A Highly Red‐Emissive Lead‐Free Indium‐Based Perovskite Single Crystal for Sensitive Water Detection

Low‐dimensional luminescent lead halide perovskites have attracted tremendous attention for their fascinating optoelectronic properties, while the toxicity of lead is still considered a drawback. Herein, we report a novel lead‐free zero‐dimensional (0D) indium‐based perovskite (Cs2InBr5⋅H2O) single...

Full description

Saved in:
Bibliographic Details
Published inAngewandte Chemie International Edition Vol. 58; no. 16; pp. 5277 - 5281
Main Authors Zhou, Lei, Liao, Jin‐Feng, Huang, Zeng‐Guang, Wei, Jun‐Hua, Wang, Xu‐Dong, Li, Wen‐Guang, Chen, Hong‐Yan, Kuang, Dai‐Bin, Su, Cheng‐Yong
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 08.04.2019
EditionInternational ed. in English
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Low‐dimensional luminescent lead halide perovskites have attracted tremendous attention for their fascinating optoelectronic properties, while the toxicity of lead is still considered a drawback. Herein, we report a novel lead‐free zero‐dimensional (0D) indium‐based perovskite (Cs2InBr5⋅H2O) single crystal that is red‐luminescent with a high photoluminescence quantum yield (PLQY) of 33 %. Experimental and computational studies reveal that the strong PL emission might originate from self‐trapping excitons (STEs) that result from an excited‐state structural deformation. More importantly, the in situ transformation between hydrated Cs2InBr5⋅H2O and the dehydrated form is accompanied with a switchable dual emission, which enables it to act as a PL water‐sensor in humidity detection or the detection of traces of water in organic solvents. Unleaded and unleashed: A highly emissive lead‐free indium‐based perovskite single crystal, Cs2InBr5⋅H2O, was successfully prepared. The versatile material is the first reversible metal halide perovskite photoluminescence water sensor and paves the way for the application of metal halide perovskites in water detection.
AbstractList Low‐dimensional luminescent lead halide perovskites have attracted tremendous attention for their fascinating optoelectronic properties, while the toxicity of lead is still considered a drawback. Herein, we report a novel lead‐free zero‐dimensional (0D) indium‐based perovskite (Cs2InBr5⋅H2O) single crystal that is red‐luminescent with a high photoluminescence quantum yield (PLQY) of 33 %. Experimental and computational studies reveal that the strong PL emission might originate from self‐trapping excitons (STEs) that result from an excited‐state structural deformation. More importantly, the in situ transformation between hydrated Cs2InBr5⋅H2O and the dehydrated form is accompanied with a switchable dual emission, which enables it to act as a PL water‐sensor in humidity detection or the detection of traces of water in organic solvents. Unleaded and unleashed: A highly emissive lead‐free indium‐based perovskite single crystal, Cs2InBr5⋅H2O, was successfully prepared. The versatile material is the first reversible metal halide perovskite photoluminescence water sensor and paves the way for the application of metal halide perovskites in water detection.
Low‐dimensional luminescent lead halide perovskites have attracted tremendous attention for their fascinating optoelectronic properties, while the toxicity of lead is still considered a drawback. Herein, we report a novel lead‐free zero‐dimensional (0D) indium‐based perovskite (Cs2InBr5⋅H2O) single crystal that is red‐luminescent with a high photoluminescence quantum yield (PLQY) of 33 %. Experimental and computational studies reveal that the strong PL emission might originate from self‐trapping excitons (STEs) that result from an excited‐state structural deformation. More importantly, the in situ transformation between hydrated Cs2InBr5⋅H2O and the dehydrated form is accompanied with a switchable dual emission, which enables it to act as a PL water‐sensor in humidity detection or the detection of traces of water in organic solvents.
Low-dimensional luminescent lead halide perovskites have attracted tremendous attention for their fascinating optoelectronic properties, while the toxicity of lead is still considered a drawback. Herein, we report a novel lead-free zero-dimensional (0D) indium-based perovskite (Cs2 InBr5 ⋅H2 O) single crystal that is red-luminescent with a high photoluminescence quantum yield (PLQY) of 33 %. Experimental and computational studies reveal that the strong PL emission might originate from self-trapping excitons (STEs) that result from an excited-state structural deformation. More importantly, the in situ transformation between hydrated Cs2 InBr5 ⋅H2 O and the dehydrated form is accompanied with a switchable dual emission, which enables it to act as a PL water-sensor in humidity detection or the detection of traces of water in organic solvents.Low-dimensional luminescent lead halide perovskites have attracted tremendous attention for their fascinating optoelectronic properties, while the toxicity of lead is still considered a drawback. Herein, we report a novel lead-free zero-dimensional (0D) indium-based perovskite (Cs2 InBr5 ⋅H2 O) single crystal that is red-luminescent with a high photoluminescence quantum yield (PLQY) of 33 %. Experimental and computational studies reveal that the strong PL emission might originate from self-trapping excitons (STEs) that result from an excited-state structural deformation. More importantly, the in situ transformation between hydrated Cs2 InBr5 ⋅H2 O and the dehydrated form is accompanied with a switchable dual emission, which enables it to act as a PL water-sensor in humidity detection or the detection of traces of water in organic solvents.
Low-dimensional luminescent lead halide perovskites have attracted tremendous attention for their fascinating optoelectronic properties, while the toxicity of lead is still considered a drawback. Herein, we report a novel lead-free zero-dimensional (0D) indium-based perovskite (Cs InBr ⋅H O) single crystal that is red-luminescent with a high photoluminescence quantum yield (PLQY) of 33 %. Experimental and computational studies reveal that the strong PL emission might originate from self-trapping excitons (STEs) that result from an excited-state structural deformation. More importantly, the in situ transformation between hydrated Cs InBr ⋅H O and the dehydrated form is accompanied with a switchable dual emission, which enables it to act as a PL water-sensor in humidity detection or the detection of traces of water in organic solvents.
Low‐dimensional luminescent lead halide perovskites have attracted tremendous attention for their fascinating optoelectronic properties, while the toxicity of lead is still considered a drawback. Herein, we report a novel lead‐free zero‐dimensional (0D) indium‐based perovskite (Cs 2 InBr 5 ⋅H 2 O) single crystal that is red‐luminescent with a high photoluminescence quantum yield (PLQY) of 33 %. Experimental and computational studies reveal that the strong PL emission might originate from self‐trapping excitons (STEs) that result from an excited‐state structural deformation. More importantly, the in situ transformation between hydrated Cs 2 InBr 5 ⋅H 2 O and the dehydrated form is accompanied with a switchable dual emission, which enables it to act as a PL water‐sensor in humidity detection or the detection of traces of water in organic solvents.
Author Wei, Jun‐Hua
Kuang, Dai‐Bin
Liao, Jin‐Feng
Chen, Hong‐Yan
Zhou, Lei
Huang, Zeng‐Guang
Li, Wen‐Guang
Su, Cheng‐Yong
Wang, Xu‐Dong
Author_xml – sequence: 1
  givenname: Lei
  surname: Zhou
  fullname: Zhou, Lei
  organization: Sun Yat-sen University
– sequence: 2
  givenname: Jin‐Feng
  surname: Liao
  fullname: Liao, Jin‐Feng
  organization: Sun Yat-sen University
– sequence: 3
  givenname: Zeng‐Guang
  surname: Huang
  fullname: Huang, Zeng‐Guang
  organization: Sun Yat-sen University
– sequence: 4
  givenname: Jun‐Hua
  surname: Wei
  fullname: Wei, Jun‐Hua
  organization: Sun Yat-sen University
– sequence: 5
  givenname: Xu‐Dong
  surname: Wang
  fullname: Wang, Xu‐Dong
  organization: Sun Yat-sen University
– sequence: 6
  givenname: Wen‐Guang
  surname: Li
  fullname: Li, Wen‐Guang
  organization: Sun Yat-sen University
– sequence: 7
  givenname: Hong‐Yan
  surname: Chen
  fullname: Chen, Hong‐Yan
  organization: Sun Yat-sen University
– sequence: 8
  givenname: Dai‐Bin
  orcidid: 0000-0001-6773-2319
  surname: Kuang
  fullname: Kuang, Dai‐Bin
  email: kuangdb@mail.sysu.edu.cn
  organization: Sun Yat-sen University
– sequence: 9
  givenname: Cheng‐Yong
  surname: Su
  fullname: Su, Cheng‐Yong
  email: cesscy@mail.sysu.edu.cn
  organization: Sun Yat-sen University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30788885$$D View this record in MEDLINE/PubMed
BookMark eNqFkc1uEzEUhS1URH9gyxJZYsNmgv_tWYaQtpEiQBTE0nJn7hSHiafYnqLs-gg8I0-CR2lBqoTw5vpK3zm6955jdBCGAAg9p2RGCWGvXfAwY4QaKqQSj9ARlYxWXGt-UP6C80obSQ_RcUqbwhtD1BN0yIk25ckjtJnjc3_1td_hj9D-uv253PqU_A3gNbipP40AeBVaP25L98YlaPEHiMNN-uYz4AsfrnrAi7hL2fW4GyK-gJB8niy-uAwRv4UMTfZDeIoed65P8OyunqDPp8tPi_Nq_f5stZivq0ZoJSom29p1tHGsJo62bScVd6B1q7VhylFNnVSUa6ZVQ-q67hQnl8KRxvCOSqr4CXq1972Ow_cRUrZlpwb63gUYxmQZNUIKatSEvnyAboYxhjKdZYwQowllplAv7qjxcgutvY5-6-LO3l-xAGIPNHFIKUJnG5_dtHOOzveWEjuFZaew7J-wimz2QHbv_E9BvRf88D3s_kPb-bvV8q_2N8sJqDw
CitedBy_id crossref_primary_10_1039_C9EE03828K
crossref_primary_10_1021_acs_jpcc_2c02114
crossref_primary_10_1016_j_jlumin_2020_117679
crossref_primary_10_1021_acs_jpcc_9b10457
crossref_primary_10_1002_smll_201905226
crossref_primary_10_1016_j_jlumin_2021_118482
crossref_primary_10_1039_C9DT01460H
crossref_primary_10_1002_ange_202012383
crossref_primary_10_1039_D3RA00351E
crossref_primary_10_1039_D1CC05070B
crossref_primary_10_1021_acs_energyfuels_4c03168
crossref_primary_10_1021_acs_inorgchem_4c04852
crossref_primary_10_1002_anie_202003234
crossref_primary_10_1002_adom_202302292
crossref_primary_10_1039_D0MH01567A
crossref_primary_10_1021_acs_jpclett_2c03039
crossref_primary_10_1002_adom_202101637
crossref_primary_10_1002_lpor_202100600
crossref_primary_10_34133_research_0094
crossref_primary_10_1002_anie_201909129
crossref_primary_10_1002_adom_202102727
crossref_primary_10_1002_adom_202100544
crossref_primary_10_1021_acs_inorgchem_3c02900
crossref_primary_10_1039_D4TC04823G
crossref_primary_10_1002_anie_201909805
crossref_primary_10_1002_smll_202311064
crossref_primary_10_1016_j_jlumin_2024_120614
crossref_primary_10_1021_acs_inorgchem_9b03139
crossref_primary_10_1002_anie_201907503
crossref_primary_10_1002_adfm_202407629
crossref_primary_10_1016_j_xcrp_2022_100820
crossref_primary_10_1039_D1TC04990A
crossref_primary_10_3389_fchem_2021_782481
crossref_primary_10_1002_adfm_202108561
crossref_primary_10_1080_21663831_2024_2351060
crossref_primary_10_1016_j_nanoen_2020_104747
crossref_primary_10_1002_cjoc_202000098
crossref_primary_10_1039_D0TC05003B
crossref_primary_10_1016_j_talanta_2024_126068
crossref_primary_10_1021_acs_jpclett_4c00090
crossref_primary_10_1002_adfm_202210335
crossref_primary_10_1016_j_jlumin_2024_120829
crossref_primary_10_1021_acs_inorgchem_1c03021
crossref_primary_10_1002_aelm_201901291
crossref_primary_10_1063_1_5145261
crossref_primary_10_3390_chemosensors8030055
crossref_primary_10_1016_j_optmat_2023_113750
crossref_primary_10_3390_cryst11111329
crossref_primary_10_1039_D0AN01127D
crossref_primary_10_1002_lpor_202301264
crossref_primary_10_1002_adom_202002213
crossref_primary_10_1039_D1DT02386A
crossref_primary_10_1002_eem2_12518
crossref_primary_10_1002_lpor_202300045
crossref_primary_10_1038_s41467_022_33540_1
crossref_primary_10_1039_D4TC01556H
crossref_primary_10_1016_j_inoche_2023_111421
crossref_primary_10_1021_acsami_4c05411
crossref_primary_10_1002_adom_202402683
crossref_primary_10_1016_j_snb_2021_131301
crossref_primary_10_1021_jacs_3c09395
crossref_primary_10_1002_adom_202400147
crossref_primary_10_1002_ange_202008098
crossref_primary_10_1021_acsami_2c22172
crossref_primary_10_1002_anie_202208937
crossref_primary_10_1002_nano_202100059
crossref_primary_10_1002_anie_202412779
crossref_primary_10_1016_j_optmat_2022_113164
crossref_primary_10_1021_acs_inorgchem_2c00711
crossref_primary_10_1021_acs_inorgchem_4c05370
crossref_primary_10_1002_chem_202001178
crossref_primary_10_1063_5_0175005
crossref_primary_10_1021_acs_chemmater_0c01794
crossref_primary_10_1364_OL_541142
crossref_primary_10_1002_lpor_202000334
crossref_primary_10_1016_j_cej_2022_138926
crossref_primary_10_1002_ange_201912236
crossref_primary_10_1039_D1NR02248B
crossref_primary_10_1364_OL_528587
crossref_primary_10_3390_ma15124146
crossref_primary_10_1016_j_jlumin_2023_119938
crossref_primary_10_1021_acs_inorgchem_3c04318
crossref_primary_10_1021_acsmaterialslett_2c00658
crossref_primary_10_1002_slct_202003920
crossref_primary_10_1002_adom_202202369
crossref_primary_10_1002_adom_202101700
crossref_primary_10_1021_acs_jpcc_9b11187
crossref_primary_10_1002_lpor_202401802
crossref_primary_10_1021_acs_jpclett_1c00559
crossref_primary_10_1039_D0TC00391C
crossref_primary_10_1039_D4TC01344A
crossref_primary_10_1021_acs_chemmater_0c02098
crossref_primary_10_1002_smll_202002547
crossref_primary_10_1002_adom_202101276
crossref_primary_10_1002_adma_202306423
crossref_primary_10_1016_j_trac_2020_116127
crossref_primary_10_1039_D2TC04967H
crossref_primary_10_1002_adpr_202200197
crossref_primary_10_1016_j_ceramint_2024_01_250
crossref_primary_10_1039_D2CC02148J
crossref_primary_10_1002_adom_202202596
crossref_primary_10_1039_D3SC05245A
crossref_primary_10_1002_anie_202420139
crossref_primary_10_1007_s40843_021_1792_1
crossref_primary_10_1039_D0CS00779J
crossref_primary_10_1016_j_jlumin_2024_120538
crossref_primary_10_3390_cryst11050530
crossref_primary_10_1002_adfm_202102654
crossref_primary_10_1002_adom_202002246
crossref_primary_10_1002_anie_202012383
crossref_primary_10_1039_D3MH00536D
crossref_primary_10_1002_adom_202300100
crossref_primary_10_1002_ange_202412779
crossref_primary_10_1016_j_dyepig_2021_109923
crossref_primary_10_1021_acsami_2c14974
crossref_primary_10_1021_acs_jpcc_1c08720
crossref_primary_10_1021_acs_inorgchem_4c00707
crossref_primary_10_1002_lpor_202401261
crossref_primary_10_1021_acs_jpcc_9b04532
crossref_primary_10_1021_acs_cgd_2c00632
crossref_primary_10_1039_C9CC07796K
crossref_primary_10_1002_ange_202420139
crossref_primary_10_1039_C9QI00684B
crossref_primary_10_1021_acsmaterialslett_0c00211
crossref_primary_10_1039_D4QI00970C
crossref_primary_10_1016_j_mtphys_2023_101111
crossref_primary_10_1039_D2NJ03090J
crossref_primary_10_1021_acs_jpclett_1c01794
crossref_primary_10_3390_ma12233845
crossref_primary_10_1002_ange_202015873
crossref_primary_10_1002_cplu_202100459
crossref_primary_10_1016_j_jlumin_2024_120509
crossref_primary_10_1016_j_dyepig_2022_110537
crossref_primary_10_1016_j_jallcom_2024_175329
crossref_primary_10_1007_s12598_021_01879_x
crossref_primary_10_1021_acsmaterialslett_4c01744
crossref_primary_10_1021_acs_nanolett_3c02356
crossref_primary_10_1021_acs_chemmater_9b05321
crossref_primary_10_1002_anie_201903945
crossref_primary_10_1021_acs_inorgchem_4c03666
crossref_primary_10_3390_cryst13030499
crossref_primary_10_1021_acs_jpclett_1c03849
crossref_primary_10_1364_PRJ_387707
crossref_primary_10_1021_acsanm_4c00542
crossref_primary_10_1039_D2QI01224C
crossref_primary_10_3390_nano11123310
crossref_primary_10_1002_adfm_202406995
crossref_primary_10_1016_j_optmat_2023_114512
crossref_primary_10_1002_adfm_202401860
crossref_primary_10_1016_j_jmgm_2019_107448
crossref_primary_10_1021_acs_jpclett_1c01321
crossref_primary_10_1039_D3QM00595J
crossref_primary_10_1002_anie_202015873
crossref_primary_10_3390_s24165258
crossref_primary_10_1002_advs_202203596
crossref_primary_10_1002_advs_202004805
crossref_primary_10_1021_acs_inorgchem_4c00052
crossref_primary_10_3390_bios12090754
crossref_primary_10_1002_adom_202002267
crossref_primary_10_1002_anie_202206437
crossref_primary_10_1002_smll_201903599
crossref_primary_10_1021_acsami_2c00006
crossref_primary_10_1063_1_5140441
crossref_primary_10_1021_jacs_9b04482
crossref_primary_10_1002_adma_202210611
crossref_primary_10_1103_PhysRevApplied_13_024031
crossref_primary_10_3390_ma16020559
crossref_primary_10_1039_D4TC03776F
crossref_primary_10_1039_D4SC01630K
crossref_primary_10_1016_j_mtchem_2023_101604
crossref_primary_10_1021_acs_jpclett_2c01549
crossref_primary_10_1002_adfm_202002468
crossref_primary_10_1021_acs_inorgchem_2c01161
crossref_primary_10_1039_D1QM00552A
crossref_primary_10_1002_adfm_202504436
crossref_primary_10_1002_ange_202206437
crossref_primary_10_1002_aenm_201902256
crossref_primary_10_1021_acsmaterialslett_1c00242
crossref_primary_10_1021_acsnano_3c11092
crossref_primary_10_1039_D1MH01370J
crossref_primary_10_1002_smll_202103831
crossref_primary_10_1016_j_trechm_2022_10_008
crossref_primary_10_1016_j_cclet_2020_03_016
crossref_primary_10_1039_D0CE01457E
crossref_primary_10_1002_asia_202100293
crossref_primary_10_1021_acs_chemmater_2c01434
crossref_primary_10_1039_D2NR03935D
crossref_primary_10_1002_adom_202201509
crossref_primary_10_1039_D4CE01243G
crossref_primary_10_1002_cjoc_202401020
crossref_primary_10_1021_acsomega_0c05024
crossref_primary_10_1021_acsaelm_0c00327
crossref_primary_10_1021_acs_inorgchem_3c02293
crossref_primary_10_1002_adom_202400681
crossref_primary_10_1039_D1TC00632K
crossref_primary_10_1021_acs_jpclett_2c00166
crossref_primary_10_1039_D1CC01783G
crossref_primary_10_1039_D0CE01202E
crossref_primary_10_1021_acs_chemmater_2c00333
crossref_primary_10_1039_C9CE01816F
crossref_primary_10_1021_acs_chemmater_3c02183
crossref_primary_10_1039_D1CS00684C
crossref_primary_10_1002_adom_202201061
crossref_primary_10_3390_ma16103744
crossref_primary_10_1021_acs_inorgchem_3c04488
crossref_primary_10_1021_acs_chemmater_2c01549
crossref_primary_10_1016_j_matlet_2020_128280
crossref_primary_10_1039_D0DT00514B
crossref_primary_10_1002_ange_201909805
crossref_primary_10_2139_ssrn_4198839
crossref_primary_10_1002_ange_201903945
crossref_primary_10_1021_acs_chemmater_0c00280
crossref_primary_10_1002_ange_202002721
crossref_primary_10_1016_j_nantod_2021_101153
crossref_primary_10_1021_acs_inorgchem_1c02445
crossref_primary_10_1016_j_cej_2023_147277
crossref_primary_10_1002_anie_202008098
crossref_primary_10_1016_j_trac_2021_116432
crossref_primary_10_1021_acs_chemmater_0c01708
crossref_primary_10_1021_acs_chemmater_3c03245
crossref_primary_10_1039_D2TC04727F
crossref_primary_10_1002_ange_201909129
crossref_primary_10_1016_j_jece_2024_114934
crossref_primary_10_1002_adfm_202104923
crossref_primary_10_1002_ange_201907503
crossref_primary_10_3390_nano15060442
crossref_primary_10_1016_j_jechem_2021_06_033
crossref_primary_10_1039_D4TC00482E
crossref_primary_10_1016_j_tsf_2021_138805
crossref_primary_10_1021_acs_accounts_9b00422
crossref_primary_10_1039_D4TC04153D
crossref_primary_10_1021_acsami_1c02503
crossref_primary_10_1021_acs_inorgchem_4c04557
crossref_primary_10_1021_acs_jpclett_2c03658
crossref_primary_10_1002_anie_201912236
crossref_primary_10_1002_adom_202102661
crossref_primary_10_1021_acs_jpclett_1c00418
crossref_primary_10_1039_D2TA03468A
crossref_primary_10_1021_acs_inorgchem_2c03384
crossref_primary_10_1016_j_jallcom_2021_162632
crossref_primary_10_1039_D4CE00204K
crossref_primary_10_3390_en13164250
crossref_primary_10_1039_D0TA09624E
crossref_primary_10_1002_anie_202003509
crossref_primary_10_1021_jacs_0c03004
crossref_primary_10_1126_sciadv_abg3989
crossref_primary_10_1021_acs_chemmater_2c02737
crossref_primary_10_1016_j_dyepig_2021_109226
crossref_primary_10_1002_adfm_202009973
crossref_primary_10_1016_j_matlet_2021_131280
crossref_primary_10_1021_acs_inorgchem_4c03117
crossref_primary_10_1002_adom_202101344
crossref_primary_10_1002_ange_202003234
crossref_primary_10_1039_D3QI01350B
crossref_primary_10_1103_PhysRevB_107_214111
crossref_primary_10_1016_j_mtchem_2023_101572
crossref_primary_10_1103_PhysRevApplied_22_064065
crossref_primary_10_1117_1_OE_62_3_037103
crossref_primary_10_1002_ange_202208937
crossref_primary_10_1021_acs_inorgchem_2c04066
crossref_primary_10_1021_acs_chemmater_4c00045
crossref_primary_10_1021_acs_inorgchem_2c03653
crossref_primary_10_1039_D4QI01164C
crossref_primary_10_1039_D1NJ00810B
crossref_primary_10_1021_acs_jpclett_0c01162
crossref_primary_10_1039_D2TC03150G
crossref_primary_10_3390_cryst12111681
crossref_primary_10_1039_D5QI00348B
crossref_primary_10_1021_acs_inorgchem_4c02066
crossref_primary_10_1039_D4RA06404F
crossref_primary_10_1002_adpr_202100056
crossref_primary_10_1002_ange_202108495
crossref_primary_10_1002_ange_202003509
crossref_primary_10_1016_j_jlumin_2024_120924
crossref_primary_10_1021_acs_jpclett_0c01832
crossref_primary_10_1021_acs_chemmater_9b04095
crossref_primary_10_1016_j_cej_2024_152443
crossref_primary_10_1002_advs_202003334
crossref_primary_10_1016_j_cej_2022_135028
crossref_primary_10_1021_acs_jpclett_9b03153
crossref_primary_10_1039_D1DT03264J
crossref_primary_10_1002_adom_202302494
crossref_primary_10_1016_j_mtchem_2020_100363
crossref_primary_10_1016_j_mtchem_2023_101459
crossref_primary_10_1002_ange_202307689
crossref_primary_10_1002_lpor_202400440
crossref_primary_10_1002_adom_202301282
crossref_primary_10_1016_j_nantod_2022_101460
crossref_primary_10_1039_D3NJ01019H
crossref_primary_10_1021_acs_inorgchem_1c02871
crossref_primary_10_1016_j_cej_2022_140182
crossref_primary_10_1021_acs_inorgchem_9b02806
crossref_primary_10_1039_D2TC03008J
crossref_primary_10_1002_asia_202200278
crossref_primary_10_1021_acs_inorgchem_4c00555
crossref_primary_10_1021_acs_nanolett_4c03019
crossref_primary_10_1002_EXP_20240004
crossref_primary_10_1016_j_jssc_2022_123626
crossref_primary_10_1016_j_jlumin_2024_120937
crossref_primary_10_1039_D2MA00676F
crossref_primary_10_1021_acsami_4c16418
crossref_primary_10_1021_acs_inorgchem_2c01900
crossref_primary_10_1039_D0DT03948A
crossref_primary_10_1016_j_talanta_2020_120958
crossref_primary_10_1002_lpor_202300158
crossref_primary_10_1039_D2QI02221D
crossref_primary_10_1002_ange_202105883
crossref_primary_10_1002_inf2_12542
crossref_primary_10_1016_j_dyepig_2021_109764
crossref_primary_10_1016_j_rio_2023_100562
crossref_primary_10_1039_D4TC03673E
crossref_primary_10_1016_j_sna_2021_112911
crossref_primary_10_1039_D0NR06771G
crossref_primary_10_1002_advs_202000195
crossref_primary_10_1016_j_jallcom_2020_155386
crossref_primary_10_2139_ssrn_3978293
crossref_primary_10_1002_adom_201901723
crossref_primary_10_1016_j_aca_2020_02_043
crossref_primary_10_1002_adom_202101406
crossref_primary_10_1021_acs_jpclett_2c01044
crossref_primary_10_1002_adma_202102190
crossref_primary_10_1002_smtd_202001308
crossref_primary_10_1002_anie_202307689
crossref_primary_10_3389_felec_2021_758603
crossref_primary_10_1016_j_jcis_2022_11_132
crossref_primary_10_1002_adom_202100434
crossref_primary_10_3390_ma17020491
crossref_primary_10_1016_j_cej_2020_127415
crossref_primary_10_1039_C9QI00777F
crossref_primary_10_1016_j_ccr_2021_214313
crossref_primary_10_1016_j_cej_2023_146935
crossref_primary_10_1021_acsami_4c17833
crossref_primary_10_1039_D1TC02906A
crossref_primary_10_1021_acsami_9b08407
crossref_primary_10_1021_acs_chemmater_2c00886
crossref_primary_10_1039_D1MA00061F
crossref_primary_10_1002_adom_202102619
crossref_primary_10_1039_D4CC01822B
crossref_primary_10_1002_adom_202301864
crossref_primary_10_1002_ppsc_202200096
crossref_primary_10_1063_5_0237879
crossref_primary_10_1039_D4TC03379E
crossref_primary_10_1039_D2SC02992H
crossref_primary_10_1002_anie_202002721
crossref_primary_10_1002_anie_202105883
crossref_primary_10_1016_j_jallcom_2023_170996
crossref_primary_10_1021_acsmaterialslett_4c02556
crossref_primary_10_1039_D3TC01283B
crossref_primary_10_1016_j_jechem_2021_05_035
crossref_primary_10_1039_D0TC05137C
crossref_primary_10_1021_acs_jpcc_2c07553
crossref_primary_10_1021_acs_inorgchem_3c02888
crossref_primary_10_1016_j_cej_2024_148600
crossref_primary_10_1002_eom2_12160
crossref_primary_10_1002_adom_202102746
crossref_primary_10_1021_acs_inorgchem_2c03980
crossref_primary_10_1002_admt_202301894
crossref_primary_10_1002_anie_202108495
crossref_primary_10_1002_adpr_202100143
crossref_primary_10_1002_solr_202000755
crossref_primary_10_1016_j_jlumin_2023_119880
crossref_primary_10_1016_j_jallcom_2023_169541
crossref_primary_10_1039_D1TC05140G
crossref_primary_10_1016_j_mtphys_2023_101085
crossref_primary_10_1016_j_saa_2022_121521
crossref_primary_10_1021_acs_chemmater_2c02817
crossref_primary_10_1016_j_matt_2020_05_018
crossref_primary_10_1021_acs_jpclett_9b01326
crossref_primary_10_1002_adom_202303230
crossref_primary_10_1021_acsami_4c14693
crossref_primary_10_1039_D0TA02449J
crossref_primary_10_1002_advs_202102689
crossref_primary_10_1021_acs_inorgchem_1c02661
Cites_doi 10.1002/anie.201710383
10.1021/jacs.6b10390
10.1002/anie.201508276
10.1021/jacs.8b07983
10.1038/25954
10.1002/advs.201700471
10.1021/acsenergylett.8b01770
10.1002/ange.201806452
10.1021/acsami.5b09084
10.1063/1.3294624
10.1016/S0022-2860(02)00580-X
10.1002/anie.201702825
10.1002/adma.201600064
10.1126/sciadv.1701793
10.1038/nenergy.2016.48
10.1021/ja4109209
10.1021/jacs.7b02817
10.1038/s41586-018-0691-0
10.1021/jacs.8b07424
10.1021/acs.chemmater.7b02594
10.1021/acs.chemmater.7b02415
10.1021/nl4011172
10.1038/ncomms15985
10.1021/acs.accounts.7b00433
10.1002/ange.201702825
10.1002/anie.201806452
10.1021/ja411045r
10.1039/C7SC01590A
10.1039/C7SC04539E
10.1088/0953-8984/11/22/312
10.1039/C6CS00930A
10.1021/jacs.7b01312
10.1021/ja507086b
10.1002/ange.201710383
10.1021/acs.jpclett.8b00572
10.1039/C5CS00494B
10.1021/jacs.8b08691
10.1002/ange.201508276
10.1002/adma.201804547
10.1021/acs.nanolett.8b00861
10.1021/jacs.8b07731
10.1016/j.snb.2012.02.013
10.1039/C6DT03738K
10.1021/nl5048779
10.1021/acsenergylett.6b00396
10.1021/ja506624n
10.1002/smll.201703762
10.1002/solr.201800294
10.1021/acs.jpclett.6b02682
10.1107/S0108270188001349
ContentType Journal Article
Copyright 2019 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim
2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Copyright_xml – notice: 2019 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
DBID AAYXX
CITATION
NPM
7TM
K9.
7X8
DOI 10.1002/anie.201814564
DatabaseName CrossRef
PubMed
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
ProQuest Health & Medical Complete (Alumni)
Nucleic Acids Abstracts
MEDLINE - Academic
DatabaseTitleList
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
PubMed
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3773
Edition International ed. in English
EndPage 5281
ExternalDocumentID 30788885
10_1002_anie_201814564
ANIE201814564
Genre shortCommunication
Journal Article
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABLJU
ABPPZ
ABPVW
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BTSUX
BY8
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
M53
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
TN5
UB1
UPT
UQL
V2E
VQA
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XSW
XV2
YZZ
ZZTAW
~IA
~KM
~WT
AAYXX
ABDBF
ABJNI
AEYWJ
AGHNM
AGYGG
CITATION
NPM
7TM
K9.
7X8
ID FETCH-LOGICAL-c4764-25d9af1ca290a1ddf563ae77d77826a171a56137276c0999f630b4a0c83f15163
IEDL.DBID DR2
ISSN 1433-7851
1521-3773
IngestDate Thu Jul 10 22:59:19 EDT 2025
Fri Jul 25 10:42:55 EDT 2025
Mon Jul 21 05:58:23 EDT 2025
Tue Jul 01 02:26:44 EDT 2025
Thu Apr 24 23:09:42 EDT 2025
Wed Jan 22 16:30:45 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 16
Keywords Single crystals
Water detection
Perovskites
Indium
Lead-free materials
Language English
License 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4764-25d9af1ca290a1ddf563ae77d77826a171a56137276c0999f630b4a0c83f15163
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-6773-2319
PMID 30788885
PQID 2200870128
PQPubID 946352
PageCount 5
ParticipantIDs proquest_miscellaneous_2184541866
proquest_journals_2200870128
pubmed_primary_30788885
crossref_citationtrail_10_1002_anie_201814564
crossref_primary_10_1002_anie_201814564
wiley_primary_10_1002_anie_201814564_ANIE201814564
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate April 8, 2019
PublicationDateYYYYMMDD 2019-04-08
PublicationDate_xml – month: 04
  year: 2019
  text: April 8, 2019
  day: 08
PublicationDecade 2010
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Angewandte Chemie International Edition
PublicationTitleAlternate Angew Chem Int Ed Engl
PublicationYear 2019
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2015; 15
2017; 8
2012; 165
2019; 3
2017; 3
2018; 140
2010; 107
2018; 563
2017; 46
2017; 29
2017 2017; 56 129
2015; 7
2014; 136
2017; 139
1998; 395
2018; 18
2018; 9
2018; 3
2016; 1
2003; 646
2018; 5
2013; 13
2018 2018; 57 130
1988; 44
2015 2015; 54 127
1999; 11
2018; 30
2018; 51
2016; 28
2018; 14
2016; 45
e_1_2_2_47_2
e_1_2_2_4_2
e_1_2_2_24_1
e_1_2_2_49_1
e_1_2_2_6_1
e_1_2_2_22_2
e_1_2_2_20_1
e_1_2_2_2_2
e_1_2_2_41_2
e_1_2_2_43_1
e_1_2_2_28_2
e_1_2_2_8_1
e_1_2_2_45_1
e_1_2_2_26_1
e_1_2_2_13_2
e_1_2_2_59_2
e_1_2_2_38_2
e_1_2_2_11_1
e_1_2_2_51_2
e_1_2_2_19_2
e_1_2_2_30_2
e_1_2_2_30_3
e_1_2_2_53_1
e_1_2_2_17_2
e_1_2_2_32_2
e_1_2_2_55_2
e_1_2_2_34_2
e_1_2_2_15_1
e_1_2_2_36_1
e_1_2_2_57_1
e_1_2_2_3_2
e_1_2_2_25_1
e_1_2_2_23_2
e_1_2_2_48_2
e_1_2_2_5_2
e_1_2_2_5_3
e_1_2_2_7_1
e_1_2_2_21_2
e_1_2_2_1_1
e_1_2_2_40_1
e_1_2_2_29_2
e_1_2_2_42_2
e_1_2_2_44_1
e_1_2_2_27_2
e_1_2_2_9_2
e_1_2_2_25_2
e_1_2_2_46_2
e_1_2_2_14_1
e_1_2_2_12_2
e_1_2_2_37_2
e_1_2_2_58_2
e_1_2_2_10_2
e_1_2_2_39_2
e_1_2_2_18_3
e_1_2_2_31_1
e_1_2_2_18_2
e_1_2_2_52_2
e_1_2_2_16_2
e_1_2_2_33_2
e_1_2_2_54_2
e_1_2_2_35_2
e_1_2_2_56_2
e_1_2_2_50_1
References_xml – volume: 7
  start-page: 25007
  year: 2015
  end-page: 25013
  publication-title: ACS Appl. Mater. Interfaces
– volume: 107
  start-page: 033510
  year: 2010
  publication-title: J. Appl. Phys.
– volume: 8
  start-page: 4497
  year: 2017
  end-page: 4504
  publication-title: Chem. Sci.
– volume: 5
  start-page: 1700471
  year: 2018
  publication-title: Adv. Sci.
– volume: 1
  start-page: 16048
  year: 2016
  publication-title: Nat. Energy
– volume: 56 129
  start-page: 9018 9146
  year: 2017 2017
  end-page: 9022 9150
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 563
  start-page: 541
  year: 2018
  end-page: 545
  publication-title: Nature
– volume: 139
  start-page: 6566
  year: 2017
  end-page: 6569
  publication-title: J. Am. Chem. Soc.
– volume: 30
  start-page: 1804547
  year: 2018
  publication-title: Adv. Mater.
– volume: 18
  start-page: 3716
  year: 2018
  end-page: 3722
  publication-title: Nano Lett.
– volume: 11
  start-page: 4409
  year: 1999
  publication-title: J. Phys. Condens. Matter
– volume: 165
  start-page: 62
  year: 2012
  end-page: 67
  publication-title: Sens. Actuators B
– volume: 646
  start-page: 45
  year: 2003
  end-page: 54
  publication-title: J. Mol. Struct.
– volume: 139
  start-page: 39
  year: 2017
  end-page: 42
  publication-title: J. Am. Chem. Soc.
– volume: 57 130
  start-page: 11329 11499
  year: 2018 2018
  end-page: 11333 11503
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 395
  start-page: 151
  year: 1998
  publication-title: Nature
– volume: 3
  start-page: 2613
  year: 2018
  end-page: 2619
  publication-title: ACS Energy Lett.
– volume: 46
  start-page: 3242
  year: 2017
  end-page: 3285
  publication-title: Chem. Soc. Rev.
– volume: 136
  start-page: 11610
  year: 2014
  end-page: 11613
  publication-title: J. Am. Chem. Soc.
– volume: 13
  start-page: 2831
  year: 2013
  end-page: 2836
  publication-title: Nano Lett.
– volume: 136
  start-page: 850
  year: 2014
  end-page: 853
  publication-title: J. Am. Chem. Soc.
– volume: 54 127
  start-page: 15424 15644
  year: 2015 2015
  end-page: 15428 15648
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 14
  start-page: 1703762
  year: 2018
  publication-title: Small
– volume: 136
  start-page: 13154
  year: 2014
  end-page: 13157
  publication-title: J. Am. Chem. Soc.
– volume: 1
  start-page: 840
  year: 2016
  end-page: 845
  publication-title: ACS Energy Lett.
– volume: 9
  start-page: 2326
  year: 2018
  end-page: 2337
  publication-title: J. Phys. Chem. Lett.
– volume: 45
  start-page: 18585
  year: 2016
  end-page: 18590
  publication-title: Dalton Trans.
– volume: 3
  start-page: 1701793
  year: 2017
  publication-title: Sci. Adv.
– volume: 136
  start-page: 1718
  year: 2014
  end-page: 1721
  publication-title: J. Am. Chem. Soc.
– volume: 140
  start-page: 12989
  year: 2018
  end-page: 12995
  publication-title: J. Am. Chem. Soc.
– volume: 140
  start-page: 13078
  year: 2018
  end-page: 13088
  publication-title: J. Am. Chem. Soc.
– volume: 45
  start-page: 1242
  year: 2016
  end-page: 1256
  publication-title: Chem. Soc. Rev.
– volume: 15
  start-page: 3692
  year: 2015
  end-page: 3696
  publication-title: Nano Lett.
– volume: 140
  start-page: 17001
  year: 2018
  end-page: 17006
  publication-title: J. Am. Chem. Soc.
– volume: 57 130
  start-page: 1021 1033
  year: 2018 2018
  end-page: 1024 1036
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 8
  start-page: 772
  year: 2017
  end-page: 778
  publication-title: J. Phys. Chem. Lett.
– volume: 140
  start-page: 13181
  year: 2018
  end-page: 13184
  publication-title: J. Am. Chem. Soc.
– volume: 51
  start-page: 619
  year: 2018
  end-page: 627
  publication-title: Acc. Chem. Res.
– volume: 28
  start-page: 3528
  year: 2016
  end-page: 3534
  publication-title: Adv. Mater.
– volume: 3
  start-page: 1800294
  year: 2019
  publication-title: Sol. RRL
– volume: 29
  start-page: 7108
  year: 2017
  end-page: 7113
  publication-title: Chem. Mater.
– volume: 29
  start-page: 7083
  year: 2017
  end-page: 7087
  publication-title: Chem. Mater.
– volume: 9
  start-page: 586
  year: 2018
  end-page: 593
  publication-title: Chem. Sci.
– volume: 44
  start-page: 965
  year: 1988
  end-page: 967
  publication-title: Acta Crystallogr. Sect. C
– volume: 139
  start-page: 5210
  year: 2017
  publication-title: J. Am. Chem. Soc.
– volume: 8
  start-page: 15985
  year: 2017
  publication-title: Nat. Commun.
– ident: e_1_2_2_30_2
  doi: 10.1002/anie.201710383
– ident: e_1_2_2_52_2
  doi: 10.1021/jacs.6b10390
– ident: e_1_2_2_40_1
– ident: e_1_2_2_5_2
  doi: 10.1002/anie.201508276
– ident: e_1_2_2_33_2
  doi: 10.1021/jacs.8b07983
– ident: e_1_2_2_49_1
  doi: 10.1038/25954
– ident: e_1_2_2_9_2
  doi: 10.1002/advs.201700471
– ident: e_1_2_2_27_2
  doi: 10.1021/acsenergylett.8b01770
– ident: e_1_2_2_18_3
  doi: 10.1002/ange.201806452
– ident: e_1_2_2_31_1
– ident: e_1_2_2_6_1
  doi: 10.1021/acsami.5b09084
– ident: e_1_2_2_44_1
  doi: 10.1063/1.3294624
– ident: e_1_2_2_39_2
  doi: 10.1016/S0022-2860(02)00580-X
– ident: e_1_2_2_25_1
  doi: 10.1002/anie.201702825
– ident: e_1_2_2_45_1
– ident: e_1_2_2_15_1
– ident: e_1_2_2_7_1
  doi: 10.1002/adma.201600064
– ident: e_1_2_2_13_2
  doi: 10.1126/sciadv.1701793
– ident: e_1_2_2_24_1
  doi: 10.1038/nenergy.2016.48
– ident: e_1_2_2_11_1
– ident: e_1_2_2_2_2
  doi: 10.1021/ja4109209
– ident: e_1_2_2_4_2
  doi: 10.1021/jacs.7b02817
– ident: e_1_2_2_34_2
  doi: 10.1038/s41586-018-0691-0
– ident: e_1_2_2_35_2
  doi: 10.1021/jacs.8b07424
– ident: e_1_2_2_22_2
  doi: 10.1021/acs.chemmater.7b02594
– ident: e_1_2_2_36_1
– ident: e_1_2_2_19_2
  doi: 10.1021/acs.chemmater.7b02415
– ident: e_1_2_2_59_2
  doi: 10.1021/nl4011172
– ident: e_1_2_2_56_2
  doi: 10.1038/ncomms15985
– ident: e_1_2_2_42_2
  doi: 10.1021/acs.accounts.7b00433
– ident: e_1_2_2_25_2
  doi: 10.1002/ange.201702825
– ident: e_1_2_2_18_2
  doi: 10.1002/anie.201806452
– ident: e_1_2_2_51_2
  doi: 10.1021/ja411045r
– ident: e_1_2_2_41_2
  doi: 10.1039/C7SC01590A
– ident: e_1_2_2_29_2
  doi: 10.1039/C7SC04539E
– ident: e_1_2_2_1_1
– ident: e_1_2_2_38_2
  doi: 10.1088/0953-8984/11/22/312
– ident: e_1_2_2_55_2
  doi: 10.1039/C6CS00930A
– ident: e_1_2_2_57_1
– ident: e_1_2_2_20_1
– ident: e_1_2_2_47_2
  doi: 10.1021/jacs.7b01312
– ident: e_1_2_2_26_1
– ident: e_1_2_2_46_2
  doi: 10.1021/ja507086b
– ident: e_1_2_2_30_3
  doi: 10.1002/ange.201710383
– ident: e_1_2_2_50_1
– ident: e_1_2_2_23_2
  doi: 10.1021/acs.jpclett.8b00572
– ident: e_1_2_2_54_2
  doi: 10.1039/C5CS00494B
– ident: e_1_2_2_53_1
– ident: e_1_2_2_48_2
  doi: 10.1021/jacs.8b08691
– ident: e_1_2_2_5_3
  doi: 10.1002/ange.201508276
– ident: e_1_2_2_17_2
  doi: 10.1002/adma.201804547
– ident: e_1_2_2_14_1
  doi: 10.1021/acs.nanolett.8b00861
– ident: e_1_2_2_21_2
  doi: 10.1021/jacs.8b07731
– ident: e_1_2_2_58_2
  doi: 10.1016/j.snb.2012.02.013
– ident: e_1_2_2_8_1
– ident: e_1_2_2_43_1
  doi: 10.1039/C6DT03738K
– ident: e_1_2_2_3_2
  doi: 10.1021/nl5048779
– ident: e_1_2_2_16_2
  doi: 10.1021/acsenergylett.6b00396
– ident: e_1_2_2_12_2
  doi: 10.1021/ja506624n
– ident: e_1_2_2_28_2
  doi: 10.1002/smll.201703762
– ident: e_1_2_2_10_2
  doi: 10.1002/solr.201800294
– ident: e_1_2_2_32_2
  doi: 10.1021/acs.jpclett.6b02682
– ident: e_1_2_2_37_2
  doi: 10.1107/S0108270188001349
SSID ssj0028806
Score 2.6836247
Snippet Low‐dimensional luminescent lead halide perovskites have attracted tremendous attention for their fascinating optoelectronic properties, while the toxicity of...
Low-dimensional luminescent lead halide perovskites have attracted tremendous attention for their fascinating optoelectronic properties, while the toxicity of...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 5277
SubjectTerms Computer applications
Deformation
Dehydration
Emission analysis
Emissions
Excitons
Indium
Lead
Lead-free materials
Metal halides
Optoelectronics
Organic solvents
Perovskites
Photoluminescence
Photons
Single crystals
Toxicity
Water detection
Title A Highly Red‐Emissive Lead‐Free Indium‐Based Perovskite Single Crystal for Sensitive Water Detection
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.201814564
https://www.ncbi.nlm.nih.gov/pubmed/30788885
https://www.proquest.com/docview/2200870128
https://www.proquest.com/docview/2184541866
Volume 58
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTtwwEB4hLuXS0tKf8CdXqtSTIbETx3tcll1BJVAFReUWObYjtd1mUXYXCU59hD4jT8JMsklZqqpSm1Ms24pjezyf7ZlvAN7lVqFeE5Jb4RMeFybm2uqIp5HzskB9nFhyTj45VUcX8YfL5PKBF3_DD9EduJFk1Os1CbjJp_u_SEPJA5tMs3REjCi4CJPBFqGis44_SuDkbNyLpOQUhb5lbQzF_nL1Za30G9RcRq616hk9A9M2urE4-bY3n-V79vYRn-P__NU6PF3gUtZvJtJzWPHlC3gyaMPBbcDXPiObkPENO_Pu7sfPIWaQ6TujIJ2YHlXes-PSfZl_x9QBKkfHPvpqcj2l82F2jipy7NmgukE4OmYIldk52c7Tass-I-Ct2KGf1XZh5Uu4GA0_DY74IlADt3GqYi4S1zNFZI3ohSZyrkiUND5NXYr4Q5kojQztUxAqKUuItFAyzGMTWi0LRBxKvoLVclL6N8C0s3lPJVYJhzt3LbU1sUxDZ3sesVQoAuDtQGV2wWJOwTTGWcO_LDLqwazrwQDed-WvGv6OP5bcbsc9W8jxNBNkHpKSEg_gbZeNHUzXKqb0kzmWwU1yEhNxYACvm_nSfQpXUI1PEoCoR_0vbcj6p8fDLrX5L5W2YA3f6wuvUG_D6qya-x3ETbN8t5aNe2SWD7g
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LjtMwFL0ahsWw4f0IDGAkEKvMJI7jpAsWpQ-1zEyF5iFml3FsRwJKitIWVFZ8Ar_Cr_AJfAn35oUKQkhIs6A7126T2PfmnDj3ngvwONUScY0HruY2dEWmhBvr2Hcj39ggQzwONSUnH0zk6ES8OA1PN-BrkwtT6UO0G27kGeX9mhycNqR3f6qGUgo2xWbFPkmi1HGVe3b1EZ_a5s_GfVziJ5wPB8e9kVsXFnC1iKRweWg6KvO14h1P-cZkoQyUjSITIV5K5Ue-Il6N0C41MahMBl4qlKfjIEOElAH-7wW4SGXESa6_f9gqVnF0hyqhKQhcqnvf6ER6fHf9fNdx8Ddyu86VS7AbXoFvzTRVMS5vd5aLdEd_-kVB8r-ax6twuaberFv5yjXYsPl12Oo1Fe9uwJsuo7CX6YodWvP985cBdlB0P6M6pNgeFtaycW5eL99h6zniv2EvbTH7MKctcHaELGBqWa9YIeOeMnwaYEeUHkCAwl4hpy9Y3y7K0Lf8Jpycy6Xegs18lts7wGKj044MteTGEzIOYq1EEHlGdyzSRY874DaWkehaqJ3qhUyTSmKaJ7RiSbtiDjxtx7-vJEr-OHK7MbSkvlXNE04RMBHxFAcetd04wfTmSOV2tsQxfixCQdqIDtyuDLQ9FIJEjJ_QAV6a2V_OIelOxoO2dfdffvQQtkbHB_vJ_niydw8u4ffl-z0v3obNRbG095EmLtIHpWMyODtvC_4BLnFqwQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3JbtRAEC2FIAEX9sUQoJFAnJzY7XbbPnAYZlGGwChKiMjNtLvbEjB4Is8MaDjxCXwKv8Iv8CVUeUMDQkhIOeBb2-2tu8rv2a56BfAw0xJxjQeu5jZ0Ra6EG-vYdyPf2CBHPA41JSe_mMjdI_HsODzegK9tLkytD9F9cCPPqJ7X5OAnJt_5KRpKGdgUmhX7pIjShFXu2dVHfGmbPxkPcIYfcT4avuzvuk1dAVeLSAqXhyZRua8VTzzlG5OHMlA2ikyEcCmVH_mKaDUiu9REoHIZeJlQno6DHAFSBnjcM3BWSC-hYhGDg06wiqM31PlMQeBS2ftWJtLjO-vXuw6Dv3HbdapcYd3oEnxrR6kOcXm3vVxk2_rTLwKS_9MwXoaLDfFmvdpTrsCGLa7C-X5b7-4avO0xCnqZrtiBNd8_fxniBortZ1SFFNuj0lo2Lsyb5XtsPUX0N2zflrMPc_oAzg6RA0wt65cr5NtThu8C7JCSAwhO2Ctk9CUb2EUV-FZch6NTudUbsFnMCnsLWGx0lshQS248IeMg1koEkWd0YpEsetwBtzWMVDcy7VQtZJrWAtM8pRlLuxlz4HHX_6QWKPljz63WztLmQTVPOcW_RMRSHHjQbcYBpv9GqrCzJfbxYxEKUkZ04GZtn92pECJiXEIHeGVlf7mGtDcZD7vW7X_Z6T6c2x-M0ufjyd4duICrq597XrwFm4tyae8iR1xk9yq3ZPD6tA34B13saXA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Highly+Red%E2%80%90Emissive+Lead%E2%80%90Free+Indium%E2%80%90Based+Perovskite+Single+Crystal+for+Sensitive+Water+Detection&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Zhou%2C+Lei&rft.au=Jin%E2%80%90Feng+Liao&rft.au=Zeng%E2%80%90Guang+Huang&rft.au=Jun%E2%80%90Hua+Wei&rft.date=2019-04-08&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=58&rft.issue=16&rft.spage=5277&rft.epage=5281&rft_id=info:doi/10.1002%2Fanie.201814564&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon