Creation of Nonspherical Microparticles through Osmosis‐Driven Arrested Coalescence of Microfluidic Emulsions
Droplet‐based microfluidics enable the production of emulsions and microparticles with spherical shapes, but the high‐throughput fabrication of nonspherical emulsions and microparticles still remains challenging because interfacial tension plays a dominant role during preparation. Herein, ionic liqu...
Saved in:
Published in | Small (Weinheim an der Bergstrasse, Germany) Vol. 16; no. 9; pp. e1903884 - n/a |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.03.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Droplet‐based microfluidics enable the production of emulsions and microparticles with spherical shapes, but the high‐throughput fabrication of nonspherical emulsions and microparticles still remains challenging because interfacial tension plays a dominant role during preparation. Herein, ionic liquids (ILs) containing salts, which possess sufficient osmotic pressure to realize water transport and phase separation, are introduced as inner cores of oil‐in‐oil‐in‐water double emulsions and it is shown that nonspherical emulsions can be constructed by osmosis‐driven arrested coalescence of inner cores. Subsequently, ultraviolet polymerization of the nonspherical emulsions leads to nonspherical microparticles. By tailoring the number, composition, and size of inner cores as well as coalescence time, a variety of nonspherical shapes such as dumbbell, rod, spindle, snowman, tumbler, three‐pointed star, triangle, and scalene triangle are created. Importantly, benefitting from excellent solvency of ILs, this system can serve as a general platform to produce nonspherical microparticles made from different materials. Moreover, by controlling the osmotic pressure, programmed coalescence of inner cores in double emulsions is realizable, which indicates the potential to build microreactors. Thus, a simple and high‐throughput strategy to create nonspherical microparticles with arrested coalescence shapes is developed for the first time and can be further used to construct novel materials and microreactors.
A facile and high‐throughput strategy to create nonspherical microparticles through osmosis‐driven arrested coalescence of microfluidic emulsions is first developed using ionic liquids containing salts system. A series of interesting nonspherical microparticles with arrested coalescence shapes are created, which can be used as useful anisotropic building blocks and microreactors. |
---|---|
AbstractList | Droplet‐based microfluidics enable the production of emulsions and microparticles with spherical shapes, but the high‐throughput fabrication of nonspherical emulsions and microparticles still remains challenging because interfacial tension plays a dominant role during preparation. Herein, ionic liquids (ILs) containing salts, which possess sufficient osmotic pressure to realize water transport and phase separation, are introduced as inner cores of oil‐in‐oil‐in‐water double emulsions and it is shown that nonspherical emulsions can be constructed by osmosis‐driven arrested coalescence of inner cores. Subsequently, ultraviolet polymerization of the nonspherical emulsions leads to nonspherical microparticles. By tailoring the number, composition, and size of inner cores as well as coalescence time, a variety of nonspherical shapes such as dumbbell, rod, spindle, snowman, tumbler, three‐pointed star, triangle, and scalene triangle are created. Importantly, benefitting from excellent solvency of ILs, this system can serve as a general platform to produce nonspherical microparticles made from different materials. Moreover, by controlling the osmotic pressure, programmed coalescence of inner cores in double emulsions is realizable, which indicates the potential to build microreactors. Thus, a simple and high‐throughput strategy to create nonspherical microparticles with arrested coalescence shapes is developed for the first time and can be further used to construct novel materials and microreactors.
A facile and high‐throughput strategy to create nonspherical microparticles through osmosis‐driven arrested coalescence of microfluidic emulsions is first developed using ionic liquids containing salts system. A series of interesting nonspherical microparticles with arrested coalescence shapes are created, which can be used as useful anisotropic building blocks and microreactors. Droplet-based microfluidics enable the production of emulsions and microparticles with spherical shapes, but the high-throughput fabrication of nonspherical emulsions and microparticles still remains challenging because interfacial tension plays a dominant role during preparation. Herein, ionic liquids (ILs) containing salts, which possess sufficient osmotic pressure to realize water transport and phase separation, are introduced as inner cores of oil-in-oil-in-water double emulsions and it is shown that nonspherical emulsions can be constructed by osmosis-driven arrested coalescence of inner cores. Subsequently, ultraviolet polymerization of the nonspherical emulsions leads to nonspherical microparticles. By tailoring the number, composition, and size of inner cores as well as coalescence time, a variety of nonspherical shapes such as dumbbell, rod, spindle, snowman, tumbler, three-pointed star, triangle, and scalene triangle are created. Importantly, benefitting from excellent solvency of ILs, this system can serve as a general platform to produce nonspherical microparticles made from different materials. Moreover, by controlling the osmotic pressure, programmed coalescence of inner cores in double emulsions is realizable, which indicates the potential to build microreactors. Thus, a simple and high-throughput strategy to create nonspherical microparticles with arrested coalescence shapes is developed for the first time and can be further used to construct novel materials and microreactors. Droplet-based microfluidics enable the production of emulsions and microparticles with spherical shapes, but the high-throughput fabrication of nonspherical emulsions and microparticles still remains challenging because interfacial tension plays a dominant role during preparation. Herein, ionic liquids (ILs) containing salts, which possess sufficient osmotic pressure to realize water transport and phase separation, are introduced as inner cores of oil-in-oil-in-water double emulsions and it is shown that nonspherical emulsions can be constructed by osmosis-driven arrested coalescence of inner cores. Subsequently, ultraviolet polymerization of the nonspherical emulsions leads to nonspherical microparticles. By tailoring the number, composition, and size of inner cores as well as coalescence time, a variety of nonspherical shapes such as dumbbell, rod, spindle, snowman, tumbler, three-pointed star, triangle, and scalene triangle are created. Importantly, benefitting from excellent solvency of ILs, this system can serve as a general platform to produce nonspherical microparticles made from different materials. Moreover, by controlling the osmotic pressure, programmed coalescence of inner cores in double emulsions is realizable, which indicates the potential to build microreactors. Thus, a simple and high-throughput strategy to create nonspherical microparticles with arrested coalescence shapes is developed for the first time and can be further used to construct novel materials and microreactors.Droplet-based microfluidics enable the production of emulsions and microparticles with spherical shapes, but the high-throughput fabrication of nonspherical emulsions and microparticles still remains challenging because interfacial tension plays a dominant role during preparation. Herein, ionic liquids (ILs) containing salts, which possess sufficient osmotic pressure to realize water transport and phase separation, are introduced as inner cores of oil-in-oil-in-water double emulsions and it is shown that nonspherical emulsions can be constructed by osmosis-driven arrested coalescence of inner cores. Subsequently, ultraviolet polymerization of the nonspherical emulsions leads to nonspherical microparticles. By tailoring the number, composition, and size of inner cores as well as coalescence time, a variety of nonspherical shapes such as dumbbell, rod, spindle, snowman, tumbler, three-pointed star, triangle, and scalene triangle are created. Importantly, benefitting from excellent solvency of ILs, this system can serve as a general platform to produce nonspherical microparticles made from different materials. Moreover, by controlling the osmotic pressure, programmed coalescence of inner cores in double emulsions is realizable, which indicates the potential to build microreactors. Thus, a simple and high-throughput strategy to create nonspherical microparticles with arrested coalescence shapes is developed for the first time and can be further used to construct novel materials and microreactors. |
Author | Gao, Ning Zhou, Kang Wang, Peng Dong, Hao Zhang, Wanlin Tian, Li He, Guokang Feng, Kai Li, Guangtao |
Author_xml | – sequence: 1 givenname: Kai surname: Feng fullname: Feng, Kai organization: Tsinghua University – sequence: 2 givenname: Ning surname: Gao fullname: Gao, Ning organization: Tsinghua University – sequence: 3 givenname: Wanlin surname: Zhang fullname: Zhang, Wanlin organization: Tsinghua University – sequence: 4 givenname: Kang surname: Zhou fullname: Zhou, Kang organization: Tsinghua University – sequence: 5 givenname: Hao surname: Dong fullname: Dong, Hao organization: Tsinghua University – sequence: 6 givenname: Peng surname: Wang fullname: Wang, Peng organization: Tsinghua University – sequence: 7 givenname: Li surname: Tian fullname: Tian, Li organization: Tsinghua University – sequence: 8 givenname: Guokang surname: He fullname: He, Guokang organization: Tsinghua University – sequence: 9 givenname: Guangtao orcidid: 0000-0003-4127-1715 surname: Li fullname: Li, Guangtao email: lgt@mail.tsinghua.edu.cn organization: Tsinghua University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31512376$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkTtPwzAUhS0EohRYGVEkFpYWvxonIypPqYUBmK3UvqGunLjYCYiNn8Bv5JfgPgAJCSEP9vCd43vP6aLN2tWA0AHBfYIxPQmVtX2KSY5ZlvENtENSwnppRvPN7zfBHdQNYYYxI5SLbdRhZEAoE-kOckMPRWNcnbgyuXF1mE_BG1XYZGyUd_PCN0ZZCEkz9a59nCa3oXLBhI-39zNvnqFOTr2H0IBOhq6IoIJawcJsqS9ta7RRyXnV2hB_CXtoqyxsgP31vYseLs7vh1e90e3l9fB01FNcpLwnCFcCQ1pqwCUlFESmCc4VAJ-kAFQLkQqdKwKcphAPE0wJjUs9yRnDiu2i45Xv3LunNg4oKxNns7aowbVBUprlA8EyPojo0S905lpfx-lkzAjnglDKI3W4ptpJBVrOvakK_yq_oowAXwFx7RA8lFKZZhlt4wtjJcFy0ZhcNCa_G4uy_i_Zl_OfgnwleDEWXv-h5d14NPrRfgLN-6uX |
CitedBy_id | crossref_primary_10_1002_smll_202203355 crossref_primary_10_1016_j_ijpharm_2020_119401 crossref_primary_10_1021_acs_langmuir_0c02408 crossref_primary_10_1039_D0LC00730G crossref_primary_10_1021_acsapm_1c01315 crossref_primary_10_1021_acs_langmuir_3c02806 crossref_primary_10_3390_mi15010109 crossref_primary_10_1002_nano_202000151 crossref_primary_10_1063_5_0151286 crossref_primary_10_1088_1361_6439_ac1452 crossref_primary_10_1002_smll_202104385 crossref_primary_10_1039_D0QM01014F crossref_primary_10_1063_5_0065543 crossref_primary_10_1002_ppsc_202100033 crossref_primary_10_1016_j_ces_2024_120617 crossref_primary_10_1021_acs_iecr_0c05279 crossref_primary_10_1038_s41467_024_45214_1 crossref_primary_10_1016_j_mattod_2023_05_009 crossref_primary_10_1021_acsami_1c10807 crossref_primary_10_1039_D4LC00758A |
Cites_doi | 10.1002/marc.200900590 10.1002/cphc.201300821 10.1002/smll.201500691 10.1002/adfm.201002316 10.1002/adma.201707603 10.1021/jp806795c 10.1002/smll.201100514 10.1002/anie.201403256 10.1016/j.memsci.2012.11.039 10.1007/s11095-006-9146-7 10.1002/anie.200703525 10.1016/j.jcis.2005.10.046 10.1038/srep30578 10.1038/nmat1949 10.1039/C4LC00365A 10.1038/nature10344 10.1039/c2lc40419b 10.1002/smll.201001913 10.1021/acsami.5b01031 10.1007/s10404-017-1897-4 10.1126/science.1148726 10.1038/ncomms4068 10.1039/C4TC02487G 10.1016/S0168-3659(97)00202-2 10.1002/smll.201802107 10.1021/ja1095254 10.1039/c4cc01603c 10.1021/cr300337x 10.1002/smll.201601147 10.1021/acs.chemrev.6b00848 10.1104/pp.55.5.917 10.1039/C4SM02482F 10.1021/jp312839z 10.1016/0001-8686(94)00222-X 10.1016/S0168-3659(96)01507-6 10.1039/c1sc00227a 10.1021/jp077026y 10.1039/c1cp21262a 10.1039/b822818c 10.1126/science.1242852 10.1126/science.163.3869.813 10.1038/438930a 10.1039/C1LC20859D 10.1039/C9SC01649J 10.1039/C6SM02830F 10.1126/science.1090313 10.1016/j.jct.2012.06.007 10.1126/science.1109164 10.1006/jcis.1998.5698 10.1039/c1sm05457k 10.1002/adma.201503509 10.1002/smll.201600163 10.1021/cr980032t 10.1021/jacs.5b10039 10.1016/S0169-409X(01)00203-4 10.1038/nmat1617 10.1002/smll.201701256 10.1021/am405283j 10.1039/C7SC02409F 10.1002/adma.201704740 10.1038/nature05058 10.1021/acsami.5b00081 10.1038/srep19644 10.1085/jgp.41.2.243 10.1016/j.biomaterials.2007.01.048 10.1063/1.4952572 10.1039/b703457a |
ContentType | Journal Article |
Copyright | 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. 2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. – notice: 2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | AAYXX CITATION NPM 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
DOI | 10.1002/smll.201903884 |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic CrossRef Materials Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1613-6829 |
EndPage | n/a |
ExternalDocumentID | 31512376 10_1002_smll_201903884 SMLL201903884 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: Deutsche Forschungsgemeinschaft funderid: TRR61 – fundername: MOST funderid: 2017YFA0204501; 2013CB834502 – fundername: NSF funderid: 21773135; 21473098; 21121004; 21421064 – fundername: Deutsche Forschungsgemeinschaft grantid: TRR61 – fundername: NSF grantid: 21121004 – fundername: NSF grantid: 21773135 – fundername: NSF grantid: 21473098 – fundername: MOST grantid: 2017YFA0204501 – fundername: MOST grantid: 2013CB834502 – fundername: NSF grantid: 21421064 |
GroupedDBID | --- 05W 0R~ 123 1L6 1OC 33P 3SF 3WU 4.4 50Y 52U 53G 5VS 66C 8-0 8-1 8UM A00 AAESR AAEVG AAHHS AAHQN AAIHA AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCUV ABIJN ABJNI ABLJU ABRTZ ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZVAB BFHJK BHBCM BMNLL BMXJE BNHUX BOGZA BRXPI CS3 DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBD EBS EMOBN F5P G-S GNP HBH HGLYW HHY HHZ HZ~ IX1 KQQ LATKE LAW LEEKS LITHE LOXES LUTES LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM MY~ O66 O9- OIG P2P P2W P4E QRW R.K RIWAO RNS ROL RWI RX1 RYL SUPJJ SV3 V2E W99 WBKPD WFSAM WIH WIK WJL WOHZO WXSBR WYISQ WYJ XV2 Y6R ZZTAW ~S- 31~ AANHP AAYOK AAYXX ACBWZ ACRPL ACYXJ ADNMO AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN BDRZF CITATION EJD FEDTE GODZA HVGLF NPM 7SR 7U5 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 L7M 7X8 |
ID | FETCH-LOGICAL-c4764-714c70e6fde0f212e78d109cee4b6ee2d7767d9c1e426e6e6373c7d0fdb9330c3 |
IEDL.DBID | DR2 |
ISSN | 1613-6810 1613-6829 |
IngestDate | Fri Jul 11 09:23:30 EDT 2025 Thu Jul 24 10:10:35 EDT 2025 Wed Feb 19 02:31:07 EST 2025 Thu Apr 24 23:01:44 EDT 2025 Tue Jul 01 02:10:46 EDT 2025 Wed Jan 22 16:34:24 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Keywords | microfluidic emulsions osmotic pressure arrested coalescence ionic liquids nonspherical microparticles |
Language | English |
License | 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4764-714c70e6fde0f212e78d109cee4b6ee2d7767d9c1e426e6e6373c7d0fdb9330c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-4127-1715 |
PMID | 31512376 |
PQID | 2370971224 |
PQPubID | 1046358 |
PageCount | 13 |
ParticipantIDs | proquest_miscellaneous_2289573845 proquest_journals_2370971224 pubmed_primary_31512376 crossref_citationtrail_10_1002_smll_201903884 crossref_primary_10_1002_smll_201903884 wiley_primary_10_1002_smll_201903884_SMLL201903884 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-03-01 |
PublicationDateYYYYMMDD | 2020-03-01 |
PublicationDate_xml | – month: 03 year: 2020 text: 2020-03-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Small (Weinheim an der Bergstrasse, Germany) |
PublicationTitleAlternate | Small |
PublicationYear | 2020 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2011; 476 2017; 8 1997; 45 2006; 297 2009; 113 2011; 13 1975; 55 2012; 12 2012; 55 2017; 117 2007; 28 1957; 41 2014; 5 2008; 319 2013; 117 2014; 15 2007; 6 1999; 99 2014; 14 2005; 308 2013; 113 2007; 7 1998; 208 2011; 21 2018; 30 1998; 52 2008; 112 2009; 19 2014; 50 2014; 6 2006; 442 2007; 24 2001; 53 2014; 53 2010; 31 2011; 2 2015; 3 2013; 429 2017; 21 2015; 11 1995; 54 2016; 10 2005; 438 2013; 342 2006; 5 2015; 7 2011; 7 2011; 133 2016; 12 1969; 163 2016; 6 2015; 27 2017; 13 2019 2016; 138 2014 2003; 302 2007; 46 2018; 14 e_1_2_7_5_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_60_1 e_1_2_7_17_1 e_1_2_7_62_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_64_1 e_1_2_7_1_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_66_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_68_1 e_1_2_7_47_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_28_1 e_1_2_7_50_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_52_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_54_1 e_1_2_7_21_1 e_1_2_7_56_1 e_1_2_7_37_1 e_1_2_7_58_1 e_1_2_7_39_1 e_1_2_7_6_1 e_1_2_7_4_1 e_1_2_7_8_1 e_1_2_7_18_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_61_1 e_1_2_7_2_1 Atkins P. (e_1_2_7_35_1) 2014 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_63_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_65_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_67_1 e_1_2_7_48_1 e_1_2_7_27_1 e_1_2_7_29_1 e_1_2_7_51_1 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_55_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_57_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_59_1 e_1_2_7_38_1 |
References_xml | – volume: 12 start-page: 2795 year: 2012 publication-title: Lab Chip – volume: 10 year: 2016 publication-title: Biomicrofluidics – volume: 442 start-page: 368 year: 2006 publication-title: Nature – volume: 5 start-page: 3068 year: 2014 publication-title: Nat. Commun. – volume: 28 start-page: 2446 year: 2007 publication-title: Biomaterials – volume: 14 year: 2018 publication-title: Small – volume: 2 start-page: 1491 year: 2011 publication-title: Chem. Sci. – volume: 15 start-page: 21 year: 2014 publication-title: ChemPhysChem – volume: 342 start-page: 460 year: 2013 publication-title: Science – volume: 7 start-page: 7710 year: 2011 publication-title: Soft Matter – volume: 8 start-page: 6281 year: 2017 publication-title: Chem. Sci. – year: 2014 – volume: 50 start-page: 7318 year: 2014 publication-title: Chem. Commun. – volume: 138 start-page: 566 year: 2016 publication-title: J. Am. Chem. Soc. – volume: 429 start-page: 330 year: 2013 publication-title: J. Membr. Sci. – volume: 55 start-page: 29 year: 2012 publication-title: J. Chem. Thermodyn. – volume: 24 start-page: 203 year: 2007 publication-title: Pharm. Res. – volume: 438 start-page: 930 year: 2005 publication-title: Nature – volume: 11 start-page: 1582 year: 2015 publication-title: Soft Matter – volume: 297 start-page: 778 year: 2006 publication-title: J. Colloid Interface Sci. – volume: 12 start-page: 4492 year: 2016 publication-title: Small – volume: 55 start-page: 917 year: 1975 publication-title: Plant Physiol. – volume: 117 start-page: 8782 year: 2013 publication-title: J. Phys. Chem. B – volume: 12 start-page: 2001 year: 2016 publication-title: Small – volume: 7 start-page: 818 year: 2007 publication-title: Lab Chip – volume: 54 start-page: 73 year: 1995 publication-title: Adv. Colloid Interface Sci. – volume: 208 start-page: 49 year: 1998 publication-title: J. Colloid Interface Sci. – volume: 41 start-page: 243 year: 1957 publication-title: J. Gen. Physiol. – volume: 112 start-page: 2102 year: 2008 publication-title: J. Phys. Chem. B – volume: 13 start-page: 2686 year: 2017 publication-title: Soft Matter – volume: 302 start-page: 792 year: 2003 publication-title: Science – volume: 14 start-page: 2398 year: 2014 publication-title: Lab Chip – volume: 19 start-page: 4960 year: 2009 publication-title: J. Mater. Chem. – volume: 5 start-page: 365 year: 2006 publication-title: Nat. Mater. – volume: 46 start-page: 9027 year: 2007 publication-title: Angew. Chem., Int. Ed. – volume: 45 start-page: 1 year: 1997 publication-title: J. Controlled Release – volume: 113 start-page: 2550 year: 2013 publication-title: Chem. Rev. – volume: 11 start-page: 3890 year: 2015 publication-title: Small – volume: 53 start-page: 7504 year: 2014 publication-title: Angew. Chem., Int. Ed. – volume: 13 year: 2011 publication-title: Phys. Chem. Chem. Phys. – volume: 53 start-page: 321 year: 2001 publication-title: Adv. Drug Delivery Rev. – volume: 31 start-page: 108 year: 2010 publication-title: Macromol. Rapid Commun. – volume: 52 start-page: 99 year: 1998 publication-title: J. Controlled Release – start-page: 7887 year: 2019 publication-title: Chem. Sci. – volume: 319 start-page: 1069 year: 2008 publication-title: Science – volume: 27 start-page: 7065 year: 2015 publication-title: Adv. Mater. – volume: 308 start-page: 537 year: 2005 publication-title: Science – volume: 12 start-page: 45 year: 2012 publication-title: Lab Chip – volume: 117 start-page: 7964 year: 2017 publication-title: Chem. Rev. – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 7 start-page: 2470 year: 2011 publication-title: Small – volume: 21 start-page: 60 year: 2017 publication-title: Microfluid. Nanofluid. – volume: 476 start-page: 308 year: 2011 publication-title: Nature – volume: 7 year: 2015 publication-title: ACS Appl. Mater. Interfaces – volume: 133 start-page: 5305 year: 2011 publication-title: J. Am. Chem. Soc. – volume: 113 start-page: 3914 year: 2009 publication-title: J. Phys. Chem. B – volume: 6 year: 2016 publication-title: Sci. Rep. – volume: 7 start-page: 1728 year: 2011 publication-title: Small – volume: 6 start-page: 1294 year: 2014 publication-title: ACS Appl. Mater. Interfaces – volume: 3 start-page: 623 year: 2015 publication-title: J. Mater. Chem. C – volume: 163 start-page: 813 year: 1969 publication-title: Science – volume: 21 start-page: 1608 year: 2011 publication-title: Adv. Funct. Mater. – volume: 13 year: 2017 publication-title: Small – volume: 99 start-page: 2071 year: 1999 publication-title: Chem. Rev. – volume: 6 start-page: 557 year: 2007 publication-title: Nat. Mater. – ident: e_1_2_7_34_1 doi: 10.1002/marc.200900590 – ident: e_1_2_7_63_1 doi: 10.1002/cphc.201300821 – ident: e_1_2_7_25_1 doi: 10.1002/smll.201500691 – ident: e_1_2_7_61_1 doi: 10.1002/adfm.201002316 – ident: e_1_2_7_19_1 doi: 10.1002/adma.201707603 – ident: e_1_2_7_31_1 doi: 10.1021/jp806795c – ident: e_1_2_7_15_1 doi: 10.1002/smll.201100514 – ident: e_1_2_7_24_1 doi: 10.1002/anie.201403256 – ident: e_1_2_7_38_1 doi: 10.1016/j.memsci.2012.11.039 – ident: e_1_2_7_14_1 doi: 10.1007/s11095-006-9146-7 – ident: e_1_2_7_23_1 doi: 10.1002/anie.200703525 – ident: e_1_2_7_58_1 doi: 10.1016/j.jcis.2005.10.046 – ident: e_1_2_7_48_1 doi: 10.1038/srep30578 – ident: e_1_2_7_2_1 doi: 10.1038/nmat1949 – ident: e_1_2_7_57_1 doi: 10.1039/C4LC00365A – ident: e_1_2_7_4_1 doi: 10.1038/nature10344 – ident: e_1_2_7_56_1 doi: 10.1039/c2lc40419b – ident: e_1_2_7_62_1 doi: 10.1002/smll.201001913 – ident: e_1_2_7_26_1 doi: 10.1021/acsami.5b01031 – ident: e_1_2_7_44_1 doi: 10.1007/s10404-017-1897-4 – ident: e_1_2_7_13_1 doi: 10.1126/science.1148726 – ident: e_1_2_7_40_1 doi: 10.1038/ncomms4068 – ident: e_1_2_7_68_1 doi: 10.1039/C4TC02487G – ident: e_1_2_7_46_1 doi: 10.1016/S0168-3659(97)00202-2 – ident: e_1_2_7_42_1 doi: 10.1002/smll.201802107 – ident: e_1_2_7_30_1 doi: 10.1021/ja1095254 – ident: e_1_2_7_39_1 doi: 10.1039/c4cc01603c – ident: e_1_2_7_9_1 doi: 10.1021/cr300337x – ident: e_1_2_7_29_1 doi: 10.1002/smll.201601147 – ident: e_1_2_7_10_1 doi: 10.1021/acs.chemrev.6b00848 – ident: e_1_2_7_37_1 doi: 10.1104/pp.55.5.917 – ident: e_1_2_7_41_1 doi: 10.1039/C4SM02482F – ident: e_1_2_7_52_1 doi: 10.1021/jp312839z – ident: e_1_2_7_11_1 doi: 10.1016/0001-8686(94)00222-X – ident: e_1_2_7_45_1 doi: 10.1016/S0168-3659(96)01507-6 – ident: e_1_2_7_50_1 doi: 10.1039/c1sc00227a – ident: e_1_2_7_49_1 doi: 10.1021/jp077026y – ident: e_1_2_7_67_1 doi: 10.1039/c1cp21262a – ident: e_1_2_7_66_1 doi: 10.1039/b822818c – ident: e_1_2_7_18_1 doi: 10.1126/science.1242852 – ident: e_1_2_7_59_1 doi: 10.1126/science.163.3869.813 – ident: e_1_2_7_17_1 doi: 10.1038/438930a – ident: e_1_2_7_3_1 doi: 10.1039/C1LC20859D – ident: e_1_2_7_47_1 doi: 10.1039/C9SC01649J – ident: e_1_2_7_33_1 doi: 10.1039/C6SM02830F – ident: e_1_2_7_54_1 doi: 10.1126/science.1090313 – ident: e_1_2_7_51_1 doi: 10.1016/j.jct.2012.06.007 – ident: e_1_2_7_7_1 doi: 10.1126/science.1109164 – ident: e_1_2_7_60_1 doi: 10.1006/jcis.1998.5698 – ident: e_1_2_7_32_1 doi: 10.1039/c1sm05457k – ident: e_1_2_7_20_1 doi: 10.1002/adma.201503509 – ident: e_1_2_7_5_1 doi: 10.1002/smll.201600163 – volume-title: Atkins' Physical Chemistry year: 2014 ident: e_1_2_7_35_1 – ident: e_1_2_7_53_1 doi: 10.1021/cr980032t – ident: e_1_2_7_27_1 doi: 10.1021/jacs.5b10039 – ident: e_1_2_7_1_1 doi: 10.1016/S0169-409X(01)00203-4 – ident: e_1_2_7_21_1 doi: 10.1038/nmat1617 – ident: e_1_2_7_6_1 doi: 10.1002/smll.201701256 – ident: e_1_2_7_16_1 doi: 10.1021/am405283j – ident: e_1_2_7_65_1 doi: 10.1039/C7SC02409F – ident: e_1_2_7_64_1 doi: 10.1002/adma.201704740 – ident: e_1_2_7_8_1 doi: 10.1038/nature05058 – ident: e_1_2_7_28_1 doi: 10.1021/acsami.5b00081 – ident: e_1_2_7_55_1 doi: 10.1038/srep19644 – ident: e_1_2_7_36_1 doi: 10.1085/jgp.41.2.243 – ident: e_1_2_7_12_1 doi: 10.1016/j.biomaterials.2007.01.048 – ident: e_1_2_7_43_1 doi: 10.1063/1.4952572 – ident: e_1_2_7_22_1 doi: 10.1039/b703457a |
SSID | ssj0031247 |
Score | 2.4439194 |
Snippet | Droplet‐based microfluidics enable the production of emulsions and microparticles with spherical shapes, but the high‐throughput fabrication of nonspherical... Droplet-based microfluidics enable the production of emulsions and microparticles with spherical shapes, but the high-throughput fabrication of nonspherical... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e1903884 |
SubjectTerms | arrested coalescence Coalescing Construction materials Double emulsions Emulsion polymerization Ionic liquids microfluidic emulsions Microfluidics Microparticles Microreactors Nanotechnology nonspherical microparticles Osmosis osmotic pressure Phase separation Surface tension Tumblers |
Title | Creation of Nonspherical Microparticles through Osmosis‐Driven Arrested Coalescence of Microfluidic Emulsions |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.201903884 https://www.ncbi.nlm.nih.gov/pubmed/31512376 https://www.proquest.com/docview/2370971224 https://www.proquest.com/docview/2289573845 |
Volume | 16 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9tAEB5VnOgBaMvDPKqtVKknB8e7WTvHKoBQRajEQ8rNsvchRSRxFMcXTvwEfmN_SWfWD0gRQqLyyfa-vDuz83l39huA7zKNg1Ro7QstrY8WT9P-rvW7XCCAlopHjq5peCnPb8WvUW_07BR_xQ_RLriRZrj5mhQ8zYrjJ9LQYjqhrQM0aDyOiRCUHLYIFV21_FEcjZeLroI2yyfirYa1MQiPV7OvWqUXUHMVuTrTc7YJadPoyuPkrlMus466_4fP8X--ags2alzKflaC9Ak-mNln-PiMrfAL5IMaYLLcskuUVmIkoDFmQ_Lqmzc-dqyO_cN-F9O8GBd_Hh5PFjSpYukuEohmgzyteKSUocJcfjspx3qs2Om0nNASXrENt2enN4Nzv47X4CsRSXLrFCoKjLTaBBZNooli3Q36aIZFJo0JNTEH6b7qGoQFBi8UBBXpwOqMllUU34G1WT4ze8A4r2KH4mMjbNyLM5R4LSWdlbVYiwd-M16JqsnMKabGJKlomMOEOjJpO9KDH236eUXj8WrKw2b4k1qdiyTkEXFtIdzx4Fv7GhWRdlfSmclLTIO_rr2Ix6LnwW4lNm1VnHAVTuUehG7w32hDcj28uGjv9t-T6QDWQ1oZcN5yh7C2XJTmCOHTMvvqVOQv9PcTcg |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6Vcigcyk-BBgoYqRWntNnY66QHDmi31ZbubiVopd7SjX-kFbubqtkIwYlH4FV4FR6BJ2HG-YGlQpUq9YBySuLYjj3jb2yPvwHYlKM4GAmtfaGl9RHxNO3vWr_FBRrQUvHI0TUNhrJ3It6dtk-X4Ht9Fqbkh2gW3Egz3HhNCk4L0ju_WUPz6YT2DhDReByLyq_y0Hz-hLO2_M1BF7t4Kwz39447Pb8KLOArEUnyPxQqCoy02gQWx24TxboV7CJeiFQaE2qiuNG7qmUQvwxeWGMV6cDqlOb_imO-t-A2hREnuv7u-4axiiNcunguiJI-UX3VPJFBuLNY30UcvGTcLtrKDuz278GPuplKH5eP28U83VZf_mKQ_K_a8T6sVqY3e1vqygNYMrOHcPcPQsY1yDqVDc0yy4aokES6QGLMBuS4eF67EbIqvBE7yqdZPs5_fv3WvSDcwNxdsBPNOtmopMpShjJz39tJMdZjxfamxYRWKfNHcHIjf_wYlmfZzKwD47wMj4qPjbBxO05RqbWUdBzYYike-LWAJKria6ewIZOkZJoOE-q4pOk4D1436c9LppJ_ptyo5S2pRqw8CXlEdGJo0XnwqnmNYw1tII1mJiswDc7O2xGPRduDJ6WcNkVxMh0RrTwInbRdUYfkw6Dfb-6eXuejl7DSOx70k_7B8PAZ3AlpIcQ5B27A8vyiMM_RWpynL5x-Mji7aUH-BRo1cgU |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3dbtMwFD4aQ0JwMf5ZYICRQFxlS2PXSS-4QO2qjbUFAZN2lzX-kSraploaIbjaI-xR9ip7BZ6Ec5wfKAghIe0C5SqJYzv2Of6O7ePvADyX4zgYC619oaX1EfE07e9av8UFGtBS8cjRNQ1Hcu9QvDlqH63BeX0WpuSHaBbcSDPceE0KvtB25wdpaD6b0tYBAhqPY1G5VR6YL59x0pa_2u9hD78Iw_7ux-6eX8UV8JWIJLkfChUFRlptAotDt4li3Qo6CBcilcaEmhhudEe1DMKXwQsrrCIdWJ3S9F9xzPcKXBUy6FCwiN77hrCKI1q6cC4Ikj4xfdU0kUG4s1rfVRj8zbZdNZUd1vVvwkXdSqWLy6ftYpluq6-_EEj-T814CzYqw5u9LjXlNqyZ-R248RMd413IupUFzTLLRqiORLlAQsyG5La4qJ0IWRXciL3NZ1k-yb-dnvVOCDUwdxfqRLNuNi6JspShzNz3dlpM9ESx3VkxpTXK_B4cXsof34f1eTY3m8A4L4Oj4mMjbNyOU1RpLSUdBrZYigd-LR-JqtjaKWjINCl5psOEOi5pOs6Dl036RclT8seUW7W4JdV4lSchj4hMDO05D541r3Gkoe2j8dxkBabBuXk74rFoe_CgFNOmKE6GI2KVB6ETtr_UIfkwHAyau4f_8tFTuPau108G-6ODR3A9pFUQ5xm4BevLk8I8RlNxmT5x2sng-LLl-Ds8rnC0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Creation+of+Nonspherical+Microparticles+through+Osmosis%E2%80%90Driven+Arrested+Coalescence+of+Microfluidic+Emulsions&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Feng%2C+Kai&rft.au=Gao%2C+Ning&rft.au=Zhang%2C+Wanlin&rft.au=Zhou%2C+Kang&rft.date=2020-03-01&rft.issn=1613-6810&rft.eissn=1613-6829&rft.volume=16&rft.issue=9&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fsmll.201903884&rft.externalDBID=10.1002%252Fsmll.201903884&rft.externalDocID=SMLL201903884 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon |