A New Dimension for Coordination Polymers and Metal–Organic Frameworks: Towards Functional Glasses and Liquids

There are two categories of coordination polymers (CPs): inorganic CPs (i‐CPs) and organic ligand bridged CPs (o‐CPs). Based on the successful crystal engineering of CPs, we here propose noncrystalline states and functionalities as a new research direction for CPs. Control over the liquid or glassy...

Full description

Saved in:
Bibliographic Details
Published inAngewandte Chemie International Edition Vol. 59; no. 17; pp. 6652 - 6664
Main Authors Horike, Satoshi, Nagarkar, Sanjog S., Ogawa, Tomohiro, Kitagawa, Susumu
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 20.04.2020
EditionInternational ed. in English
Subjects
Online AccessGet full text

Cover

Loading…
Abstract There are two categories of coordination polymers (CPs): inorganic CPs (i‐CPs) and organic ligand bridged CPs (o‐CPs). Based on the successful crystal engineering of CPs, we here propose noncrystalline states and functionalities as a new research direction for CPs. Control over the liquid or glassy states in materials is essential to obtain specific properties and functions. Several studies suggest the feasibility of obtaining liquid/glassy states in o‐CPs by design principles. The combination of metal ions and organic bridging ligands, together with the liquid/glass phase transformation, offer the possibility to transform o‐CPs into ionic liquids and other ionic soft materials. Synchrotron measurements and computational approaches contribute to elucidating the structures and dynamics of the liquid/glassy states of o‐CPs. This offers the opportunity to tune the porosity, conductivity, transparency, and other material properties. The unique energy landscape of liquid/glass o‐CPs offers opportunities for properties and functions that are complementary to those of the crystalline state. Heart of glass: The liquid/glass states of coordination polymers (CPs) and metal‐organic frameworks (MOFs) constitute a new class of amorphous materials and are related to ionic liquids and other ionic soft materials. The unique energy landscape and dynamics of liquid/glass CPs/MOFs with coordination networks offer additional opportunities for properties and functions that are complementary to those of the crystalline state.
AbstractList There are two categories of coordination polymers (CPs): inorganic CPs (i-CPs) and organic ligand bridged CPs (o-CPs). Based on the successful crystal engineering of CPs, we here propose noncrystalline states and functionalities as a new research direction for CPs. Control over the liquid or glassy states in materials is essential to obtain specific properties and functions. Several studies suggest the feasibility of obtaining liquid/glassy states in o-CPs by design principles. The combination of metal ions and organic bridging ligands, together with the liquid/glass phase transformation, offer the possibility to transform o-CPs into ionic liquids and other ionic soft materials. Synchrotron measurements and computational approaches contribute to elucidating the structures and dynamics of the liquid/glassy states of o-CPs. This offers the opportunity to tune the porosity, conductivity, transparency, and other material properties. The unique energy landscape of liquid/glass o-CPs offers opportunities for properties and functions that are complementary to those of the crystalline state.There are two categories of coordination polymers (CPs): inorganic CPs (i-CPs) and organic ligand bridged CPs (o-CPs). Based on the successful crystal engineering of CPs, we here propose noncrystalline states and functionalities as a new research direction for CPs. Control over the liquid or glassy states in materials is essential to obtain specific properties and functions. Several studies suggest the feasibility of obtaining liquid/glassy states in o-CPs by design principles. The combination of metal ions and organic bridging ligands, together with the liquid/glass phase transformation, offer the possibility to transform o-CPs into ionic liquids and other ionic soft materials. Synchrotron measurements and computational approaches contribute to elucidating the structures and dynamics of the liquid/glassy states of o-CPs. This offers the opportunity to tune the porosity, conductivity, transparency, and other material properties. The unique energy landscape of liquid/glass o-CPs offers opportunities for properties and functions that are complementary to those of the crystalline state.
There are two categories of coordination polymers (CPs): inorganic CPs (i‐CPs) and organic ligand bridged CPs (o‐CPs). Based on the successful crystal engineering of CPs, we here propose noncrystalline states and functionalities as a new research direction for CPs. Control over the liquid or glassy states in materials is essential to obtain specific properties and functions. Several studies suggest the feasibility of obtaining liquid/glassy states in o‐CPs by design principles. The combination of metal ions and organic bridging ligands, together with the liquid/glass phase transformation, offer the possibility to transform o‐CPs into ionic liquids and other ionic soft materials. Synchrotron measurements and computational approaches contribute to elucidating the structures and dynamics of the liquid/glassy states of o‐CPs. This offers the opportunity to tune the porosity, conductivity, transparency, and other material properties. The unique energy landscape of liquid/glass o‐CPs offers opportunities for properties and functions that are complementary to those of the crystalline state.
There are two categories of coordination polymers (CPs): inorganic CPs (i‐CPs) and organic ligand bridged CPs (o‐CPs). Based on the successful crystal engineering of CPs, we here propose noncrystalline states and functionalities as a new research direction for CPs. Control over the liquid or glassy states in materials is essential to obtain specific properties and functions. Several studies suggest the feasibility of obtaining liquid/glassy states in o‐CPs by design principles. The combination of metal ions and organic bridging ligands, together with the liquid/glass phase transformation, offer the possibility to transform o‐CPs into ionic liquids and other ionic soft materials. Synchrotron measurements and computational approaches contribute to elucidating the structures and dynamics of the liquid/glassy states of o‐CPs. This offers the opportunity to tune the porosity, conductivity, transparency, and other material properties. The unique energy landscape of liquid/glass o‐CPs offers opportunities for properties and functions that are complementary to those of the crystalline state. Heart of glass: The liquid/glass states of coordination polymers (CPs) and metal‐organic frameworks (MOFs) constitute a new class of amorphous materials and are related to ionic liquids and other ionic soft materials. The unique energy landscape and dynamics of liquid/glass CPs/MOFs with coordination networks offer additional opportunities for properties and functions that are complementary to those of the crystalline state.
Author Kitagawa, Susumu
Ogawa, Tomohiro
Horike, Satoshi
Nagarkar, Sanjog S.
Author_xml – sequence: 1
  givenname: Satoshi
  orcidid: 0000-0001-8530-6364
  surname: Horike
  fullname: Horike, Satoshi
  email: horike@icems.kyoto-u.ac.jp
  organization: Vidyasirimedhi Institute of Science and Technology
– sequence: 2
  givenname: Sanjog S.
  orcidid: 0000-0001-5487-6225
  surname: Nagarkar
  fullname: Nagarkar, Sanjog S.
  organization: National Institute of Advanced Industrial Science and Technology (AIST), Yoshida-Honmachi, Sakyo-ku
– sequence: 3
  givenname: Tomohiro
  orcidid: 0000-0001-7298-0149
  surname: Ogawa
  fullname: Ogawa, Tomohiro
  organization: Kyoto University, Yoshida-Honmachi, Sakyo-ku
– sequence: 4
  givenname: Susumu
  orcidid: 0000-0001-6956-9543
  surname: Kitagawa
  fullname: Kitagawa, Susumu
  email: kitagawa@icems.kyoto-u.ac.jp
  organization: Kyoto University, Yoshida-Honmachi, Sakyo-ku
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31631497$$D View this record in MEDLINE/PubMed
BookMark eNqFkctuEzEUhi1URC-wZYkssWEzwZdxbLOL0qZUCi2Lsh65njPIxWOn9oyi7HgH3pAnqacpRaqEWNk6-j6f4_Mfo4MQAyD0lpIZJYR9NMHBjBGqKeWqfoGOqGC04lLyg3KvOa-kEvQQHed8W3ilyPwVOuR0zmmt5RHaLPAlbPGp6yFkFwPuYsLLGFPrghmmwtfodz2kjE1o8RcYjP_989dV-l46W7xKpodtTD_yJ3wdtya1Ga_GYCfTeHzuTc6wV9fubnRtfo1edsZnePN4nqBvq7Pr5edqfXV-sVysK1vLeV1ZbY0wvOPWQquIuekIAWGEEJJJXmocGGO1YaoDsNYq3rZGEEls-Zu2nJ-gD_t3NynejZCHpnfZgvcmQBxzwziRXGtB6oK-f4bexjGV-SdKSaH0XLNCvXukxpse2maTXG_SrvmzywLM9oBNMecE3RNCSTOF1UxhNU9hFaF-Jlg3PCx9SMb5f2t6r22dh91_mjSLy4uzv-49vXOqwQ
CitedBy_id crossref_primary_10_1002_anie_202112880
crossref_primary_10_3390_molecules27123830
crossref_primary_10_1021_acs_chemmater_4c02267
crossref_primary_10_1021_jacs_3c04248
crossref_primary_10_1039_D3DD00236E
crossref_primary_10_1016_j_ccr_2022_214735
crossref_primary_10_1039_D3TA07361K
crossref_primary_10_1039_D0CC02937H
crossref_primary_10_1016_j_xcrp_2022_100932
crossref_primary_10_1002_adfm_202307226
crossref_primary_10_1039_D3CP02970K
crossref_primary_10_1038_s41467_024_48703_5
crossref_primary_10_1016_j_inoche_2024_112455
crossref_primary_10_1039_D1CC07229C
crossref_primary_10_1016_j_jcis_2023_07_056
crossref_primary_10_1016_j_mtener_2024_101703
crossref_primary_10_1002_ange_202304535
crossref_primary_10_1002_anie_202218902
crossref_primary_10_1002_anie_202117261
crossref_primary_10_1039_D1DT03175A
crossref_primary_10_1002_adfm_202312491
crossref_primary_10_1021_acsmaterialslett_0c00161
crossref_primary_10_1021_jacs_2c10449
crossref_primary_10_3762_bjnano_13_67
crossref_primary_10_1039_D2TA03216C
crossref_primary_10_1021_acsomega_2c05732
crossref_primary_10_1016_j_jnoncrysol_2022_121936
crossref_primary_10_1016_j_inoche_2022_109428
crossref_primary_10_1016_j_ccr_2020_213479
crossref_primary_10_1021_acs_inorgchem_2c02915
crossref_primary_10_1021_acs_inorgchem_4c04181
crossref_primary_10_1021_jacs_0c07257
crossref_primary_10_1002_bkcs_12100
crossref_primary_10_1002_smll_202408466
crossref_primary_10_3390_ma12244088
crossref_primary_10_1002_anie_202102047
crossref_primary_10_1016_j_memsci_2024_123453
crossref_primary_10_1016_j_ica_2023_121731
crossref_primary_10_1016_j_trechm_2021_02_002
crossref_primary_10_1039_D0DT03524F
crossref_primary_10_1039_D4CC01454E
crossref_primary_10_1007_s11426_024_2457_y
crossref_primary_10_1002_anie_202305942
crossref_primary_10_1016_j_poly_2021_115139
crossref_primary_10_1039_D1DT03760A
crossref_primary_10_1016_j_jallcom_2024_174363
crossref_primary_10_1021_acs_inorgchem_2c03035
crossref_primary_10_1016_j_ccr_2023_215403
crossref_primary_10_1039_D1NJ00917F
crossref_primary_10_1039_D1EE02567H
crossref_primary_10_1021_acs_chemmater_2c00325
crossref_primary_10_1021_acs_chemmater_2c01536
crossref_primary_10_1016_j_molstruc_2024_138896
crossref_primary_10_1039_D0TA01379J
crossref_primary_10_1016_j_jssc_2025_125252
crossref_primary_10_1038_s41557_021_00756_5
crossref_primary_10_1039_D0CC03691A
crossref_primary_10_1016_j_molstruc_2024_137687
crossref_primary_10_1021_acs_inorgchem_2c02580
crossref_primary_10_1016_j_molstruc_2021_132196
crossref_primary_10_1002_anie_202211776
crossref_primary_10_1007_s11051_023_05693_7
crossref_primary_10_1038_s41570_023_00474_1
crossref_primary_10_1039_D3CC00834G
crossref_primary_10_1107_S2056989020009482
crossref_primary_10_1016_j_jphotochem_2024_115916
crossref_primary_10_1021_acsami_0c18707
crossref_primary_10_1039_D3SC02305B
crossref_primary_10_1002_bkcs_12801
crossref_primary_10_1039_D0FD00003E
crossref_primary_10_1007_s11433_024_2489_6
crossref_primary_10_3390_nano11082146
crossref_primary_10_1016_j_cej_2024_152295
crossref_primary_10_1021_acs_inorgchem_1c01813
crossref_primary_10_1016_j_pnsc_2024_12_006
crossref_primary_10_1016_j_poly_2024_116907
crossref_primary_10_1039_D3SC04332K
crossref_primary_10_1063_5_0166260
crossref_primary_10_1039_D1TA01043C
crossref_primary_10_1039_D4MH00609G
crossref_primary_10_1002_ange_202218902
crossref_primary_10_1021_jacs_2c08624
crossref_primary_10_1246_bcsj_20210042
crossref_primary_10_1002_adfm_202104300
crossref_primary_10_1002_celc_202400525
crossref_primary_10_1039_D1SC06751F
crossref_primary_10_1063_5_0143404
crossref_primary_10_1002_anie_202004535
crossref_primary_10_1021_acsami_4c12719
crossref_primary_10_1021_acsami_2c22586
crossref_primary_10_1016_j_apmate_2023_100154
crossref_primary_10_1016_j_advmem_2022_100036
crossref_primary_10_1016_j_ica_2021_120441
crossref_primary_10_1021_acs_nanolett_1c04574
crossref_primary_10_1039_D4CC03833A
crossref_primary_10_4019_bjscc_81_74
crossref_primary_10_1016_j_matdes_2022_111094
crossref_primary_10_1021_jacs_3c14778
crossref_primary_10_1098_rsta_2022_0239
crossref_primary_10_1002_ange_202305942
crossref_primary_10_1038_s41467_024_46311_x
crossref_primary_10_1002_smll_202006189
crossref_primary_10_1038_s41467_022_35372_5
crossref_primary_10_1021_acs_inorgchem_4c01886
crossref_primary_10_1038_s41570_020_0209_9
crossref_primary_10_3390_en16010111
crossref_primary_10_1021_acs_chemmater_2c00494
crossref_primary_10_1016_j_ccr_2022_214646
crossref_primary_10_1016_j_recm_2022_08_002
crossref_primary_10_1039_D1CP04669A
crossref_primary_10_1002_ejic_202100664
crossref_primary_10_1021_acs_chemrev_1c00826
crossref_primary_10_1021_jacs_0c11718
crossref_primary_10_1039_D1SC00392E
crossref_primary_10_1039_D2CS00315E
crossref_primary_10_1039_D3NR01359F
crossref_primary_10_1021_acs_nanolett_1c01594
crossref_primary_10_1016_j_apcatb_2024_124518
crossref_primary_10_1021_acs_chemmater_1c03820
crossref_primary_10_1002_ange_202211776
crossref_primary_10_1038_s41563_022_01419_7
crossref_primary_10_1038_s41578_024_00760_4
crossref_primary_10_1002_anie_202304535
crossref_primary_10_1002_ejic_202300607
crossref_primary_10_1002_ange_202117261
crossref_primary_10_1002_adfm_202205343
crossref_primary_10_1002_anie_202411150
crossref_primary_10_1039_D4SC01793E
crossref_primary_10_1007_s10904_022_02353_6
crossref_primary_10_1039_D1FD00058F
crossref_primary_10_1016_j_molstruc_2022_133521
crossref_primary_10_1002_aenm_202405364
crossref_primary_10_1038_s41467_024_51177_0
crossref_primary_10_1039_D1TA06238G
crossref_primary_10_1039_D1DT01116B
crossref_primary_10_1039_D2NR02513B
crossref_primary_10_1063_5_0144718
crossref_primary_10_1021_acs_inorgchem_2c02147
crossref_primary_10_1039_D2CC03179E
crossref_primary_10_1246_bcsj_20230152
crossref_primary_10_1016_j_inoche_2024_112794
crossref_primary_10_1039_D2MH01202B
crossref_primary_10_1016_j_ccr_2020_213743
crossref_primary_10_1002_smll_202405337
crossref_primary_10_1002_anie_202014791
crossref_primary_10_1016_j_cocis_2022_101656
crossref_primary_10_1002_anie_202405307
crossref_primary_10_1007_s10562_022_04140_x
crossref_primary_10_1039_D2ME00091A
crossref_primary_10_1002_ange_202102047
crossref_primary_10_1002_ange_202004535
crossref_primary_10_1002_ange_202112880
crossref_primary_10_1039_D0SC01737J
crossref_primary_10_1039_D0NH00680G
crossref_primary_10_1002_adma_202109029
crossref_primary_10_1002_adma_202415483
crossref_primary_10_1002_asia_202100957
crossref_primary_10_1002_ange_202411150
crossref_primary_10_1021_accountsmr_4c00316
crossref_primary_10_1038_s41563_023_01545_w
crossref_primary_10_1073_pnas_2000916117
crossref_primary_10_1002_ange_202014791
crossref_primary_10_1021_jacs_0c09499
crossref_primary_10_1021_jacs_4c00407
crossref_primary_10_1038_s41467_024_49772_2
crossref_primary_10_1016_j_jcis_2022_10_059
crossref_primary_10_1039_D2CC01375D
crossref_primary_10_1002_adom_202402191
crossref_primary_10_1016_j_ccr_2020_213447
crossref_primary_10_1021_acs_inorgchem_1c01856
crossref_primary_10_1002_ange_202405307
crossref_primary_10_1016_j_electacta_2022_140906
crossref_primary_10_1039_D3CS00087G
crossref_primary_10_1063_5_0109885
crossref_primary_10_1038_s41467_024_52526_9
Cites_doi 10.1002/zaac.19804640117
10.1021/acs.inorgchem.5b00145
10.1103/PhysRevLett.74.4682
10.1002/ange.19951071912
10.1021/acs.accounts.7b00259
10.1039/C3CS60310E
10.1039/b110838g
10.1002/ange.201411540
10.1016/j.ssi.2006.01.041
10.1126/science.aal2456
10.1021/ja511019u
10.1016/j.jorganchem.2005.03.007
10.1088/0034-4885/69/1/R05
10.1039/C8CC02399A
10.1126/sciadv.aao6827
10.1016/S1388-2481(03)00167-X
10.1038/s41563-019-0317-4
10.1002/anie.201604313
10.1038/ncomms9079
10.1038/s41467-018-07532-z
10.1039/c2cs35178a
10.1039/C5CC04626B
10.1038/nchem.444
10.1016/0022-3093(85)90353-9
10.1002/anie.201409420
10.1002/anie.201700962
10.1038/137577a0
10.1039/C8CP02340A
10.1039/C5CC10072K
10.1002/chem.200700090
10.1016/j.jpcs.2013.05.024
10.1038/s41578-018-0054-3
10.1021/jacs.8b11548
10.1021/ja00082a055
10.1002/ange.201700962
10.1002/anie.199717251
10.1021/cr500411q
10.1021/ja00197a079
10.1039/C9CC01468C
10.1021/acs.accounts.6b00500
10.1039/C8TA08016J
10.1038/s41467-018-04553-6
10.1021/cr900040x
10.1002/anie.198607401
10.1002/ange.19971091633
10.1073/pnas.1102079108
10.1002/ange.201409420
10.1021/ja00151a034
10.1039/C4CS00101J
10.1038/s41467-018-07298-4
10.1002/ange.201604313
10.1351/PAC-REC-12-11-20
10.1002/ange.19860980834
10.1002/1521-4095(200107)13:12/13<957::AID-ADMA957>3.0.CO;2-#
10.1039/C9CC02744K
10.1126/science.1152516
10.1021/ja00146a033
10.1021/cg8009496
10.1246/bcsj.71.1739
10.1021/cg501737j
10.1021/ic00035a036
10.1038/ncomms5176
10.1021/jacs.5b13220
10.1002/anie.199521271
10.1016/j.cplett.2008.04.070
10.1002/ange.201600123
10.1039/C5SC01374G
10.1039/b804302g
10.1246/bcsj.32.1221
10.1002/anie.201411540
10.1016/0022-3697(61)90076-2
10.1039/C4CC04370G
10.1088/0953-8984/13/46/201
10.1002/chem.201900979
10.1021/ja981669x
10.1021/ja304693r
10.1038/nature16072
10.1039/c3ee40507a
10.1002/chem.201302777
10.1002/anie.201600123
10.1016/j.pmatsci.2007.01.001
10.1038/s41557-019-0263-4
10.1021/ja301875x
10.1039/C9CC02172H
10.1021/acs.chemmater.5b00046
10.1103/PhysRevLett.59.1136
10.1038/nmat4998
10.1021/jp004132q
10.1021/acsnano.7b02796
10.1021/mp800092t
10.1364/OL.44.001623
10.1021/jacs.9b05558
10.1126/science.1232450
10.1002/cplu.201300063
10.1002/zaac.18970150118
10.1021/cr300162p
10.1038/nature15732
10.1021/jp067705t
10.1021/jp056006y
ContentType Journal Article
Copyright 2019 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim
2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
2020 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2019 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
– notice: 2020 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim
DBID AAYXX
CITATION
NPM
7TM
K9.
7X8
DOI 10.1002/anie.201911384
DatabaseName CrossRef
PubMed
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
ProQuest Health & Medical Complete (Alumni)
Nucleic Acids Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
CrossRef

ProQuest Health & Medical Complete (Alumni)
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3773
Edition International ed. in English
EndPage 6664
ExternalDocumentID 31631497
10_1002_anie_201911384
ANIE201911384
Genre reviewArticle
Journal Article
Review
GrantInformation_xml – fundername: Japan Society for the Promotion of Science
  funderid: 18H05262; 18H02032; 19K22200; 19K15662
– fundername: Japan Science and Technology Agency
  funderid: A-STEP, SICORP "molecular technology"
– fundername: Japan Science and Technology Agency
  grantid: A-STEP, SICORP "molecular technology"
– fundername: Japan Society for the Promotion of Science
  grantid: 19K15662
– fundername: Japan Society for the Promotion of Science
  grantid: 18H05262
– fundername: Japan Society for the Promotion of Science
  grantid: 18H02032
– fundername: Japan Society for the Promotion of Science
  grantid: 19K22200
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABLJU
ABPPZ
ABPVW
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BTSUX
BY8
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
M53
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
TN5
UB1
UPT
UQL
V2E
VQA
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XSW
XV2
YZZ
ZZTAW
~IA
~KM
~WT
AAYXX
ABDBF
ABJNI
AEYWJ
AGHNM
AGYGG
CITATION
NPM
YIN
7TM
K9.
7X8
ID FETCH-LOGICAL-c4764-c9ca5a3f3cced80abf00e5a5557273ced3e2224a28feeccc83dda5070c3169c33
IEDL.DBID DR2
ISSN 1433-7851
1521-3773
IngestDate Thu Jul 10 19:20:55 EDT 2025
Fri Jul 25 12:07:49 EDT 2025
Wed Feb 19 02:29:48 EST 2025
Tue Jul 01 02:27:00 EDT 2025
Thu Apr 24 22:52:26 EDT 2025
Wed Jan 22 16:33:58 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 17
Keywords coordination polymers
glass
melting
phase transition
metal-organic frameworks (MOFs)
Language English
License 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4764-c9ca5a3f3cced80abf00e5a5557273ced3e2224a28feeccc83dda5070c3169c33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0001-6956-9543
0000-0001-5487-6225
0000-0001-7298-0149
0000-0001-8530-6364
PMID 31631497
PQID 2387589692
PQPubID 946352
PageCount 13
ParticipantIDs proquest_miscellaneous_2307399504
proquest_journals_2387589692
pubmed_primary_31631497
crossref_primary_10_1002_anie_201911384
crossref_citationtrail_10_1002_anie_201911384
wiley_primary_10_1002_anie_201911384_ANIE201911384
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate April 20, 2020
PublicationDateYYYYMMDD 2020-04-20
PublicationDate_xml – month: 04
  year: 2020
  text: April 20, 2020
  day: 20
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Angewandte Chemie International Edition
PublicationTitleAlternate Angew Chem Int Ed Engl
PublicationYear 2020
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 1995; 74
2005; 690
2019; 55
2019; 11
1989; 111
2019; 18
2008; 5
2013; 6
2017; 358
2006; 177
2014; 20
2001; 105
2018; 9
2014; 5
2018; 3
2012; 134
2018; 4
2015; 137
1986 1986; 25 98
2006; 69
2008; 319
2019; 25
2010; 110
2015 2015; 54 127
2003; 5
1997 1997; 36 109
2001; 13
2014; 50
1959; 32
1980; 464
1998; 120
2019; 7
2015; 15
1994; 116
2015; 6
2018; 140
2015; 51
1936; 137
2013; 85
2015; 54
1995; 117
2006; 110
2016; 52
2002; 4
2015; 527
2013; 341
2007; 52
2017 2017; 56 129
1992; 31
2019; 141
2018; 20
2007; 13
2014; 114
2014; 43
1987; 59
1961; 18
2017; 50
2015; 27
2016 2016; 55 128
2011; 108
2015; 115
2019; 44
1995 1995; 34 107
2013; 78
2017; 16
2017; 11
2007; 111
2013; 74
2009; 9
1897; 15
2008; 458
1936; 393
1985; 73
2015
2016; 138
1998; 71
2009; 1
2018; 54
2009; 38
2012; 41
e_1_2_8_26_3
e_1_2_8_49_1
e_1_2_8_68_1
e_1_2_8_26_2
e_1_2_8_5_1
e_1_2_8_9_1
e_1_2_8_41_2
e_1_2_8_45_1
e_1_2_8_64_1
e_1_2_8_87_1
e_1_2_8_22_2
e_1_2_8_1_1
e_1_2_8_60_1
e_1_2_8_38_2
e_1_2_8_19_1
e_1_2_8_34_2
e_1_2_8_109_1
e_1_2_8_15_2
e_1_2_8_57_2
e_1_2_8_91_1
e_1_2_8_95_1
e_1_2_8_99_2
e_1_2_8_105_1
e_1_2_8_30_2
e_1_2_8_105_2
e_1_2_8_76_1
e_1_2_8_11_2
e_1_2_8_53_2
e_1_2_8_101_2
e_1_2_8_72_1
e_1_2_8_29_1
e_1_2_8_25_2
e_1_2_8_48_1
Kelly K. L. (e_1_2_8_83_1) 1936; 393
e_1_2_8_2_1
e_1_2_8_110_1
e_1_2_8_6_2
e_1_2_8_6_1
e_1_2_8_67_1
e_1_2_8_21_2
e_1_2_8_63_2
e_1_2_8_86_1
e_1_2_8_40_2
e_1_2_8_82_1
e_1_2_8_18_2
e_1_2_8_14_2
e_1_2_8_37_2
e_1_2_8_79_2
(e_1_2_8_44_1) 2015
e_1_2_8_90_1
e_1_2_8_94_2
e_1_2_8_98_1
e_1_2_8_56_1
e_1_2_8_106_1
e_1_2_8_10_2
e_1_2_8_52_2
e_1_2_8_106_2
e_1_2_8_33_1
e_1_2_8_75_1
e_1_2_8_102_2
e_1_2_8_71_1
e_1_2_8_102_3
e_1_2_8_28_2
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_89_2
e_1_2_8_81_1
e_1_2_8_3_2
e_1_2_8_7_1
e_1_2_8_43_1
e_1_2_8_20_2
e_1_2_8_66_2
e_1_2_8_62_3
e_1_2_8_85_1
e_1_2_8_62_2
e_1_2_8_111_2
e_1_2_8_17_2
e_1_2_8_17_3
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_59_2
e_1_2_8_78_2
e_1_2_8_70_1
e_1_2_8_97_1
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_107_1
e_1_2_8_74_2
e_1_2_8_51_2
e_1_2_8_93_2
e_1_2_8_103_1
e_1_2_8_27_2
e_1_2_8_23_2
e_1_2_8_46_1
e_1_2_8_69_1
e_1_2_8_80_1
e_1_2_8_4_2
e_1_2_8_8_1
e_1_2_8_65_2
e_1_2_8_88_2
e_1_2_8_42_1
e_1_2_8_61_2
e_1_2_8_112_2
e_1_2_8_84_1
e_1_2_8_39_2
e_1_2_8_12_2
e_1_2_8_35_2
e_1_2_8_58_2
e_1_2_8_12_3
e_1_2_8_16_1
e_1_2_8_92_1
e_1_2_8_96_1
e_1_2_8_31_2
e_1_2_8_77_1
e_1_2_8_54_1
e_1_2_8_108_1
e_1_2_8_73_2
e_1_2_8_100_2
e_1_2_8_50_1
e_1_2_8_104_1
References_xml – volume: 115
  start-page: 6357
  year: 2015
  end-page: 6426
  publication-title: Chem. Rev.
– volume: 5
  start-page: 701
  year: 2003
  end-page: 705
  publication-title: Electrochem. Commun.
– volume: 50
  start-page: 514
  year: 2017
  end-page: 516
  publication-title: Acc. Chem. Res.
– volume: 5
  start-page: 4176
  year: 2014
  publication-title: Nat. Commun.
– volume: 319
  start-page: 939
  year: 2008
  end-page: 943
  publication-title: Science
– volume: 9
  start-page: 1137
  year: 2009
  end-page: 1145
  publication-title: Cryst. Growth Des.
– volume: 464
  start-page: 187
  year: 1980
  end-page: 194
  publication-title: Z. Anorg. Allg. Chem.
– volume: 34 107
  start-page: 2127 2295
  year: 1995 1995
  end-page: 2129 2297
  publication-title: Angew. Chem. Int. Ed. Engl. Angew. Chem.
– volume: 43
  start-page: 847
  year: 2014
  end-page: 886
  publication-title: Chem. Soc. Rev.
– volume: 44
  start-page: 1623
  year: 2019
  end-page: 1625
  publication-title: Opt. Lett.
– volume: 11
  start-page: 5293
  year: 2017
  end-page: 5308
  publication-title: ACS Nano
– volume: 111
  start-page: 4641
  year: 2007
  end-page: 4644
  publication-title: J. Phys. Chem. B
– volume: 55 128
  start-page: 10776 10934
  year: 2016 2016
  end-page: 10780 10938
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 6
  start-page: 1656
  year: 2013
  end-page: 1683
  publication-title: Energy Environ. Sci.
– volume: 13
  start-page: 3020
  year: 2007
  end-page: 3025
  publication-title: Chem. Eur. J.
– volume: 20
  start-page: 18291
  year: 2018
  end-page: 18296
  publication-title: Phys. Chem. Chem. Phys.
– volume: 6
  start-page: 8079
  year: 2015
  publication-title: Nat. Commun.
– volume: 16
  start-page: 1149
  year: 2017
  end-page: 1154
  publication-title: Nat. Mater.
– volume: 108
  start-page: 6828
  year: 2011
  end-page: 6832
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 120
  start-page: 8571
  year: 1998
  end-page: 8572
  publication-title: J. Am. Chem. Soc.
– volume: 51
  start-page: 12728
  year: 2015
  end-page: 12731
  publication-title: Chem. Commun.
– volume: 74
  start-page: 4682
  year: 1995
  end-page: 4685
  publication-title: Phys. Rev. Lett.
– volume: 56 129
  start-page: 4976 5058
  year: 2017 2017
  end-page: 4981 5063
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 27
  start-page: 1905
  year: 2015
  end-page: 1916
  publication-title: Chem. Mater.
– volume: 110
  start-page: 3330
  year: 2006
  end-page: 3335
  publication-title: J. Phys. Chem. B
– volume: 55
  start-page: 5455
  year: 2019
  end-page: 5458
  publication-title: Chem. Commun.
– volume: 13
  start-page: R877
  year: 2001
  end-page: R913
  publication-title: J. Phys. Condens. Matter
– volume: 50
  start-page: 10241
  year: 2014
  end-page: 10243
  publication-title: Chem. Commun.
– volume: 15
  start-page: 204
  year: 1897
  end-page: 207
  publication-title: Z. Anorg. Allg. Chem.
– volume: 15
  start-page: 1735
  year: 2015
  end-page: 1739
  publication-title: Cryst. Growth Des.
– volume: 140
  start-page: 17862
  year: 2018
  end-page: 17866
  publication-title: J. Am. Chem. Soc.
– volume: 527
  start-page: 357
  year: 2015
  end-page: 361
  publication-title: Nature
– volume: 18
  start-page: 370
  year: 2019
  end-page: 376
  publication-title: Nat. Mater.
– year: 2015
– volume: 52
  start-page: 1175
  year: 2007
  end-page: 1262
  publication-title: Prog. Mater. Sci.
– volume: 134
  start-page: 12780
  year: 2012
  end-page: 12785
  publication-title: J. Am. Chem. Soc.
– volume: 527
  start-page: 216
  year: 2015
  end-page: 220
  publication-title: Nature
– volume: 74
  start-page: 1560
  year: 2013
  end-page: 1569
  publication-title: J. Phys. Chem. Solids
– volume: 41
  start-page: 7108
  year: 2012
  end-page: 7146
  publication-title: Chem. Soc. Rev.
– volume: 117
  start-page: 10401
  year: 1995
  end-page: 10402
  publication-title: J. Am. Chem. Soc.
– volume: 111
  start-page: 5962
  year: 1989
  end-page: 5964
  publication-title: J. Am. Chem. Soc.
– volume: 78
  start-page: 578
  year: 2013
  end-page: 588
  publication-title: ChemPlusChem
– volume: 55
  start-page: 8705
  year: 2019
  end-page: 8715
  publication-title: Chem. Commun.
– volume: 54
  start-page: 4364
  year: 2015
  end-page: 4370
  publication-title: Inorg. Chem.
– volume: 690
  start-page: 3498
  year: 2005
  end-page: 3512
  publication-title: J. Organomet. Chem.
– volume: 59
  start-page: 1136
  year: 1987
  end-page: 1139
  publication-title: Phys. Rev. Lett.
– volume: 458
  start-page: 88
  year: 2008
  end-page: 91
  publication-title: Chem. Phys. Lett.
– volume: 54 127
  start-page: 932 946
  year: 2015 2015
  end-page: 936 950
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 69
  start-page: 233
  year: 2006
  end-page: 299
  publication-title: Rep. Prog. Phys.
– volume: 114
  start-page: 11060
  year: 2014
  end-page: 11082
  publication-title: Chem. Rev.
– volume: 85
  start-page: 1715
  year: 2013
  end-page: 1724
  publication-title: Pure Appl. Chem.
– volume: 52
  start-page: 3750
  year: 2016
  end-page: 3753
  publication-title: Chem. Commun.
– volume: 25
  start-page: 10111
  year: 2019
  end-page: 10117
  publication-title: Chem. Eur. J.
– volume: 341
  start-page: 376
  year: 2013
  end-page: 379
  publication-title: Science
– volume: 137
  start-page: 577
  year: 1936
  end-page: 578
  publication-title: Nature
– volume: 11
  start-page: 622
  year: 2019
  end-page: 628
  publication-title: Nat. Chem.
– volume: 110
  start-page: 240
  year: 2010
  end-page: 267
  publication-title: Chem. Rev.
– volume: 7
  start-page: 985
  year: 2019
  end-page: 990
  publication-title: J. Mater. Chem. A
– volume: 25 98
  start-page: 740 759
  year: 1986 1986
  end-page: 741 761
  publication-title: Angew. Chem. Int. Ed. Engl. Angew. Chem.
– volume: 71
  start-page: 1739
  year: 1998
  end-page: 1753
  publication-title: Bull. Chem. Soc. Jpn.
– volume: 20
  start-page: 5338
  year: 2014
  end-page: 5345
  publication-title: Chem. Eur. J.
– volume: 134
  start-page: 7612
  year: 2012
  end-page: 7615
  publication-title: J. Am. Chem. Soc.
– volume: 54 127
  start-page: 7234 7340
  year: 2015 2015
  end-page: 7254 7362
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 358
  start-page: 347
  year: 2017
  end-page: 351
  publication-title: Science
– volume: 38
  start-page: 1380
  year: 2009
  end-page: 1399
  publication-title: Chem. Soc. Rev.
– volume: 54
  start-page: 6859
  year: 2018
  end-page: 6862
  publication-title: Chem. Commun.
– volume: 177
  start-page: 2569
  year: 2006
  end-page: 2573
  publication-title: Solid State Ionics
– volume: 116
  start-page: 1151
  year: 1994
  end-page: 1152
  publication-title: J. Am. Chem. Soc.
– volume: 9
  start-page: 4899
  year: 2018
  publication-title: Nat. Commun.
– volume: 137
  start-page: 864
  year: 2015
  end-page: 870
  publication-title: J. Am. Chem. Soc.
– volume: 73
  start-page: 273
  year: 1985
  end-page: 284
  publication-title: J. Non-Cryst. Solids
– volume: 5
  start-page: 905
  year: 2008
  end-page: 920
  publication-title: Mol. Pharm.
– volume: 32
  start-page: 1221
  year: 1959
  end-page: 1226
  publication-title: Bull. Chem. Soc. Jpn.
– volume: 4
  start-page: 73
  year: 2002
  end-page: 80
  publication-title: Green Chem.
– volume: 43
  start-page: 6062
  year: 2014
  end-page: 6096
  publication-title: Chem. Soc. Rev.
– volume: 138
  start-page: 3484
  year: 2016
  end-page: 3492
  publication-title: J. Am. Chem. Soc.
– volume: 55
  start-page: 8528
  year: 2019
  end-page: 8531
  publication-title: Chem. Commun.
– volume: 9
  start-page: 2135
  year: 2018
  publication-title: Nat. Commun.
– volume: 31
  start-page: 1714
  year: 1992
  end-page: 1717
  publication-title: Inorg. Chem.
– volume: 3
  start-page: 431
  year: 2018
  end-page: 440
  publication-title: Nat. Rev. Mater.
– volume: 1
  start-page: 695
  year: 2009
  end-page: 704
  publication-title: Nat. Chem.
– volume: 55 128
  start-page: 5195 5281
  year: 2016 2016
  end-page: 5200 5286
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 18
  start-page: 1
  year: 1961
  end-page: 8
  publication-title: J. Phys. Chem. Solids
– volume: 9
  start-page: 5042
  year: 2018
  publication-title: Nat. Commun.
– volume: 36 109
  start-page: 1725 1844
  year: 1997 1997
  end-page: 1727 1846
  publication-title: Angew. Chem. Int. Ed. Engl. Angew. Chem.
– volume: 50
  start-page: 2684
  year: 2017
  end-page: 2692
  publication-title: Acc. Chem. Res.
– volume: 393
  start-page: 152
  year: 1936
  publication-title: US Bur. Mines Bull.
– volume: 4
  start-page: eaao6827
  year: 2018
  publication-title: Sci. Adv.
– volume: 6
  start-page: 3684
  year: 2015
  end-page: 3691
  publication-title: Chem. Sci.
– volume: 141
  start-page: 12362
  year: 2019
  end-page: 12371
  publication-title: J. Am. Chem. Soc.
– volume: 105
  start-page: 4603
  year: 2001
  end-page: 4610
  publication-title: J. Phys. Chem. B
– volume: 117
  start-page: 11600
  year: 1995
  end-page: 11601
  publication-title: J. Am. Chem. Soc.
– volume: 13
  start-page: 957
  year: 2001
  end-page: 966
  publication-title: Adv. Mater.
– ident: e_1_2_8_81_1
  doi: 10.1002/zaac.19804640117
– ident: e_1_2_8_108_1
  doi: 10.1021/acs.inorgchem.5b00145
– ident: e_1_2_8_46_1
  doi: 10.1103/PhysRevLett.74.4682
– ident: e_1_2_8_12_3
  doi: 10.1002/ange.19951071912
– ident: e_1_2_8_32_1
  doi: 10.1021/acs.accounts.7b00259
– ident: e_1_2_8_59_2
  doi: 10.1039/C3CS60310E
– ident: e_1_2_8_57_2
  doi: 10.1039/b110838g
– ident: e_1_2_8_106_2
  doi: 10.1002/ange.201411540
– ident: e_1_2_8_107_1
  doi: 10.1016/j.ssi.2006.01.041
– ident: e_1_2_8_27_2
  doi: 10.1126/science.aal2456
– ident: e_1_2_8_36_1
– ident: e_1_2_8_38_2
  doi: 10.1021/ja511019u
– ident: e_1_2_8_58_2
  doi: 10.1016/j.jorganchem.2005.03.007
– ident: e_1_2_8_45_1
  doi: 10.1088/0034-4885/69/1/R05
– ident: e_1_2_8_63_2
  doi: 10.1039/C8CC02399A
– ident: e_1_2_8_93_2
  doi: 10.1126/sciadv.aao6827
– ident: e_1_2_8_110_1
– ident: e_1_2_8_88_2
  doi: 10.1016/S1388-2481(03)00167-X
– ident: e_1_2_8_96_1
  doi: 10.1038/s41563-019-0317-4
– ident: e_1_2_8_26_2
  doi: 10.1002/anie.201604313
– ident: e_1_2_8_39_2
  doi: 10.1038/ncomms9079
– ident: e_1_2_8_68_1
  doi: 10.1038/s41467-018-07532-z
– ident: e_1_2_8_111_2
  doi: 10.1039/c2cs35178a
– ident: e_1_2_8_61_2
  doi: 10.1039/C5CC04626B
– ident: e_1_2_8_21_2
  doi: 10.1038/nchem.444
– ident: e_1_2_8_103_1
  doi: 10.1016/0022-3093(85)90353-9
– ident: e_1_2_8_72_1
– ident: e_1_2_8_9_1
– volume-title: Modern Glass Characterization
  year: 2015
  ident: e_1_2_8_44_1
– ident: e_1_2_8_102_2
  doi: 10.1002/anie.201409420
– ident: e_1_2_8_105_1
  doi: 10.1002/anie.201700962
– ident: e_1_2_8_3_2
  doi: 10.1038/137577a0
– ident: e_1_2_8_94_2
  doi: 10.1039/C8CP02340A
– ident: e_1_2_8_97_1
  doi: 10.1039/C5CC10072K
– ident: e_1_2_8_99_2
  doi: 10.1002/chem.200700090
– ident: e_1_2_8_71_1
  doi: 10.1016/j.jpcs.2013.05.024
– ident: e_1_2_8_40_2
  doi: 10.1038/s41578-018-0054-3
– ident: e_1_2_8_91_1
  doi: 10.1021/jacs.8b11548
– ident: e_1_2_8_10_2
  doi: 10.1021/ja00082a055
– volume: 393
  start-page: 152
  year: 1936
  ident: e_1_2_8_83_1
  publication-title: US Bur. Mines Bull.
– ident: e_1_2_8_105_2
  doi: 10.1002/ange.201700962
– ident: e_1_2_8_17_2
  doi: 10.1002/anie.199717251
– ident: e_1_2_8_76_1
  doi: 10.1021/cr500411q
– ident: e_1_2_8_16_1
– ident: e_1_2_8_7_1
  doi: 10.1021/ja00197a079
– ident: e_1_2_8_60_1
– ident: e_1_2_8_41_2
  doi: 10.1039/C9CC01468C
– ident: e_1_2_8_19_1
– ident: e_1_2_8_15_2
  doi: 10.1021/acs.accounts.6b00500
– ident: e_1_2_8_67_1
  doi: 10.1039/C8TA08016J
– ident: e_1_2_8_90_1
  doi: 10.1038/s41467-018-04553-6
– ident: e_1_2_8_98_1
– ident: e_1_2_8_92_1
– ident: e_1_2_8_95_1
  doi: 10.1021/cr900040x
– ident: e_1_2_8_6_1
  doi: 10.1002/anie.198607401
– ident: e_1_2_8_17_3
  doi: 10.1002/ange.19971091633
– ident: e_1_2_8_30_2
  doi: 10.1073/pnas.1102079108
– ident: e_1_2_8_102_3
  doi: 10.1002/ange.201409420
– ident: e_1_2_8_54_1
  doi: 10.1021/ja00151a034
– ident: e_1_2_8_22_2
  doi: 10.1039/C4CS00101J
– ident: e_1_2_8_28_2
  doi: 10.1038/s41467-018-07298-4
– ident: e_1_2_8_26_3
  doi: 10.1002/ange.201604313
– ident: e_1_2_8_1_1
  doi: 10.1351/PAC-REC-12-11-20
– ident: e_1_2_8_6_2
  doi: 10.1002/ange.19860980834
– ident: e_1_2_8_74_2
  doi: 10.1002/1521-4095(200107)13:12/13<957::AID-ADMA957>3.0.CO;2-#
– ident: e_1_2_8_70_1
  doi: 10.1039/C9CC02744K
– ident: e_1_2_8_43_1
  doi: 10.1126/science.1152516
– ident: e_1_2_8_11_2
  doi: 10.1021/ja00146a033
– ident: e_1_2_8_49_1
  doi: 10.1021/cg8009496
– ident: e_1_2_8_13_1
– ident: e_1_2_8_14_2
  doi: 10.1246/bcsj.71.1739
– ident: e_1_2_8_69_1
  doi: 10.1021/cg501737j
– ident: e_1_2_8_8_1
  doi: 10.1021/ic00035a036
– ident: e_1_2_8_31_2
  doi: 10.1038/ncomms5176
– ident: e_1_2_8_65_2
  doi: 10.1021/jacs.5b13220
– ident: e_1_2_8_12_2
  doi: 10.1002/anie.199521271
– ident: e_1_2_8_80_1
  doi: 10.1016/j.cplett.2008.04.070
– ident: e_1_2_8_77_1
– ident: e_1_2_8_62_3
  doi: 10.1002/ange.201600123
– ident: e_1_2_8_100_2
  doi: 10.1039/C5SC01374G
– ident: e_1_2_8_20_2
  doi: 10.1039/b804302g
– ident: e_1_2_8_5_1
  doi: 10.1246/bcsj.32.1221
– ident: e_1_2_8_106_1
  doi: 10.1002/anie.201411540
– ident: e_1_2_8_64_1
– ident: e_1_2_8_73_2
  doi: 10.1016/0022-3697(61)90076-2
– ident: e_1_2_8_104_1
  doi: 10.1039/C4CC04370G
– ident: e_1_2_8_29_1
– ident: e_1_2_8_48_1
  doi: 10.1088/0953-8984/13/46/201
– ident: e_1_2_8_53_2
  doi: 10.1002/chem.201900979
– ident: e_1_2_8_18_2
  doi: 10.1021/ja981669x
– ident: e_1_2_8_50_1
– ident: e_1_2_8_42_1
  doi: 10.1021/ja304693r
– ident: e_1_2_8_101_2
  doi: 10.1038/nature16072
– ident: e_1_2_8_34_2
  doi: 10.1039/c3ee40507a
– ident: e_1_2_8_51_2
  doi: 10.1002/chem.201302777
– ident: e_1_2_8_62_2
  doi: 10.1002/anie.201600123
– ident: e_1_2_8_75_1
  doi: 10.1016/j.pmatsci.2007.01.001
– ident: e_1_2_8_56_1
– ident: e_1_2_8_85_1
  doi: 10.1038/s41557-019-0263-4
– ident: e_1_2_8_37_2
  doi: 10.1021/ja301875x
– ident: e_1_2_8_52_2
  doi: 10.1039/C9CC02172H
– ident: e_1_2_8_33_1
– ident: e_1_2_8_23_2
  doi: 10.1021/acs.chemmater.5b00046
– ident: e_1_2_8_47_1
  doi: 10.1103/PhysRevLett.59.1136
– ident: e_1_2_8_82_1
  doi: 10.1038/nmat4998
– ident: e_1_2_8_84_1
  doi: 10.1021/jp004132q
– ident: e_1_2_8_35_2
  doi: 10.1021/acsnano.7b02796
– ident: e_1_2_8_2_1
– ident: e_1_2_8_89_2
  doi: 10.1021/mp800092t
– ident: e_1_2_8_109_1
  doi: 10.1364/OL.44.001623
– ident: e_1_2_8_24_1
– ident: e_1_2_8_66_2
  doi: 10.1021/jacs.9b05558
– ident: e_1_2_8_86_1
  doi: 10.1126/science.1232450
– ident: e_1_2_8_55_1
  doi: 10.1002/cplu.201300063
– ident: e_1_2_8_4_2
  doi: 10.1002/zaac.18970150118
– ident: e_1_2_8_112_2
  doi: 10.1021/cr300162p
– ident: e_1_2_8_25_2
  doi: 10.1038/nature15732
– ident: e_1_2_8_79_2
  doi: 10.1021/jp067705t
– ident: e_1_2_8_78_2
  doi: 10.1021/jp056006y
– ident: e_1_2_8_87_1
SSID ssj0028806
Score 2.6445224
SecondaryResourceType review_article
Snippet There are two categories of coordination polymers (CPs): inorganic CPs (i‐CPs) and organic ligand bridged CPs (o‐CPs). Based on the successful crystal...
There are two categories of coordination polymers (CPs): inorganic CPs (i-CPs) and organic ligand bridged CPs (o-CPs). Based on the successful crystal...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 6652
SubjectTerms Computer applications
Coordination polymers
Feasibility studies
Glass
Ionic liquids
Ions
Ligands
Material properties
melting
Metal ions
Metal-organic frameworks
metal–organic frameworks (MOFs)
phase transition
Phase transitions
Polymers
Porosity
Title A New Dimension for Coordination Polymers and Metal–Organic Frameworks: Towards Functional Glasses and Liquids
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.201911384
https://www.ncbi.nlm.nih.gov/pubmed/31631497
https://www.proquest.com/docview/2387589692
https://www.proquest.com/docview/2307399504
Volume 59
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwELUQF7iwL4WCjITEKWDsOE24VaVlEUUItRK3yHEcqaJKC2kPcOIf-EO-hJm4CRSEkOCYxHZie8Z-Mxm_IWQ_4V4cKxY4EcwpGCiedAIhjeO7PK5J5cNDdA20r73zrnt5J-8-neK3_BClww01I1-vUcFVlB19kIbiCWwMzQJtFT4SgmLAFqKi25I_ioNw2uNFQjiYhb5gbWT8aLr69K70DWpOI9d862ktElV8tI04uT8cj6JD_fyFz_E_vVoiCxNcSutWkJbJjElXyFyjSAe3SoZ1CgsiPcVsAOhho4B2aWMAtmvPOhTpzaD_hF5wqtKYtg2g-reXV3vWU9NWEQSWndBOHqqb0RbsqdYVSc8QxBtb9ar3MO7F2RrptpqdxrkzSdfgaLfmuY4OtJJKJEJrE_tMRQljRiopJWIkuCcMgBFXcT8xIDjaFyAIAEeZFsdeoIVYJ7PpIDWbhHpGi1qklRdBwzFLAuknXGswhhIBF26FOMV0hXrCZY4pNfqhZWHmIY5jWI5jhRyU5YeWxePHktVi9sOJNmchwBowqwIv4BWyVz6G8cefKyo1gzGWwX-egWTQxIaVmvJV0D8BlmitQng-9798Q1i_vmiWV1t_qbRN5jk6BpgLy2CVzI4ex2YH0NMo2s015B3YzRK2
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LbxMxEB5BOIQLj7ZASqBGqsRpU9deb3a5RSEhKUmEUCL1tvJ6vVJEtEmb5FBO_Af-Ib-EmXV2UUBVJXr0-rF-zNjfjMczAKeZCNJU88hLcE1RQAmUF0llvdAXaVvpEDNJNTCeBIOZf3GpSmtCegvj_ENUCjfijGK_JgYnhfTZH6-h9ASbbLOQXWXoP4RHFNa7kKq-Vh6kBJKne2AkpUdx6Eu_jVyc7dffP5f-AZv72LU4fPpPISm77WxOvrW2m6Rlvv_l0fFe43oGT3bQlHUcLT2HBzY_gHq3jAh3CKsOwz2RfaSAAKRkYwh4WXeJ4uvc6RTZl-XihhThTOcpG1sE9r9-_HTPPQ3rl3Zg6w9sWljrrlkfj1WnjWSfCMdbV3U0v9rO0_URzPq9aXfg7SI2eMZvB75nIqOVlpk0xqYh10nGuVVaKUUwCb9Ji3jE1yLMLNKOCSXSAiJSbuR5EBkpX0AtX-b2FbDAGtlOjA4SbDjlWaTCTBiD8lAmMeE3wCvXKzY7d-YUVWMRO0fMIqZ5jKt5bMD7qvzKOfK4tWSzXP54x9DrGJENSlZREIkGvKuycf7pfkXndrmlMnTtGSmOTbx0ZFP9CscnURhtN0AUi39HH-LOZNirUsf_U-kE6oPpeBSPhpPPr-GxID0B93FXbEJtc721bxBMbZK3Bbv8BvisFtE
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6VVgIutDwKS1swEhKntMavTXpb7TZtoV1VqJV6ixzHkVZU2YXdPcCp_6H_kF_SmXgTWCqEBEfHj_gxY38z9swAvC2FKQrLkyjHNUUBxegokdpHsRJFV9sYM0k1cDo0Rxfqw6W-_MWKP_iHaBVuxBn1fk0MPinKvZ9OQ8kCm55mIbfKWN2DNWV4THQ9-NQ6kBJIncG-SMqIwtA3bhu52Fuuv3ws3cGay9C1PnvSdbBNr8OTk8-781m-677_5tDxf4a1AY8WwJT1AiU9hhVfPYEH_SYe3FOY9BjuiGxA4QBIxcYQ7rL-GIXXUdAosrPx1TdSgzNbFezUI6z_cX0TjD0dS5tXYNN9dl6_1Z2yFA_VoItkh4Tifah6MvoyHxXTZ3CRHpz3j6JFvIbIqa5RkUuc1VaW0jlfxNzmJedeW601gST8Jj2iEWVFXHqkHBdLpATEo9zJ9yZxUm7CajWu_AtgxjvZzZ01OTZc8DLRcSmcQ2molJhQHYia5crcwpk5xdS4yoIbZpHRPGbtPHbgXVt-Etx4_LHkdrP62YKdpxniGpSrEpOIDrxps3H-6XbFVn48pzJ06Zlojk08D1TT_grHJ1EU7XZA1Gv_lz5kveHxQZt6-S-VXsP9s0GanRwPP27BQ0FKAq5wS9yG1dnXud9BJDXLX9XMcgu9YhWJ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+New+Dimension+for+Coordination+Polymers+and+Metal%E2%80%93Organic+Frameworks%3A+Towards+Functional+Glasses+and+Liquids&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Horike%2C+Satoshi&rft.au=Nagarkar%2C+Sanjog+S.&rft.au=Ogawa%2C+Tomohiro&rft.au=Kitagawa%2C+Susumu&rft.date=2020-04-20&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=59&rft.issue=17&rft.spage=6652&rft.epage=6664&rft_id=info:doi/10.1002%2Fanie.201911384&rft.externalDBID=10.1002%252Fanie.201911384&rft.externalDocID=ANIE201911384
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon