Lithium Nitrate Solvation Chemistry in Carbonate Electrolyte Sustains High‐Voltage Lithium Metal Batteries
The lithium metal anode is regarded as a promising candidate in next‐generation energy storage devices. Lithium nitrate (LiNO3) is widely applied as an effective additive in ether electrolyte to increase the interfacial stability in batteries containing lithium metal anodes. However, because of its...
Saved in:
Published in | Angewandte Chemie International Edition Vol. 57; no. 43; pp. 14055 - 14059 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
22.10.2018
|
Edition | International ed. in English |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The lithium metal anode is regarded as a promising candidate in next‐generation energy storage devices. Lithium nitrate (LiNO3) is widely applied as an effective additive in ether electrolyte to increase the interfacial stability in batteries containing lithium metal anodes. However, because of its poor solubility LiNO3 is rarely utilized in the high‐voltage window provided by carbonate electrolyte. Dissolution of LiNO3 in carbonate electrolyte is realized through an effective solvation regulation strategy. LiNO3 can be directly dissolved in an ethylene carbonate/diethyl carbonate electrolyte mixture by adding trace amounts of copper fluoride as a dissolution promoter. LiNO3 protects the Li metal anode in a working high‐voltage Li metal battery. When a LiNi0.80Co0.15Al0.05O2 cathode is paired with a Li metal anode, an extraordinary capacity retention of 53 % is achieved after 300 cycles (13 % after 200 cycles for LiNO3‐free electrolyte) and a very high average Coulombic efficiency above 99.5 % is achieved at 0.5 C. The solvation chemistry of LiNO3‐containing carbonate electrolyte may sustain high‐voltage Li metal anodes operating in corrosive carbonate electrolytes.
Liquid assets: LiNO3 can be dissolved directly in an ethylene carbonate/diethyl carbonate electrolyte mixture by adding a trace amount of copper fluoride to promote dissolution. The solvation structure of the electrolyte system protects the lithium metal anode in a working high‐voltage lithium metal battery. NCA=LiNi0.80Co0.15Al0.05O2. |
---|---|
AbstractList | The lithium metal anode is regarded as a promising candidate in next-generation energy storage devices. Lithium nitrate (LiNO
) is widely applied as an effective additive in ether electrolyte to increase the interfacial stability in batteries containing lithium metal anodes. However, because of its poor solubility LiNO
is rarely utilized in the high-voltage window provided by carbonate electrolyte. Dissolution of LiNO
in carbonate electrolyte is realized through an effective solvation regulation strategy. LiNO
can be directly dissolved in an ethylene carbonate/diethyl carbonate electrolyte mixture by adding trace amounts of copper fluoride as a dissolution promoter. LiNO
protects the Li metal anode in a working high-voltage Li metal battery. When a LiNi
Co
Al
O
cathode is paired with a Li metal anode, an extraordinary capacity retention of 53 % is achieved after 300 cycles (13 % after 200 cycles for LiNO
-free electrolyte) and a very high average Coulombic efficiency above 99.5 % is achieved at 0.5 C. The solvation chemistry of LiNO
-containing carbonate electrolyte may sustain high-voltage Li metal anodes operating in corrosive carbonate electrolytes. The lithium metal anode is regarded as a promising candidate in next‐generation energy storage devices. Lithium nitrate (LiNO3) is widely applied as an effective additive in ether electrolyte to increase the interfacial stability in batteries containing lithium metal anodes. However, because of its poor solubility LiNO3 is rarely utilized in the high‐voltage window provided by carbonate electrolyte. Dissolution of LiNO3 in carbonate electrolyte is realized through an effective solvation regulation strategy. LiNO3 can be directly dissolved in an ethylene carbonate/diethyl carbonate electrolyte mixture by adding trace amounts of copper fluoride as a dissolution promoter. LiNO3 protects the Li metal anode in a working high‐voltage Li metal battery. When a LiNi0.80Co0.15Al0.05O2 cathode is paired with a Li metal anode, an extraordinary capacity retention of 53 % is achieved after 300 cycles (13 % after 200 cycles for LiNO3‐free electrolyte) and a very high average Coulombic efficiency above 99.5 % is achieved at 0.5 C. The solvation chemistry of LiNO3‐containing carbonate electrolyte may sustain high‐voltage Li metal anodes operating in corrosive carbonate electrolytes. Liquid assets: LiNO3 can be dissolved directly in an ethylene carbonate/diethyl carbonate electrolyte mixture by adding a trace amount of copper fluoride to promote dissolution. The solvation structure of the electrolyte system protects the lithium metal anode in a working high‐voltage lithium metal battery. NCA=LiNi0.80Co0.15Al0.05O2. The lithium metal anode is regarded as a promising candidate in next‐generation energy storage devices. Lithium nitrate (LiNO 3 ) is widely applied as an effective additive in ether electrolyte to increase the interfacial stability in batteries containing lithium metal anodes. However, because of its poor solubility LiNO 3 is rarely utilized in the high‐voltage window provided by carbonate electrolyte. Dissolution of LiNO 3 in carbonate electrolyte is realized through an effective solvation regulation strategy. LiNO 3 can be directly dissolved in an ethylene carbonate/diethyl carbonate electrolyte mixture by adding trace amounts of copper fluoride as a dissolution promoter. LiNO 3 protects the Li metal anode in a working high‐voltage Li metal battery. When a LiNi 0.80 Co 0.15 Al 0.05 O 2 cathode is paired with a Li metal anode, an extraordinary capacity retention of 53 % is achieved after 300 cycles (13 % after 200 cycles for LiNO 3 ‐free electrolyte) and a very high average Coulombic efficiency above 99.5 % is achieved at 0.5 C. The solvation chemistry of LiNO 3 ‐containing carbonate electrolyte may sustain high‐voltage Li metal anodes operating in corrosive carbonate electrolytes. The lithium metal anode is regarded as a promising candidate in next-generation energy storage devices. Lithium nitrate (LiNO3 ) is widely applied as an effective additive in ether electrolyte to increase the interfacial stability in batteries containing lithium metal anodes. However, because of its poor solubility LiNO3 is rarely utilized in the high-voltage window provided by carbonate electrolyte. Dissolution of LiNO3 in carbonate electrolyte is realized through an effective solvation regulation strategy. LiNO3 can be directly dissolved in an ethylene carbonate/diethyl carbonate electrolyte mixture by adding trace amounts of copper fluoride as a dissolution promoter. LiNO3 protects the Li metal anode in a working high-voltage Li metal battery. When a LiNi0.80 Co0.15 Al0.05 O2 cathode is paired with a Li metal anode, an extraordinary capacity retention of 53 % is achieved after 300 cycles (13 % after 200 cycles for LiNO3 -free electrolyte) and a very high average Coulombic efficiency above 99.5 % is achieved at 0.5 C. The solvation chemistry of LiNO3 -containing carbonate electrolyte may sustain high-voltage Li metal anodes operating in corrosive carbonate electrolytes.The lithium metal anode is regarded as a promising candidate in next-generation energy storage devices. Lithium nitrate (LiNO3 ) is widely applied as an effective additive in ether electrolyte to increase the interfacial stability in batteries containing lithium metal anodes. However, because of its poor solubility LiNO3 is rarely utilized in the high-voltage window provided by carbonate electrolyte. Dissolution of LiNO3 in carbonate electrolyte is realized through an effective solvation regulation strategy. LiNO3 can be directly dissolved in an ethylene carbonate/diethyl carbonate electrolyte mixture by adding trace amounts of copper fluoride as a dissolution promoter. LiNO3 protects the Li metal anode in a working high-voltage Li metal battery. When a LiNi0.80 Co0.15 Al0.05 O2 cathode is paired with a Li metal anode, an extraordinary capacity retention of 53 % is achieved after 300 cycles (13 % after 200 cycles for LiNO3 -free electrolyte) and a very high average Coulombic efficiency above 99.5 % is achieved at 0.5 C. The solvation chemistry of LiNO3 -containing carbonate electrolyte may sustain high-voltage Li metal anodes operating in corrosive carbonate electrolytes. The lithium metal anode is regarded as a promising candidate in next‐generation energy storage devices. Lithium nitrate (LiNO3) is widely applied as an effective additive in ether electrolyte to increase the interfacial stability in batteries containing lithium metal anodes. However, because of its poor solubility LiNO3 is rarely utilized in the high‐voltage window provided by carbonate electrolyte. Dissolution of LiNO3 in carbonate electrolyte is realized through an effective solvation regulation strategy. LiNO3 can be directly dissolved in an ethylene carbonate/diethyl carbonate electrolyte mixture by adding trace amounts of copper fluoride as a dissolution promoter. LiNO3 protects the Li metal anode in a working high‐voltage Li metal battery. When a LiNi0.80Co0.15Al0.05O2 cathode is paired with a Li metal anode, an extraordinary capacity retention of 53 % is achieved after 300 cycles (13 % after 200 cycles for LiNO3‐free electrolyte) and a very high average Coulombic efficiency above 99.5 % is achieved at 0.5 C. The solvation chemistry of LiNO3‐containing carbonate electrolyte may sustain high‐voltage Li metal anodes operating in corrosive carbonate electrolytes. |
Author | Huang, Jia‐Qi Yao, Yu‐Xing Zhang, Qiang Cheng, Xin‐Bing Zhang, Xue‐Qiang Yan, Chong Chen, Xiang |
Author_xml | – sequence: 1 givenname: Chong orcidid: 0000-0001-9521-4981 surname: Yan fullname: Yan, Chong organization: Beijing Institute of Technology – sequence: 2 givenname: Yu‐Xing orcidid: 0000-0001-6350-1206 surname: Yao fullname: Yao, Yu‐Xing organization: Tsinghua University – sequence: 3 givenname: Xiang orcidid: 0000-0002-7686-6308 surname: Chen fullname: Chen, Xiang organization: Tsinghua University – sequence: 4 givenname: Xin‐Bing orcidid: 0000-0001-7567-1210 surname: Cheng fullname: Cheng, Xin‐Bing organization: Tsinghua University – sequence: 5 givenname: Xue‐Qiang orcidid: 0000-0003-2856-1881 surname: Zhang fullname: Zhang, Xue‐Qiang organization: Tsinghua University – sequence: 6 givenname: Jia‐Qi orcidid: 0000-0001-7394-9186 surname: Huang fullname: Huang, Jia‐Qi email: jqhuang@bit.edu.cn organization: Beijing Institute of Technology – sequence: 7 givenname: Qiang orcidid: 0000-0002-3929-1541 surname: Zhang fullname: Zhang, Qiang organization: Tsinghua University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30094909$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkctuEzEUhi1URC-wZYlGYsNmwvFl4vGyRIFWCmXBZWudzpxpXDnjYntA2fEIPCNPgkPaIlVCrGxL3_fbPv8xOxjDSIw95zDjAOI1jo5mAngLGqR6xI54I3gttZYHZa-krHXb8EN2nNJ14dsW5k_YoQQwyoA5Yn7l8tpNm-rC5YiZqo_Bf8Pswlgt1rRxKcdt5coB42UYd8DSU5dj8NsdPKWMbkzVmbta__rx80vwGa-ougt9Txl99QZzpugoPWWPB_SJnt2uJ-zz2-WnxVm9-vDufHG6qjul56puwQxCNoNsmk4roXXHTdsq0wOiUKofUJOAQfa8MBp1PzQKBRdSAJq5kfKEvdrn3sTwdaKUbflIR97jSGFKVkCrGyOVmhf05QP0OkxxLK-zJRG44GB4oV7cUtPlhnp7E90G49bezbEAsz3QxZBSpOEe4WB3RdldUfa-qCKoB0Ln8p-5lxqc_7dm9tp352n7n0vs6cX58q_7G0lfp9Q |
CitedBy_id | crossref_primary_10_1021_acsenergylett_1c02495 crossref_primary_10_1002_adma_202406594 crossref_primary_10_1002_smll_202207764 crossref_primary_10_1002_adfm_202101593 crossref_primary_10_1039_D2CC03096A crossref_primary_10_1021_acs_chemrev_0c00275 crossref_primary_10_1039_D2QI02416K crossref_primary_10_1016_j_electacta_2019_06_177 crossref_primary_10_1021_acs_nanolett_1c04775 crossref_primary_10_1039_D3TA05793C crossref_primary_10_1002_adma_202301171 crossref_primary_10_1002_ange_202003663 crossref_primary_10_1016_j_jechem_2021_05_055 crossref_primary_10_1016_j_cossms_2021_100973 crossref_primary_10_1002_smll_202404835 crossref_primary_10_1039_D2TA06594K crossref_primary_10_2139_ssrn_4178133 crossref_primary_10_1038_s41467_024_47448_5 crossref_primary_10_1016_j_est_2024_112447 crossref_primary_10_1021_acsnano_2c08441 crossref_primary_10_1149_1945_7111_ad24be crossref_primary_10_1002_anie_202304978 crossref_primary_10_1002_ange_202210522 crossref_primary_10_1002_celc_202000272 crossref_primary_10_1021_acsami_9b05053 crossref_primary_10_1002_adfm_202409492 crossref_primary_10_1002_aenm_202003039 crossref_primary_10_1002_adma_202110333 crossref_primary_10_1016_j_ensm_2019_06_010 crossref_primary_10_1002_anie_202416565 crossref_primary_10_1002_adfm_202001607 crossref_primary_10_1002_adma_202004128 crossref_primary_10_1038_s41467_020_20339_1 crossref_primary_10_1002_ange_202116214 crossref_primary_10_1021_acsami_1c11733 crossref_primary_10_1021_acsami_3c07731 crossref_primary_10_1002_adfm_202009694 crossref_primary_10_1002_eom2_12416 crossref_primary_10_1002_aenm_202202518 crossref_primary_10_1002_adma_202404271 crossref_primary_10_1039_D1SC01363G crossref_primary_10_1016_j_jcis_2024_10_058 crossref_primary_10_1002_adma_202101745 crossref_primary_10_1002_anie_202013271 crossref_primary_10_1021_acs_energyfuels_4c02174 crossref_primary_10_1002_ange_201905712 crossref_primary_10_1002_ange_202000375 crossref_primary_10_1002_ange_202004853 crossref_primary_10_1016_j_isci_2022_105710 crossref_primary_10_1002_anie_201914250 crossref_primary_10_1002_ente_202100087 crossref_primary_10_1002_smm2_1015 crossref_primary_10_1016_j_apsusc_2021_151439 crossref_primary_10_1016_j_nanoen_2024_109862 crossref_primary_10_1002_ange_202314876 crossref_primary_10_1016_j_cej_2024_151539 crossref_primary_10_1021_acs_nanolett_9b03562 crossref_primary_10_1016_j_pmatsci_2025_101451 crossref_primary_10_1021_acs_energyfuels_0c00528 crossref_primary_10_1007_s11581_019_03356_z crossref_primary_10_1016_j_scib_2019_03_004 crossref_primary_10_1039_D4EB00042K crossref_primary_10_1038_s41467_023_36853_x crossref_primary_10_1155_2023_9526791 crossref_primary_10_1021_acsami_2c12497 crossref_primary_10_1002_ange_201914250 crossref_primary_10_1039_D4TA01708K crossref_primary_10_1002_smll_202308678 crossref_primary_10_1016_j_cclet_2024_110385 crossref_primary_10_1002_anie_202213606 crossref_primary_10_1002_advs_202003240 crossref_primary_10_1021_acsaem_2c02511 crossref_primary_10_1002_slct_201903419 crossref_primary_10_1016_j_jechem_2024_04_046 crossref_primary_10_1016_j_est_2024_111664 crossref_primary_10_1021_acsami_0c08094 crossref_primary_10_1039_C9CC06504K crossref_primary_10_1039_D1SC01806J crossref_primary_10_1002_aenm_202203791 crossref_primary_10_1016_j_cej_2022_134698 crossref_primary_10_1002_adfm_202208629 crossref_primary_10_1002_ange_202318197 crossref_primary_10_1073_pnas_1918442117 crossref_primary_10_1002_adfm_201908075 crossref_primary_10_1002_aenm_202303048 crossref_primary_10_1016_j_jechem_2019_07_001 crossref_primary_10_1002_ange_202416565 crossref_primary_10_1039_D2DT03864A crossref_primary_10_1002_ente_202100382 crossref_primary_10_1039_D3CC02166A crossref_primary_10_1016_j_xcrp_2023_101379 crossref_primary_10_1021_acsami_9b21679 crossref_primary_10_1021_acsenergylett_3c00449 crossref_primary_10_1016_j_jechem_2020_09_030 crossref_primary_10_1007_s41918_022_00158_2 crossref_primary_10_1021_acsmaterialslett_0c00001 crossref_primary_10_1039_D2EE01756C crossref_primary_10_1016_j_esci_2023_100135 crossref_primary_10_1016_j_pnsc_2023_05_007 crossref_primary_10_1007_s40820_024_01364_x crossref_primary_10_1002_anie_201908874 crossref_primary_10_1016_j_electacta_2021_138632 crossref_primary_10_1007_s40843_021_1960_3 crossref_primary_10_1039_D3TA00655G crossref_primary_10_1016_j_cej_2024_149550 crossref_primary_10_3390_inorganics10010005 crossref_primary_10_1021_acsnano_2c05016 crossref_primary_10_1002_ange_202012005 crossref_primary_10_1002_anie_202003663 crossref_primary_10_1016_j_ensm_2024_103192 crossref_primary_10_1016_j_est_2024_112897 crossref_primary_10_1002_nano_202000164 crossref_primary_10_1021_acsami_0c07904 crossref_primary_10_1016_j_cej_2022_137743 crossref_primary_10_1016_j_poly_2024_116955 crossref_primary_10_1016_j_jpowsour_2021_230595 crossref_primary_10_1002_aenm_202304153 crossref_primary_10_1002_aenm_202303189 crossref_primary_10_1016_j_apsusc_2023_156849 crossref_primary_10_1002_aenm_202300259 crossref_primary_10_1039_D1TA06836A crossref_primary_10_1002_smll_202309321 crossref_primary_10_1002_adma_202007945 crossref_primary_10_1002_smll_202308472 crossref_primary_10_1016_j_electacta_2023_143592 crossref_primary_10_1016_j_jelechem_2021_115499 crossref_primary_10_1002_anie_202012005 crossref_primary_10_1002_eom2_12200 crossref_primary_10_1002_ange_202217458 crossref_primary_10_1088_1742_6596_2578_1_012034 crossref_primary_10_1021_acsami_4c01661 crossref_primary_10_1039_D4CS00845F crossref_primary_10_1002_adfm_202111026 crossref_primary_10_1039_D1SE01161H crossref_primary_10_1016_j_nanoen_2024_109362 crossref_primary_10_1021_acsaem_0c01758 crossref_primary_10_1002_anie_201905712 crossref_primary_10_1016_j_jechem_2022_08_021 crossref_primary_10_1038_s41467_021_26143_9 crossref_primary_10_1360_nso_20230039 crossref_primary_10_1016_j_cclet_2023_108640 crossref_primary_10_1021_acsami_9b08703 crossref_primary_10_1016_j_ensm_2020_07_008 crossref_primary_10_1016_j_jechem_2020_01_036 crossref_primary_10_1016_j_scib_2023_11_039 crossref_primary_10_1021_acsami_2c07932 crossref_primary_10_1016_j_ensm_2024_103443 crossref_primary_10_1002_ange_202417471 crossref_primary_10_1021_acssuschemeng_4c02207 crossref_primary_10_1002_anie_202108397 crossref_primary_10_1021_acs_chemrev_4c00584 crossref_primary_10_1021_acsami_4c16977 crossref_primary_10_1149_1945_7111_ad71f7 crossref_primary_10_1002_anie_202402202 crossref_primary_10_1002_adfm_202414430 crossref_primary_10_1002_aenm_202402811 crossref_primary_10_1039_D2NR07273D crossref_primary_10_1149_1945_7111_acaad2 crossref_primary_10_1002_adfm_202109377 crossref_primary_10_1002_adfm_202212150 crossref_primary_10_1002_aenm_202002360 crossref_primary_10_1002_ange_202306963 crossref_primary_10_1039_C8TA09380F crossref_primary_10_2139_ssrn_4151626 crossref_primary_10_1002_adma_202311938 crossref_primary_10_1002_batt_202200142 crossref_primary_10_1016_j_mtener_2023_101413 crossref_primary_10_1002_eem2_70004 crossref_primary_10_1016_j_jpowsour_2021_229603 crossref_primary_10_1016_j_cej_2023_146612 crossref_primary_10_1002_adfm_202308022 crossref_primary_10_1002_eom2_12498 crossref_primary_10_1002_advs_202416656 crossref_primary_10_1016_j_jallcom_2021_159916 crossref_primary_10_1002_adfm_202204768 crossref_primary_10_1016_j_nanoen_2021_106353 crossref_primary_10_1016_j_mtener_2023_101328 crossref_primary_10_1016_j_nanoen_2022_107881 crossref_primary_10_1016_j_partic_2020_12_003 crossref_primary_10_1016_j_jpowsour_2020_228241 crossref_primary_10_1016_j_jechem_2022_05_031 crossref_primary_10_1039_C9CS00636B crossref_primary_10_1021_acsami_1c08858 crossref_primary_10_1002_bkcs_12884 crossref_primary_10_1016_j_est_2024_113836 crossref_primary_10_1016_j_vacuum_2021_110331 crossref_primary_10_2139_ssrn_4046334 crossref_primary_10_1002_adfm_202010602 crossref_primary_10_1002_ange_202102593 crossref_primary_10_1007_s43207_023_00354_w crossref_primary_10_1002_aenm_201900858 crossref_primary_10_1039_D2TA09182H crossref_primary_10_1016_j_ensm_2019_08_016 crossref_primary_10_1016_j_nanoen_2021_106489 crossref_primary_10_1002_ange_202009575 crossref_primary_10_1002_aenm_202100935 crossref_primary_10_1039_D4CC06729K crossref_primary_10_1021_acsami_0c17406 crossref_primary_10_1016_j_jechem_2021_04_045 crossref_primary_10_1002_smll_202206597 crossref_primary_10_1016_j_ensm_2022_03_035 crossref_primary_10_1016_j_ensm_2021_01_030 crossref_primary_10_1002_ange_202304978 crossref_primary_10_1016_j_mtnano_2019_100049 crossref_primary_10_1002_smll_202104735 crossref_primary_10_1002_ange_202213606 crossref_primary_10_1016_j_etran_2023_100264 crossref_primary_10_1002_aenm_202304532 crossref_primary_10_1016_j_joule_2021_12_018 crossref_primary_10_1007_s12274_019_2368_x crossref_primary_10_1002_adfm_202300502 crossref_primary_10_1016_j_jechem_2020_02_026 crossref_primary_10_1002_anie_201903466 crossref_primary_10_1002_smll_202000769 crossref_primary_10_1016_j_jechem_2022_06_046 crossref_primary_10_1021_acsenergylett_1c00149 crossref_primary_10_1016_j_electacta_2023_142763 crossref_primary_10_1002_cey2_283 crossref_primary_10_1002_aenm_201803372 crossref_primary_10_1002_cey2_169 crossref_primary_10_1007_s40820_021_00780_7 crossref_primary_10_1016_j_ensm_2019_06_009 crossref_primary_10_1021_acsami_1c03341 crossref_primary_10_1039_C9TA10405D crossref_primary_10_1002_cjoc_202200612 crossref_primary_10_1016_j_cej_2023_143302 crossref_primary_10_1002_anie_202409193 crossref_primary_10_1021_acs_jpcc_2c08516 crossref_primary_10_1002_anie_202103909 crossref_primary_10_1039_D0QO01327G crossref_primary_10_1039_D1TA04043J crossref_primary_10_1002_anie_202114805 crossref_primary_10_1021_acsami_3c05630 crossref_primary_10_1016_j_enchem_2019_100003 crossref_primary_10_1016_j_eng_2018_10_008 crossref_primary_10_1021_acsaem_1c02954 crossref_primary_10_1021_acsnano_9b04519 crossref_primary_10_1002_anie_202107389 crossref_primary_10_1002_anie_202424547 crossref_primary_10_1016_j_cej_2022_134637 crossref_primary_10_1021_acsami_3c17742 crossref_primary_10_1002_batt_202200232 crossref_primary_10_1007_s40820_023_01300_5 crossref_primary_10_1016_j_jpowsour_2020_229253 crossref_primary_10_1021_acsenergylett_1c00043 crossref_primary_10_1002_batt_201900112 crossref_primary_10_1016_j_cej_2023_141478 crossref_primary_10_1002_ange_202218151 crossref_primary_10_1021_acsami_4c13009 crossref_primary_10_1016_j_jechem_2020_03_034 crossref_primary_10_3389_fenrg_2023_1325316 crossref_primary_10_1016_j_cej_2021_134468 crossref_primary_10_1016_j_ensm_2019_07_020 crossref_primary_10_1002_anie_202101976 crossref_primary_10_1021_acsnano_9b10083 crossref_primary_10_1021_jacs_2c01996 crossref_primary_10_1016_j_ensm_2022_02_033 crossref_primary_10_3390_molecules27165199 crossref_primary_10_1002_batt_201800118 crossref_primary_10_1016_j_jechem_2025_01_038 crossref_primary_10_1039_D2MH00469K crossref_primary_10_1021_acsaem_2c04131 crossref_primary_10_1039_D1QM00352F crossref_primary_10_1002_advs_202101111 crossref_primary_10_1016_j_cej_2022_137360 crossref_primary_10_1016_j_scib_2024_02_009 crossref_primary_10_1016_j_gee_2021_12_006 crossref_primary_10_1021_acsenergylett_1c00750 crossref_primary_10_1021_acsaem_1c01322 crossref_primary_10_1021_acscentsci_1c01014 crossref_primary_10_1039_D4TA01535E crossref_primary_10_1016_j_nanoen_2022_107104 crossref_primary_10_1002_ange_201912701 crossref_primary_10_1016_j_surfin_2024_105540 crossref_primary_10_1002_batt_202300488 crossref_primary_10_5796_electrochemistry_23_00142 crossref_primary_10_1002_aenm_202101057 crossref_primary_10_1002_aenm_202400365 crossref_primary_10_1039_D3EE00664F crossref_primary_10_1016_j_jcis_2024_12_102 crossref_primary_10_1002_anie_202310761 crossref_primary_10_1007_s11581_024_05952_0 crossref_primary_10_1038_s41467_024_47629_2 crossref_primary_10_3390_batteries10040135 crossref_primary_10_1016_j_nanoen_2023_108722 crossref_primary_10_1002_ange_201911724 crossref_primary_10_1016_j_jpowsour_2025_236568 crossref_primary_10_1007_s40843_021_2036_x crossref_primary_10_1021_acsenergylett_0c02140 crossref_primary_10_1039_C9CS00728H crossref_primary_10_1002_aenm_202000567 crossref_primary_10_1016_j_jcis_2024_05_024 crossref_primary_10_1021_jacs_0c12051 crossref_primary_10_1016_j_cej_2022_138112 crossref_primary_10_1002_smll_202408771 crossref_primary_10_1002_smll_202406588 crossref_primary_10_1073_pnas_2001923117 crossref_primary_10_1016_j_partic_2023_04_002 crossref_primary_10_1021_jacs_9b05029 crossref_primary_10_1002_adma_202311327 crossref_primary_10_1002_anie_202009575 crossref_primary_10_1016_j_nanoen_2022_107122 crossref_primary_10_1016_j_ensm_2021_07_043 crossref_primary_10_1021_acs_nanolett_1c00848 crossref_primary_10_1021_acs_nanolett_0c03206 crossref_primary_10_1002_batt_202300144 crossref_primary_10_1021_acsami_9b04898 crossref_primary_10_1002_adfm_202107249 crossref_primary_10_1016_j_jechem_2022_11_013 crossref_primary_10_1021_acsmaterialslett_9b00416 crossref_primary_10_1021_acsami_4c02031 crossref_primary_10_1016_j_cej_2022_138369 crossref_primary_10_1016_j_nanoen_2020_104967 crossref_primary_10_1007_s12274_020_2871_0 crossref_primary_10_1016_j_ensm_2023_03_019 crossref_primary_10_1039_C9TA12979K crossref_primary_10_1002_aenm_202302620 crossref_primary_10_1016_j_jechem_2022_11_017 crossref_primary_10_1039_D0CC03864D crossref_primary_10_1002_admi_202300058 crossref_primary_10_1038_s41586_024_08294_z crossref_primary_10_1002_aenm_202302747 crossref_primary_10_1002_eem2_12266 crossref_primary_10_1002_adfm_202211364 crossref_primary_10_1016_j_est_2025_115876 crossref_primary_10_3389_fchem_2020_595972 crossref_primary_10_1016_j_jpowsour_2024_234183 crossref_primary_10_1039_D2DT02937E crossref_primary_10_1039_D0TA03774E crossref_primary_10_1021_acsenergylett_1c01528 crossref_primary_10_1039_D1TA07306K crossref_primary_10_1016_j_jpowsour_2023_233884 crossref_primary_10_1002_anie_202217458 crossref_primary_10_1039_D3TA05963D crossref_primary_10_1021_acsami_1c10279 crossref_primary_10_1016_j_ensm_2021_08_008 crossref_primary_10_1002_adfm_202108993 crossref_primary_10_1021_acssuschemeng_2c03271 crossref_primary_10_1007_s12274_022_4839_8 crossref_primary_10_1016_j_isci_2020_101586 crossref_primary_10_1016_j_jechem_2019_10_002 crossref_primary_10_1016_j_ensm_2021_08_015 crossref_primary_10_1016_j_mtener_2024_101759 crossref_primary_10_1016_j_nanoen_2023_108922 crossref_primary_10_1039_D4EE05862C crossref_primary_10_1016_j_ensm_2021_08_013 crossref_primary_10_1021_acsami_0c22735 crossref_primary_10_1002_adma_202301312 crossref_primary_10_1002_cnl2_188 crossref_primary_10_1002_adfm_202213648 crossref_primary_10_1016_j_ensm_2024_103875 crossref_primary_10_1016_j_ensm_2024_103876 crossref_primary_10_1002_advs_202206995 crossref_primary_10_1002_ange_201908874 crossref_primary_10_1016_j_jpowsour_2022_232182 crossref_primary_10_1002_cnl2_184 crossref_primary_10_1016_j_jechem_2019_09_034 crossref_primary_10_1002_adfm_202413176 crossref_primary_10_1007_s40820_024_01479_1 crossref_primary_10_1002_aesr_202300051 crossref_primary_10_1002_er_6846 crossref_primary_10_1021_acsami_1c01571 crossref_primary_10_1002_adma_201902785 crossref_primary_10_1016_j_jechem_2020_06_060 crossref_primary_10_1002_aenm_202103332 crossref_primary_10_1002_smll_202401940 crossref_primary_10_1063_5_0235835 crossref_primary_10_1002_smll_202102196 crossref_primary_10_1039_D1TA02031E crossref_primary_10_1016_j_jelechem_2022_117040 crossref_primary_10_1021_acsenergylett_8b02376 crossref_primary_10_1016_j_ensm_2022_01_044 crossref_primary_10_1002_anie_202318197 crossref_primary_10_1002_inf2_12046 crossref_primary_10_1007_s11814_025_00392_6 crossref_primary_10_1002_cey2_227 crossref_primary_10_1002_cssc_202400210 crossref_primary_10_1016_j_ensm_2021_10_047 crossref_primary_10_1016_j_jelechem_2020_114794 crossref_primary_10_1002_aenm_201902254 crossref_primary_10_1016_j_jpowsour_2025_236167 crossref_primary_10_1002_anie_202004853 crossref_primary_10_1016_j_scriptamat_2023_115925 crossref_primary_10_1021_acsaem_1c01174 crossref_primary_10_1016_j_ensm_2025_104020 crossref_primary_10_1002_adfm_201909887 crossref_primary_10_1007_s40843_024_3130_y crossref_primary_10_1016_j_ensm_2021_10_034 crossref_primary_10_1016_j_xcrp_2024_101999 crossref_primary_10_1002_ange_202424547 crossref_primary_10_1016_j_jechem_2023_02_005 crossref_primary_10_1039_D1QM00185J crossref_primary_10_1002_smll_202202349 crossref_primary_10_1016_j_scriptamat_2024_116191 crossref_primary_10_1002_adma_202210677 crossref_primary_10_2139_ssrn_4108561 crossref_primary_10_1021_acs_accounts_0c00412 crossref_primary_10_1021_acsami_1c01886 crossref_primary_10_1002_anie_202000375 crossref_primary_10_1016_j_cej_2024_149510 crossref_primary_10_1002_sstr_202000015 crossref_primary_10_1002_eem2_12207 crossref_primary_10_1016_j_gee_2021_02_009 crossref_primary_10_1021_acsami_0c03952 crossref_primary_10_1021_acs_energyfuels_3c04898 crossref_primary_10_1016_j_matt_2022_01_017 crossref_primary_10_1021_acs_nanolett_2c02508 crossref_primary_10_1016_j_cclet_2023_109274 crossref_primary_10_1002_advs_202308939 crossref_primary_10_1016_j_jechem_2020_12_024 crossref_primary_10_1016_j_ensm_2023_102782 crossref_primary_10_1002_adma_202407381 crossref_primary_10_1016_j_cej_2023_142937 crossref_primary_10_1016_j_electacta_2022_140552 crossref_primary_10_1016_j_cej_2021_128661 crossref_primary_10_1016_j_cej_2023_145089 crossref_primary_10_1039_D2SC00244B crossref_primary_10_1002_cphc_202400920 crossref_primary_10_1002_anie_202116214 crossref_primary_10_1021_jacs_4c02345 crossref_primary_10_1073_pnas_1911017116 crossref_primary_10_1002_eem2_12355 crossref_primary_10_1002_adfm_202420327 crossref_primary_10_1021_acsami_2c00842 crossref_primary_10_1002_aenm_202202493 crossref_primary_10_1039_D3SC04263D crossref_primary_10_1002_adfm_202409431 crossref_primary_10_1039_D0CS01017K crossref_primary_10_1002_adfm_202306868 crossref_primary_10_1002_anie_202218151 crossref_primary_10_1039_D4QM00180J crossref_primary_10_1021_acsami_1c09319 crossref_primary_10_1021_acsami_2c08278 crossref_primary_10_1002_admt_201900806 crossref_primary_10_1002_adfm_202408525 crossref_primary_10_1002_ange_202402202 crossref_primary_10_1002_ange_202013271 crossref_primary_10_1002_anie_202314876 crossref_primary_10_1021_acsenergylett_3c01709 crossref_primary_10_1002_adfm_202102128 crossref_primary_10_1007_s10854_022_09453_6 crossref_primary_10_1007_s10854_024_12812_0 crossref_primary_10_1016_j_cej_2023_142913 crossref_primary_10_1016_j_esci_2021_12_006 crossref_primary_10_1016_j_electacta_2023_143049 crossref_primary_10_1016_j_jechem_2024_06_053 crossref_primary_10_1149_1945_7111_ac6455 crossref_primary_10_1016_j_jechem_2023_03_009 crossref_primary_10_1002_anie_202102593 crossref_primary_10_1039_D1TA09819E crossref_primary_10_1016_j_ensm_2021_04_001 crossref_primary_10_1016_j_ensm_2021_04_002 crossref_primary_10_1002_ange_202101976 crossref_primary_10_1002_anie_202306963 crossref_primary_10_1002_ange_202103909 crossref_primary_10_1039_D2CP00835A crossref_primary_10_1016_j_ces_2023_119295 crossref_primary_10_1021_acssuschemeng_2c06146 crossref_primary_10_1002_aenm_202403674 crossref_primary_10_1002_smtd_201800551 crossref_primary_10_1002_ange_202107389 crossref_primary_10_1039_D4EE00399C crossref_primary_10_1002_aenm_202003092 crossref_primary_10_1007_s40820_020_00514_1 crossref_primary_10_1016_j_nanoen_2024_109836 crossref_primary_10_1016_j_apsusc_2022_155888 crossref_primary_10_1007_s11771_022_4901_4 crossref_primary_10_1016_j_ensm_2020_04_010 crossref_primary_10_1002_ange_202310761 crossref_primary_10_1002_anie_201912701 crossref_primary_10_1016_j_xcrp_2023_101324 crossref_primary_10_1002_smsc_202100107 crossref_primary_10_1016_j_jcis_2023_06_107 crossref_primary_10_1016_j_ensm_2021_05_029 crossref_primary_10_1039_C9TA01911A crossref_primary_10_1016_j_jpowsour_2024_236068 crossref_primary_10_1002_ange_201903466 crossref_primary_10_1002_ange_202108397 crossref_primary_10_1002_smll_202310843 crossref_primary_10_1016_j_ssi_2021_115636 crossref_primary_10_1039_D3EE04556K crossref_primary_10_1021_acssuschemeng_3c05371 crossref_primary_10_1021_acsaem_1c02158 crossref_primary_10_1002_smtd_202300839 crossref_primary_10_15541_jim20230215 crossref_primary_10_1002_anie_202210522 crossref_primary_10_1039_C9TA13644D crossref_primary_10_1039_D1EE00767J crossref_primary_10_1002_anie_201911724 crossref_primary_10_1002_ange_202409193 crossref_primary_10_1002_aenm_202103972 crossref_primary_10_1002_smll_202408164 crossref_primary_10_1021_acs_nanolett_4c02983 crossref_primary_10_1063_5_0136321 crossref_primary_10_1002_ange_202114805 crossref_primary_10_1021_acsaem_1c03259 crossref_primary_10_1021_acsami_3c07382 crossref_primary_10_1002_aenm_202101544 crossref_primary_10_1002_anie_202417471 crossref_primary_10_1039_D1SC06181J crossref_primary_10_1002_smll_202410486 crossref_primary_10_1039_D1CC03676A |
Cites_doi | 10.1002/advs.201600517 10.1002/anie.201801513 10.1038/451652a 10.1016/j.ensm.2016.01.007 10.1002/ange.201702263 10.1038/nnano.2017.16 10.1073/pnas.1803634115 10.1002/aenm.201402273 10.1016/j.jpowsour.2016.07.056 10.1149/1.2096876 10.1002/aenm.201702097 10.1039/C6EE00789A 10.1038/natrevmats.2016.13 10.1016/j.ensm.2016.09.003 10.1021/acs.chemmater.6b05475 10.1149/2.0951807jes 10.1002/ange.201801513 10.1016/j.electacta.2012.03.081 10.1021/cr030203g 10.1002/anie.201702099 10.1149/2.0861503jes 10.1002/aenm.201502534 10.1002/advs.201600445 10.1021/ja309435f 10.1021/acs.chemrev.7b00115 10.1149/1.2128859 10.1038/ncomms8436 10.1063/1.89283 10.1016/j.jpowsour.2016.07.008 |
ContentType | Journal Article |
Copyright | 2018 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. |
Copyright_xml | – notice: 2018 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. |
DBID | AAYXX CITATION NPM 7TM K9. 7X8 |
DOI | 10.1002/anie.201807034 |
DatabaseName | CrossRef PubMed Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed ProQuest Health & Medical Complete (Alumni) Nucleic Acids Abstracts MEDLINE - Academic |
DatabaseTitleList | PubMed CrossRef MEDLINE - Academic ProQuest Health & Medical Complete (Alumni) |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3773 |
Edition | International ed. in English |
EndPage | 14059 |
ExternalDocumentID | 30094909 10_1002_anie_201807034 ANIE201807034 |
Genre | shortCommunication Journal Article |
GrantInformation_xml | – fundername: National Natural Scientific Foundation of China funderid: 21776019; 21676160 – fundername: China Postdoctoral Science Foundation funderid: 2018M631480 and BX201700125 – fundername: Beijing Key Research and Development Plan funderid: Z181100004518001 – fundername: National Key Research and Development Program funderid: 2016YFA0202500 and 2016YFA0200102 – fundername: Beijing Key Research and Development Plan grantid: Z181100004518001 – fundername: China Postdoctoral Science Foundation grantid: 2018M631480 and BX201700125 – fundername: National Key Research and Development Program grantid: 2016YFA0202500 and 2016YFA0200102 – fundername: National Natural Scientific Foundation of China grantid: 21676160 – fundername: National Natural Scientific Foundation of China grantid: 21776019 |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABLJU ABPPZ ABPVW ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BTSUX BY8 CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS EJD F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M53 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ TN5 UB1 UPT V2E VQA W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XSW XV2 YZZ ZZTAW ~IA ~KM ~WT AAYXX ABDBF ABJNI AEYWJ AGHNM AGYGG CITATION NPM 7TM K9. 7X8 |
ID | FETCH-LOGICAL-c4764-809f235f355c74277c198849d0aa244dfa7e20f3d15f37a7df54a212320a96933 |
IEDL.DBID | DR2 |
ISSN | 1433-7851 1521-3773 |
IngestDate | Fri Jul 11 09:56:41 EDT 2025 Sun Jul 13 05:28:14 EDT 2025 Thu Apr 03 06:57:26 EDT 2025 Thu Apr 24 22:58:02 EDT 2025 Tue Jul 01 02:26:31 EDT 2025 Wed Jan 22 16:28:12 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 43 |
Keywords | lithium nitrate lithium deposition electrolyte additives lithium anodes high-voltage cathodes |
Language | English |
License | 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4764-809f235f355c74277c198849d0aa244dfa7e20f3d15f37a7df54a212320a96933 |
Notes | These authors contributed equally to this work. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-7686-6308 0000-0001-6350-1206 0000-0001-7567-1210 0000-0001-7394-9186 0000-0002-3929-1541 0000-0003-2856-1881 0000-0001-9521-4981 |
PMID | 30094909 |
PQID | 2120121091 |
PQPubID | 946352 |
PageCount | 5 |
ParticipantIDs | proquest_miscellaneous_2087593446 proquest_journals_2120121091 pubmed_primary_30094909 crossref_primary_10_1002_anie_201807034 crossref_citationtrail_10_1002_anie_201807034 wiley_primary_10_1002_anie_201807034_ANIE201807034 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | October 22, 2018 |
PublicationDateYYYYMMDD | 2018-10-22 |
PublicationDate_xml | – month: 10 year: 2018 text: October 22, 2018 day: 22 |
PublicationDecade | 2010 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Angewandte Chemie International Edition |
PublicationTitleAlternate | Angew Chem Int Ed Engl |
PublicationYear | 2018 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2017; 6 2012; 70 1979; 126 2018; 8 2018; 165 2017 2015 2016 2016; 29 6 3 327 2016; 1 2015; 5 2004; 104 2017; 4 1977 2016 2013; 30 6 135 1989; 136 2017; 12 2016 2015; 9 162 2016; 326 2018 2018 2018; 115 57 130 2017 2017; 56 129 2008; 451 2017; 117 e_1_2_2_4_1 e_1_2_2_5_1 e_1_2_2_6_1 e_1_2_2_7_1 e_1_2_2_1_1 e_1_2_2_20_1 e_1_2_2_2_1 e_1_2_2_3_1 e_1_2_2_9_1 e_1_2_2_8_1 e_1_2_2_9_2 e_1_2_2_11_4 e_1_2_2_13_2 e_1_2_2_14_1 e_1_2_2_11_3 e_1_2_2_13_1 e_1_2_2_11_2 e_1_2_2_12_1 e_1_2_2_11_1 e_1_2_2_10_1 e_1_2_2_19_2 e_1_2_2_17_3 e_1_2_2_19_1 e_1_2_2_17_2 e_1_2_2_18_1 e_1_2_2_17_1 e_1_2_2_16_1 e_1_2_2_13_3 e_1_2_2_15_1 |
References_xml | – volume: 115 57 130 start-page: 5676 5301 5399 year: 2018 2018 2018 end-page: 5680 5305 5403 publication-title: Proc. Natl. Acad. Sci. USA Angew. Chem. Int. Ed. Angew. Chem. – volume: 4 start-page: 1600445 year: 2017 publication-title: Adv. Sci. – volume: 136 start-page: 906 year: 1989 end-page: 913 publication-title: J. Electrochem. Soc. – volume: 165 start-page: 1486 year: 2018 end-page: 1491 publication-title: J. Electrochem. Soc. – volume: 104 start-page: 4303 year: 2004 end-page: 4418 publication-title: Chem. Rev. – volume: 326 start-page: 322 year: 2016 end-page: 330 publication-title: J. Power Sources – volume: 56 129 start-page: 7764 5653 year: 2017 2017 end-page: 7768 5656 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 5 start-page: 1402273 year: 2015 publication-title: Adv. Energy Mater. – volume: 70 start-page: 344 year: 2012 end-page: 348 publication-title: Electrochim. Acta – volume: 29 6 3 327 start-page: 3572 7436 77 212 year: 2017 2015 2016 2016 end-page: 3579 84 220 publication-title: Chem. Mater. Nat. Commun. Energy Storage Mater. J. Power Sources – volume: 6 start-page: 18 year: 2017 end-page: 25 publication-title: Energy Storage Mater. – volume: 30 6 135 start-page: 621 1502534 763 year: 1977 2016 2013 end-page: 623 767 publication-title: Appl. Phys. Lett. Adv. Energy Mater. J. Am. Chem. Soc. – volume: 126 start-page: 2047 year: 1979 end-page: 2051 publication-title: J. Electrochem. Soc. – volume: 4 start-page: 1600517 year: 2017 publication-title: Adv. Sci. – volume: 9 162 start-page: 2603 470 year: 2016 2015 end-page: 2608 473 publication-title: Energy Environ. Sci. J. Electrochem. Soc. – volume: 117 start-page: 10403 year: 2017 end-page: 10473 publication-title: Chem. Rev. – volume: 1 start-page: 16013 year: 2016 publication-title: Nat. Rev. Mater. – volume: 451 start-page: 652 year: 2008 end-page: 657 publication-title: Nature – volume: 8 start-page: 1702097 year: 2018 publication-title: Adv. Energy Mater. – volume: 12 start-page: 194 year: 2017 end-page: 206 publication-title: Nat. Nanotechnol. – ident: e_1_2_2_18_1 doi: 10.1002/advs.201600517 – ident: e_1_2_2_13_2 doi: 10.1002/anie.201801513 – ident: e_1_2_2_1_1 doi: 10.1038/451652a – ident: e_1_2_2_11_3 doi: 10.1016/j.ensm.2016.01.007 – ident: e_1_2_2_19_2 doi: 10.1002/ange.201702263 – ident: e_1_2_2_3_1 doi: 10.1038/nnano.2017.16 – ident: e_1_2_2_13_1 doi: 10.1073/pnas.1803634115 – ident: e_1_2_2_4_1 doi: 10.1002/aenm.201402273 – ident: e_1_2_2_11_4 doi: 10.1016/j.jpowsour.2016.07.056 – ident: e_1_2_2_15_1 doi: 10.1149/1.2096876 – ident: e_1_2_2_14_1 doi: 10.1002/aenm.201702097 – ident: e_1_2_2_9_1 doi: 10.1039/C6EE00789A – ident: e_1_2_2_2_1 doi: 10.1038/natrevmats.2016.13 – ident: e_1_2_2_5_1 doi: 10.1016/j.ensm.2016.09.003 – ident: e_1_2_2_11_1 doi: 10.1021/acs.chemmater.6b05475 – ident: e_1_2_2_20_1 doi: 10.1149/2.0951807jes – ident: e_1_2_2_13_3 doi: 10.1002/ange.201801513 – ident: e_1_2_2_10_1 doi: 10.1016/j.electacta.2012.03.081 – ident: e_1_2_2_12_1 doi: 10.1021/cr030203g – ident: e_1_2_2_19_1 doi: 10.1002/anie.201702099 – ident: e_1_2_2_9_2 doi: 10.1149/2.0861503jes – ident: e_1_2_2_17_2 doi: 10.1002/aenm.201502534 – ident: e_1_2_2_8_1 doi: 10.1002/advs.201600445 – ident: e_1_2_2_17_3 doi: 10.1021/ja309435f – ident: e_1_2_2_6_1 doi: 10.1021/acs.chemrev.7b00115 – ident: e_1_2_2_7_1 doi: 10.1149/1.2128859 – ident: e_1_2_2_11_2 doi: 10.1038/ncomms8436 – ident: e_1_2_2_17_1 doi: 10.1063/1.89283 – ident: e_1_2_2_16_1 doi: 10.1016/j.jpowsour.2016.07.008 |
SSID | ssj0028806 |
Score | 2.6895854 |
Snippet | The lithium metal anode is regarded as a promising candidate in next‐generation energy storage devices. Lithium nitrate (LiNO3) is widely applied as an... The lithium metal anode is regarded as a promising candidate in next‐generation energy storage devices. Lithium nitrate (LiNO 3 ) is widely applied as an... The lithium metal anode is regarded as a promising candidate in next-generation energy storage devices. Lithium nitrate (LiNO ) is widely applied as an... The lithium metal anode is regarded as a promising candidate in next-generation energy storage devices. Lithium nitrate (LiNO3 ) is widely applied as an... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 14055 |
SubjectTerms | Anodes Anodic dissolution Anodic protection Batteries Copper fluorides Dissolution Electric potential electrolyte additives Electrolytes Energy storage Fluorides high-voltage cathodes Interface stability Lithium lithium anodes Lithium batteries lithium deposition lithium nitrate Metals Organic chemistry Solvation Voltage |
Title | Lithium Nitrate Solvation Chemistry in Carbonate Electrolyte Sustains High‐Voltage Lithium Metal Batteries |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.201807034 https://www.ncbi.nlm.nih.gov/pubmed/30094909 https://www.proquest.com/docview/2120121091 https://www.proquest.com/docview/2087593446 |
Volume | 57 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTtwwEB5Ve2kvQFt-AlvkSpU4BbJ2somPK7SIVuweyo-4RY5jixXpbrWbPcCJR-AZeZLOxJvAUiEkuMXKOHHsceYbe_wNwA_eMYnhHe3rXGk_1Fb70ojQDw2xmRudi2orZjDsHp-Hvy6jyyen-B0_RLPgRjOj-l_TBFfZ7OCRNJROYFNoVkJKS4SgFLBFqOh3wx_FUTnd8SIhfMpCX7M2BvxgufqyVfoPai4j18r0HK2CqhvtIk6u9-dltq9vn_E5vuer1mBlgUtZzynSZ_hgxl_g42GdDu4rFCej8mo0_8OGo4rQlp1OCrecyxopNsKCmma0Im9Y32XYKW5I2J3TmjGKK3m4u7-YFCX-yVj90IFBJ4A5sk_03dfh_Kh_dnjsL1I1-DqMuyHaOWm5iCyiF43OdhzrjkySUOaBUgggcqtiwwMr8g7KxCrObRQqspo8ULIrhdiA1ngyNlvAhEUfKyHSixxdtdwkCOG0TWwSmawrbOSBXw9Vqhc85pROo0gdAzNPqQ_Tpg892Gvk_zoGjxcl2_XIp4uZPEuxkUR7h7DKg-_NbexV2lhRYzOZowylBZACPWsPNp3GNK8SFLspA-kBr8b9lTakveHPflPafkulHfhE12RgOW9Dq5zOzTdETmW2W82Of2AYD84 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB619EAvpS19hEdxJaSeAlnb2cRHRBctdHcPBareIsex1RVhFy3ZA5z4Cf2N_SXMxJugpaoqtcck48SxZzwPj78B2OUdm1reMaEptAmlcSZUVshQWkIzt6YQ9VbMcNTtn8uT73GTTUhnYTw-RBtwI8mo12sScApI7z-ghtIRbMrNSolr5VN4RmW9CT7_89cWQYoje_oDRkKEVIe-wW2M-P5y-2W99JuxuWy71srnaA3ypts-5-Rib17le-b2EaLjf_3XS3ixME3ZgeelV_DETl7D6mFTEW4dysG4-jGeX7LRuMa0ZafT0kd0WUvFxnihZzkF5S3r-SI75Q0R-6Na14xSS37d_fw2LStczFjz0qFFP4B5vE9039_A-VHv7LAfLqo1hEYmXYmqTjkuYocGjEF_O0lMR6WpVEWkNdoQhdOJ5ZETRQdpEp0ULpaaFCePtOoqId7CymQ6se-BCYduVkq4FwV6a4VN0YozLnVpbPOucHEAYTNXmVlAmVNFjTLzIMw8ozHM2jEM4FNLf-VBPP5IudVMfbYQ5usMO0nId2hZBfCxfYyjSnsremKnc6ShygBKoHMdwDvPMu2nBKVvqkgFwOuJ_0sfsoPRca-92viXRjuw2j8bDrLB8ejLJjyn-6RvOd-ClWo2t9toSFX5h1pU7gFc5xPq |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BkYALbXmmtNRISJzSZm3n4WPV7qql7aoCinqLvH6IFWG3arMHOPUn9Df2lzATb0IXhJDgmGScOPaMZ8ae-QbgDe-5wvGeiY3VJpbGm1g5IWPpCM3cGSuao5jjYbZ_Kt-dpWe3svgDPkS34UaS0azXJODn1m__BA2lDGwKzSqIaeVduCezRFHxhr33HYAUR-4M-UVCxFSGvoVtTPj2YvtFtfSbrblouja6Z7AMuu11CDn5sjWrR1vm-y-Ajv_zWyvwaG6Ysp3ASatwx00ew4Pdth7cE6iOxvXn8ewrG44bRFv2YVqF_VzWUbExXuiLEW3JO9YPJXaqb0QcErUuGQWW3Fxdf5pWNS5lrH3psUMvgAW0T3Ten8LpoP9xdz-e12qIjcwziYpOeS5Sj-aLQW87z01PFYVUNtEaLQjrde544oXtIU2uc-tTqUlt8kSrTAnxDJYm04l7AUx4dLIKQr2w6KtZV6ANZ3zhi9SNMuHTCOJ2qkozBzKnehpVGSCYeUljWHZjGMHbjv48QHj8kXK9nflyLsqXJXaScO_QrorgdfcYR5VOVvTETWdIQ3UBlEDXOoLngWO6TwkK3lSJioA38_6XPpQ7w4N-d7X2L4024f7J3qA8OhgevoSHdJuULefrsFRfzNwGWlH16FUjKD8ACm4SmQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Lithium+Nitrate+Solvation+Chemistry+in+Carbonate+Electrolyte+Sustains+High%E2%80%90Voltage+Lithium+Metal+Batteries&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Yan%2C+Chong&rft.au=Yao%2C+Yu%E2%80%90Xing&rft.au=Chen%2C+Xiang&rft.au=Cheng%2C+Xin%E2%80%90Bing&rft.date=2018-10-22&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=57&rft.issue=43&rft.spage=14055&rft.epage=14059&rft_id=info:doi/10.1002%2Fanie.201807034&rft.externalDBID=10.1002%252Fanie.201807034&rft.externalDocID=ANIE201807034 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon |