Variance estimation when using inverse probability of treatment weighting (IPTW) with survival analysis
Propensity score methods are used to reduce the effects of observed confounding when using observational data to estimate the effects of treatments or exposures. A popular method of using the propensity score is inverse probability of treatment weighting (IPTW). When using this method, a weight is c...
Saved in:
Published in | Statistics in medicine Vol. 35; no. 30; pp. 5642 - 5655 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
England
Blackwell Publishing Ltd
30.12.2016
Wiley Subscription Services, Inc John Wiley and Sons Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Propensity score methods are used to reduce the effects of observed confounding when using observational data to estimate the effects of treatments or exposures. A popular method of using the propensity score is inverse probability of treatment weighting (IPTW). When using this method, a weight is calculated for each subject that is equal to the inverse of the probability of receiving the treatment that was actually received. These weights are then incorporated into the analyses to minimize the effects of observed confounding. Previous research has found that these methods result in unbiased estimation when estimating the effect of treatment on survival outcomes. However, conventional methods of variance estimation were shown to result in biased estimates of standard error. In this study, we conducted an extensive set of Monte Carlo simulations to examine different methods of variance estimation when using a weighted Cox proportional hazards model to estimate the effect of treatment. We considered three variance estimation methods: (i) a naïve model‐based variance estimator; (ii) a robust sandwich‐type variance estimator; and (iii) a bootstrap variance estimator. We considered estimation of both the average treatment effect and the average treatment effect in the treated. We found that the use of a bootstrap estimator resulted in approximately correct estimates of standard errors and confidence intervals with the correct coverage rates. The other estimators resulted in biased estimates of standard errors and confidence intervals with incorrect coverage rates. Our simulations were informed by a case study examining the effect of statin prescribing on mortality. © 2016 The Authors. Statistics in Medicine published by John Wiley & Sons Ltd. |
---|---|
AbstractList | Propensity score methods are used to reduce the effects of observed confounding when using observational data to estimate the effects of treatments or exposures. A popular method of using the propensity score is inverse probability of treatment weighting (IPTW). When using this method, a weight is calculated for each subject that is equal to the inverse of the probability of receiving the treatment that was actually received. These weights are then incorporated into the analyses to minimize the effects of observed confounding. Previous research has found that these methods result in unbiased estimation when estimating the effect of treatment on survival outcomes. However, conventional methods of variance estimation were shown to result in biased estimates of standard error. In this study, we conducted an extensive set of Monte Carlo simulations to examine different methods of variance estimation when using a weighted Cox proportional hazards model to estimate the effect of treatment. We considered three variance estimation methods: (i) a naive model-based variance estimator; (ii) a robust sandwich-type variance estimator; and (iii) a bootstrap variance estimator. We considered estimation of both the average treatment effect and the average treatment effect in the treated. We found that the use of a bootstrap estimator resulted in approximately correct estimates of standard errors and confidence intervals with the correct coverage rates. The other estimators resulted in biased estimates of standard errors and confidence intervals with incorrect coverage rates. Our simulations were informed by a case study examining the effect of statin prescribing on mortality. Propensity score methods are used to reduce the effects of observed confounding when using observational data to estimate the effects of treatments or exposures. A popular method of using the propensity score is inverse probability of treatment weighting (IPTW). When using this method, a weight is calculated for each subject that is equal to the inverse of the probability of receiving the treatment that was actually received. These weights are then incorporated into the analyses to minimize the effects of observed confounding. Previous research has found that these methods result in unbiased estimation when estimating the effect of treatment on survival outcomes. However, conventional methods of variance estimation were shown to result in biased estimates of standard error. In this study, we conducted an extensive set of Monte Carlo simulations to examine different methods of variance estimation when using a weighted Cox proportional hazards model to estimate the effect of treatment. We considered three variance estimation methods: (i) a naïve model‐based variance estimator; (ii) a robust sandwich‐type variance estimator; and (iii) a bootstrap variance estimator. We considered estimation of both the average treatment effect and the average treatment effect in the treated. We found that the use of a bootstrap estimator resulted in approximately correct estimates of standard errors and confidence intervals with the correct coverage rates. The other estimators resulted in biased estimates of standard errors and confidence intervals with incorrect coverage rates. Our simulations were informed by a case study examining the effect of statin prescribing on mortality. © 2016 The Authors. Statistics in Medicine published by John Wiley & Sons Ltd. Propensity score methods are used to reduce the effects of observed confounding when using observational data to estimate the effects of treatments or exposures. A popular method of using the propensity score is inverse probability of treatment weighting (IPTW). When using this method, a weight is calculated for each subject that is equal to the inverse of the probability of receiving the treatment that was actually received. These weights are then incorporated into the analyses to minimize the effects of observed confounding. Previous research has found that these methods result in unbiased estimation when estimating the effect of treatment on survival outcomes. However, conventional methods of variance estimation were shown to result in biased estimates of standard error. In this study, we conducted an extensive set of Monte Carlo simulations to examine different methods of variance estimation when using a weighted Cox proportional hazards model to estimate the effect of treatment. We considered three variance estimation methods: (i) a naïve model-based variance estimator; (ii) a robust sandwich-type variance estimator; and (iii) a bootstrap variance estimator. We considered estimation of both the average treatment effect and the average treatment effect in the treated. We found that the use of a bootstrap estimator resulted in approximately correct estimates of standard errors and confidence intervals with the correct coverage rates. The other estimators resulted in biased estimates of standard errors and confidence intervals with incorrect coverage rates. Our simulations were informed by a case study examining the effect of statin prescribing on mortality. © 2016 The Authors. Statistics in Medicine published by John Wiley & Sons Ltd.Propensity score methods are used to reduce the effects of observed confounding when using observational data to estimate the effects of treatments or exposures. A popular method of using the propensity score is inverse probability of treatment weighting (IPTW). When using this method, a weight is calculated for each subject that is equal to the inverse of the probability of receiving the treatment that was actually received. These weights are then incorporated into the analyses to minimize the effects of observed confounding. Previous research has found that these methods result in unbiased estimation when estimating the effect of treatment on survival outcomes. However, conventional methods of variance estimation were shown to result in biased estimates of standard error. In this study, we conducted an extensive set of Monte Carlo simulations to examine different methods of variance estimation when using a weighted Cox proportional hazards model to estimate the effect of treatment. We considered three variance estimation methods: (i) a naïve model-based variance estimator; (ii) a robust sandwich-type variance estimator; and (iii) a bootstrap variance estimator. We considered estimation of both the average treatment effect and the average treatment effect in the treated. We found that the use of a bootstrap estimator resulted in approximately correct estimates of standard errors and confidence intervals with the correct coverage rates. The other estimators resulted in biased estimates of standard errors and confidence intervals with incorrect coverage rates. Our simulations were informed by a case study examining the effect of statin prescribing on mortality. © 2016 The Authors. Statistics in Medicine published by John Wiley & Sons Ltd. Propensity score methods are used to reduce the effects of observed confounding when using observational data to estimate the effects of treatments or exposures. A popular method of using the propensity score is inverse probability of treatment weighting (IPTW). When using this method, a weight is calculated for each subject that is equal to the inverse of the probability of receiving the treatment that was actually received. These weights are then incorporated into the analyses to minimize the effects of observed confounding. Previous research has found that these methods result in unbiased estimation when estimating the effect of treatment on survival outcomes. However, conventional methods of variance estimation were shown to result in biased estimates of standard error. In this study, we conducted an extensive set of Monte Carlo simulations to examine different methods of variance estimation when using a weighted Cox proportional hazards model to estimate the effect of treatment. We considered three variance estimation methods: (i) a naïve model‐based variance estimator; (ii) a robust sandwich‐type variance estimator; and (iii) a bootstrap variance estimator. We considered estimation of both the average treatment effect and the average treatment effect in the treated. We found that the use of a bootstrap estimator resulted in approximately correct estimates of standard errors and confidence intervals with the correct coverage rates. The other estimators resulted in biased estimates of standard errors and confidence intervals with incorrect coverage rates. Our simulations were informed by a case study examining the effect of statin prescribing on mortality. © 2016 The Authors. Statistics in Medicine published by John Wiley & Sons Ltd. |
Author | Austin, Peter C. |
AuthorAffiliation | 1 Institute for Clinical Evaluative Sciences Toronto Ontario Canada 3 Schulich Heart Research Program Sunnybrook Research Institute Toronto Canada 2 Institute of Health Management, Policy and Evaluation University of Toronto Toronto Ontario Canada |
AuthorAffiliation_xml | – name: 1 Institute for Clinical Evaluative Sciences Toronto Ontario Canada – name: 3 Schulich Heart Research Program Sunnybrook Research Institute Toronto Canada – name: 2 Institute of Health Management, Policy and Evaluation University of Toronto Toronto Ontario Canada |
Author_xml | – sequence: 1 givenname: Peter C. surname: Austin fullname: Austin, Peter C. email: peter.austin@ices.on.ca, Correspondence to: Peter Austin, Institute for Clinical Evaluative Sciences, G106, 2075 Bayview Avenue, Toronto, Ontario M4N 3M5, Canada., peter.austin@ices.on.ca organization: Institute for Clinical Evaluative Sciences, Toronto, Ontario, Canada |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27549016$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kVFv0zAUhS20iXUDiV-ALPEyHlJsx46dF6Spgq5SGYgNxpvlOE7rkdjFdlr670m3UdgET_fB3z33HJ9jcOC8MwC8wGiMESJvou3GHAn6BIwwKnmGCBMHYIQI51nBMTsCxzHeIIQxI_wpOCKc0RLhYgQWX1WwymkDTUy2U8l6BzdL42AfrVtA69YmRANXwVeqsq1NW-gbmIJRqTMuwY2xi2XaoaezT1fXr-HGpiWMfVjbtWqhcqrdRhufgcNGtdE8v58n4Mv7d1eT82z-cTqbnM0zTXlBM93QmglKBBOiyIVWmOWVFobkDUJlo1hJiBG4EUg3eal0TUUpOKuQEKSqa52fgLd3uqu-6kytB4tBtXIVhmxhK72y8uGLs0u58GvJMOOciUHg9F4g-B_98Cmys1GbtlXO-D5KLCgTmGKeD-irR-iN78MQeEcxxCkqaTFQL_92tLfyu4M_F3XwMQbT7BGM5K5eOdQrd_UO6PgRqm267WzIYtt_LWR3Cxvbmu1_heXl7MND3sZkfu55Fb7LguecyeuLqZx8-4wvzueXcpr_AuDrxko |
CODEN | SMEDDA |
CitedBy_id | crossref_primary_10_1007_s00277_019_03860_2 crossref_primary_10_1016_j_wdp_2021_100341 crossref_primary_10_3390_cancers14061513 crossref_primary_10_1093_rheumatology_keac158 crossref_primary_10_1515_em_2019_0024 crossref_primary_10_1093_cid_ciab121 crossref_primary_10_1002_phar_2946 crossref_primary_10_1002_sim_9706 crossref_primary_10_1161_JAHA_123_030311 crossref_primary_10_1080_03007995_2021_1932448 crossref_primary_10_1136_bmjmed_2023_000743 crossref_primary_10_1016_j_rec_2022_11_004 crossref_primary_10_1001_jamainternmed_2024_7381 crossref_primary_10_1016_j_jad_2022_12_066 crossref_primary_10_1038_s41598_021_02701_5 crossref_primary_10_1213_ANE_0000000000002920 crossref_primary_10_1001_jamanetworkopen_2024_56950 crossref_primary_10_1093_aje_kwaa190 crossref_primary_10_1212_WNL_0000000000207664 crossref_primary_10_2139_ssrn_3214231 crossref_primary_10_1038_s41598_024_71057_3 crossref_primary_10_3390_cancers15215158 crossref_primary_10_3349_ymj_2024_0166 crossref_primary_10_1542_peds_2020_049750 crossref_primary_10_1016_j_ejso_2024_108603 crossref_primary_10_1186_s12872_022_02565_1 crossref_primary_10_1016_j_beha_2023_101473 crossref_primary_10_1016_j_clml_2022_05_007 crossref_primary_10_1200_CCI_20_00149 crossref_primary_10_1002_cncr_31705 crossref_primary_10_1200_JCO_23_01959 crossref_primary_10_1016_j_cmi_2022_03_018 crossref_primary_10_1002_sim_8502 crossref_primary_10_1002_sim_8866 crossref_primary_10_17998_jlc_2023_12_25 crossref_primary_10_1002_sim_9952 crossref_primary_10_1002_ijc_33333 crossref_primary_10_1016_j_jvs_2020_08_134 crossref_primary_10_1186_s12874_019_0856_z crossref_primary_10_1016_j_esmoop_2024_103474 crossref_primary_10_1038_s43856_022_00155_y crossref_primary_10_1093_ckj_sfad252 crossref_primary_10_1080_19466315_2023_2190931 crossref_primary_10_1136_openhrt_2023_002581 crossref_primary_10_2139_ssrn_4503725 crossref_primary_10_1016_S2352_4642_25_00029_X crossref_primary_10_1002_sim_8080 crossref_primary_10_1016_j_annepidem_2021_04_011 crossref_primary_10_1016_j_sftr_2023_100142 crossref_primary_10_1080_00949655_2017_1406937 crossref_primary_10_1111_dme_13835 crossref_primary_10_1016_j_ophtha_2021_04_017 crossref_primary_10_1002_cpt_1807 crossref_primary_10_1093_jbmr_zjae116 crossref_primary_10_1016_j_amjcard_2023_08_162 crossref_primary_10_1177_09622802211065158 crossref_primary_10_1177_09622802221102625 crossref_primary_10_1053_j_ajkd_2021_09_024 crossref_primary_10_1371_journal_pone_0227256 crossref_primary_10_1200_JCO_19_01758 crossref_primary_10_1038_s41440_025_02182_3 crossref_primary_10_23736_S2724_6051_20_03785_6 crossref_primary_10_1002_hec_4562 crossref_primary_10_1002_sim_9286 crossref_primary_10_1245_s10434_022_12190_z crossref_primary_10_1016_j_arth_2023_05_092 crossref_primary_10_1016_j_jacasi_2021_08_010 crossref_primary_10_1017_S0047279419000928 crossref_primary_10_3961_jpmph_20_405 crossref_primary_10_1200_JCO_24_01125 crossref_primary_10_3389_frdem_2024_1362230 crossref_primary_10_1002_onco_13804 crossref_primary_10_1097_TP_0000000000002574 crossref_primary_10_1080_00365521_2022_2095668 crossref_primary_10_1007_s10461_024_04600_y crossref_primary_10_1371_journal_pone_0268284 crossref_primary_10_1093_jncics_pkac013 crossref_primary_10_1080_10428194_2023_2190432 crossref_primary_10_1186_s12877_023_04475_z crossref_primary_10_1515_raon_2017_0058 crossref_primary_10_1002_cncr_31927 crossref_primary_10_1016_j_jacc_2018_02_036 crossref_primary_10_1186_s41479_021_00093_8 crossref_primary_10_1080_19466315_2019_1700157 crossref_primary_10_1245_s10434_018_6512_8 crossref_primary_10_1245_s10434_020_08730_0 crossref_primary_10_1016_j_jhepr_2020_100152 crossref_primary_10_1186_s12872_021_01968_w crossref_primary_10_1245_s10434_022_12908_z crossref_primary_10_2215_CJN_05920421 crossref_primary_10_1002_sim_9171 crossref_primary_10_1186_s12885_023_11143_3 crossref_primary_10_1080_00273171_2023_2254541 crossref_primary_10_1093_biostatistics_kxaa020 crossref_primary_10_3892_etm_2022_11499 crossref_primary_10_1016_j_clgc_2022_07_001 crossref_primary_10_1016_j_resenv_2022_100084 crossref_primary_10_1097_MD_0000000000025120 crossref_primary_10_1177_19714009221108681 crossref_primary_10_1007_s00464_023_10147_1 crossref_primary_10_1177_20543581221129442 crossref_primary_10_1093_aje_kwab242 crossref_primary_10_1186_s12874_022_01799_z crossref_primary_10_1007_s00595_022_02578_5 crossref_primary_10_1093_ajcn_nqac256 crossref_primary_10_1136_bmj_2024_080035 crossref_primary_10_1007_s00268_022_06834_0 crossref_primary_10_1002_sim_9860 crossref_primary_10_1016_j_medcle_2023_10_013 crossref_primary_10_1002_ijc_34572 crossref_primary_10_1177_09622802231211009 crossref_primary_10_1016_j_jiac_2019_05_027 crossref_primary_10_1259_bjr_20200456 crossref_primary_10_3802_jgo_2023_34_e42 crossref_primary_10_1016_j_medcli_2023_10_008 crossref_primary_10_1016_j_parkreldis_2024_107150 crossref_primary_10_1111_1475_6773_14442 crossref_primary_10_2196_26997 crossref_primary_10_1007_s40264_022_01206_y crossref_primary_10_1080_10543406_2023_2244593 crossref_primary_10_1002_ccd_28842 crossref_primary_10_1016_j_eclinm_2021_100774 crossref_primary_10_1016_j_jacc_2025_01_013 crossref_primary_10_7717_peerj_14614 crossref_primary_10_1007_s40264_022_01221_z crossref_primary_10_1002_sim_9519 crossref_primary_10_1002_ajh_26954 crossref_primary_10_1002_bimj_202200099 crossref_primary_10_1016_j_vaccine_2021_05_056 crossref_primary_10_1016_j_annemergmed_2024_06_007 crossref_primary_10_1111_hel_12990 crossref_primary_10_1002_bimj_201700330 crossref_primary_10_1136_rmdopen_2020_001201 crossref_primary_10_1002_sim_9512 crossref_primary_10_1111_1471_0528_17623 crossref_primary_10_1080_19466315_2021_1994460 crossref_primary_10_2147_CMAR_S299975 crossref_primary_10_2337_dc20_0417 crossref_primary_10_1055_s_0040_1718728 crossref_primary_10_1186_s12974_019_1525_1 crossref_primary_10_1007_s00737_023_01291_7 crossref_primary_10_1016_j_jaad_2019_11_015 crossref_primary_10_1002_sim_10078 crossref_primary_10_1016_j_thromres_2017_11_023 crossref_primary_10_1016_j_jstrokecerebrovasdis_2020_105535 crossref_primary_10_1002_sim_10075 crossref_primary_10_1097_JS9_0000000000001884 crossref_primary_10_1111_add_15612 crossref_primary_10_2147_CIA_S475887 crossref_primary_10_1164_rccm_202408_1553OC crossref_primary_10_7326_M19_3671 crossref_primary_10_1016_j_ejca_2025_115382 crossref_primary_10_1016_j_amjcard_2018_08_027 crossref_primary_10_1016_j_rec_2023_05_001 crossref_primary_10_1186_s12889_021_12190_w crossref_primary_10_1016_j_xkme_2022_100431 crossref_primary_10_1016_j_lanwpc_2021_100252 crossref_primary_10_1002_jhbp_1314 crossref_primary_10_1177_13524585221085733 crossref_primary_10_1016_j_hrthm_2024_08_033 crossref_primary_10_1097_AOG_0000000000003287 crossref_primary_10_1155_2024_8889536 crossref_primary_10_1111_1759_7714_14009 crossref_primary_10_1016_j_jacc_2019_05_057 crossref_primary_10_3350_cmh_2023_0057 crossref_primary_10_1002_bimj_70010 crossref_primary_10_1001_jamapediatrics_2020_2539 crossref_primary_10_1111_aor_14740 crossref_primary_10_1016_j_esmoop_2021_100206 crossref_primary_10_1186_s12876_021_01742_4 crossref_primary_10_1016_j_ygyno_2020_03_028 crossref_primary_10_1002_phar_2517 crossref_primary_10_1016_j_diabres_2024_111804 crossref_primary_10_1016_j_urolonc_2024_01_027 crossref_primary_10_1007_s12529_022_10090_w crossref_primary_10_1093_alcalc_agae067 crossref_primary_10_1002_sim_9653 crossref_primary_10_1002_sim_8206 crossref_primary_10_1177_09622802241262527 crossref_primary_10_2147_CLEP_S354733 crossref_primary_10_1111_ajt_14651 crossref_primary_10_1111_rssb_12327 crossref_primary_10_1080_00031305_2023_2267598 crossref_primary_10_1186_s12874_023_02071_8 crossref_primary_10_1093_cid_ciae599 crossref_primary_10_4330_wjc_v15_i5_262 crossref_primary_10_1002_bimj_202000267 crossref_primary_10_3389_fpsyt_2022_883306 crossref_primary_10_1016_j_reprotox_2018_05_003 crossref_primary_10_1093_jbmr_zjae059 crossref_primary_10_1097_SLA_0000000000005352 crossref_primary_10_3389_fcvm_2024_1443258 crossref_primary_10_1177_20543581231221891 crossref_primary_10_1161_CIRCULATIONAHA_124_072855 crossref_primary_10_1038_s41598_023_36623_1 crossref_primary_10_1136_bmjph_2024_001289 crossref_primary_10_1371_journal_pone_0249225 crossref_primary_10_1186_s12874_023_01836_5 crossref_primary_10_1080_07853890_2020_1818118 crossref_primary_10_2214_AJR_17_19094 crossref_primary_10_1177_09622802231212274 crossref_primary_10_1016_j_conctc_2019_100333 crossref_primary_10_3310_HTNB6908 crossref_primary_10_1002_sim_70009 crossref_primary_10_1111_ene_15422 crossref_primary_10_3389_fmed_2021_797719 crossref_primary_10_1001_jama_2024_16380 crossref_primary_10_1038_s41598_021_87808_5 crossref_primary_10_1093_ehjcvp_pvaa005 crossref_primary_10_1002_phar_2530 crossref_primary_10_1016_j_tre_2024_103776 crossref_primary_10_1093_europace_euaa036 crossref_primary_10_1002_sim_9437 crossref_primary_10_1002_pst_2196 crossref_primary_10_1136_bmj_l1580 crossref_primary_10_1016_j_cmi_2019_02_027 crossref_primary_10_1016_j_jad_2024_01_122 crossref_primary_10_1002_sim_9551 crossref_primary_10_1097_LVT_0000000000000143 crossref_primary_10_1111_1759_7714_14476 crossref_primary_10_1016_S1470_2045_19_30485_1 crossref_primary_10_1186_s40560_020_00473_0 crossref_primary_10_1007_s10742_023_00317_y crossref_primary_10_1111_bcp_15371 crossref_primary_10_1093_epirev_mxac006 crossref_primary_10_1016_j_radonc_2024_110648 crossref_primary_10_1111_jgs_17049 crossref_primary_10_7326_M21_0717 crossref_primary_10_1016_j_amjcard_2020_08_042 crossref_primary_10_1177_0962280219869742 crossref_primary_10_1002_ehf2_13229 crossref_primary_10_1002_sim_7266 crossref_primary_10_1002_sim_8117 crossref_primary_10_1097_SLA_0000000000005568 crossref_primary_10_1200_CCI_20_00099 crossref_primary_10_1093_ckj_sfab229 crossref_primary_10_1080_10543406_2021_1918140 crossref_primary_10_1245_s10434_020_09391_9 crossref_primary_10_1371_journal_pone_0225478 crossref_primary_10_1186_s12876_022_02464_x crossref_primary_10_1038_s41598_020_57799_w crossref_primary_10_1111_1759_7714_13596 crossref_primary_10_1177_20543581211000227 crossref_primary_10_1016_j_jare_2024_05_025 crossref_primary_10_1002_sim_10164 crossref_primary_10_1002_art_42541 crossref_primary_10_1016_j_recesp_2022_11_005 crossref_primary_10_1111_bcp_14713 crossref_primary_10_1136_bmj_2021_067528 crossref_primary_10_1016_j_ejca_2020_04_033 crossref_primary_10_1177_09622802211047345 crossref_primary_10_2215_CJN_16171221 crossref_primary_10_1002_sim_7839 crossref_primary_10_1111_biom_13332 crossref_primary_10_1002_pst_2294 crossref_primary_10_1136_bmj_n311 crossref_primary_10_1007_s40801_024_00428_z crossref_primary_10_1093_rheumatology_keae140 crossref_primary_10_1007_s11255_022_03430_y crossref_primary_10_1002_sim_8121 crossref_primary_10_1177_09622802241247742 crossref_primary_10_1016_j_breast_2022_10_008 crossref_primary_10_1186_s12885_023_11767_5 crossref_primary_10_1097_JS9_0000000000001388 crossref_primary_10_5325_jafrideve_26_1_0001 crossref_primary_10_1016_j_gie_2023_09_027 crossref_primary_10_1007_s13311_021_01084_9 crossref_primary_10_1111_apt_15706 crossref_primary_10_1001_jamainternmed_2024_7452 crossref_primary_10_1093_ehjcvp_pvab029 crossref_primary_10_1186_s40842_017_0043_2 crossref_primary_10_1007_s12672_022_00594_y crossref_primary_10_1161_STROKEAHA_121_034969 crossref_primary_10_1200_CCI_21_00042 crossref_primary_10_1111_acer_15401 crossref_primary_10_1177_1756287218810313 crossref_primary_10_1186_s12879_021_05862_w crossref_primary_10_1007_s12561_022_09337_7 crossref_primary_10_1093_rheumatology_kead163 crossref_primary_10_1016_j_bja_2020_01_018 crossref_primary_10_1016_S2468_1253_17_30394_1 crossref_primary_10_1371_journal_pone_0243149 crossref_primary_10_3390_jcm7090274 crossref_primary_10_1177_25152459241236149 crossref_primary_10_1161_JAHA_121_022299 crossref_primary_10_1007_s11523_022_00910_0 crossref_primary_10_1007_s12325_022_02422_9 crossref_primary_10_1161_CIRCINTERVENTIONS_120_009157 crossref_primary_10_1016_j_jvs_2019_06_212 crossref_primary_10_1007_s00592_023_02147_3 crossref_primary_10_1016_j_annepidem_2022_07_011 crossref_primary_10_58877_japaj_v1i1_11 crossref_primary_10_9778_cmajo_20190171 crossref_primary_10_2215_CJN_08310520 crossref_primary_10_3389_fpubh_2022_981782 crossref_primary_10_1016_j_heliyon_2021_e06433 crossref_primary_10_2147_ITT_S437911 crossref_primary_10_7202_1077989ar crossref_primary_10_1016_j_scs_2023_105079 crossref_primary_10_1002_jrsm_1759 crossref_primary_10_1002_pst_2317 crossref_primary_10_1111_1759_7714_15404 crossref_primary_10_1093_ckj_sfab158 crossref_primary_10_1053_j_ajkd_2018_02_350 crossref_primary_10_1093_ejcts_ezac482 crossref_primary_10_1111_iju_15505 crossref_primary_10_1055_s_0044_1786819 crossref_primary_10_26442_00403660_2020_06_000669 crossref_primary_10_1002_sim_10110 crossref_primary_10_3390_covid3020015 crossref_primary_10_1038_s41467_023_38388_7 crossref_primary_10_1371_journal_pone_0245433 crossref_primary_10_1513_AnnalsATS_202207_615OC crossref_primary_10_1212_WNL_0000000000007314 crossref_primary_10_1111_bju_13930 crossref_primary_10_1002_sim_8715 crossref_primary_10_1002_sim_8837 crossref_primary_10_1016_j_chest_2021_11_007 crossref_primary_10_1080_00380237_2021_1921641 crossref_primary_10_1186_s12874_022_01670_1 crossref_primary_10_1016_j_healun_2022_10_016 crossref_primary_10_1038_s41598_024_69266_x crossref_primary_10_3390_v14091893 crossref_primary_10_3390_biology11060916 crossref_primary_10_1097_SLA_0000000000005887 crossref_primary_10_1136_bmjopen_2020_036961 crossref_primary_10_1007_s10258_020_00175_3 crossref_primary_10_1016_j_recesp_2023_05_005 crossref_primary_10_1016_j_ypmed_2021_106757 crossref_primary_10_1002_pds_5749 crossref_primary_10_1007_s10640_022_00754_2 crossref_primary_10_7326_M22_0318 crossref_primary_10_1093_geront_gnaa063 crossref_primary_10_1177_0962280218799540 crossref_primary_10_1002_cpt_2424 crossref_primary_10_1513_AnnalsATS_202201_080RL crossref_primary_10_1002_bjs5_50174 crossref_primary_10_1038_s41467_023_41210_z crossref_primary_10_1186_s40560_019_0377_1 crossref_primary_10_1016_j_jacc_2023_04_021 crossref_primary_10_1016_j_jval_2023_11_011 crossref_primary_10_1186_s13054_022_04016_x crossref_primary_10_1371_journal_pone_0289316 crossref_primary_10_1016_j_breast_2023_01_007 |
Cites_doi | 10.1002/sim.5991 10.1016/j.jclinepi.2009.06.002 10.1097/00001648-200009000-00012 10.1016/j.csda.2013.10.018 10.1093/biomet/70.1.41 10.1198/000313004X5824 10.1001/jama.2009.1731 10.1037/1082-989X.9.4.403 10.1002/sim.5984 10.1007/978-1-4899-4541-9 10.1080/00273171.2011.540480 10.1016/j.cmpb.2003.10.004 10.1002/sim.2618 10.1002/sim.2328 10.1111/j.1467-9531.2008.00204.x 10.18637/jss.v043.i13 10.1002/pst.537 10.1002/pds.1555 10.1002/sim.1903 10.1093/aje/kwn164 10.1002/sim.6607 10.2202/1557‐4679.1146 10.1002/sim.2580 10.1002/sim.3782 10.1002/sim.6276 10.1080/01621459.1989.10478874 10.1002/sim.5705 10.1002/pds.969 10.1002/sim.4200 10.1002/sim.2059 10.1002/sim.3150 10.1080/00273171.2011.568786 10.1111/j.1524-4733.2009.00671.x 10.3982/ECTA6474 |
ContentType | Journal Article |
Copyright | 2016 The Authors. published by John Wiley & Sons Ltd. 2016 The Authors. Statistics in Medicine published by John Wiley & Sons Ltd. Copyright Wiley Subscription Services, Inc. Dec 30, 2016 |
Copyright_xml | – notice: 2016 The Authors. published by John Wiley & Sons Ltd. – notice: 2016 The Authors. Statistics in Medicine published by John Wiley & Sons Ltd. – notice: Copyright Wiley Subscription Services, Inc. Dec 30, 2016 |
DBID | BSCLL 24P AAYXX CITATION CGR CUY CVF ECM EIF NPM K9. 7X8 5PM |
DOI | 10.1002/sim.7084 |
DatabaseName | Istex Wiley Online Library Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitleList | ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Statistics Public Health |
DocumentTitleAlternate | Variance estimation for IPTW with survival outcomes |
EISSN | 1097-0258 |
EndPage | 5655 |
ExternalDocumentID | PMC5157758 4283539731 27549016 10_1002_sim_7084 SIM7084 ark_67375_WNG_CXR1NHLS_G |
Genre | article Journal Article Feature |
GrantInformation_xml | – fundername: Ontario Ministry of Health and Long‐Term Care (MOHLTC) – fundername: Canadian Institutes of Health Research (CIHR) funderid: MOP 86508 – fundername: CIHR grantid: MOP 86508 – fundername: Canadian Institutes of Health Research (CIHR) grantid: MOP 86508 |
GroupedDBID | --- .3N .GA 05W 0R~ 10A 123 1L6 1OB 1OC 1ZS 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5RE 5VS 66C 6PF 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAWTL AAXRX AAZKR ABCQN ABCUV ABIJN ABJNI ABOCM ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBD EBS EJD EMOBN F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K ROL RWI RX1 RYL SUPJJ SV3 TN5 UB1 V2E W8V W99 WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WUP WWH WXSBR WYISQ XBAML XG1 XV2 ZZTAW ~IA ~WT 24P AAHQN AAMNL AAYCA ACYXJ AFWVQ ALVPJ AAYXX AEYWJ AGHNM AGQPQ AGYGG AMVHM CITATION CGR CUY CVF ECM EIF NPM AAMMB AEFGJ AGXDD AIDQK AIDYY K9. 7X8 5PM |
ID | FETCH-LOGICAL-c4764-cf4d58428588638ca153bc8e23f009fa5922e81f80cf39acd489875b0882bddc3 |
IEDL.DBID | DR2 |
ISSN | 0277-6715 1097-0258 |
IngestDate | Thu Aug 21 14:11:09 EDT 2025 Fri Jul 11 01:48:11 EDT 2025 Sun Jul 13 02:58:20 EDT 2025 Thu Apr 03 07:09:06 EDT 2025 Tue Jul 01 03:28:10 EDT 2025 Thu Apr 24 22:55:34 EDT 2025 Wed Jan 22 16:46:41 EST 2025 Wed Oct 30 09:52:01 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 30 |
Keywords | Monte Carlo simulations survival analysis variance estimation inverse probability of treatment weighting (IPTW) observational study propensity score |
Language | English |
License | Attribution-NonCommercial-NoDerivs http://doi.wiley.com/10.1002/tdm_license_1.1 http://creativecommons.org/licenses/by-nc-nd/4.0 2016 The Authors. Statistics in Medicine published by John Wiley & Sons Ltd. This is an open access article under the terms of the Creative Commons Attribution‐NonCommercial‐NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4764-cf4d58428588638ca153bc8e23f009fa5922e81f80cf39acd489875b0882bddc3 |
Notes | Ontario Ministry of Health and Long-Term Care (MOHLTC) ArticleID:SIM7084 istex:8B162026D4D733DF4CB00674CA026E3A4A7ECADF Canadian Institutes of Health Research (CIHR) - No. MOP 86508 ark:/67375/WNG-CXR1NHLS-G SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsim.7084 |
PMID | 27549016 |
PQID | 1850740946 |
PQPubID | 48361 |
PageCount | 14 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5157758 proquest_miscellaneous_1845814173 proquest_journals_1850740946 pubmed_primary_27549016 crossref_primary_10_1002_sim_7084 crossref_citationtrail_10_1002_sim_7084 wiley_primary_10_1002_sim_7084_SIM7084 istex_primary_ark_67375_WNG_CXR1NHLS_G |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 30 December 2016 |
PublicationDateYYYYMMDD | 2016-12-30 |
PublicationDate_xml | – month: 12 year: 2016 text: 30 December 2016 day: 30 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: New York – name: Hoboken |
PublicationTitle | Statistics in medicine |
PublicationTitleAlternate | Statist. Med |
PublicationYear | 2016 |
Publisher | Blackwell Publishing Ltd Wiley Subscription Services, Inc John Wiley and Sons Inc |
Publisher_xml | – name: Blackwell Publishing Ltd – name: Wiley Subscription Services, Inc – name: John Wiley and Sons Inc |
References | Lin DY, Wei LJ. The robust inference for the proportional hazards model. Journal of the American Statistical Association 1989; 84(408):1074-1078. Austin PC, Type I, Rates E. Coverage of confidence intervals, and variance estimation in propensity-score matched analyses. International Journal of Biostatistics 2009; 5(1): Article 13. DOI: 10.2202/1557-4679.1146. Franklin JM, Schneeweiss S, Polinski JM, Rassen JA. Plasmode simulation for the evaluation of pharmacoepidemiologic methods in complex healthcare databases. Computational Statistics & Data Analysis 2014; 72:219-226. Williamson EJ, Forbes A, White IR. Variance reduction in randomised trials by inverse probability weighting using the propensity score. Statistics in Medicine 2014; 33(5):721-737. Austin PC, Manca A, Zwarenstein M, Juurlink DN, Stanbrook MB. A substantial and confusing variation exists in handling of baseline covariates in randomized controlled trials: a review of trials published in leading medical journals. Journal of Clinical Epidemiology 2010; 63(2):142-153. Austin PC, Mamdani MM. A comparison of propensity score methods: a case-study estimating the effectiveness of post-AMI statin use. Statistics in Medicine 2006; 25(12):2084-2106. Abadie A, Imbens GW. Notes and comments on the failure of the bootstrap for matching estimators. Econometrica 2008; 76(6):1537-1557. Morgan SL, Todd JL. A diagnostic routine for the detection of consequential heterogeneity of causal effects. Sociological Methodology 2008; 38:231-281. Hernan MA, Brumback B, Robins JM. Marginal structural models to estimate the causal effect of zidovudine on the survival of HIV-positive men. Epidemiology 2000; 11(5):561-570. Bender R, Augustin T, Blettner M. Generating survival times to simulate Cox proportional hazards models. Statistics in Medicine 2005; 24(11):1713-1723. Austin PC, Grootendorst P, Normand SL, Anderson GM. Conditioning on the propensity score can result in biased estimation of common measures of treatment effect: a Monte Carlo study. Statistics in Medicine 2007; 26(4):754-768. Austin PC, Stuart EA. Moving towards best practice when using inverse probability of treatment weighting (IPTW) using the propensity score to estimate causal treatment effects in observational studies. Statistics in Medicine 2015; 34(28):3661-3679. Austin PC. A critical appraisal of propensity-score matching in the medical literature between 1996 and 2003. Statistics in Medicine 2008; 27(12):2037-2049. Weitzen S, Lapane KL, Toledano AY, Hume AL, Mor V. Principles for modeling propensity scores in medical research: a systematic literature review. Pharmacoepidemiology and Drug Safety 2004; 13(12):841-853. Lee BK, Lessler J, Stuart EA. Improving propensity score weighting using machine learning. Statistics in Medicine 2010; 29(3):337-346. Tu JV, Donovan LR, Lee DS, Wang JT, Austin PC, Alter DA, Ko DT. Effectiveness of public report cards for improving the quality of cardiac care: the EFFECT study: a randomized trial. Journal of the American Medical Association 2009; 302(21):2330-2337. Austin PC. An introduction to propensity-score methods for reducing the effects of confounding in observational studies. Multivariate Behavioral Research 2011; 46:399-424. Setoguchi S, Schneeweiss S, Brookhart MA, Glynn RJ, Cook EF. Evaluating uses of data mining techniques in propensity score estimation: a simulation study. Pharmacoepidemiolgy and Drug Safety 2008; 17(6):546-555. Rosenbaum PR, Rubin DB. The central role of the propensity score in observational studies for causal effects. Biometrika 1983; 70:41-55. Lunceford JK, Davidian M. Stratification and weighting via the propensity score in estimation of causal treatment effects: a comparative study. Statistics in Medicine 2004; 23(19):2937-2960. Gayat E, Resche-Rigon M, Mary JY, Porcher R. Propensity score applied to survival data analysis through proportional hazards models: a Monte Carlo study. Pharmaceutical Statistics 2012; 11(3):222-229. Austin PC, Grootendorst P, Anderson GM. A comparison of the ability of different propensity score models to balance measured variables between treated and untreated subjects: a Monte Carlo study. Statistics in Medicine 2007; 26(4):734-753. Austin PC, Small DS. The use of bootstrapping when using propensity-score matching without replacement: a simulation study. Statisics in Medicine 2014; 33(24):4306-4319. Joffe MM, Ten Have TR, Feldman HI, Kimmel SE. Model selection, confounder control, and marginal structural models: review and new applications. The American Statistician 2004; 58:272-279. Austin PC. The use of propensity score methods with survival or time-to-event outcomes: reporting measures of effect similar to those used in randomized experiments. Stastisics in Medicine 2014; 33(7):1242-1258. Cole SR, Hernan MA. Adjusted survival curves with inverse probability weights. Computer Methods and Programs in Biomedicine 2004; 75:45-49. Xu S, Ross C, Raebel MA, Shetterly S, Blanchette C, Smith D. Use of stabilized inverse propensity scores as weights to directly estimate relative risk and its confidence intervals. Value in Health 2010; 13(2):273-277. Austin PC. The performance of different propensity score methods for estimating marginal hazard ratios. Stastisics in Medicine 2013; 32(16):2837-2849. McCaffrey DF, Ridgeway G, Morral AR. Propensity score estimation with boosted regression for evaluating causal effects in observational studies. Psychological Methods 2004; 9(4):403-425. Cole SR, Hernan MA. Constructing inverse probability weights for marginal structural models. American Journal of Epidemiology 2008; 168(6):656-664. Austin PC. Comparing paired vs non-paired statistical methods of analyses when making inferences about absolute risk reductions in propensity-score matched samples. Statistics in Medicine 2011; 30(11):1292-1301. Austin PC. A tutorial and case study in propensity score analysis: an application to estimating the effect of in-hospital smoking cessation counseling on mortality. Multivariate Behavioral Research 2011; 46:119-151. van der Wal WM, Geskus RB. ipw: an R package for inverse probability weighting. Journal of Statistical Software 2011; 43(13). https://www.jstatsoft.org/article/view/v043i13. Efron B, Tibshirani RJ. An Introduction to the Bootstrap. Chapman & Hall: New York, NY, 1993. 1989; 84 2015; 34 2010; 13 2004; 23 2008; 38 2008; 17 2004; 9 2011; 30 2008; 76 1993 1983; 70 2008; 168 2012; 11 2010; 63 2005; 24 2004; 75 2013; 32 2010; 29 2004; 58 2000; 11 2008; 27 2006; 25 2004; 13 2011; 43 2011; 46 2009; 5 2014; 72 2014; 33 2009; 302 2007; 26 e_1_2_9_30_1 e_1_2_9_31_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_10_1 e_1_2_9_35_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_12_1 e_1_2_9_33_1 e_1_2_9_15_1 e_1_2_9_14_1 e_1_2_9_17_1 e_1_2_9_16_1 e_1_2_9_19_1 e_1_2_9_18_1 e_1_2_9_20_1 e_1_2_9_22_1 e_1_2_9_21_1 e_1_2_9_24_1 e_1_2_9_23_1 e_1_2_9_8_1 e_1_2_9_7_1 e_1_2_9_6_1 e_1_2_9_5_1 e_1_2_9_4_1 e_1_2_9_3_1 e_1_2_9_2_1 e_1_2_9_9_1 e_1_2_9_26_1 e_1_2_9_25_1 e_1_2_9_28_1 e_1_2_9_27_1 e_1_2_9_29_1 |
References_xml | – reference: Cole SR, Hernan MA. Constructing inverse probability weights for marginal structural models. American Journal of Epidemiology 2008; 168(6):656-664. – reference: Austin PC. A critical appraisal of propensity-score matching in the medical literature between 1996 and 2003. Statistics in Medicine 2008; 27(12):2037-2049. – reference: Austin PC, Type I, Rates E. Coverage of confidence intervals, and variance estimation in propensity-score matched analyses. International Journal of Biostatistics 2009; 5(1): Article 13. DOI: 10.2202/1557-4679.1146. – reference: Hernan MA, Brumback B, Robins JM. Marginal structural models to estimate the causal effect of zidovudine on the survival of HIV-positive men. Epidemiology 2000; 11(5):561-570. – reference: Lunceford JK, Davidian M. Stratification and weighting via the propensity score in estimation of causal treatment effects: a comparative study. Statistics in Medicine 2004; 23(19):2937-2960. – reference: Setoguchi S, Schneeweiss S, Brookhart MA, Glynn RJ, Cook EF. Evaluating uses of data mining techniques in propensity score estimation: a simulation study. Pharmacoepidemiolgy and Drug Safety 2008; 17(6):546-555. – reference: Austin PC, Mamdani MM. A comparison of propensity score methods: a case-study estimating the effectiveness of post-AMI statin use. Statistics in Medicine 2006; 25(12):2084-2106. – reference: Morgan SL, Todd JL. A diagnostic routine for the detection of consequential heterogeneity of causal effects. Sociological Methodology 2008; 38:231-281. – reference: Abadie A, Imbens GW. Notes and comments on the failure of the bootstrap for matching estimators. Econometrica 2008; 76(6):1537-1557. – reference: Austin PC. A tutorial and case study in propensity score analysis: an application to estimating the effect of in-hospital smoking cessation counseling on mortality. Multivariate Behavioral Research 2011; 46:119-151. – reference: Austin PC, Grootendorst P, Anderson GM. A comparison of the ability of different propensity score models to balance measured variables between treated and untreated subjects: a Monte Carlo study. Statistics in Medicine 2007; 26(4):734-753. – reference: Cole SR, Hernan MA. Adjusted survival curves with inverse probability weights. Computer Methods and Programs in Biomedicine 2004; 75:45-49. – reference: Austin PC. The use of propensity score methods with survival or time-to-event outcomes: reporting measures of effect similar to those used in randomized experiments. Stastisics in Medicine 2014; 33(7):1242-1258. – reference: Efron B, Tibshirani RJ. An Introduction to the Bootstrap. Chapman & Hall: New York, NY, 1993. – reference: Joffe MM, Ten Have TR, Feldman HI, Kimmel SE. Model selection, confounder control, and marginal structural models: review and new applications. The American Statistician 2004; 58:272-279. – reference: Austin PC. The performance of different propensity score methods for estimating marginal hazard ratios. Stastisics in Medicine 2013; 32(16):2837-2849. – reference: Bender R, Augustin T, Blettner M. Generating survival times to simulate Cox proportional hazards models. Statistics in Medicine 2005; 24(11):1713-1723. – reference: Austin PC, Manca A, Zwarenstein M, Juurlink DN, Stanbrook MB. A substantial and confusing variation exists in handling of baseline covariates in randomized controlled trials: a review of trials published in leading medical journals. Journal of Clinical Epidemiology 2010; 63(2):142-153. – reference: van der Wal WM, Geskus RB. ipw: an R package for inverse probability weighting. Journal of Statistical Software 2011; 43(13). https://www.jstatsoft.org/article/view/v043i13. – reference: Austin PC, Grootendorst P, Normand SL, Anderson GM. Conditioning on the propensity score can result in biased estimation of common measures of treatment effect: a Monte Carlo study. Statistics in Medicine 2007; 26(4):754-768. – reference: McCaffrey DF, Ridgeway G, Morral AR. Propensity score estimation with boosted regression for evaluating causal effects in observational studies. Psychological Methods 2004; 9(4):403-425. – reference: Austin PC, Small DS. The use of bootstrapping when using propensity-score matching without replacement: a simulation study. Statisics in Medicine 2014; 33(24):4306-4319. – reference: Austin PC. An introduction to propensity-score methods for reducing the effects of confounding in observational studies. Multivariate Behavioral Research 2011; 46:399-424. – reference: Gayat E, Resche-Rigon M, Mary JY, Porcher R. Propensity score applied to survival data analysis through proportional hazards models: a Monte Carlo study. Pharmaceutical Statistics 2012; 11(3):222-229. – reference: Tu JV, Donovan LR, Lee DS, Wang JT, Austin PC, Alter DA, Ko DT. Effectiveness of public report cards for improving the quality of cardiac care: the EFFECT study: a randomized trial. Journal of the American Medical Association 2009; 302(21):2330-2337. – reference: Weitzen S, Lapane KL, Toledano AY, Hume AL, Mor V. Principles for modeling propensity scores in medical research: a systematic literature review. Pharmacoepidemiology and Drug Safety 2004; 13(12):841-853. – reference: Rosenbaum PR, Rubin DB. The central role of the propensity score in observational studies for causal effects. Biometrika 1983; 70:41-55. – reference: Lee BK, Lessler J, Stuart EA. Improving propensity score weighting using machine learning. Statistics in Medicine 2010; 29(3):337-346. – reference: Austin PC, Stuart EA. Moving towards best practice when using inverse probability of treatment weighting (IPTW) using the propensity score to estimate causal treatment effects in observational studies. Statistics in Medicine 2015; 34(28):3661-3679. – reference: Lin DY, Wei LJ. The robust inference for the proportional hazards model. Journal of the American Statistical Association 1989; 84(408):1074-1078. – reference: Williamson EJ, Forbes A, White IR. Variance reduction in randomised trials by inverse probability weighting using the propensity score. Statistics in Medicine 2014; 33(5):721-737. – reference: Franklin JM, Schneeweiss S, Polinski JM, Rassen JA. Plasmode simulation for the evaluation of pharmacoepidemiologic methods in complex healthcare databases. Computational Statistics & Data Analysis 2014; 72:219-226. – reference: Austin PC. Comparing paired vs non-paired statistical methods of analyses when making inferences about absolute risk reductions in propensity-score matched samples. Statistics in Medicine 2011; 30(11):1292-1301. – reference: Xu S, Ross C, Raebel MA, Shetterly S, Blanchette C, Smith D. Use of stabilized inverse propensity scores as weights to directly estimate relative risk and its confidence intervals. Value in Health 2010; 13(2):273-277. – volume: 43 issue: 13 year: 2011 article-title: ipw: an R package for inverse probability weighting publication-title: Journal of Statistical Software – volume: 33 start-page: 1242 issue: 7 year: 2014 end-page: 1258 article-title: The use of propensity score methods with survival or time‐to‐event outcomes: reporting measures of effect similar to those used in randomized experiments publication-title: Stastisics in Medicine – volume: 75 start-page: 45 year: 2004 end-page: 49 article-title: Adjusted survival curves with inverse probability weights publication-title: Computer Methods and Programs in Biomedicine – volume: 24 start-page: 1713 issue: 11 year: 2005 end-page: 1723 article-title: Generating survival times to simulate Cox proportional hazards models publication-title: Statistics in Medicine – volume: 9 start-page: 403 issue: 4 year: 2004 end-page: 425 article-title: Propensity score estimation with boosted regression for evaluating causal effects in observational studies publication-title: Psychological Methods – volume: 29 start-page: 337 issue: 3 year: 2010 end-page: 346 article-title: Improving propensity score weighting using machine learning publication-title: Statistics in Medicine – volume: 76 start-page: 1537 issue: 6 year: 2008 end-page: 1557 article-title: Notes and comments on the failure of the bootstrap for matching estimators publication-title: Econometrica – volume: 46 start-page: 119 year: 2011 end-page: 151 article-title: A tutorial and case study in propensity score analysis: an application to estimating the effect of in‐hospital smoking cessation counseling on mortality publication-title: Multivariate Behavioral Research – volume: 168 start-page: 656 issue: 6 year: 2008 end-page: 664 article-title: Constructing inverse probability weights for marginal structural models publication-title: American Journal of Epidemiology – volume: 33 start-page: 721 issue: 5 year: 2014 end-page: 737 article-title: Variance reduction in randomised trials by inverse probability weighting using the propensity score publication-title: Statistics in Medicine – volume: 38 start-page: 231 year: 2008 end-page: 281 article-title: A diagnostic routine for the detection of consequential heterogeneity of causal effects publication-title: Sociological Methodology – volume: 302 start-page: 2330 issue: 21 year: 2009 end-page: 2337 article-title: Effectiveness of public report cards for improving the quality of cardiac care: the EFFECT study: a randomized trial publication-title: Journal of the American Medical Association – volume: 63 start-page: 142 issue: 2 year: 2010 end-page: 153 article-title: A substantial and confusing variation exists in handling of baseline covariates in randomized controlled trials: a review of trials published in leading medical journals publication-title: Journal of Clinical Epidemiology – volume: 26 start-page: 754 issue: 4 year: 2007 end-page: 768 article-title: Conditioning on the propensity score can result in biased estimation of common measures of treatment effect: a Monte Carlo study publication-title: Statistics in Medicine – volume: 70 start-page: 41 year: 1983 end-page: 55 article-title: The central role of the propensity score in observational studies for causal effects publication-title: Biometrika – volume: 84 start-page: 1074 issue: 408 year: 1989 end-page: 1078 article-title: The robust inference for the proportional hazards model publication-title: Journal of the American Statistical Association – volume: 26 start-page: 734 issue: 4 year: 2007 end-page: 753 article-title: A comparison of the ability of different propensity score models to balance measured variables between treated and untreated subjects: a Monte Carlo study publication-title: Statistics in Medicine – volume: 11 start-page: 561 issue: 5 year: 2000 end-page: 570 article-title: Marginal structural models to estimate the causal effect of zidovudine on the survival of HIV‐positive men publication-title: Epidemiology – volume: 11 start-page: 222 issue: 3 year: 2012 end-page: 229 article-title: Propensity score applied to survival data analysis through proportional hazards models: a Monte Carlo study publication-title: Pharmaceutical Statistics – volume: 72 start-page: 219 year: 2014 end-page: 226 article-title: Plasmode simulation for the evaluation of pharmacoepidemiologic methods in complex healthcare databases publication-title: Computational Statistics & Data Analysis – volume: 32 start-page: 2837 issue: 16 year: 2013 end-page: 2849 article-title: The performance of different propensity score methods for estimating marginal hazard ratios publication-title: Stastisics in Medicine – volume: 5 issue: 1 year: 2009 article-title: Coverage of confidence intervals, and variance estimation in propensity‐score matched analyses publication-title: International Journal of Biostatistics – volume: 27 start-page: 2037 issue: 12 year: 2008 end-page: 2049 article-title: A critical appraisal of propensity‐score matching in the medical literature between 1996 and 2003 publication-title: Statistics in Medicine – volume: 34 start-page: 3661 issue: 28 year: 2015 end-page: 3679 article-title: Moving towards best practice when using inverse probability of treatment weighting (IPTW) using the propensity score to estimate causal treatment effects in observational studies publication-title: Statistics in Medicine – volume: 13 start-page: 273 issue: 2 year: 2010 end-page: 277 article-title: Use of stabilized inverse propensity scores as weights to directly estimate relative risk and its confidence intervals publication-title: Value in Health – volume: 17 start-page: 546 issue: 6 year: 2008 end-page: 555 article-title: Evaluating uses of data mining techniques in propensity score estimation: a simulation study publication-title: Pharmacoepidemiolgy and Drug Safety – volume: 13 start-page: 841 issue: 12 year: 2004 end-page: 853 article-title: Principles for modeling propensity scores in medical research: a systematic literature review publication-title: Pharmacoepidemiology and Drug Safety – volume: 33 start-page: 4306 issue: 24 year: 2014 end-page: 4319 article-title: The use of bootstrapping when using propensity‐score matching without replacement: a simulation study publication-title: Statisics in Medicine – volume: 23 start-page: 2937 issue: 19 year: 2004 end-page: 2960 article-title: Stratification and weighting via the propensity score in estimation of causal treatment effects: a comparative study publication-title: Statistics in Medicine – volume: 58 start-page: 272 year: 2004 end-page: 279 article-title: Model selection, confounder control, and marginal structural models: review and new applications publication-title: The American Statistician – volume: 46 start-page: 399 year: 2011 end-page: 424 article-title: An introduction to propensity‐score methods for reducing the effects of confounding in observational studies publication-title: Multivariate Behavioral Research – volume: 30 start-page: 1292 issue: 11 year: 2011 end-page: 1301 article-title: Comparing paired vs non‐paired statistical methods of analyses when making inferences about absolute risk reductions in propensity‐score matched samples publication-title: Statistics in Medicine – year: 1993 – volume: 25 start-page: 2084 issue: 12 year: 2006 end-page: 2106 article-title: A comparison of propensity score methods: a case‐study estimating the effectiveness of post‐AMI statin use publication-title: Statistics in Medicine – ident: e_1_2_9_34_1 doi: 10.1002/sim.5991 – ident: e_1_2_9_7_1 doi: 10.1016/j.jclinepi.2009.06.002 – ident: e_1_2_9_24_1 doi: 10.1097/00001648-200009000-00012 – ident: e_1_2_9_35_1 doi: 10.1016/j.csda.2013.10.018 – ident: e_1_2_9_2_1 doi: 10.1093/biomet/70.1.41 – ident: e_1_2_9_22_1 doi: 10.1198/000313004X5824 – ident: e_1_2_9_29_1 doi: 10.1001/jama.2009.1731 – ident: e_1_2_9_17_1 doi: 10.1037/1082-989X.9.4.403 – ident: e_1_2_9_27_1 doi: 10.1002/sim.5984 – ident: e_1_2_9_30_1 doi: 10.1007/978-1-4899-4541-9 – ident: e_1_2_9_3_1 doi: 10.1080/00273171.2011.540480 – ident: e_1_2_9_19_1 doi: 10.1016/j.cmpb.2003.10.004 – ident: e_1_2_9_32_1 doi: 10.1002/sim.2618 – ident: e_1_2_9_28_1 doi: 10.1002/sim.2328 – ident: e_1_2_9_21_1 doi: 10.1111/j.1467-9531.2008.00204.x – ident: e_1_2_9_25_1 doi: 10.18637/jss.v043.i13 – ident: e_1_2_9_8_1 doi: 10.1002/pst.537 – ident: e_1_2_9_16_1 doi: 10.1002/pds.1555 – ident: e_1_2_9_14_1 doi: 10.1002/sim.1903 – ident: e_1_2_9_20_1 doi: 10.1093/aje/kwn164 – ident: e_1_2_9_33_1 doi: 10.1002/sim.6607 – ident: e_1_2_9_11_1 doi: 10.2202/1557‐4679.1146 – ident: e_1_2_9_18_1 doi: 10.1002/sim.2580 – ident: e_1_2_9_15_1 doi: 10.1002/sim.3782 – ident: e_1_2_9_13_1 doi: 10.1002/sim.6276 – ident: e_1_2_9_23_1 doi: 10.1080/01621459.1989.10478874 – ident: e_1_2_9_9_1 doi: 10.1002/sim.5705 – ident: e_1_2_9_5_1 doi: 10.1002/pds.969 – ident: e_1_2_9_12_1 doi: 10.1002/sim.4200 – ident: e_1_2_9_31_1 doi: 10.1002/sim.2059 – ident: e_1_2_9_6_1 doi: 10.1002/sim.3150 – ident: e_1_2_9_4_1 doi: 10.1080/00273171.2011.568786 – ident: e_1_2_9_26_1 doi: 10.1111/j.1524-4733.2009.00671.x – ident: e_1_2_9_10_1 doi: 10.3982/ECTA6474 |
SSID | ssj0011527 |
Score | 2.643111 |
Snippet | Propensity score methods are used to reduce the effects of observed confounding when using observational data to estimate the effects of treatments or... |
SourceID | pubmedcentral proquest pubmed crossref wiley istex |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 5642 |
SubjectTerms | Confidence intervals Estimating techniques Humans inverse probability of treatment weighting (IPTW) Medical statistics Medical treatment Monte Carlo Method Monte Carlo simulation Monte Carlo simulations Mortality observational study Propensity Score Proportional Hazards Models Survival Analysis variance estimation |
Title | Variance estimation when using inverse probability of treatment weighting (IPTW) with survival analysis |
URI | https://api.istex.fr/ark:/67375/WNG-CXR1NHLS-G/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsim.7084 https://www.ncbi.nlm.nih.gov/pubmed/27549016 https://www.proquest.com/docview/1850740946 https://www.proquest.com/docview/1845814173 https://pubmed.ncbi.nlm.nih.gov/PMC5157758 |
Volume | 35 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zb9QwEB5BkVAlRGG5AqUyEuJ4yDaHcz1WFe0W0VXVg67UB8tX2lUhi7q7KvTXdyZOAgtFQjzlIRMldmbsb-zP3wC81tJQPRPlB7HJfI4TMMZcyH2bSmlSWUplapbvMB0c8Y-jZNSwKuksjNOH6BbcKDLq8ZoCXKrp-k_R0On4az8LcpICJaoW4aH9TjkqbKu10g5lmoVJqzsbROvtgwsz0R3q1O83wcw_2ZK_oth6GtpagZO2AY59ct6fz1RfX_2m7fh_LXwA9xt0yjacOz2EW7bqwd3dZv-9B_fcKh9zh5d6sExY1Uk9P4LTz5h3kxMxUu5wRyLZ5ZmtGJHrT9m4IgqIZVTDxqmD_2CTknVUd3ZZL9OS6budvcPj94wWidl0jqMZxgOTjX7KYzja-nC4OfCbOg6-5lnKfV1ygzgnypM8x3DXEkdZpXMbxSUivFImRRTZPCzzQJdxIbXheYFplCL0r4zR8RNYqiaVfQZMyQhBWskVTr4csZ1EtFPYpNCFsdokyoO37T8VuhE5p1obX4STZ44EdqqgTvXgVWf5zQl73GDzpnaLzkBenBMRLkvE8XBbbI72w-Hg04HY9mC19RvRjAFTgUgI8Rmmzym-q7uN0UtbMrKykznZ8CQPeZjFHjx1bta9LMowd0dE7kG24ICdASmDL96pxme1QjiC1AwTQfz-2r_-2kBxsLNL1-f_avgClhEx1pWb4mAVlmYXc_sSUdlMrcHtiO-t1VF4Dc7RNtw |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3rb9MwED-NTYJJiEd5BQYYCfH4kC4P5yU-oYmthbZCW8f6AclyHGerBilaWw3467mzk0BhSIhP-eCLHDt39u_O598BPFWyoHomueuFReJy3IDR5nzu6ljKIpalzAuT5TuKe4f87SSarMGr5i6M5YdoA25kGWa9JgOngPT2T9bQ-fRzN_FSfgk2qKC38af2W-4ov6nXSmeUceJHDfOsF2w3b67sRRs0rV8vApp_5kv-imPNRrR7HT42Q7D5J6fd5SLvqu-_sTv-5xhvwLUaoLLXVqNuwpquOnB5WB_Bd-CqDfQxe3-pA5sEVy3b8y04_oCuN-kRI_IOeyuSnZ_oilF-_TGbVpQFohmVsbEE4d_YrGRttjs7N5FaEn3Rfz8-eskoTszmS1zQ0CSYrClUbsPh7pvxTs-tSzm4iicxd1XJC4Q6QRqlKVq8krjQ5irVQVgiyCtllAWBTv0y9VQZZlIVPM3Qk8rJAciLQoV3YL2aVfoesFwGiNNKnuP-yxHeSQQ8mY4ylRVaFVHuwPPmpwpV85xTuY1PwjI0BwInVdCkOvCklfxiuT0ukHlm9KIVkGenlAuXROJotCd2Jvv-qDc4EHsObDWKI-plYC4QDCFEQw86xr7aZjRgOpWRlZ4tSYZHqc_9JHTgrtWztrMgQfcdQbkDyYoGtgJEDr7aUk1PDEk44tQEfUH8fqNgfx2gOOgP6Xn_XwUfw5XeeDgQg_7o3QPYRABpCjmF3hasL86W-iGCtEX-yBjjD7lkOiA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zb9QwEB5BK1WVEMdyNFDASIjjIdsczvWIWra70K6qHnQlHizHdtpVS7bq7qrAr2cmTgILRUI85cETOXZm7G_G428AXiqpqZ5J7nqhTlyOGzDanM9dE0upY1nIXFdZvsO4f8Q_jKJRnVVJd2EsP0QbcCPLqNZrMvALXWz8JA2djr90Ey_lN2GZx15KGr2131JH-U25VjqijBM_aohnvWCjeXNhK1qmWf16Hc78M13yVxhb7UO9O_C5GYFNPznrzmd5V33_jdzx_4Z4F27X8JS9s_p0D26YsgMru_UBfAdu2TAfs7eXOrBKYNVyPd-Hk0_oeJMWMaLusHci2dWpKRll15-wcUk5IIZRERtLD_6NTQrW5rqzqypOS6JvBnuHx28ZRYnZdI7LGRoEkzWBygM46r0_3Oy7dSEHV_Ek5q4quEagE6RRmqK9K4nLbK5SE4QFQrxCRlkQmNQvUk8VYSaV5mmGflRO8D_XWoUPYamclGYNWC4DRGkFz3H35QjuJMKdzESZyrRROsodeN38U6FqlnMqtnEuLD9zIHBSBU2qAy9ayQvL7HGNzKtKLVoBeXlGmXBJJI6H22JztO8P-zsHYtuB9UZvRL0ITAVCIQRo6D_H2FfbjOZLZzKyNJM5yfAo9bmfhA48smrWdhYk6LwjJHcgWVDAVoCowRdbyvFpRRGOKDVBTxC_v9Kvvw5QHAx26fn4XwWfw8reVk_sDIYfn8AqoseqilPorcPS7HJuniJCm-XPKlP8AQngONg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Variance+estimation+when+using+inverse+probability+of+treatment+weighting+%28IPTW%29+with+survival+analysis&rft.jtitle=Statistics+in+medicine&rft.au=Austin%2C+Peter+C.&rft.date=2016-12-30&rft.pub=John+Wiley+and+Sons+Inc&rft.issn=0277-6715&rft.eissn=1097-0258&rft.volume=35&rft.issue=30&rft.spage=5642&rft.epage=5655&rft_id=info:doi/10.1002%2Fsim.7084&rft_id=info%3Apmid%2F27549016&rft.externalDocID=PMC5157758 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0277-6715&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0277-6715&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0277-6715&client=summon |