Creation of Nonspherical Microparticles through Osmosis‐Driven Arrested Coalescence of Microfluidic Emulsions

Droplet‐based microfluidics enable the production of emulsions and microparticles with spherical shapes, but the high‐throughput fabrication of nonspherical emulsions and microparticles still remains challenging because interfacial tension plays a dominant role during preparation. Herein, ionic liqu...

Full description

Saved in:
Bibliographic Details
Published inSmall (Weinheim an der Bergstrasse, Germany) Vol. 16; no. 9; pp. e1903884 - n/a
Main Authors Feng, Kai, Gao, Ning, Zhang, Wanlin, Zhou, Kang, Dong, Hao, Wang, Peng, Tian, Li, He, Guokang, Li, Guangtao
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.03.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Droplet‐based microfluidics enable the production of emulsions and microparticles with spherical shapes, but the high‐throughput fabrication of nonspherical emulsions and microparticles still remains challenging because interfacial tension plays a dominant role during preparation. Herein, ionic liquids (ILs) containing salts, which possess sufficient osmotic pressure to realize water transport and phase separation, are introduced as inner cores of oil‐in‐oil‐in‐water double emulsions and it is shown that nonspherical emulsions can be constructed by osmosis‐driven arrested coalescence of inner cores. Subsequently, ultraviolet polymerization of the nonspherical emulsions leads to nonspherical microparticles. By tailoring the number, composition, and size of inner cores as well as coalescence time, a variety of nonspherical shapes such as dumbbell, rod, spindle, snowman, tumbler, three‐pointed star, triangle, and scalene triangle are created. Importantly, benefitting from excellent solvency of ILs, this system can serve as a general platform to produce nonspherical microparticles made from different materials. Moreover, by controlling the osmotic pressure, programmed coalescence of inner cores in double emulsions is realizable, which indicates the potential to build microreactors. Thus, a simple and high‐throughput strategy to create nonspherical microparticles with arrested coalescence shapes is developed for the first time and can be further used to construct novel materials and microreactors. A facile and high‐throughput strategy to create nonspherical microparticles through osmosis‐driven arrested coalescence of microfluidic emulsions is first developed using ionic liquids containing salts system. A series of interesting nonspherical microparticles with arrested coalescence shapes are created, which can be used as useful anisotropic building blocks and microreactors.
AbstractList Droplet‐based microfluidics enable the production of emulsions and microparticles with spherical shapes, but the high‐throughput fabrication of nonspherical emulsions and microparticles still remains challenging because interfacial tension plays a dominant role during preparation. Herein, ionic liquids (ILs) containing salts, which possess sufficient osmotic pressure to realize water transport and phase separation, are introduced as inner cores of oil‐in‐oil‐in‐water double emulsions and it is shown that nonspherical emulsions can be constructed by osmosis‐driven arrested coalescence of inner cores. Subsequently, ultraviolet polymerization of the nonspherical emulsions leads to nonspherical microparticles. By tailoring the number, composition, and size of inner cores as well as coalescence time, a variety of nonspherical shapes such as dumbbell, rod, spindle, snowman, tumbler, three‐pointed star, triangle, and scalene triangle are created. Importantly, benefitting from excellent solvency of ILs, this system can serve as a general platform to produce nonspherical microparticles made from different materials. Moreover, by controlling the osmotic pressure, programmed coalescence of inner cores in double emulsions is realizable, which indicates the potential to build microreactors. Thus, a simple and high‐throughput strategy to create nonspherical microparticles with arrested coalescence shapes is developed for the first time and can be further used to construct novel materials and microreactors. A facile and high‐throughput strategy to create nonspherical microparticles through osmosis‐driven arrested coalescence of microfluidic emulsions is first developed using ionic liquids containing salts system. A series of interesting nonspherical microparticles with arrested coalescence shapes are created, which can be used as useful anisotropic building blocks and microreactors.
Droplet-based microfluidics enable the production of emulsions and microparticles with spherical shapes, but the high-throughput fabrication of nonspherical emulsions and microparticles still remains challenging because interfacial tension plays a dominant role during preparation. Herein, ionic liquids (ILs) containing salts, which possess sufficient osmotic pressure to realize water transport and phase separation, are introduced as inner cores of oil-in-oil-in-water double emulsions and it is shown that nonspherical emulsions can be constructed by osmosis-driven arrested coalescence of inner cores. Subsequently, ultraviolet polymerization of the nonspherical emulsions leads to nonspherical microparticles. By tailoring the number, composition, and size of inner cores as well as coalescence time, a variety of nonspherical shapes such as dumbbell, rod, spindle, snowman, tumbler, three-pointed star, triangle, and scalene triangle are created. Importantly, benefitting from excellent solvency of ILs, this system can serve as a general platform to produce nonspherical microparticles made from different materials. Moreover, by controlling the osmotic pressure, programmed coalescence of inner cores in double emulsions is realizable, which indicates the potential to build microreactors. Thus, a simple and high-throughput strategy to create nonspherical microparticles with arrested coalescence shapes is developed for the first time and can be further used to construct novel materials and microreactors.
Droplet-based microfluidics enable the production of emulsions and microparticles with spherical shapes, but the high-throughput fabrication of nonspherical emulsions and microparticles still remains challenging because interfacial tension plays a dominant role during preparation. Herein, ionic liquids (ILs) containing salts, which possess sufficient osmotic pressure to realize water transport and phase separation, are introduced as inner cores of oil-in-oil-in-water double emulsions and it is shown that nonspherical emulsions can be constructed by osmosis-driven arrested coalescence of inner cores. Subsequently, ultraviolet polymerization of the nonspherical emulsions leads to nonspherical microparticles. By tailoring the number, composition, and size of inner cores as well as coalescence time, a variety of nonspherical shapes such as dumbbell, rod, spindle, snowman, tumbler, three-pointed star, triangle, and scalene triangle are created. Importantly, benefitting from excellent solvency of ILs, this system can serve as a general platform to produce nonspherical microparticles made from different materials. Moreover, by controlling the osmotic pressure, programmed coalescence of inner cores in double emulsions is realizable, which indicates the potential to build microreactors. Thus, a simple and high-throughput strategy to create nonspherical microparticles with arrested coalescence shapes is developed for the first time and can be further used to construct novel materials and microreactors.Droplet-based microfluidics enable the production of emulsions and microparticles with spherical shapes, but the high-throughput fabrication of nonspherical emulsions and microparticles still remains challenging because interfacial tension plays a dominant role during preparation. Herein, ionic liquids (ILs) containing salts, which possess sufficient osmotic pressure to realize water transport and phase separation, are introduced as inner cores of oil-in-oil-in-water double emulsions and it is shown that nonspherical emulsions can be constructed by osmosis-driven arrested coalescence of inner cores. Subsequently, ultraviolet polymerization of the nonspherical emulsions leads to nonspherical microparticles. By tailoring the number, composition, and size of inner cores as well as coalescence time, a variety of nonspherical shapes such as dumbbell, rod, spindle, snowman, tumbler, three-pointed star, triangle, and scalene triangle are created. Importantly, benefitting from excellent solvency of ILs, this system can serve as a general platform to produce nonspherical microparticles made from different materials. Moreover, by controlling the osmotic pressure, programmed coalescence of inner cores in double emulsions is realizable, which indicates the potential to build microreactors. Thus, a simple and high-throughput strategy to create nonspherical microparticles with arrested coalescence shapes is developed for the first time and can be further used to construct novel materials and microreactors.
Author Gao, Ning
Zhou, Kang
Wang, Peng
Dong, Hao
Zhang, Wanlin
Tian, Li
He, Guokang
Feng, Kai
Li, Guangtao
Author_xml – sequence: 1
  givenname: Kai
  surname: Feng
  fullname: Feng, Kai
  organization: Tsinghua University
– sequence: 2
  givenname: Ning
  surname: Gao
  fullname: Gao, Ning
  organization: Tsinghua University
– sequence: 3
  givenname: Wanlin
  surname: Zhang
  fullname: Zhang, Wanlin
  organization: Tsinghua University
– sequence: 4
  givenname: Kang
  surname: Zhou
  fullname: Zhou, Kang
  organization: Tsinghua University
– sequence: 5
  givenname: Hao
  surname: Dong
  fullname: Dong, Hao
  organization: Tsinghua University
– sequence: 6
  givenname: Peng
  surname: Wang
  fullname: Wang, Peng
  organization: Tsinghua University
– sequence: 7
  givenname: Li
  surname: Tian
  fullname: Tian, Li
  organization: Tsinghua University
– sequence: 8
  givenname: Guokang
  surname: He
  fullname: He, Guokang
  organization: Tsinghua University
– sequence: 9
  givenname: Guangtao
  orcidid: 0000-0003-4127-1715
  surname: Li
  fullname: Li, Guangtao
  email: lgt@mail.tsinghua.edu.cn
  organization: Tsinghua University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31512376$$D View this record in MEDLINE/PubMed
BookMark eNqFkTtPwzAUhS0EohRYGVEkFpYWvxonIypPqYUBmK3UvqGunLjYCYiNn8Bv5JfgPgAJCSEP9vCd43vP6aLN2tWA0AHBfYIxPQmVtX2KSY5ZlvENtENSwnppRvPN7zfBHdQNYYYxI5SLbdRhZEAoE-kOckMPRWNcnbgyuXF1mE_BG1XYZGyUd_PCN0ZZCEkz9a59nCa3oXLBhI-39zNvnqFOTr2H0IBOhq6IoIJawcJsqS9ta7RRyXnV2hB_CXtoqyxsgP31vYseLs7vh1e90e3l9fB01FNcpLwnCFcCQ1pqwCUlFESmCc4VAJ-kAFQLkQqdKwKcphAPE0wJjUs9yRnDiu2i45Xv3LunNg4oKxNns7aowbVBUprlA8EyPojo0S905lpfx-lkzAjnglDKI3W4ptpJBVrOvakK_yq_oowAXwFx7RA8lFKZZhlt4wtjJcFy0ZhcNCa_G4uy_i_Zl_OfgnwleDEWXv-h5d14NPrRfgLN-6uX
CitedBy_id crossref_primary_10_1002_smll_202203355
crossref_primary_10_1016_j_ijpharm_2020_119401
crossref_primary_10_1021_acs_langmuir_0c02408
crossref_primary_10_1039_D0LC00730G
crossref_primary_10_1021_acsapm_1c01315
crossref_primary_10_1021_acs_langmuir_3c02806
crossref_primary_10_3390_mi15010109
crossref_primary_10_1002_nano_202000151
crossref_primary_10_1063_5_0151286
crossref_primary_10_1088_1361_6439_ac1452
crossref_primary_10_1002_smll_202104385
crossref_primary_10_1039_D0QM01014F
crossref_primary_10_1063_5_0065543
crossref_primary_10_1002_ppsc_202100033
crossref_primary_10_1016_j_ces_2024_120617
crossref_primary_10_1021_acs_iecr_0c05279
crossref_primary_10_1038_s41467_024_45214_1
crossref_primary_10_1016_j_mattod_2023_05_009
crossref_primary_10_1021_acsami_1c10807
crossref_primary_10_1039_D4LC00758A
Cites_doi 10.1002/marc.200900590
10.1002/cphc.201300821
10.1002/smll.201500691
10.1002/adfm.201002316
10.1002/adma.201707603
10.1021/jp806795c
10.1002/smll.201100514
10.1002/anie.201403256
10.1016/j.memsci.2012.11.039
10.1007/s11095-006-9146-7
10.1002/anie.200703525
10.1016/j.jcis.2005.10.046
10.1038/srep30578
10.1038/nmat1949
10.1039/C4LC00365A
10.1038/nature10344
10.1039/c2lc40419b
10.1002/smll.201001913
10.1021/acsami.5b01031
10.1007/s10404-017-1897-4
10.1126/science.1148726
10.1038/ncomms4068
10.1039/C4TC02487G
10.1016/S0168-3659(97)00202-2
10.1002/smll.201802107
10.1021/ja1095254
10.1039/c4cc01603c
10.1021/cr300337x
10.1002/smll.201601147
10.1021/acs.chemrev.6b00848
10.1104/pp.55.5.917
10.1039/C4SM02482F
10.1021/jp312839z
10.1016/0001-8686(94)00222-X
10.1016/S0168-3659(96)01507-6
10.1039/c1sc00227a
10.1021/jp077026y
10.1039/c1cp21262a
10.1039/b822818c
10.1126/science.1242852
10.1126/science.163.3869.813
10.1038/438930a
10.1039/C1LC20859D
10.1039/C9SC01649J
10.1039/C6SM02830F
10.1126/science.1090313
10.1016/j.jct.2012.06.007
10.1126/science.1109164
10.1006/jcis.1998.5698
10.1039/c1sm05457k
10.1002/adma.201503509
10.1002/smll.201600163
10.1021/cr980032t
10.1021/jacs.5b10039
10.1016/S0169-409X(01)00203-4
10.1038/nmat1617
10.1002/smll.201701256
10.1021/am405283j
10.1039/C7SC02409F
10.1002/adma.201704740
10.1038/nature05058
10.1021/acsami.5b00081
10.1038/srep19644
10.1085/jgp.41.2.243
10.1016/j.biomaterials.2007.01.048
10.1063/1.4952572
10.1039/b703457a
ContentType Journal Article
Copyright 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
– notice: 2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
DBID AAYXX
CITATION
NPM
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
DOI 10.1002/smll.201903884
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
MEDLINE - Academic
DatabaseTitleList
PubMed
MEDLINE - Academic
CrossRef
Materials Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1613-6829
EndPage n/a
ExternalDocumentID 31512376
10_1002_smll_201903884
SMLL201903884
Genre article
Journal Article
GrantInformation_xml – fundername: Deutsche Forschungsgemeinschaft
  funderid: TRR61
– fundername: MOST
  funderid: 2017YFA0204501; 2013CB834502
– fundername: NSF
  funderid: 21773135; 21473098; 21121004; 21421064
– fundername: Deutsche Forschungsgemeinschaft
  grantid: TRR61
– fundername: NSF
  grantid: 21121004
– fundername: NSF
  grantid: 21773135
– fundername: NSF
  grantid: 21473098
– fundername: MOST
  grantid: 2017YFA0204501
– fundername: MOST
  grantid: 2013CB834502
– fundername: NSF
  grantid: 21421064
GroupedDBID ---
05W
0R~
123
1L6
1OC
33P
3SF
3WU
4.4
50Y
52U
53G
5VS
66C
8-0
8-1
8UM
A00
AAESR
AAEVG
AAHHS
AAHQN
AAIHA
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCUV
ABIJN
ABJNI
ABLJU
ABRTZ
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZVAB
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BOGZA
BRXPI
CS3
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EMOBN
F5P
G-S
GNP
HBH
HGLYW
HHY
HHZ
HZ~
IX1
KQQ
LATKE
LAW
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O66
O9-
OIG
P2P
P2W
P4E
QRW
R.K
RIWAO
RNS
ROL
RWI
RX1
RYL
SUPJJ
SV3
V2E
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WXSBR
WYISQ
WYJ
XV2
Y6R
ZZTAW
~S-
31~
AANHP
AAYOK
AAYXX
ACBWZ
ACRPL
ACYXJ
ADNMO
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
BDRZF
CITATION
EJD
FEDTE
GODZA
HVGLF
NPM
7SR
7U5
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
L7M
7X8
ID FETCH-LOGICAL-c4764-714c70e6fde0f212e78d109cee4b6ee2d7767d9c1e426e6e6373c7d0fdb9330c3
IEDL.DBID DR2
ISSN 1613-6810
1613-6829
IngestDate Fri Jul 11 09:23:30 EDT 2025
Thu Jul 24 10:10:35 EDT 2025
Wed Feb 19 02:31:07 EST 2025
Thu Apr 24 23:01:44 EDT 2025
Tue Jul 01 02:10:46 EDT 2025
Wed Jan 22 16:34:24 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords microfluidic emulsions
osmotic pressure
arrested coalescence
ionic liquids
nonspherical microparticles
Language English
License 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4764-714c70e6fde0f212e78d109cee4b6ee2d7767d9c1e426e6e6373c7d0fdb9330c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-4127-1715
PMID 31512376
PQID 2370971224
PQPubID 1046358
PageCount 13
ParticipantIDs proquest_miscellaneous_2289573845
proquest_journals_2370971224
pubmed_primary_31512376
crossref_citationtrail_10_1002_smll_201903884
crossref_primary_10_1002_smll_201903884
wiley_primary_10_1002_smll_201903884_SMLL201903884
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-03-01
PublicationDateYYYYMMDD 2020-03-01
PublicationDate_xml – month: 03
  year: 2020
  text: 2020-03-01
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Small (Weinheim an der Bergstrasse, Germany)
PublicationTitleAlternate Small
PublicationYear 2020
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2011; 476
2017; 8
1997; 45
2006; 297
2009; 113
2011; 13
1975; 55
2012; 12
2012; 55
2017; 117
2007; 28
1957; 41
2014; 5
2008; 319
2013; 117
2014; 15
2007; 6
1999; 99
2014; 14
2005; 308
2013; 113
2007; 7
1998; 208
2011; 21
2018; 30
1998; 52
2008; 112
2009; 19
2014; 50
2014; 6
2006; 442
2007; 24
2001; 53
2014; 53
2010; 31
2011; 2
2015; 3
2013; 429
2017; 21
2015; 11
1995; 54
2016; 10
2005; 438
2013; 342
2006; 5
2015; 7
2011; 7
2011; 133
2016; 12
1969; 163
2016; 6
2015; 27
2017; 13
2019
2016; 138
2014
2003; 302
2007; 46
2018; 14
e_1_2_7_5_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_60_1
e_1_2_7_17_1
e_1_2_7_62_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_64_1
e_1_2_7_1_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_66_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_68_1
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_28_1
e_1_2_7_50_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_52_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_54_1
e_1_2_7_21_1
e_1_2_7_56_1
e_1_2_7_37_1
e_1_2_7_58_1
e_1_2_7_39_1
e_1_2_7_6_1
e_1_2_7_4_1
e_1_2_7_8_1
e_1_2_7_18_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_61_1
e_1_2_7_2_1
Atkins P. (e_1_2_7_35_1) 2014
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_63_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_65_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_67_1
e_1_2_7_48_1
e_1_2_7_27_1
e_1_2_7_29_1
e_1_2_7_51_1
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_55_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_57_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_59_1
e_1_2_7_38_1
References_xml – volume: 12
  start-page: 2795
  year: 2012
  publication-title: Lab Chip
– volume: 10
  year: 2016
  publication-title: Biomicrofluidics
– volume: 442
  start-page: 368
  year: 2006
  publication-title: Nature
– volume: 5
  start-page: 3068
  year: 2014
  publication-title: Nat. Commun.
– volume: 28
  start-page: 2446
  year: 2007
  publication-title: Biomaterials
– volume: 14
  year: 2018
  publication-title: Small
– volume: 2
  start-page: 1491
  year: 2011
  publication-title: Chem. Sci.
– volume: 15
  start-page: 21
  year: 2014
  publication-title: ChemPhysChem
– volume: 342
  start-page: 460
  year: 2013
  publication-title: Science
– volume: 7
  start-page: 7710
  year: 2011
  publication-title: Soft Matter
– volume: 8
  start-page: 6281
  year: 2017
  publication-title: Chem. Sci.
– year: 2014
– volume: 50
  start-page: 7318
  year: 2014
  publication-title: Chem. Commun.
– volume: 138
  start-page: 566
  year: 2016
  publication-title: J. Am. Chem. Soc.
– volume: 429
  start-page: 330
  year: 2013
  publication-title: J. Membr. Sci.
– volume: 55
  start-page: 29
  year: 2012
  publication-title: J. Chem. Thermodyn.
– volume: 24
  start-page: 203
  year: 2007
  publication-title: Pharm. Res.
– volume: 438
  start-page: 930
  year: 2005
  publication-title: Nature
– volume: 11
  start-page: 1582
  year: 2015
  publication-title: Soft Matter
– volume: 297
  start-page: 778
  year: 2006
  publication-title: J. Colloid Interface Sci.
– volume: 12
  start-page: 4492
  year: 2016
  publication-title: Small
– volume: 55
  start-page: 917
  year: 1975
  publication-title: Plant Physiol.
– volume: 117
  start-page: 8782
  year: 2013
  publication-title: J. Phys. Chem. B
– volume: 12
  start-page: 2001
  year: 2016
  publication-title: Small
– volume: 7
  start-page: 818
  year: 2007
  publication-title: Lab Chip
– volume: 54
  start-page: 73
  year: 1995
  publication-title: Adv. Colloid Interface Sci.
– volume: 208
  start-page: 49
  year: 1998
  publication-title: J. Colloid Interface Sci.
– volume: 41
  start-page: 243
  year: 1957
  publication-title: J. Gen. Physiol.
– volume: 112
  start-page: 2102
  year: 2008
  publication-title: J. Phys. Chem. B
– volume: 13
  start-page: 2686
  year: 2017
  publication-title: Soft Matter
– volume: 302
  start-page: 792
  year: 2003
  publication-title: Science
– volume: 14
  start-page: 2398
  year: 2014
  publication-title: Lab Chip
– volume: 19
  start-page: 4960
  year: 2009
  publication-title: J. Mater. Chem.
– volume: 5
  start-page: 365
  year: 2006
  publication-title: Nat. Mater.
– volume: 46
  start-page: 9027
  year: 2007
  publication-title: Angew. Chem., Int. Ed.
– volume: 45
  start-page: 1
  year: 1997
  publication-title: J. Controlled Release
– volume: 113
  start-page: 2550
  year: 2013
  publication-title: Chem. Rev.
– volume: 11
  start-page: 3890
  year: 2015
  publication-title: Small
– volume: 53
  start-page: 7504
  year: 2014
  publication-title: Angew. Chem., Int. Ed.
– volume: 13
  year: 2011
  publication-title: Phys. Chem. Chem. Phys.
– volume: 53
  start-page: 321
  year: 2001
  publication-title: Adv. Drug Delivery Rev.
– volume: 31
  start-page: 108
  year: 2010
  publication-title: Macromol. Rapid Commun.
– volume: 52
  start-page: 99
  year: 1998
  publication-title: J. Controlled Release
– start-page: 7887
  year: 2019
  publication-title: Chem. Sci.
– volume: 319
  start-page: 1069
  year: 2008
  publication-title: Science
– volume: 27
  start-page: 7065
  year: 2015
  publication-title: Adv. Mater.
– volume: 308
  start-page: 537
  year: 2005
  publication-title: Science
– volume: 12
  start-page: 45
  year: 2012
  publication-title: Lab Chip
– volume: 117
  start-page: 7964
  year: 2017
  publication-title: Chem. Rev.
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 7
  start-page: 2470
  year: 2011
  publication-title: Small
– volume: 21
  start-page: 60
  year: 2017
  publication-title: Microfluid. Nanofluid.
– volume: 476
  start-page: 308
  year: 2011
  publication-title: Nature
– volume: 7
  year: 2015
  publication-title: ACS Appl. Mater. Interfaces
– volume: 133
  start-page: 5305
  year: 2011
  publication-title: J. Am. Chem. Soc.
– volume: 113
  start-page: 3914
  year: 2009
  publication-title: J. Phys. Chem. B
– volume: 6
  year: 2016
  publication-title: Sci. Rep.
– volume: 7
  start-page: 1728
  year: 2011
  publication-title: Small
– volume: 6
  start-page: 1294
  year: 2014
  publication-title: ACS Appl. Mater. Interfaces
– volume: 3
  start-page: 623
  year: 2015
  publication-title: J. Mater. Chem. C
– volume: 163
  start-page: 813
  year: 1969
  publication-title: Science
– volume: 21
  start-page: 1608
  year: 2011
  publication-title: Adv. Funct. Mater.
– volume: 13
  year: 2017
  publication-title: Small
– volume: 99
  start-page: 2071
  year: 1999
  publication-title: Chem. Rev.
– volume: 6
  start-page: 557
  year: 2007
  publication-title: Nat. Mater.
– ident: e_1_2_7_34_1
  doi: 10.1002/marc.200900590
– ident: e_1_2_7_63_1
  doi: 10.1002/cphc.201300821
– ident: e_1_2_7_25_1
  doi: 10.1002/smll.201500691
– ident: e_1_2_7_61_1
  doi: 10.1002/adfm.201002316
– ident: e_1_2_7_19_1
  doi: 10.1002/adma.201707603
– ident: e_1_2_7_31_1
  doi: 10.1021/jp806795c
– ident: e_1_2_7_15_1
  doi: 10.1002/smll.201100514
– ident: e_1_2_7_24_1
  doi: 10.1002/anie.201403256
– ident: e_1_2_7_38_1
  doi: 10.1016/j.memsci.2012.11.039
– ident: e_1_2_7_14_1
  doi: 10.1007/s11095-006-9146-7
– ident: e_1_2_7_23_1
  doi: 10.1002/anie.200703525
– ident: e_1_2_7_58_1
  doi: 10.1016/j.jcis.2005.10.046
– ident: e_1_2_7_48_1
  doi: 10.1038/srep30578
– ident: e_1_2_7_2_1
  doi: 10.1038/nmat1949
– ident: e_1_2_7_57_1
  doi: 10.1039/C4LC00365A
– ident: e_1_2_7_4_1
  doi: 10.1038/nature10344
– ident: e_1_2_7_56_1
  doi: 10.1039/c2lc40419b
– ident: e_1_2_7_62_1
  doi: 10.1002/smll.201001913
– ident: e_1_2_7_26_1
  doi: 10.1021/acsami.5b01031
– ident: e_1_2_7_44_1
  doi: 10.1007/s10404-017-1897-4
– ident: e_1_2_7_13_1
  doi: 10.1126/science.1148726
– ident: e_1_2_7_40_1
  doi: 10.1038/ncomms4068
– ident: e_1_2_7_68_1
  doi: 10.1039/C4TC02487G
– ident: e_1_2_7_46_1
  doi: 10.1016/S0168-3659(97)00202-2
– ident: e_1_2_7_42_1
  doi: 10.1002/smll.201802107
– ident: e_1_2_7_30_1
  doi: 10.1021/ja1095254
– ident: e_1_2_7_39_1
  doi: 10.1039/c4cc01603c
– ident: e_1_2_7_9_1
  doi: 10.1021/cr300337x
– ident: e_1_2_7_29_1
  doi: 10.1002/smll.201601147
– ident: e_1_2_7_10_1
  doi: 10.1021/acs.chemrev.6b00848
– ident: e_1_2_7_37_1
  doi: 10.1104/pp.55.5.917
– ident: e_1_2_7_41_1
  doi: 10.1039/C4SM02482F
– ident: e_1_2_7_52_1
  doi: 10.1021/jp312839z
– ident: e_1_2_7_11_1
  doi: 10.1016/0001-8686(94)00222-X
– ident: e_1_2_7_45_1
  doi: 10.1016/S0168-3659(96)01507-6
– ident: e_1_2_7_50_1
  doi: 10.1039/c1sc00227a
– ident: e_1_2_7_49_1
  doi: 10.1021/jp077026y
– ident: e_1_2_7_67_1
  doi: 10.1039/c1cp21262a
– ident: e_1_2_7_66_1
  doi: 10.1039/b822818c
– ident: e_1_2_7_18_1
  doi: 10.1126/science.1242852
– ident: e_1_2_7_59_1
  doi: 10.1126/science.163.3869.813
– ident: e_1_2_7_17_1
  doi: 10.1038/438930a
– ident: e_1_2_7_3_1
  doi: 10.1039/C1LC20859D
– ident: e_1_2_7_47_1
  doi: 10.1039/C9SC01649J
– ident: e_1_2_7_33_1
  doi: 10.1039/C6SM02830F
– ident: e_1_2_7_54_1
  doi: 10.1126/science.1090313
– ident: e_1_2_7_51_1
  doi: 10.1016/j.jct.2012.06.007
– ident: e_1_2_7_7_1
  doi: 10.1126/science.1109164
– ident: e_1_2_7_60_1
  doi: 10.1006/jcis.1998.5698
– ident: e_1_2_7_32_1
  doi: 10.1039/c1sm05457k
– ident: e_1_2_7_20_1
  doi: 10.1002/adma.201503509
– ident: e_1_2_7_5_1
  doi: 10.1002/smll.201600163
– volume-title: Atkins' Physical Chemistry
  year: 2014
  ident: e_1_2_7_35_1
– ident: e_1_2_7_53_1
  doi: 10.1021/cr980032t
– ident: e_1_2_7_27_1
  doi: 10.1021/jacs.5b10039
– ident: e_1_2_7_1_1
  doi: 10.1016/S0169-409X(01)00203-4
– ident: e_1_2_7_21_1
  doi: 10.1038/nmat1617
– ident: e_1_2_7_6_1
  doi: 10.1002/smll.201701256
– ident: e_1_2_7_16_1
  doi: 10.1021/am405283j
– ident: e_1_2_7_65_1
  doi: 10.1039/C7SC02409F
– ident: e_1_2_7_64_1
  doi: 10.1002/adma.201704740
– ident: e_1_2_7_8_1
  doi: 10.1038/nature05058
– ident: e_1_2_7_28_1
  doi: 10.1021/acsami.5b00081
– ident: e_1_2_7_55_1
  doi: 10.1038/srep19644
– ident: e_1_2_7_36_1
  doi: 10.1085/jgp.41.2.243
– ident: e_1_2_7_12_1
  doi: 10.1016/j.biomaterials.2007.01.048
– ident: e_1_2_7_43_1
  doi: 10.1063/1.4952572
– ident: e_1_2_7_22_1
  doi: 10.1039/b703457a
SSID ssj0031247
Score 2.4439194
Snippet Droplet‐based microfluidics enable the production of emulsions and microparticles with spherical shapes, but the high‐throughput fabrication of nonspherical...
Droplet-based microfluidics enable the production of emulsions and microparticles with spherical shapes, but the high-throughput fabrication of nonspherical...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e1903884
SubjectTerms arrested coalescence
Coalescing
Construction materials
Double emulsions
Emulsion polymerization
Ionic liquids
microfluidic emulsions
Microfluidics
Microparticles
Microreactors
Nanotechnology
nonspherical microparticles
Osmosis
osmotic pressure
Phase separation
Surface tension
Tumblers
Title Creation of Nonspherical Microparticles through Osmosis‐Driven Arrested Coalescence of Microfluidic Emulsions
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.201903884
https://www.ncbi.nlm.nih.gov/pubmed/31512376
https://www.proquest.com/docview/2370971224
https://www.proquest.com/docview/2289573845
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9tAEB5VnOgBaMvDPKqtVKknB8e7WTvHKoBQRajEQ8rNsvchRSRxFMcXTvwEfmN_SWfWD0gRQqLyyfa-vDuz83l39huA7zKNg1Ro7QstrY8WT9P-rvW7XCCAlopHjq5peCnPb8WvUW_07BR_xQ_RLriRZrj5mhQ8zYrjJ9LQYjqhrQM0aDyOiRCUHLYIFV21_FEcjZeLroI2yyfirYa1MQiPV7OvWqUXUHMVuTrTc7YJadPoyuPkrlMus466_4fP8X--ags2alzKflaC9Ak-mNln-PiMrfAL5IMaYLLcskuUVmIkoDFmQ_Lqmzc-dqyO_cN-F9O8GBd_Hh5PFjSpYukuEohmgzyteKSUocJcfjspx3qs2Om0nNASXrENt2enN4Nzv47X4CsRSXLrFCoKjLTaBBZNooli3Q36aIZFJo0JNTEH6b7qGoQFBi8UBBXpwOqMllUU34G1WT4ze8A4r2KH4mMjbNyLM5R4LSWdlbVYiwd-M16JqsnMKabGJKlomMOEOjJpO9KDH236eUXj8WrKw2b4k1qdiyTkEXFtIdzx4Fv7GhWRdlfSmclLTIO_rr2Ix6LnwW4lNm1VnHAVTuUehG7w32hDcj28uGjv9t-T6QDWQ1oZcN5yh7C2XJTmCOHTMvvqVOQv9PcTcg
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6Vcigcyk-BBgoYqRWntNnY66QHDmi31ZbubiVopd7SjX-kFbubqtkIwYlH4FV4FR6BJ2HG-YGlQpUq9YBySuLYjj3jb2yPvwHYlKM4GAmtfaGl9RHxNO3vWr_FBRrQUvHI0TUNhrJ3It6dtk-X4Ht9Fqbkh2gW3Egz3HhNCk4L0ju_WUPz6YT2DhDReByLyq_y0Hz-hLO2_M1BF7t4Kwz39447Pb8KLOArEUnyPxQqCoy02gQWx24TxboV7CJeiFQaE2qiuNG7qmUQvwxeWGMV6cDqlOb_imO-t-A2hREnuv7u-4axiiNcunguiJI-UX3VPJFBuLNY30UcvGTcLtrKDuz278GPuplKH5eP28U83VZf_mKQ_K_a8T6sVqY3e1vqygNYMrOHcPcPQsY1yDqVDc0yy4aokES6QGLMBuS4eF67EbIqvBE7yqdZPs5_fv3WvSDcwNxdsBPNOtmopMpShjJz39tJMdZjxfamxYRWKfNHcHIjf_wYlmfZzKwD47wMj4qPjbBxO05RqbWUdBzYYike-LWAJKria6ewIZOkZJoOE-q4pOk4D1436c9LppJ_ptyo5S2pRqw8CXlEdGJo0XnwqnmNYw1tII1mJiswDc7O2xGPRduDJ6WcNkVxMh0RrTwInbRdUYfkw6Dfb-6eXuejl7DSOx70k_7B8PAZ3AlpIcQ5B27A8vyiMM_RWpynL5x-Mji7aUH-BRo1cgU
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3dbtMwFD4aQ0JwMf5ZYICRQFxlS2PXSS-4QO2qjbUFAZN2lzX-kSraploaIbjaI-xR9ip7BZ6Ec5wfKAghIe0C5SqJYzv2Of6O7ePvADyX4zgYC619oaX1EfE07e9av8UFGtBS8cjRNQ1Hcu9QvDlqH63BeX0WpuSHaBbcSDPceE0KvtB25wdpaD6b0tYBAhqPY1G5VR6YL59x0pa_2u9hD78Iw_7ux-6eX8UV8JWIJLkfChUFRlptAotDt4li3Qo6CBcilcaEmhhudEe1DMKXwQsrrCIdWJ3S9F9xzPcKXBUy6FCwiN77hrCKI1q6cC4Ikj4xfdU0kUG4s1rfVRj8zbZdNZUd1vVvwkXdSqWLy6ftYpluq6-_EEj-T814CzYqw5u9LjXlNqyZ-R248RMd413IupUFzTLLRqiORLlAQsyG5La4qJ0IWRXciL3NZ1k-yb-dnvVOCDUwdxfqRLNuNi6JspShzNz3dlpM9ESx3VkxpTXK_B4cXsof34f1eTY3m8A4L4Oj4mMjbNyOU1RpLSUdBrZYigd-LR-JqtjaKWjINCl5psOEOi5pOs6Dl036RclT8seUW7W4JdV4lSchj4hMDO05D541r3Gkoe2j8dxkBabBuXk74rFoe_CgFNOmKE6GI2KVB6ETtr_UIfkwHAyau4f_8tFTuPau108G-6ODR3A9pFUQ5xm4BevLk8I8RlNxmT5x2sng-LLl-Ds8rnC0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Creation+of+Nonspherical+Microparticles+through+Osmosis%E2%80%90Driven+Arrested+Coalescence+of+Microfluidic+Emulsions&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Feng%2C+Kai&rft.au=Gao%2C+Ning&rft.au=Zhang%2C+Wanlin&rft.au=Zhou%2C+Kang&rft.date=2020-03-01&rft.issn=1613-6810&rft.eissn=1613-6829&rft.volume=16&rft.issue=9&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fsmll.201903884&rft.externalDBID=10.1002%252Fsmll.201903884&rft.externalDocID=SMLL201903884
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon