Lithium Nitrate Solvation Chemistry in Carbonate Electrolyte Sustains High‐Voltage Lithium Metal Batteries

The lithium metal anode is regarded as a promising candidate in next‐generation energy storage devices. Lithium nitrate (LiNO3) is widely applied as an effective additive in ether electrolyte to increase the interfacial stability in batteries containing lithium metal anodes. However, because of its...

Full description

Saved in:
Bibliographic Details
Published inAngewandte Chemie International Edition Vol. 57; no. 43; pp. 14055 - 14059
Main Authors Yan, Chong, Yao, Yu‐Xing, Chen, Xiang, Cheng, Xin‐Bing, Zhang, Xue‐Qiang, Huang, Jia‐Qi, Zhang, Qiang
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 22.10.2018
EditionInternational ed. in English
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The lithium metal anode is regarded as a promising candidate in next‐generation energy storage devices. Lithium nitrate (LiNO3) is widely applied as an effective additive in ether electrolyte to increase the interfacial stability in batteries containing lithium metal anodes. However, because of its poor solubility LiNO3 is rarely utilized in the high‐voltage window provided by carbonate electrolyte. Dissolution of LiNO3 in carbonate electrolyte is realized through an effective solvation regulation strategy. LiNO3 can be directly dissolved in an ethylene carbonate/diethyl carbonate electrolyte mixture by adding trace amounts of copper fluoride as a dissolution promoter. LiNO3 protects the Li metal anode in a working high‐voltage Li metal battery. When a LiNi0.80Co0.15Al0.05O2 cathode is paired with a Li metal anode, an extraordinary capacity retention of 53 % is achieved after 300 cycles (13 % after 200 cycles for LiNO3‐free electrolyte) and a very high average Coulombic efficiency above 99.5 % is achieved at 0.5 C. The solvation chemistry of LiNO3‐containing carbonate electrolyte may sustain high‐voltage Li metal anodes operating in corrosive carbonate electrolytes. Liquid assets: LiNO3 can be dissolved directly in an ethylene carbonate/diethyl carbonate electrolyte mixture by adding a trace amount of copper fluoride to promote dissolution. The solvation structure of the electrolyte system protects the lithium metal anode in a working high‐voltage lithium metal battery. NCA=LiNi0.80Co0.15Al0.05O2.
AbstractList The lithium metal anode is regarded as a promising candidate in next-generation energy storage devices. Lithium nitrate (LiNO ) is widely applied as an effective additive in ether electrolyte to increase the interfacial stability in batteries containing lithium metal anodes. However, because of its poor solubility LiNO is rarely utilized in the high-voltage window provided by carbonate electrolyte. Dissolution of LiNO in carbonate electrolyte is realized through an effective solvation regulation strategy. LiNO can be directly dissolved in an ethylene carbonate/diethyl carbonate electrolyte mixture by adding trace amounts of copper fluoride as a dissolution promoter. LiNO protects the Li metal anode in a working high-voltage Li metal battery. When a LiNi Co Al O cathode is paired with a Li metal anode, an extraordinary capacity retention of 53 % is achieved after 300 cycles (13 % after 200 cycles for LiNO -free electrolyte) and a very high average Coulombic efficiency above 99.5 % is achieved at 0.5 C. The solvation chemistry of LiNO -containing carbonate electrolyte may sustain high-voltage Li metal anodes operating in corrosive carbonate electrolytes.
The lithium metal anode is regarded as a promising candidate in next‐generation energy storage devices. Lithium nitrate (LiNO3) is widely applied as an effective additive in ether electrolyte to increase the interfacial stability in batteries containing lithium metal anodes. However, because of its poor solubility LiNO3 is rarely utilized in the high‐voltage window provided by carbonate electrolyte. Dissolution of LiNO3 in carbonate electrolyte is realized through an effective solvation regulation strategy. LiNO3 can be directly dissolved in an ethylene carbonate/diethyl carbonate electrolyte mixture by adding trace amounts of copper fluoride as a dissolution promoter. LiNO3 protects the Li metal anode in a working high‐voltage Li metal battery. When a LiNi0.80Co0.15Al0.05O2 cathode is paired with a Li metal anode, an extraordinary capacity retention of 53 % is achieved after 300 cycles (13 % after 200 cycles for LiNO3‐free electrolyte) and a very high average Coulombic efficiency above 99.5 % is achieved at 0.5 C. The solvation chemistry of LiNO3‐containing carbonate electrolyte may sustain high‐voltage Li metal anodes operating in corrosive carbonate electrolytes. Liquid assets: LiNO3 can be dissolved directly in an ethylene carbonate/diethyl carbonate electrolyte mixture by adding a trace amount of copper fluoride to promote dissolution. The solvation structure of the electrolyte system protects the lithium metal anode in a working high‐voltage lithium metal battery. NCA=LiNi0.80Co0.15Al0.05O2.
The lithium metal anode is regarded as a promising candidate in next‐generation energy storage devices. Lithium nitrate (LiNO 3 ) is widely applied as an effective additive in ether electrolyte to increase the interfacial stability in batteries containing lithium metal anodes. However, because of its poor solubility LiNO 3 is rarely utilized in the high‐voltage window provided by carbonate electrolyte. Dissolution of LiNO 3 in carbonate electrolyte is realized through an effective solvation regulation strategy. LiNO 3 can be directly dissolved in an ethylene carbonate/diethyl carbonate electrolyte mixture by adding trace amounts of copper fluoride as a dissolution promoter. LiNO 3 protects the Li metal anode in a working high‐voltage Li metal battery. When a LiNi 0.80 Co 0.15 Al 0.05 O 2 cathode is paired with a Li metal anode, an extraordinary capacity retention of 53 % is achieved after 300 cycles (13 % after 200 cycles for LiNO 3 ‐free electrolyte) and a very high average Coulombic efficiency above 99.5 % is achieved at 0.5 C. The solvation chemistry of LiNO 3 ‐containing carbonate electrolyte may sustain high‐voltage Li metal anodes operating in corrosive carbonate electrolytes.
The lithium metal anode is regarded as a promising candidate in next-generation energy storage devices. Lithium nitrate (LiNO3 ) is widely applied as an effective additive in ether electrolyte to increase the interfacial stability in batteries containing lithium metal anodes. However, because of its poor solubility LiNO3 is rarely utilized in the high-voltage window provided by carbonate electrolyte. Dissolution of LiNO3 in carbonate electrolyte is realized through an effective solvation regulation strategy. LiNO3 can be directly dissolved in an ethylene carbonate/diethyl carbonate electrolyte mixture by adding trace amounts of copper fluoride as a dissolution promoter. LiNO3 protects the Li metal anode in a working high-voltage Li metal battery. When a LiNi0.80 Co0.15 Al0.05 O2 cathode is paired with a Li metal anode, an extraordinary capacity retention of 53 % is achieved after 300 cycles (13 % after 200 cycles for LiNO3 -free electrolyte) and a very high average Coulombic efficiency above 99.5 % is achieved at 0.5 C. The solvation chemistry of LiNO3 -containing carbonate electrolyte may sustain high-voltage Li metal anodes operating in corrosive carbonate electrolytes.The lithium metal anode is regarded as a promising candidate in next-generation energy storage devices. Lithium nitrate (LiNO3 ) is widely applied as an effective additive in ether electrolyte to increase the interfacial stability in batteries containing lithium metal anodes. However, because of its poor solubility LiNO3 is rarely utilized in the high-voltage window provided by carbonate electrolyte. Dissolution of LiNO3 in carbonate electrolyte is realized through an effective solvation regulation strategy. LiNO3 can be directly dissolved in an ethylene carbonate/diethyl carbonate electrolyte mixture by adding trace amounts of copper fluoride as a dissolution promoter. LiNO3 protects the Li metal anode in a working high-voltage Li metal battery. When a LiNi0.80 Co0.15 Al0.05 O2 cathode is paired with a Li metal anode, an extraordinary capacity retention of 53 % is achieved after 300 cycles (13 % after 200 cycles for LiNO3 -free electrolyte) and a very high average Coulombic efficiency above 99.5 % is achieved at 0.5 C. The solvation chemistry of LiNO3 -containing carbonate electrolyte may sustain high-voltage Li metal anodes operating in corrosive carbonate electrolytes.
The lithium metal anode is regarded as a promising candidate in next‐generation energy storage devices. Lithium nitrate (LiNO3) is widely applied as an effective additive in ether electrolyte to increase the interfacial stability in batteries containing lithium metal anodes. However, because of its poor solubility LiNO3 is rarely utilized in the high‐voltage window provided by carbonate electrolyte. Dissolution of LiNO3 in carbonate electrolyte is realized through an effective solvation regulation strategy. LiNO3 can be directly dissolved in an ethylene carbonate/diethyl carbonate electrolyte mixture by adding trace amounts of copper fluoride as a dissolution promoter. LiNO3 protects the Li metal anode in a working high‐voltage Li metal battery. When a LiNi0.80Co0.15Al0.05O2 cathode is paired with a Li metal anode, an extraordinary capacity retention of 53 % is achieved after 300 cycles (13 % after 200 cycles for LiNO3‐free electrolyte) and a very high average Coulombic efficiency above 99.5 % is achieved at 0.5 C. The solvation chemistry of LiNO3‐containing carbonate electrolyte may sustain high‐voltage Li metal anodes operating in corrosive carbonate electrolytes.
Author Huang, Jia‐Qi
Yao, Yu‐Xing
Zhang, Qiang
Cheng, Xin‐Bing
Zhang, Xue‐Qiang
Yan, Chong
Chen, Xiang
Author_xml – sequence: 1
  givenname: Chong
  orcidid: 0000-0001-9521-4981
  surname: Yan
  fullname: Yan, Chong
  organization: Beijing Institute of Technology
– sequence: 2
  givenname: Yu‐Xing
  orcidid: 0000-0001-6350-1206
  surname: Yao
  fullname: Yao, Yu‐Xing
  organization: Tsinghua University
– sequence: 3
  givenname: Xiang
  orcidid: 0000-0002-7686-6308
  surname: Chen
  fullname: Chen, Xiang
  organization: Tsinghua University
– sequence: 4
  givenname: Xin‐Bing
  orcidid: 0000-0001-7567-1210
  surname: Cheng
  fullname: Cheng, Xin‐Bing
  organization: Tsinghua University
– sequence: 5
  givenname: Xue‐Qiang
  orcidid: 0000-0003-2856-1881
  surname: Zhang
  fullname: Zhang, Xue‐Qiang
  organization: Tsinghua University
– sequence: 6
  givenname: Jia‐Qi
  orcidid: 0000-0001-7394-9186
  surname: Huang
  fullname: Huang, Jia‐Qi
  email: jqhuang@bit.edu.cn
  organization: Beijing Institute of Technology
– sequence: 7
  givenname: Qiang
  orcidid: 0000-0002-3929-1541
  surname: Zhang
  fullname: Zhang, Qiang
  organization: Tsinghua University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30094909$$D View this record in MEDLINE/PubMed
BookMark eNqFkctuEzEUhi1URC-wZYlGYsNmwvFl4vGyRIFWCmXBZWudzpxpXDnjYntA2fEIPCNPgkPaIlVCrGxL3_fbPv8xOxjDSIw95zDjAOI1jo5mAngLGqR6xI54I3gttZYHZa-krHXb8EN2nNJ14dsW5k_YoQQwyoA5Yn7l8tpNm-rC5YiZqo_Bf8Pswlgt1rRxKcdt5coB42UYd8DSU5dj8NsdPKWMbkzVmbta__rx80vwGa-ougt9Txl99QZzpugoPWWPB_SJnt2uJ-zz2-WnxVm9-vDufHG6qjul56puwQxCNoNsmk4roXXHTdsq0wOiUKofUJOAQfa8MBp1PzQKBRdSAJq5kfKEvdrn3sTwdaKUbflIR97jSGFKVkCrGyOVmhf05QP0OkxxLK-zJRG44GB4oV7cUtPlhnp7E90G49bezbEAsz3QxZBSpOEe4WB3RdldUfa-qCKoB0Ln8p-5lxqc_7dm9tp352n7n0vs6cX58q_7G0lfp9Q
CitedBy_id crossref_primary_10_1021_acsenergylett_1c02495
crossref_primary_10_1002_adma_202406594
crossref_primary_10_1002_smll_202207764
crossref_primary_10_1002_adfm_202101593
crossref_primary_10_1039_D2CC03096A
crossref_primary_10_1021_acs_chemrev_0c00275
crossref_primary_10_1039_D2QI02416K
crossref_primary_10_1016_j_electacta_2019_06_177
crossref_primary_10_1021_acs_nanolett_1c04775
crossref_primary_10_1039_D3TA05793C
crossref_primary_10_1002_adma_202301171
crossref_primary_10_1002_ange_202003663
crossref_primary_10_1016_j_jechem_2021_05_055
crossref_primary_10_1016_j_cossms_2021_100973
crossref_primary_10_1002_smll_202404835
crossref_primary_10_1039_D2TA06594K
crossref_primary_10_2139_ssrn_4178133
crossref_primary_10_1038_s41467_024_47448_5
crossref_primary_10_1016_j_est_2024_112447
crossref_primary_10_1021_acsnano_2c08441
crossref_primary_10_1149_1945_7111_ad24be
crossref_primary_10_1002_anie_202304978
crossref_primary_10_1002_ange_202210522
crossref_primary_10_1002_celc_202000272
crossref_primary_10_1021_acsami_9b05053
crossref_primary_10_1002_adfm_202409492
crossref_primary_10_1002_aenm_202003039
crossref_primary_10_1002_adma_202110333
crossref_primary_10_1016_j_ensm_2019_06_010
crossref_primary_10_1002_anie_202416565
crossref_primary_10_1002_adfm_202001607
crossref_primary_10_1002_adma_202004128
crossref_primary_10_1038_s41467_020_20339_1
crossref_primary_10_1002_ange_202116214
crossref_primary_10_1021_acsami_1c11733
crossref_primary_10_1021_acsami_3c07731
crossref_primary_10_1002_adfm_202009694
crossref_primary_10_1002_eom2_12416
crossref_primary_10_1002_aenm_202202518
crossref_primary_10_1002_adma_202404271
crossref_primary_10_1039_D1SC01363G
crossref_primary_10_1016_j_jcis_2024_10_058
crossref_primary_10_1002_adma_202101745
crossref_primary_10_1002_anie_202013271
crossref_primary_10_1021_acs_energyfuels_4c02174
crossref_primary_10_1002_ange_201905712
crossref_primary_10_1002_ange_202000375
crossref_primary_10_1002_ange_202004853
crossref_primary_10_1016_j_isci_2022_105710
crossref_primary_10_1002_anie_201914250
crossref_primary_10_1002_ente_202100087
crossref_primary_10_1002_smm2_1015
crossref_primary_10_1016_j_apsusc_2021_151439
crossref_primary_10_1016_j_nanoen_2024_109862
crossref_primary_10_1002_ange_202314876
crossref_primary_10_1016_j_cej_2024_151539
crossref_primary_10_1021_acs_nanolett_9b03562
crossref_primary_10_1016_j_pmatsci_2025_101451
crossref_primary_10_1021_acs_energyfuels_0c00528
crossref_primary_10_1007_s11581_019_03356_z
crossref_primary_10_1016_j_scib_2019_03_004
crossref_primary_10_1039_D4EB00042K
crossref_primary_10_1038_s41467_023_36853_x
crossref_primary_10_1155_2023_9526791
crossref_primary_10_1021_acsami_2c12497
crossref_primary_10_1002_ange_201914250
crossref_primary_10_1039_D4TA01708K
crossref_primary_10_1002_smll_202308678
crossref_primary_10_1016_j_cclet_2024_110385
crossref_primary_10_1002_anie_202213606
crossref_primary_10_1002_advs_202003240
crossref_primary_10_1021_acsaem_2c02511
crossref_primary_10_1002_slct_201903419
crossref_primary_10_1016_j_jechem_2024_04_046
crossref_primary_10_1016_j_est_2024_111664
crossref_primary_10_1021_acsami_0c08094
crossref_primary_10_1039_C9CC06504K
crossref_primary_10_1039_D1SC01806J
crossref_primary_10_1002_aenm_202203791
crossref_primary_10_1016_j_cej_2022_134698
crossref_primary_10_1002_adfm_202208629
crossref_primary_10_1002_ange_202318197
crossref_primary_10_1073_pnas_1918442117
crossref_primary_10_1002_adfm_201908075
crossref_primary_10_1002_aenm_202303048
crossref_primary_10_1016_j_jechem_2019_07_001
crossref_primary_10_1002_ange_202416565
crossref_primary_10_1039_D2DT03864A
crossref_primary_10_1002_ente_202100382
crossref_primary_10_1039_D3CC02166A
crossref_primary_10_1016_j_xcrp_2023_101379
crossref_primary_10_1021_acsami_9b21679
crossref_primary_10_1021_acsenergylett_3c00449
crossref_primary_10_1016_j_jechem_2020_09_030
crossref_primary_10_1007_s41918_022_00158_2
crossref_primary_10_1021_acsmaterialslett_0c00001
crossref_primary_10_1039_D2EE01756C
crossref_primary_10_1016_j_esci_2023_100135
crossref_primary_10_1016_j_pnsc_2023_05_007
crossref_primary_10_1007_s40820_024_01364_x
crossref_primary_10_1002_anie_201908874
crossref_primary_10_1016_j_electacta_2021_138632
crossref_primary_10_1007_s40843_021_1960_3
crossref_primary_10_1039_D3TA00655G
crossref_primary_10_1016_j_cej_2024_149550
crossref_primary_10_3390_inorganics10010005
crossref_primary_10_1021_acsnano_2c05016
crossref_primary_10_1002_ange_202012005
crossref_primary_10_1002_anie_202003663
crossref_primary_10_1016_j_ensm_2024_103192
crossref_primary_10_1016_j_est_2024_112897
crossref_primary_10_1002_nano_202000164
crossref_primary_10_1021_acsami_0c07904
crossref_primary_10_1016_j_cej_2022_137743
crossref_primary_10_1016_j_poly_2024_116955
crossref_primary_10_1016_j_jpowsour_2021_230595
crossref_primary_10_1002_aenm_202304153
crossref_primary_10_1002_aenm_202303189
crossref_primary_10_1016_j_apsusc_2023_156849
crossref_primary_10_1002_aenm_202300259
crossref_primary_10_1039_D1TA06836A
crossref_primary_10_1002_smll_202309321
crossref_primary_10_1002_adma_202007945
crossref_primary_10_1002_smll_202308472
crossref_primary_10_1016_j_electacta_2023_143592
crossref_primary_10_1016_j_jelechem_2021_115499
crossref_primary_10_1002_anie_202012005
crossref_primary_10_1002_eom2_12200
crossref_primary_10_1002_ange_202217458
crossref_primary_10_1088_1742_6596_2578_1_012034
crossref_primary_10_1021_acsami_4c01661
crossref_primary_10_1039_D4CS00845F
crossref_primary_10_1002_adfm_202111026
crossref_primary_10_1039_D1SE01161H
crossref_primary_10_1016_j_nanoen_2024_109362
crossref_primary_10_1021_acsaem_0c01758
crossref_primary_10_1002_anie_201905712
crossref_primary_10_1016_j_jechem_2022_08_021
crossref_primary_10_1038_s41467_021_26143_9
crossref_primary_10_1360_nso_20230039
crossref_primary_10_1016_j_cclet_2023_108640
crossref_primary_10_1021_acsami_9b08703
crossref_primary_10_1016_j_ensm_2020_07_008
crossref_primary_10_1016_j_jechem_2020_01_036
crossref_primary_10_1016_j_scib_2023_11_039
crossref_primary_10_1021_acsami_2c07932
crossref_primary_10_1016_j_ensm_2024_103443
crossref_primary_10_1002_ange_202417471
crossref_primary_10_1021_acssuschemeng_4c02207
crossref_primary_10_1002_anie_202108397
crossref_primary_10_1021_acs_chemrev_4c00584
crossref_primary_10_1021_acsami_4c16977
crossref_primary_10_1149_1945_7111_ad71f7
crossref_primary_10_1002_anie_202402202
crossref_primary_10_1002_adfm_202414430
crossref_primary_10_1002_aenm_202402811
crossref_primary_10_1039_D2NR07273D
crossref_primary_10_1149_1945_7111_acaad2
crossref_primary_10_1002_adfm_202109377
crossref_primary_10_1002_adfm_202212150
crossref_primary_10_1002_aenm_202002360
crossref_primary_10_1002_ange_202306963
crossref_primary_10_1039_C8TA09380F
crossref_primary_10_2139_ssrn_4151626
crossref_primary_10_1002_adma_202311938
crossref_primary_10_1002_batt_202200142
crossref_primary_10_1016_j_mtener_2023_101413
crossref_primary_10_1002_eem2_70004
crossref_primary_10_1016_j_jpowsour_2021_229603
crossref_primary_10_1016_j_cej_2023_146612
crossref_primary_10_1002_adfm_202308022
crossref_primary_10_1002_eom2_12498
crossref_primary_10_1002_advs_202416656
crossref_primary_10_1016_j_jallcom_2021_159916
crossref_primary_10_1002_adfm_202204768
crossref_primary_10_1016_j_nanoen_2021_106353
crossref_primary_10_1016_j_mtener_2023_101328
crossref_primary_10_1016_j_nanoen_2022_107881
crossref_primary_10_1016_j_partic_2020_12_003
crossref_primary_10_1016_j_jpowsour_2020_228241
crossref_primary_10_1016_j_jechem_2022_05_031
crossref_primary_10_1039_C9CS00636B
crossref_primary_10_1021_acsami_1c08858
crossref_primary_10_1002_bkcs_12884
crossref_primary_10_1016_j_est_2024_113836
crossref_primary_10_1016_j_vacuum_2021_110331
crossref_primary_10_2139_ssrn_4046334
crossref_primary_10_1002_adfm_202010602
crossref_primary_10_1002_ange_202102593
crossref_primary_10_1007_s43207_023_00354_w
crossref_primary_10_1002_aenm_201900858
crossref_primary_10_1039_D2TA09182H
crossref_primary_10_1016_j_ensm_2019_08_016
crossref_primary_10_1016_j_nanoen_2021_106489
crossref_primary_10_1002_ange_202009575
crossref_primary_10_1002_aenm_202100935
crossref_primary_10_1039_D4CC06729K
crossref_primary_10_1021_acsami_0c17406
crossref_primary_10_1016_j_jechem_2021_04_045
crossref_primary_10_1002_smll_202206597
crossref_primary_10_1016_j_ensm_2022_03_035
crossref_primary_10_1016_j_ensm_2021_01_030
crossref_primary_10_1002_ange_202304978
crossref_primary_10_1016_j_mtnano_2019_100049
crossref_primary_10_1002_smll_202104735
crossref_primary_10_1002_ange_202213606
crossref_primary_10_1016_j_etran_2023_100264
crossref_primary_10_1002_aenm_202304532
crossref_primary_10_1016_j_joule_2021_12_018
crossref_primary_10_1007_s12274_019_2368_x
crossref_primary_10_1002_adfm_202300502
crossref_primary_10_1016_j_jechem_2020_02_026
crossref_primary_10_1002_anie_201903466
crossref_primary_10_1002_smll_202000769
crossref_primary_10_1016_j_jechem_2022_06_046
crossref_primary_10_1021_acsenergylett_1c00149
crossref_primary_10_1016_j_electacta_2023_142763
crossref_primary_10_1002_cey2_283
crossref_primary_10_1002_aenm_201803372
crossref_primary_10_1002_cey2_169
crossref_primary_10_1007_s40820_021_00780_7
crossref_primary_10_1016_j_ensm_2019_06_009
crossref_primary_10_1021_acsami_1c03341
crossref_primary_10_1039_C9TA10405D
crossref_primary_10_1002_cjoc_202200612
crossref_primary_10_1016_j_cej_2023_143302
crossref_primary_10_1002_anie_202409193
crossref_primary_10_1021_acs_jpcc_2c08516
crossref_primary_10_1002_anie_202103909
crossref_primary_10_1039_D0QO01327G
crossref_primary_10_1039_D1TA04043J
crossref_primary_10_1002_anie_202114805
crossref_primary_10_1021_acsami_3c05630
crossref_primary_10_1016_j_enchem_2019_100003
crossref_primary_10_1016_j_eng_2018_10_008
crossref_primary_10_1021_acsaem_1c02954
crossref_primary_10_1021_acsnano_9b04519
crossref_primary_10_1002_anie_202107389
crossref_primary_10_1002_anie_202424547
crossref_primary_10_1016_j_cej_2022_134637
crossref_primary_10_1021_acsami_3c17742
crossref_primary_10_1002_batt_202200232
crossref_primary_10_1007_s40820_023_01300_5
crossref_primary_10_1016_j_jpowsour_2020_229253
crossref_primary_10_1021_acsenergylett_1c00043
crossref_primary_10_1002_batt_201900112
crossref_primary_10_1016_j_cej_2023_141478
crossref_primary_10_1002_ange_202218151
crossref_primary_10_1021_acsami_4c13009
crossref_primary_10_1016_j_jechem_2020_03_034
crossref_primary_10_3389_fenrg_2023_1325316
crossref_primary_10_1016_j_cej_2021_134468
crossref_primary_10_1016_j_ensm_2019_07_020
crossref_primary_10_1002_anie_202101976
crossref_primary_10_1021_acsnano_9b10083
crossref_primary_10_1021_jacs_2c01996
crossref_primary_10_1016_j_ensm_2022_02_033
crossref_primary_10_3390_molecules27165199
crossref_primary_10_1002_batt_201800118
crossref_primary_10_1016_j_jechem_2025_01_038
crossref_primary_10_1039_D2MH00469K
crossref_primary_10_1021_acsaem_2c04131
crossref_primary_10_1039_D1QM00352F
crossref_primary_10_1002_advs_202101111
crossref_primary_10_1016_j_cej_2022_137360
crossref_primary_10_1016_j_scib_2024_02_009
crossref_primary_10_1016_j_gee_2021_12_006
crossref_primary_10_1021_acsenergylett_1c00750
crossref_primary_10_1021_acsaem_1c01322
crossref_primary_10_1021_acscentsci_1c01014
crossref_primary_10_1039_D4TA01535E
crossref_primary_10_1016_j_nanoen_2022_107104
crossref_primary_10_1002_ange_201912701
crossref_primary_10_1016_j_surfin_2024_105540
crossref_primary_10_1002_batt_202300488
crossref_primary_10_5796_electrochemistry_23_00142
crossref_primary_10_1002_aenm_202101057
crossref_primary_10_1002_aenm_202400365
crossref_primary_10_1039_D3EE00664F
crossref_primary_10_1016_j_jcis_2024_12_102
crossref_primary_10_1002_anie_202310761
crossref_primary_10_1007_s11581_024_05952_0
crossref_primary_10_1038_s41467_024_47629_2
crossref_primary_10_3390_batteries10040135
crossref_primary_10_1016_j_nanoen_2023_108722
crossref_primary_10_1002_ange_201911724
crossref_primary_10_1016_j_jpowsour_2025_236568
crossref_primary_10_1007_s40843_021_2036_x
crossref_primary_10_1021_acsenergylett_0c02140
crossref_primary_10_1039_C9CS00728H
crossref_primary_10_1002_aenm_202000567
crossref_primary_10_1016_j_jcis_2024_05_024
crossref_primary_10_1021_jacs_0c12051
crossref_primary_10_1016_j_cej_2022_138112
crossref_primary_10_1002_smll_202408771
crossref_primary_10_1002_smll_202406588
crossref_primary_10_1073_pnas_2001923117
crossref_primary_10_1016_j_partic_2023_04_002
crossref_primary_10_1021_jacs_9b05029
crossref_primary_10_1002_adma_202311327
crossref_primary_10_1002_anie_202009575
crossref_primary_10_1016_j_nanoen_2022_107122
crossref_primary_10_1016_j_ensm_2021_07_043
crossref_primary_10_1021_acs_nanolett_1c00848
crossref_primary_10_1021_acs_nanolett_0c03206
crossref_primary_10_1002_batt_202300144
crossref_primary_10_1021_acsami_9b04898
crossref_primary_10_1002_adfm_202107249
crossref_primary_10_1016_j_jechem_2022_11_013
crossref_primary_10_1021_acsmaterialslett_9b00416
crossref_primary_10_1021_acsami_4c02031
crossref_primary_10_1016_j_cej_2022_138369
crossref_primary_10_1016_j_nanoen_2020_104967
crossref_primary_10_1007_s12274_020_2871_0
crossref_primary_10_1016_j_ensm_2023_03_019
crossref_primary_10_1039_C9TA12979K
crossref_primary_10_1002_aenm_202302620
crossref_primary_10_1016_j_jechem_2022_11_017
crossref_primary_10_1039_D0CC03864D
crossref_primary_10_1002_admi_202300058
crossref_primary_10_1038_s41586_024_08294_z
crossref_primary_10_1002_aenm_202302747
crossref_primary_10_1002_eem2_12266
crossref_primary_10_1002_adfm_202211364
crossref_primary_10_1016_j_est_2025_115876
crossref_primary_10_3389_fchem_2020_595972
crossref_primary_10_1016_j_jpowsour_2024_234183
crossref_primary_10_1039_D2DT02937E
crossref_primary_10_1039_D0TA03774E
crossref_primary_10_1021_acsenergylett_1c01528
crossref_primary_10_1039_D1TA07306K
crossref_primary_10_1016_j_jpowsour_2023_233884
crossref_primary_10_1002_anie_202217458
crossref_primary_10_1039_D3TA05963D
crossref_primary_10_1021_acsami_1c10279
crossref_primary_10_1016_j_ensm_2021_08_008
crossref_primary_10_1002_adfm_202108993
crossref_primary_10_1021_acssuschemeng_2c03271
crossref_primary_10_1007_s12274_022_4839_8
crossref_primary_10_1016_j_isci_2020_101586
crossref_primary_10_1016_j_jechem_2019_10_002
crossref_primary_10_1016_j_ensm_2021_08_015
crossref_primary_10_1016_j_mtener_2024_101759
crossref_primary_10_1016_j_nanoen_2023_108922
crossref_primary_10_1039_D4EE05862C
crossref_primary_10_1016_j_ensm_2021_08_013
crossref_primary_10_1021_acsami_0c22735
crossref_primary_10_1002_adma_202301312
crossref_primary_10_1002_cnl2_188
crossref_primary_10_1002_adfm_202213648
crossref_primary_10_1016_j_ensm_2024_103875
crossref_primary_10_1016_j_ensm_2024_103876
crossref_primary_10_1002_advs_202206995
crossref_primary_10_1002_ange_201908874
crossref_primary_10_1016_j_jpowsour_2022_232182
crossref_primary_10_1002_cnl2_184
crossref_primary_10_1016_j_jechem_2019_09_034
crossref_primary_10_1002_adfm_202413176
crossref_primary_10_1007_s40820_024_01479_1
crossref_primary_10_1002_aesr_202300051
crossref_primary_10_1002_er_6846
crossref_primary_10_1021_acsami_1c01571
crossref_primary_10_1002_adma_201902785
crossref_primary_10_1016_j_jechem_2020_06_060
crossref_primary_10_1002_aenm_202103332
crossref_primary_10_1002_smll_202401940
crossref_primary_10_1063_5_0235835
crossref_primary_10_1002_smll_202102196
crossref_primary_10_1039_D1TA02031E
crossref_primary_10_1016_j_jelechem_2022_117040
crossref_primary_10_1021_acsenergylett_8b02376
crossref_primary_10_1016_j_ensm_2022_01_044
crossref_primary_10_1002_anie_202318197
crossref_primary_10_1002_inf2_12046
crossref_primary_10_1007_s11814_025_00392_6
crossref_primary_10_1002_cey2_227
crossref_primary_10_1002_cssc_202400210
crossref_primary_10_1016_j_ensm_2021_10_047
crossref_primary_10_1016_j_jelechem_2020_114794
crossref_primary_10_1002_aenm_201902254
crossref_primary_10_1016_j_jpowsour_2025_236167
crossref_primary_10_1002_anie_202004853
crossref_primary_10_1016_j_scriptamat_2023_115925
crossref_primary_10_1021_acsaem_1c01174
crossref_primary_10_1016_j_ensm_2025_104020
crossref_primary_10_1002_adfm_201909887
crossref_primary_10_1007_s40843_024_3130_y
crossref_primary_10_1016_j_ensm_2021_10_034
crossref_primary_10_1016_j_xcrp_2024_101999
crossref_primary_10_1002_ange_202424547
crossref_primary_10_1016_j_jechem_2023_02_005
crossref_primary_10_1039_D1QM00185J
crossref_primary_10_1002_smll_202202349
crossref_primary_10_1016_j_scriptamat_2024_116191
crossref_primary_10_1002_adma_202210677
crossref_primary_10_2139_ssrn_4108561
crossref_primary_10_1021_acs_accounts_0c00412
crossref_primary_10_1021_acsami_1c01886
crossref_primary_10_1002_anie_202000375
crossref_primary_10_1016_j_cej_2024_149510
crossref_primary_10_1002_sstr_202000015
crossref_primary_10_1002_eem2_12207
crossref_primary_10_1016_j_gee_2021_02_009
crossref_primary_10_1021_acsami_0c03952
crossref_primary_10_1021_acs_energyfuels_3c04898
crossref_primary_10_1016_j_matt_2022_01_017
crossref_primary_10_1021_acs_nanolett_2c02508
crossref_primary_10_1016_j_cclet_2023_109274
crossref_primary_10_1002_advs_202308939
crossref_primary_10_1016_j_jechem_2020_12_024
crossref_primary_10_1016_j_ensm_2023_102782
crossref_primary_10_1002_adma_202407381
crossref_primary_10_1016_j_cej_2023_142937
crossref_primary_10_1016_j_electacta_2022_140552
crossref_primary_10_1016_j_cej_2021_128661
crossref_primary_10_1016_j_cej_2023_145089
crossref_primary_10_1039_D2SC00244B
crossref_primary_10_1002_cphc_202400920
crossref_primary_10_1002_anie_202116214
crossref_primary_10_1021_jacs_4c02345
crossref_primary_10_1073_pnas_1911017116
crossref_primary_10_1002_eem2_12355
crossref_primary_10_1002_adfm_202420327
crossref_primary_10_1021_acsami_2c00842
crossref_primary_10_1002_aenm_202202493
crossref_primary_10_1039_D3SC04263D
crossref_primary_10_1002_adfm_202409431
crossref_primary_10_1039_D0CS01017K
crossref_primary_10_1002_adfm_202306868
crossref_primary_10_1002_anie_202218151
crossref_primary_10_1039_D4QM00180J
crossref_primary_10_1021_acsami_1c09319
crossref_primary_10_1021_acsami_2c08278
crossref_primary_10_1002_admt_201900806
crossref_primary_10_1002_adfm_202408525
crossref_primary_10_1002_ange_202402202
crossref_primary_10_1002_ange_202013271
crossref_primary_10_1002_anie_202314876
crossref_primary_10_1021_acsenergylett_3c01709
crossref_primary_10_1002_adfm_202102128
crossref_primary_10_1007_s10854_022_09453_6
crossref_primary_10_1007_s10854_024_12812_0
crossref_primary_10_1016_j_cej_2023_142913
crossref_primary_10_1016_j_esci_2021_12_006
crossref_primary_10_1016_j_electacta_2023_143049
crossref_primary_10_1016_j_jechem_2024_06_053
crossref_primary_10_1149_1945_7111_ac6455
crossref_primary_10_1016_j_jechem_2023_03_009
crossref_primary_10_1002_anie_202102593
crossref_primary_10_1039_D1TA09819E
crossref_primary_10_1016_j_ensm_2021_04_001
crossref_primary_10_1016_j_ensm_2021_04_002
crossref_primary_10_1002_ange_202101976
crossref_primary_10_1002_anie_202306963
crossref_primary_10_1002_ange_202103909
crossref_primary_10_1039_D2CP00835A
crossref_primary_10_1016_j_ces_2023_119295
crossref_primary_10_1021_acssuschemeng_2c06146
crossref_primary_10_1002_aenm_202403674
crossref_primary_10_1002_smtd_201800551
crossref_primary_10_1002_ange_202107389
crossref_primary_10_1039_D4EE00399C
crossref_primary_10_1002_aenm_202003092
crossref_primary_10_1007_s40820_020_00514_1
crossref_primary_10_1016_j_nanoen_2024_109836
crossref_primary_10_1016_j_apsusc_2022_155888
crossref_primary_10_1007_s11771_022_4901_4
crossref_primary_10_1016_j_ensm_2020_04_010
crossref_primary_10_1002_ange_202310761
crossref_primary_10_1002_anie_201912701
crossref_primary_10_1016_j_xcrp_2023_101324
crossref_primary_10_1002_smsc_202100107
crossref_primary_10_1016_j_jcis_2023_06_107
crossref_primary_10_1016_j_ensm_2021_05_029
crossref_primary_10_1039_C9TA01911A
crossref_primary_10_1016_j_jpowsour_2024_236068
crossref_primary_10_1002_ange_201903466
crossref_primary_10_1002_ange_202108397
crossref_primary_10_1002_smll_202310843
crossref_primary_10_1016_j_ssi_2021_115636
crossref_primary_10_1039_D3EE04556K
crossref_primary_10_1021_acssuschemeng_3c05371
crossref_primary_10_1021_acsaem_1c02158
crossref_primary_10_1002_smtd_202300839
crossref_primary_10_15541_jim20230215
crossref_primary_10_1002_anie_202210522
crossref_primary_10_1039_C9TA13644D
crossref_primary_10_1039_D1EE00767J
crossref_primary_10_1002_anie_201911724
crossref_primary_10_1002_ange_202409193
crossref_primary_10_1002_aenm_202103972
crossref_primary_10_1002_smll_202408164
crossref_primary_10_1021_acs_nanolett_4c02983
crossref_primary_10_1063_5_0136321
crossref_primary_10_1002_ange_202114805
crossref_primary_10_1021_acsaem_1c03259
crossref_primary_10_1021_acsami_3c07382
crossref_primary_10_1002_aenm_202101544
crossref_primary_10_1002_anie_202417471
crossref_primary_10_1039_D1SC06181J
crossref_primary_10_1002_smll_202410486
crossref_primary_10_1039_D1CC03676A
Cites_doi 10.1002/advs.201600517
10.1002/anie.201801513
10.1038/451652a
10.1016/j.ensm.2016.01.007
10.1002/ange.201702263
10.1038/nnano.2017.16
10.1073/pnas.1803634115
10.1002/aenm.201402273
10.1016/j.jpowsour.2016.07.056
10.1149/1.2096876
10.1002/aenm.201702097
10.1039/C6EE00789A
10.1038/natrevmats.2016.13
10.1016/j.ensm.2016.09.003
10.1021/acs.chemmater.6b05475
10.1149/2.0951807jes
10.1002/ange.201801513
10.1016/j.electacta.2012.03.081
10.1021/cr030203g
10.1002/anie.201702099
10.1149/2.0861503jes
10.1002/aenm.201502534
10.1002/advs.201600445
10.1021/ja309435f
10.1021/acs.chemrev.7b00115
10.1149/1.2128859
10.1038/ncomms8436
10.1063/1.89283
10.1016/j.jpowsour.2016.07.008
ContentType Journal Article
Copyright 2018 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim
2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Copyright_xml – notice: 2018 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
DBID AAYXX
CITATION
NPM
7TM
K9.
7X8
DOI 10.1002/anie.201807034
DatabaseName CrossRef
PubMed
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
ProQuest Health & Medical Complete (Alumni)
Nucleic Acids Abstracts
MEDLINE - Academic
DatabaseTitleList PubMed

CrossRef
MEDLINE - Academic
ProQuest Health & Medical Complete (Alumni)
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3773
Edition International ed. in English
EndPage 14059
ExternalDocumentID 30094909
10_1002_anie_201807034
ANIE201807034
Genre shortCommunication
Journal Article
GrantInformation_xml – fundername: National Natural Scientific Foundation of China
  funderid: 21776019; 21676160
– fundername: China Postdoctoral Science Foundation
  funderid: 2018M631480 and BX201700125
– fundername: Beijing Key Research and Development Plan
  funderid: Z181100004518001
– fundername: National Key Research and Development Program
  funderid: 2016YFA0202500 and 2016YFA0200102
– fundername: Beijing Key Research and Development Plan
  grantid: Z181100004518001
– fundername: China Postdoctoral Science Foundation
  grantid: 2018M631480 and BX201700125
– fundername: National Key Research and Development Program
  grantid: 2016YFA0202500 and 2016YFA0200102
– fundername: National Natural Scientific Foundation of China
  grantid: 21676160
– fundername: National Natural Scientific Foundation of China
  grantid: 21776019
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABLJU
ABPPZ
ABPVW
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BTSUX
BY8
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M53
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
VQA
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XSW
XV2
YZZ
ZZTAW
~IA
~KM
~WT
AAYXX
ABDBF
ABJNI
AEYWJ
AGHNM
AGYGG
CITATION
NPM
7TM
K9.
7X8
ID FETCH-LOGICAL-c4764-809f235f355c74277c198849d0aa244dfa7e20f3d15f37a7df54a212320a96933
IEDL.DBID DR2
ISSN 1433-7851
1521-3773
IngestDate Fri Jul 11 09:56:41 EDT 2025
Sun Jul 13 05:28:14 EDT 2025
Thu Apr 03 06:57:26 EDT 2025
Thu Apr 24 22:58:02 EDT 2025
Tue Jul 01 02:26:31 EDT 2025
Wed Jan 22 16:28:12 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 43
Keywords lithium nitrate
lithium deposition
electrolyte additives
lithium anodes
high-voltage cathodes
Language English
License 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4764-809f235f355c74277c198849d0aa244dfa7e20f3d15f37a7df54a212320a96933
Notes These authors contributed equally to this work.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-7686-6308
0000-0001-6350-1206
0000-0001-7567-1210
0000-0001-7394-9186
0000-0002-3929-1541
0000-0003-2856-1881
0000-0001-9521-4981
PMID 30094909
PQID 2120121091
PQPubID 946352
PageCount 5
ParticipantIDs proquest_miscellaneous_2087593446
proquest_journals_2120121091
pubmed_primary_30094909
crossref_primary_10_1002_anie_201807034
crossref_citationtrail_10_1002_anie_201807034
wiley_primary_10_1002_anie_201807034_ANIE201807034
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate October 22, 2018
PublicationDateYYYYMMDD 2018-10-22
PublicationDate_xml – month: 10
  year: 2018
  text: October 22, 2018
  day: 22
PublicationDecade 2010
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Angewandte Chemie International Edition
PublicationTitleAlternate Angew Chem Int Ed Engl
PublicationYear 2018
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017; 6
2012; 70
1979; 126
2018; 8
2018; 165
2017 2015 2016 2016; 29 6 3 327
2016; 1
2015; 5
2004; 104
2017; 4
1977 2016 2013; 30 6 135
1989; 136
2017; 12
2016 2015; 9 162
2016; 326
2018 2018 2018; 115 57 130
2017 2017; 56 129
2008; 451
2017; 117
e_1_2_2_4_1
e_1_2_2_5_1
e_1_2_2_6_1
e_1_2_2_7_1
e_1_2_2_1_1
e_1_2_2_20_1
e_1_2_2_2_1
e_1_2_2_3_1
e_1_2_2_9_1
e_1_2_2_8_1
e_1_2_2_9_2
e_1_2_2_11_4
e_1_2_2_13_2
e_1_2_2_14_1
e_1_2_2_11_3
e_1_2_2_13_1
e_1_2_2_11_2
e_1_2_2_12_1
e_1_2_2_11_1
e_1_2_2_10_1
e_1_2_2_19_2
e_1_2_2_17_3
e_1_2_2_19_1
e_1_2_2_17_2
e_1_2_2_18_1
e_1_2_2_17_1
e_1_2_2_16_1
e_1_2_2_13_3
e_1_2_2_15_1
References_xml – volume: 115 57 130
  start-page: 5676 5301 5399
  year: 2018 2018 2018
  end-page: 5680 5305 5403
  publication-title: Proc. Natl. Acad. Sci. USA Angew. Chem. Int. Ed. Angew. Chem.
– volume: 4
  start-page: 1600445
  year: 2017
  publication-title: Adv. Sci.
– volume: 136
  start-page: 906
  year: 1989
  end-page: 913
  publication-title: J. Electrochem. Soc.
– volume: 165
  start-page: 1486
  year: 2018
  end-page: 1491
  publication-title: J. Electrochem. Soc.
– volume: 104
  start-page: 4303
  year: 2004
  end-page: 4418
  publication-title: Chem. Rev.
– volume: 326
  start-page: 322
  year: 2016
  end-page: 330
  publication-title: J. Power Sources
– volume: 56 129
  start-page: 7764 5653
  year: 2017 2017
  end-page: 7768 5656
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 5
  start-page: 1402273
  year: 2015
  publication-title: Adv. Energy Mater.
– volume: 70
  start-page: 344
  year: 2012
  end-page: 348
  publication-title: Electrochim. Acta
– volume: 29 6 3 327
  start-page: 3572 7436 77 212
  year: 2017 2015 2016 2016
  end-page: 3579 84 220
  publication-title: Chem. Mater. Nat. Commun. Energy Storage Mater. J. Power Sources
– volume: 6
  start-page: 18
  year: 2017
  end-page: 25
  publication-title: Energy Storage Mater.
– volume: 30 6 135
  start-page: 621 1502534 763
  year: 1977 2016 2013
  end-page: 623 767
  publication-title: Appl. Phys. Lett. Adv. Energy Mater. J. Am. Chem. Soc.
– volume: 126
  start-page: 2047
  year: 1979
  end-page: 2051
  publication-title: J. Electrochem. Soc.
– volume: 4
  start-page: 1600517
  year: 2017
  publication-title: Adv. Sci.
– volume: 9 162
  start-page: 2603 470
  year: 2016 2015
  end-page: 2608 473
  publication-title: Energy Environ. Sci. J. Electrochem. Soc.
– volume: 117
  start-page: 10403
  year: 2017
  end-page: 10473
  publication-title: Chem. Rev.
– volume: 1
  start-page: 16013
  year: 2016
  publication-title: Nat. Rev. Mater.
– volume: 451
  start-page: 652
  year: 2008
  end-page: 657
  publication-title: Nature
– volume: 8
  start-page: 1702097
  year: 2018
  publication-title: Adv. Energy Mater.
– volume: 12
  start-page: 194
  year: 2017
  end-page: 206
  publication-title: Nat. Nanotechnol.
– ident: e_1_2_2_18_1
  doi: 10.1002/advs.201600517
– ident: e_1_2_2_13_2
  doi: 10.1002/anie.201801513
– ident: e_1_2_2_1_1
  doi: 10.1038/451652a
– ident: e_1_2_2_11_3
  doi: 10.1016/j.ensm.2016.01.007
– ident: e_1_2_2_19_2
  doi: 10.1002/ange.201702263
– ident: e_1_2_2_3_1
  doi: 10.1038/nnano.2017.16
– ident: e_1_2_2_13_1
  doi: 10.1073/pnas.1803634115
– ident: e_1_2_2_4_1
  doi: 10.1002/aenm.201402273
– ident: e_1_2_2_11_4
  doi: 10.1016/j.jpowsour.2016.07.056
– ident: e_1_2_2_15_1
  doi: 10.1149/1.2096876
– ident: e_1_2_2_14_1
  doi: 10.1002/aenm.201702097
– ident: e_1_2_2_9_1
  doi: 10.1039/C6EE00789A
– ident: e_1_2_2_2_1
  doi: 10.1038/natrevmats.2016.13
– ident: e_1_2_2_5_1
  doi: 10.1016/j.ensm.2016.09.003
– ident: e_1_2_2_11_1
  doi: 10.1021/acs.chemmater.6b05475
– ident: e_1_2_2_20_1
  doi: 10.1149/2.0951807jes
– ident: e_1_2_2_13_3
  doi: 10.1002/ange.201801513
– ident: e_1_2_2_10_1
  doi: 10.1016/j.electacta.2012.03.081
– ident: e_1_2_2_12_1
  doi: 10.1021/cr030203g
– ident: e_1_2_2_19_1
  doi: 10.1002/anie.201702099
– ident: e_1_2_2_9_2
  doi: 10.1149/2.0861503jes
– ident: e_1_2_2_17_2
  doi: 10.1002/aenm.201502534
– ident: e_1_2_2_8_1
  doi: 10.1002/advs.201600445
– ident: e_1_2_2_17_3
  doi: 10.1021/ja309435f
– ident: e_1_2_2_6_1
  doi: 10.1021/acs.chemrev.7b00115
– ident: e_1_2_2_7_1
  doi: 10.1149/1.2128859
– ident: e_1_2_2_11_2
  doi: 10.1038/ncomms8436
– ident: e_1_2_2_17_1
  doi: 10.1063/1.89283
– ident: e_1_2_2_16_1
  doi: 10.1016/j.jpowsour.2016.07.008
SSID ssj0028806
Score 2.6895854
Snippet The lithium metal anode is regarded as a promising candidate in next‐generation energy storage devices. Lithium nitrate (LiNO3) is widely applied as an...
The lithium metal anode is regarded as a promising candidate in next‐generation energy storage devices. Lithium nitrate (LiNO 3 ) is widely applied as an...
The lithium metal anode is regarded as a promising candidate in next-generation energy storage devices. Lithium nitrate (LiNO ) is widely applied as an...
The lithium metal anode is regarded as a promising candidate in next-generation energy storage devices. Lithium nitrate (LiNO3 ) is widely applied as an...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 14055
SubjectTerms Anodes
Anodic dissolution
Anodic protection
Batteries
Copper fluorides
Dissolution
Electric potential
electrolyte additives
Electrolytes
Energy storage
Fluorides
high-voltage cathodes
Interface stability
Lithium
lithium anodes
Lithium batteries
lithium deposition
lithium nitrate
Metals
Organic chemistry
Solvation
Voltage
Title Lithium Nitrate Solvation Chemistry in Carbonate Electrolyte Sustains High‐Voltage Lithium Metal Batteries
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.201807034
https://www.ncbi.nlm.nih.gov/pubmed/30094909
https://www.proquest.com/docview/2120121091
https://www.proquest.com/docview/2087593446
Volume 57
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTtwwEB5Ve2kvQFt-AlvkSpU4BbJ2somPK7SIVuweyo-4RY5jixXpbrWbPcCJR-AZeZLOxJvAUiEkuMXKOHHsceYbe_wNwA_eMYnhHe3rXGk_1Fb70ojQDw2xmRudi2orZjDsHp-Hvy6jyyen-B0_RLPgRjOj-l_TBFfZ7OCRNJROYFNoVkJKS4SgFLBFqOh3wx_FUTnd8SIhfMpCX7M2BvxgufqyVfoPai4j18r0HK2CqhvtIk6u9-dltq9vn_E5vuer1mBlgUtZzynSZ_hgxl_g42GdDu4rFCej8mo0_8OGo4rQlp1OCrecyxopNsKCmma0Im9Y32XYKW5I2J3TmjGKK3m4u7-YFCX-yVj90IFBJ4A5sk_03dfh_Kh_dnjsL1I1-DqMuyHaOWm5iCyiF43OdhzrjkySUOaBUgggcqtiwwMr8g7KxCrObRQqspo8ULIrhdiA1ngyNlvAhEUfKyHSixxdtdwkCOG0TWwSmawrbOSBXw9Vqhc85pROo0gdAzNPqQ_Tpg892Gvk_zoGjxcl2_XIp4uZPEuxkUR7h7DKg-_NbexV2lhRYzOZowylBZACPWsPNp3GNK8SFLspA-kBr8b9lTakveHPflPafkulHfhE12RgOW9Dq5zOzTdETmW2W82Of2AYD84
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB619EAvpS19hEdxJaSeAlnb2cRHRBctdHcPBareIsex1RVhFy3ZA5z4Cf2N_SXMxJugpaoqtcck48SxZzwPj78B2OUdm1reMaEptAmlcSZUVshQWkIzt6YQ9VbMcNTtn8uT73GTTUhnYTw-RBtwI8mo12sScApI7z-ghtIRbMrNSolr5VN4RmW9CT7_89cWQYoje_oDRkKEVIe-wW2M-P5y-2W99JuxuWy71srnaA3ypts-5-Rib17le-b2EaLjf_3XS3ixME3ZgeelV_DETl7D6mFTEW4dysG4-jGeX7LRuMa0ZafT0kd0WUvFxnihZzkF5S3r-SI75Q0R-6Na14xSS37d_fw2LStczFjz0qFFP4B5vE9039_A-VHv7LAfLqo1hEYmXYmqTjkuYocGjEF_O0lMR6WpVEWkNdoQhdOJ5ZETRQdpEp0ULpaaFCePtOoqId7CymQ6se-BCYduVkq4FwV6a4VN0YozLnVpbPOucHEAYTNXmVlAmVNFjTLzIMw8ozHM2jEM4FNLf-VBPP5IudVMfbYQ5usMO0nId2hZBfCxfYyjSnsremKnc6ShygBKoHMdwDvPMu2nBKVvqkgFwOuJ_0sfsoPRca-92viXRjuw2j8bDrLB8ejLJjyn-6RvOd-ClWo2t9toSFX5h1pU7gFc5xPq
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BkYALbXmmtNRISJzSZm3n4WPV7qql7aoCinqLvH6IFWG3arMHOPUn9Df2lzATb0IXhJDgmGScOPaMZ8ae-QbgDe-5wvGeiY3VJpbGm1g5IWPpCM3cGSuao5jjYbZ_Kt-dpWe3svgDPkS34UaS0azXJODn1m__BA2lDGwKzSqIaeVduCezRFHxhr33HYAUR-4M-UVCxFSGvoVtTPj2YvtFtfSbrblouja6Z7AMuu11CDn5sjWrR1vm-y-Ajv_zWyvwaG6Ysp3ASatwx00ew4Pdth7cE6iOxvXn8ewrG44bRFv2YVqF_VzWUbExXuiLEW3JO9YPJXaqb0QcErUuGQWW3Fxdf5pWNS5lrH3psUMvgAW0T3Ten8LpoP9xdz-e12qIjcwziYpOeS5Sj-aLQW87z01PFYVUNtEaLQjrde544oXtIU2uc-tTqUlt8kSrTAnxDJYm04l7AUx4dLIKQr2w6KtZV6ANZ3zhi9SNMuHTCOJ2qkozBzKnehpVGSCYeUljWHZjGMHbjv48QHj8kXK9nflyLsqXJXaScO_QrorgdfcYR5VOVvTETWdIQ3UBlEDXOoLngWO6TwkK3lSJioA38_6XPpQ7w4N-d7X2L4024f7J3qA8OhgevoSHdJuULefrsFRfzNwGWlH16FUjKD8ACm4SmQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Lithium+Nitrate+Solvation+Chemistry+in+Carbonate+Electrolyte+Sustains+High%E2%80%90Voltage+Lithium+Metal+Batteries&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Yan%2C+Chong&rft.au=Yao%2C+Yu%E2%80%90Xing&rft.au=Chen%2C+Xiang&rft.au=Cheng%2C+Xin%E2%80%90Bing&rft.date=2018-10-22&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=57&rft.issue=43&rft.spage=14055&rft.epage=14059&rft_id=info:doi/10.1002%2Fanie.201807034&rft.externalDBID=10.1002%252Fanie.201807034&rft.externalDocID=ANIE201807034
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon