Cone‐beam CT for imaging of the head/brain: Development and assessment of scanner prototype and reconstruction algorithms

Purpose Our aim was to develop a high‐quality, mobile cone‐beam computed tomography (CBCT) scanner for point‐of‐care detection and monitoring of low‐contrast, soft‐tissue abnormalities in the head/brain, such as acute intracranial hemorrhage (ICH). This work presents an integrated framework of hardw...

Full description

Saved in:
Bibliographic Details
Published inMedical physics (Lancaster) Vol. 47; no. 6; pp. 2392 - 2407
Main Authors Wu, P., Sisniega, A., Stayman, J. W., Zbijewski, W., Foos, D., Wang, X., Khanna, N., Aygun, N., Stevens, R. D., Siewerdsen, J. H.
Format Journal Article
LanguageEnglish
Published United States 01.06.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Purpose Our aim was to develop a high‐quality, mobile cone‐beam computed tomography (CBCT) scanner for point‐of‐care detection and monitoring of low‐contrast, soft‐tissue abnormalities in the head/brain, such as acute intracranial hemorrhage (ICH). This work presents an integrated framework of hardware and algorithmic advances for improving soft‐tissue contrast resolution and evaluation of its technical performance with human subjects. Methods Four configurations of a CBCT scanner prototype were designed and implemented to investigate key aspects of hardware (including system geometry, antiscatter grid, bowtie filter) and technique protocols. An integrated software pipeline (c.f., a serial cascade of algorithms) was developed for artifact correction (image lag, glare, beam hardening and x‐ray scatter), motion compensation, and three‐dimensional image (3D) reconstruction [penalized weighted least squares (PWLS), with a hardware‐specific statistical noise model]. The PWLS method was extended in this work to accommodate multiple, independently moving regions with different resolution (to address both motion compensation and image truncation). Imaging performance was evaluated quantitatively and qualitatively with 41 human subjects in the neurosciences critical care unit (NCCU) at our institution. Results The progression of four scanner configurations exhibited systematic improvement in the quality of raw data by variations in system geometry (source‐detector distance), antiscatter grid, and bowtie filter. Quantitative assessment of CBCT images in 41 subjects demonstrated: ~70% reduction in image nonuniformity with artifact correction methods (lag, glare, beam hardening, and scatter); ~40% reduction in motion‐induced streak artifacts via the multi‐motion compensation method; and ~15% improvement in soft‐tissue contrast‐to‐noise ratio (CNR) for PWLS compared to filtered backprojection (FBP) at matched resolution. Each of these components was important to improve contrast resolution for point‐of‐care cranial imaging. Conclusions This work presents the first application of a high‐quality, point‐of‐care CBCT system for imaging of the head/ brain in a neurological critical care setting. Hardware configuration iterations and an integrated software pipeline for artifacts correction and PWLS reconstruction mitigated artifacts and noise to achieve image quality that could be valuable for point‐of‐care detection and monitoring of a variety of intracranial abnormalities, including ICH and hydrocephalus.
AbstractList Our aim was to develop a high-quality, mobile cone-beam computed tomography (CBCT) scanner for point-of-care detection and monitoring of low-contrast, soft-tissue abnormalities in the head/brain, such as acute intracranial hemorrhage (ICH). This work presents an integrated framework of hardware and algorithmic advances for improving soft-tissue contrast resolution and evaluation of its technical performance with human subjects. Four configurations of a CBCT scanner prototype were designed and implemented to investigate key aspects of hardware (including system geometry, antiscatter grid, bowtie filter) and technique protocols. An integrated software pipeline (c.f., a serial cascade of algorithms) was developed for artifact correction (image lag, glare, beam hardening and x-ray scatter), motion compensation, and three-dimensional image (3D) reconstruction [penalized weighted least squares (PWLS), with a hardware-specific statistical noise model]. The PWLS method was extended in this work to accommodate multiple, independently moving regions with different resolution (to address both motion compensation and image truncation). Imaging performance was evaluated quantitatively and qualitatively with 41 human subjects in the neurosciences critical care unit (NCCU) at our institution. The progression of four scanner configurations exhibited systematic improvement in the quality of raw data by variations in system geometry (source-detector distance), antiscatter grid, and bowtie filter. Quantitative assessment of CBCT images in 41 subjects demonstrated: ~70% reduction in image nonuniformity with artifact correction methods (lag, glare, beam hardening, and scatter); ~40% reduction in motion-induced streak artifacts via the multi-motion compensation method; and ~15% improvement in soft-tissue contrast-to-noise ratio (CNR) for PWLS compared to filtered backprojection (FBP) at matched resolution. Each of these components was important to improve contrast resolution for point-of-care cranial imaging. This work presents the first application of a high-quality, point-of-care CBCT system for imaging of the head/ brain in a neurological critical care setting. Hardware configuration iterations and an integrated software pipeline for artifacts correction and PWLS reconstruction mitigated artifacts and noise to achieve image quality that could be valuable for point-of-care detection and monitoring of a variety of intracranial abnormalities, including ICH and hydrocephalus.
Our aim was to develop a high-quality, mobile cone-beam computed tomography (CBCT) scanner for point-of-care detection and monitoring of low-contrast, soft-tissue abnormalities in the head/brain, such as acute intracranial hemorrhage (ICH). This work presents an integrated framework of hardware and algorithmic advances for improving soft-tissue contrast resolution and evaluation of its technical performance with human subjects.PURPOSEOur aim was to develop a high-quality, mobile cone-beam computed tomography (CBCT) scanner for point-of-care detection and monitoring of low-contrast, soft-tissue abnormalities in the head/brain, such as acute intracranial hemorrhage (ICH). This work presents an integrated framework of hardware and algorithmic advances for improving soft-tissue contrast resolution and evaluation of its technical performance with human subjects.Four configurations of a CBCT scanner prototype were designed and implemented to investigate key aspects of hardware (including system geometry, antiscatter grid, bowtie filter) and technique protocols. An integrated software pipeline (c.f., a serial cascade of algorithms) was developed for artifact correction (image lag, glare, beam hardening and x-ray scatter), motion compensation, and three-dimensional image (3D) reconstruction [penalized weighted least squares (PWLS), with a hardware-specific statistical noise model]. The PWLS method was extended in this work to accommodate multiple, independently moving regions with different resolution (to address both motion compensation and image truncation). Imaging performance was evaluated quantitatively and qualitatively with 41 human subjects in the neurosciences critical care unit (NCCU) at our institution.METHODSFour configurations of a CBCT scanner prototype were designed and implemented to investigate key aspects of hardware (including system geometry, antiscatter grid, bowtie filter) and technique protocols. An integrated software pipeline (c.f., a serial cascade of algorithms) was developed for artifact correction (image lag, glare, beam hardening and x-ray scatter), motion compensation, and three-dimensional image (3D) reconstruction [penalized weighted least squares (PWLS), with a hardware-specific statistical noise model]. The PWLS method was extended in this work to accommodate multiple, independently moving regions with different resolution (to address both motion compensation and image truncation). Imaging performance was evaluated quantitatively and qualitatively with 41 human subjects in the neurosciences critical care unit (NCCU) at our institution.The progression of four scanner configurations exhibited systematic improvement in the quality of raw data by variations in system geometry (source-detector distance), antiscatter grid, and bowtie filter. Quantitative assessment of CBCT images in 41 subjects demonstrated: ~70% reduction in image nonuniformity with artifact correction methods (lag, glare, beam hardening, and scatter); ~40% reduction in motion-induced streak artifacts via the multi-motion compensation method; and ~15% improvement in soft-tissue contrast-to-noise ratio (CNR) for PWLS compared to filtered backprojection (FBP) at matched resolution. Each of these components was important to improve contrast resolution for point-of-care cranial imaging.RESULTSThe progression of four scanner configurations exhibited systematic improvement in the quality of raw data by variations in system geometry (source-detector distance), antiscatter grid, and bowtie filter. Quantitative assessment of CBCT images in 41 subjects demonstrated: ~70% reduction in image nonuniformity with artifact correction methods (lag, glare, beam hardening, and scatter); ~40% reduction in motion-induced streak artifacts via the multi-motion compensation method; and ~15% improvement in soft-tissue contrast-to-noise ratio (CNR) for PWLS compared to filtered backprojection (FBP) at matched resolution. Each of these components was important to improve contrast resolution for point-of-care cranial imaging.This work presents the first application of a high-quality, point-of-care CBCT system for imaging of the head/ brain in a neurological critical care setting. Hardware configuration iterations and an integrated software pipeline for artifacts correction and PWLS reconstruction mitigated artifacts and noise to achieve image quality that could be valuable for point-of-care detection and monitoring of a variety of intracranial abnormalities, including ICH and hydrocephalus.CONCLUSIONSThis work presents the first application of a high-quality, point-of-care CBCT system for imaging of the head/ brain in a neurological critical care setting. Hardware configuration iterations and an integrated software pipeline for artifacts correction and PWLS reconstruction mitigated artifacts and noise to achieve image quality that could be valuable for point-of-care detection and monitoring of a variety of intracranial abnormalities, including ICH and hydrocephalus.
Purpose Our aim was to develop a high‐quality, mobile cone‐beam computed tomography (CBCT) scanner for point‐of‐care detection and monitoring of low‐contrast, soft‐tissue abnormalities in the head/brain, such as acute intracranial hemorrhage (ICH). This work presents an integrated framework of hardware and algorithmic advances for improving soft‐tissue contrast resolution and evaluation of its technical performance with human subjects. Methods Four configurations of a CBCT scanner prototype were designed and implemented to investigate key aspects of hardware (including system geometry, antiscatter grid, bowtie filter) and technique protocols. An integrated software pipeline (c.f., a serial cascade of algorithms) was developed for artifact correction (image lag, glare, beam hardening and x‐ray scatter), motion compensation, and three‐dimensional image (3D) reconstruction [penalized weighted least squares (PWLS), with a hardware‐specific statistical noise model]. The PWLS method was extended in this work to accommodate multiple, independently moving regions with different resolution (to address both motion compensation and image truncation). Imaging performance was evaluated quantitatively and qualitatively with 41 human subjects in the neurosciences critical care unit (NCCU) at our institution. Results The progression of four scanner configurations exhibited systematic improvement in the quality of raw data by variations in system geometry (source‐detector distance), antiscatter grid, and bowtie filter. Quantitative assessment of CBCT images in 41 subjects demonstrated: ~70% reduction in image nonuniformity with artifact correction methods (lag, glare, beam hardening, and scatter); ~40% reduction in motion‐induced streak artifacts via the multi‐motion compensation method; and ~15% improvement in soft‐tissue contrast‐to‐noise ratio (CNR) for PWLS compared to filtered backprojection (FBP) at matched resolution. Each of these components was important to improve contrast resolution for point‐of‐care cranial imaging. Conclusions This work presents the first application of a high‐quality, point‐of‐care CBCT system for imaging of the head/ brain in a neurological critical care setting. Hardware configuration iterations and an integrated software pipeline for artifacts correction and PWLS reconstruction mitigated artifacts and noise to achieve image quality that could be valuable for point‐of‐care detection and monitoring of a variety of intracranial abnormalities, including ICH and hydrocephalus.
Author Khanna, N.
Sisniega, A.
Zbijewski, W.
Foos, D.
Stevens, R. D.
Aygun, N.
Stayman, J. W.
Siewerdsen, J. H.
Wu, P.
Wang, X.
Author_xml – sequence: 1
  givenname: P.
  surname: Wu
  fullname: Wu, P.
  organization: Johns Hopkins University
– sequence: 2
  givenname: A.
  surname: Sisniega
  fullname: Sisniega, A.
  organization: Johns Hopkins University
– sequence: 3
  givenname: J. W.
  surname: Stayman
  fullname: Stayman, J. W.
  organization: Johns Hopkins University
– sequence: 4
  givenname: W.
  surname: Zbijewski
  fullname: Zbijewski, W.
  organization: Johns Hopkins University
– sequence: 5
  givenname: D.
  surname: Foos
  fullname: Foos, D.
  organization: Carestream Health
– sequence: 6
  givenname: X.
  surname: Wang
  fullname: Wang, X.
  organization: Carestream Health
– sequence: 7
  givenname: N.
  surname: Khanna
  fullname: Khanna, N.
  organization: Johns Hopkins University
– sequence: 8
  givenname: N.
  surname: Aygun
  fullname: Aygun, N.
  organization: Johns Hopkins University
– sequence: 9
  givenname: R. D.
  surname: Stevens
  fullname: Stevens, R. D.
  organization: Johns Hopkins University
– sequence: 10
  givenname: J. H.
  orcidid: 0000-0001-6644-1317
  surname: Siewerdsen
  fullname: Siewerdsen, J. H.
  email: jeff.siewerdsen@jhu.edu
  organization: Johns Hopkins University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32145076$$D View this record in MEDLINE/PubMed
BookMark eNp1kc9uEzEQhy1URNOCxBMgH7lsOvY66ywHJBT-SkVwKGdr1jubGO3ai-0URVx4BJ6RJ2GTtAUkOFkjf_P97JkzduKDJ8YeC5gLAHkxjHOhhFT32EwqXRZKQn3CZgC1KqSCxSk7S-kzAFTlAh6w01IKtQBdzdi31WT6-f1HQzjw1RXvQuRuwLXzax46njfEN4TtRRPR-Wf8JV1TH8aBfOboW44pUUqHcqKTRe8p8jGGHPJupAMTyQafctza7ILn2K9DdHkzpIfsfod9okc35zn79PrV1eptcfnhzbvVi8vCKl2pouu0RIuixWUDuha1Faih1SW0SpIFkgQaAVvdiEbiUsklSiuq5aJqbFuL8pw9P3rHbTNQa6fXRuzNGKePxp0J6MzfN95tzDpcG12qspJ6Ejy9EcTwZUspm8ElS32PnsI2GVlqNaGl3qNP_sy6C7md-ATMj4CNIaVInbEu434yU7TrjQCzX6kZRnNY6e_wu4Zb5z_Q4oh-dT3t_suZ9x-P_C8SjLKI
CitedBy_id crossref_primary_10_1088_1361_6560_ad40fa
crossref_primary_10_1007_s13246_024_01389_x
crossref_primary_10_1002_mp_16073
crossref_primary_10_1002_mp_16681
crossref_primary_10_1109_TMI_2022_3231461
crossref_primary_10_1002_mp_17314
crossref_primary_10_1002_mp_16962
crossref_primary_10_1002_mp_17125
crossref_primary_10_1002_mp_16711
crossref_primary_10_1088_1361_6560_ac749a
crossref_primary_10_1136_neurintsurg_2021_018553
crossref_primary_10_1186_s12880_022_00881_8
crossref_primary_10_1002_mp_14820
crossref_primary_10_1038_s41598_024_79874_2
crossref_primary_10_1088_1361_6560_abb16e
crossref_primary_10_1088_1361_6560_ac72ef
crossref_primary_10_1002_acm2_13062
crossref_primary_10_1088_1361_6560_acc8b3
crossref_primary_10_1109_TMI_2024_3474250
crossref_primary_10_1109_TMRB_2023_3292450
crossref_primary_10_1016_j_jormas_2024_102088
Cites_doi 10.1088/1361-6560/aaf0b4
10.1117/12.2292919
10.1016/j.radonc.2005.03.001
10.1088/0031-9155/44/11/311
10.1016/j.jvir.2008.02.018
10.1118/1.4914378
10.1118/1.4801895
10.1118/1.595715
10.1109/TMI.2010.2050898
10.1109/83.491322
10.1259/dmfr/87440549
10.1118/1.3611039
10.1109/TMI.2012.2199763
10.1016/S1474-4422(08)70041-3
10.1007/978-3-540-30217-9_29
10.1186/cc362
10.1117/12.811578
10.1088/1361-6560/aa6869
10.1117/12.2513417
10.1097/00004728-197801000-00017
10.1088/1361-6560/aa90fd
10.1117/12.2043463
10.1088/0031-9155/59/4/1005
10.1016/j.anorl.2010.10.008
10.1109/TPAMI.1986.4767851
10.1016/S0360-3016(02)02884-5
10.1088/0031-9155/61/8/3180
10.1109/TMI.2015.2391200
10.1007/978-1-4612-4380-9_35
10.1016/j.jvir.2008.02.002
10.1007/s10107-004-0552-5
10.1109/TNS.1981.4331812
10.1088/1361-6560/ab3036
10.1117/12.2534887
10.3174/ajnr.A1654
10.1118/1.2349687
10.1088/0031-9155/60/4/1415
10.1148/radiol.2213010334
10.1088/0031-9155/61/16/5973
10.1148/122.2.365
10.1088/1361-6560/aa52b8
10.1007/s00256-012-1516-0
10.1118/1.4963220
10.21315/mjms2017.24.1.11
10.1088/0031-9155/28/12/008
10.1088/0031-9155/56/6/019
10.1007/s003300000800
10.1118/1.1461843
10.1097/00003246-199003000-00006
10.1007/s00270-005-0287-6
10.3174/ajnr.A1603
10.1088/1361-6560/aac225
10.1118/1.3597566
10.1117/12.2534896
10.1117/12.2513446
10.1117/12.384505
ContentType Journal Article
Copyright 2020 American Association of Physicists in Medicine
2020 American Association of Physicists in Medicine.
Copyright_xml – notice: 2020 American Association of Physicists in Medicine
– notice: 2020 American Association of Physicists in Medicine.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1002/mp.14124
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Physics
EISSN 2473-4209
EndPage 2407
ExternalDocumentID PMC7343627
32145076
10_1002_mp_14124
MP14124
Genre article
Journal Article
GrantInformation_xml – fundername: NIH
  funderid: R01‐EB‐017226
– fundername: NIH
  funderid: U01‐NS‐107133
– fundername: NIH HHS
  grantid: R01-EB-017226
– fundername: NINDS NIH HHS
  grantid: U01 NS107133
– fundername: NIH HHS
  grantid: U01-NS-107133
GroupedDBID ---
--Z
-DZ
.GJ
0R~
1OB
1OC
29M
2WC
33P
36B
3O-
4.4
53G
5GY
5RE
5VS
AAHHS
AAHQN
AAIPD
AAMNL
AANLZ
AAQQT
AASGY
AAXRX
AAYCA
AAZKR
ABCUV
ABDPE
ABEFU
ABFTF
ABJNI
ABLJU
ABQWH
ABTAH
ABXGK
ACAHQ
ACBEA
ACCFJ
ACCZN
ACGFO
ACGFS
ACGOF
ACPOU
ACXBN
ACXQS
ADBBV
ADBTR
ADKYN
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AENEX
AEQDE
AEUYR
AFBPY
AFFPM
AFWVQ
AHBTC
AIACR
AIAGR
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMYDB
ASPBG
BFHJK
C45
CS3
DCZOG
DRFUL
DRMAN
DRSTM
DU5
EBD
EBS
EJD
EMB
EMOBN
F5P
HDBZQ
HGLYW
I-F
KBYEO
LATKE
LEEKS
LOXES
LUTES
LYRES
MEWTI
O9-
OVD
P2P
P2W
PALCI
PHY
RJQFR
RNS
ROL
SAMSI
SUPJJ
SV3
TEORI
TN5
TWZ
USG
WOHZO
WXSBR
XJT
ZGI
ZVN
ZXP
ZY4
ZZTAW
AAYXX
ADMLS
AEYWJ
AGHNM
AGYGG
CITATION
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
LH4
ID FETCH-LOGICAL-c4764-ff72aca1da8b07919c1a70d730d42ec0e2e07a0ad7b1b2a8428a2c16856bcd913
ISSN 0094-2405
2473-4209
IngestDate Sun Aug 31 08:11:12 EDT 2025
Fri Jul 11 14:35:44 EDT 2025
Mon Jul 21 06:02:14 EDT 2025
Thu Apr 24 23:08:21 EDT 2025
Tue Jul 01 03:54:40 EDT 2025
Wed Jan 22 16:34:56 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords traumatic brain injury
image quality
model-based image reconstruction
point-of-care neuroimaging
cone-beam CT
artifact correction
Language English
License 2020 American Association of Physicists in Medicine.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c4764-ff72aca1da8b07919c1a70d730d42ec0e2e07a0ad7b1b2a8428a2c16856bcd913
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-6644-1317
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/7343627
PMID 32145076
PQID 2374343377
PQPubID 23479
PageCount 16
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7343627
proquest_miscellaneous_2374343377
pubmed_primary_32145076
crossref_citationtrail_10_1002_mp_14124
crossref_primary_10_1002_mp_14124
wiley_primary_10_1002_mp_14124_MP14124
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate June 2020
PublicationDateYYYYMMDD 2020-06-01
PublicationDate_xml – month: 06
  year: 2020
  text: June 2020
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Medical physics (Lancaster)
PublicationTitleAlternate Med Phys
PublicationYear 2020
References 2001; 221
2017; 62
2015; 34
2002; 53
2006; 33
1990; 18
2013; 40
2008; 19
2013; 42
2009
2008; 7
1978; 2
1999; 44
2018; 63
1999; 3
2011; 56
2004
1981; 28
1992
1977; 122
2011; 38
2012; 31
2004; 33
2009; 30
2002; 29
2011; 128
2015; 60
2019; 64
2000
1986; 8
2010; 29
2005; 103
2015; 42
2016; 43
2019
2014; 59
2006; 29
2005; 75
2018
2017
2016; 61
2014
2001; 11
1983; 28
1996; 5
1985; 12
e_1_2_6_51_1
e_1_2_6_53_1
e_1_2_6_32_1
e_1_2_6_30_1
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_59_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_17_1
e_1_2_6_55_1
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_57_1
e_1_2_6_43_1
e_1_2_6_20_1
e_1_2_6_41_1
e_1_2_6_60_1
e_1_2_6_9_1
e_1_2_6_5_1
e_1_2_6_7_1
e_1_2_6_24_1
e_1_2_6_49_1
e_1_2_6_3_1
e_1_2_6_22_1
e_1_2_6_28_1
e_1_2_6_45_1
e_1_2_6_26_1
e_1_2_6_47_1
e_1_2_6_52_1
e_1_2_6_54_1
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_50_1
e_1_2_6_14_1
e_1_2_6_35_1
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_18_1
e_1_2_6_39_1
e_1_2_6_56_1
e_1_2_6_16_1
e_1_2_6_37_1
e_1_2_6_58_1
e_1_2_6_42_1
e_1_2_6_21_1
e_1_2_6_40_1
e_1_2_6_8_1
e_1_2_6_4_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_48_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_29_1
e_1_2_6_44_1
e_1_2_6_27_1
e_1_2_6_46_1
References_xml – volume: 33
  start-page: 285
  year: 2004
  end-page: 290
  article-title: Using a flat‐panel detector in high resolution cone beam CT for dental imaging
  publication-title: Dentomaxillofacial Radiol
– volume: 40
  start-page: 051915
  year: 2013
  article-title: Monte Carlo study of the effects of system geometry and antiscatter grids on cone‐beam CT scatter distributions
  publication-title: Med Phys
– volume: 103
  start-page: 127
  year: 2005
  end-page: 152
  article-title: Smooth minimization of non‐smooth functions
  publication-title: Math Program
– volume: 61
  start-page: 5973
  year: 2016
  end-page: 5992
  article-title: Evaluation of detector readout gain mode and bowtie filters for cone‐beam CT imaging of the head
  publication-title: Phys Med Biol
– volume: 19
  start-page: 814
  year: 2008
  end-page: 820
  article-title: C‐arm cone‐beam CT: general principles and technical considerations for use in interventional radiology
  publication-title: J Vasc Interv Radiol
– volume: 56
  start-page: 1837
  year: 2011
  end-page: 1851
  article-title: Removal and effects of scatter‐glare in cone‐beam CT with an amorphous‐silicon flat‐panel detector
  publication-title: Phys Med Biol
– volume: 2
  start-page: 100
  year: 1978
  end-page: 108
  article-title: A method for correcting bone induced artifacts in computed tomography scanners
  publication-title: J Comput Assist Tomogr
– volume: 7
  start-page: 256
  year: 2008
  end-page: 267
  article-title: Imaging of intracranial haemorrhage
  publication-title: Lancet Neurol
– volume: 12
  start-page: 252
  year: 1985
  end-page: 255
  article-title: Fast calculation of the exact radiological path for a three‐dimensional CT array
  publication-title: Med Phys
– volume: 42
  start-page: 2699
  year: 2015
  end-page: 2708
  article-title: Accelerated statistical reconstruction for C‐arm cone‐beam CT using Nesterov’s method: accelerated CBCT statistical reconstruction using Nesterov’s method
  publication-title: Med Phys
– volume: 122
  start-page: 365
  year: 1977
  end-page: 369
  article-title: Computed tomography in head trauma
  publication-title: Radiology
– year: 2018
– year: 2014
– volume: 61
  start-page: 3180
  year: 2016
  end-page: 3207
  article-title: Modeling and design of a cone‐beam CT head scanner using task‐based imaging performance optimization
  publication-title: Phys Med Biol
– volume: 38
  start-page: 4563
  year: 2011
  end-page: 4574
  article-title: Mobile C‐arm cone‐beam CT for guidance of spine surgery: image quality, radiation dose, and integration with interventional guidance: mobile c‐arm CBCT in spine surgery
  publication-title: Med Phys
– volume: 34
  start-page: 1738
  year: 2015
  end-page: 1746
  article-title: Spinal navigation and imaging: history, trends, and future
  publication-title: IEEE Trans Med Imaging
– volume: 11
  start-page: 1770
  year: 2001
  end-page: 1783
  article-title: Intracranial hemorrhage: principles of CT and MRI interpretation
  publication-title: Eur Radiol
– volume: 53
  start-page: 1337
  year: 2002
  end-page: 1349
  article-title: Flat‐panel cone‐beam computed tomography for image‐guided radiation therapy
  publication-title: Int J Radiat Oncol Biol Phys
– volume: 29
  start-page: 1839
  year: 2010
  end-page: 1850
  article-title: 3D forward and back‐projection for x‐ray CT using separable footprints
  publication-title: IEEE Trans Med Imaging
– start-page: 4
  year: 2018
– volume: 42
  start-page: 649
  year: 2013
  end-page: 657
  article-title: CT arthrography of the wrist using a novel, mobile, dedicated extremity cone‐beam CT (CBCT)
  publication-title: Skeletal Radiol
– volume: 29
  start-page: 1034
  year: 2006
  end-page: 1038
  article-title: Cone‐beam CT with flat‐panel‐detector digital angiography system: early experience in abdominal interventional procedures
  publication-title: Cardiovasc Intervent Radiol
– volume: 8
  start-page: 679
  year: 1986
  end-page: 698
  article-title: A computational approach to edge detection
  publication-title: IEEE Trans Pattern Anal Mach Intell
– year: 2019
– volume: 60
  start-page: 1415
  year: 2015
  end-page: 1439
  article-title: High‐fidelity artifact correction for cone‐beam CT imaging of the brain
  publication-title: Phys Med Biol
– volume: 28
  start-page: 1429
  year: 1983
  end-page: 1433
  article-title: X‐ray transmission formula for antiscatter grids
  publication-title: Phys Med Biol
– start-page: 282
  year: 2004
  end-page: 291
– volume: 44
  start-page: 2835
  year: 1999
  end-page: 2851
  article-title: Ordered subsets algorithms for transmission tomography
  publication-title: Phys Med Biol
– volume: 30
  start-page: 1630
  year: 2009
  end-page: 1636
  article-title: Review of portable CT with assessment of a dedicated head CT scanner
  publication-title: AJNR Am J Neuroradiol
– volume: 19
  start-page: 799
  year: 2008
  end-page: 813
  article-title: Three‐dimensional C‐arm cone‐beam CT: applications in the interventional suite
  publication-title: J Vasc Interv Radiol
– start-page: 105731L
  year: 2018
– volume: 63
  start-page: 115004
  year: 2018
  article-title: Reconstruction‐of‐difference (RoD) imaging for cone‐beam CT neuro‐angiography
  publication-title: Phys Med Biol
– volume: 18
  start-page: 278
  year: 1990
  end-page: 281
  article-title: Mishaps during transport from the intensive care unit
  publication-title: Crit Care Med
– volume: 62
  start-page: 3712
  year: 2017
  end-page: 3734
  article-title: Motion compensation in extremity cone‐beam CT using a penalized image sharpness criterion
  publication-title: Phys Med Biol
– start-page: 72581Z
  year: 2009
– start-page: 298
  year: 2000
  end-page: 305
– volume: 221
  start-page: 657
  year: 2001
  end-page: 667
  article-title: Dedicated breast CT: radiation dose and image quality evaluation
  publication-title: Radiology
– volume: 43
  start-page: 5745
  year: 2016
  end-page: 5757
  article-title: Technical assessment of a prototype cone‐beam CT system for imaging of acute intracranial hemorrhage: technical assessment of CBCT system for ICH imaging
  publication-title: Med Phys
– volume: 75
  start-page: 279
  year: 2005
  end-page: 286
  article-title: Cone‐beam‐CT guided radiation therapy: technical implementation
  publication-title: Radiother Oncol
– volume: 63
  start-page: 245018
  year: 2018
  article-title: Statistical weights for model‐based reconstruction in cone‐beam CT with electronic noise and dual‐gain detector readout
  publication-title: Phys Med Biol
– volume: 38
  start-page: 4700
  year: 2011
  end-page: 4713
  article-title: A dedicated cone‐beam CT system for musculoskeletal extremities imaging: design, optimization, and initial performance characterization
  publication-title: Med Phys
– volume: 29
  start-page: 755
  year: 2002
  end-page: 770
  article-title: Cone‐beam volume CT breast imaging: feasibility study
  publication-title: Med Phys
– volume: 28
  start-page: 3641
  year: 1981
  end-page: 3647
  article-title: Algorithms for fast back‐ and re‐projection in computed tomography
  publication-title: IEEE Trans Nucl Sci
– start-page: 59
  year: 2019
– volume: 3
  start-page: R83
  year: 1999
  end-page: R89
  article-title: Intrahospital transport of critically ill patients
  publication-title: Crit Care
– volume: 5
  start-page: 493
  year: 1996
  end-page: 506
  article-title: Mean and variance of implicitly defined biased estimators (such as penalized maximum likelihood): applications to tomography
  publication-title: IEEE Trans Image Process
– volume: 62
  start-page: 539
  year: 2017
  end-page: 559
  article-title: Multi‐resolution statistical image reconstruction for mitigation of truncation effects: application to cone‐beam CT of the head
  publication-title: Phys Med Biol
– start-page: 110720B
  year: 2019
– volume: 30
  start-page: 1285
  year: 2009
  end-page: 1292
  article-title: Conebeam CT of the head and neck, part 2: clinical applications
  publication-title: Am J Neuroradiol
– volume: 33
  start-page: 3767
  year: 2006
  end-page: 3780
  article-title: Intraoperative cone‐beam CT for guidance of head and neck surgery: assessment of dose and image quality using a C‐arm prototype: cone‐beam CT‐guided head and neck surgery
  publication-title: Med Phys
– volume: 62
  start-page: 8693
  year: 2017
  end-page: 8719
  article-title: Task‐based statistical image reconstruction for high‐quality cone‐beam CT
  publication-title: Phys Med Biol
– year: 2017
– start-page: 492
  year: 1992
  end-page: 518
– volume: 128
  start-page: 65
  year: 2011
  end-page: 78
  article-title: Cone‐beam imaging: applications in ENT
  publication-title: Eur Ann Otorhinolaryngol Head Neck Dis
– start-page: 105734E
  year: 2018
– volume: 64
  start-page: 165021
  year: 2019
  article-title: Known‐component metal artifact reduction (KC‐MAR) for cone‐beam CT
  publication-title: Phys Med Biol
– volume: 31
  start-page: 1837
  year: 2012
  end-page: 1848
  article-title: Model‐based tomographic reconstruction of objects containing known components
  publication-title: IEEE Trans Med Imaging
– volume: 59
  start-page: 1005
  year: 2014
  end-page: 1026
  article-title: Soft‐tissue imaging with C‐arm cone‐beam CT using statistical reconstruction
  publication-title: Phys Med Biol
– ident: e_1_2_6_31_1
  doi: 10.1088/1361-6560/aaf0b4
– ident: e_1_2_6_50_1
  doi: 10.1117/12.2292919
– ident: e_1_2_6_14_1
  doi: 10.1016/j.radonc.2005.03.001
– ident: e_1_2_6_44_1
  doi: 10.1088/0031-9155/44/11/311
– ident: e_1_2_6_11_1
  doi: 10.1016/j.jvir.2008.02.018
– ident: e_1_2_6_54_1
  doi: 10.1118/1.4914378
– ident: e_1_2_6_59_1
– ident: e_1_2_6_34_1
  doi: 10.1118/1.4801895
– ident: e_1_2_6_51_1
  doi: 10.1118/1.595715
– ident: e_1_2_6_45_1
  doi: 10.1109/TMI.2010.2050898
– ident: e_1_2_6_48_1
  doi: 10.1109/83.491322
– ident: e_1_2_6_2_1
  doi: 10.1259/dmfr/87440549
– ident: e_1_2_6_5_1
  doi: 10.1118/1.3611039
– ident: e_1_2_6_56_1
  doi: 10.1109/TMI.2012.2199763
– ident: e_1_2_6_19_1
  doi: 10.1016/S1474-4422(08)70041-3
– ident: e_1_2_6_41_1
  doi: 10.1007/978-3-540-30217-9_29
– ident: e_1_2_6_22_1
  doi: 10.1186/cc362
– ident: e_1_2_6_49_1
  doi: 10.1117/12.811578
– ident: e_1_2_6_40_1
  doi: 10.1088/1361-6560/aa6869
– ident: e_1_2_6_32_1
  doi: 10.1117/12.2513417
– ident: e_1_2_6_38_1
  doi: 10.1097/00004728-197801000-00017
– ident: e_1_2_6_58_1
  doi: 10.1088/1361-6560/aa90fd
– ident: e_1_2_6_17_1
  doi: 10.1117/12.2043463
– ident: e_1_2_6_46_1
  doi: 10.1088/0031-9155/59/4/1005
– ident: e_1_2_6_4_1
  doi: 10.1016/j.anorl.2010.10.008
– ident: e_1_2_6_47_1
  doi: 10.1109/TPAMI.1986.4767851
– ident: e_1_2_6_13_1
  doi: 10.1016/S0360-3016(02)02884-5
– ident: e_1_2_6_25_1
  doi: 10.1088/0031-9155/61/8/3180
– ident: e_1_2_6_9_1
  doi: 10.1109/TMI.2015.2391200
– ident: e_1_2_6_42_1
  doi: 10.1007/978-1-4612-4380-9_35
– ident: e_1_2_6_12_1
  doi: 10.1016/j.jvir.2008.02.002
– ident: e_1_2_6_53_1
  doi: 10.1007/s10107-004-0552-5
– ident: e_1_2_6_52_1
  doi: 10.1109/TNS.1981.4331812
– ident: e_1_2_6_57_1
  doi: 10.1088/1361-6560/ab3036
– ident: e_1_2_6_43_1
  doi: 10.1117/12.2534887
– ident: e_1_2_6_3_1
  doi: 10.3174/ajnr.A1654
– ident: e_1_2_6_7_1
  doi: 10.1118/1.2349687
– ident: e_1_2_6_27_1
  doi: 10.1088/0031-9155/60/4/1415
– ident: e_1_2_6_15_1
  doi: 10.1148/radiol.2213010334
– ident: e_1_2_6_28_1
  doi: 10.1088/0031-9155/61/16/5973
– ident: e_1_2_6_20_1
  doi: 10.1148/122.2.365
– ident: e_1_2_6_33_1
  doi: 10.1088/1361-6560/aa52b8
– ident: e_1_2_6_6_1
  doi: 10.1007/s00256-012-1516-0
– ident: e_1_2_6_26_1
  doi: 10.1118/1.4963220
– ident: e_1_2_6_30_1
– ident: e_1_2_6_24_1
  doi: 10.21315/mjms2017.24.1.11
– ident: e_1_2_6_39_1
  doi: 10.1088/0031-9155/28/12/008
– ident: e_1_2_6_37_1
  doi: 10.1088/0031-9155/56/6/019
– ident: e_1_2_6_18_1
  doi: 10.1007/s003300000800
– ident: e_1_2_6_16_1
  doi: 10.1118/1.1461843
– ident: e_1_2_6_21_1
  doi: 10.1097/00003246-199003000-00006
– ident: e_1_2_6_10_1
  doi: 10.1007/s00270-005-0287-6
– ident: e_1_2_6_35_1
– ident: e_1_2_6_23_1
  doi: 10.3174/ajnr.A1603
– ident: e_1_2_6_29_1
  doi: 10.1088/1361-6560/aac225
– ident: e_1_2_6_8_1
  doi: 10.1118/1.3597566
– ident: e_1_2_6_55_1
  doi: 10.1117/12.2534896
– ident: e_1_2_6_60_1
  doi: 10.1117/12.2513446
– ident: e_1_2_6_36_1
  doi: 10.1117/12.384505
SSID ssj0006350
Score 2.4523873
Snippet Purpose Our aim was to develop a high‐quality, mobile cone‐beam computed tomography (CBCT) scanner for point‐of‐care detection and monitoring of low‐contrast,...
Our aim was to develop a high-quality, mobile cone-beam computed tomography (CBCT) scanner for point-of-care detection and monitoring of low-contrast,...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2392
SubjectTerms Algorithms
artifact correction
Brain - diagnostic imaging
Cone-Beam Computed Tomography
cone‐beam CT
Head - diagnostic imaging
Humans
Image Processing, Computer-Assisted
image quality
model‐based image reconstruction
Phantoms, Imaging
point‐of‐care neuroimaging
traumatic brain injury
Title Cone‐beam CT for imaging of the head/brain: Development and assessment of scanner prototype and reconstruction algorithms
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmp.14124
https://www.ncbi.nlm.nih.gov/pubmed/32145076
https://www.proquest.com/docview/2374343377
https://pubmed.ncbi.nlm.nih.gov/PMC7343627
Volume 47
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLZKJ6a9IBgwyk1GQvBQZUscN254mwrTNFFUiU6beIlsx6FBa1qt7cP4L_xXji9xU1Yk2EtanbpJk--rz8XH5yD0ViayX4AqCySLeEDTMA-4KFTAkpzRghSSCx3QH35JTs_p2WXvstX61chaWi3Fofy5dV_JXVAFGeCqd8n-B7L-pCCA94AvHAFhOP4TxoNZpQKh-LQ7GJt8wXLqmg7Zhf-JAfBE6DYQ2vVvZAjZIq2-LKf-xgKecqWudcrWcmZCsyb3XHvMvspsl199n12Xy4krcl73gnLLPTZOYgK5enM1t20_fKzhYmWM1kMf1ikXValcaHctXfIbF5c9O-xeePk3Uf6AKdn22XZiF68g4Tqvqp6DU6rXdOxatjIyQlkcUBKmzXnZVuJ0_NuYZGPbPs8pbO2TblUGtrjsdA7aILIbtRucmE8NKXSfJjCJ_6jGbfT7aDhgMQUFz-6hHQJeCGmjneOPw89fvaoHa83ucXK3VFc3DslRfdk9tFtfY9P0ueXP3E7LbbpLxt4ZP0QPnKOCjy3rHqGWqvbR7tClYuyj-yOL9WN042mIB2MMNMSOhnhWYKAh1jQ8MiT8gBsUxEAvvKagHu0oiD0FzZhNCuI1BZ-g85NP48Fp4Dp6BJKyhAZFwQiXPMp5X4QsjVIZcRbmoGVySpQMFVEh4yHPmYgE4X3wjTmRUdLvJULmaRQ_Re0K7ukZwkkkerEEgzWlOe3ngnNVMLAiiIiipCjCDnpfP-xMunL3uuvKVWYLdZNsOs8MQh30xo-c2xIv28bUeGUw_-pFNV6p2WqRkZjpzdkxYx10YPHzZ6mB7yC2gawfoGu7b35SlRNT490xr4PeGQ789Ydlw5F5fX7nS7xAe-u_6UvUBjTVKzC0l-K1o_tvMqnWig
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cone-beam+CT+for+imaging+of+the+head%2Fbrain%3A+Development+and+assessment+of+scanner+prototype+and+reconstruction+algorithms&rft.jtitle=Medical+physics+%28Lancaster%29&rft.au=Wu%2C+P.&rft.au=Sisniega%2C+A.&rft.au=Stayman%2C+J.+W.&rft.au=Zbijewski%2C+W.&rft.date=2020-06-01&rft.issn=0094-2405&rft.eissn=2473-4209&rft.volume=47&rft.issue=6&rft.spage=2392&rft.epage=2407&rft_id=info:doi/10.1002%2Fmp.14124&rft_id=info%3Apmid%2F32145076&rft.externalDocID=PMC7343627
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0094-2405&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0094-2405&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0094-2405&client=summon