A New Dimension for Coordination Polymers and Metal–Organic Frameworks: Towards Functional Glasses and Liquids
There are two categories of coordination polymers (CPs): inorganic CPs (i‐CPs) and organic ligand bridged CPs (o‐CPs). Based on the successful crystal engineering of CPs, we here propose noncrystalline states and functionalities as a new research direction for CPs. Control over the liquid or glassy...
Saved in:
Published in | Angewandte Chemie International Edition Vol. 59; no. 17; pp. 6652 - 6664 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
20.04.2020
|
Edition | International ed. in English |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | There are two categories of coordination polymers (CPs): inorganic CPs (i‐CPs) and organic ligand bridged CPs (o‐CPs). Based on the successful crystal engineering of CPs, we here propose noncrystalline states and functionalities as a new research direction for CPs. Control over the liquid or glassy states in materials is essential to obtain specific properties and functions. Several studies suggest the feasibility of obtaining liquid/glassy states in o‐CPs by design principles. The combination of metal ions and organic bridging ligands, together with the liquid/glass phase transformation, offer the possibility to transform o‐CPs into ionic liquids and other ionic soft materials. Synchrotron measurements and computational approaches contribute to elucidating the structures and dynamics of the liquid/glassy states of o‐CPs. This offers the opportunity to tune the porosity, conductivity, transparency, and other material properties. The unique energy landscape of liquid/glass o‐CPs offers opportunities for properties and functions that are complementary to those of the crystalline state.
Heart of glass: The liquid/glass states of coordination polymers (CPs) and metal‐organic frameworks (MOFs) constitute a new class of amorphous materials and are related to ionic liquids and other ionic soft materials. The unique energy landscape and dynamics of liquid/glass CPs/MOFs with coordination networks offer additional opportunities for properties and functions that are complementary to those of the crystalline state. |
---|---|
AbstractList | There are two categories of coordination polymers (CPs): inorganic CPs (i-CPs) and organic ligand bridged CPs (o-CPs). Based on the successful crystal engineering of CPs, we here propose noncrystalline states and functionalities as a new research direction for CPs. Control over the liquid or glassy states in materials is essential to obtain specific properties and functions. Several studies suggest the feasibility of obtaining liquid/glassy states in o-CPs by design principles. The combination of metal ions and organic bridging ligands, together with the liquid/glass phase transformation, offer the possibility to transform o-CPs into ionic liquids and other ionic soft materials. Synchrotron measurements and computational approaches contribute to elucidating the structures and dynamics of the liquid/glassy states of o-CPs. This offers the opportunity to tune the porosity, conductivity, transparency, and other material properties. The unique energy landscape of liquid/glass o-CPs offers opportunities for properties and functions that are complementary to those of the crystalline state.There are two categories of coordination polymers (CPs): inorganic CPs (i-CPs) and organic ligand bridged CPs (o-CPs). Based on the successful crystal engineering of CPs, we here propose noncrystalline states and functionalities as a new research direction for CPs. Control over the liquid or glassy states in materials is essential to obtain specific properties and functions. Several studies suggest the feasibility of obtaining liquid/glassy states in o-CPs by design principles. The combination of metal ions and organic bridging ligands, together with the liquid/glass phase transformation, offer the possibility to transform o-CPs into ionic liquids and other ionic soft materials. Synchrotron measurements and computational approaches contribute to elucidating the structures and dynamics of the liquid/glassy states of o-CPs. This offers the opportunity to tune the porosity, conductivity, transparency, and other material properties. The unique energy landscape of liquid/glass o-CPs offers opportunities for properties and functions that are complementary to those of the crystalline state. There are two categories of coordination polymers (CPs): inorganic CPs (i‐CPs) and organic ligand bridged CPs (o‐CPs). Based on the successful crystal engineering of CPs, we here propose noncrystalline states and functionalities as a new research direction for CPs. Control over the liquid or glassy states in materials is essential to obtain specific properties and functions. Several studies suggest the feasibility of obtaining liquid/glassy states in o‐CPs by design principles. The combination of metal ions and organic bridging ligands, together with the liquid/glass phase transformation, offer the possibility to transform o‐CPs into ionic liquids and other ionic soft materials. Synchrotron measurements and computational approaches contribute to elucidating the structures and dynamics of the liquid/glassy states of o‐CPs. This offers the opportunity to tune the porosity, conductivity, transparency, and other material properties. The unique energy landscape of liquid/glass o‐CPs offers opportunities for properties and functions that are complementary to those of the crystalline state. There are two categories of coordination polymers (CPs): inorganic CPs (i‐CPs) and organic ligand bridged CPs (o‐CPs). Based on the successful crystal engineering of CPs, we here propose noncrystalline states and functionalities as a new research direction for CPs. Control over the liquid or glassy states in materials is essential to obtain specific properties and functions. Several studies suggest the feasibility of obtaining liquid/glassy states in o‐CPs by design principles. The combination of metal ions and organic bridging ligands, together with the liquid/glass phase transformation, offer the possibility to transform o‐CPs into ionic liquids and other ionic soft materials. Synchrotron measurements and computational approaches contribute to elucidating the structures and dynamics of the liquid/glassy states of o‐CPs. This offers the opportunity to tune the porosity, conductivity, transparency, and other material properties. The unique energy landscape of liquid/glass o‐CPs offers opportunities for properties and functions that are complementary to those of the crystalline state. Heart of glass: The liquid/glass states of coordination polymers (CPs) and metal‐organic frameworks (MOFs) constitute a new class of amorphous materials and are related to ionic liquids and other ionic soft materials. The unique energy landscape and dynamics of liquid/glass CPs/MOFs with coordination networks offer additional opportunities for properties and functions that are complementary to those of the crystalline state. |
Author | Kitagawa, Susumu Ogawa, Tomohiro Horike, Satoshi Nagarkar, Sanjog S. |
Author_xml | – sequence: 1 givenname: Satoshi orcidid: 0000-0001-8530-6364 surname: Horike fullname: Horike, Satoshi email: horike@icems.kyoto-u.ac.jp organization: Vidyasirimedhi Institute of Science and Technology – sequence: 2 givenname: Sanjog S. orcidid: 0000-0001-5487-6225 surname: Nagarkar fullname: Nagarkar, Sanjog S. organization: National Institute of Advanced Industrial Science and Technology (AIST), Yoshida-Honmachi, Sakyo-ku – sequence: 3 givenname: Tomohiro orcidid: 0000-0001-7298-0149 surname: Ogawa fullname: Ogawa, Tomohiro organization: Kyoto University, Yoshida-Honmachi, Sakyo-ku – sequence: 4 givenname: Susumu orcidid: 0000-0001-6956-9543 surname: Kitagawa fullname: Kitagawa, Susumu email: kitagawa@icems.kyoto-u.ac.jp organization: Kyoto University, Yoshida-Honmachi, Sakyo-ku |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31631497$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkctuEzEUhi1URC-wZYkssWEzwZdxbLOL0qZUCi2Lsh65njPIxWOn9oyi7HgH3pAnqacpRaqEWNk6-j6f4_Mfo4MQAyD0lpIZJYR9NMHBjBGqKeWqfoGOqGC04lLyg3KvOa-kEvQQHed8W3ilyPwVOuR0zmmt5RHaLPAlbPGp6yFkFwPuYsLLGFPrghmmwtfodz2kjE1o8RcYjP_989dV-l46W7xKpodtTD_yJ3wdtya1Ga_GYCfTeHzuTc6wV9fubnRtfo1edsZnePN4nqBvq7Pr5edqfXV-sVysK1vLeV1ZbY0wvOPWQquIuekIAWGEEJJJXmocGGO1YaoDsNYq3rZGEEls-Zu2nJ-gD_t3NynejZCHpnfZgvcmQBxzwziRXGtB6oK-f4bexjGV-SdKSaH0XLNCvXukxpse2maTXG_SrvmzywLM9oBNMecE3RNCSTOF1UxhNU9hFaF-Jlg3PCx9SMb5f2t6r22dh91_mjSLy4uzv-49vXOqwQ |
CitedBy_id | crossref_primary_10_1002_anie_202112880 crossref_primary_10_3390_molecules27123830 crossref_primary_10_1021_acs_chemmater_4c02267 crossref_primary_10_1021_jacs_3c04248 crossref_primary_10_1039_D3DD00236E crossref_primary_10_1016_j_ccr_2022_214735 crossref_primary_10_1039_D3TA07361K crossref_primary_10_1039_D0CC02937H crossref_primary_10_1016_j_xcrp_2022_100932 crossref_primary_10_1002_adfm_202307226 crossref_primary_10_1039_D3CP02970K crossref_primary_10_1038_s41467_024_48703_5 crossref_primary_10_1016_j_inoche_2024_112455 crossref_primary_10_1039_D1CC07229C crossref_primary_10_1016_j_jcis_2023_07_056 crossref_primary_10_1016_j_mtener_2024_101703 crossref_primary_10_1002_ange_202304535 crossref_primary_10_1002_anie_202218902 crossref_primary_10_1002_anie_202117261 crossref_primary_10_1039_D1DT03175A crossref_primary_10_1002_adfm_202312491 crossref_primary_10_1021_acsmaterialslett_0c00161 crossref_primary_10_1021_jacs_2c10449 crossref_primary_10_3762_bjnano_13_67 crossref_primary_10_1039_D2TA03216C crossref_primary_10_1021_acsomega_2c05732 crossref_primary_10_1016_j_jnoncrysol_2022_121936 crossref_primary_10_1016_j_inoche_2022_109428 crossref_primary_10_1016_j_ccr_2020_213479 crossref_primary_10_1021_acs_inorgchem_2c02915 crossref_primary_10_1021_acs_inorgchem_4c04181 crossref_primary_10_1021_jacs_0c07257 crossref_primary_10_1002_bkcs_12100 crossref_primary_10_1002_smll_202408466 crossref_primary_10_3390_ma12244088 crossref_primary_10_1002_anie_202102047 crossref_primary_10_1016_j_memsci_2024_123453 crossref_primary_10_1016_j_ica_2023_121731 crossref_primary_10_1016_j_trechm_2021_02_002 crossref_primary_10_1039_D0DT03524F crossref_primary_10_1039_D4CC01454E crossref_primary_10_1007_s11426_024_2457_y crossref_primary_10_1002_anie_202305942 crossref_primary_10_1016_j_poly_2021_115139 crossref_primary_10_1039_D1DT03760A crossref_primary_10_1016_j_jallcom_2024_174363 crossref_primary_10_1021_acs_inorgchem_2c03035 crossref_primary_10_1016_j_ccr_2023_215403 crossref_primary_10_1039_D1NJ00917F crossref_primary_10_1039_D1EE02567H crossref_primary_10_1021_acs_chemmater_2c00325 crossref_primary_10_1021_acs_chemmater_2c01536 crossref_primary_10_1016_j_molstruc_2024_138896 crossref_primary_10_1039_D0TA01379J crossref_primary_10_1016_j_jssc_2025_125252 crossref_primary_10_1038_s41557_021_00756_5 crossref_primary_10_1039_D0CC03691A crossref_primary_10_1016_j_molstruc_2024_137687 crossref_primary_10_1021_acs_inorgchem_2c02580 crossref_primary_10_1016_j_molstruc_2021_132196 crossref_primary_10_1002_anie_202211776 crossref_primary_10_1007_s11051_023_05693_7 crossref_primary_10_1038_s41570_023_00474_1 crossref_primary_10_1039_D3CC00834G crossref_primary_10_1107_S2056989020009482 crossref_primary_10_1016_j_jphotochem_2024_115916 crossref_primary_10_1021_acsami_0c18707 crossref_primary_10_1039_D3SC02305B crossref_primary_10_1002_bkcs_12801 crossref_primary_10_1039_D0FD00003E crossref_primary_10_1007_s11433_024_2489_6 crossref_primary_10_3390_nano11082146 crossref_primary_10_1016_j_cej_2024_152295 crossref_primary_10_1021_acs_inorgchem_1c01813 crossref_primary_10_1016_j_pnsc_2024_12_006 crossref_primary_10_1016_j_poly_2024_116907 crossref_primary_10_1039_D3SC04332K crossref_primary_10_1063_5_0166260 crossref_primary_10_1039_D1TA01043C crossref_primary_10_1039_D4MH00609G crossref_primary_10_1002_ange_202218902 crossref_primary_10_1021_jacs_2c08624 crossref_primary_10_1246_bcsj_20210042 crossref_primary_10_1002_adfm_202104300 crossref_primary_10_1002_celc_202400525 crossref_primary_10_1039_D1SC06751F crossref_primary_10_1063_5_0143404 crossref_primary_10_1002_anie_202004535 crossref_primary_10_1021_acsami_4c12719 crossref_primary_10_1021_acsami_2c22586 crossref_primary_10_1016_j_apmate_2023_100154 crossref_primary_10_1016_j_advmem_2022_100036 crossref_primary_10_1016_j_ica_2021_120441 crossref_primary_10_1021_acs_nanolett_1c04574 crossref_primary_10_1039_D4CC03833A crossref_primary_10_4019_bjscc_81_74 crossref_primary_10_1016_j_matdes_2022_111094 crossref_primary_10_1021_jacs_3c14778 crossref_primary_10_1098_rsta_2022_0239 crossref_primary_10_1002_ange_202305942 crossref_primary_10_1038_s41467_024_46311_x crossref_primary_10_1002_smll_202006189 crossref_primary_10_1038_s41467_022_35372_5 crossref_primary_10_1021_acs_inorgchem_4c01886 crossref_primary_10_1038_s41570_020_0209_9 crossref_primary_10_3390_en16010111 crossref_primary_10_1021_acs_chemmater_2c00494 crossref_primary_10_1016_j_ccr_2022_214646 crossref_primary_10_1016_j_recm_2022_08_002 crossref_primary_10_1039_D1CP04669A crossref_primary_10_1002_ejic_202100664 crossref_primary_10_1021_acs_chemrev_1c00826 crossref_primary_10_1021_jacs_0c11718 crossref_primary_10_1039_D1SC00392E crossref_primary_10_1039_D2CS00315E crossref_primary_10_1039_D3NR01359F crossref_primary_10_1021_acs_nanolett_1c01594 crossref_primary_10_1016_j_apcatb_2024_124518 crossref_primary_10_1021_acs_chemmater_1c03820 crossref_primary_10_1002_ange_202211776 crossref_primary_10_1038_s41563_022_01419_7 crossref_primary_10_1038_s41578_024_00760_4 crossref_primary_10_1002_anie_202304535 crossref_primary_10_1002_ejic_202300607 crossref_primary_10_1002_ange_202117261 crossref_primary_10_1002_adfm_202205343 crossref_primary_10_1002_anie_202411150 crossref_primary_10_1039_D4SC01793E crossref_primary_10_1007_s10904_022_02353_6 crossref_primary_10_1039_D1FD00058F crossref_primary_10_1016_j_molstruc_2022_133521 crossref_primary_10_1002_aenm_202405364 crossref_primary_10_1038_s41467_024_51177_0 crossref_primary_10_1039_D1TA06238G crossref_primary_10_1039_D1DT01116B crossref_primary_10_1039_D2NR02513B crossref_primary_10_1063_5_0144718 crossref_primary_10_1021_acs_inorgchem_2c02147 crossref_primary_10_1039_D2CC03179E crossref_primary_10_1246_bcsj_20230152 crossref_primary_10_1016_j_inoche_2024_112794 crossref_primary_10_1039_D2MH01202B crossref_primary_10_1016_j_ccr_2020_213743 crossref_primary_10_1002_smll_202405337 crossref_primary_10_1002_anie_202014791 crossref_primary_10_1016_j_cocis_2022_101656 crossref_primary_10_1002_anie_202405307 crossref_primary_10_1007_s10562_022_04140_x crossref_primary_10_1039_D2ME00091A crossref_primary_10_1002_ange_202102047 crossref_primary_10_1002_ange_202004535 crossref_primary_10_1002_ange_202112880 crossref_primary_10_1039_D0SC01737J crossref_primary_10_1039_D0NH00680G crossref_primary_10_1002_adma_202109029 crossref_primary_10_1002_adma_202415483 crossref_primary_10_1002_asia_202100957 crossref_primary_10_1002_ange_202411150 crossref_primary_10_1021_accountsmr_4c00316 crossref_primary_10_1038_s41563_023_01545_w crossref_primary_10_1073_pnas_2000916117 crossref_primary_10_1002_ange_202014791 crossref_primary_10_1021_jacs_0c09499 crossref_primary_10_1021_jacs_4c00407 crossref_primary_10_1038_s41467_024_49772_2 crossref_primary_10_1016_j_jcis_2022_10_059 crossref_primary_10_1039_D2CC01375D crossref_primary_10_1002_adom_202402191 crossref_primary_10_1016_j_ccr_2020_213447 crossref_primary_10_1021_acs_inorgchem_1c01856 crossref_primary_10_1002_ange_202405307 crossref_primary_10_1016_j_electacta_2022_140906 crossref_primary_10_1039_D3CS00087G crossref_primary_10_1063_5_0109885 crossref_primary_10_1038_s41467_024_52526_9 |
Cites_doi | 10.1002/zaac.19804640117 10.1021/acs.inorgchem.5b00145 10.1103/PhysRevLett.74.4682 10.1002/ange.19951071912 10.1021/acs.accounts.7b00259 10.1039/C3CS60310E 10.1039/b110838g 10.1002/ange.201411540 10.1016/j.ssi.2006.01.041 10.1126/science.aal2456 10.1021/ja511019u 10.1016/j.jorganchem.2005.03.007 10.1088/0034-4885/69/1/R05 10.1039/C8CC02399A 10.1126/sciadv.aao6827 10.1016/S1388-2481(03)00167-X 10.1038/s41563-019-0317-4 10.1002/anie.201604313 10.1038/ncomms9079 10.1038/s41467-018-07532-z 10.1039/c2cs35178a 10.1039/C5CC04626B 10.1038/nchem.444 10.1016/0022-3093(85)90353-9 10.1002/anie.201409420 10.1002/anie.201700962 10.1038/137577a0 10.1039/C8CP02340A 10.1039/C5CC10072K 10.1002/chem.200700090 10.1016/j.jpcs.2013.05.024 10.1038/s41578-018-0054-3 10.1021/jacs.8b11548 10.1021/ja00082a055 10.1002/ange.201700962 10.1002/anie.199717251 10.1021/cr500411q 10.1021/ja00197a079 10.1039/C9CC01468C 10.1021/acs.accounts.6b00500 10.1039/C8TA08016J 10.1038/s41467-018-04553-6 10.1021/cr900040x 10.1002/anie.198607401 10.1002/ange.19971091633 10.1073/pnas.1102079108 10.1002/ange.201409420 10.1021/ja00151a034 10.1039/C4CS00101J 10.1038/s41467-018-07298-4 10.1002/ange.201604313 10.1351/PAC-REC-12-11-20 10.1002/ange.19860980834 10.1002/1521-4095(200107)13:12/13<957::AID-ADMA957>3.0.CO;2-# 10.1039/C9CC02744K 10.1126/science.1152516 10.1021/ja00146a033 10.1021/cg8009496 10.1246/bcsj.71.1739 10.1021/cg501737j 10.1021/ic00035a036 10.1038/ncomms5176 10.1021/jacs.5b13220 10.1002/anie.199521271 10.1016/j.cplett.2008.04.070 10.1002/ange.201600123 10.1039/C5SC01374G 10.1039/b804302g 10.1246/bcsj.32.1221 10.1002/anie.201411540 10.1016/0022-3697(61)90076-2 10.1039/C4CC04370G 10.1088/0953-8984/13/46/201 10.1002/chem.201900979 10.1021/ja981669x 10.1021/ja304693r 10.1038/nature16072 10.1039/c3ee40507a 10.1002/chem.201302777 10.1002/anie.201600123 10.1016/j.pmatsci.2007.01.001 10.1038/s41557-019-0263-4 10.1021/ja301875x 10.1039/C9CC02172H 10.1021/acs.chemmater.5b00046 10.1103/PhysRevLett.59.1136 10.1038/nmat4998 10.1021/jp004132q 10.1021/acsnano.7b02796 10.1021/mp800092t 10.1364/OL.44.001623 10.1021/jacs.9b05558 10.1126/science.1232450 10.1002/cplu.201300063 10.1002/zaac.18970150118 10.1021/cr300162p 10.1038/nature15732 10.1021/jp067705t 10.1021/jp056006y |
ContentType | Journal Article |
Copyright | 2019 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. 2020 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: 2019 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. – notice: 2020 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | AAYXX CITATION NPM 7TM K9. 7X8 |
DOI | 10.1002/anie.201911384 |
DatabaseName | CrossRef PubMed Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed ProQuest Health & Medical Complete (Alumni) Nucleic Acids Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef ProQuest Health & Medical Complete (Alumni) PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3773 |
Edition | International ed. in English |
EndPage | 6664 |
ExternalDocumentID | 31631497 10_1002_anie_201911384 ANIE201911384 |
Genre | reviewArticle Journal Article Review |
GrantInformation_xml | – fundername: Japan Society for the Promotion of Science funderid: 18H05262; 18H02032; 19K22200; 19K15662 – fundername: Japan Science and Technology Agency funderid: A-STEP, SICORP "molecular technology" – fundername: Japan Science and Technology Agency grantid: A-STEP, SICORP "molecular technology" – fundername: Japan Society for the Promotion of Science grantid: 19K15662 – fundername: Japan Society for the Promotion of Science grantid: 18H05262 – fundername: Japan Society for the Promotion of Science grantid: 18H02032 – fundername: Japan Society for the Promotion of Science grantid: 19K22200 |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABLJU ABPPZ ABPVW ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BTSUX BY8 CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES M53 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ TN5 UB1 UPT UQL V2E VQA W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XSW XV2 YZZ ZZTAW ~IA ~KM ~WT AAYXX ABDBF ABJNI AEYWJ AGHNM AGYGG CITATION NPM YIN 7TM K9. 7X8 |
ID | FETCH-LOGICAL-c4764-c9ca5a3f3cced80abf00e5a5557273ced3e2224a28feeccc83dda5070c3169c33 |
IEDL.DBID | DR2 |
ISSN | 1433-7851 1521-3773 |
IngestDate | Thu Jul 10 19:20:55 EDT 2025 Fri Jul 25 12:07:49 EDT 2025 Wed Feb 19 02:29:48 EST 2025 Tue Jul 01 02:27:00 EDT 2025 Thu Apr 24 22:52:26 EDT 2025 Wed Jan 22 16:33:58 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 17 |
Keywords | coordination polymers glass melting phase transition metal-organic frameworks (MOFs) |
Language | English |
License | 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4764-c9ca5a3f3cced80abf00e5a5557273ced3e2224a28feeccc83dda5070c3169c33 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0001-6956-9543 0000-0001-5487-6225 0000-0001-7298-0149 0000-0001-8530-6364 |
PMID | 31631497 |
PQID | 2387589692 |
PQPubID | 946352 |
PageCount | 13 |
ParticipantIDs | proquest_miscellaneous_2307399504 proquest_journals_2387589692 pubmed_primary_31631497 crossref_primary_10_1002_anie_201911384 crossref_citationtrail_10_1002_anie_201911384 wiley_primary_10_1002_anie_201911384_ANIE201911384 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | April 20, 2020 |
PublicationDateYYYYMMDD | 2020-04-20 |
PublicationDate_xml | – month: 04 year: 2020 text: April 20, 2020 day: 20 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Angewandte Chemie International Edition |
PublicationTitleAlternate | Angew Chem Int Ed Engl |
PublicationYear | 2020 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 1995; 74 2005; 690 2019; 55 2019; 11 1989; 111 2019; 18 2008; 5 2013; 6 2017; 358 2006; 177 2014; 20 2001; 105 2018; 9 2014; 5 2018; 3 2012; 134 2018; 4 2015; 137 1986 1986; 25 98 2006; 69 2008; 319 2019; 25 2010; 110 2015 2015; 54 127 2003; 5 1997 1997; 36 109 2001; 13 2014; 50 1959; 32 1980; 464 1998; 120 2019; 7 2015; 15 1994; 116 2015; 6 2018; 140 2015; 51 1936; 137 2013; 85 2015; 54 1995; 117 2006; 110 2016; 52 2002; 4 2015; 527 2013; 341 2007; 52 2017 2017; 56 129 1992; 31 2019; 141 2018; 20 2007; 13 2014; 114 2014; 43 1987; 59 1961; 18 2017; 50 2015; 27 2016 2016; 55 128 2011; 108 2015; 115 2019; 44 1995 1995; 34 107 2013; 78 2017; 16 2017; 11 2007; 111 2013; 74 2009; 9 1897; 15 2008; 458 1936; 393 1985; 73 2015 2016; 138 1998; 71 2009; 1 2018; 54 2009; 38 2012; 41 e_1_2_8_26_3 e_1_2_8_49_1 e_1_2_8_68_1 e_1_2_8_26_2 e_1_2_8_5_1 e_1_2_8_9_1 e_1_2_8_41_2 e_1_2_8_45_1 e_1_2_8_64_1 e_1_2_8_87_1 e_1_2_8_22_2 e_1_2_8_1_1 e_1_2_8_60_1 e_1_2_8_38_2 e_1_2_8_19_1 e_1_2_8_34_2 e_1_2_8_109_1 e_1_2_8_15_2 e_1_2_8_57_2 e_1_2_8_91_1 e_1_2_8_95_1 e_1_2_8_99_2 e_1_2_8_105_1 e_1_2_8_30_2 e_1_2_8_105_2 e_1_2_8_76_1 e_1_2_8_11_2 e_1_2_8_53_2 e_1_2_8_101_2 e_1_2_8_72_1 e_1_2_8_29_1 e_1_2_8_25_2 e_1_2_8_48_1 Kelly K. L. (e_1_2_8_83_1) 1936; 393 e_1_2_8_2_1 e_1_2_8_110_1 e_1_2_8_6_2 e_1_2_8_6_1 e_1_2_8_67_1 e_1_2_8_21_2 e_1_2_8_63_2 e_1_2_8_86_1 e_1_2_8_40_2 e_1_2_8_82_1 e_1_2_8_18_2 e_1_2_8_14_2 e_1_2_8_37_2 e_1_2_8_79_2 (e_1_2_8_44_1) 2015 e_1_2_8_90_1 e_1_2_8_94_2 e_1_2_8_98_1 e_1_2_8_56_1 e_1_2_8_106_1 e_1_2_8_10_2 e_1_2_8_52_2 e_1_2_8_106_2 e_1_2_8_33_1 e_1_2_8_75_1 e_1_2_8_102_2 e_1_2_8_71_1 e_1_2_8_102_3 e_1_2_8_28_2 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_89_2 e_1_2_8_81_1 e_1_2_8_3_2 e_1_2_8_7_1 e_1_2_8_43_1 e_1_2_8_20_2 e_1_2_8_66_2 e_1_2_8_62_3 e_1_2_8_85_1 e_1_2_8_62_2 e_1_2_8_111_2 e_1_2_8_17_2 e_1_2_8_17_3 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_59_2 e_1_2_8_78_2 e_1_2_8_70_1 e_1_2_8_97_1 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_107_1 e_1_2_8_74_2 e_1_2_8_51_2 e_1_2_8_93_2 e_1_2_8_103_1 e_1_2_8_27_2 e_1_2_8_23_2 e_1_2_8_46_1 e_1_2_8_69_1 e_1_2_8_80_1 e_1_2_8_4_2 e_1_2_8_8_1 e_1_2_8_65_2 e_1_2_8_88_2 e_1_2_8_42_1 e_1_2_8_61_2 e_1_2_8_112_2 e_1_2_8_84_1 e_1_2_8_39_2 e_1_2_8_12_2 e_1_2_8_35_2 e_1_2_8_58_2 e_1_2_8_12_3 e_1_2_8_16_1 e_1_2_8_92_1 e_1_2_8_96_1 e_1_2_8_31_2 e_1_2_8_77_1 e_1_2_8_54_1 e_1_2_8_108_1 e_1_2_8_73_2 e_1_2_8_100_2 e_1_2_8_50_1 e_1_2_8_104_1 |
References_xml | – volume: 115 start-page: 6357 year: 2015 end-page: 6426 publication-title: Chem. Rev. – volume: 5 start-page: 701 year: 2003 end-page: 705 publication-title: Electrochem. Commun. – volume: 50 start-page: 514 year: 2017 end-page: 516 publication-title: Acc. Chem. Res. – volume: 5 start-page: 4176 year: 2014 publication-title: Nat. Commun. – volume: 319 start-page: 939 year: 2008 end-page: 943 publication-title: Science – volume: 9 start-page: 1137 year: 2009 end-page: 1145 publication-title: Cryst. Growth Des. – volume: 464 start-page: 187 year: 1980 end-page: 194 publication-title: Z. Anorg. Allg. Chem. – volume: 34 107 start-page: 2127 2295 year: 1995 1995 end-page: 2129 2297 publication-title: Angew. Chem. Int. Ed. Engl. Angew. Chem. – volume: 43 start-page: 847 year: 2014 end-page: 886 publication-title: Chem. Soc. Rev. – volume: 44 start-page: 1623 year: 2019 end-page: 1625 publication-title: Opt. Lett. – volume: 11 start-page: 5293 year: 2017 end-page: 5308 publication-title: ACS Nano – volume: 111 start-page: 4641 year: 2007 end-page: 4644 publication-title: J. Phys. Chem. B – volume: 55 128 start-page: 10776 10934 year: 2016 2016 end-page: 10780 10938 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 6 start-page: 1656 year: 2013 end-page: 1683 publication-title: Energy Environ. Sci. – volume: 13 start-page: 3020 year: 2007 end-page: 3025 publication-title: Chem. Eur. J. – volume: 20 start-page: 18291 year: 2018 end-page: 18296 publication-title: Phys. Chem. Chem. Phys. – volume: 6 start-page: 8079 year: 2015 publication-title: Nat. Commun. – volume: 16 start-page: 1149 year: 2017 end-page: 1154 publication-title: Nat. Mater. – volume: 108 start-page: 6828 year: 2011 end-page: 6832 publication-title: Proc. Natl. Acad. Sci. USA – volume: 120 start-page: 8571 year: 1998 end-page: 8572 publication-title: J. Am. Chem. Soc. – volume: 51 start-page: 12728 year: 2015 end-page: 12731 publication-title: Chem. Commun. – volume: 74 start-page: 4682 year: 1995 end-page: 4685 publication-title: Phys. Rev. Lett. – volume: 56 129 start-page: 4976 5058 year: 2017 2017 end-page: 4981 5063 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 27 start-page: 1905 year: 2015 end-page: 1916 publication-title: Chem. Mater. – volume: 110 start-page: 3330 year: 2006 end-page: 3335 publication-title: J. Phys. Chem. B – volume: 55 start-page: 5455 year: 2019 end-page: 5458 publication-title: Chem. Commun. – volume: 13 start-page: R877 year: 2001 end-page: R913 publication-title: J. Phys. Condens. Matter – volume: 50 start-page: 10241 year: 2014 end-page: 10243 publication-title: Chem. Commun. – volume: 15 start-page: 204 year: 1897 end-page: 207 publication-title: Z. Anorg. Allg. Chem. – volume: 15 start-page: 1735 year: 2015 end-page: 1739 publication-title: Cryst. Growth Des. – volume: 140 start-page: 17862 year: 2018 end-page: 17866 publication-title: J. Am. Chem. Soc. – volume: 527 start-page: 357 year: 2015 end-page: 361 publication-title: Nature – volume: 18 start-page: 370 year: 2019 end-page: 376 publication-title: Nat. Mater. – year: 2015 – volume: 52 start-page: 1175 year: 2007 end-page: 1262 publication-title: Prog. Mater. Sci. – volume: 134 start-page: 12780 year: 2012 end-page: 12785 publication-title: J. Am. Chem. Soc. – volume: 527 start-page: 216 year: 2015 end-page: 220 publication-title: Nature – volume: 74 start-page: 1560 year: 2013 end-page: 1569 publication-title: J. Phys. Chem. Solids – volume: 41 start-page: 7108 year: 2012 end-page: 7146 publication-title: Chem. Soc. Rev. – volume: 117 start-page: 10401 year: 1995 end-page: 10402 publication-title: J. Am. Chem. Soc. – volume: 111 start-page: 5962 year: 1989 end-page: 5964 publication-title: J. Am. Chem. Soc. – volume: 78 start-page: 578 year: 2013 end-page: 588 publication-title: ChemPlusChem – volume: 55 start-page: 8705 year: 2019 end-page: 8715 publication-title: Chem. Commun. – volume: 54 start-page: 4364 year: 2015 end-page: 4370 publication-title: Inorg. Chem. – volume: 690 start-page: 3498 year: 2005 end-page: 3512 publication-title: J. Organomet. Chem. – volume: 59 start-page: 1136 year: 1987 end-page: 1139 publication-title: Phys. Rev. Lett. – volume: 458 start-page: 88 year: 2008 end-page: 91 publication-title: Chem. Phys. Lett. – volume: 54 127 start-page: 932 946 year: 2015 2015 end-page: 936 950 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 69 start-page: 233 year: 2006 end-page: 299 publication-title: Rep. Prog. Phys. – volume: 114 start-page: 11060 year: 2014 end-page: 11082 publication-title: Chem. Rev. – volume: 85 start-page: 1715 year: 2013 end-page: 1724 publication-title: Pure Appl. Chem. – volume: 52 start-page: 3750 year: 2016 end-page: 3753 publication-title: Chem. Commun. – volume: 25 start-page: 10111 year: 2019 end-page: 10117 publication-title: Chem. Eur. J. – volume: 341 start-page: 376 year: 2013 end-page: 379 publication-title: Science – volume: 137 start-page: 577 year: 1936 end-page: 578 publication-title: Nature – volume: 11 start-page: 622 year: 2019 end-page: 628 publication-title: Nat. Chem. – volume: 110 start-page: 240 year: 2010 end-page: 267 publication-title: Chem. Rev. – volume: 7 start-page: 985 year: 2019 end-page: 990 publication-title: J. Mater. Chem. A – volume: 25 98 start-page: 740 759 year: 1986 1986 end-page: 741 761 publication-title: Angew. Chem. Int. Ed. Engl. Angew. Chem. – volume: 71 start-page: 1739 year: 1998 end-page: 1753 publication-title: Bull. Chem. Soc. Jpn. – volume: 20 start-page: 5338 year: 2014 end-page: 5345 publication-title: Chem. Eur. J. – volume: 134 start-page: 7612 year: 2012 end-page: 7615 publication-title: J. Am. Chem. Soc. – volume: 54 127 start-page: 7234 7340 year: 2015 2015 end-page: 7254 7362 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 358 start-page: 347 year: 2017 end-page: 351 publication-title: Science – volume: 38 start-page: 1380 year: 2009 end-page: 1399 publication-title: Chem. Soc. Rev. – volume: 54 start-page: 6859 year: 2018 end-page: 6862 publication-title: Chem. Commun. – volume: 177 start-page: 2569 year: 2006 end-page: 2573 publication-title: Solid State Ionics – volume: 116 start-page: 1151 year: 1994 end-page: 1152 publication-title: J. Am. Chem. Soc. – volume: 9 start-page: 4899 year: 2018 publication-title: Nat. Commun. – volume: 137 start-page: 864 year: 2015 end-page: 870 publication-title: J. Am. Chem. Soc. – volume: 73 start-page: 273 year: 1985 end-page: 284 publication-title: J. Non-Cryst. Solids – volume: 5 start-page: 905 year: 2008 end-page: 920 publication-title: Mol. Pharm. – volume: 32 start-page: 1221 year: 1959 end-page: 1226 publication-title: Bull. Chem. Soc. Jpn. – volume: 4 start-page: 73 year: 2002 end-page: 80 publication-title: Green Chem. – volume: 43 start-page: 6062 year: 2014 end-page: 6096 publication-title: Chem. Soc. Rev. – volume: 138 start-page: 3484 year: 2016 end-page: 3492 publication-title: J. Am. Chem. Soc. – volume: 55 start-page: 8528 year: 2019 end-page: 8531 publication-title: Chem. Commun. – volume: 9 start-page: 2135 year: 2018 publication-title: Nat. Commun. – volume: 31 start-page: 1714 year: 1992 end-page: 1717 publication-title: Inorg. Chem. – volume: 3 start-page: 431 year: 2018 end-page: 440 publication-title: Nat. Rev. Mater. – volume: 1 start-page: 695 year: 2009 end-page: 704 publication-title: Nat. Chem. – volume: 55 128 start-page: 5195 5281 year: 2016 2016 end-page: 5200 5286 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 18 start-page: 1 year: 1961 end-page: 8 publication-title: J. Phys. Chem. Solids – volume: 9 start-page: 5042 year: 2018 publication-title: Nat. Commun. – volume: 36 109 start-page: 1725 1844 year: 1997 1997 end-page: 1727 1846 publication-title: Angew. Chem. Int. Ed. Engl. Angew. Chem. – volume: 50 start-page: 2684 year: 2017 end-page: 2692 publication-title: Acc. Chem. Res. – volume: 393 start-page: 152 year: 1936 publication-title: US Bur. Mines Bull. – volume: 4 start-page: eaao6827 year: 2018 publication-title: Sci. Adv. – volume: 6 start-page: 3684 year: 2015 end-page: 3691 publication-title: Chem. Sci. – volume: 141 start-page: 12362 year: 2019 end-page: 12371 publication-title: J. Am. Chem. Soc. – volume: 105 start-page: 4603 year: 2001 end-page: 4610 publication-title: J. Phys. Chem. B – volume: 117 start-page: 11600 year: 1995 end-page: 11601 publication-title: J. Am. Chem. Soc. – volume: 13 start-page: 957 year: 2001 end-page: 966 publication-title: Adv. Mater. – ident: e_1_2_8_81_1 doi: 10.1002/zaac.19804640117 – ident: e_1_2_8_108_1 doi: 10.1021/acs.inorgchem.5b00145 – ident: e_1_2_8_46_1 doi: 10.1103/PhysRevLett.74.4682 – ident: e_1_2_8_12_3 doi: 10.1002/ange.19951071912 – ident: e_1_2_8_32_1 doi: 10.1021/acs.accounts.7b00259 – ident: e_1_2_8_59_2 doi: 10.1039/C3CS60310E – ident: e_1_2_8_57_2 doi: 10.1039/b110838g – ident: e_1_2_8_106_2 doi: 10.1002/ange.201411540 – ident: e_1_2_8_107_1 doi: 10.1016/j.ssi.2006.01.041 – ident: e_1_2_8_27_2 doi: 10.1126/science.aal2456 – ident: e_1_2_8_36_1 – ident: e_1_2_8_38_2 doi: 10.1021/ja511019u – ident: e_1_2_8_58_2 doi: 10.1016/j.jorganchem.2005.03.007 – ident: e_1_2_8_45_1 doi: 10.1088/0034-4885/69/1/R05 – ident: e_1_2_8_63_2 doi: 10.1039/C8CC02399A – ident: e_1_2_8_93_2 doi: 10.1126/sciadv.aao6827 – ident: e_1_2_8_110_1 – ident: e_1_2_8_88_2 doi: 10.1016/S1388-2481(03)00167-X – ident: e_1_2_8_96_1 doi: 10.1038/s41563-019-0317-4 – ident: e_1_2_8_26_2 doi: 10.1002/anie.201604313 – ident: e_1_2_8_39_2 doi: 10.1038/ncomms9079 – ident: e_1_2_8_68_1 doi: 10.1038/s41467-018-07532-z – ident: e_1_2_8_111_2 doi: 10.1039/c2cs35178a – ident: e_1_2_8_61_2 doi: 10.1039/C5CC04626B – ident: e_1_2_8_21_2 doi: 10.1038/nchem.444 – ident: e_1_2_8_103_1 doi: 10.1016/0022-3093(85)90353-9 – ident: e_1_2_8_72_1 – ident: e_1_2_8_9_1 – volume-title: Modern Glass Characterization year: 2015 ident: e_1_2_8_44_1 – ident: e_1_2_8_102_2 doi: 10.1002/anie.201409420 – ident: e_1_2_8_105_1 doi: 10.1002/anie.201700962 – ident: e_1_2_8_3_2 doi: 10.1038/137577a0 – ident: e_1_2_8_94_2 doi: 10.1039/C8CP02340A – ident: e_1_2_8_97_1 doi: 10.1039/C5CC10072K – ident: e_1_2_8_99_2 doi: 10.1002/chem.200700090 – ident: e_1_2_8_71_1 doi: 10.1016/j.jpcs.2013.05.024 – ident: e_1_2_8_40_2 doi: 10.1038/s41578-018-0054-3 – ident: e_1_2_8_91_1 doi: 10.1021/jacs.8b11548 – ident: e_1_2_8_10_2 doi: 10.1021/ja00082a055 – volume: 393 start-page: 152 year: 1936 ident: e_1_2_8_83_1 publication-title: US Bur. Mines Bull. – ident: e_1_2_8_105_2 doi: 10.1002/ange.201700962 – ident: e_1_2_8_17_2 doi: 10.1002/anie.199717251 – ident: e_1_2_8_76_1 doi: 10.1021/cr500411q – ident: e_1_2_8_16_1 – ident: e_1_2_8_7_1 doi: 10.1021/ja00197a079 – ident: e_1_2_8_60_1 – ident: e_1_2_8_41_2 doi: 10.1039/C9CC01468C – ident: e_1_2_8_19_1 – ident: e_1_2_8_15_2 doi: 10.1021/acs.accounts.6b00500 – ident: e_1_2_8_67_1 doi: 10.1039/C8TA08016J – ident: e_1_2_8_90_1 doi: 10.1038/s41467-018-04553-6 – ident: e_1_2_8_98_1 – ident: e_1_2_8_92_1 – ident: e_1_2_8_95_1 doi: 10.1021/cr900040x – ident: e_1_2_8_6_1 doi: 10.1002/anie.198607401 – ident: e_1_2_8_17_3 doi: 10.1002/ange.19971091633 – ident: e_1_2_8_30_2 doi: 10.1073/pnas.1102079108 – ident: e_1_2_8_102_3 doi: 10.1002/ange.201409420 – ident: e_1_2_8_54_1 doi: 10.1021/ja00151a034 – ident: e_1_2_8_22_2 doi: 10.1039/C4CS00101J – ident: e_1_2_8_28_2 doi: 10.1038/s41467-018-07298-4 – ident: e_1_2_8_26_3 doi: 10.1002/ange.201604313 – ident: e_1_2_8_1_1 doi: 10.1351/PAC-REC-12-11-20 – ident: e_1_2_8_6_2 doi: 10.1002/ange.19860980834 – ident: e_1_2_8_74_2 doi: 10.1002/1521-4095(200107)13:12/13<957::AID-ADMA957>3.0.CO;2-# – ident: e_1_2_8_70_1 doi: 10.1039/C9CC02744K – ident: e_1_2_8_43_1 doi: 10.1126/science.1152516 – ident: e_1_2_8_11_2 doi: 10.1021/ja00146a033 – ident: e_1_2_8_49_1 doi: 10.1021/cg8009496 – ident: e_1_2_8_13_1 – ident: e_1_2_8_14_2 doi: 10.1246/bcsj.71.1739 – ident: e_1_2_8_69_1 doi: 10.1021/cg501737j – ident: e_1_2_8_8_1 doi: 10.1021/ic00035a036 – ident: e_1_2_8_31_2 doi: 10.1038/ncomms5176 – ident: e_1_2_8_65_2 doi: 10.1021/jacs.5b13220 – ident: e_1_2_8_12_2 doi: 10.1002/anie.199521271 – ident: e_1_2_8_80_1 doi: 10.1016/j.cplett.2008.04.070 – ident: e_1_2_8_77_1 – ident: e_1_2_8_62_3 doi: 10.1002/ange.201600123 – ident: e_1_2_8_100_2 doi: 10.1039/C5SC01374G – ident: e_1_2_8_20_2 doi: 10.1039/b804302g – ident: e_1_2_8_5_1 doi: 10.1246/bcsj.32.1221 – ident: e_1_2_8_106_1 doi: 10.1002/anie.201411540 – ident: e_1_2_8_64_1 – ident: e_1_2_8_73_2 doi: 10.1016/0022-3697(61)90076-2 – ident: e_1_2_8_104_1 doi: 10.1039/C4CC04370G – ident: e_1_2_8_29_1 – ident: e_1_2_8_48_1 doi: 10.1088/0953-8984/13/46/201 – ident: e_1_2_8_53_2 doi: 10.1002/chem.201900979 – ident: e_1_2_8_18_2 doi: 10.1021/ja981669x – ident: e_1_2_8_50_1 – ident: e_1_2_8_42_1 doi: 10.1021/ja304693r – ident: e_1_2_8_101_2 doi: 10.1038/nature16072 – ident: e_1_2_8_34_2 doi: 10.1039/c3ee40507a – ident: e_1_2_8_51_2 doi: 10.1002/chem.201302777 – ident: e_1_2_8_62_2 doi: 10.1002/anie.201600123 – ident: e_1_2_8_75_1 doi: 10.1016/j.pmatsci.2007.01.001 – ident: e_1_2_8_56_1 – ident: e_1_2_8_85_1 doi: 10.1038/s41557-019-0263-4 – ident: e_1_2_8_37_2 doi: 10.1021/ja301875x – ident: e_1_2_8_52_2 doi: 10.1039/C9CC02172H – ident: e_1_2_8_33_1 – ident: e_1_2_8_23_2 doi: 10.1021/acs.chemmater.5b00046 – ident: e_1_2_8_47_1 doi: 10.1103/PhysRevLett.59.1136 – ident: e_1_2_8_82_1 doi: 10.1038/nmat4998 – ident: e_1_2_8_84_1 doi: 10.1021/jp004132q – ident: e_1_2_8_35_2 doi: 10.1021/acsnano.7b02796 – ident: e_1_2_8_2_1 – ident: e_1_2_8_89_2 doi: 10.1021/mp800092t – ident: e_1_2_8_109_1 doi: 10.1364/OL.44.001623 – ident: e_1_2_8_24_1 – ident: e_1_2_8_66_2 doi: 10.1021/jacs.9b05558 – ident: e_1_2_8_86_1 doi: 10.1126/science.1232450 – ident: e_1_2_8_55_1 doi: 10.1002/cplu.201300063 – ident: e_1_2_8_4_2 doi: 10.1002/zaac.18970150118 – ident: e_1_2_8_112_2 doi: 10.1021/cr300162p – ident: e_1_2_8_25_2 doi: 10.1038/nature15732 – ident: e_1_2_8_79_2 doi: 10.1021/jp067705t – ident: e_1_2_8_78_2 doi: 10.1021/jp056006y – ident: e_1_2_8_87_1 |
SSID | ssj0028806 |
Score | 2.6445224 |
SecondaryResourceType | review_article |
Snippet | There are two categories of coordination polymers (CPs): inorganic CPs (i‐CPs) and organic ligand bridged CPs (o‐CPs). Based on the successful crystal... There are two categories of coordination polymers (CPs): inorganic CPs (i-CPs) and organic ligand bridged CPs (o-CPs). Based on the successful crystal... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 6652 |
SubjectTerms | Computer applications Coordination polymers Feasibility studies Glass Ionic liquids Ions Ligands Material properties melting Metal ions Metal-organic frameworks metal–organic frameworks (MOFs) phase transition Phase transitions Polymers Porosity |
Title | A New Dimension for Coordination Polymers and Metal–Organic Frameworks: Towards Functional Glasses and Liquids |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.201911384 https://www.ncbi.nlm.nih.gov/pubmed/31631497 https://www.proquest.com/docview/2387589692 https://www.proquest.com/docview/2307399504 |
Volume | 59 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwELUQF7iwL4WCjITEKWDsOE24VaVlEUUItRK3yHEcqaJKC2kPcOIf-EO-hJm4CRSEkOCYxHZie8Z-Mxm_IWQ_4V4cKxY4EcwpGCiedAIhjeO7PK5J5cNDdA20r73zrnt5J-8-neK3_BClww01I1-vUcFVlB19kIbiCWwMzQJtFT4SgmLAFqKi25I_ioNw2uNFQjiYhb5gbWT8aLr69K70DWpOI9d862ktElV8tI04uT8cj6JD_fyFz_E_vVoiCxNcSutWkJbJjElXyFyjSAe3SoZ1CgsiPcVsAOhho4B2aWMAtmvPOhTpzaD_hF5wqtKYtg2g-reXV3vWU9NWEQSWndBOHqqb0RbsqdYVSc8QxBtb9ar3MO7F2RrptpqdxrkzSdfgaLfmuY4OtJJKJEJrE_tMRQljRiopJWIkuCcMgBFXcT8xIDjaFyAIAEeZFsdeoIVYJ7PpIDWbhHpGi1qklRdBwzFLAuknXGswhhIBF26FOMV0hXrCZY4pNfqhZWHmIY5jWI5jhRyU5YeWxePHktVi9sOJNmchwBowqwIv4BWyVz6G8cefKyo1gzGWwX-egWTQxIaVmvJV0D8BlmitQng-9798Q1i_vmiWV1t_qbRN5jk6BpgLy2CVzI4ex2YH0NMo2s015B3YzRK2 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LbxMxEB5BOIQLj7ZASqBGqsRpU9deb3a5RSEhKUmEUCL1tvJ6vVJEtEmb5FBO_Af-Ib-EmXV2UUBVJXr0-rF-zNjfjMczAKeZCNJU88hLcE1RQAmUF0llvdAXaVvpEDNJNTCeBIOZf3GpSmtCegvj_ENUCjfijGK_JgYnhfTZH6-h9ASbbLOQXWXoP4RHFNa7kKq-Vh6kBJKne2AkpUdx6Eu_jVyc7dffP5f-AZv72LU4fPpPISm77WxOvrW2m6Rlvv_l0fFe43oGT3bQlHUcLT2HBzY_gHq3jAh3CKsOwz2RfaSAAKRkYwh4WXeJ4uvc6RTZl-XihhThTOcpG1sE9r9-_HTPPQ3rl3Zg6w9sWljrrlkfj1WnjWSfCMdbV3U0v9rO0_URzPq9aXfg7SI2eMZvB75nIqOVlpk0xqYh10nGuVVaKUUwCb9Ji3jE1yLMLNKOCSXSAiJSbuR5EBkpX0AtX-b2FbDAGtlOjA4SbDjlWaTCTBiD8lAmMeE3wCvXKzY7d-YUVWMRO0fMIqZ5jKt5bMD7qvzKOfK4tWSzXP54x9DrGJENSlZREIkGvKuycf7pfkXndrmlMnTtGSmOTbx0ZFP9CscnURhtN0AUi39HH-LOZNirUsf_U-kE6oPpeBSPhpPPr-GxID0B93FXbEJtc721bxBMbZK3Bbv8BvisFtE |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6VVgIutDwKS1swEhKntMavTXpb7TZtoV1VqJV6ixzHkVZU2YXdPcCp_6H_kF_SmXgTWCqEBEfHj_gxY38z9swAvC2FKQrLkyjHNUUBxegokdpHsRJFV9sYM0k1cDo0Rxfqw6W-_MWKP_iHaBVuxBn1fk0MPinKvZ9OQ8kCm55mIbfKWN2DNWV4THQ9-NQ6kBJIncG-SMqIwtA3bhu52Fuuv3ws3cGay9C1PnvSdbBNr8OTk8-781m-677_5tDxf4a1AY8WwJT1AiU9hhVfPYEH_SYe3FOY9BjuiGxA4QBIxcYQ7rL-GIXXUdAosrPx1TdSgzNbFezUI6z_cX0TjD0dS5tXYNN9dl6_1Z2yFA_VoItkh4Tifah6MvoyHxXTZ3CRHpz3j6JFvIbIqa5RkUuc1VaW0jlfxNzmJedeW601gST8Jj2iEWVFXHqkHBdLpATEo9zJ9yZxUm7CajWu_AtgxjvZzZ01OTZc8DLRcSmcQ2molJhQHYia5crcwpk5xdS4yoIbZpHRPGbtPHbgXVt-Etx4_LHkdrP62YKdpxniGpSrEpOIDrxps3H-6XbFVn48pzJ06Zlojk08D1TT_grHJ1EU7XZA1Gv_lz5kveHxQZt6-S-VXsP9s0GanRwPP27BQ0FKAq5wS9yG1dnXud9BJDXLX9XMcgu9YhWJ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+New+Dimension+for+Coordination+Polymers+and+Metal%E2%80%93Organic+Frameworks%3A+Towards+Functional+Glasses+and+Liquids&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Horike%2C+Satoshi&rft.au=Nagarkar%2C+Sanjog+S.&rft.au=Ogawa%2C+Tomohiro&rft.au=Kitagawa%2C+Susumu&rft.date=2020-04-20&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=59&rft.issue=17&rft.spage=6652&rft.epage=6664&rft_id=info:doi/10.1002%2Fanie.201911384&rft.externalDBID=10.1002%252Fanie.201911384&rft.externalDocID=ANIE201911384 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon |