Integrated root phenotypes for improved rice performance under low nitrogen availability

Greater nitrogen efficiency would substantially reduce the economic, energy and environmental costs of rice production. We hypothesized that synergistic balancing of the costs and benefits for soil exploration among root architectural phenes is beneficial under suboptimal nitrogen availability. An e...

Full description

Saved in:
Bibliographic Details
Published inPlant, cell and environment Vol. 45; no. 3; pp. 805 - 822
Main Authors Ajmera, Ishan, Henry, Amelia, Radanielson, Ando M., Klein, Stephanie P., Ianevski, Aleksandr, Bennett, Malcolm J., Band, Leah R., Lynch, Jonathan P.
Format Journal Article
LanguageEnglish
Published United States Wiley Subscription Services, Inc 01.03.2022
John Wiley and Sons Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Greater nitrogen efficiency would substantially reduce the economic, energy and environmental costs of rice production. We hypothesized that synergistic balancing of the costs and benefits for soil exploration among root architectural phenes is beneficial under suboptimal nitrogen availability. An enhanced implementation of the functional–structural model OpenSimRoot for rice integrated with the ORYZA_v3 crop model was used to evaluate the utility of combinations of root architectural phenes, namely nodal root angle, the proportion of smaller diameter nodal roots, nodal root number; and L‐type and S‐type lateral branching densities, for plant growth under low nitrogen. Multiple integrated root phenotypes were identified with greater shoot biomass under low nitrogen than the reference cultivar IR64. The superiority of these phenotypes was due to synergism among root phenes rather than the expected additive effects of phene states. Representative optimal phenotypes were predicted to have up to 80% greater grain yield with low N supply in the rainfed dry direct‐seeded agroecosystem over future weather conditions, compared to IR64. These phenotypes merit consideration as root ideotypes for breeding rice cultivars with improved yield under rainfed dry direct‐seeded conditions with limited nitrogen availability. The importance of phene synergism for the performance of integrated phenotypes has implications for crop breeding. Summary Statement Multiscale mechanistic modelling identified several integrated root phenotypes in rice with superior yield under low N availability. Synergism among root phenes was an important component of phenotypic performance.
AbstractList Greater nitrogen efficiency would substantially reduce the economic, energy and environmental costs of rice production. We hypothesized that synergistic balancing of the costs and benefits for soil exploration among root architectural phenes is beneficial under suboptimal nitrogen availability. An enhanced implementation of the functional-structural model OpenSimRoot for rice integrated with the ORYZA_v3 crop model was used to evaluate the utility of combinations of root architectural phenes, namely nodal root angle, the proportion of smaller diameter nodal roots, nodal root number; and L-type and S-type lateral branching densities, for plant growth under low nitrogen. Multiple integrated root phenotypes were identified with greater shoot biomass under low nitrogen than the reference cultivar IR64. The superiority of these phenotypes was due to synergism among root phenes rather than the expected additive effects of phene states. Representative optimal phenotypes were predicted to have up to 80% greater grain yield with low N supply in the rainfed dry direct-seeded agroecosystem over future weather conditions, compared to IR64. These phenotypes merit consideration as root ideotypes for breeding rice cultivars with improved yield under rainfed dry direct-seeded conditions with limited nitrogen availability. The importance of phene synergism for the performance of integrated phenotypes has implications for crop breeding.Greater nitrogen efficiency would substantially reduce the economic, energy and environmental costs of rice production. We hypothesized that synergistic balancing of the costs and benefits for soil exploration among root architectural phenes is beneficial under suboptimal nitrogen availability. An enhanced implementation of the functional-structural model OpenSimRoot for rice integrated with the ORYZA_v3 crop model was used to evaluate the utility of combinations of root architectural phenes, namely nodal root angle, the proportion of smaller diameter nodal roots, nodal root number; and L-type and S-type lateral branching densities, for plant growth under low nitrogen. Multiple integrated root phenotypes were identified with greater shoot biomass under low nitrogen than the reference cultivar IR64. The superiority of these phenotypes was due to synergism among root phenes rather than the expected additive effects of phene states. Representative optimal phenotypes were predicted to have up to 80% greater grain yield with low N supply in the rainfed dry direct-seeded agroecosystem over future weather conditions, compared to IR64. These phenotypes merit consideration as root ideotypes for breeding rice cultivars with improved yield under rainfed dry direct-seeded conditions with limited nitrogen availability. The importance of phene synergism for the performance of integrated phenotypes has implications for crop breeding.
Greater nitrogen efficiency would substantially reduce the economic, energy and environmental costs of rice production. We hypothesized that synergistic balancing of the costs and benefits for soil exploration among root architectural phenes is beneficial under suboptimal nitrogen availability. An enhanced implementation of the functional-structural model OpenSimRoot for rice integrated with the ORYZA_v3 crop model was used to evaluate the utility of combinations of root architectural phenes, namely nodal root angle, the proportion of smaller diameter nodal roots, nodal root number; and L-type and S-type lateral branching densities, for plant growth under low nitrogen. Multiple integrated root phenotypes were identified with greater shoot biomass under low nitrogen than the reference cultivar IR64. The superiority of these phenotypes was due to synergism among root phenes rather than the expected additive effects of phene states. Representative optimal phenotypes were predicted to have up to 80% greater grain yield with low N supply in the rainfed dry direct-seeded agroecosystem over future weather conditions, compared to IR64. These phenotypes merit consideration as root ideotypes for breeding rice cultivars with improved yield under rainfed dry direct-seeded conditions with limited nitrogen availability. The importance of phene synergism for the performance of integrated phenotypes has implications for crop breeding.
Greater nitrogen efficiency would substantially reduce the economic, energy and environmental costs of rice production. We hypothesized that synergistic balancing of the costs and benefits for soil exploration among root architectural phenes is beneficial under suboptimal nitrogen availability. An enhanced implementation of the functional–structural model OpenSimRoot for rice integrated with the ORYZA_v3 crop model was used to evaluate the utility of combinations of root architectural phenes, namely nodal root angle, the proportion of smaller diameter nodal roots, nodal root number; and L‐type and S‐type lateral branching densities, for plant growth under low nitrogen. Multiple integrated root phenotypes were identified with greater shoot biomass under low nitrogen than the reference cultivar IR64. The superiority of these phenotypes was due to synergism among root phenes rather than the expected additive effects of phene states. Representative optimal phenotypes were predicted to have up to 80% greater grain yield with low N supply in the rainfed dry direct‐seeded agroecosystem over future weather conditions, compared to IR64. These phenotypes merit consideration as root ideotypes for breeding rice cultivars with improved yield under rainfed dry direct‐seeded conditions with limited nitrogen availability. The importance of phene synergism for the performance of integrated phenotypes has implications for crop breeding. Multiscale mechanistic modelling identified several integrated root phenotypes in rice with superior yield under low N availability. Synergism among root phenes was an important component of phenotypic performance.
Greater nitrogen efficiency would substantially reduce the economic, energy and environmental costs of rice production. We hypothesized that synergistic balancing of the costs and benefits for soil exploration among root architectural phenes is beneficial under suboptimal nitrogen availability. An enhanced implementation of the functional–structural model OpenSimRoot for rice integrated with the ORYZA_v3 crop model was used to evaluate the utility of combinations of root architectural phenes, namely nodal root angle, the proportion of smaller diameter nodal roots, nodal root number; and L‐type and S‐type lateral branching densities, for plant growth under low nitrogen. Multiple integrated root phenotypes were identified with greater shoot biomass under low nitrogen than the reference cultivar IR64. The superiority of these phenotypes was due to synergism among root phenes rather than the expected additive effects of phene states. Representative optimal phenotypes were predicted to have up to 80% greater grain yield with low N supply in the rainfed dry direct‐seeded agroecosystem over future weather conditions, compared to IR64. These phenotypes merit consideration as root ideotypes for breeding rice cultivars with improved yield under rainfed dry direct‐seeded conditions with limited nitrogen availability. The importance of phene synergism for the performance of integrated phenotypes has implications for crop breeding. Summary Statement Multiscale mechanistic modelling identified several integrated root phenotypes in rice with superior yield under low N availability. Synergism among root phenes was an important component of phenotypic performance.
Author Henry, Amelia
Ajmera, Ishan
Ianevski, Aleksandr
Bennett, Malcolm J.
Klein, Stephanie P.
Band, Leah R.
Lynch, Jonathan P.
Radanielson, Ando M.
AuthorAffiliation 5 Institute for Molecular Medicine Finland (FIMM) University of Helsinki Finland
1 Division of Plant and Crop Sciences, School of Biosciences University of Nottingham Sutton Bonington UK
2 Department of Plant Science The Pennsylvania State University University Park Pennsylvania USA
3 Strategic Innovation Platform International Rice Research Institute Los Baños Laguna Philippines
4 Centre for Sustainable Agricultural Systems, Institute for Life Sciences and the Environment, Toowoomba Campus University of Southern Queensland Toowoomba Queensland Australia
6 Centre for Mathematical Medicine and Biology, School of Mathematical Sciences University of Nottingham Nottingham UK
AuthorAffiliation_xml – name: 1 Division of Plant and Crop Sciences, School of Biosciences University of Nottingham Sutton Bonington UK
– name: 2 Department of Plant Science The Pennsylvania State University University Park Pennsylvania USA
– name: 3 Strategic Innovation Platform International Rice Research Institute Los Baños Laguna Philippines
– name: 5 Institute for Molecular Medicine Finland (FIMM) University of Helsinki Finland
– name: 4 Centre for Sustainable Agricultural Systems, Institute for Life Sciences and the Environment, Toowoomba Campus University of Southern Queensland Toowoomba Queensland Australia
– name: 6 Centre for Mathematical Medicine and Biology, School of Mathematical Sciences University of Nottingham Nottingham UK
Author_xml – sequence: 1
  givenname: Ishan
  orcidid: 0000-0002-8770-5235
  surname: Ajmera
  fullname: Ajmera, Ishan
  organization: The Pennsylvania State University
– sequence: 2
  givenname: Amelia
  orcidid: 0000-0001-6255-5480
  surname: Henry
  fullname: Henry, Amelia
  organization: International Rice Research Institute
– sequence: 3
  givenname: Ando M.
  orcidid: 0000-0002-8099-9904
  surname: Radanielson
  fullname: Radanielson, Ando M.
  organization: University of Southern Queensland
– sequence: 4
  givenname: Stephanie P.
  orcidid: 0000-0003-4450-6057
  surname: Klein
  fullname: Klein, Stephanie P.
  organization: The Pennsylvania State University
– sequence: 5
  givenname: Aleksandr
  orcidid: 0000-0002-7780-482X
  surname: Ianevski
  fullname: Ianevski, Aleksandr
  organization: University of Helsinki
– sequence: 6
  givenname: Malcolm J.
  orcidid: 0000-0003-0475-390X
  surname: Bennett
  fullname: Bennett, Malcolm J.
  organization: University of Nottingham
– sequence: 7
  givenname: Leah R.
  orcidid: 0000-0002-6979-1117
  surname: Band
  fullname: Band, Leah R.
  organization: University of Nottingham
– sequence: 8
  givenname: Jonathan P.
  orcidid: 0000-0002-7265-9790
  surname: Lynch
  fullname: Lynch, Jonathan P.
  email: jpl4@psu.edu
  organization: The Pennsylvania State University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35141925$$D View this record in MEDLINE/PubMed
BookMark eNqNkc9rFTEQx4NU7Gv14D8gC170sG1-7SZ7EcqjaqGgBwVvIZudfU3JJmuSfeX99-b5atGCYi4TZj7zZWa-J-jIBw8IvST4jJR3Phs4I5xK_gStCGubmmGOj9AKE45rITpyjE5SusW4JET3DB2zhnDS0WaFvl35DJuoMwxVDCFX8w34kHczpGoMsbLTHMN2X7QGqhliSU7al__iB4iVC3eVtzmGDfhKb7V1urfO5t1z9HTULsGL-3iKvr6__LL-WF9_-nC1vriuDRctr7tec8oaY4jGfaMZxbKDVjQgB9IB6zumy6hGNpJTEIxTWnAmh7GFHkbRs1P07qA7L_0EgwGfo3ZqjnbScaeCturPirc3ahO2qmOYCcmKwJt7gRi-L5Cymmwy4Jz2EJakaNuSck4s-X-gVJStZLNXff0IvQ1L9OUShWKMFrMwKdSr34d_mPqXPwV4ewBMDClFGB8QgtXee1W8Vz-9L-z5I9bYrLMN-72t-1fHnXWw-7u0-ry-PHT8AOyQv_o
CitedBy_id crossref_primary_10_1088_1755_1315_1377_1_012100
crossref_primary_10_1111_tpj_15774
crossref_primary_10_3389_fpls_2022_824720
crossref_primary_10_1007_s00344_024_11458_w
crossref_primary_10_1093_jxb_erae298
crossref_primary_10_3389_fpls_2022_1010165
crossref_primary_10_1016_j_catena_2024_108227
crossref_primary_10_1111_pce_14552
crossref_primary_10_34133_plantphenomics_0091
crossref_primary_10_1093_plphys_kiad214
crossref_primary_10_3389_fpls_2024_1408356
crossref_primary_10_1016_j_fcr_2022_108692
crossref_primary_10_1016_j_cropd_2024_100059
crossref_primary_10_34133_plantphenomics_0132
crossref_primary_10_1093_plphys_kiac405
crossref_primary_10_1016_j_plaphy_2024_108386
crossref_primary_10_3389_fpls_2022_827369
crossref_primary_10_21603_2308_4057_2026_1_655
crossref_primary_10_3389_fpls_2024_1366718
crossref_primary_10_3390_agronomy13122872
crossref_primary_10_3390_plants11172256
crossref_primary_10_3389_fpls_2024_1356078
crossref_primary_10_1016_j_rhisph_2025_101038
crossref_primary_10_1111_pce_14269
crossref_primary_10_1016_j_crope_2023_10_001
crossref_primary_10_1093_jxb_erae191
crossref_primary_10_1093_aob_mcae201
crossref_primary_10_3390_agronomy13061597
crossref_primary_10_3389_fpls_2022_1008954
crossref_primary_10_1007_s11104_023_06301_2
Cites_doi 10.21273/HORTSCI.42.5.1107
10.2135/cropsci1995.0011183X003500010005x
10.1111/j.1469-8137.2005.01445.x
10.1016/j.geoderma.2014.07.019
10.1071/FP08132
10.1016/j.fcr.2013.05.006
10.1626/pps.3.437
10.1093/jxb/ery048
10.1626/pps.3.281
10.1007/BF00025057
10.1007/s11104-020-04453-z
10.1007/s12284-008-9016-5
10.1016/j.envsoft.2016.09.007
10.3389/fpls.2021.641835
10.1093/aob/mcs082
10.1016/j.agrformet.2017.02.025
10.1104/pp.113.232603
10.1046/j.1365-2389.2000.00319.x
10.3389/fpls.2017.00786
10.1142/9789812708816_0009
10.3117/plantroot.7.92
10.1007/s11104-011-0939-z
10.2134/agronj2000.924633x
10.1016/S0065-2113(05)87003-8
10.1081/CSS-200059104
10.1080/00380768.1982.10432387
10.1016/j.still.2010.10.008
10.1093/jxb/erp345
10.1093/jxb/eraa165
10.1111/nph.14641
10.32614/RJ-2018-048
10.1186/s12284-018-0208-3
10.1046/j.1365-3040.2001.00695.x
10.2134/agronmonogr49.c11
10.1093/jxb/ert043
10.1104/pp.15.00145
10.1098/rspb.2015.2592
10.1023/A:1004293706242
10.1093/aob/mcaa143
10.1104/pp.109.1.7
10.1093/aob/mcaa120
10.1093/jxb/erv121
10.1007/s11104-005-0389-6
10.1016/j.fcr.2016.02.001
10.5194/gmd-9-3461-2016
10.1104/pp.111.175489
10.1023/A:1004276724310
10.3389/fpls.2020.00316
10.1111/tpj.15560
10.1111/nph.15738
10.1093/aob/mcq199
10.1111/pce.13875
10.1071/FP05266
10.1093/jxb/eru508
10.3389/fpls.2013.00355
10.1093/jxb/erw115
10.1007/978-94-009-1706-4_13
10.1093/jxb/eraa054
10.3389/fpls.2020.00546
10.1093/jxb/erw243
10.1104/pp.113.233916
10.1626/jcs.32.163
10.1111/pce.12451
10.1080/1343943X.2018.1439757
10.1016/j.agsy.2004.09.011
10.1111/j.1365-2745.2006.01124.x
10.1038/nature25783
10.1626/jcs.56.608
10.1093/aob/mcs293
10.2136/sssaj1989.03615995005300020029x
10.1105/tpc.112.101550
10.1038/ng.2725
10.1093/aob/mcw112
10.1111/tpj.14722
10.1016/j.tplants.2019.12.007
10.1098/rstb.2011.0243
10.1093/oxfordjournals.aob.a088311
10.1093/aob/mcy092
10.1093/insilicoplants/diz001
10.1093/jxb/erw133
10.1016/0378-4290(94)00096-U
10.1093/nar/gkaa216
10.1016/j.eja.2018.01.015
10.1093/aob/mcr175
10.1126/science.1185383
10.2134/agronj2007.0356
10.1006/anbo.2001.1530
10.1626/jcs.41.192
10.1104/pp.17.00648
10.1007/s10333-010-0246-y
10.1063/1.1745010
10.1016/B978-0-12-387689-8.00001-1
10.1038/srep05563
ContentType Journal Article
Copyright 2022 The Authors. published by John Wiley & Sons Ltd.
2022 The Authors. Plant, Cell & Environment published by John Wiley & Sons Ltd.
2022. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022 The Authors. published by John Wiley & Sons Ltd.
– notice: 2022 The Authors. Plant, Cell & Environment published by John Wiley & Sons Ltd.
– notice: 2022. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7ST
C1K
SOI
7X8
7S9
L.6
5PM
DOI 10.1111/pce.14284
DatabaseName Wiley Online Library Open Access (Activated by CARLI)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Calcium & Calcified Tissue Abstracts
Environment Abstracts
Environmental Sciences and Pollution Management
Environment Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Calcium & Calcified Tissue Abstracts
Environment Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
Calcium & Calcified Tissue Abstracts
CrossRef

AGRICOLA

Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Botany
DocumentTitleAlternate ROOT PHENOTYPES FOR LOW N TOLERANCE IN RICE
EISSN 1365-3040
EndPage 822
ExternalDocumentID PMC9303783
35141925
10_1111_pce_14284
PCE14284
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Extreme Science and Engineering Discovery Environment (XSEDE)
  funderid: MCB‐180133 & BCS‐200008
– fundername: Foundation for Food & Agriculture Research
  funderid: ‘Crops in Silico’ project [Grant ID 602757]
– fundername: University of Nottingham High Performance Computing
– fundername: Biotechnology and Biological Sciences Research Council
  funderid: Newton Fund [grant number BB/N013697/1]
– fundername: ;
  grantid: Newton Fund [grant number BB/N013697/1]
– fundername: Extreme Science and Engineering Discovery Environment (XSEDE)
  grantid: MCB‐180133 & BCS‐200008
– fundername: Foundation for Food & Agriculture Research
  grantid: ‘Crops in Silico’ project [Grant ID 602757]
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
123
186
1OB
1OC
24P
29O
2WC
31~
33P
36B
3SF
4.4
42X
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFS
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHEFC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BAWUL
BDRZF
BFHJK
BHBCM
BIYOS
BMNLL
BNHUX
BROTX
BRXPI
BY8
CAG
COF
CS3
D-E
D-F
DC6
DCZOG
DIK
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
ECGQY
EJD
ESX
F00
F01
F04
F5P
FEDTE
FIJ
FZ0
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
IHE
IPNFZ
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OK1
P2P
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
UB1
W8V
W99
WBKPD
WH7
WHG
WIH
WIK
WIN
WNSPC
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XSW
YNT
ZZTAW
~02
~IA
~KM
~WT
AAYXX
AETEA
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7ST
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
C1K
SOI
7X8
7S9
L.6
5PM
ID FETCH-LOGICAL-c4764-9ba4235cc1a0b5a32089e675e8d19e3b93a141c85842e7342242338df6ebef7b3
IEDL.DBID DR2
ISSN 0140-7791
1365-3040
IngestDate Thu Aug 21 18:17:06 EDT 2025
Fri Jul 11 18:30:26 EDT 2025
Fri Jul 11 01:45:22 EDT 2025
Fri Jul 25 10:56:28 EDT 2025
Wed Feb 19 02:26:27 EST 2025
Tue Jul 01 04:28:46 EDT 2025
Thu Apr 24 22:59:53 EDT 2025
Wed Jan 22 16:27:34 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords ORYZA_V3
OpenSimRoot
functional-structural plant modelling
phene synergism
IR64
nitrogen acquisition
root system architecture
nodal roots
Language English
License Attribution
2022 The Authors. Plant, Cell & Environment published by John Wiley & Sons Ltd.
This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4764-9ba4235cc1a0b5a32089e675e8d19e3b93a141c85842e7342242338df6ebef7b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-8770-5235
0000-0002-7265-9790
0000-0002-8099-9904
0000-0002-7780-482X
0000-0003-0475-390X
0000-0001-6255-5480
0000-0003-4450-6057
0000-0002-6979-1117
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fpce.14284
PMID 35141925
PQID 2633228401
PQPubID 37957
PageCount 18
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_9303783
proquest_miscellaneous_2661040084
proquest_miscellaneous_2627476853
proquest_journals_2633228401
pubmed_primary_35141925
crossref_primary_10_1111_pce_14284
crossref_citationtrail_10_1111_pce_14284
wiley_primary_10_1111_pce_14284_PCE14284
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate March 2022
PublicationDateYYYYMMDD 2022-03-01
PublicationDate_xml – month: 03
  year: 2022
  text: March 2022
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Oxford
– name: Hoboken
PublicationTitle Plant, cell and environment
PublicationTitleAlternate Plant Cell Environ
PublicationYear 2022
Publisher Wiley Subscription Services, Inc
John Wiley and Sons Inc
Publisher_xml – name: Wiley Subscription Services, Inc
– name: John Wiley and Sons Inc
References 2018; 122
2017; 8
2015; 38
2013; 4
2011b; 156
2000; 3
2017; 237–238
2006; 33
1997; 196
2019; 10
1995; 35
2013; 64
2020; 126
2014; 235–236
2000; 51
2000; 92
2020; 15
2020; 448
2008; 35
1972; 41
2020; 11
2013; 7
2012; 367
2001; 88
2008; 100
1993; 1
2011a; 107
2011; 111
2010; 61
2014; 4
1963; 32
1982; 28
1987; 41
2001
2000
2016; 118
1997; 188
2013; 112
2016; 85
2020; 48
1982
2020; 44
2012; 24
2014; 166
2016; 190
1989
2005; 36
2021; 109
2018; 100
1987; 56
2006; 94
2010; 327
2019; 1
2013; 45
2013; 149
2015; 167
2008
2019; 223
2007
1995
2005; 87
1993; 155–156
2017; 174
2003
2020; 103
2001; 24
2018; 21
2017; 215
2016; 283
2018; 69
2006; 279
2011; 9
1995; 40
2012; 110
2011; 108
1989; 53
2021; 12
2011; 348
2005; 166
2006; 87
2020; 71
2015; 66
2018; 555
1995; 109
2020; 25
1992; 69
2013
2007; 42
2018; 11
2009; 2
2016; 9
1931; 1
2016; 67
e_1_2_9_75_1
e_1_2_9_98_1
e_1_2_9_52_1
e_1_2_9_79_1
e_1_2_9_94_1
e_1_2_9_10_1
e_1_2_9_56_1
e_1_2_9_33_1
e_1_2_9_90_1
e_1_2_9_71_1
Barber S.A. (e_1_2_9_7_1) 1995
e_1_2_9_14_1
e_1_2_9_37_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_87_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_68_1
e_1_2_9_83_1
e_1_2_9_6_1
e_1_2_9_60_1
e_1_2_9_2_1
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_30_1
e_1_2_9_53_1
e_1_2_9_99_1
e_1_2_9_72_1
e_1_2_9_11_1
e_1_2_9_57_1
e_1_2_9_95_1
e_1_2_9_76_1
e_1_2_9_91_1
Bouman B.A.M. (e_1_2_9_9_1) 2001
e_1_2_9_102_1
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_19_1
e_1_2_9_42_1
e_1_2_9_88_1
e_1_2_9_61_1
e_1_2_9_46_1
e_1_2_9_84_1
e_1_2_9_65_1
e_1_2_9_80_1
e_1_2_9_5_1
Global Rice Science Partnership (GRiSP). (e_1_2_9_27_1) 2013
e_1_2_9_31_1
e_1_2_9_50_1
e_1_2_9_73_1
e_1_2_9_35_1
e_1_2_9_77_1
e_1_2_9_96_1
e_1_2_9_12_1
e_1_2_9_54_1
e_1_2_9_92_1
e_1_2_9_101_1
e_1_2_9_39_1
e_1_2_9_16_1
e_1_2_9_58_1
e_1_2_9_20_1
e_1_2_9_89_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_66_1
e_1_2_9_85_1
e_1_2_9_8_1
e_1_2_9_81_1
e_1_2_9_4_1
Dobermann A. (e_1_2_9_23_1) 2000
e_1_2_9_28_1
e_1_2_9_47_1
e_1_2_9_74_1
e_1_2_9_51_1
e_1_2_9_78_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_55_1
e_1_2_9_97_1
e_1_2_9_93_1
e_1_2_9_70_1
Moldenhauer K.A. (e_1_2_9_64_1) 2003
e_1_2_9_100_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_59_1
e_1_2_9_63_1
e_1_2_9_40_1
e_1_2_9_21_1
e_1_2_9_67_1
e_1_2_9_44_1
e_1_2_9_86_1
Hoshikawa K. (e_1_2_9_34_1) 1989
e_1_2_9_82_1
Matsuo T. (e_1_2_9_62_1) 1993
e_1_2_9_3_1
e_1_2_9_25_1
e_1_2_9_48_1
e_1_2_9_29_1
O'Toole J.C. (e_1_2_9_69_1) 1987
Yoshida S. (e_1_2_9_103_1) 1982
References_xml – volume: 1
  issue: 1
  year: 2019
  article-title: yggdrasil: a python package for integrating computational models across languages and scales
  publication-title: In silico Plants
– volume: 41
  start-page: 192
  year: 1972
  end-page: 204
  article-title: Studies on the developmental physiology of the lateral roots in rice seminal roots
  publication-title: Japanese Journal of Crop Science
– volume: 33
  start-page: 309
  year: 2006
  end-page: 323
  article-title: EcoMeristem, a model of morphogenesis and competition among sinks in rice. 1. Concept, validation, and sensitivity analysis
  publication-title: Functional Plant Biology
– start-page: 129
  year: 1995
  end-page: 138
– volume: 126
  start-page: 789
  issue: 4
  year: 2020
  end-page: 806
  article-title: A functional–structural model of upland rice root systems reveals the importance of laterals and growing root tips for phosphate uptake from wet and dry soils
  publication-title: Annals of Botany
– volume: 32
  start-page: 163
  year: 1963
  end-page: 180
  article-title: Studies on root system formation in rice plants in a paddy
  publication-title: Japanese Journal of Crop Science
– volume: 56
  start-page: 608
  year: 1987
  end-page: 617
  article-title: Quantitative analysis on root system structures of upland rice and maize
  publication-title: Japanese Journal of Crop Sciences
– year: 1989
– volume: 108
  start-page: 407
  issue: 3
  year: 2011
  end-page: 418
  article-title: Breeding crop plants with deep roots: their role in sustainable carbon, nutrient and water sequestration
  publication-title: Annals of Botany
– volume: 448
  start-page: 523
  year: 2020
  end-page: 537
  article-title: The contribution of plant traits and soil microbes to phosphorus uptake from low‐phosphorus soil in upland rice varieties
  publication-title: Plant Soil
– volume: 223
  start-page: 548
  year: 2019
  end-page: 564
  article-title: Root phenotypes for improved nutrient capture: an underexploited opportunity for global agriculture
  publication-title: New Phytologist
– volume: 11
  start-page: 316
  year: 2020
  article-title: Call for participation: collaborative benchmarking of functional‐structural root architecture models. The case of root water uptake
  publication-title: Frontiers in Plant Science
– volume: 88
  start-page: 929
  year: 2001
  end-page: 940
  article-title: Root gravitropism and below‐ground competition among neighbouring plants: a modelling approach
  publication-title: Annals of Botany
– volume: 87
  start-page: 85
  year: 2005
  end-page: 156
  article-title: Efficiency of fertilizer nitrogen in cereal production: retrospects and prospects
  publication-title: Advances in Agronomy
– volume: 61
  start-page: 2101
  year: 2010
  end-page: 2115
  article-title: Functional‐structural plant modelling: a new versatile tool in crop science
  publication-title: Journal of Experimental Botany
– volume: 53
  start-page: 477
  year: 1989
  end-page: 482
  article-title: Nitrate accumulation and loss in a mungbean/lowland rice cropping system
  publication-title: Soil Science Society of America Journal
– volume: 85
  start-page: 332
  year: 2016
  end-page: 341
  article-title: A taxonomy‐based approach to shed light on the babel of mathematical models for rice simulations
  publication-title: Environmental Modelling & Software
– volume: 118
  start-page: 401
  year: 2016
  end-page: 414
  article-title: Impact of axial root growth angles on nitrogen acquisition in maize depends on environmental conditions
  publication-title: Annals Botany
– volume: 188
  start-page: 139
  year: 1997
  end-page: 151
  article-title: SimRoot: modelling and visualization of root systems
  publication-title: Plant and Soil
– volume: 156
  start-page: 1190
  year: 2011b
  end-page: 1201
  article-title: Root cortical aerenchyma enhances the growth of maize on soils with suboptimal availability of nitrogen, phosphorus, and potassium
  publication-title: Plant Physiology
– volume: 64
  start-page: 1193
  year: 2013
  end-page: 1208
  article-title: Soil conditions and cereal root system architecture: review and considerations for linking Darwin and Weaver
  publication-title: Journal of Experimental Botany
– volume: 103
  start-page: 21
  issue: 1
  year: 2020
  end-page: 31
  article-title: Multiscale computational models can guide experimentation and targeted measurements for crop improvement
  publication-title: Plant Journal
– volume: 167
  start-page: 1430
  year: 2015
  end-page: 1439
  article-title: Phene synergism between root hair length and basal root growth angle for phosphorus acquisition
  publication-title: Plant Physiology
– volume: 126
  start-page: 501
  issue: 4
  year: 2020
  end-page: 509
  article-title: Two decades of functional–structural plant modelling: now addressing fundamental questions in systems biology and predictive ecology
  publication-title: Annals of Botany
– volume: 107
  start-page: 829
  year: 2011a
  end-page: 841
  article-title: Theoretical evidence for the functional benefit of root cortical aerenchyma in soils with low phosphorus availability
  publication-title: Annals of Botany
– volume: 3
  start-page: 281
  issue: 3
  year: 2000
  end-page: 288
  article-title: Which roots penetrate the deepest in rice and maize root systems?
  publication-title: Plant Production Science
– volume: 283
  issue: 1824
  year: 2016
  article-title: Interactions among ecosystem stressors and their importance in conservation
  publication-title: Proc Biol Sci.
– volume: 42
  start-page: 1107
  issue: 5
  year: 2007
  end-page: 1109
  article-title: Rhizoeconomics: the roots of shoot growth limitations
  publication-title: HortScience
– volume: 555
  start-page: 94
  year: 2018
  end-page: 97
  article-title: Evolutionary history resolves global organization of root functional traits
  publication-title: Nature
– volume: 166
  start-page: 581
  year: 2014
  end-page: 589
  article-title: Low crown root number enhances nitrogen acquisition from low‐nitrogen soils in maize
  publication-title: Plant Physiology
– volume: 25
  start-page: 4442
  year: 2020
  end-page: 4451
  article-title: A balancing act: how plants integrate nitrogen and water signals
  publication-title: Journal of Experimental Botany
– volume: 100
  start-page: 44
  year: 2018
  end-page: 55
  article-title: Modeling salinity effect on rice growth and grain yield with ORYZA v3 and APSIM‐ORYZA
  publication-title: European Journal of Agronomy
– volume: 87
  start-page: 249
  year: 2006
  end-page: 273
  article-title: Description and evaluation of the rice growth model ORYZA2000 under nitrogen‐limited conditions
  publication-title: Agricultural Systems
– volume: 2
  start-page: 15
  year: 2009
  end-page: 34
  article-title: Molecular genetics of rice root development
  publication-title: Rice
– volume: 149
  start-page: 312
  year: 2013
  end-page: 321
  article-title: Simulation of genotype performances across a larger number of environments for rice breeding using ORYZA2000
  publication-title: Field Crops Research
– volume: 1
  year: 1993
– volume: 69
  start-page: 3279
  year: 2018
  end-page: 3292
  article-title: Rightsizing root phenotypes for drought resistance
  publication-title: Journal of Experimental Botany
– volume: 4
  start-page: 5563
  year: 2014
  article-title: Deep rooting conferred by DEEPER ROOTING 1 enhances rice yield in paddy fields
  publication-title: Scientific Reports
– volume: 9
  start-page: 333
  year: 2011
  end-page: 342
  article-title: Nitrogen and phosphorus leaching losses from paddy fields with different water and nitrogen managements
  publication-title: Paddy and Water Environment
– volume: 7
  start-page: 92
  year: 2013
  end-page: 106
  article-title: IRRI's drought stress research in rice with emphasis on roots: accomplishments over the last 50 years
  publication-title: Plant Root
– volume: 122
  start-page: 485
  year: 2018
  end-page: 499
  article-title: Co‐optimization of axial root phenotypes for nitrogen and phosphorus acquisition in common bean
  publication-title: Annals of Botany
– volume: 1
  start-page: 318
  year: 1931
  end-page: 333
  article-title: Capillary conduction of liquids through porous mediums
  publication-title: Physics
– volume: 100
  start-page: 1390
  year: 2008
  end-page: 1395
  article-title: Yield gap analysis between dry and wet season rice crop grown under high‐yielding management conditions
  publication-title: Agronomy Journal
– volume: 12
  start-page: 357
  year: 2021
  article-title: Cost‐benefit analysis of the upland‐rice root architecture in relation to phosphate: 3D simulations highlight the importance of S‐type lateral roots for reducing the pay‐off time
  publication-title: Frontiers in Plant Science
– start-page: 117
  year: 2007
  end-page: 141
– volume: 109
  start-page: 415
  year: 2021
  end-page: 431
  article-title: Harnessing root architecture to address global challenges
  publication-title: The Plant Journal
– start-page: 103
  year: 2003
  end-page: 127
– volume: 9
  start-page: 3461
  year: 2016
  end-page: 3482
  article-title: The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6
  publication-title: Geoscientific Model Development
– volume: 155–156
  start-page: 359
  year: 1993
  end-page: 362
  article-title: Nitrogen use efficiency of rice reconsidered: what are the key constraints?
  publication-title: Plant and Soil
– volume: 111
  start-page: 297
  year: 2011
  end-page: 413
  article-title: Direct seeding of rice: recent developments and future research needs
  publication-title: Advances in Agronomy
– volume: 111
  start-page: 87
  year: 2011
  end-page: 98
  article-title: Rice direct seeding: experiences, challenges and opportunities
  publication-title: Soil & Tillage Research
– year: 1995
– start-page: 283
  year: 2013
– volume: 41
  start-page: 91
  year: 1987
  end-page: 145
– volume: 196
  start-page: 201
  year: 1997
  end-page: 210
  article-title: Physiological nitrogen efficiency in rice: Nitrogen utilization, photosynthesis, and yield potential
  publication-title: Plant and Soil
– volume: 51
  start-page: 517
  year: 2000
  end-page: 529
  article-title: A mono‐component model of carbon mineralization with a dynamic rate constant
  publication-title: European Journal of Soil Science
– volume: 44
  start-page: 49
  issue: 1
  year: 2020
  end-page: 67
  article-title: Root metaxylem and architecture phenotypes integrate to regulate water use under drought stress
  publication-title: Plant, Cell & Environment
– volume: 40
  start-page: 67
  year: 1995
  end-page: 86
  article-title: Development of drought‐resistant cultivars using physiomorphological traits in rice
  publication-title: Field Crops Research
– volume: 110
  start-page: 521
  year: 2012
  end-page: 534
  article-title: Complementarity in root architecture for nutrient uptake in ancient maize/bean and maize/bean/squash polycultures
  publication-title: Annals of Botany
– volume: 36
  start-page: 1625
  year: 2005
  end-page: 1639
  article-title: Nitrogen fertilizer losses from rice soils and control of environmental pollution problems
  publication-title: Communications in Soil Science and Plant Analysis
– year: 2001
– volume: 237–238
  start-page: 246
  year: 2017
  end-page: 256
  article-title: From ORYZA2000 to ORYZA (v3): an improved simulation model for rice in drought and nitrogen‐deficient environments
  publication-title: Agricultural and Forest Meteorology
– volume: 35
  start-page: 24
  issue: 1
  year: 1995
  end-page: 29
  article-title: Shoot and root development in rice related to the phyllochron
  publication-title: Crop Science
– volume: 66
  start-page: 3151
  year: 2015
  end-page: 3162
  article-title: Root anatomical phenes predict root penetration ability and biomechanical properties in maize ( )
  publication-title: Journal of Experimental Botany
– volume: 35
  start-page: 1163
  year: 2008
  end-page: 1171
  article-title: Evidence from near‐isogenic lines that root penetration increases with root diameter and bending stiffness in rice
  publication-title: Functional Plant Biology
– start-page: 97
  year: 1982
  end-page: 114
– volume: 24
  start-page: 3892
  year: 2012
  end-page: 3906
  article-title: Multiscale systems analysis of root growth and development: modeling beyond the network and cellular scales
  publication-title: Plant Cell
– volume: 190
  start-page: 60
  issue: 2016
  year: 2016
  end-page: 69
  article-title: Climate ready rice: augmenting drought tolerance with best management practices
  publication-title: Field Crops Research
– volume: 367
  start-page: 1598
  year: 2012
  end-page: 1604
  article-title: New roots for agriculture: exploiting the root phenome
  publication-title: Philosophical Transactions of the Royal Society B: Biological Sciences
– volume: 109
  start-page: 7
  year: 1995
  end-page: 13
  article-title: Root architecture and plant productivity
  publication-title: Plant Physiology
– volume: 67
  start-page: 3699
  year: 2016
  end-page: 3708
  article-title: Root hair formation in rice ( L.) differs between root types and is altered in artificial growth conditions
  publication-title: Journal of Experimental Botany
– volume: 215
  start-page: 1274
  year: 2017
  end-page: 1286
  article-title: OpenSimRoot: widening the scope and application of root architectural models
  publication-title: New Phytologist
– volume: 25
  start-page: 406
  issue: 4
  year: 2020
  end-page: 417
  article-title: Digging deeper for agricultural resources—the value of deep rooting
  publication-title: Trends Plant Science
– volume: 279
  start-page: 347
  year: 2006
  end-page: 366
  article-title: Architectural tradeoffs between adventitious and basal roots for phosphorus acquisition
  publication-title: Plant and Soil
– volume: 4
  start-page: 355
  year: 2013
  article-title: Integration of root phenes for soil resource acquisition
  publication-title: Frontiers in Plant Science
– volume: 174
  start-page: 2333
  year: 2017
  end-page: 2347
  article-title: Root cortical senescence improves growth under suboptimal availability of N, P, and K
  publication-title: Plant Physiology
– volume: 348
  start-page: 345
  year: 2011
  end-page: 364
  article-title: Phenotypic variability and modelling of root structure of wild genotypes
  publication-title: Plant and Soil
– volume: 92
  start-page: 633
  year: 2000
  end-page: 643
  article-title: Reversal of rice yield decline in a long‐term continuous cropping experiment
  publication-title: Agronomy Journal
– volume: 10
  start-page: 200
  year: 2019
  end-page: 208
  article-title: clustMixType: user‐friendly clustering of mixed‐type data in R
  publication-title: The R Journal
– volume: 235–236
  start-page: 250
  year: 2014
  end-page: 259
  article-title: Soil quality and constraints in global rice production
  publication-title: Geoderma
– volume: 11
  start-page: 18
  year: 2018
  article-title: IR64: a high‐quality and high‐yielding mega variety
  publication-title: Rice
– volume: 8
  start-page: 786
  year: 2017
  article-title: Crops in silico: generating virtual crops using an integrative and multi‐scale modeling platform
  publication-title: Frontiers in Plant Science
– year: 2000
– volume: 3
  start-page: 437
  year: 2000
  end-page: 445
  article-title: Anatomy of nodal roots in tropical upland and lowland rice varieties
  publication-title: Plant Production Science
– volume: 327
  start-page: 812
  year: 2010
  end-page: 818
  article-title: Food security: the challenge of feeding 9 billion people
  publication-title: Science
– start-page: 401
  year: 2008
  end-page: 436
– volume: 94
  start-page: 725
  year: 2006
  end-page: 739
  article-title: Root competition: beyond resource depletion
  publication-title: Journal of Ecology
– volume: 66
  start-page: 2199
  year: 2015
  end-page: 2210
  article-title: Opportunities and challenges in the subsoil: pathways to deeper rooted crops
  publication-title: Journal of Experimental Botany
– volume: 15
  start-page: 546
  year: 2020
  article-title: Should root plasticity be a crop breeding target?
  publication-title: Frontiers in Plant Science
– volume: 67
  start-page: 3763
  year: 2016
  end-page: 3775
  article-title: Spatiotemporal variation of nitrate uptake kinetics within the maize ( L.) root system is associated with greater nitrate uptake and interactions with architectural phenes
  publication-title: Journal of Experimental Botany
– volume: 166
  start-page: 705
  year: 2005
  end-page: 708
  article-title: Functional–structural plant modelling
  publication-title: New Phytologist
– volume: 28
  start-page: 473
  year: 1982
  end-page: 482
  article-title: Relationship between plant type and root growth in rice
  publication-title: Soil Science and Plant Nutrition
– volume: 38
  start-page: 1775
  year: 2015
  end-page: 1784
  article-title: Root phenes that reduce the metabolic costs of soil exploration: opportunities for 21st century agriculture
  publication-title: Plant, Cell & Environment
– volume: 45
  start-page: 1097
  year: 2013
  end-page: 1102
  article-title: Control of root system architecture by DEEPER ROOTING 1 increases rice yield under drought conditions
  publication-title: Nature Genetics
– volume: 166
  start-page: 590
  year: 2014
  end-page: 602
  article-title: The optimal lateral root branching density for maize depends on nitrogen and phosphorus availability
  publication-title: Plant Physiology
– volume: 71
  start-page: 4243
  issue: 14
  year: 2020
  end-page: 4257
  article-title: Root anatomical traits contribute to deeper rooting of maize under compacted field conditions
  publication-title: Journal of Experimental Botany
– volume: 48
  start-page: W488
  issue: W1
  year: 2020
  end-page: W493
  article-title: SynergyFinder 2.0: visual analytics of multi‐drug combination synergies
  publication-title: Nucleic Acids Research
– volume: 67
  start-page: 4545
  issue: 15
  year: 2016
  end-page: 4557
  article-title: Reduced crown root number improves water acquisition under water deficit stress in maize ( L.)
  publication-title: Journal of Experimental Botany
– volume: 69
  start-page: 87
  year: 1992
  end-page: 92
  article-title: A finite‐element model of radial and axial conductivities for individual roots: development and validation for two desert succulents
  publication-title: Annals of Botany
– volume: 112
  start-page: 347
  year: 2013
  end-page: 357
  article-title: Steep, cheap and deep: an ideotype to optimize water and N acquisition by maize root systems
  publication-title: Annals of Botany
– volume: 21
  start-page: 93
  year: 2018
  end-page: 105
  article-title: Genotypic variations in the plasticity of nodal root penetration through the hardpan during soil moisture fluctuations among four rice varieties
  publication-title: Plant Production Science
– volume: 24
  start-page: 459
  year: 2001
  end-page: 467
  article-title: Regulation of root hair density by phosphorus availability in
  publication-title: Plant, Cell & Environment
– ident: e_1_2_9_49_1
  doi: 10.21273/HORTSCI.42.5.1107
– ident: e_1_2_9_65_1
  doi: 10.2135/cropsci1995.0011183X003500010005x
– ident: e_1_2_9_29_1
  doi: 10.1111/j.1469-8137.2005.01445.x
– ident: e_1_2_9_32_1
  doi: 10.1016/j.geoderma.2014.07.019
– ident: e_1_2_9_17_1
  doi: 10.1071/FP08132
– ident: e_1_2_9_44_1
  doi: 10.1016/j.fcr.2013.05.006
– ident: e_1_2_9_38_1
  doi: 10.1626/pps.3.437
– ident: e_1_2_9_52_1
  doi: 10.1093/jxb/ery048
– ident: e_1_2_9_4_1
  doi: 10.1626/pps.3.281
– ident: e_1_2_9_13_1
  doi: 10.1007/BF00025057
– ident: e_1_2_9_96_1
  doi: 10.1007/s11104-020-04453-z
– ident: e_1_2_9_79_1
  doi: 10.1007/s12284-008-9016-5
– ident: e_1_2_9_18_1
  doi: 10.1016/j.envsoft.2016.09.007
– ident: e_1_2_9_30_1
  doi: 10.3389/fpls.2021.641835
– ident: e_1_2_9_76_1
  doi: 10.1093/aob/mcs082
– volume-title: The growing rice plant, an anatomical monograph
  year: 1989
  ident: e_1_2_9_34_1
– ident: e_1_2_9_43_1
  doi: 10.1016/j.agrformet.2017.02.025
– ident: e_1_2_9_83_1
  doi: 10.1104/pp.113.232603
– volume-title: ORYZA2000: modeling lowland rice
  year: 2001
  ident: e_1_2_9_9_1
– ident: e_1_2_9_98_1
  doi: 10.1046/j.1365-2389.2000.00319.x
– ident: e_1_2_9_61_1
  doi: 10.3389/fpls.2017.00786
– ident: e_1_2_9_71_1
  doi: 10.1142/9789812708816_0009
– ident: e_1_2_9_33_1
  doi: 10.3117/plantroot.7.92
– ident: e_1_2_9_14_1
  doi: 10.1007/s11104-011-0939-z
– ident: e_1_2_9_22_1
  doi: 10.2134/agronj2000.924633x
– ident: e_1_2_9_41_1
  doi: 10.1016/S0065-2113(05)87003-8
– ident: e_1_2_9_16_1
  doi: 10.1081/CSS-200059104
– ident: e_1_2_9_102_1
  doi: 10.1080/00380768.1982.10432387
– ident: e_1_2_9_24_1
  doi: 10.1016/j.still.2010.10.008
– ident: e_1_2_9_94_1
  doi: 10.1093/jxb/erp345
– ident: e_1_2_9_93_1
  doi: 10.1093/jxb/eraa165
– start-page: 91
  volume-title: Advances in agronomy
  year: 1987
  ident: e_1_2_9_69_1
– ident: e_1_2_9_73_1
  doi: 10.1111/nph.14641
– ident: e_1_2_9_90_1
  doi: 10.32614/RJ-2018-048
– ident: e_1_2_9_59_1
  doi: 10.1186/s12284-018-0208-3
– start-page: 283
  volume-title: Rice almanac
  year: 2013
  ident: e_1_2_9_27_1
– ident: e_1_2_9_57_1
  doi: 10.1046/j.1365-3040.2001.00695.x
– ident: e_1_2_9_11_1
  doi: 10.2134/agronmonogr49.c11
– ident: e_1_2_9_80_1
  doi: 10.1093/jxb/ert043
– ident: e_1_2_9_63_1
  doi: 10.1104/pp.15.00145
– ident: e_1_2_9_19_1
  doi: 10.1098/rspb.2015.2592
– ident: e_1_2_9_60_1
  doi: 10.1023/A:1004293706242
– ident: e_1_2_9_45_1
  doi: 10.1093/aob/mcaa143
– start-page: 97
  volume-title: The rice root system: its development and function. In Drought resistance in crops with emphasis on rice
  year: 1982
  ident: e_1_2_9_103_1
– volume-title: Soil nutrient bioavailability: a mechanistic approach
  year: 1995
  ident: e_1_2_9_7_1
– ident: e_1_2_9_48_1
  doi: 10.1104/pp.109.1.7
– ident: e_1_2_9_21_1
  doi: 10.1093/aob/mcaa120
– ident: e_1_2_9_15_1
  doi: 10.1093/jxb/erv121
– ident: e_1_2_9_95_1
  doi: 10.1007/s11104-005-0389-6
– ident: e_1_2_9_31_1
  doi: 10.1016/j.fcr.2016.02.001
– ident: e_1_2_9_68_1
  doi: 10.5194/gmd-9-3461-2016
– ident: e_1_2_9_75_1
  doi: 10.1104/pp.111.175489
– ident: e_1_2_9_47_1
  doi: 10.1023/A:1004276724310
– ident: e_1_2_9_87_1
  doi: 10.3389/fpls.2020.00316
– ident: e_1_2_9_54_1
  doi: 10.1111/tpj.15560
– ident: e_1_2_9_53_1
  doi: 10.1111/nph.15738
– ident: e_1_2_9_74_1
  doi: 10.1093/aob/mcq199
– ident: e_1_2_9_89_1
  doi: 10.1111/pce.13875
– ident: e_1_2_9_46_1
  doi: 10.1071/FP05266
– ident: e_1_2_9_56_1
  doi: 10.1093/jxb/eru508
– ident: e_1_2_9_100_1
  doi: 10.3389/fpls.2013.00355
– ident: e_1_2_9_66_1
  doi: 10.1093/jxb/erw115
– start-page: 103
  volume-title: Rice: origin, history, technology, and production
  year: 2003
  ident: e_1_2_9_64_1
– ident: e_1_2_9_88_1
  doi: 10.1007/978-94-009-1706-4_13
– ident: e_1_2_9_5_1
  doi: 10.1093/jxb/eraa054
– ident: e_1_2_9_85_1
  doi: 10.3389/fpls.2020.00546
– ident: e_1_2_9_26_1
  doi: 10.1093/jxb/erw243
– volume-title: Science of the rice plant
  year: 1993
  ident: e_1_2_9_62_1
– ident: e_1_2_9_72_1
  doi: 10.1104/pp.113.233916
– ident: e_1_2_9_36_1
  doi: 10.1626/jcs.32.163
– ident: e_1_2_9_51_1
  doi: 10.1111/pce.12451
– ident: e_1_2_9_67_1
  doi: 10.1080/1343943X.2018.1439757
– ident: e_1_2_9_10_1
  doi: 10.1016/j.agsy.2004.09.011
– ident: e_1_2_9_84_1
  doi: 10.1111/j.1365-2745.2006.01124.x
– ident: e_1_2_9_58_1
  doi: 10.1038/nature25783
– ident: e_1_2_9_97_1
  doi: 10.1626/jcs.56.608
– ident: e_1_2_9_50_1
  doi: 10.1093/aob/mcs293
– ident: e_1_2_9_12_1
  doi: 10.2136/sssaj1989.03615995005300020029x
– ident: e_1_2_9_6_1
  doi: 10.1105/tpc.112.101550
– ident: e_1_2_9_92_1
  doi: 10.1038/ng.2725
– ident: e_1_2_9_20_1
  doi: 10.1093/aob/mcw112
– ident: e_1_2_9_8_1
  doi: 10.1111/tpj.14722
– ident: e_1_2_9_91_1
  doi: 10.1016/j.tplants.2019.12.007
– ident: e_1_2_9_55_1
  doi: 10.1098/rstb.2011.0243
– ident: e_1_2_9_2_1
  doi: 10.1093/oxfordjournals.aob.a088311
– ident: e_1_2_9_78_1
  doi: 10.1093/aob/mcy092
– ident: e_1_2_9_42_1
  doi: 10.1093/insilicoplants/diz001
– ident: e_1_2_9_101_1
  doi: 10.1093/jxb/erw133
– ident: e_1_2_9_25_1
  doi: 10.1016/0378-4290(94)00096-U
– ident: e_1_2_9_35_1
  doi: 10.1093/nar/gkaa216
– ident: e_1_2_9_77_1
  doi: 10.1016/j.eja.2018.01.015
– ident: e_1_2_9_37_1
  doi: 10.1093/aob/mcr175
– ident: e_1_2_9_28_1
  doi: 10.1126/science.1185383
– ident: e_1_2_9_99_1
  doi: 10.2134/agronj2007.0356
– ident: e_1_2_9_82_1
  doi: 10.1006/anbo.2001.1530
– ident: e_1_2_9_39_1
  doi: 10.1626/jcs.41.192
– ident: e_1_2_9_86_1
  doi: 10.1104/pp.17.00648
– ident: e_1_2_9_70_1
  doi: 10.1007/s10333-010-0246-y
– volume-title: Rice: nutrient disorders & nutrient management
  year: 2000
  ident: e_1_2_9_23_1
– ident: e_1_2_9_81_1
  doi: 10.1063/1.1745010
– ident: e_1_2_9_40_1
  doi: 10.1016/B978-0-12-387689-8.00001-1
– ident: e_1_2_9_3_1
  doi: 10.1038/srep05563
SSID ssj0001479
Score 2.5282085
Snippet Greater nitrogen efficiency would substantially reduce the economic, energy and environmental costs of rice production. We hypothesized that synergistic...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 805
SubjectTerms Agricultural ecosystems
agroecosystems
Availability
biomass
crop models
Crop production
Crop yield
Cultivars
direct seeding
energy
Energy costs
environment
functional–structural plant modelling
grain yield
ideotypes
IR64
Nitrogen
nitrogen acquisition
nodal roots
OpenSimRoot
Original
Oryza - genetics
ORYZA_V3
phene synergism
Phenotype
Phenotypes
Plant breeding
Plant growth
Plant Roots
Rice
root system architecture
soil
Soil - chemistry
Structural models
Structure-function relationships
Synergism
Weather
Title Integrated root phenotypes for improved rice performance under low nitrogen availability
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fpce.14284
https://www.ncbi.nlm.nih.gov/pubmed/35141925
https://www.proquest.com/docview/2633228401
https://www.proquest.com/docview/2627476853
https://www.proquest.com/docview/2661040084
https://pubmed.ncbi.nlm.nih.gov/PMC9303783
Volume 45
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEB7S0EIvfaQvt0lQSw-5eFlZsmXTUxISkkBLKA3soWAkWSZLF3vZR8v213dGfiTbPCi9GTTGsjQz-iTNfAPw0ca6TLSjMqm8DKURIsRFsAzTWCuTGauUoxvdz1-Skwt5NopHG_Cpy4Vp-CH6AzeyDO-vycC1mV8z8ql1A6ILIy5QitUiQPT1ijqKy4Znj8IXlcp4yypEUTz9m-tr0Q2AeTNO8jp-9QvQ8VP43nW9iTv5MVguzMD-_ovV8T__7Rk8aYEp22806TlsuGoLHjWlKldb8PCgRhi5egGj045gomCIuheMgsRqOsmdMwTAbOxPKagRXRCbXuUlMEpXm7FJ_YuhG5nVqLlM_9TjScMUvnoJF8dH3w5PwrY8Q2ilSmSYGY1YLLaW66GJtYiGaeZw_-HSgmdOmExoLrlNEeJETgkZEXQTaVEmqDilMuIVbFZ15d4As6k0ybAU3MWRtGqos9Qo1KGi1MbGhQ5gr5uo3Lbc5VRCY5J3exgcsdyPWAAfetFpQ9hxm9B2N9t5a7PzPEoEejfc8PIA3vfNaG10haIrVy9JhnbxCWKc-2QQkkoqVBDA60aB-p5Q3gRi6jgAtaZavQCxfa-3VONLz_qdIdhQKX53z2vO3T-Xnx8e-Ye3_y76Dh5HlNfhg-u2YXMxW7odRFsLswsPInm-643rD1guKIM
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VAioXHoVCoIBBIPWS1SZ24uTAAfrQLn0IoVbaW7AdR6xYJat9UC2_ib_S_9SZvNqlgLj0wC2SR0kcz4w_T2a-AXhjApWFylKbVC9zhebcxU0wc6NASR1rI6WlP7qHR2HvRHwcBIMV-NnUwlT8EG3AjSyj9Ndk4BSQvmTlY2M7xBcm6pTKfbs4xQPb9F1_B1f3re_v7R5v99y6p4BrhAyFG2uFACIwxlNdHSjud6PYImi2UerFluuYK094JsJ92beSC5_wBo_SLMTZZlJzvO8NuEkdxImpf-fzBVmVJypmP0qYlDL2ah4jyhtqX3V597sCaa9mZl5GzOWWt3cPzpqPVWW6fOvMZ7pjfvzCI_m_fM37cLfG3ux9ZSwPYMXm63C76sa5WIdbHwpEyouHMOg3HBopw4PFjFEeXEHB6ilDjM-GZSCGBtHLsvFF6QWjirwJGxWnDD3lpEDjZOq7Go4qMvTFIzi5lvltwGpe5PYJMBMJHXYz7tnAF0Z2VRxpiWaSZkqbIFUObDWakZianp26hIyS5piGK5SUK-TA61Z0XHGS_E5os1GvpHZL08QPOTpwPNN7Drxqh9Gh0F8ildtiTjIUqAgRxv1NBlG3oF4MDjyuNLZ9EyoNwWND4IBc0uVWgAjNl0fy4deS2DxGPCUjfO5Wqap_nlzyaXu3vHj676IvYa13fHiQHPSP9p_BHZ_KWMpcwk1YnU3m9jmCy5l-Udo0gy_XrfbnbtCD0g
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6V8hAXBOUVKGAQSL2k2thOnBw4QNtVl0K1ByrtLdiOI1ZaJavdLdX-Jv4kM86DrgqIS2-RPEqcsWf82Z75BuCtjXWZaEdlUqMylEaIEBfBMkxjrUxmrFKObnS_nCbHZ_LTJJ5swc8uF6bhh-gP3MgyvL8mA58X5SUjn1u3T3Rhso2oPHHrC9yvLd-PDnFw33E-PPp6cBy2JQVCK1Uiw8xoxA-xtZEemFgLPkgzh5jZpUWUOWEyoSMZ2RSXZe6UkJzghkiLMsGfLZUR-N4bcJMuFyl-jMtx7_Yj2RD7UbykUlnU0hhR2FDf1c3F7wqivRqYeRkw-xVveB_utVCVfWjm1gPYctUO3G6KV6534NbHGoHl-iFMRh3lRMEQh68YhY3VdLa7ZAiJ2dSfW1AjOiU2_52pwCiBbcFm9QVDx7KocS4z_UNPZw13-PoRnF2Ldh_DdlVX7ikwm0qTDEoRuZhLqwY6S43CWVWU2ti40AHsdZrMbctmTkU1Znm3q0Gl517pAbzpRecNhcefhHa74chbK17mPBHo73ALHAXwum9G-6NLFV25-pxkaF-fIOr5lwyCVEmlCwJ40oxw3xPKpECUHQegNsa-FyD-782Wavrd84BnCD9Uit_d87Pk7z-Xjw-O_MOz_xd9BXfGh8P88-j05Dnc5ZT04SPvdmF7tTh3LxCKrcxLbwIMvl23zf0CffFC6A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Integrated+root+phenotypes+for+improved+rice+performance+under+low+nitrogen+availability&rft.jtitle=Plant%2C+cell+and+environment&rft.au=Ajmera%2C+Ishan&rft.au=Henry%2C+Amelia&rft.au=Radanielson%2C+Ando+M.&rft.au=Klein%2C+Stephanie+P.&rft.date=2022-03-01&rft.issn=0140-7791&rft.eissn=1365-3040&rft.volume=45&rft.issue=3&rft.spage=805&rft.epage=822&rft_id=info:doi/10.1111%2Fpce.14284&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_pce_14284
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0140-7791&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0140-7791&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0140-7791&client=summon