Integrated root phenotypes for improved rice performance under low nitrogen availability
Greater nitrogen efficiency would substantially reduce the economic, energy and environmental costs of rice production. We hypothesized that synergistic balancing of the costs and benefits for soil exploration among root architectural phenes is beneficial under suboptimal nitrogen availability. An e...
Saved in:
Published in | Plant, cell and environment Vol. 45; no. 3; pp. 805 - 822 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Wiley Subscription Services, Inc
01.03.2022
John Wiley and Sons Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Greater nitrogen efficiency would substantially reduce the economic, energy and environmental costs of rice production. We hypothesized that synergistic balancing of the costs and benefits for soil exploration among root architectural phenes is beneficial under suboptimal nitrogen availability. An enhanced implementation of the functional–structural model OpenSimRoot for rice integrated with the ORYZA_v3 crop model was used to evaluate the utility of combinations of root architectural phenes, namely nodal root angle, the proportion of smaller diameter nodal roots, nodal root number; and L‐type and S‐type lateral branching densities, for plant growth under low nitrogen. Multiple integrated root phenotypes were identified with greater shoot biomass under low nitrogen than the reference cultivar IR64. The superiority of these phenotypes was due to synergism among root phenes rather than the expected additive effects of phene states. Representative optimal phenotypes were predicted to have up to 80% greater grain yield with low N supply in the rainfed dry direct‐seeded agroecosystem over future weather conditions, compared to IR64. These phenotypes merit consideration as root ideotypes for breeding rice cultivars with improved yield under rainfed dry direct‐seeded conditions with limited nitrogen availability. The importance of phene synergism for the performance of integrated phenotypes has implications for crop breeding.
Summary Statement
Multiscale mechanistic modelling identified several integrated root phenotypes in rice with superior yield under low N availability. Synergism among root phenes was an important component of phenotypic performance. |
---|---|
AbstractList | Greater nitrogen efficiency would substantially reduce the economic, energy and environmental costs of rice production. We hypothesized that synergistic balancing of the costs and benefits for soil exploration among root architectural phenes is beneficial under suboptimal nitrogen availability. An enhanced implementation of the functional-structural model OpenSimRoot for rice integrated with the ORYZA_v3 crop model was used to evaluate the utility of combinations of root architectural phenes, namely nodal root angle, the proportion of smaller diameter nodal roots, nodal root number; and L-type and S-type lateral branching densities, for plant growth under low nitrogen. Multiple integrated root phenotypes were identified with greater shoot biomass under low nitrogen than the reference cultivar IR64. The superiority of these phenotypes was due to synergism among root phenes rather than the expected additive effects of phene states. Representative optimal phenotypes were predicted to have up to 80% greater grain yield with low N supply in the rainfed dry direct-seeded agroecosystem over future weather conditions, compared to IR64. These phenotypes merit consideration as root ideotypes for breeding rice cultivars with improved yield under rainfed dry direct-seeded conditions with limited nitrogen availability. The importance of phene synergism for the performance of integrated phenotypes has implications for crop breeding.Greater nitrogen efficiency would substantially reduce the economic, energy and environmental costs of rice production. We hypothesized that synergistic balancing of the costs and benefits for soil exploration among root architectural phenes is beneficial under suboptimal nitrogen availability. An enhanced implementation of the functional-structural model OpenSimRoot for rice integrated with the ORYZA_v3 crop model was used to evaluate the utility of combinations of root architectural phenes, namely nodal root angle, the proportion of smaller diameter nodal roots, nodal root number; and L-type and S-type lateral branching densities, for plant growth under low nitrogen. Multiple integrated root phenotypes were identified with greater shoot biomass under low nitrogen than the reference cultivar IR64. The superiority of these phenotypes was due to synergism among root phenes rather than the expected additive effects of phene states. Representative optimal phenotypes were predicted to have up to 80% greater grain yield with low N supply in the rainfed dry direct-seeded agroecosystem over future weather conditions, compared to IR64. These phenotypes merit consideration as root ideotypes for breeding rice cultivars with improved yield under rainfed dry direct-seeded conditions with limited nitrogen availability. The importance of phene synergism for the performance of integrated phenotypes has implications for crop breeding. Greater nitrogen efficiency would substantially reduce the economic, energy and environmental costs of rice production. We hypothesized that synergistic balancing of the costs and benefits for soil exploration among root architectural phenes is beneficial under suboptimal nitrogen availability. An enhanced implementation of the functional-structural model OpenSimRoot for rice integrated with the ORYZA_v3 crop model was used to evaluate the utility of combinations of root architectural phenes, namely nodal root angle, the proportion of smaller diameter nodal roots, nodal root number; and L-type and S-type lateral branching densities, for plant growth under low nitrogen. Multiple integrated root phenotypes were identified with greater shoot biomass under low nitrogen than the reference cultivar IR64. The superiority of these phenotypes was due to synergism among root phenes rather than the expected additive effects of phene states. Representative optimal phenotypes were predicted to have up to 80% greater grain yield with low N supply in the rainfed dry direct-seeded agroecosystem over future weather conditions, compared to IR64. These phenotypes merit consideration as root ideotypes for breeding rice cultivars with improved yield under rainfed dry direct-seeded conditions with limited nitrogen availability. The importance of phene synergism for the performance of integrated phenotypes has implications for crop breeding. Greater nitrogen efficiency would substantially reduce the economic, energy and environmental costs of rice production. We hypothesized that synergistic balancing of the costs and benefits for soil exploration among root architectural phenes is beneficial under suboptimal nitrogen availability. An enhanced implementation of the functional–structural model OpenSimRoot for rice integrated with the ORYZA_v3 crop model was used to evaluate the utility of combinations of root architectural phenes, namely nodal root angle, the proportion of smaller diameter nodal roots, nodal root number; and L‐type and S‐type lateral branching densities, for plant growth under low nitrogen. Multiple integrated root phenotypes were identified with greater shoot biomass under low nitrogen than the reference cultivar IR64. The superiority of these phenotypes was due to synergism among root phenes rather than the expected additive effects of phene states. Representative optimal phenotypes were predicted to have up to 80% greater grain yield with low N supply in the rainfed dry direct‐seeded agroecosystem over future weather conditions, compared to IR64. These phenotypes merit consideration as root ideotypes for breeding rice cultivars with improved yield under rainfed dry direct‐seeded conditions with limited nitrogen availability. The importance of phene synergism for the performance of integrated phenotypes has implications for crop breeding. Multiscale mechanistic modelling identified several integrated root phenotypes in rice with superior yield under low N availability. Synergism among root phenes was an important component of phenotypic performance. Greater nitrogen efficiency would substantially reduce the economic, energy and environmental costs of rice production. We hypothesized that synergistic balancing of the costs and benefits for soil exploration among root architectural phenes is beneficial under suboptimal nitrogen availability. An enhanced implementation of the functional–structural model OpenSimRoot for rice integrated with the ORYZA_v3 crop model was used to evaluate the utility of combinations of root architectural phenes, namely nodal root angle, the proportion of smaller diameter nodal roots, nodal root number; and L‐type and S‐type lateral branching densities, for plant growth under low nitrogen. Multiple integrated root phenotypes were identified with greater shoot biomass under low nitrogen than the reference cultivar IR64. The superiority of these phenotypes was due to synergism among root phenes rather than the expected additive effects of phene states. Representative optimal phenotypes were predicted to have up to 80% greater grain yield with low N supply in the rainfed dry direct‐seeded agroecosystem over future weather conditions, compared to IR64. These phenotypes merit consideration as root ideotypes for breeding rice cultivars with improved yield under rainfed dry direct‐seeded conditions with limited nitrogen availability. The importance of phene synergism for the performance of integrated phenotypes has implications for crop breeding. Summary Statement Multiscale mechanistic modelling identified several integrated root phenotypes in rice with superior yield under low N availability. Synergism among root phenes was an important component of phenotypic performance. |
Author | Henry, Amelia Ajmera, Ishan Ianevski, Aleksandr Bennett, Malcolm J. Klein, Stephanie P. Band, Leah R. Lynch, Jonathan P. Radanielson, Ando M. |
AuthorAffiliation | 5 Institute for Molecular Medicine Finland (FIMM) University of Helsinki Finland 1 Division of Plant and Crop Sciences, School of Biosciences University of Nottingham Sutton Bonington UK 2 Department of Plant Science The Pennsylvania State University University Park Pennsylvania USA 3 Strategic Innovation Platform International Rice Research Institute Los Baños Laguna Philippines 4 Centre for Sustainable Agricultural Systems, Institute for Life Sciences and the Environment, Toowoomba Campus University of Southern Queensland Toowoomba Queensland Australia 6 Centre for Mathematical Medicine and Biology, School of Mathematical Sciences University of Nottingham Nottingham UK |
AuthorAffiliation_xml | – name: 1 Division of Plant and Crop Sciences, School of Biosciences University of Nottingham Sutton Bonington UK – name: 2 Department of Plant Science The Pennsylvania State University University Park Pennsylvania USA – name: 3 Strategic Innovation Platform International Rice Research Institute Los Baños Laguna Philippines – name: 5 Institute for Molecular Medicine Finland (FIMM) University of Helsinki Finland – name: 4 Centre for Sustainable Agricultural Systems, Institute for Life Sciences and the Environment, Toowoomba Campus University of Southern Queensland Toowoomba Queensland Australia – name: 6 Centre for Mathematical Medicine and Biology, School of Mathematical Sciences University of Nottingham Nottingham UK |
Author_xml | – sequence: 1 givenname: Ishan orcidid: 0000-0002-8770-5235 surname: Ajmera fullname: Ajmera, Ishan organization: The Pennsylvania State University – sequence: 2 givenname: Amelia orcidid: 0000-0001-6255-5480 surname: Henry fullname: Henry, Amelia organization: International Rice Research Institute – sequence: 3 givenname: Ando M. orcidid: 0000-0002-8099-9904 surname: Radanielson fullname: Radanielson, Ando M. organization: University of Southern Queensland – sequence: 4 givenname: Stephanie P. orcidid: 0000-0003-4450-6057 surname: Klein fullname: Klein, Stephanie P. organization: The Pennsylvania State University – sequence: 5 givenname: Aleksandr orcidid: 0000-0002-7780-482X surname: Ianevski fullname: Ianevski, Aleksandr organization: University of Helsinki – sequence: 6 givenname: Malcolm J. orcidid: 0000-0003-0475-390X surname: Bennett fullname: Bennett, Malcolm J. organization: University of Nottingham – sequence: 7 givenname: Leah R. orcidid: 0000-0002-6979-1117 surname: Band fullname: Band, Leah R. organization: University of Nottingham – sequence: 8 givenname: Jonathan P. orcidid: 0000-0002-7265-9790 surname: Lynch fullname: Lynch, Jonathan P. email: jpl4@psu.edu organization: The Pennsylvania State University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35141925$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkc9rFTEQx4NU7Gv14D8gC170sG1-7SZ7EcqjaqGgBwVvIZudfU3JJmuSfeX99-b5atGCYi4TZj7zZWa-J-jIBw8IvST4jJR3Phs4I5xK_gStCGubmmGOj9AKE45rITpyjE5SusW4JET3DB2zhnDS0WaFvl35DJuoMwxVDCFX8w34kHczpGoMsbLTHMN2X7QGqhliSU7al__iB4iVC3eVtzmGDfhKb7V1urfO5t1z9HTULsGL-3iKvr6__LL-WF9_-nC1vriuDRctr7tec8oaY4jGfaMZxbKDVjQgB9IB6zumy6hGNpJTEIxTWnAmh7GFHkbRs1P07qA7L_0EgwGfo3ZqjnbScaeCturPirc3ahO2qmOYCcmKwJt7gRi-L5Cymmwy4Jz2EJakaNuSck4s-X-gVJStZLNXff0IvQ1L9OUShWKMFrMwKdSr34d_mPqXPwV4ewBMDClFGB8QgtXee1W8Vz-9L-z5I9bYrLMN-72t-1fHnXWw-7u0-ry-PHT8AOyQv_o |
CitedBy_id | crossref_primary_10_1088_1755_1315_1377_1_012100 crossref_primary_10_1111_tpj_15774 crossref_primary_10_3389_fpls_2022_824720 crossref_primary_10_1007_s00344_024_11458_w crossref_primary_10_1093_jxb_erae298 crossref_primary_10_3389_fpls_2022_1010165 crossref_primary_10_1016_j_catena_2024_108227 crossref_primary_10_1111_pce_14552 crossref_primary_10_34133_plantphenomics_0091 crossref_primary_10_1093_plphys_kiad214 crossref_primary_10_3389_fpls_2024_1408356 crossref_primary_10_1016_j_fcr_2022_108692 crossref_primary_10_1016_j_cropd_2024_100059 crossref_primary_10_34133_plantphenomics_0132 crossref_primary_10_1093_plphys_kiac405 crossref_primary_10_1016_j_plaphy_2024_108386 crossref_primary_10_3389_fpls_2022_827369 crossref_primary_10_21603_2308_4057_2026_1_655 crossref_primary_10_3389_fpls_2024_1366718 crossref_primary_10_3390_agronomy13122872 crossref_primary_10_3390_plants11172256 crossref_primary_10_3389_fpls_2024_1356078 crossref_primary_10_1016_j_rhisph_2025_101038 crossref_primary_10_1111_pce_14269 crossref_primary_10_1016_j_crope_2023_10_001 crossref_primary_10_1093_jxb_erae191 crossref_primary_10_1093_aob_mcae201 crossref_primary_10_3390_agronomy13061597 crossref_primary_10_3389_fpls_2022_1008954 crossref_primary_10_1007_s11104_023_06301_2 |
Cites_doi | 10.21273/HORTSCI.42.5.1107 10.2135/cropsci1995.0011183X003500010005x 10.1111/j.1469-8137.2005.01445.x 10.1016/j.geoderma.2014.07.019 10.1071/FP08132 10.1016/j.fcr.2013.05.006 10.1626/pps.3.437 10.1093/jxb/ery048 10.1626/pps.3.281 10.1007/BF00025057 10.1007/s11104-020-04453-z 10.1007/s12284-008-9016-5 10.1016/j.envsoft.2016.09.007 10.3389/fpls.2021.641835 10.1093/aob/mcs082 10.1016/j.agrformet.2017.02.025 10.1104/pp.113.232603 10.1046/j.1365-2389.2000.00319.x 10.3389/fpls.2017.00786 10.1142/9789812708816_0009 10.3117/plantroot.7.92 10.1007/s11104-011-0939-z 10.2134/agronj2000.924633x 10.1016/S0065-2113(05)87003-8 10.1081/CSS-200059104 10.1080/00380768.1982.10432387 10.1016/j.still.2010.10.008 10.1093/jxb/erp345 10.1093/jxb/eraa165 10.1111/nph.14641 10.32614/RJ-2018-048 10.1186/s12284-018-0208-3 10.1046/j.1365-3040.2001.00695.x 10.2134/agronmonogr49.c11 10.1093/jxb/ert043 10.1104/pp.15.00145 10.1098/rspb.2015.2592 10.1023/A:1004293706242 10.1093/aob/mcaa143 10.1104/pp.109.1.7 10.1093/aob/mcaa120 10.1093/jxb/erv121 10.1007/s11104-005-0389-6 10.1016/j.fcr.2016.02.001 10.5194/gmd-9-3461-2016 10.1104/pp.111.175489 10.1023/A:1004276724310 10.3389/fpls.2020.00316 10.1111/tpj.15560 10.1111/nph.15738 10.1093/aob/mcq199 10.1111/pce.13875 10.1071/FP05266 10.1093/jxb/eru508 10.3389/fpls.2013.00355 10.1093/jxb/erw115 10.1007/978-94-009-1706-4_13 10.1093/jxb/eraa054 10.3389/fpls.2020.00546 10.1093/jxb/erw243 10.1104/pp.113.233916 10.1626/jcs.32.163 10.1111/pce.12451 10.1080/1343943X.2018.1439757 10.1016/j.agsy.2004.09.011 10.1111/j.1365-2745.2006.01124.x 10.1038/nature25783 10.1626/jcs.56.608 10.1093/aob/mcs293 10.2136/sssaj1989.03615995005300020029x 10.1105/tpc.112.101550 10.1038/ng.2725 10.1093/aob/mcw112 10.1111/tpj.14722 10.1016/j.tplants.2019.12.007 10.1098/rstb.2011.0243 10.1093/oxfordjournals.aob.a088311 10.1093/aob/mcy092 10.1093/insilicoplants/diz001 10.1093/jxb/erw133 10.1016/0378-4290(94)00096-U 10.1093/nar/gkaa216 10.1016/j.eja.2018.01.015 10.1093/aob/mcr175 10.1126/science.1185383 10.2134/agronj2007.0356 10.1006/anbo.2001.1530 10.1626/jcs.41.192 10.1104/pp.17.00648 10.1007/s10333-010-0246-y 10.1063/1.1745010 10.1016/B978-0-12-387689-8.00001-1 10.1038/srep05563 |
ContentType | Journal Article |
Copyright | 2022 The Authors. published by John Wiley & Sons Ltd. 2022 The Authors. Plant, Cell & Environment published by John Wiley & Sons Ltd. 2022. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2022 The Authors. published by John Wiley & Sons Ltd. – notice: 2022 The Authors. Plant, Cell & Environment published by John Wiley & Sons Ltd. – notice: 2022. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QP 7ST C1K SOI 7X8 7S9 L.6 5PM |
DOI | 10.1111/pce.14284 |
DatabaseName | Wiley Online Library Open Access (Activated by CARLI) CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Calcium & Calcified Tissue Abstracts Environment Abstracts Environmental Sciences and Pollution Management Environment Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Calcium & Calcified Tissue Abstracts Environment Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE Calcium & Calcified Tissue Abstracts CrossRef AGRICOLA |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology Botany |
DocumentTitleAlternate | ROOT PHENOTYPES FOR LOW N TOLERANCE IN RICE |
EISSN | 1365-3040 |
EndPage | 822 |
ExternalDocumentID | PMC9303783 35141925 10_1111_pce_14284 PCE14284 |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Extreme Science and Engineering Discovery Environment (XSEDE) funderid: MCB‐180133 & BCS‐200008 – fundername: Foundation for Food & Agriculture Research funderid: ‘Crops in Silico’ project [Grant ID 602757] – fundername: University of Nottingham High Performance Computing – fundername: Biotechnology and Biological Sciences Research Council funderid: Newton Fund [grant number BB/N013697/1] – fundername: ; grantid: Newton Fund [grant number BB/N013697/1] – fundername: Extreme Science and Engineering Discovery Environment (XSEDE) grantid: MCB‐180133 & BCS‐200008 – fundername: Foundation for Food & Agriculture Research grantid: ‘Crops in Silico’ project [Grant ID 602757] |
GroupedDBID | --- .3N .GA .Y3 05W 0R~ 10A 123 186 1OB 1OC 24P 29O 2WC 31~ 33P 36B 3SF 4.4 42X 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHBH AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFS ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHEFC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BAWUL BDRZF BFHJK BHBCM BIYOS BMNLL BNHUX BROTX BRXPI BY8 CAG COF CS3 D-E D-F DC6 DCZOG DIK DPXWK DR2 DRFUL DRSTM DU5 EBS ECGQY EJD ESX F00 F01 F04 F5P FEDTE FIJ FZ0 G-S G.N GODZA H.T H.X HF~ HGLYW HVGLF HZI HZ~ IHE IPNFZ IX1 J0M K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG OK1 P2P P2W P2X P4D PALCI Q.N Q11 QB0 R.K RIWAO RJQFR ROL RX1 SAMSI SUPJJ UB1 W8V W99 WBKPD WH7 WHG WIH WIK WIN WNSPC WOHZO WQJ WRC WXSBR WYISQ XG1 XSW YNT ZZTAW ~02 ~IA ~KM ~WT AAYXX AETEA AEYWJ AGHNM AGQPQ AGYGG CITATION CGR CUY CVF ECM EIF NPM 7QP 7ST AAMMB AEFGJ AGXDD AIDQK AIDYY C1K SOI 7X8 7S9 L.6 5PM |
ID | FETCH-LOGICAL-c4764-9ba4235cc1a0b5a32089e675e8d19e3b93a141c85842e7342242338df6ebef7b3 |
IEDL.DBID | DR2 |
ISSN | 0140-7791 1365-3040 |
IngestDate | Thu Aug 21 18:17:06 EDT 2025 Fri Jul 11 18:30:26 EDT 2025 Fri Jul 11 01:45:22 EDT 2025 Fri Jul 25 10:56:28 EDT 2025 Wed Feb 19 02:26:27 EST 2025 Tue Jul 01 04:28:46 EDT 2025 Thu Apr 24 22:59:53 EDT 2025 Wed Jan 22 16:27:34 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | ORYZA_V3 OpenSimRoot functional-structural plant modelling phene synergism IR64 nitrogen acquisition root system architecture nodal roots |
Language | English |
License | Attribution 2022 The Authors. Plant, Cell & Environment published by John Wiley & Sons Ltd. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4764-9ba4235cc1a0b5a32089e675e8d19e3b93a141c85842e7342242338df6ebef7b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-8770-5235 0000-0002-7265-9790 0000-0002-8099-9904 0000-0002-7780-482X 0000-0003-0475-390X 0000-0001-6255-5480 0000-0003-4450-6057 0000-0002-6979-1117 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fpce.14284 |
PMID | 35141925 |
PQID | 2633228401 |
PQPubID | 37957 |
PageCount | 18 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_9303783 proquest_miscellaneous_2661040084 proquest_miscellaneous_2627476853 proquest_journals_2633228401 pubmed_primary_35141925 crossref_primary_10_1111_pce_14284 crossref_citationtrail_10_1111_pce_14284 wiley_primary_10_1111_pce_14284_PCE14284 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | March 2022 |
PublicationDateYYYYMMDD | 2022-03-01 |
PublicationDate_xml | – month: 03 year: 2022 text: March 2022 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Oxford – name: Hoboken |
PublicationTitle | Plant, cell and environment |
PublicationTitleAlternate | Plant Cell Environ |
PublicationYear | 2022 |
Publisher | Wiley Subscription Services, Inc John Wiley and Sons Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc – name: John Wiley and Sons Inc |
References | 2018; 122 2017; 8 2015; 38 2013; 4 2011b; 156 2000; 3 2017; 237–238 2006; 33 1997; 196 2019; 10 1995; 35 2013; 64 2020; 126 2014; 235–236 2000; 51 2000; 92 2020; 15 2020; 448 2008; 35 1972; 41 2020; 11 2013; 7 2012; 367 2001; 88 2008; 100 1993; 1 2011a; 107 2011; 111 2010; 61 2014; 4 1963; 32 1982; 28 1987; 41 2001 2000 2016; 118 1997; 188 2013; 112 2016; 85 2020; 48 1982 2020; 44 2012; 24 2014; 166 2016; 190 1989 2005; 36 2021; 109 2018; 100 1987; 56 2006; 94 2010; 327 2019; 1 2013; 45 2013; 149 2015; 167 2008 2019; 223 2007 1995 2005; 87 1993; 155–156 2017; 174 2003 2020; 103 2001; 24 2018; 21 2017; 215 2016; 283 2018; 69 2006; 279 2011; 9 1995; 40 2012; 110 2011; 108 1989; 53 2021; 12 2011; 348 2005; 166 2006; 87 2020; 71 2015; 66 2018; 555 1995; 109 2020; 25 1992; 69 2013 2007; 42 2018; 11 2009; 2 2016; 9 1931; 1 2016; 67 e_1_2_9_75_1 e_1_2_9_98_1 e_1_2_9_52_1 e_1_2_9_79_1 e_1_2_9_94_1 e_1_2_9_10_1 e_1_2_9_56_1 e_1_2_9_33_1 e_1_2_9_90_1 e_1_2_9_71_1 Barber S.A. (e_1_2_9_7_1) 1995 e_1_2_9_14_1 e_1_2_9_37_1 e_1_2_9_18_1 e_1_2_9_41_1 e_1_2_9_87_1 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_68_1 e_1_2_9_83_1 e_1_2_9_6_1 e_1_2_9_60_1 e_1_2_9_2_1 e_1_2_9_26_1 e_1_2_9_49_1 e_1_2_9_30_1 e_1_2_9_53_1 e_1_2_9_99_1 e_1_2_9_72_1 e_1_2_9_11_1 e_1_2_9_57_1 e_1_2_9_95_1 e_1_2_9_76_1 e_1_2_9_91_1 Bouman B.A.M. (e_1_2_9_9_1) 2001 e_1_2_9_102_1 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_19_1 e_1_2_9_42_1 e_1_2_9_88_1 e_1_2_9_61_1 e_1_2_9_46_1 e_1_2_9_84_1 e_1_2_9_65_1 e_1_2_9_80_1 e_1_2_9_5_1 Global Rice Science Partnership (GRiSP). (e_1_2_9_27_1) 2013 e_1_2_9_31_1 e_1_2_9_50_1 e_1_2_9_73_1 e_1_2_9_35_1 e_1_2_9_77_1 e_1_2_9_96_1 e_1_2_9_12_1 e_1_2_9_54_1 e_1_2_9_92_1 e_1_2_9_101_1 e_1_2_9_39_1 e_1_2_9_16_1 e_1_2_9_58_1 e_1_2_9_20_1 e_1_2_9_89_1 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_66_1 e_1_2_9_85_1 e_1_2_9_8_1 e_1_2_9_81_1 e_1_2_9_4_1 Dobermann A. (e_1_2_9_23_1) 2000 e_1_2_9_28_1 e_1_2_9_47_1 e_1_2_9_74_1 e_1_2_9_51_1 e_1_2_9_78_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_55_1 e_1_2_9_97_1 e_1_2_9_93_1 e_1_2_9_70_1 Moldenhauer K.A. (e_1_2_9_64_1) 2003 e_1_2_9_100_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_59_1 e_1_2_9_63_1 e_1_2_9_40_1 e_1_2_9_21_1 e_1_2_9_67_1 e_1_2_9_44_1 e_1_2_9_86_1 Hoshikawa K. (e_1_2_9_34_1) 1989 e_1_2_9_82_1 Matsuo T. (e_1_2_9_62_1) 1993 e_1_2_9_3_1 e_1_2_9_25_1 e_1_2_9_48_1 e_1_2_9_29_1 O'Toole J.C. (e_1_2_9_69_1) 1987 Yoshida S. (e_1_2_9_103_1) 1982 |
References_xml | – volume: 1 issue: 1 year: 2019 article-title: yggdrasil: a python package for integrating computational models across languages and scales publication-title: In silico Plants – volume: 41 start-page: 192 year: 1972 end-page: 204 article-title: Studies on the developmental physiology of the lateral roots in rice seminal roots publication-title: Japanese Journal of Crop Science – volume: 33 start-page: 309 year: 2006 end-page: 323 article-title: EcoMeristem, a model of morphogenesis and competition among sinks in rice. 1. Concept, validation, and sensitivity analysis publication-title: Functional Plant Biology – start-page: 129 year: 1995 end-page: 138 – volume: 126 start-page: 789 issue: 4 year: 2020 end-page: 806 article-title: A functional–structural model of upland rice root systems reveals the importance of laterals and growing root tips for phosphate uptake from wet and dry soils publication-title: Annals of Botany – volume: 32 start-page: 163 year: 1963 end-page: 180 article-title: Studies on root system formation in rice plants in a paddy publication-title: Japanese Journal of Crop Science – volume: 56 start-page: 608 year: 1987 end-page: 617 article-title: Quantitative analysis on root system structures of upland rice and maize publication-title: Japanese Journal of Crop Sciences – year: 1989 – volume: 108 start-page: 407 issue: 3 year: 2011 end-page: 418 article-title: Breeding crop plants with deep roots: their role in sustainable carbon, nutrient and water sequestration publication-title: Annals of Botany – volume: 448 start-page: 523 year: 2020 end-page: 537 article-title: The contribution of plant traits and soil microbes to phosphorus uptake from low‐phosphorus soil in upland rice varieties publication-title: Plant Soil – volume: 223 start-page: 548 year: 2019 end-page: 564 article-title: Root phenotypes for improved nutrient capture: an underexploited opportunity for global agriculture publication-title: New Phytologist – volume: 11 start-page: 316 year: 2020 article-title: Call for participation: collaborative benchmarking of functional‐structural root architecture models. The case of root water uptake publication-title: Frontiers in Plant Science – volume: 88 start-page: 929 year: 2001 end-page: 940 article-title: Root gravitropism and below‐ground competition among neighbouring plants: a modelling approach publication-title: Annals of Botany – volume: 87 start-page: 85 year: 2005 end-page: 156 article-title: Efficiency of fertilizer nitrogen in cereal production: retrospects and prospects publication-title: Advances in Agronomy – volume: 61 start-page: 2101 year: 2010 end-page: 2115 article-title: Functional‐structural plant modelling: a new versatile tool in crop science publication-title: Journal of Experimental Botany – volume: 53 start-page: 477 year: 1989 end-page: 482 article-title: Nitrate accumulation and loss in a mungbean/lowland rice cropping system publication-title: Soil Science Society of America Journal – volume: 85 start-page: 332 year: 2016 end-page: 341 article-title: A taxonomy‐based approach to shed light on the babel of mathematical models for rice simulations publication-title: Environmental Modelling & Software – volume: 118 start-page: 401 year: 2016 end-page: 414 article-title: Impact of axial root growth angles on nitrogen acquisition in maize depends on environmental conditions publication-title: Annals Botany – volume: 188 start-page: 139 year: 1997 end-page: 151 article-title: SimRoot: modelling and visualization of root systems publication-title: Plant and Soil – volume: 156 start-page: 1190 year: 2011b end-page: 1201 article-title: Root cortical aerenchyma enhances the growth of maize on soils with suboptimal availability of nitrogen, phosphorus, and potassium publication-title: Plant Physiology – volume: 64 start-page: 1193 year: 2013 end-page: 1208 article-title: Soil conditions and cereal root system architecture: review and considerations for linking Darwin and Weaver publication-title: Journal of Experimental Botany – volume: 103 start-page: 21 issue: 1 year: 2020 end-page: 31 article-title: Multiscale computational models can guide experimentation and targeted measurements for crop improvement publication-title: Plant Journal – volume: 167 start-page: 1430 year: 2015 end-page: 1439 article-title: Phene synergism between root hair length and basal root growth angle for phosphorus acquisition publication-title: Plant Physiology – volume: 126 start-page: 501 issue: 4 year: 2020 end-page: 509 article-title: Two decades of functional–structural plant modelling: now addressing fundamental questions in systems biology and predictive ecology publication-title: Annals of Botany – volume: 107 start-page: 829 year: 2011a end-page: 841 article-title: Theoretical evidence for the functional benefit of root cortical aerenchyma in soils with low phosphorus availability publication-title: Annals of Botany – volume: 3 start-page: 281 issue: 3 year: 2000 end-page: 288 article-title: Which roots penetrate the deepest in rice and maize root systems? publication-title: Plant Production Science – volume: 283 issue: 1824 year: 2016 article-title: Interactions among ecosystem stressors and their importance in conservation publication-title: Proc Biol Sci. – volume: 42 start-page: 1107 issue: 5 year: 2007 end-page: 1109 article-title: Rhizoeconomics: the roots of shoot growth limitations publication-title: HortScience – volume: 555 start-page: 94 year: 2018 end-page: 97 article-title: Evolutionary history resolves global organization of root functional traits publication-title: Nature – volume: 166 start-page: 581 year: 2014 end-page: 589 article-title: Low crown root number enhances nitrogen acquisition from low‐nitrogen soils in maize publication-title: Plant Physiology – volume: 25 start-page: 4442 year: 2020 end-page: 4451 article-title: A balancing act: how plants integrate nitrogen and water signals publication-title: Journal of Experimental Botany – volume: 100 start-page: 44 year: 2018 end-page: 55 article-title: Modeling salinity effect on rice growth and grain yield with ORYZA v3 and APSIM‐ORYZA publication-title: European Journal of Agronomy – volume: 87 start-page: 249 year: 2006 end-page: 273 article-title: Description and evaluation of the rice growth model ORYZA2000 under nitrogen‐limited conditions publication-title: Agricultural Systems – volume: 2 start-page: 15 year: 2009 end-page: 34 article-title: Molecular genetics of rice root development publication-title: Rice – volume: 149 start-page: 312 year: 2013 end-page: 321 article-title: Simulation of genotype performances across a larger number of environments for rice breeding using ORYZA2000 publication-title: Field Crops Research – volume: 1 year: 1993 – volume: 69 start-page: 3279 year: 2018 end-page: 3292 article-title: Rightsizing root phenotypes for drought resistance publication-title: Journal of Experimental Botany – volume: 4 start-page: 5563 year: 2014 article-title: Deep rooting conferred by DEEPER ROOTING 1 enhances rice yield in paddy fields publication-title: Scientific Reports – volume: 9 start-page: 333 year: 2011 end-page: 342 article-title: Nitrogen and phosphorus leaching losses from paddy fields with different water and nitrogen managements publication-title: Paddy and Water Environment – volume: 7 start-page: 92 year: 2013 end-page: 106 article-title: IRRI's drought stress research in rice with emphasis on roots: accomplishments over the last 50 years publication-title: Plant Root – volume: 122 start-page: 485 year: 2018 end-page: 499 article-title: Co‐optimization of axial root phenotypes for nitrogen and phosphorus acquisition in common bean publication-title: Annals of Botany – volume: 1 start-page: 318 year: 1931 end-page: 333 article-title: Capillary conduction of liquids through porous mediums publication-title: Physics – volume: 100 start-page: 1390 year: 2008 end-page: 1395 article-title: Yield gap analysis between dry and wet season rice crop grown under high‐yielding management conditions publication-title: Agronomy Journal – volume: 12 start-page: 357 year: 2021 article-title: Cost‐benefit analysis of the upland‐rice root architecture in relation to phosphate: 3D simulations highlight the importance of S‐type lateral roots for reducing the pay‐off time publication-title: Frontiers in Plant Science – start-page: 117 year: 2007 end-page: 141 – volume: 109 start-page: 415 year: 2021 end-page: 431 article-title: Harnessing root architecture to address global challenges publication-title: The Plant Journal – start-page: 103 year: 2003 end-page: 127 – volume: 9 start-page: 3461 year: 2016 end-page: 3482 article-title: The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6 publication-title: Geoscientific Model Development – volume: 155–156 start-page: 359 year: 1993 end-page: 362 article-title: Nitrogen use efficiency of rice reconsidered: what are the key constraints? publication-title: Plant and Soil – volume: 111 start-page: 297 year: 2011 end-page: 413 article-title: Direct seeding of rice: recent developments and future research needs publication-title: Advances in Agronomy – volume: 111 start-page: 87 year: 2011 end-page: 98 article-title: Rice direct seeding: experiences, challenges and opportunities publication-title: Soil & Tillage Research – year: 1995 – start-page: 283 year: 2013 – volume: 41 start-page: 91 year: 1987 end-page: 145 – volume: 196 start-page: 201 year: 1997 end-page: 210 article-title: Physiological nitrogen efficiency in rice: Nitrogen utilization, photosynthesis, and yield potential publication-title: Plant and Soil – volume: 51 start-page: 517 year: 2000 end-page: 529 article-title: A mono‐component model of carbon mineralization with a dynamic rate constant publication-title: European Journal of Soil Science – volume: 44 start-page: 49 issue: 1 year: 2020 end-page: 67 article-title: Root metaxylem and architecture phenotypes integrate to regulate water use under drought stress publication-title: Plant, Cell & Environment – volume: 40 start-page: 67 year: 1995 end-page: 86 article-title: Development of drought‐resistant cultivars using physiomorphological traits in rice publication-title: Field Crops Research – volume: 110 start-page: 521 year: 2012 end-page: 534 article-title: Complementarity in root architecture for nutrient uptake in ancient maize/bean and maize/bean/squash polycultures publication-title: Annals of Botany – volume: 36 start-page: 1625 year: 2005 end-page: 1639 article-title: Nitrogen fertilizer losses from rice soils and control of environmental pollution problems publication-title: Communications in Soil Science and Plant Analysis – year: 2001 – volume: 237–238 start-page: 246 year: 2017 end-page: 256 article-title: From ORYZA2000 to ORYZA (v3): an improved simulation model for rice in drought and nitrogen‐deficient environments publication-title: Agricultural and Forest Meteorology – volume: 35 start-page: 24 issue: 1 year: 1995 end-page: 29 article-title: Shoot and root development in rice related to the phyllochron publication-title: Crop Science – volume: 66 start-page: 3151 year: 2015 end-page: 3162 article-title: Root anatomical phenes predict root penetration ability and biomechanical properties in maize ( ) publication-title: Journal of Experimental Botany – volume: 35 start-page: 1163 year: 2008 end-page: 1171 article-title: Evidence from near‐isogenic lines that root penetration increases with root diameter and bending stiffness in rice publication-title: Functional Plant Biology – start-page: 97 year: 1982 end-page: 114 – volume: 24 start-page: 3892 year: 2012 end-page: 3906 article-title: Multiscale systems analysis of root growth and development: modeling beyond the network and cellular scales publication-title: Plant Cell – volume: 190 start-page: 60 issue: 2016 year: 2016 end-page: 69 article-title: Climate ready rice: augmenting drought tolerance with best management practices publication-title: Field Crops Research – volume: 367 start-page: 1598 year: 2012 end-page: 1604 article-title: New roots for agriculture: exploiting the root phenome publication-title: Philosophical Transactions of the Royal Society B: Biological Sciences – volume: 109 start-page: 7 year: 1995 end-page: 13 article-title: Root architecture and plant productivity publication-title: Plant Physiology – volume: 67 start-page: 3699 year: 2016 end-page: 3708 article-title: Root hair formation in rice ( L.) differs between root types and is altered in artificial growth conditions publication-title: Journal of Experimental Botany – volume: 215 start-page: 1274 year: 2017 end-page: 1286 article-title: OpenSimRoot: widening the scope and application of root architectural models publication-title: New Phytologist – volume: 25 start-page: 406 issue: 4 year: 2020 end-page: 417 article-title: Digging deeper for agricultural resources—the value of deep rooting publication-title: Trends Plant Science – volume: 279 start-page: 347 year: 2006 end-page: 366 article-title: Architectural tradeoffs between adventitious and basal roots for phosphorus acquisition publication-title: Plant and Soil – volume: 4 start-page: 355 year: 2013 article-title: Integration of root phenes for soil resource acquisition publication-title: Frontiers in Plant Science – volume: 174 start-page: 2333 year: 2017 end-page: 2347 article-title: Root cortical senescence improves growth under suboptimal availability of N, P, and K publication-title: Plant Physiology – volume: 348 start-page: 345 year: 2011 end-page: 364 article-title: Phenotypic variability and modelling of root structure of wild genotypes publication-title: Plant and Soil – volume: 92 start-page: 633 year: 2000 end-page: 643 article-title: Reversal of rice yield decline in a long‐term continuous cropping experiment publication-title: Agronomy Journal – volume: 10 start-page: 200 year: 2019 end-page: 208 article-title: clustMixType: user‐friendly clustering of mixed‐type data in R publication-title: The R Journal – volume: 235–236 start-page: 250 year: 2014 end-page: 259 article-title: Soil quality and constraints in global rice production publication-title: Geoderma – volume: 11 start-page: 18 year: 2018 article-title: IR64: a high‐quality and high‐yielding mega variety publication-title: Rice – volume: 8 start-page: 786 year: 2017 article-title: Crops in silico: generating virtual crops using an integrative and multi‐scale modeling platform publication-title: Frontiers in Plant Science – year: 2000 – volume: 3 start-page: 437 year: 2000 end-page: 445 article-title: Anatomy of nodal roots in tropical upland and lowland rice varieties publication-title: Plant Production Science – volume: 327 start-page: 812 year: 2010 end-page: 818 article-title: Food security: the challenge of feeding 9 billion people publication-title: Science – start-page: 401 year: 2008 end-page: 436 – volume: 94 start-page: 725 year: 2006 end-page: 739 article-title: Root competition: beyond resource depletion publication-title: Journal of Ecology – volume: 66 start-page: 2199 year: 2015 end-page: 2210 article-title: Opportunities and challenges in the subsoil: pathways to deeper rooted crops publication-title: Journal of Experimental Botany – volume: 15 start-page: 546 year: 2020 article-title: Should root plasticity be a crop breeding target? publication-title: Frontiers in Plant Science – volume: 67 start-page: 3763 year: 2016 end-page: 3775 article-title: Spatiotemporal variation of nitrate uptake kinetics within the maize ( L.) root system is associated with greater nitrate uptake and interactions with architectural phenes publication-title: Journal of Experimental Botany – volume: 166 start-page: 705 year: 2005 end-page: 708 article-title: Functional–structural plant modelling publication-title: New Phytologist – volume: 28 start-page: 473 year: 1982 end-page: 482 article-title: Relationship between plant type and root growth in rice publication-title: Soil Science and Plant Nutrition – volume: 38 start-page: 1775 year: 2015 end-page: 1784 article-title: Root phenes that reduce the metabolic costs of soil exploration: opportunities for 21st century agriculture publication-title: Plant, Cell & Environment – volume: 45 start-page: 1097 year: 2013 end-page: 1102 article-title: Control of root system architecture by DEEPER ROOTING 1 increases rice yield under drought conditions publication-title: Nature Genetics – volume: 166 start-page: 590 year: 2014 end-page: 602 article-title: The optimal lateral root branching density for maize depends on nitrogen and phosphorus availability publication-title: Plant Physiology – volume: 71 start-page: 4243 issue: 14 year: 2020 end-page: 4257 article-title: Root anatomical traits contribute to deeper rooting of maize under compacted field conditions publication-title: Journal of Experimental Botany – volume: 48 start-page: W488 issue: W1 year: 2020 end-page: W493 article-title: SynergyFinder 2.0: visual analytics of multi‐drug combination synergies publication-title: Nucleic Acids Research – volume: 67 start-page: 4545 issue: 15 year: 2016 end-page: 4557 article-title: Reduced crown root number improves water acquisition under water deficit stress in maize ( L.) publication-title: Journal of Experimental Botany – volume: 69 start-page: 87 year: 1992 end-page: 92 article-title: A finite‐element model of radial and axial conductivities for individual roots: development and validation for two desert succulents publication-title: Annals of Botany – volume: 112 start-page: 347 year: 2013 end-page: 357 article-title: Steep, cheap and deep: an ideotype to optimize water and N acquisition by maize root systems publication-title: Annals of Botany – volume: 21 start-page: 93 year: 2018 end-page: 105 article-title: Genotypic variations in the plasticity of nodal root penetration through the hardpan during soil moisture fluctuations among four rice varieties publication-title: Plant Production Science – volume: 24 start-page: 459 year: 2001 end-page: 467 article-title: Regulation of root hair density by phosphorus availability in publication-title: Plant, Cell & Environment – ident: e_1_2_9_49_1 doi: 10.21273/HORTSCI.42.5.1107 – ident: e_1_2_9_65_1 doi: 10.2135/cropsci1995.0011183X003500010005x – ident: e_1_2_9_29_1 doi: 10.1111/j.1469-8137.2005.01445.x – ident: e_1_2_9_32_1 doi: 10.1016/j.geoderma.2014.07.019 – ident: e_1_2_9_17_1 doi: 10.1071/FP08132 – ident: e_1_2_9_44_1 doi: 10.1016/j.fcr.2013.05.006 – ident: e_1_2_9_38_1 doi: 10.1626/pps.3.437 – ident: e_1_2_9_52_1 doi: 10.1093/jxb/ery048 – ident: e_1_2_9_4_1 doi: 10.1626/pps.3.281 – ident: e_1_2_9_13_1 doi: 10.1007/BF00025057 – ident: e_1_2_9_96_1 doi: 10.1007/s11104-020-04453-z – ident: e_1_2_9_79_1 doi: 10.1007/s12284-008-9016-5 – ident: e_1_2_9_18_1 doi: 10.1016/j.envsoft.2016.09.007 – ident: e_1_2_9_30_1 doi: 10.3389/fpls.2021.641835 – ident: e_1_2_9_76_1 doi: 10.1093/aob/mcs082 – volume-title: The growing rice plant, an anatomical monograph year: 1989 ident: e_1_2_9_34_1 – ident: e_1_2_9_43_1 doi: 10.1016/j.agrformet.2017.02.025 – ident: e_1_2_9_83_1 doi: 10.1104/pp.113.232603 – volume-title: ORYZA2000: modeling lowland rice year: 2001 ident: e_1_2_9_9_1 – ident: e_1_2_9_98_1 doi: 10.1046/j.1365-2389.2000.00319.x – ident: e_1_2_9_61_1 doi: 10.3389/fpls.2017.00786 – ident: e_1_2_9_71_1 doi: 10.1142/9789812708816_0009 – ident: e_1_2_9_33_1 doi: 10.3117/plantroot.7.92 – ident: e_1_2_9_14_1 doi: 10.1007/s11104-011-0939-z – ident: e_1_2_9_22_1 doi: 10.2134/agronj2000.924633x – ident: e_1_2_9_41_1 doi: 10.1016/S0065-2113(05)87003-8 – ident: e_1_2_9_16_1 doi: 10.1081/CSS-200059104 – ident: e_1_2_9_102_1 doi: 10.1080/00380768.1982.10432387 – ident: e_1_2_9_24_1 doi: 10.1016/j.still.2010.10.008 – ident: e_1_2_9_94_1 doi: 10.1093/jxb/erp345 – ident: e_1_2_9_93_1 doi: 10.1093/jxb/eraa165 – start-page: 91 volume-title: Advances in agronomy year: 1987 ident: e_1_2_9_69_1 – ident: e_1_2_9_73_1 doi: 10.1111/nph.14641 – ident: e_1_2_9_90_1 doi: 10.32614/RJ-2018-048 – ident: e_1_2_9_59_1 doi: 10.1186/s12284-018-0208-3 – start-page: 283 volume-title: Rice almanac year: 2013 ident: e_1_2_9_27_1 – ident: e_1_2_9_57_1 doi: 10.1046/j.1365-3040.2001.00695.x – ident: e_1_2_9_11_1 doi: 10.2134/agronmonogr49.c11 – ident: e_1_2_9_80_1 doi: 10.1093/jxb/ert043 – ident: e_1_2_9_63_1 doi: 10.1104/pp.15.00145 – ident: e_1_2_9_19_1 doi: 10.1098/rspb.2015.2592 – ident: e_1_2_9_60_1 doi: 10.1023/A:1004293706242 – ident: e_1_2_9_45_1 doi: 10.1093/aob/mcaa143 – start-page: 97 volume-title: The rice root system: its development and function. In Drought resistance in crops with emphasis on rice year: 1982 ident: e_1_2_9_103_1 – volume-title: Soil nutrient bioavailability: a mechanistic approach year: 1995 ident: e_1_2_9_7_1 – ident: e_1_2_9_48_1 doi: 10.1104/pp.109.1.7 – ident: e_1_2_9_21_1 doi: 10.1093/aob/mcaa120 – ident: e_1_2_9_15_1 doi: 10.1093/jxb/erv121 – ident: e_1_2_9_95_1 doi: 10.1007/s11104-005-0389-6 – ident: e_1_2_9_31_1 doi: 10.1016/j.fcr.2016.02.001 – ident: e_1_2_9_68_1 doi: 10.5194/gmd-9-3461-2016 – ident: e_1_2_9_75_1 doi: 10.1104/pp.111.175489 – ident: e_1_2_9_47_1 doi: 10.1023/A:1004276724310 – ident: e_1_2_9_87_1 doi: 10.3389/fpls.2020.00316 – ident: e_1_2_9_54_1 doi: 10.1111/tpj.15560 – ident: e_1_2_9_53_1 doi: 10.1111/nph.15738 – ident: e_1_2_9_74_1 doi: 10.1093/aob/mcq199 – ident: e_1_2_9_89_1 doi: 10.1111/pce.13875 – ident: e_1_2_9_46_1 doi: 10.1071/FP05266 – ident: e_1_2_9_56_1 doi: 10.1093/jxb/eru508 – ident: e_1_2_9_100_1 doi: 10.3389/fpls.2013.00355 – ident: e_1_2_9_66_1 doi: 10.1093/jxb/erw115 – start-page: 103 volume-title: Rice: origin, history, technology, and production year: 2003 ident: e_1_2_9_64_1 – ident: e_1_2_9_88_1 doi: 10.1007/978-94-009-1706-4_13 – ident: e_1_2_9_5_1 doi: 10.1093/jxb/eraa054 – ident: e_1_2_9_85_1 doi: 10.3389/fpls.2020.00546 – ident: e_1_2_9_26_1 doi: 10.1093/jxb/erw243 – volume-title: Science of the rice plant year: 1993 ident: e_1_2_9_62_1 – ident: e_1_2_9_72_1 doi: 10.1104/pp.113.233916 – ident: e_1_2_9_36_1 doi: 10.1626/jcs.32.163 – ident: e_1_2_9_51_1 doi: 10.1111/pce.12451 – ident: e_1_2_9_67_1 doi: 10.1080/1343943X.2018.1439757 – ident: e_1_2_9_10_1 doi: 10.1016/j.agsy.2004.09.011 – ident: e_1_2_9_84_1 doi: 10.1111/j.1365-2745.2006.01124.x – ident: e_1_2_9_58_1 doi: 10.1038/nature25783 – ident: e_1_2_9_97_1 doi: 10.1626/jcs.56.608 – ident: e_1_2_9_50_1 doi: 10.1093/aob/mcs293 – ident: e_1_2_9_12_1 doi: 10.2136/sssaj1989.03615995005300020029x – ident: e_1_2_9_6_1 doi: 10.1105/tpc.112.101550 – ident: e_1_2_9_92_1 doi: 10.1038/ng.2725 – ident: e_1_2_9_20_1 doi: 10.1093/aob/mcw112 – ident: e_1_2_9_8_1 doi: 10.1111/tpj.14722 – ident: e_1_2_9_91_1 doi: 10.1016/j.tplants.2019.12.007 – ident: e_1_2_9_55_1 doi: 10.1098/rstb.2011.0243 – ident: e_1_2_9_2_1 doi: 10.1093/oxfordjournals.aob.a088311 – ident: e_1_2_9_78_1 doi: 10.1093/aob/mcy092 – ident: e_1_2_9_42_1 doi: 10.1093/insilicoplants/diz001 – ident: e_1_2_9_101_1 doi: 10.1093/jxb/erw133 – ident: e_1_2_9_25_1 doi: 10.1016/0378-4290(94)00096-U – ident: e_1_2_9_35_1 doi: 10.1093/nar/gkaa216 – ident: e_1_2_9_77_1 doi: 10.1016/j.eja.2018.01.015 – ident: e_1_2_9_37_1 doi: 10.1093/aob/mcr175 – ident: e_1_2_9_28_1 doi: 10.1126/science.1185383 – ident: e_1_2_9_99_1 doi: 10.2134/agronj2007.0356 – ident: e_1_2_9_82_1 doi: 10.1006/anbo.2001.1530 – ident: e_1_2_9_39_1 doi: 10.1626/jcs.41.192 – ident: e_1_2_9_86_1 doi: 10.1104/pp.17.00648 – ident: e_1_2_9_70_1 doi: 10.1007/s10333-010-0246-y – volume-title: Rice: nutrient disorders & nutrient management year: 2000 ident: e_1_2_9_23_1 – ident: e_1_2_9_81_1 doi: 10.1063/1.1745010 – ident: e_1_2_9_40_1 doi: 10.1016/B978-0-12-387689-8.00001-1 – ident: e_1_2_9_3_1 doi: 10.1038/srep05563 |
SSID | ssj0001479 |
Score | 2.5282085 |
Snippet | Greater nitrogen efficiency would substantially reduce the economic, energy and environmental costs of rice production. We hypothesized that synergistic... |
SourceID | pubmedcentral proquest pubmed crossref wiley |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 805 |
SubjectTerms | Agricultural ecosystems agroecosystems Availability biomass crop models Crop production Crop yield Cultivars direct seeding energy Energy costs environment functional–structural plant modelling grain yield ideotypes IR64 Nitrogen nitrogen acquisition nodal roots OpenSimRoot Original Oryza - genetics ORYZA_V3 phene synergism Phenotype Phenotypes Plant breeding Plant growth Plant Roots Rice root system architecture soil Soil - chemistry Structural models Structure-function relationships Synergism Weather |
Title | Integrated root phenotypes for improved rice performance under low nitrogen availability |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fpce.14284 https://www.ncbi.nlm.nih.gov/pubmed/35141925 https://www.proquest.com/docview/2633228401 https://www.proquest.com/docview/2627476853 https://www.proquest.com/docview/2661040084 https://pubmed.ncbi.nlm.nih.gov/PMC9303783 |
Volume | 45 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEB7S0EIvfaQvt0lQSw-5eFlZsmXTUxISkkBLKA3soWAkWSZLF3vZR8v213dGfiTbPCi9GTTGsjQz-iTNfAPw0ca6TLSjMqm8DKURIsRFsAzTWCuTGauUoxvdz1-Skwt5NopHG_Cpy4Vp-CH6AzeyDO-vycC1mV8z8ql1A6ILIy5QitUiQPT1ijqKy4Znj8IXlcp4yypEUTz9m-tr0Q2AeTNO8jp-9QvQ8VP43nW9iTv5MVguzMD-_ovV8T__7Rk8aYEp22806TlsuGoLHjWlKldb8PCgRhi5egGj045gomCIuheMgsRqOsmdMwTAbOxPKagRXRCbXuUlMEpXm7FJ_YuhG5nVqLlM_9TjScMUvnoJF8dH3w5PwrY8Q2ilSmSYGY1YLLaW66GJtYiGaeZw_-HSgmdOmExoLrlNEeJETgkZEXQTaVEmqDilMuIVbFZ15d4As6k0ybAU3MWRtGqos9Qo1KGi1MbGhQ5gr5uo3Lbc5VRCY5J3exgcsdyPWAAfetFpQ9hxm9B2N9t5a7PzPEoEejfc8PIA3vfNaG10haIrVy9JhnbxCWKc-2QQkkoqVBDA60aB-p5Q3gRi6jgAtaZavQCxfa-3VONLz_qdIdhQKX53z2vO3T-Xnx8e-Ye3_y76Dh5HlNfhg-u2YXMxW7odRFsLswsPInm-643rD1guKIM |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VAioXHoVCoIBBIPWS1SZ24uTAAfrQLn0IoVbaW7AdR6xYJat9UC2_ib_S_9SZvNqlgLj0wC2SR0kcz4w_T2a-AXhjApWFylKbVC9zhebcxU0wc6NASR1rI6WlP7qHR2HvRHwcBIMV-NnUwlT8EG3AjSyj9Ndk4BSQvmTlY2M7xBcm6pTKfbs4xQPb9F1_B1f3re_v7R5v99y6p4BrhAyFG2uFACIwxlNdHSjud6PYImi2UerFluuYK094JsJ92beSC5_wBo_SLMTZZlJzvO8NuEkdxImpf-fzBVmVJypmP0qYlDL2ah4jyhtqX3V597sCaa9mZl5GzOWWt3cPzpqPVWW6fOvMZ7pjfvzCI_m_fM37cLfG3ux9ZSwPYMXm63C76sa5WIdbHwpEyouHMOg3HBopw4PFjFEeXEHB6ilDjM-GZSCGBtHLsvFF6QWjirwJGxWnDD3lpEDjZOq7Go4qMvTFIzi5lvltwGpe5PYJMBMJHXYz7tnAF0Z2VRxpiWaSZkqbIFUObDWakZianp26hIyS5piGK5SUK-TA61Z0XHGS_E5os1GvpHZL08QPOTpwPNN7Drxqh9Gh0F8ildtiTjIUqAgRxv1NBlG3oF4MDjyuNLZ9EyoNwWND4IBc0uVWgAjNl0fy4deS2DxGPCUjfO5Wqap_nlzyaXu3vHj676IvYa13fHiQHPSP9p_BHZ_KWMpcwk1YnU3m9jmCy5l-Udo0gy_XrfbnbtCD0g |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6V8hAXBOUVKGAQSL2k2thOnBw4QNtVl0K1ByrtLdiOI1ZaJavdLdX-Jv4kM86DrgqIS2-RPEqcsWf82Z75BuCtjXWZaEdlUqMylEaIEBfBMkxjrUxmrFKObnS_nCbHZ_LTJJ5swc8uF6bhh-gP3MgyvL8mA58X5SUjn1u3T3Rhso2oPHHrC9yvLd-PDnFw33E-PPp6cBy2JQVCK1Uiw8xoxA-xtZEemFgLPkgzh5jZpUWUOWEyoSMZ2RSXZe6UkJzghkiLMsGfLZUR-N4bcJMuFyl-jMtx7_Yj2RD7UbykUlnU0hhR2FDf1c3F7wqivRqYeRkw-xVveB_utVCVfWjm1gPYctUO3G6KV6534NbHGoHl-iFMRh3lRMEQh68YhY3VdLa7ZAiJ2dSfW1AjOiU2_52pwCiBbcFm9QVDx7KocS4z_UNPZw13-PoRnF2Ldh_DdlVX7ikwm0qTDEoRuZhLqwY6S43CWVWU2ti40AHsdZrMbctmTkU1Znm3q0Gl517pAbzpRecNhcefhHa74chbK17mPBHo73ALHAXwum9G-6NLFV25-pxkaF-fIOr5lwyCVEmlCwJ40oxw3xPKpECUHQegNsa-FyD-782Wavrd84BnCD9Uit_d87Pk7z-Xjw-O_MOz_xd9BXfGh8P88-j05Dnc5ZT04SPvdmF7tTh3LxCKrcxLbwIMvl23zf0CffFC6A |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Integrated+root+phenotypes+for+improved+rice+performance+under+low+nitrogen+availability&rft.jtitle=Plant%2C+cell+and+environment&rft.au=Ajmera%2C+Ishan&rft.au=Henry%2C+Amelia&rft.au=Radanielson%2C+Ando+M.&rft.au=Klein%2C+Stephanie+P.&rft.date=2022-03-01&rft.issn=0140-7791&rft.eissn=1365-3040&rft.volume=45&rft.issue=3&rft.spage=805&rft.epage=822&rft_id=info:doi/10.1111%2Fpce.14284&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_pce_14284 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0140-7791&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0140-7791&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0140-7791&client=summon |