Fe3+‐triggered polymerization of pyrrole and dopamine chemically linked to hyperbranched polymer chains. The freshly formed hydrogels can be conveniently painted as a suture‐free adhesive patch strongly bondable to the beating heart, thus efficiently boosting the reconstruction of cardiac function after myocardial infarction.
AbstractList In recent years, cardiac patches have been developed for the treatment of myocardial infarction. However, the fixation approaches onto the tissue through suture or phototriggered reaction inevitably cause new tissue damage. Herein, a paintable hydrogel is constructed based on Fe3+ -triggered simultaneous polymerization of covalently linked pyrrole and dopamine in the hyperbranched chains where the in situ formed conductive polypyrrole also uniquely serves to crosslink network. This conductive and adhesive hydrogel can be conveniently painted as a patch onto the heart surface without adverse liquid leakage. The functional patch whose conductivity is equivalent to that of normal myocardium is strongly bonded to the beating heart within 4 weeks, accordingly efficiently boosting the transmission of electrophysiological signals. Eventually, the reconstruction of cardiac function and revascularization of the infarct myocardium are remarkably improved. The translatable suture-free strategy reported in this work is promising to address the human clinical challenges in cardiac tissue engineering.In recent years, cardiac patches have been developed for the treatment of myocardial infarction. However, the fixation approaches onto the tissue through suture or phototriggered reaction inevitably cause new tissue damage. Herein, a paintable hydrogel is constructed based on Fe3+ -triggered simultaneous polymerization of covalently linked pyrrole and dopamine in the hyperbranched chains where the in situ formed conductive polypyrrole also uniquely serves to crosslink network. This conductive and adhesive hydrogel can be conveniently painted as a patch onto the heart surface without adverse liquid leakage. The functional patch whose conductivity is equivalent to that of normal myocardium is strongly bonded to the beating heart within 4 weeks, accordingly efficiently boosting the transmission of electrophysiological signals. Eventually, the reconstruction of cardiac function and revascularization of the infarct myocardium are remarkably improved. The translatable suture-free strategy reported in this work is promising to address the human clinical challenges in cardiac tissue engineering.
In recent years, cardiac patches have been developed for the treatment of myocardial infarction. However, the fixation approaches onto the tissue through suture or phototriggered reaction inevitably cause new tissue damage. Herein, a paintable hydrogel is constructed based on Fe3+‐triggered simultaneous polymerization of covalently linked pyrrole and dopamine in the hyperbranched chains where the in situ formed conductive polypyrrole also uniquely serves to crosslink network. This conductive and adhesive hydrogel can be conveniently painted as a patch onto the heart surface without adverse liquid leakage. The functional patch whose conductivity is equivalent to that of normal myocardium is strongly bonded to the beating heart within 4 weeks, accordingly efficiently boosting the transmission of electrophysiological signals. Eventually, the reconstruction of cardiac function and revascularization of the infarct myocardium are remarkably improved. The translatable suture‐free strategy reported in this work is promising to address the human clinical challenges in cardiac tissue engineering.
In recent years, cardiac patches have been developed for the treatment of myocardial infarction. However, the fixation approaches onto the tissue through suture or phototriggered reaction inevitably cause new tissue damage. Herein, a paintable hydrogel is constructed based on Fe 3+ ‐triggered simultaneous polymerization of covalently linked pyrrole and dopamine in the hyperbranched chains where the in situ formed conductive polypyrrole also uniquely serves to crosslink network. This conductive and adhesive hydrogel can be conveniently painted as a patch onto the heart surface without adverse liquid leakage. The functional patch whose conductivity is equivalent to that of normal myocardium is strongly bonded to the beating heart within 4 weeks, accordingly efficiently boosting the transmission of electrophysiological signals. Eventually, the reconstruction of cardiac function and revascularization of the infarct myocardium are remarkably improved. The translatable suture‐free strategy reported in this work is promising to address the human clinical challenges in cardiac tissue engineering.
In recent years, cardiac patches have been developed for the treatment of myocardial infarction. However, the fixation approaches onto the tissue through suture or phototriggered reaction inevitably cause new tissue damage. Herein, a paintable hydrogel is constructed based on Fe -triggered simultaneous polymerization of covalently linked pyrrole and dopamine in the hyperbranched chains where the in situ formed conductive polypyrrole also uniquely serves to crosslink network. This conductive and adhesive hydrogel can be conveniently painted as a patch onto the heart surface without adverse liquid leakage. The functional patch whose conductivity is equivalent to that of normal myocardium is strongly bonded to the beating heart within 4 weeks, accordingly efficiently boosting the transmission of electrophysiological signals. Eventually, the reconstruction of cardiac function and revascularization of the infarct myocardium are remarkably improved. The translatable suture-free strategy reported in this work is promising to address the human clinical challenges in cardiac tissue engineering.
In recent years, cardiac patches have been developed for the treatment of myocardial infarction. However, the fixation approaches onto the tissue through suture or phototriggered reaction inevitably cause new tissue damage. Herein, a paintable hydrogel is constructed based on Fe3+‐triggered simultaneous polymerization of covalently linked pyrrole and dopamine in the hyperbranched chains where the in situ formed conductive polypyrrole also uniquely serves to crosslink network. This conductive and adhesive hydrogel can be conveniently painted as a patch onto the heart surface without adverse liquid leakage. The functional patch whose conductivity is equivalent to that of normal myocardium is strongly bonded to the beating heart within 4 weeks, accordingly efficiently boosting the transmission of electrophysiological signals. Eventually, the reconstruction of cardiac function and revascularization of the infarct myocardium are remarkably improved. The translatable suture‐free strategy reported in this work is promising to address the human clinical challenges in cardiac tissue engineering. A paintable conductive hydrogel is constructed based on Fe3+‐triggered polymerization of pyrrole and dopamine chemically linked to hyperbranched polymer chains. The freshly formed hydrogels can be conveniently painted as a suture‐free adhesive patch strongly bondable to the beating heart, thus efficiently boosting the reconstruction of cardiac function after myocardial infarction.
Author Liu, Wenguang
Wang, Hongbo
Tan, Baoyu
Liang, Shuang
Xu, Ziyang
Wang, Wei
Wang, Wenxin
Fan, Guanwei
Cui, Yuanlu
Zhang, Yinyu
Chen, Jingrui
Bao, Rui
Author_xml – sequence: 1
  givenname: Shuang
  surname: Liang
  fullname: Liang, Shuang
  organization: Tianjin University
– sequence: 2
  givenname: Yinyu
  surname: Zhang
  fullname: Zhang, Yinyu
  organization: Tianjin University
– sequence: 3
  givenname: Hongbo
  surname: Wang
  fullname: Wang, Hongbo
  organization: Tianjin University
– sequence: 4
  givenname: Ziyang
  surname: Xu
  fullname: Xu, Ziyang
  organization: Tianjin University
– sequence: 5
  givenname: Jingrui
  surname: Chen
  fullname: Chen, Jingrui
  organization: Tianjin University of Traditional Chinese Medicine
– sequence: 6
  givenname: Rui
  surname: Bao
  fullname: Bao, Rui
  organization: Tianjin University
– sequence: 7
  givenname: Baoyu
  surname: Tan
  fullname: Tan, Baoyu
  organization: Tianjin University
– sequence: 8
  givenname: Yuanlu
  surname: Cui
  fullname: Cui, Yuanlu
  organization: Tianjin University of Traditional Chinese Medicine
– sequence: 9
  givenname: Guanwei
  surname: Fan
  fullname: Fan, Guanwei
  organization: Tianjin University of Traditional Chinese Medicine
– sequence: 10
  givenname: Wenxin
  surname: Wang
  fullname: Wang, Wenxin
  organization: Tianjin University
– sequence: 11
  givenname: Wei
  surname: Wang
  fullname: Wang, Wei
  email: wwgfz@tju.edu.cn
  organization: Tianjin University
– sequence: 12
  givenname: Wenguang
  surname: Liu
  fullname: Liu, Wenguang
  email: wgliu@tju.edu.cn
  organization: Tianjin University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29687502$$D View this record in MEDLINE/PubMed
BookMark eNqFkctLxDAQh4Mouj6uHqXgxUvXyaOPHNf1CYoiei7TZKqRbrsmrbL_vdX1AYLIHDKE78sM-W2y1aZtiLFdDmMOIA7RznAsgGeghExW2IgngscKdLLKRqBlEutU5RtsM4QnANAppOtsQ-g0zxIQI3Z7g67psKwpwsZGtzh3tl5ER21jPy6nQ9Obzr1QdL6wvn2gOkQYortH8jinvnMmmqK3Dk10g515pLDN1iqsA-18nlvs_vTkbnoeX16fXUwnl7FRWZrE3KpKQs5lhjrXWksrKksl5kai0pSWqErFTYJUkpYorZVVarQUUldlpUu5xQ6W7859-9xT6IqZC4bqGhtq-1AIkBxElgg1oPu_0Ke2982w3UCpTA8F-UDtfVJ9OSNbzL2boV8UX781AOMlYHwbgqfqG-FQvMdRvMdRfMcxCOqXYFyHnWubzqOr_9b0Unt1NS3-GVJMjq8mP-4bK7qeVA
CitedBy_id crossref_primary_10_1016_j_jare_2024_11_026
crossref_primary_10_1038_s41598_023_29780_w
crossref_primary_10_3390_biom9090448
crossref_primary_10_1016_j_ejps_2023_106439
crossref_primary_10_1002_smll_202309793
crossref_primary_10_1021_acsami_1c08429
crossref_primary_10_1002_smll_202200336
crossref_primary_10_3390_ma12152491
crossref_primary_10_1002_wnan_1787
crossref_primary_10_1007_s11431_021_1850_7
crossref_primary_10_1021_acsmaterialslett_0c00309
crossref_primary_10_1039_D0TA00158A
crossref_primary_10_1089_bioe_2020_0021
crossref_primary_10_1002_smtd_202301341
crossref_primary_10_1039_D1TA08091A
crossref_primary_10_1016_j_actbio_2021_11_022
crossref_primary_10_1038_s41467_021_21869_y
crossref_primary_10_1089_bioe_2020_0025
crossref_primary_10_1002_adma_202403642
crossref_primary_10_1039_C9RA10666A
crossref_primary_10_1002_advs_202307353
crossref_primary_10_1021_acsnano_2c05168
crossref_primary_10_1515_mr_2023_0059
crossref_primary_10_1039_C9TC04428K
crossref_primary_10_1039_D4RA01168F
crossref_primary_10_1016_j_ijbiomac_2023_126535
crossref_primary_10_1021_acs_chemmater_9b03919
crossref_primary_10_1002_advs_202105146
crossref_primary_10_1002_advs_202304627
crossref_primary_10_1021_acssuschemeng_0c05754
crossref_primary_10_1089_ten_tea_2019_0286
crossref_primary_10_1002_admt_202000384
crossref_primary_10_1021_acsnano_2c11053
crossref_primary_10_1016_j_porgcoat_2023_107636
crossref_primary_10_1038_s41467_022_35437_5
crossref_primary_10_1016_j_ijbiomac_2024_132360
crossref_primary_10_1021_acsapm_2c00390
crossref_primary_10_1021_acsapm_2c01241
crossref_primary_10_1016_j_cej_2022_140546
crossref_primary_10_1016_j_mattod_2023_09_005
crossref_primary_10_1016_j_addr_2022_114379
crossref_primary_10_1021_acsami_2c15068
crossref_primary_10_1080_1061186X_2020_1818761
crossref_primary_10_1021_acs_chemrev_2c00215
crossref_primary_10_1002_adhm_202201576
crossref_primary_10_1021_acsbiomaterials_4c02061
crossref_primary_10_1016_j_cej_2023_146583
crossref_primary_10_1080_09205063_2023_2265134
crossref_primary_10_1080_09205063_2019_1702276
crossref_primary_10_1002_smll_202101356
crossref_primary_10_1039_C9CS00849G
crossref_primary_10_1002_wnan_1568
crossref_primary_10_1039_D3SC00145H
crossref_primary_10_1039_D1TB00019E
crossref_primary_10_1002_adfm_202008364
crossref_primary_10_1002_mabi_202300302
crossref_primary_10_34133_bmr_0066
crossref_primary_10_1002_mabi_202200051
crossref_primary_10_1016_j_cej_2021_133182
crossref_primary_10_1021_acsnano_3c04817
crossref_primary_10_1016_j_mtbio_2024_101331
crossref_primary_10_1021_acs_chemrev_1c00815
crossref_primary_10_3389_fbioe_2024_1294238
crossref_primary_10_1021_acsami_3c17667
crossref_primary_10_3390_molecules25245795
crossref_primary_10_1038_s41528_023_00274_z
crossref_primary_10_1002_adhm_201901358
crossref_primary_10_1016_j_jconrel_2021_02_036
crossref_primary_10_1002_inf2_12113
crossref_primary_10_1016_j_nanoen_2023_108617
crossref_primary_10_1002_adhm_202303219
crossref_primary_10_1002_jbm_b_35293
crossref_primary_10_1039_C9PY01429B
crossref_primary_10_1039_C8CS00706C
crossref_primary_10_1016_j_cej_2021_129352
crossref_primary_10_1016_j_smaim_2020_07_003
crossref_primary_10_1021_acsami_8b19482
crossref_primary_10_1002_smll_202310194
crossref_primary_10_1002_advs_202202980
crossref_primary_10_1016_j_jcis_2024_12_202
crossref_primary_10_1093_europace_euab187
crossref_primary_10_1016_j_bioactmat_2024_02_012
crossref_primary_10_1016_j_synthmet_2019_04_015
crossref_primary_10_1021_acsami_3c07062
crossref_primary_10_1016_j_cej_2024_155566
crossref_primary_10_1016_j_cej_2022_136988
crossref_primary_10_1039_D2PY01028C
crossref_primary_10_1039_D0CC04909C
crossref_primary_10_1016_j_bioactmat_2023_07_007
crossref_primary_10_1016_j_biomaterials_2021_120811
crossref_primary_10_1021_acs_chemmater_8b03860
crossref_primary_10_1002_advs_201802112
crossref_primary_10_1155_2022_6042137
crossref_primary_10_1016_j_carbpol_2021_118547
crossref_primary_10_1038_s41467_024_48468_x
crossref_primary_10_1002_marc_202400835
crossref_primary_10_1016_j_smaim_2024_12_003
crossref_primary_10_34133_research_0161
crossref_primary_10_1021_acsbiomaterials_2c00454
crossref_primary_10_1021_acsnano_9b06761
crossref_primary_10_1038_s41467_024_48980_0
crossref_primary_10_1002_adhm_202001916
crossref_primary_10_1007_s11814_023_1578_9
crossref_primary_10_1016_j_progpolymsci_2022_101573
crossref_primary_10_1016_j_compositesa_2023_107892
crossref_primary_10_1039_C9CS00285E
crossref_primary_10_1557_s43578_022_00706_y
crossref_primary_10_1007_s11431_024_2638_x
crossref_primary_10_1021_acsnano_2c12448
crossref_primary_10_1007_s11426_022_1243_5
crossref_primary_10_1002_adfm_202000177
crossref_primary_10_1021_acsanm_3c02956
crossref_primary_10_1021_acs_macromol_2c02236
crossref_primary_10_1021_acsmacrolett_0c00621
crossref_primary_10_1021_acsami_1c02089
crossref_primary_10_1021_acsmaterialslett_1c00558
crossref_primary_10_1021_acsami_9b14348
crossref_primary_10_1016_j_mattod_2023_03_029
crossref_primary_10_1002_adfm_202303509
crossref_primary_10_1016_j_progpolymsci_2023_101740
crossref_primary_10_1002_adma_202404264
crossref_primary_10_1016_j_compositesb_2021_109047
crossref_primary_10_2147_IJN_S276001
crossref_primary_10_1016_j_mattod_2022_11_007
crossref_primary_10_1021_cbe_4c00173
crossref_primary_10_1016_j_jcis_2021_08_205
crossref_primary_10_1016_j_mtbio_2024_100978
crossref_primary_10_1186_s12951_022_01432_7
crossref_primary_10_1002_adma_202001628
crossref_primary_10_1021_acsami_9b03346
crossref_primary_10_1039_C9TB02967B
crossref_primary_10_1021_acsapm_8b00232
crossref_primary_10_1002_adma_202203431
crossref_primary_10_1002_adhm_202303288
crossref_primary_10_1039_D1RA00903F
crossref_primary_10_1002_adfm_201907678
crossref_primary_10_1063_1_5116579
crossref_primary_10_3390_molecules27185843
crossref_primary_10_1016_j_bioactmat_2022_01_038
crossref_primary_10_1016_j_colsurfb_2022_112469
crossref_primary_10_1007_s13367_023_00049_y
crossref_primary_10_1021_acsabm_1c00501
crossref_primary_10_1021_acsami_2c11348
crossref_primary_10_1016_j_cej_2025_159294
crossref_primary_10_1016_j_compositesb_2021_108645
crossref_primary_10_1021_acsbiomaterials_8b01507
crossref_primary_10_1021_acsami_9b16675
crossref_primary_10_1002_adfm_202211340
crossref_primary_10_1016_j_actbio_2021_08_031
crossref_primary_10_1038_s41427_021_00330_y
crossref_primary_10_1002_adhm_202100012
crossref_primary_10_1021_acs_chemmater_9b01885
crossref_primary_10_1021_acsnano_3c00933
crossref_primary_10_1038_s41563_021_01051_x
crossref_primary_10_3390_ijms222313054
crossref_primary_10_1002_adhm_202301990
crossref_primary_10_1016_j_carbpol_2020_116096
crossref_primary_10_1016_j_jelechem_2021_115815
crossref_primary_10_1016_j_bioactmat_2020_12_011
crossref_primary_10_1021_acs_chemmater_0c01589
crossref_primary_10_1186_s40580_023_00389_z
crossref_primary_10_1021_acsabm_9b00457
crossref_primary_10_1039_D2RA02299K
crossref_primary_10_1016_j_compositesb_2020_108110
crossref_primary_10_3390_mi9100529
crossref_primary_10_1016_j_ijbiomac_2024_133622
crossref_primary_10_3390_ijms22168550
crossref_primary_10_1002_adhm_201900569
crossref_primary_10_1177_08853282211047939
crossref_primary_10_1038_s41551_019_0380_9
crossref_primary_10_1039_D3MH00399J
crossref_primary_10_1007_s11431_021_1843_3
crossref_primary_10_1039_D2ME00144F
crossref_primary_10_1002_adfm_201909954
crossref_primary_10_1021_acsami_3c18306
crossref_primary_10_1002_adhm_201901423
crossref_primary_10_1038_s41467_021_27463_6
crossref_primary_10_1002_adhm_202201798
crossref_primary_10_1016_j_biomaterials_2021_120855
crossref_primary_10_1021_acs_chemrev_3c00380
crossref_primary_10_1002_adfm_202004407
crossref_primary_10_1021_acsami_1c09239
crossref_primary_10_1021_acsbiomaterials_3c01837
crossref_primary_10_1002_adfm_201910197
crossref_primary_10_1016_j_tibtech_2021_07_001
crossref_primary_10_1002_adfm_202107732
crossref_primary_10_1002_adma_201905761
crossref_primary_10_1186_s12951_023_02063_2
crossref_primary_10_1089_ten_teb_2019_0100
crossref_primary_10_1002_adfm_202201919
crossref_primary_10_1039_D1TB02215F
crossref_primary_10_1016_j_bioactmat_2023_05_003
crossref_primary_10_1002_adfm_202005941
crossref_primary_10_1021_acsami_0c20186
crossref_primary_10_1016_j_jconrel_2020_09_006
crossref_primary_10_1557_s43580_024_01004_x
crossref_primary_10_1002_adfm_202310233
crossref_primary_10_1016_j_biomaterials_2025_123274
crossref_primary_10_1007_s42114_023_00665_w
crossref_primary_10_1016_j_mtbio_2022_100415
crossref_primary_10_1039_D2TB01591A
crossref_primary_10_1016_j_progpolymsci_2021_101388
crossref_primary_10_1039_D2BM00433J
crossref_primary_10_1002_advs_202203096
crossref_primary_10_1016_j_jcis_2023_09_190
crossref_primary_10_1021_acsaem_9b01629
crossref_primary_10_1002_adfm_201809009
crossref_primary_10_1021_acsami_9b01886
crossref_primary_10_1038_s41467_024_52418_y
crossref_primary_10_1002_adma_202201971
crossref_primary_10_3390_bios13010093
crossref_primary_10_1021_acs_chemrev_0c00798
crossref_primary_10_1016_j_cej_2024_150182
crossref_primary_10_1021_acs_macromol_3c00724
crossref_primary_10_1002_adhm_202200526
crossref_primary_10_1002_anbr_202200008
crossref_primary_10_1038_s41467_024_51111_4
crossref_primary_10_1002_adhm_202000735
crossref_primary_10_1002_elsc_202100087
crossref_primary_10_1016_j_cej_2023_145891
crossref_primary_10_1007_s40843_021_1677_3
crossref_primary_10_1002_smll_202101518
crossref_primary_10_1039_D2SC04962G
crossref_primary_10_1007_s11010_024_05145_3
crossref_primary_10_1021_acsami_9b20612
crossref_primary_10_1016_j_actbio_2021_04_018
crossref_primary_10_1016_j_compscitech_2020_108294
crossref_primary_10_1002_smll_202303153
crossref_primary_10_1016_j_progpolymsci_2024_101792
crossref_primary_10_1016_j_biomaterials_2022_121382
crossref_primary_10_1002_advs_202003627
crossref_primary_10_1016_j_nantod_2024_102625
crossref_primary_10_1016_j_compositesb_2020_108285
crossref_primary_10_3390_polym14091902
crossref_primary_10_1038_s41563_020_00814_2
crossref_primary_10_1002_admi_202101038
crossref_primary_10_1016_j_addr_2021_113870
crossref_primary_10_1002_smll_202403350
crossref_primary_10_1039_D3TA06779C
crossref_primary_10_1002_adfm_202109144
crossref_primary_10_1016_j_compositesb_2023_111022
crossref_primary_10_1038_s41586_023_06628_x
crossref_primary_10_1002_adfm_202007664
crossref_primary_10_1016_j_biomaterials_2019_119726
crossref_primary_10_1002_adfm_202312631
crossref_primary_10_1038_s41467_021_22675_2
crossref_primary_10_1002_smll_202005038
crossref_primary_10_1016_j_compositesb_2019_04_043
crossref_primary_10_1016_j_carbpol_2022_119404
crossref_primary_10_1016_j_actbio_2021_04_027
crossref_primary_10_1039_D0RA02017F
crossref_primary_10_1002_admt_202100293
crossref_primary_10_1002_adfm_202207590
crossref_primary_10_1039_D1TB00523E
crossref_primary_10_1016_j_matlet_2023_135569
crossref_primary_10_1002_btm2_10347
crossref_primary_10_1016_j_fmre_2025_01_008
crossref_primary_10_1038_s41467_023_42008_9
crossref_primary_10_1039_D3MH00056G
crossref_primary_10_1002_pat_70009
crossref_primary_10_1021_acs_chemrev_0c00897
crossref_primary_10_1016_j_ijbiomac_2024_137985
crossref_primary_10_1016_j_nantod_2023_102105
crossref_primary_10_1038_s41467_023_44419_0
crossref_primary_10_1002_marc_201800837
crossref_primary_10_1021_acsbiomaterials_3c00194
crossref_primary_10_1039_D0TB02929G
crossref_primary_10_1039_D3TB00450C
crossref_primary_10_1002_adfm_201901474
crossref_primary_10_1002_INMD_20230008
crossref_primary_10_1002_adma_202300394
crossref_primary_10_1016_j_actbio_2021_03_073
crossref_primary_10_1016_j_polymer_2024_126929
crossref_primary_10_1002_adhm_202000876
crossref_primary_10_1039_D1TB01503F
crossref_primary_10_1016_j_cej_2019_121915
crossref_primary_10_1021_acsmaterialslett_1c00167
crossref_primary_10_1016_j_bioactmat_2022_06_001
crossref_primary_10_3390_molecules24030603
crossref_primary_10_1016_j_eurpolymj_2022_111332
crossref_primary_10_1007_s11426_022_1345_3
crossref_primary_10_1002_inf2_12419
crossref_primary_10_1002_adfm_202416398
crossref_primary_10_1002_adhm_202101089
crossref_primary_10_1016_j_eurpolymj_2022_111336
crossref_primary_10_1002_adfm_202006432
crossref_primary_10_1002_adma_202207634
crossref_primary_10_1016_j_apmt_2021_101117
crossref_primary_10_1016_j_bioactmat_2021_11_032
crossref_primary_10_1007_s42114_025_01271_8
crossref_primary_10_1016_j_bioactmat_2021_11_038
crossref_primary_10_1080_17425247_2024_2409906
crossref_primary_10_1039_D0BM01466D
crossref_primary_10_1016_j_bioadv_2022_212974
crossref_primary_10_1021_acsnano_2c07823
crossref_primary_10_1016_j_bioactmat_2022_03_034
crossref_primary_10_1016_j_porgcoat_2023_108001
crossref_primary_10_1021_acsmacrolett_1c00559
crossref_primary_10_1016_j_bioactmat_2023_08_020
crossref_primary_10_1016_j_colsurfb_2022_112509
crossref_primary_10_1016_j_actbio_2022_08_048
crossref_primary_10_1002_adhm_202403734
crossref_primary_10_1002_adfm_202308113
crossref_primary_10_1039_C8CS00595H
crossref_primary_10_1088_1361_6528_ad857d
crossref_primary_10_1016_j_bioactmat_2021_11_021
crossref_primary_10_1021_acsami_1c00637
crossref_primary_10_1021_acsami_9b17907
crossref_primary_10_1016_j_matdes_2022_111086
crossref_primary_10_1073_pnas_2301364120
crossref_primary_10_2147_IJN_S386763
crossref_primary_10_3390_bioengineering10020165
crossref_primary_10_1016_j_msec_2019_109921
crossref_primary_10_1126_sciadv_abe8739
crossref_primary_10_1016_j_ijbiomac_2024_130764
crossref_primary_10_1021_acs_biomac_1c00349
crossref_primary_10_1021_acsnano_4c00509
crossref_primary_10_1038_s41551_021_00796_9
crossref_primary_10_1002_adfm_202104440
crossref_primary_10_3390_gels8010041
crossref_primary_10_1016_j_cej_2023_142457
crossref_primary_10_1016_j_cej_2022_138675
crossref_primary_10_1002_adma_202404071
crossref_primary_10_1016_j_carbpol_2023_120600
crossref_primary_10_1016_j_cej_2021_133260
crossref_primary_10_1002_adhm_201900065
crossref_primary_10_1016_j_carbpol_2021_118753
crossref_primary_10_1039_D4TA02586E
crossref_primary_10_1016_j_polymertesting_2023_108089
crossref_primary_10_1002_advs_202410590
crossref_primary_10_1039_D3TC02166A
crossref_primary_10_1016_j_snb_2023_134652
crossref_primary_10_1002_adhm_202200055
crossref_primary_10_1002_adhm_202401218
crossref_primary_10_1002_adhm_202402549
crossref_primary_10_1002_adma_202007429
crossref_primary_10_1002_advs_202000726
crossref_primary_10_3390_pharmaceutics14081616
crossref_primary_10_1038_s41467_025_57102_3
crossref_primary_10_1021_acs_molpharmaceut_2c00650
crossref_primary_10_1002_smll_202201597
crossref_primary_10_1039_D0TA04084C
crossref_primary_10_1016_j_biomaterials_2019_03_015
crossref_primary_10_1002_flm2_31
crossref_primary_10_1080_23746149_2021_1899850
crossref_primary_10_1021_acsmacrolett_4c00075
crossref_primary_10_1021_acssensors_4c00245
crossref_primary_10_1021_acs_chemmater_9b01239
crossref_primary_10_1016_j_carbpol_2020_116141
crossref_primary_10_1021_acsnano_3c08811
crossref_primary_10_1002_adma_202007663
crossref_primary_10_1016_j_cej_2022_140640
crossref_primary_10_1016_j_biomaterials_2024_122732
crossref_primary_10_1016_j_mtcomm_2023_105791
crossref_primary_10_1016_j_bioactmat_2022_07_029
crossref_primary_10_1039_D3MH00813D
crossref_primary_10_1002_app_50527
Cites_doi 10.1016/j.biomaterials.2010.08.097
10.1073/pnas.1015862108
10.1038/nmat4539
10.1002/anie.201700628
10.1021/acs.nanolett.5b03891
10.1161/CIR.0000000000000485
10.1126/science.aah6362
10.1016/j.biomaterials.2017.02.020
10.1016/j.biomaterials.2017.04.015
10.1002/adma.201602606
10.1038/nature12806
10.1126/science.aag1213
10.1016/j.biomaterials.2013.08.031
10.1002/adma.201700533
10.1016/j.biomaterials.2014.03.067
10.5966/sctm.2014-0049
10.1039/c3py01634j
10.1002/adfm.201606497
10.1161/CIRCULATIONAHA.114.014937
10.1126/sciadv.1601007
10.1038/nmat4463
10.1001/jamacardio.2016.1326
10.1021/acs.chemmater.6b03676
10.1007/s10409-017-0661-z
10.1038/nature15372
10.1016/j.biomaterials.2016.07.039
10.1002/adfm.201500006
10.1002/adfm.201505372
10.1038/ncomms4002
10.1002/adma.201604743
10.1016/S0022-3476(86)80928-3
10.1007/s11431-017-9064-7
10.1002/adma.200600529
10.1016/j.biomaterials.2013.10.017
10.1039/C4TA00484A
10.1039/C4RA15258A
10.1016/j.biomaterials.2009.09.062
ContentType Journal Article
Copyright 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Copyright_xml – notice: 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7SR
8BQ
8FD
JG9
7X8
DOI 10.1002/adma.201704235
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Materials Research Database
CrossRef
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1521-4095
EndPage n/a
ExternalDocumentID 29687502
10_1002_adma_201704235
ADMA201704235
Genre article
Journal Article
GrantInformation_xml – fundername: National Natural Science Funds for Distinguished Young Scholar
  funderid: 51325305
– fundername: National Key Research and Development Program
  funderid: 2016YFC1101301
– fundername: Tianjin Municipal Natural Science Foundation
  funderid: 15JCQNJC03300
– fundername: National Natural Science Foundation of China
  funderid: 51473117; 31771030
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADMLS
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGXDD
AGYGG
AHBTC
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WXSBR
WYISQ
XG1
XPP
XV2
YR2
ZZTAW
~02
~IA
~WT
.Y3
31~
6TJ
8WZ
A6W
AAHHS
AANHP
AAYOK
AAYXX
ABEML
ACBWZ
ACCFJ
ACRPL
ACSCC
ACYXJ
ADNMO
ADZOD
AEEZP
AEQDE
AETEA
AFFNX
AGQPQ
AIWBW
AJBDE
ASPBG
AVWKF
AZFZN
CITATION
FEDTE
FOJGT
HF~
HVGLF
M6K
NDZJH
PALCI
RIWAO
RJQFR
SAMSI
WTY
ZY4
ABTAH
AEUQT
AFPWT
CGR
CUY
CVF
ECM
EIF
NPM
RWI
RWM
WRC
7SR
8BQ
8FD
JG9
7X8
ID FETCH-LOGICAL-c4765-1d4f308137a989993d2fdeba8c3a49e6ba4b41c5aebe93a3dd3f6c93239fbf9b3
IEDL.DBID DR2
ISSN 0935-9648
1521-4095
IngestDate Fri Jul 11 02:06:53 EDT 2025
Mon Jul 14 08:54:37 EDT 2025
Wed Feb 19 02:35:38 EST 2025
Thu Apr 24 23:12:24 EDT 2025
Tue Jul 01 00:44:41 EDT 2025
Wed Aug 20 07:26:54 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 23
Keywords Ppy
conductive hydrogel
cardiac patch
dopamine
myocardial infarction
Language English
License 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4765-1d4f308137a989993d2fdeba8c3a49e6ba4b41c5aebe93a3dd3f6c93239fbf9b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 29687502
PQID 2047979708
PQPubID 2045203
PageCount 10
ParticipantIDs proquest_miscellaneous_2031027524
proquest_journals_2047979708
pubmed_primary_29687502
crossref_primary_10_1002_adma_201704235
crossref_citationtrail_10_1002_adma_201704235
wiley_primary_10_1002_adma_201704235_ADMA201704235
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-Jun
PublicationDateYYYYMMDD 2018-06-01
PublicationDate_xml – month: 06
  year: 2018
  text: 2018-Jun
PublicationDecade 2010
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Advanced materials (Weinheim)
PublicationTitleAlternate Adv Mater
PublicationYear 2018
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2015; 15
2010; 31
2015; 5
2017; 60
2016; 107
2017; 27
2006; 18
2011; 32
2017; 29
2015; 525
2017; 133
2017; 135
2016; 15
2017; 357
2015; 25
1986; 108
2014; 5
2016; 1
2011; 108
2014; 3
2016; 2
2014; 505
2014; 2
2013; 34
2017; 33
2015; 132
2017; 56
2016; 352
2014; 35
2016; 28
2016; 26
2017; 125
e_1_2_4_21_1
e_1_2_4_20_1
e_1_2_4_23_1
e_1_2_4_22_1
e_1_2_4_25_1
e_1_2_4_24_1
e_1_2_4_27_1
e_1_2_4_26_1
e_1_2_4_29_1
e_1_2_4_28_1
e_1_2_4_1_1
e_1_2_4_3_1
e_1_2_4_2_1
e_1_2_4_5_1
e_1_2_4_4_1
e_1_2_4_7_1
e_1_2_4_6_1
e_1_2_4_9_1
e_1_2_4_8_1
e_1_2_4_30_1
e_1_2_4_32_1
e_1_2_4_10_1
e_1_2_4_31_1
e_1_2_4_11_1
e_1_2_4_34_1
e_1_2_4_12_1
e_1_2_4_33_1
e_1_2_4_13_1
e_1_2_4_36_1
e_1_2_4_14_1
e_1_2_4_35_1
e_1_2_4_15_1
e_1_2_4_16_1
e_1_2_4_37_1
e_1_2_4_18_1
e_1_2_4_17_1
e_1_2_4_19_1
References_xml – volume: 60
  start-page: 1278
  year: 2017
  publication-title: Sci. China: Technol. Sci.
– volume: 18
  start-page: 2614
  year: 2006
  publication-title: Adv. Mater.
– volume: 357
  start-page: 378
  year: 2017
  publication-title: Science
– volume: 2
  start-page: e1601007
  year: 2016
  publication-title: Sci. Adv.
– volume: 108
  start-page: 2651
  year: 2011
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 125
  start-page: 65
  year: 2017
  publication-title: Biomaterials
– volume: 5
  start-page: 15096
  year: 2015
  publication-title: RSC Adv.
– volume: 108
  start-page: 923
  year: 1986
  publication-title: J. Pediatr.
– volume: 352
  start-page: 1400
  year: 2016
  publication-title: Science
– volume: 25
  start-page: 3814
  year: 2015
  publication-title: Adv. Funct. Mater.
– volume: 505
  start-page: 382
  year: 2014
  publication-title: Nature
– volume: 33
  start-page: 543
  year: 2017
  publication-title: Acta Mech. Sin.
– volume: 26
  start-page: 4293
  year: 2016
  publication-title: Adv. Funct. Mater.
– volume: 29
  start-page: 1700533
  year: 2017
  publication-title: Adv. Mater.
– volume: 28
  start-page: 7982
  year: 2016
  publication-title: Chem. Mater.
– volume: 525
  start-page: 479
  year: 2015
  publication-title: Nature
– volume: 133
  start-page: 132
  year: 2017
  publication-title: Biomaterials
– volume: 107
  start-page: 1
  year: 2016
  publication-title: Biomaterials
– volume: 15
  start-page: 190
  year: 2016
  publication-title: Nat. Mater.
– volume: 5
  start-page: 2880
  year: 2014
  publication-title: Polym. Chem.
– volume: 29
  start-page: 1604743
  year: 2017
  publication-title: Adv. Mater.
– volume: 135
  start-page: e146
  year: 2017
  publication-title: Circulation
– volume: 35
  start-page: 711
  year: 2014
  publication-title: Biomaterials
– volume: 132
  start-page: 772
  year: 2015
  publication-title: Circulation
– volume: 35
  start-page: 5679
  year: 2014
  publication-title: Biomaterials
– volume: 3
  start-page: 1090
  year: 2014
  publication-title: Stem Cells Transl. Med.
– volume: 2
  start-page: 6086
  year: 2014
  publication-title: J. Mater. Chem. A
– volume: 5
  start-page: 3002
  year: 2014
  publication-title: Nat. Commun.
– volume: 32
  start-page: 565
  year: 2011
  publication-title: Biomaterials
– volume: 15
  start-page: 407
  year: 2016
  publication-title: Nat. Mater.
– volume: 1
  start-page: 594
  year: 2016
  publication-title: JAMA Cardiol.
– volume: 28
  start-page: 8675
  year: 2016
  publication-title: Adv. Mater.
– volume: 34
  start-page: 9071
  year: 2013
  publication-title: Biomaterials
– volume: 56
  start-page: 4224
  year: 2017
  publication-title: Angew. Chem., Int. Ed. Engl.
– volume: 15
  start-page: 7736
  year: 2015
  publication-title: Nano Lett.
– volume: 31
  start-page: 420
  year: 2010
  publication-title: Biomaterials
– volume: 27
  start-page: 1606497
  year: 2017
  publication-title: Adv. Funct. Mater.
– ident: e_1_2_4_4_1
  doi: 10.1016/j.biomaterials.2010.08.097
– ident: e_1_2_4_22_1
  doi: 10.1073/pnas.1015862108
– ident: e_1_2_4_32_1
  doi: 10.1038/nmat4539
– ident: e_1_2_4_14_1
  doi: 10.1002/anie.201700628
– ident: e_1_2_4_21_1
  doi: 10.1021/acs.nanolett.5b03891
– ident: e_1_2_4_1_1
  doi: 10.1161/CIR.0000000000000485
– ident: e_1_2_4_26_1
  doi: 10.1126/science.aah6362
– ident: e_1_2_4_37_1
  doi: 10.1016/j.biomaterials.2017.02.020
– ident: e_1_2_4_11_1
  doi: 10.1016/j.biomaterials.2017.04.015
– ident: e_1_2_4_24_1
  doi: 10.1002/adma.201602606
– ident: e_1_2_4_27_1
  doi: 10.1038/nature12806
– ident: e_1_2_4_2_1
  doi: 10.1126/science.aag1213
– ident: e_1_2_4_5_1
  doi: 10.1016/j.biomaterials.2013.08.031
– ident: e_1_2_4_20_1
  doi: 10.1002/adma.201700533
– ident: e_1_2_4_7_1
  doi: 10.1016/j.biomaterials.2014.03.067
– ident: e_1_2_4_8_1
  doi: 10.5966/sctm.2014-0049
– ident: e_1_2_4_34_1
  doi: 10.1039/c3py01634j
– ident: e_1_2_4_19_1
  doi: 10.1002/adfm.201606497
– ident: e_1_2_4_6_1
  doi: 10.1161/CIRCULATIONAHA.114.014937
– ident: e_1_2_4_13_1
  doi: 10.1126/sciadv.1601007
– ident: e_1_2_4_25_1
  doi: 10.1038/nmat4463
– ident: e_1_2_4_3_1
  doi: 10.1001/jamacardio.2016.1326
– ident: e_1_2_4_23_1
  doi: 10.1021/acs.chemmater.6b03676
– ident: e_1_2_4_31_1
  doi: 10.1007/s10409-017-0661-z
– ident: e_1_2_4_10_1
  doi: 10.1038/nature15372
– ident: e_1_2_4_9_1
  doi: 10.1016/j.biomaterials.2016.07.039
– ident: e_1_2_4_30_1
  doi: 10.1002/adfm.201500006
– ident: e_1_2_4_12_1
  doi: 10.1002/adfm.201505372
– ident: e_1_2_4_17_1
  doi: 10.1038/ncomms4002
– ident: e_1_2_4_29_1
  doi: 10.1002/adma.201604743
– ident: e_1_2_4_36_1
  doi: 10.1016/S0022-3476(86)80928-3
– ident: e_1_2_4_33_1
  doi: 10.1007/s11431-017-9064-7
– ident: e_1_2_4_35_1
  doi: 10.1002/adma.200600529
– ident: e_1_2_4_16_1
  doi: 10.1016/j.biomaterials.2013.10.017
– ident: e_1_2_4_18_1
  doi: 10.1039/C4TA00484A
– ident: e_1_2_4_28_1
  doi: 10.1039/C4RA15258A
– ident: e_1_2_4_15_1
  doi: 10.1016/j.biomaterials.2009.09.062
SSID ssj0009606
Score 2.6708357
Snippet In recent years, cardiac patches have been developed for the treatment of myocardial infarction. However, the fixation approaches onto the tissue through...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e1704235
SubjectTerms Adhesive bonding
Bonding strength
cardiac patch
conductive hydrogel
Conductivity
Crosslinking
Dopamine
Heart
Humans
Hydrogels
Hydrogels - chemistry
Materials science
Myocardial Infarction
Myocardium
Myocytes, Cardiac
Patches (structures)
Polypyrroles
Ppy
Tissue Engineering
Title Paintable and Rapidly Bondable Conductive Hydrogels as Therapeutic Cardiac Patches
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.201704235
https://www.ncbi.nlm.nih.gov/pubmed/29687502
https://www.proquest.com/docview/2047979708
https://www.proquest.com/docview/2031027524
Volume 30
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La-MwEB6WnLqHvra7dR-LFgo9ObX1sK1jSBvCQpcSWujNSJa0lAanNMmh_fXVyInTdCkLLb7IlmzL0ozmkzzzCeDECkZ14XQshcClG57G2o-BMZp3a1jhssAze_knG97w37fi9lUUf8MP0S64oWaE8RoVXOnp2Yo0VJnAG5Tm6NmBUebosIWoaLTij0J4Hsj2mIhlxosla2NCz9ZvX7dK_0DNdeQaTM9gC9Sy0o3HyX13PtPd6vkNn-NnvmobNhe4lPQaQdqBL7beha-v2Aq_wehK3dUzDLUiqjZkpB7uzPiJ4MbE4WLfJ-Zh-CTDJ_M4-evNLlFTcr0K8SL9IJAVuVIoLdM9uBlcXPeH8WJLhrjieSbi1HDHPIpguZJ-piaZoc5YrYqKKS5tphXXPK2E8rIhmWLGMJdVHiMy6bSTmn2HTj2p7T4Qm7rcpZWTIkdMl0hjaKpEYvzTbCpdBPGyS8pqwVeO22aMy4ZpmZbYVmXbVhGctuUfGqaOd0seLXu4XGjs1OfyXPojKSL41WZ7XcMfKKq2kzmW8WCY5oLyCH40ktG-isrMT_0SGgEN_fufOpS988tee3bwkZsOYcOni8Zv7Qg6s8e5PfYIaaZ_Bi14AUwEBgw
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NT9swFH9icNh2GOyTbLB50qSdAok_kvhYFVDZKEJVkXaL7NhGaChFtD3AXz8_p0kp0zQJlEtiO4ljv-f3s_P8ewDfrGBUF07HUghcuuFprP0YGKN5t4YVLgs8s8PTbHDOf_wSrTch7oVp-CG6BTfUjDBeo4LjgvT-kjVUmUAclObo2iGewQaG9Q6zqtGSQQoBeqDbYyKWGS9a3saE7q_ev2qX_gKbq9g1GJ-jTdBttRufk99785neq-4eMDo-6bu24NUCmpJeI0uvYc3Wb-DlPcLCtzA6U5f1DHdbEVUbMlLXl-bqlmBs4pDY9yfzMIKSwa25mVx4y0vUlIyXu7xIP8hkRc4UCsz0HZwfHY77g3gRlSGueJ6JODXcMQ8kWK6kn6xJZqgzVquiYopLm2nFNU8robx4SKaYMcxllYeJTDrtpGbvYb2e1HYbiE1d7tLKSZEjrEukMTRVIjH-aTaVLoK47ZOyWlCWY-SMq7IhW6YltlXZtVUE37vy1w1Zxz9L7rRdXC6UdupzeS79kRQRfO2yvbrhPxRV28kcy3g8THNBeQQfGtHoXkVl5md_CY2Ahg7-Tx3K3sGw1119fMxNX-D5YDw8KU-OT39-ghc-vWjc2HZgfXYzt7seMM3056ASfwCv-Aon
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JT-MwGP3EIiE4wAwzQICZMRLSnAKJlyQ-Vi1VZwFVFUjcIju2EQKlVZdD-fXYTptSEBqJUS6Jtzj2tzw79jPAqWYEy8zIkDPmpm5oHEprA0Pn3rUimUk8z-zlVdK5ob9v2e2LXfwVP0Q94eY0w9trp-ADZc4XpKFCed6gOHUrO9gqrNMkypxct3oLAimHzz3bHmEhT2g2p22M8Ply_mW39AZrLkNX73vaOyDmta6WnDycTcbyrHh6Rej4P5_1CbZnwBQ1Kkn6DCu63IWtF3SFX6DXFffl2O21QqJUqCcG9-pxitzJxD6waW8m3n6izlQN-3fW7yIxQteLPV6o6SWyQF3hxGX0FW7aF9fNTjg7kyEsaJqwMFbUEAsjSCq4HapxorBRWoqsIIJynUhBJY0LJqxwcCKIUsQkhQWJhBtpuCR7sFb2S30ASMcmNXFhOEsdqIu4UjgWLFK2NB1zE0A475K8mBGWu3MzHvOKahnnrq3yuq0C-FmnH1RUHe-mPJ73cD5T2ZGNpSm3V5QFcFJHW2Vzf1BEqfsTl8aiYZwyTAPYrySjfhXmiR37RTgA7Pv3H3XIG63LRv10-JFMP2Cj22rnf39d_TmCTRucVWvYjmFtPJzobxYtjeV3rxDPnJ0I3w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Paintable+and+Rapidly+Bondable+Conductive+Hydrogels+as+Therapeutic+Cardiac+Patches&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Liang%2C+Shuang&rft.au=Zhang%2C+Yinyu&rft.au=Wang%2C+Hongbo&rft.au=Xu%2C+Ziyang&rft.date=2018-06-01&rft.issn=1521-4095&rft.eissn=1521-4095&rft.volume=30&rft.issue=23&rft.spage=e1704235&rft_id=info:doi/10.1002%2Fadma.201704235&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon