Variance estimation when using inverse probability of treatment weighting (IPTW) with survival analysis

Propensity score methods are used to reduce the effects of observed confounding when using observational data to estimate the effects of treatments or exposures. A popular method of using the propensity score is inverse probability of treatment weighting (IPTW). When using this method, a weight is c...

Full description

Saved in:
Bibliographic Details
Published inStatistics in medicine Vol. 35; no. 30; pp. 5642 - 5655
Main Author Austin, Peter C.
Format Journal Article
LanguageEnglish
Published England Blackwell Publishing Ltd 30.12.2016
Wiley Subscription Services, Inc
John Wiley and Sons Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Propensity score methods are used to reduce the effects of observed confounding when using observational data to estimate the effects of treatments or exposures. A popular method of using the propensity score is inverse probability of treatment weighting (IPTW). When using this method, a weight is calculated for each subject that is equal to the inverse of the probability of receiving the treatment that was actually received. These weights are then incorporated into the analyses to minimize the effects of observed confounding. Previous research has found that these methods result in unbiased estimation when estimating the effect of treatment on survival outcomes. However, conventional methods of variance estimation were shown to result in biased estimates of standard error. In this study, we conducted an extensive set of Monte Carlo simulations to examine different methods of variance estimation when using a weighted Cox proportional hazards model to estimate the effect of treatment. We considered three variance estimation methods: (i) a naïve model‐based variance estimator; (ii) a robust sandwich‐type variance estimator; and (iii) a bootstrap variance estimator. We considered estimation of both the average treatment effect and the average treatment effect in the treated. We found that the use of a bootstrap estimator resulted in approximately correct estimates of standard errors and confidence intervals with the correct coverage rates. The other estimators resulted in biased estimates of standard errors and confidence intervals with incorrect coverage rates. Our simulations were informed by a case study examining the effect of statin prescribing on mortality. © 2016 The Authors. Statistics in Medicine published by John Wiley & Sons Ltd.
AbstractList Propensity score methods are used to reduce the effects of observed confounding when using observational data to estimate the effects of treatments or exposures. A popular method of using the propensity score is inverse probability of treatment weighting (IPTW). When using this method, a weight is calculated for each subject that is equal to the inverse of the probability of receiving the treatment that was actually received. These weights are then incorporated into the analyses to minimize the effects of observed confounding. Previous research has found that these methods result in unbiased estimation when estimating the effect of treatment on survival outcomes. However, conventional methods of variance estimation were shown to result in biased estimates of standard error. In this study, we conducted an extensive set of Monte Carlo simulations to examine different methods of variance estimation when using a weighted Cox proportional hazards model to estimate the effect of treatment. We considered three variance estimation methods: (i) a naive model-based variance estimator; (ii) a robust sandwich-type variance estimator; and (iii) a bootstrap variance estimator. We considered estimation of both the average treatment effect and the average treatment effect in the treated. We found that the use of a bootstrap estimator resulted in approximately correct estimates of standard errors and confidence intervals with the correct coverage rates. The other estimators resulted in biased estimates of standard errors and confidence intervals with incorrect coverage rates. Our simulations were informed by a case study examining the effect of statin prescribing on mortality.
Propensity score methods are used to reduce the effects of observed confounding when using observational data to estimate the effects of treatments or exposures. A popular method of using the propensity score is inverse probability of treatment weighting (IPTW). When using this method, a weight is calculated for each subject that is equal to the inverse of the probability of receiving the treatment that was actually received. These weights are then incorporated into the analyses to minimize the effects of observed confounding. Previous research has found that these methods result in unbiased estimation when estimating the effect of treatment on survival outcomes. However, conventional methods of variance estimation were shown to result in biased estimates of standard error. In this study, we conducted an extensive set of Monte Carlo simulations to examine different methods of variance estimation when using a weighted Cox proportional hazards model to estimate the effect of treatment. We considered three variance estimation methods: (i) a naïve model‐based variance estimator; (ii) a robust sandwich‐type variance estimator; and (iii) a bootstrap variance estimator. We considered estimation of both the average treatment effect and the average treatment effect in the treated. We found that the use of a bootstrap estimator resulted in approximately correct estimates of standard errors and confidence intervals with the correct coverage rates. The other estimators resulted in biased estimates of standard errors and confidence intervals with incorrect coverage rates. Our simulations were informed by a case study examining the effect of statin prescribing on mortality. © 2016 The Authors. Statistics in Medicine published by John Wiley & Sons Ltd.
Propensity score methods are used to reduce the effects of observed confounding when using observational data to estimate the effects of treatments or exposures. A popular method of using the propensity score is inverse probability of treatment weighting (IPTW). When using this method, a weight is calculated for each subject that is equal to the inverse of the probability of receiving the treatment that was actually received. These weights are then incorporated into the analyses to minimize the effects of observed confounding. Previous research has found that these methods result in unbiased estimation when estimating the effect of treatment on survival outcomes. However, conventional methods of variance estimation were shown to result in biased estimates of standard error. In this study, we conducted an extensive set of Monte Carlo simulations to examine different methods of variance estimation when using a weighted Cox proportional hazards model to estimate the effect of treatment. We considered three variance estimation methods: (i) a naïve model-based variance estimator; (ii) a robust sandwich-type variance estimator; and (iii) a bootstrap variance estimator. We considered estimation of both the average treatment effect and the average treatment effect in the treated. We found that the use of a bootstrap estimator resulted in approximately correct estimates of standard errors and confidence intervals with the correct coverage rates. The other estimators resulted in biased estimates of standard errors and confidence intervals with incorrect coverage rates. Our simulations were informed by a case study examining the effect of statin prescribing on mortality. © 2016 The Authors. Statistics in Medicine published by John Wiley & Sons Ltd.Propensity score methods are used to reduce the effects of observed confounding when using observational data to estimate the effects of treatments or exposures. A popular method of using the propensity score is inverse probability of treatment weighting (IPTW). When using this method, a weight is calculated for each subject that is equal to the inverse of the probability of receiving the treatment that was actually received. These weights are then incorporated into the analyses to minimize the effects of observed confounding. Previous research has found that these methods result in unbiased estimation when estimating the effect of treatment on survival outcomes. However, conventional methods of variance estimation were shown to result in biased estimates of standard error. In this study, we conducted an extensive set of Monte Carlo simulations to examine different methods of variance estimation when using a weighted Cox proportional hazards model to estimate the effect of treatment. We considered three variance estimation methods: (i) a naïve model-based variance estimator; (ii) a robust sandwich-type variance estimator; and (iii) a bootstrap variance estimator. We considered estimation of both the average treatment effect and the average treatment effect in the treated. We found that the use of a bootstrap estimator resulted in approximately correct estimates of standard errors and confidence intervals with the correct coverage rates. The other estimators resulted in biased estimates of standard errors and confidence intervals with incorrect coverage rates. Our simulations were informed by a case study examining the effect of statin prescribing on mortality. © 2016 The Authors. Statistics in Medicine published by John Wiley & Sons Ltd.
Propensity score methods are used to reduce the effects of observed confounding when using observational data to estimate the effects of treatments or exposures. A popular method of using the propensity score is inverse probability of treatment weighting (IPTW). When using this method, a weight is calculated for each subject that is equal to the inverse of the probability of receiving the treatment that was actually received. These weights are then incorporated into the analyses to minimize the effects of observed confounding. Previous research has found that these methods result in unbiased estimation when estimating the effect of treatment on survival outcomes. However, conventional methods of variance estimation were shown to result in biased estimates of standard error. In this study, we conducted an extensive set of Monte Carlo simulations to examine different methods of variance estimation when using a weighted Cox proportional hazards model to estimate the effect of treatment. We considered three variance estimation methods: (i) a naïve model‐based variance estimator; (ii) a robust sandwich‐type variance estimator; and (iii) a bootstrap variance estimator. We considered estimation of both the average treatment effect and the average treatment effect in the treated. We found that the use of a bootstrap estimator resulted in approximately correct estimates of standard errors and confidence intervals with the correct coverage rates. The other estimators resulted in biased estimates of standard errors and confidence intervals with incorrect coverage rates. Our simulations were informed by a case study examining the effect of statin prescribing on mortality. © 2016 The Authors. Statistics in Medicine published by John Wiley & Sons Ltd.
Author Austin, Peter C.
AuthorAffiliation 1 Institute for Clinical Evaluative Sciences Toronto Ontario Canada
3 Schulich Heart Research Program Sunnybrook Research Institute Toronto Canada
2 Institute of Health Management, Policy and Evaluation University of Toronto Toronto Ontario Canada
AuthorAffiliation_xml – name: 1 Institute for Clinical Evaluative Sciences Toronto Ontario Canada
– name: 3 Schulich Heart Research Program Sunnybrook Research Institute Toronto Canada
– name: 2 Institute of Health Management, Policy and Evaluation University of Toronto Toronto Ontario Canada
Author_xml – sequence: 1
  givenname: Peter C.
  surname: Austin
  fullname: Austin, Peter C.
  email: peter.austin@ices.on.ca, Correspondence to: Peter Austin, Institute for Clinical Evaluative Sciences, G106, 2075 Bayview Avenue, Toronto, Ontario M4N 3M5, Canada., peter.austin@ices.on.ca
  organization: Institute for Clinical Evaluative Sciences, Toronto, Ontario, Canada
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27549016$$D View this record in MEDLINE/PubMed
BookMark eNp1kVFv0zAUhS20iXUDiV-ALPEyHlJsx46dF6Spgq5SGYgNxpvlOE7rkdjFdlr670m3UdgET_fB3z33HJ9jcOC8MwC8wGiMESJvou3GHAn6BIwwKnmGCBMHYIQI51nBMTsCxzHeIIQxI_wpOCKc0RLhYgQWX1WwymkDTUy2U8l6BzdL42AfrVtA69YmRANXwVeqsq1NW-gbmIJRqTMuwY2xi2XaoaezT1fXr-HGpiWMfVjbtWqhcqrdRhufgcNGtdE8v58n4Mv7d1eT82z-cTqbnM0zTXlBM93QmglKBBOiyIVWmOWVFobkDUJlo1hJiBG4EUg3eal0TUUpOKuQEKSqa52fgLd3uqu-6kytB4tBtXIVhmxhK72y8uGLs0u58GvJMOOciUHg9F4g-B_98Cmys1GbtlXO-D5KLCgTmGKeD-irR-iN78MQeEcxxCkqaTFQL_92tLfyu4M_F3XwMQbT7BGM5K5eOdQrd_UO6PgRqm267WzIYtt_LWR3Cxvbmu1_heXl7MND3sZkfu55Fb7LguecyeuLqZx8-4wvzueXcpr_AuDrxko
CODEN SMEDDA
CitedBy_id crossref_primary_10_1007_s00277_019_03860_2
crossref_primary_10_1016_j_wdp_2021_100341
crossref_primary_10_3390_cancers14061513
crossref_primary_10_1093_rheumatology_keac158
crossref_primary_10_1515_em_2019_0024
crossref_primary_10_1093_cid_ciab121
crossref_primary_10_1002_phar_2946
crossref_primary_10_1002_sim_9706
crossref_primary_10_1161_JAHA_123_030311
crossref_primary_10_1080_03007995_2021_1932448
crossref_primary_10_1136_bmjmed_2023_000743
crossref_primary_10_1016_j_rec_2022_11_004
crossref_primary_10_1001_jamainternmed_2024_7381
crossref_primary_10_1016_j_jad_2022_12_066
crossref_primary_10_1038_s41598_021_02701_5
crossref_primary_10_1213_ANE_0000000000002920
crossref_primary_10_1001_jamanetworkopen_2024_56950
crossref_primary_10_1093_aje_kwaa190
crossref_primary_10_1212_WNL_0000000000207664
crossref_primary_10_2139_ssrn_3214231
crossref_primary_10_1038_s41598_024_71057_3
crossref_primary_10_3390_cancers15215158
crossref_primary_10_3349_ymj_2024_0166
crossref_primary_10_1542_peds_2020_049750
crossref_primary_10_1016_j_ejso_2024_108603
crossref_primary_10_1186_s12872_022_02565_1
crossref_primary_10_1016_j_beha_2023_101473
crossref_primary_10_1016_j_clml_2022_05_007
crossref_primary_10_1200_CCI_20_00149
crossref_primary_10_1002_cncr_31705
crossref_primary_10_1200_JCO_23_01959
crossref_primary_10_1016_j_cmi_2022_03_018
crossref_primary_10_1002_sim_8502
crossref_primary_10_1002_sim_8866
crossref_primary_10_17998_jlc_2023_12_25
crossref_primary_10_1002_sim_9952
crossref_primary_10_1002_ijc_33333
crossref_primary_10_1016_j_jvs_2020_08_134
crossref_primary_10_1186_s12874_019_0856_z
crossref_primary_10_1016_j_esmoop_2024_103474
crossref_primary_10_1038_s43856_022_00155_y
crossref_primary_10_1093_ckj_sfad252
crossref_primary_10_1080_19466315_2023_2190931
crossref_primary_10_1136_openhrt_2023_002581
crossref_primary_10_2139_ssrn_4503725
crossref_primary_10_1016_S2352_4642_25_00029_X
crossref_primary_10_1002_sim_8080
crossref_primary_10_1016_j_annepidem_2021_04_011
crossref_primary_10_1016_j_sftr_2023_100142
crossref_primary_10_1080_00949655_2017_1406937
crossref_primary_10_1111_dme_13835
crossref_primary_10_1016_j_ophtha_2021_04_017
crossref_primary_10_1002_cpt_1807
crossref_primary_10_1093_jbmr_zjae116
crossref_primary_10_1016_j_amjcard_2023_08_162
crossref_primary_10_1177_09622802211065158
crossref_primary_10_1177_09622802221102625
crossref_primary_10_1053_j_ajkd_2021_09_024
crossref_primary_10_1371_journal_pone_0227256
crossref_primary_10_1200_JCO_19_01758
crossref_primary_10_1038_s41440_025_02182_3
crossref_primary_10_23736_S2724_6051_20_03785_6
crossref_primary_10_1002_hec_4562
crossref_primary_10_1002_sim_9286
crossref_primary_10_1245_s10434_022_12190_z
crossref_primary_10_1016_j_arth_2023_05_092
crossref_primary_10_1016_j_jacasi_2021_08_010
crossref_primary_10_1017_S0047279419000928
crossref_primary_10_3961_jpmph_20_405
crossref_primary_10_1200_JCO_24_01125
crossref_primary_10_3389_frdem_2024_1362230
crossref_primary_10_1002_onco_13804
crossref_primary_10_1097_TP_0000000000002574
crossref_primary_10_1080_00365521_2022_2095668
crossref_primary_10_1007_s10461_024_04600_y
crossref_primary_10_1371_journal_pone_0268284
crossref_primary_10_1093_jncics_pkac013
crossref_primary_10_1080_10428194_2023_2190432
crossref_primary_10_1186_s12877_023_04475_z
crossref_primary_10_1515_raon_2017_0058
crossref_primary_10_1002_cncr_31927
crossref_primary_10_1016_j_jacc_2018_02_036
crossref_primary_10_1186_s41479_021_00093_8
crossref_primary_10_1080_19466315_2019_1700157
crossref_primary_10_1245_s10434_018_6512_8
crossref_primary_10_1245_s10434_020_08730_0
crossref_primary_10_1016_j_jhepr_2020_100152
crossref_primary_10_1186_s12872_021_01968_w
crossref_primary_10_1245_s10434_022_12908_z
crossref_primary_10_2215_CJN_05920421
crossref_primary_10_1002_sim_9171
crossref_primary_10_1186_s12885_023_11143_3
crossref_primary_10_1080_00273171_2023_2254541
crossref_primary_10_1093_biostatistics_kxaa020
crossref_primary_10_3892_etm_2022_11499
crossref_primary_10_1016_j_clgc_2022_07_001
crossref_primary_10_1016_j_resenv_2022_100084
crossref_primary_10_1097_MD_0000000000025120
crossref_primary_10_1177_19714009221108681
crossref_primary_10_1007_s00464_023_10147_1
crossref_primary_10_1177_20543581221129442
crossref_primary_10_1093_aje_kwab242
crossref_primary_10_1186_s12874_022_01799_z
crossref_primary_10_1007_s00595_022_02578_5
crossref_primary_10_1093_ajcn_nqac256
crossref_primary_10_1136_bmj_2024_080035
crossref_primary_10_1007_s00268_022_06834_0
crossref_primary_10_1002_sim_9860
crossref_primary_10_1016_j_medcle_2023_10_013
crossref_primary_10_1002_ijc_34572
crossref_primary_10_1177_09622802231211009
crossref_primary_10_1016_j_jiac_2019_05_027
crossref_primary_10_1259_bjr_20200456
crossref_primary_10_3802_jgo_2023_34_e42
crossref_primary_10_1016_j_medcli_2023_10_008
crossref_primary_10_1016_j_parkreldis_2024_107150
crossref_primary_10_1111_1475_6773_14442
crossref_primary_10_2196_26997
crossref_primary_10_1007_s40264_022_01206_y
crossref_primary_10_1080_10543406_2023_2244593
crossref_primary_10_1002_ccd_28842
crossref_primary_10_1016_j_eclinm_2021_100774
crossref_primary_10_1016_j_jacc_2025_01_013
crossref_primary_10_7717_peerj_14614
crossref_primary_10_1007_s40264_022_01221_z
crossref_primary_10_1002_sim_9519
crossref_primary_10_1002_ajh_26954
crossref_primary_10_1002_bimj_202200099
crossref_primary_10_1016_j_vaccine_2021_05_056
crossref_primary_10_1016_j_annemergmed_2024_06_007
crossref_primary_10_1111_hel_12990
crossref_primary_10_1002_bimj_201700330
crossref_primary_10_1136_rmdopen_2020_001201
crossref_primary_10_1002_sim_9512
crossref_primary_10_1111_1471_0528_17623
crossref_primary_10_1080_19466315_2021_1994460
crossref_primary_10_2147_CMAR_S299975
crossref_primary_10_2337_dc20_0417
crossref_primary_10_1055_s_0040_1718728
crossref_primary_10_1186_s12974_019_1525_1
crossref_primary_10_1007_s00737_023_01291_7
crossref_primary_10_1016_j_jaad_2019_11_015
crossref_primary_10_1002_sim_10078
crossref_primary_10_1016_j_thromres_2017_11_023
crossref_primary_10_1016_j_jstrokecerebrovasdis_2020_105535
crossref_primary_10_1002_sim_10075
crossref_primary_10_1097_JS9_0000000000001884
crossref_primary_10_1111_add_15612
crossref_primary_10_2147_CIA_S475887
crossref_primary_10_1164_rccm_202408_1553OC
crossref_primary_10_7326_M19_3671
crossref_primary_10_1016_j_ejca_2025_115382
crossref_primary_10_1016_j_amjcard_2018_08_027
crossref_primary_10_1016_j_rec_2023_05_001
crossref_primary_10_1186_s12889_021_12190_w
crossref_primary_10_1016_j_xkme_2022_100431
crossref_primary_10_1016_j_lanwpc_2021_100252
crossref_primary_10_1002_jhbp_1314
crossref_primary_10_1177_13524585221085733
crossref_primary_10_1016_j_hrthm_2024_08_033
crossref_primary_10_1097_AOG_0000000000003287
crossref_primary_10_1155_2024_8889536
crossref_primary_10_1111_1759_7714_14009
crossref_primary_10_1016_j_jacc_2019_05_057
crossref_primary_10_3350_cmh_2023_0057
crossref_primary_10_1002_bimj_70010
crossref_primary_10_1001_jamapediatrics_2020_2539
crossref_primary_10_1111_aor_14740
crossref_primary_10_1016_j_esmoop_2021_100206
crossref_primary_10_1186_s12876_021_01742_4
crossref_primary_10_1016_j_ygyno_2020_03_028
crossref_primary_10_1002_phar_2517
crossref_primary_10_1016_j_diabres_2024_111804
crossref_primary_10_1016_j_urolonc_2024_01_027
crossref_primary_10_1007_s12529_022_10090_w
crossref_primary_10_1093_alcalc_agae067
crossref_primary_10_1002_sim_9653
crossref_primary_10_1002_sim_8206
crossref_primary_10_1177_09622802241262527
crossref_primary_10_2147_CLEP_S354733
crossref_primary_10_1111_ajt_14651
crossref_primary_10_1111_rssb_12327
crossref_primary_10_1080_00031305_2023_2267598
crossref_primary_10_1186_s12874_023_02071_8
crossref_primary_10_1093_cid_ciae599
crossref_primary_10_4330_wjc_v15_i5_262
crossref_primary_10_1002_bimj_202000267
crossref_primary_10_3389_fpsyt_2022_883306
crossref_primary_10_1016_j_reprotox_2018_05_003
crossref_primary_10_1093_jbmr_zjae059
crossref_primary_10_1097_SLA_0000000000005352
crossref_primary_10_3389_fcvm_2024_1443258
crossref_primary_10_1177_20543581231221891
crossref_primary_10_1161_CIRCULATIONAHA_124_072855
crossref_primary_10_1038_s41598_023_36623_1
crossref_primary_10_1136_bmjph_2024_001289
crossref_primary_10_1371_journal_pone_0249225
crossref_primary_10_1186_s12874_023_01836_5
crossref_primary_10_1080_07853890_2020_1818118
crossref_primary_10_2214_AJR_17_19094
crossref_primary_10_1177_09622802231212274
crossref_primary_10_1016_j_conctc_2019_100333
crossref_primary_10_3310_HTNB6908
crossref_primary_10_1002_sim_70009
crossref_primary_10_1111_ene_15422
crossref_primary_10_3389_fmed_2021_797719
crossref_primary_10_1001_jama_2024_16380
crossref_primary_10_1038_s41598_021_87808_5
crossref_primary_10_1093_ehjcvp_pvaa005
crossref_primary_10_1002_phar_2530
crossref_primary_10_1016_j_tre_2024_103776
crossref_primary_10_1093_europace_euaa036
crossref_primary_10_1002_sim_9437
crossref_primary_10_1002_pst_2196
crossref_primary_10_1136_bmj_l1580
crossref_primary_10_1016_j_cmi_2019_02_027
crossref_primary_10_1016_j_jad_2024_01_122
crossref_primary_10_1002_sim_9551
crossref_primary_10_1097_LVT_0000000000000143
crossref_primary_10_1111_1759_7714_14476
crossref_primary_10_1016_S1470_2045_19_30485_1
crossref_primary_10_1186_s40560_020_00473_0
crossref_primary_10_1007_s10742_023_00317_y
crossref_primary_10_1111_bcp_15371
crossref_primary_10_1093_epirev_mxac006
crossref_primary_10_1016_j_radonc_2024_110648
crossref_primary_10_1111_jgs_17049
crossref_primary_10_7326_M21_0717
crossref_primary_10_1016_j_amjcard_2020_08_042
crossref_primary_10_1177_0962280219869742
crossref_primary_10_1002_ehf2_13229
crossref_primary_10_1002_sim_7266
crossref_primary_10_1002_sim_8117
crossref_primary_10_1097_SLA_0000000000005568
crossref_primary_10_1200_CCI_20_00099
crossref_primary_10_1093_ckj_sfab229
crossref_primary_10_1080_10543406_2021_1918140
crossref_primary_10_1245_s10434_020_09391_9
crossref_primary_10_1371_journal_pone_0225478
crossref_primary_10_1186_s12876_022_02464_x
crossref_primary_10_1038_s41598_020_57799_w
crossref_primary_10_1111_1759_7714_13596
crossref_primary_10_1177_20543581211000227
crossref_primary_10_1016_j_jare_2024_05_025
crossref_primary_10_1002_sim_10164
crossref_primary_10_1002_art_42541
crossref_primary_10_1016_j_recesp_2022_11_005
crossref_primary_10_1111_bcp_14713
crossref_primary_10_1136_bmj_2021_067528
crossref_primary_10_1016_j_ejca_2020_04_033
crossref_primary_10_1177_09622802211047345
crossref_primary_10_2215_CJN_16171221
crossref_primary_10_1002_sim_7839
crossref_primary_10_1111_biom_13332
crossref_primary_10_1002_pst_2294
crossref_primary_10_1136_bmj_n311
crossref_primary_10_1007_s40801_024_00428_z
crossref_primary_10_1093_rheumatology_keae140
crossref_primary_10_1007_s11255_022_03430_y
crossref_primary_10_1002_sim_8121
crossref_primary_10_1177_09622802241247742
crossref_primary_10_1016_j_breast_2022_10_008
crossref_primary_10_1186_s12885_023_11767_5
crossref_primary_10_1097_JS9_0000000000001388
crossref_primary_10_5325_jafrideve_26_1_0001
crossref_primary_10_1016_j_gie_2023_09_027
crossref_primary_10_1007_s13311_021_01084_9
crossref_primary_10_1111_apt_15706
crossref_primary_10_1001_jamainternmed_2024_7452
crossref_primary_10_1093_ehjcvp_pvab029
crossref_primary_10_1186_s40842_017_0043_2
crossref_primary_10_1007_s12672_022_00594_y
crossref_primary_10_1161_STROKEAHA_121_034969
crossref_primary_10_1200_CCI_21_00042
crossref_primary_10_1111_acer_15401
crossref_primary_10_1177_1756287218810313
crossref_primary_10_1186_s12879_021_05862_w
crossref_primary_10_1007_s12561_022_09337_7
crossref_primary_10_1093_rheumatology_kead163
crossref_primary_10_1016_j_bja_2020_01_018
crossref_primary_10_1016_S2468_1253_17_30394_1
crossref_primary_10_1371_journal_pone_0243149
crossref_primary_10_3390_jcm7090274
crossref_primary_10_1177_25152459241236149
crossref_primary_10_1161_JAHA_121_022299
crossref_primary_10_1007_s11523_022_00910_0
crossref_primary_10_1007_s12325_022_02422_9
crossref_primary_10_1161_CIRCINTERVENTIONS_120_009157
crossref_primary_10_1016_j_jvs_2019_06_212
crossref_primary_10_1007_s00592_023_02147_3
crossref_primary_10_1016_j_annepidem_2022_07_011
crossref_primary_10_58877_japaj_v1i1_11
crossref_primary_10_9778_cmajo_20190171
crossref_primary_10_2215_CJN_08310520
crossref_primary_10_3389_fpubh_2022_981782
crossref_primary_10_1016_j_heliyon_2021_e06433
crossref_primary_10_2147_ITT_S437911
crossref_primary_10_7202_1077989ar
crossref_primary_10_1016_j_scs_2023_105079
crossref_primary_10_1002_jrsm_1759
crossref_primary_10_1002_pst_2317
crossref_primary_10_1111_1759_7714_15404
crossref_primary_10_1093_ckj_sfab158
crossref_primary_10_1053_j_ajkd_2018_02_350
crossref_primary_10_1093_ejcts_ezac482
crossref_primary_10_1111_iju_15505
crossref_primary_10_1055_s_0044_1786819
crossref_primary_10_26442_00403660_2020_06_000669
crossref_primary_10_1002_sim_10110
crossref_primary_10_3390_covid3020015
crossref_primary_10_1038_s41467_023_38388_7
crossref_primary_10_1371_journal_pone_0245433
crossref_primary_10_1513_AnnalsATS_202207_615OC
crossref_primary_10_1212_WNL_0000000000007314
crossref_primary_10_1111_bju_13930
crossref_primary_10_1002_sim_8715
crossref_primary_10_1002_sim_8837
crossref_primary_10_1016_j_chest_2021_11_007
crossref_primary_10_1080_00380237_2021_1921641
crossref_primary_10_1186_s12874_022_01670_1
crossref_primary_10_1016_j_healun_2022_10_016
crossref_primary_10_1038_s41598_024_69266_x
crossref_primary_10_3390_v14091893
crossref_primary_10_3390_biology11060916
crossref_primary_10_1097_SLA_0000000000005887
crossref_primary_10_1136_bmjopen_2020_036961
crossref_primary_10_1007_s10258_020_00175_3
crossref_primary_10_1016_j_recesp_2023_05_005
crossref_primary_10_1016_j_ypmed_2021_106757
crossref_primary_10_1002_pds_5749
crossref_primary_10_1007_s10640_022_00754_2
crossref_primary_10_7326_M22_0318
crossref_primary_10_1093_geront_gnaa063
crossref_primary_10_1177_0962280218799540
crossref_primary_10_1002_cpt_2424
crossref_primary_10_1513_AnnalsATS_202201_080RL
crossref_primary_10_1002_bjs5_50174
crossref_primary_10_1038_s41467_023_41210_z
crossref_primary_10_1186_s40560_019_0377_1
crossref_primary_10_1016_j_jacc_2023_04_021
crossref_primary_10_1016_j_jval_2023_11_011
crossref_primary_10_1186_s13054_022_04016_x
crossref_primary_10_1371_journal_pone_0289316
crossref_primary_10_1016_j_breast_2023_01_007
Cites_doi 10.1002/sim.5991
10.1016/j.jclinepi.2009.06.002
10.1097/00001648-200009000-00012
10.1016/j.csda.2013.10.018
10.1093/biomet/70.1.41
10.1198/000313004X5824
10.1001/jama.2009.1731
10.1037/1082-989X.9.4.403
10.1002/sim.5984
10.1007/978-1-4899-4541-9
10.1080/00273171.2011.540480
10.1016/j.cmpb.2003.10.004
10.1002/sim.2618
10.1002/sim.2328
10.1111/j.1467-9531.2008.00204.x
10.18637/jss.v043.i13
10.1002/pst.537
10.1002/pds.1555
10.1002/sim.1903
10.1093/aje/kwn164
10.1002/sim.6607
10.2202/1557‐4679.1146
10.1002/sim.2580
10.1002/sim.3782
10.1002/sim.6276
10.1080/01621459.1989.10478874
10.1002/sim.5705
10.1002/pds.969
10.1002/sim.4200
10.1002/sim.2059
10.1002/sim.3150
10.1080/00273171.2011.568786
10.1111/j.1524-4733.2009.00671.x
10.3982/ECTA6474
ContentType Journal Article
Copyright 2016 The Authors. published by John Wiley & Sons Ltd.
2016 The Authors. Statistics in Medicine published by John Wiley & Sons Ltd.
Copyright Wiley Subscription Services, Inc. Dec 30, 2016
Copyright_xml – notice: 2016 The Authors. published by John Wiley & Sons Ltd.
– notice: 2016 The Authors. Statistics in Medicine published by John Wiley & Sons Ltd.
– notice: Copyright Wiley Subscription Services, Inc. Dec 30, 2016
DBID BSCLL
24P
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
K9.
7X8
5PM
DOI 10.1002/sim.7084
DatabaseName Istex
Wiley Online Library Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitleList ProQuest Health & Medical Complete (Alumni)

MEDLINE - Academic
MEDLINE

Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Statistics
Public Health
DocumentTitleAlternate Variance estimation for IPTW with survival outcomes
EISSN 1097-0258
EndPage 5655
ExternalDocumentID PMC5157758
4283539731
27549016
10_1002_sim_7084
SIM7084
ark_67375_WNG_CXR1NHLS_G
Genre article
Journal Article
Feature
GrantInformation_xml – fundername: Ontario Ministry of Health and Long‐Term Care (MOHLTC)
– fundername: Canadian Institutes of Health Research (CIHR)
  funderid: MOP 86508
– fundername: CIHR
  grantid: MOP 86508
– fundername: Canadian Institutes of Health Research (CIHR)
  grantid: MOP 86508
GroupedDBID ---
.3N
.GA
05W
0R~
10A
123
1L6
1OB
1OC
1ZS
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5RE
5VS
66C
6PF
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAWTL
AAXRX
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABOCM
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
ROL
RWI
RX1
RYL
SUPJJ
SV3
TN5
UB1
V2E
W8V
W99
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WUP
WWH
WXSBR
WYISQ
XBAML
XG1
XV2
ZZTAW
~IA
~WT
24P
AAHQN
AAMNL
AAYCA
ACYXJ
AFWVQ
ALVPJ
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
AMVHM
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
K9.
7X8
5PM
ID FETCH-LOGICAL-c4764-cf4d58428588638ca153bc8e23f009fa5922e81f80cf39acd489875b0882bddc3
IEDL.DBID DR2
ISSN 0277-6715
1097-0258
IngestDate Thu Aug 21 14:11:09 EDT 2025
Fri Jul 11 01:48:11 EDT 2025
Sun Jul 13 02:58:20 EDT 2025
Thu Apr 03 07:09:06 EDT 2025
Tue Jul 01 03:28:10 EDT 2025
Thu Apr 24 22:55:34 EDT 2025
Wed Jan 22 16:46:41 EST 2025
Wed Oct 30 09:52:01 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 30
Keywords Monte Carlo simulations
survival analysis
variance estimation
inverse probability of treatment weighting (IPTW)
observational study
propensity score
Language English
License Attribution-NonCommercial-NoDerivs
http://doi.wiley.com/10.1002/tdm_license_1.1
http://creativecommons.org/licenses/by-nc-nd/4.0
2016 The Authors. Statistics in Medicine published by John Wiley & Sons Ltd.
This is an open access article under the terms of the Creative Commons Attribution‐NonCommercial‐NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4764-cf4d58428588638ca153bc8e23f009fa5922e81f80cf39acd489875b0882bddc3
Notes Ontario Ministry of Health and Long-Term Care (MOHLTC)
ArticleID:SIM7084
istex:8B162026D4D733DF4CB00674CA026E3A4A7ECADF
Canadian Institutes of Health Research (CIHR) - No. MOP 86508
ark:/67375/WNG-CXR1NHLS-G
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsim.7084
PMID 27549016
PQID 1850740946
PQPubID 48361
PageCount 14
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5157758
proquest_miscellaneous_1845814173
proquest_journals_1850740946
pubmed_primary_27549016
crossref_primary_10_1002_sim_7084
crossref_citationtrail_10_1002_sim_7084
wiley_primary_10_1002_sim_7084_SIM7084
istex_primary_ark_67375_WNG_CXR1NHLS_G
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 30 December 2016
PublicationDateYYYYMMDD 2016-12-30
PublicationDate_xml – month: 12
  year: 2016
  text: 30 December 2016
  day: 30
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: New York
– name: Hoboken
PublicationTitle Statistics in medicine
PublicationTitleAlternate Statist. Med
PublicationYear 2016
Publisher Blackwell Publishing Ltd
Wiley Subscription Services, Inc
John Wiley and Sons Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley Subscription Services, Inc
– name: John Wiley and Sons Inc
References Lin DY, Wei LJ. The robust inference for the proportional hazards model. Journal of the American Statistical Association 1989; 84(408):1074-1078.
Austin PC, Type I, Rates E. Coverage of confidence intervals, and variance estimation in propensity-score matched analyses. International Journal of Biostatistics 2009; 5(1): Article 13. DOI: 10.2202/1557-4679.1146.
Franklin JM, Schneeweiss S, Polinski JM, Rassen JA. Plasmode simulation for the evaluation of pharmacoepidemiologic methods in complex healthcare databases. Computational Statistics & Data Analysis 2014; 72:219-226.
Williamson EJ, Forbes A, White IR. Variance reduction in randomised trials by inverse probability weighting using the propensity score. Statistics in Medicine 2014; 33(5):721-737.
Austin PC, Manca A, Zwarenstein M, Juurlink DN, Stanbrook MB. A substantial and confusing variation exists in handling of baseline covariates in randomized controlled trials: a review of trials published in leading medical journals. Journal of Clinical Epidemiology 2010; 63(2):142-153.
Austin PC, Mamdani MM. A comparison of propensity score methods: a case-study estimating the effectiveness of post-AMI statin use. Statistics in Medicine 2006; 25(12):2084-2106.
Abadie A, Imbens GW. Notes and comments on the failure of the bootstrap for matching estimators. Econometrica 2008; 76(6):1537-1557.
Morgan SL, Todd JL. A diagnostic routine for the detection of consequential heterogeneity of causal effects. Sociological Methodology 2008; 38:231-281.
Hernan MA, Brumback B, Robins JM. Marginal structural models to estimate the causal effect of zidovudine on the survival of HIV-positive men. Epidemiology 2000; 11(5):561-570.
Bender R, Augustin T, Blettner M. Generating survival times to simulate Cox proportional hazards models. Statistics in Medicine 2005; 24(11):1713-1723.
Austin PC, Grootendorst P, Normand SL, Anderson GM. Conditioning on the propensity score can result in biased estimation of common measures of treatment effect: a Monte Carlo study. Statistics in Medicine 2007; 26(4):754-768.
Austin PC, Stuart EA. Moving towards best practice when using inverse probability of treatment weighting (IPTW) using the propensity score to estimate causal treatment effects in observational studies. Statistics in Medicine 2015; 34(28):3661-3679.
Austin PC. A critical appraisal of propensity-score matching in the medical literature between 1996 and 2003. Statistics in Medicine 2008; 27(12):2037-2049.
Weitzen S, Lapane KL, Toledano AY, Hume AL, Mor V. Principles for modeling propensity scores in medical research: a systematic literature review. Pharmacoepidemiology and Drug Safety 2004; 13(12):841-853.
Lee BK, Lessler J, Stuart EA. Improving propensity score weighting using machine learning. Statistics in Medicine 2010; 29(3):337-346.
Tu JV, Donovan LR, Lee DS, Wang JT, Austin PC, Alter DA, Ko DT. Effectiveness of public report cards for improving the quality of cardiac care: the EFFECT study: a randomized trial. Journal of the American Medical Association 2009; 302(21):2330-2337.
Austin PC. An introduction to propensity-score methods for reducing the effects of confounding in observational studies. Multivariate Behavioral Research 2011; 46:399-424.
Setoguchi S, Schneeweiss S, Brookhart MA, Glynn RJ, Cook EF. Evaluating uses of data mining techniques in propensity score estimation: a simulation study. Pharmacoepidemiolgy and Drug Safety 2008; 17(6):546-555.
Rosenbaum PR, Rubin DB. The central role of the propensity score in observational studies for causal effects. Biometrika 1983; 70:41-55.
Lunceford JK, Davidian M. Stratification and weighting via the propensity score in estimation of causal treatment effects: a comparative study. Statistics in Medicine 2004; 23(19):2937-2960.
Gayat E, Resche-Rigon M, Mary JY, Porcher R. Propensity score applied to survival data analysis through proportional hazards models: a Monte Carlo study. Pharmaceutical Statistics 2012; 11(3):222-229.
Austin PC, Grootendorst P, Anderson GM. A comparison of the ability of different propensity score models to balance measured variables between treated and untreated subjects: a Monte Carlo study. Statistics in Medicine 2007; 26(4):734-753.
Austin PC, Small DS. The use of bootstrapping when using propensity-score matching without replacement: a simulation study. Statisics in Medicine 2014; 33(24):4306-4319.
Joffe MM, Ten Have TR, Feldman HI, Kimmel SE. Model selection, confounder control, and marginal structural models: review and new applications. The American Statistician 2004; 58:272-279.
Austin PC. The use of propensity score methods with survival or time-to-event outcomes: reporting measures of effect similar to those used in randomized experiments. Stastisics in Medicine 2014; 33(7):1242-1258.
Cole SR, Hernan MA. Adjusted survival curves with inverse probability weights. Computer Methods and Programs in Biomedicine 2004; 75:45-49.
Xu S, Ross C, Raebel MA, Shetterly S, Blanchette C, Smith D. Use of stabilized inverse propensity scores as weights to directly estimate relative risk and its confidence intervals. Value in Health 2010; 13(2):273-277.
Austin PC. The performance of different propensity score methods for estimating marginal hazard ratios. Stastisics in Medicine 2013; 32(16):2837-2849.
McCaffrey DF, Ridgeway G, Morral AR. Propensity score estimation with boosted regression for evaluating causal effects in observational studies. Psychological Methods 2004; 9(4):403-425.
Cole SR, Hernan MA. Constructing inverse probability weights for marginal structural models. American Journal of Epidemiology 2008; 168(6):656-664.
Austin PC. Comparing paired vs non-paired statistical methods of analyses when making inferences about absolute risk reductions in propensity-score matched samples. Statistics in Medicine 2011; 30(11):1292-1301.
Austin PC. A tutorial and case study in propensity score analysis: an application to estimating the effect of in-hospital smoking cessation counseling on mortality. Multivariate Behavioral Research 2011; 46:119-151.
van der Wal WM, Geskus RB. ipw: an R package for inverse probability weighting. Journal of Statistical Software 2011; 43(13). https://www.jstatsoft.org/article/view/v043i13.
Efron B, Tibshirani RJ. An Introduction to the Bootstrap. Chapman & Hall: New York, NY, 1993.
1989; 84
2015; 34
2010; 13
2004; 23
2008; 38
2008; 17
2004; 9
2011; 30
2008; 76
1993
1983; 70
2008; 168
2012; 11
2010; 63
2005; 24
2004; 75
2013; 32
2010; 29
2004; 58
2000; 11
2008; 27
2006; 25
2004; 13
2011; 43
2011; 46
2009; 5
2014; 72
2014; 33
2009; 302
2007; 26
e_1_2_9_30_1
e_1_2_9_31_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_12_1
e_1_2_9_33_1
e_1_2_9_15_1
e_1_2_9_14_1
e_1_2_9_17_1
e_1_2_9_16_1
e_1_2_9_19_1
e_1_2_9_18_1
e_1_2_9_20_1
e_1_2_9_22_1
e_1_2_9_21_1
e_1_2_9_24_1
e_1_2_9_23_1
e_1_2_9_8_1
e_1_2_9_7_1
e_1_2_9_6_1
e_1_2_9_5_1
e_1_2_9_4_1
e_1_2_9_3_1
e_1_2_9_2_1
e_1_2_9_9_1
e_1_2_9_26_1
e_1_2_9_25_1
e_1_2_9_28_1
e_1_2_9_27_1
e_1_2_9_29_1
References_xml – reference: Cole SR, Hernan MA. Constructing inverse probability weights for marginal structural models. American Journal of Epidemiology 2008; 168(6):656-664.
– reference: Austin PC. A critical appraisal of propensity-score matching in the medical literature between 1996 and 2003. Statistics in Medicine 2008; 27(12):2037-2049.
– reference: Austin PC, Type I, Rates E. Coverage of confidence intervals, and variance estimation in propensity-score matched analyses. International Journal of Biostatistics 2009; 5(1): Article 13. DOI: 10.2202/1557-4679.1146.
– reference: Hernan MA, Brumback B, Robins JM. Marginal structural models to estimate the causal effect of zidovudine on the survival of HIV-positive men. Epidemiology 2000; 11(5):561-570.
– reference: Lunceford JK, Davidian M. Stratification and weighting via the propensity score in estimation of causal treatment effects: a comparative study. Statistics in Medicine 2004; 23(19):2937-2960.
– reference: Setoguchi S, Schneeweiss S, Brookhart MA, Glynn RJ, Cook EF. Evaluating uses of data mining techniques in propensity score estimation: a simulation study. Pharmacoepidemiolgy and Drug Safety 2008; 17(6):546-555.
– reference: Austin PC, Mamdani MM. A comparison of propensity score methods: a case-study estimating the effectiveness of post-AMI statin use. Statistics in Medicine 2006; 25(12):2084-2106.
– reference: Morgan SL, Todd JL. A diagnostic routine for the detection of consequential heterogeneity of causal effects. Sociological Methodology 2008; 38:231-281.
– reference: Abadie A, Imbens GW. Notes and comments on the failure of the bootstrap for matching estimators. Econometrica 2008; 76(6):1537-1557.
– reference: Austin PC. A tutorial and case study in propensity score analysis: an application to estimating the effect of in-hospital smoking cessation counseling on mortality. Multivariate Behavioral Research 2011; 46:119-151.
– reference: Austin PC, Grootendorst P, Anderson GM. A comparison of the ability of different propensity score models to balance measured variables between treated and untreated subjects: a Monte Carlo study. Statistics in Medicine 2007; 26(4):734-753.
– reference: Cole SR, Hernan MA. Adjusted survival curves with inverse probability weights. Computer Methods and Programs in Biomedicine 2004; 75:45-49.
– reference: Austin PC. The use of propensity score methods with survival or time-to-event outcomes: reporting measures of effect similar to those used in randomized experiments. Stastisics in Medicine 2014; 33(7):1242-1258.
– reference: Efron B, Tibshirani RJ. An Introduction to the Bootstrap. Chapman & Hall: New York, NY, 1993.
– reference: Joffe MM, Ten Have TR, Feldman HI, Kimmel SE. Model selection, confounder control, and marginal structural models: review and new applications. The American Statistician 2004; 58:272-279.
– reference: Austin PC. The performance of different propensity score methods for estimating marginal hazard ratios. Stastisics in Medicine 2013; 32(16):2837-2849.
– reference: Bender R, Augustin T, Blettner M. Generating survival times to simulate Cox proportional hazards models. Statistics in Medicine 2005; 24(11):1713-1723.
– reference: Austin PC, Manca A, Zwarenstein M, Juurlink DN, Stanbrook MB. A substantial and confusing variation exists in handling of baseline covariates in randomized controlled trials: a review of trials published in leading medical journals. Journal of Clinical Epidemiology 2010; 63(2):142-153.
– reference: van der Wal WM, Geskus RB. ipw: an R package for inverse probability weighting. Journal of Statistical Software 2011; 43(13). https://www.jstatsoft.org/article/view/v043i13.
– reference: Austin PC, Grootendorst P, Normand SL, Anderson GM. Conditioning on the propensity score can result in biased estimation of common measures of treatment effect: a Monte Carlo study. Statistics in Medicine 2007; 26(4):754-768.
– reference: McCaffrey DF, Ridgeway G, Morral AR. Propensity score estimation with boosted regression for evaluating causal effects in observational studies. Psychological Methods 2004; 9(4):403-425.
– reference: Austin PC, Small DS. The use of bootstrapping when using propensity-score matching without replacement: a simulation study. Statisics in Medicine 2014; 33(24):4306-4319.
– reference: Austin PC. An introduction to propensity-score methods for reducing the effects of confounding in observational studies. Multivariate Behavioral Research 2011; 46:399-424.
– reference: Gayat E, Resche-Rigon M, Mary JY, Porcher R. Propensity score applied to survival data analysis through proportional hazards models: a Monte Carlo study. Pharmaceutical Statistics 2012; 11(3):222-229.
– reference: Tu JV, Donovan LR, Lee DS, Wang JT, Austin PC, Alter DA, Ko DT. Effectiveness of public report cards for improving the quality of cardiac care: the EFFECT study: a randomized trial. Journal of the American Medical Association 2009; 302(21):2330-2337.
– reference: Weitzen S, Lapane KL, Toledano AY, Hume AL, Mor V. Principles for modeling propensity scores in medical research: a systematic literature review. Pharmacoepidemiology and Drug Safety 2004; 13(12):841-853.
– reference: Rosenbaum PR, Rubin DB. The central role of the propensity score in observational studies for causal effects. Biometrika 1983; 70:41-55.
– reference: Lee BK, Lessler J, Stuart EA. Improving propensity score weighting using machine learning. Statistics in Medicine 2010; 29(3):337-346.
– reference: Austin PC, Stuart EA. Moving towards best practice when using inverse probability of treatment weighting (IPTW) using the propensity score to estimate causal treatment effects in observational studies. Statistics in Medicine 2015; 34(28):3661-3679.
– reference: Lin DY, Wei LJ. The robust inference for the proportional hazards model. Journal of the American Statistical Association 1989; 84(408):1074-1078.
– reference: Williamson EJ, Forbes A, White IR. Variance reduction in randomised trials by inverse probability weighting using the propensity score. Statistics in Medicine 2014; 33(5):721-737.
– reference: Franklin JM, Schneeweiss S, Polinski JM, Rassen JA. Plasmode simulation for the evaluation of pharmacoepidemiologic methods in complex healthcare databases. Computational Statistics & Data Analysis 2014; 72:219-226.
– reference: Austin PC. Comparing paired vs non-paired statistical methods of analyses when making inferences about absolute risk reductions in propensity-score matched samples. Statistics in Medicine 2011; 30(11):1292-1301.
– reference: Xu S, Ross C, Raebel MA, Shetterly S, Blanchette C, Smith D. Use of stabilized inverse propensity scores as weights to directly estimate relative risk and its confidence intervals. Value in Health 2010; 13(2):273-277.
– volume: 43
  issue: 13
  year: 2011
  article-title: ipw: an R package for inverse probability weighting
  publication-title: Journal of Statistical Software
– volume: 33
  start-page: 1242
  issue: 7
  year: 2014
  end-page: 1258
  article-title: The use of propensity score methods with survival or time‐to‐event outcomes: reporting measures of effect similar to those used in randomized experiments
  publication-title: Stastisics in Medicine
– volume: 75
  start-page: 45
  year: 2004
  end-page: 49
  article-title: Adjusted survival curves with inverse probability weights
  publication-title: Computer Methods and Programs in Biomedicine
– volume: 24
  start-page: 1713
  issue: 11
  year: 2005
  end-page: 1723
  article-title: Generating survival times to simulate Cox proportional hazards models
  publication-title: Statistics in Medicine
– volume: 9
  start-page: 403
  issue: 4
  year: 2004
  end-page: 425
  article-title: Propensity score estimation with boosted regression for evaluating causal effects in observational studies
  publication-title: Psychological Methods
– volume: 29
  start-page: 337
  issue: 3
  year: 2010
  end-page: 346
  article-title: Improving propensity score weighting using machine learning
  publication-title: Statistics in Medicine
– volume: 76
  start-page: 1537
  issue: 6
  year: 2008
  end-page: 1557
  article-title: Notes and comments on the failure of the bootstrap for matching estimators
  publication-title: Econometrica
– volume: 46
  start-page: 119
  year: 2011
  end-page: 151
  article-title: A tutorial and case study in propensity score analysis: an application to estimating the effect of in‐hospital smoking cessation counseling on mortality
  publication-title: Multivariate Behavioral Research
– volume: 168
  start-page: 656
  issue: 6
  year: 2008
  end-page: 664
  article-title: Constructing inverse probability weights for marginal structural models
  publication-title: American Journal of Epidemiology
– volume: 33
  start-page: 721
  issue: 5
  year: 2014
  end-page: 737
  article-title: Variance reduction in randomised trials by inverse probability weighting using the propensity score
  publication-title: Statistics in Medicine
– volume: 38
  start-page: 231
  year: 2008
  end-page: 281
  article-title: A diagnostic routine for the detection of consequential heterogeneity of causal effects
  publication-title: Sociological Methodology
– volume: 302
  start-page: 2330
  issue: 21
  year: 2009
  end-page: 2337
  article-title: Effectiveness of public report cards for improving the quality of cardiac care: the EFFECT study: a randomized trial
  publication-title: Journal of the American Medical Association
– volume: 63
  start-page: 142
  issue: 2
  year: 2010
  end-page: 153
  article-title: A substantial and confusing variation exists in handling of baseline covariates in randomized controlled trials: a review of trials published in leading medical journals
  publication-title: Journal of Clinical Epidemiology
– volume: 26
  start-page: 754
  issue: 4
  year: 2007
  end-page: 768
  article-title: Conditioning on the propensity score can result in biased estimation of common measures of treatment effect: a Monte Carlo study
  publication-title: Statistics in Medicine
– volume: 70
  start-page: 41
  year: 1983
  end-page: 55
  article-title: The central role of the propensity score in observational studies for causal effects
  publication-title: Biometrika
– volume: 84
  start-page: 1074
  issue: 408
  year: 1989
  end-page: 1078
  article-title: The robust inference for the proportional hazards model
  publication-title: Journal of the American Statistical Association
– volume: 26
  start-page: 734
  issue: 4
  year: 2007
  end-page: 753
  article-title: A comparison of the ability of different propensity score models to balance measured variables between treated and untreated subjects: a Monte Carlo study
  publication-title: Statistics in Medicine
– volume: 11
  start-page: 561
  issue: 5
  year: 2000
  end-page: 570
  article-title: Marginal structural models to estimate the causal effect of zidovudine on the survival of HIV‐positive men
  publication-title: Epidemiology
– volume: 11
  start-page: 222
  issue: 3
  year: 2012
  end-page: 229
  article-title: Propensity score applied to survival data analysis through proportional hazards models: a Monte Carlo study
  publication-title: Pharmaceutical Statistics
– volume: 72
  start-page: 219
  year: 2014
  end-page: 226
  article-title: Plasmode simulation for the evaluation of pharmacoepidemiologic methods in complex healthcare databases
  publication-title: Computational Statistics & Data Analysis
– volume: 32
  start-page: 2837
  issue: 16
  year: 2013
  end-page: 2849
  article-title: The performance of different propensity score methods for estimating marginal hazard ratios
  publication-title: Stastisics in Medicine
– volume: 5
  issue: 1
  year: 2009
  article-title: Coverage of confidence intervals, and variance estimation in propensity‐score matched analyses
  publication-title: International Journal of Biostatistics
– volume: 27
  start-page: 2037
  issue: 12
  year: 2008
  end-page: 2049
  article-title: A critical appraisal of propensity‐score matching in the medical literature between 1996 and 2003
  publication-title: Statistics in Medicine
– volume: 34
  start-page: 3661
  issue: 28
  year: 2015
  end-page: 3679
  article-title: Moving towards best practice when using inverse probability of treatment weighting (IPTW) using the propensity score to estimate causal treatment effects in observational studies
  publication-title: Statistics in Medicine
– volume: 13
  start-page: 273
  issue: 2
  year: 2010
  end-page: 277
  article-title: Use of stabilized inverse propensity scores as weights to directly estimate relative risk and its confidence intervals
  publication-title: Value in Health
– volume: 17
  start-page: 546
  issue: 6
  year: 2008
  end-page: 555
  article-title: Evaluating uses of data mining techniques in propensity score estimation: a simulation study
  publication-title: Pharmacoepidemiolgy and Drug Safety
– volume: 13
  start-page: 841
  issue: 12
  year: 2004
  end-page: 853
  article-title: Principles for modeling propensity scores in medical research: a systematic literature review
  publication-title: Pharmacoepidemiology and Drug Safety
– volume: 33
  start-page: 4306
  issue: 24
  year: 2014
  end-page: 4319
  article-title: The use of bootstrapping when using propensity‐score matching without replacement: a simulation study
  publication-title: Statisics in Medicine
– volume: 23
  start-page: 2937
  issue: 19
  year: 2004
  end-page: 2960
  article-title: Stratification and weighting via the propensity score in estimation of causal treatment effects: a comparative study
  publication-title: Statistics in Medicine
– volume: 58
  start-page: 272
  year: 2004
  end-page: 279
  article-title: Model selection, confounder control, and marginal structural models: review and new applications
  publication-title: The American Statistician
– volume: 46
  start-page: 399
  year: 2011
  end-page: 424
  article-title: An introduction to propensity‐score methods for reducing the effects of confounding in observational studies
  publication-title: Multivariate Behavioral Research
– volume: 30
  start-page: 1292
  issue: 11
  year: 2011
  end-page: 1301
  article-title: Comparing paired vs non‐paired statistical methods of analyses when making inferences about absolute risk reductions in propensity‐score matched samples
  publication-title: Statistics in Medicine
– year: 1993
– volume: 25
  start-page: 2084
  issue: 12
  year: 2006
  end-page: 2106
  article-title: A comparison of propensity score methods: a case‐study estimating the effectiveness of post‐AMI statin use
  publication-title: Statistics in Medicine
– ident: e_1_2_9_34_1
  doi: 10.1002/sim.5991
– ident: e_1_2_9_7_1
  doi: 10.1016/j.jclinepi.2009.06.002
– ident: e_1_2_9_24_1
  doi: 10.1097/00001648-200009000-00012
– ident: e_1_2_9_35_1
  doi: 10.1016/j.csda.2013.10.018
– ident: e_1_2_9_2_1
  doi: 10.1093/biomet/70.1.41
– ident: e_1_2_9_22_1
  doi: 10.1198/000313004X5824
– ident: e_1_2_9_29_1
  doi: 10.1001/jama.2009.1731
– ident: e_1_2_9_17_1
  doi: 10.1037/1082-989X.9.4.403
– ident: e_1_2_9_27_1
  doi: 10.1002/sim.5984
– ident: e_1_2_9_30_1
  doi: 10.1007/978-1-4899-4541-9
– ident: e_1_2_9_3_1
  doi: 10.1080/00273171.2011.540480
– ident: e_1_2_9_19_1
  doi: 10.1016/j.cmpb.2003.10.004
– ident: e_1_2_9_32_1
  doi: 10.1002/sim.2618
– ident: e_1_2_9_28_1
  doi: 10.1002/sim.2328
– ident: e_1_2_9_21_1
  doi: 10.1111/j.1467-9531.2008.00204.x
– ident: e_1_2_9_25_1
  doi: 10.18637/jss.v043.i13
– ident: e_1_2_9_8_1
  doi: 10.1002/pst.537
– ident: e_1_2_9_16_1
  doi: 10.1002/pds.1555
– ident: e_1_2_9_14_1
  doi: 10.1002/sim.1903
– ident: e_1_2_9_20_1
  doi: 10.1093/aje/kwn164
– ident: e_1_2_9_33_1
  doi: 10.1002/sim.6607
– ident: e_1_2_9_11_1
  doi: 10.2202/1557‐4679.1146
– ident: e_1_2_9_18_1
  doi: 10.1002/sim.2580
– ident: e_1_2_9_15_1
  doi: 10.1002/sim.3782
– ident: e_1_2_9_13_1
  doi: 10.1002/sim.6276
– ident: e_1_2_9_23_1
  doi: 10.1080/01621459.1989.10478874
– ident: e_1_2_9_9_1
  doi: 10.1002/sim.5705
– ident: e_1_2_9_5_1
  doi: 10.1002/pds.969
– ident: e_1_2_9_12_1
  doi: 10.1002/sim.4200
– ident: e_1_2_9_31_1
  doi: 10.1002/sim.2059
– ident: e_1_2_9_6_1
  doi: 10.1002/sim.3150
– ident: e_1_2_9_4_1
  doi: 10.1080/00273171.2011.568786
– ident: e_1_2_9_26_1
  doi: 10.1111/j.1524-4733.2009.00671.x
– ident: e_1_2_9_10_1
  doi: 10.3982/ECTA6474
SSID ssj0011527
Score 2.643111
Snippet Propensity score methods are used to reduce the effects of observed confounding when using observational data to estimate the effects of treatments or...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
istex
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 5642
SubjectTerms Confidence intervals
Estimating techniques
Humans
inverse probability of treatment weighting (IPTW)
Medical statistics
Medical treatment
Monte Carlo Method
Monte Carlo simulation
Monte Carlo simulations
Mortality
observational study
Propensity Score
Proportional Hazards Models
Survival Analysis
variance estimation
Title Variance estimation when using inverse probability of treatment weighting (IPTW) with survival analysis
URI https://api.istex.fr/ark:/67375/WNG-CXR1NHLS-G/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsim.7084
https://www.ncbi.nlm.nih.gov/pubmed/27549016
https://www.proquest.com/docview/1850740946
https://www.proquest.com/docview/1845814173
https://pubmed.ncbi.nlm.nih.gov/PMC5157758
Volume 35
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zb9QwEB5BkVAlRGG5AqUyEuJ4yDaHcz1WFe0W0VXVg67UB8tX2lUhi7q7KvTXdyZOAgtFQjzlIRMldmbsb-zP3wC81tJQPRPlB7HJfI4TMMZcyH2bSmlSWUplapbvMB0c8Y-jZNSwKuksjNOH6BbcKDLq8ZoCXKrp-k_R0On4az8LcpICJaoW4aH9TjkqbKu10g5lmoVJqzsbROvtgwsz0R3q1O83wcw_2ZK_oth6GtpagZO2AY59ct6fz1RfX_2m7fh_LXwA9xt0yjacOz2EW7bqwd3dZv-9B_fcKh9zh5d6sExY1Uk9P4LTz5h3kxMxUu5wRyLZ5ZmtGJHrT9m4IgqIZVTDxqmD_2CTknVUd3ZZL9OS6budvcPj94wWidl0jqMZxgOTjX7KYzja-nC4OfCbOg6-5lnKfV1ygzgnypM8x3DXEkdZpXMbxSUivFImRRTZPCzzQJdxIbXheYFplCL0r4zR8RNYqiaVfQZMyQhBWskVTr4csZ1EtFPYpNCFsdokyoO37T8VuhE5p1obX4STZ44EdqqgTvXgVWf5zQl73GDzpnaLzkBenBMRLkvE8XBbbI72w-Hg04HY9mC19RvRjAFTgUgI8Rmmzym-q7uN0UtbMrKykznZ8CQPeZjFHjx1bta9LMowd0dE7kG24ICdASmDL96pxme1QjiC1AwTQfz-2r_-2kBxsLNL1-f_avgClhEx1pWb4mAVlmYXc_sSUdlMrcHtiO-t1VF4Dc7RNtw
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3rb9MwED-NTYJJiEd5BQYYCfH4kC4P5yU-oYmthbZCW8f6AclyHGerBilaWw3467mzk0BhSIhP-eCLHDt39u_O598BPFWyoHomueuFReJy3IDR5nzu6ljKIpalzAuT5TuKe4f87SSarMGr5i6M5YdoA25kGWa9JgOngPT2T9bQ-fRzN_FSfgk2qKC38af2W-4ov6nXSmeUceJHDfOsF2w3b67sRRs0rV8vApp_5kv-imPNRrR7HT42Q7D5J6fd5SLvqu-_sTv-5xhvwLUaoLLXVqNuwpquOnB5WB_Bd-CqDfQxe3-pA5sEVy3b8y04_oCuN-kRI_IOeyuSnZ_oilF-_TGbVpQFohmVsbEE4d_YrGRttjs7N5FaEn3Rfz8-eskoTszmS1zQ0CSYrClUbsPh7pvxTs-tSzm4iicxd1XJC4Q6QRqlKVq8krjQ5irVQVgiyCtllAWBTv0y9VQZZlIVPM3Qk8rJAciLQoV3YL2aVfoesFwGiNNKnuP-yxHeSQQ8mY4ylRVaFVHuwPPmpwpV85xTuY1PwjI0BwInVdCkOvCklfxiuT0ukHlm9KIVkGenlAuXROJotCd2Jvv-qDc4EHsObDWKI-plYC4QDCFEQw86xr7aZjRgOpWRlZ4tSYZHqc_9JHTgrtWztrMgQfcdQbkDyYoGtgJEDr7aUk1PDEk44tQEfUH8fqNgfx2gOOgP6Xn_XwUfw5XeeDgQg_7o3QPYRABpCjmF3hasL86W-iGCtEX-yBjjD7lkOiA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zb9QwEB5BK1WVEMdyNFDASIjjIdsczvWIWra70K6qHnQlHizHdtpVS7bq7qrAr2cmTgILRUI85cETOXZm7G_G428AXiqpqZ5J7nqhTlyOGzDanM9dE0upY1nIXFdZvsO4f8Q_jKJRnVVJd2EsP0QbcCPLqNZrMvALXWz8JA2djr90Ey_lN2GZx15KGr2131JH-U25VjqijBM_aohnvWCjeXNhK1qmWf16Hc78M13yVxhb7UO9O_C5GYFNPznrzmd5V33_jdzx_4Z4F27X8JS9s_p0D26YsgMru_UBfAdu2TAfs7eXOrBKYNVyPd-Hk0_oeJMWMaLusHci2dWpKRll15-wcUk5IIZRERtLD_6NTQrW5rqzqypOS6JvBnuHx28ZRYnZdI7LGRoEkzWBygM46r0_3Oy7dSEHV_Ek5q4quEagE6RRmqK9K4nLbK5SE4QFQrxCRlkQmNQvUk8VYSaV5mmGflRO8D_XWoUPYamclGYNWC4DRGkFz3H35QjuJMKdzESZyrRROsodeN38U6FqlnMqtnEuLD9zIHBSBU2qAy9ayQvL7HGNzKtKLVoBeXlGmXBJJI6H22JztO8P-zsHYtuB9UZvRL0ITAVCIQRo6D_H2FfbjOZLZzKyNJM5yfAo9bmfhA48smrWdhYk6LwjJHcgWVDAVoCowRdbyvFpRRGOKDVBTxC_v9Kvvw5QHAx26fn4XwWfw8reVk_sDIYfn8AqoseqilPorcPS7HJuniJCm-XPKlP8AQngONg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Variance+estimation+when+using+inverse+probability+of+treatment+weighting+%28IPTW%29+with+survival+analysis&rft.jtitle=Statistics+in+medicine&rft.au=Austin%2C+Peter+C.&rft.date=2016-12-30&rft.pub=John+Wiley+and+Sons+Inc&rft.issn=0277-6715&rft.eissn=1097-0258&rft.volume=35&rft.issue=30&rft.spage=5642&rft.epage=5655&rft_id=info:doi/10.1002%2Fsim.7084&rft_id=info%3Apmid%2F27549016&rft.externalDocID=PMC5157758
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0277-6715&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0277-6715&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0277-6715&client=summon