Coupling of Solar Energy and Thermal Energy for Carbon Dioxide Reduction: Status and Prospects
Enormous efforts have been devoted to the reduction of carbon dioxide (CO2) by utilizing various driving forces, such as heat, electricity, and radiation. However, the efficient reduction of CO2 is still challenging because of sluggish kinetics. Recent pioneering studies from several groups, includi...
Saved in:
Published in | Angewandte Chemie International Edition Vol. 59; no. 21; pp. 8016 - 8035 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
18.05.2020
|
Edition | International ed. in English |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Enormous efforts have been devoted to the reduction of carbon dioxide (CO2) by utilizing various driving forces, such as heat, electricity, and radiation. However, the efficient reduction of CO2 is still challenging because of sluggish kinetics. Recent pioneering studies from several groups, including us, have demonstrated that the coupling of solar energy and thermal energy offers a novel and promising strategy to promote the activity and/or manipulate selectivity in CO2 reduction. Herein, we clarify the definition and principles of coupling solar energy and thermal energy, and comprehensively review the status and prospects of CO2 reduction by coupling solar energy and thermal energy. Catalyst design, reactor configuration, photo‐mediated activity/selectivity, and mechanism studies in photo‐thermo CO2 reduction will be emphasized. The aim of this Review is to promote understanding towards CO2 activation and provide guidelines for the design of new catalysts for the efficient reduction of CO2.
A bundle of energy: The coupling of solar energy and thermal energy is a promising strategy to mediate the activity and/or selectivity of CO2 reduction. The status and prospects of this topic are reviewed, with the aim of providing guidelines for the design of new catalysts. |
---|---|
AbstractList | Enormous efforts have been devoted to the reduction of carbon dioxide (CO
) by utilizing various driving forces, such as heat, electricity, and radiation. However, the efficient reduction of CO
is still challenging because of sluggish kinetics. Recent pioneering studies from several groups, including us, have demonstrated that the coupling of solar energy and thermal energy offers a novel and promising strategy to promote the activity and/or manipulate selectivity in CO
reduction. Herein, we clarify the definition and principles of coupling solar energy and thermal energy, and comprehensively review the status and prospects of CO
reduction by coupling solar energy and thermal energy. Catalyst design, reactor configuration, photo-mediated activity/selectivity, and mechanism studies in photo-thermo CO
reduction will be emphasized. The aim of this Review is to promote understanding towards CO
activation and provide guidelines for the design of new catalysts for the efficient reduction of CO
. Enormous efforts have been devoted to the reduction of carbon dioxide (CO2) by utilizing various driving forces, such as heat, electricity, and radiation. However, the efficient reduction of CO2 is still challenging because of sluggish kinetics. Recent pioneering studies from several groups, including us, have demonstrated that the coupling of solar energy and thermal energy offers a novel and promising strategy to promote the activity and/or manipulate selectivity in CO2 reduction. Herein, we clarify the definition and principles of coupling solar energy and thermal energy, and comprehensively review the status and prospects of CO2 reduction by coupling solar energy and thermal energy. Catalyst design, reactor configuration, photo‐mediated activity/selectivity, and mechanism studies in photo‐thermo CO2 reduction will be emphasized. The aim of this Review is to promote understanding towards CO2 activation and provide guidelines for the design of new catalysts for the efficient reduction of CO2. A bundle of energy: The coupling of solar energy and thermal energy is a promising strategy to mediate the activity and/or selectivity of CO2 reduction. The status and prospects of this topic are reviewed, with the aim of providing guidelines for the design of new catalysts. Enormous efforts have been devoted to the reduction of carbon dioxide (CO2) by utilizing various driving forces, such as heat, electricity, and radiation. However, the efficient reduction of CO2 is still challenging because of sluggish kinetics. Recent pioneering studies from several groups, including us, have demonstrated that the coupling of solar energy and thermal energy offers a novel and promising strategy to promote the activity and/or manipulate selectivity in CO2 reduction. Herein, we clarify the definition and principles of coupling solar energy and thermal energy, and comprehensively review the status and prospects of CO2 reduction by coupling solar energy and thermal energy. Catalyst design, reactor configuration, photo‐mediated activity/selectivity, and mechanism studies in photo‐thermo CO2 reduction will be emphasized. The aim of this Review is to promote understanding towards CO2 activation and provide guidelines for the design of new catalysts for the efficient reduction of CO2. Enormous efforts have been devoted to the reduction of carbon dioxide (CO 2 ) by utilizing various driving forces, such as heat, electricity, and radiation. However, the efficient reduction of CO 2 is still challenging because of sluggish kinetics. Recent pioneering studies from several groups, including us, have demonstrated that the coupling of solar energy and thermal energy offers a novel and promising strategy to promote the activity and/or manipulate selectivity in CO 2 reduction. Herein, we clarify the definition and principles of coupling solar energy and thermal energy, and comprehensively review the status and prospects of CO 2 reduction by coupling solar energy and thermal energy. Catalyst design, reactor configuration, photo‐mediated activity/selectivity, and mechanism studies in photo‐thermo CO 2 reduction will be emphasized. The aim of this Review is to promote understanding towards CO 2 activation and provide guidelines for the design of new catalysts for the efficient reduction of CO 2 . Enormous efforts have been devoted to the reduction of carbon dioxide (CO2 ) by utilizing various driving forces, such as heat, electricity, and radiation. However, the efficient reduction of CO2 is still challenging because of sluggish kinetics. Recent pioneering studies from several groups, including us, have demonstrated that the coupling of solar energy and thermal energy offers a novel and promising strategy to promote the activity and/or manipulate selectivity in CO2 reduction. Herein, we clarify the definition and principles of coupling solar energy and thermal energy, and comprehensively review the status and prospects of CO2 reduction by coupling solar energy and thermal energy. Catalyst design, reactor configuration, photo-mediated activity/selectivity, and mechanism studies in photo-thermo CO2 reduction will be emphasized. The aim of this Review is to promote understanding towards CO2 activation and provide guidelines for the design of new catalysts for the efficient reduction of CO2 .Enormous efforts have been devoted to the reduction of carbon dioxide (CO2 ) by utilizing various driving forces, such as heat, electricity, and radiation. However, the efficient reduction of CO2 is still challenging because of sluggish kinetics. Recent pioneering studies from several groups, including us, have demonstrated that the coupling of solar energy and thermal energy offers a novel and promising strategy to promote the activity and/or manipulate selectivity in CO2 reduction. Herein, we clarify the definition and principles of coupling solar energy and thermal energy, and comprehensively review the status and prospects of CO2 reduction by coupling solar energy and thermal energy. Catalyst design, reactor configuration, photo-mediated activity/selectivity, and mechanism studies in photo-thermo CO2 reduction will be emphasized. The aim of this Review is to promote understanding towards CO2 activation and provide guidelines for the design of new catalysts for the efficient reduction of CO2 . |
Author | Ye, Jinhua Wang, Zhou‐jun Song, Hui Liu, Huimin |
Author_xml | – sequence: 1 givenname: Zhou‐jun orcidid: 0000-0002-9196-8062 surname: Wang fullname: Wang, Zhou‐jun organization: National Institute for Materials Science (NIMS) – sequence: 2 givenname: Hui orcidid: 0000-0001-6424-7959 surname: Song fullname: Song, Hui organization: Hokkaido University – sequence: 3 givenname: Huimin surname: Liu fullname: Liu, Huimin organization: The University of Sydney – sequence: 4 givenname: Jinhua orcidid: 0000-0002-8105-8903 surname: Ye fullname: Ye, Jinhua email: Jinhua.YE@nims.go.jp organization: Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31309678$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkUtPGzEYRa0KBCRl22VlqZtuEvyYzNjdoRAeEgJEsq7l8XymRhM7tWdU8u9xCAQJqWJjW9Y5ftw7QHs-eEDoGyVjSgg70d7BmBEqSVUU_As6ohNGR7yq-F5eF5yPKjGhh2iQ0mPmhSDlATrklBNZVuII_Z6GftU6_4CDxfPQ6ohnHuLDGmvf4MUfiEvdvm3ZEPFUxzp4fObCk2sA30PTm84F_wvPO9316cW7iyGtwHTpK9q3uk1w_DoP0eJ8tphejq5vL66mp9cjU1Qlz6OuG8GJtqKxBbdWCk6ZYE2leWmM1bUQBiTRUlgDVpvSEsknQEpWlqzmQ_Rze-wqhr89pE4tXTLQttpD6JNibCIqXrCcxxD9-IA-hj76_DjFCiKJkJKwTH1_pfp6CY1aRbfUca3egsvAeAuY_NUUwe4QStSmGbVpRu2ayULxQTAuB5aT66J27f81udX-uRbWn1yiTm-uZu_uMwYfomo |
CitedBy_id | crossref_primary_10_1016_j_est_2023_107923 crossref_primary_10_1039_D1NR05691C crossref_primary_10_1021_acsmaterialslett_1c00081 crossref_primary_10_1016_j_fuel_2022_126496 crossref_primary_10_1039_D2CC02658A crossref_primary_10_3389_fenrg_2024_1251188 crossref_primary_10_1021_acscatal_1c02644 crossref_primary_10_1021_acs_jpcc_3c04075 crossref_primary_10_1038_s41557_025_01766_3 crossref_primary_10_1016_j_apcatb_2021_120887 crossref_primary_10_1002_cctc_202201041 crossref_primary_10_1016_j_matpr_2020_12_702 crossref_primary_10_1021_acssuschemeng_2c00488 crossref_primary_10_3390_nano14161340 crossref_primary_10_1039_D1TA09498J crossref_primary_10_1002_solr_202300216 crossref_primary_10_1002_ange_202219340 crossref_primary_10_3390_molecules29163882 crossref_primary_10_1016_j_cattod_2021_03_020 crossref_primary_10_1039_D1CS00983D crossref_primary_10_1002_adma_202313152 crossref_primary_10_1016_S1872_5805_23_60722_X crossref_primary_10_1088_1361_6528_ab85ea crossref_primary_10_1007_s10854_024_12561_0 crossref_primary_10_1002_slct_202203080 crossref_primary_10_1016_j_eehl_2022_11_005 crossref_primary_10_1016_j_apenergy_2024_125193 crossref_primary_10_1016_j_mcat_2023_113205 crossref_primary_10_1002_adma_202201547 crossref_primary_10_1039_D2QI00004K crossref_primary_10_2174_2665976X01999201022142435 crossref_primary_10_1002_anie_202105171 crossref_primary_10_1016_j_enconman_2022_116605 crossref_primary_10_1021_acsami_0c23036 crossref_primary_10_1002_ange_202218115 crossref_primary_10_1016_j_seppur_2023_125177 crossref_primary_10_1007_s43630_024_00599_2 crossref_primary_10_1002_aesr_202400069 crossref_primary_10_1002_adfm_202503531 crossref_primary_10_1016_j_cej_2023_148195 crossref_primary_10_1002_ghg_2267 crossref_primary_10_2139_ssrn_4184978 crossref_primary_10_1016_j_apenergy_2024_125186 crossref_primary_10_1002_ange_202313784 crossref_primary_10_1016_j_cattod_2022_05_014 crossref_primary_10_1016_j_jclepro_2021_129377 crossref_primary_10_1002_adma_202411813 crossref_primary_10_1039_D4SE00947A crossref_primary_10_1002_adma_202400920 crossref_primary_10_1016_j_cjsc_2024_100348 crossref_primary_10_1002_cssc_202301775 crossref_primary_10_3390_app12094463 crossref_primary_10_1002_ange_202105468 crossref_primary_10_1016_j_cattod_2025_115207 crossref_primary_10_1016_j_gee_2022_02_006 crossref_primary_10_1016_j_apcatb_2021_120312 crossref_primary_10_1002_smll_202308142 crossref_primary_10_1039_D0CS00025F crossref_primary_10_3866_PKU_WHXB202408015 crossref_primary_10_1021_acs_iecr_4c01375 crossref_primary_10_1039_D4CC03246B crossref_primary_10_3390_catal12091042 crossref_primary_10_1002_anie_202105468 crossref_primary_10_1002_cssc_202002029 crossref_primary_10_1016_j_colsurfa_2022_130907 crossref_primary_10_1016_j_jechem_2020_11_005 crossref_primary_10_1016_j_nantod_2021_101183 crossref_primary_10_1016_j_jcou_2024_102845 crossref_primary_10_1016_j_apcatb_2021_120320 crossref_primary_10_1016_j_apcatb_2021_120440 crossref_primary_10_1016_j_cattod_2022_04_010 crossref_primary_10_1016_j_jece_2025_116291 crossref_primary_10_1021_acscatal_1c04904 crossref_primary_10_1016_j_apcatb_2022_122176 crossref_primary_10_1016_j_ijhydene_2024_12_264 crossref_primary_10_1002_smtd_202301554 crossref_primary_10_1016_j_apcatb_2023_122471 crossref_primary_10_1016_j_molstruc_2023_136711 crossref_primary_10_1039_D2TA08552F crossref_primary_10_1039_D4EE04849K crossref_primary_10_1016_j_fuel_2022_124491 crossref_primary_10_1021_acscatal_2c02072 crossref_primary_10_1039_D0TA09059J crossref_primary_10_1002_cssc_202300377 crossref_primary_10_1002_anie_202314384 crossref_primary_10_1002_advs_202306604 crossref_primary_10_1016_j_ijhydene_2020_04_178 crossref_primary_10_1016_j_jcis_2024_03_172 crossref_primary_10_1039_D1SC00064K crossref_primary_10_1016_j_apcatb_2021_120341 crossref_primary_10_1021_acsami_4c04803 crossref_primary_10_1038_s41467_022_30291_x crossref_primary_10_1039_D4QI02332C crossref_primary_10_1021_acscatal_0c05354 crossref_primary_10_1016_j_apcatb_2021_120598 crossref_primary_10_1016_j_jcou_2023_102454 crossref_primary_10_1007_s43979_022_00011_x crossref_primary_10_1515_revac_2023_0061 crossref_primary_10_1021_acsami_1c15117 crossref_primary_10_1142_S1793604725500067 crossref_primary_10_1002_cctc_202000905 crossref_primary_10_1016_j_joule_2022_01_001 crossref_primary_10_1039_D0CY02061C crossref_primary_10_1016_j_ijbiomac_2024_136567 crossref_primary_10_1021_acs_energyfuels_2c01507 crossref_primary_10_1016_j_cej_2021_129298 crossref_primary_10_1016_j_enconman_2023_116740 crossref_primary_10_3390_molecules26247552 crossref_primary_10_1039_D2DT03560J crossref_primary_10_1016_j_jcis_2023_04_016 crossref_primary_10_1039_D3TC04332K crossref_primary_10_1021_accountsmr_2c00154 crossref_primary_10_1016_j_gee_2025_02_008 crossref_primary_10_1088_2515_7655_ad3676 crossref_primary_10_1002_adma_202307217 crossref_primary_10_2139_ssrn_3995387 crossref_primary_10_1021_acssuschemeng_0c04975 crossref_primary_10_1038_s41467_023_36784_7 crossref_primary_10_1016_j_jcis_2023_10_049 crossref_primary_10_1016_j_ccr_2022_214794 crossref_primary_10_1021_acsami_4c15849 crossref_primary_10_1021_acsnano_2c09025 crossref_primary_10_1016_j_partic_2020_12_002 crossref_primary_10_1016_S1872_2067_20_63718_4 crossref_primary_10_1016_j_apcatb_2021_120146 crossref_primary_10_1038_s41467_021_21923_9 crossref_primary_10_1016_j_psep_2024_08_010 crossref_primary_10_1039_C9TA10629D crossref_primary_10_1016_j_gee_2024_01_001 crossref_primary_10_1016_j_ijhydene_2024_05_101 crossref_primary_10_1021_acsanm_4c07137 crossref_primary_10_1039_D1DT00525A crossref_primary_10_1021_acs_jpcc_1c04152 crossref_primary_10_1039_D1CY01067K crossref_primary_10_1016_j_ccr_2022_214665 crossref_primary_10_3390_en14227620 crossref_primary_10_1016_j_apcatb_2022_122233 crossref_primary_10_1016_j_cclet_2022_107861 crossref_primary_10_1021_acsnano_2c12314 crossref_primary_10_1016_j_jechem_2021_06_039 crossref_primary_10_1016_j_enconman_2022_115496 crossref_primary_10_1039_D1MA01021B crossref_primary_10_1002_adma_202311957 crossref_primary_10_2139_ssrn_4054185 crossref_primary_10_1002_cctc_202200361 crossref_primary_10_1039_D3DT00222E crossref_primary_10_1016_j_apcatb_2023_122531 crossref_primary_10_1016_j_mattod_2021_03_016 crossref_primary_10_1021_acs_energyfuels_2c02800 crossref_primary_10_1016_j_jcou_2023_102413 crossref_primary_10_1016_j_ijhydene_2022_05_076 crossref_primary_10_1016_j_jcou_2022_102317 crossref_primary_10_1002_ange_202417384 crossref_primary_10_1002_eom2_12078 crossref_primary_10_1038_s41467_022_34798_1 crossref_primary_10_1021_jacsau_4c00153 crossref_primary_10_1002_ghg_2137 crossref_primary_10_1016_j_cej_2023_146717 crossref_primary_10_3390_nano12234153 crossref_primary_10_1016_j_fuel_2024_132617 crossref_primary_10_1021_cbe_3c00110 crossref_primary_10_1016_j_apsusc_2021_149305 crossref_primary_10_1016_j_cej_2024_153772 crossref_primary_10_1021_acs_inorgchem_4c03044 crossref_primary_10_1016_j_apsusc_2021_151971 crossref_primary_10_1002_cssc_202402106 crossref_primary_10_1016_j_jcis_2022_01_185 crossref_primary_10_1039_C9TA06923B crossref_primary_10_1016_S1872_2067_21_63967_0 crossref_primary_10_1002_adfm_202111875 crossref_primary_10_1007_s41918_022_00132_y crossref_primary_10_1016_j_mcat_2022_112565 crossref_primary_10_1016_S1872_2067_22_64159_7 crossref_primary_10_1016_j_cej_2020_127866 crossref_primary_10_1021_acsaem_3c01941 crossref_primary_10_1016_j_xcrp_2024_102246 crossref_primary_10_1021_acs_jpcc_2c01919 crossref_primary_10_1021_acs_langmuir_1c02894 crossref_primary_10_1016_j_cej_2022_134864 crossref_primary_10_1016_j_cej_2024_152798 crossref_primary_10_3389_fchem_2022_993691 crossref_primary_10_1039_D2TA03397F crossref_primary_10_1016_j_apcatb_2022_121248 crossref_primary_10_1016_j_cej_2023_141491 crossref_primary_10_1016_j_molstruc_2021_132163 crossref_primary_10_1080_14686996_2022_2054666 crossref_primary_10_1016_j_jcis_2020_08_073 crossref_primary_10_1007_s11356_023_28190_9 crossref_primary_10_1021_acsenergylett_1c02591 crossref_primary_10_1016_j_cattod_2024_114702 crossref_primary_10_1016_S1872_5813_24_60478_0 crossref_primary_10_1021_acsami_4c03790 crossref_primary_10_1016_j_cej_2025_159458 crossref_primary_10_1016_j_ccr_2024_216292 crossref_primary_10_1039_D4TC04202F crossref_primary_10_1016_j_seppur_2024_127998 crossref_primary_10_1016_j_catcom_2024_106902 crossref_primary_10_1039_D0NH00680G crossref_primary_10_1016_j_ijheatmasstransfer_2023_123901 crossref_primary_10_2139_ssrn_4128536 crossref_primary_10_1002_chem_202303552 crossref_primary_10_1039_D3QO01176C crossref_primary_10_1002_ghg_2102 crossref_primary_10_1016_S1872_2067_21_63857_3 crossref_primary_10_1021_acscatal_2c06145 crossref_primary_10_3390_molecules27051705 crossref_primary_10_3390_catal12060612 crossref_primary_10_1021_jacs_1c08033 crossref_primary_10_1016_j_envres_2021_110742 crossref_primary_10_1002_anie_202213124 crossref_primary_10_1002_cctc_202101958 crossref_primary_10_1002_cctc_202200049 crossref_primary_10_1016_j_catcom_2022_106419 crossref_primary_10_1002_anie_202306017 crossref_primary_10_1002_smll_202007025 crossref_primary_10_1016_j_mcat_2022_112654 crossref_primary_10_1002_anie_202214273 crossref_primary_10_1039_D1TA11052G crossref_primary_10_1002_asia_202400993 crossref_primary_10_1016_j_checat_2024_100960 crossref_primary_10_1002_ange_202213124 crossref_primary_10_1016_j_jechem_2024_07_061 crossref_primary_10_1002_anie_202404911 crossref_primary_10_1016_j_cej_2022_139304 crossref_primary_10_1016_j_cej_2022_137129 crossref_primary_10_1016_j_envres_2021_111176 crossref_primary_10_1016_j_checat_2021_10_005 crossref_primary_10_1016_j_cej_2022_135071 crossref_primary_10_1186_s40807_024_00100_8 crossref_primary_10_1016_j_ceramint_2022_10_118 crossref_primary_10_1016_j_jece_2023_110324 crossref_primary_10_1021_acs_inorgchem_0c02733 crossref_primary_10_1002_cey2_127 crossref_primary_10_1007_s11426_023_1826_3 crossref_primary_10_1021_acs_iecr_2c00201 crossref_primary_10_1039_D2CP00269H crossref_primary_10_1627_jpi_67_217 crossref_primary_10_1021_acssuschemeng_4c06883 crossref_primary_10_1016_j_cej_2021_132507 crossref_primary_10_1016_j_energy_2024_130275 crossref_primary_10_1021_acsnano_1c00990 crossref_primary_10_1016_j_jechem_2023_04_024 crossref_primary_10_1016_j_ccr_2022_215008 crossref_primary_10_3390_molecules27092701 crossref_primary_10_1021_acs_langmuir_4c00210 crossref_primary_10_1002_anie_202412408 crossref_primary_10_1007_s40820_023_01276_2 crossref_primary_10_1002_smll_202407206 crossref_primary_10_1016_j_apenergy_2024_123454 crossref_primary_10_1016_j_jece_2021_105422 crossref_primary_10_1002_cey2_499 crossref_primary_10_1039_D3SC02679E crossref_primary_10_1002_anie_202410596 crossref_primary_10_1016_j_solmat_2024_112917 crossref_primary_10_1021_acsenergylett_1c00645 crossref_primary_10_1039_D3NR00745F crossref_primary_10_1039_D0TA08781E crossref_primary_10_1016_S1872_2067_24_60090_2 crossref_primary_10_1016_j_cattod_2024_114852 crossref_primary_10_1016_j_jaap_2022_105695 crossref_primary_10_1016_j_apcata_2024_119604 crossref_primary_10_1039_D0TA01256D crossref_primary_10_1002_ange_202314384 crossref_primary_10_1002_cctc_202401388 crossref_primary_10_1016_j_cej_2024_158821 crossref_primary_10_3390_catal14110756 crossref_primary_10_1002_anie_202318166 crossref_primary_10_1002_ange_202412408 crossref_primary_10_1111_jace_19135 crossref_primary_10_1002_ange_202304452 crossref_primary_10_1016_j_ensm_2020_12_007 crossref_primary_10_1007_s12274_022_4795_3 crossref_primary_10_1016_j_mcat_2024_114226 crossref_primary_10_1021_acs_jpcc_1c05222 crossref_primary_10_1039_D1TA00890K crossref_primary_10_1021_acsami_4c19523 crossref_primary_10_1016_j_jssc_2023_124375 crossref_primary_10_1002_adfm_202210283 crossref_primary_10_1016_j_cej_2021_131222 crossref_primary_10_1016_j_jes_2024_05_013 crossref_primary_10_1002_anie_202001701 crossref_primary_10_1002_ange_202404911 crossref_primary_10_1002_ange_202410596 crossref_primary_10_1002_cssc_202400551 crossref_primary_10_3390_molecules28041951 crossref_primary_10_1016_j_mcat_2024_114259 crossref_primary_10_1016_j_ccr_2022_214592 crossref_primary_10_1016_j_apcatb_2022_121747 crossref_primary_10_1021_acs_energyfuels_1c01881 crossref_primary_10_1021_acscatal_0c04826 crossref_primary_10_1039_D1NR01138C crossref_primary_10_1016_j_jece_2021_105460 crossref_primary_10_1002_ange_202001701 crossref_primary_10_1002_smll_202305533 crossref_primary_10_1016_j_cej_2024_157717 crossref_primary_10_1016_j_chempr_2022_04_015 crossref_primary_10_1016_j_jcou_2022_101972 crossref_primary_10_1016_j_apcatb_2021_120905 crossref_primary_10_1039_D2CC06503G crossref_primary_10_1002_adfm_202409904 crossref_primary_10_1039_D1TA00440A crossref_primary_10_15541_jim20210458 crossref_primary_10_1002_cssc_202001604 crossref_primary_10_1039_D0GC02743J crossref_primary_10_1016_j_mtnano_2021_100113 crossref_primary_10_1021_acs_iecr_1c02058 crossref_primary_10_1002_aic_17995 crossref_primary_10_1021_acs_energyfuels_2c01076 crossref_primary_10_1039_D1CS00782C crossref_primary_10_3390_en15228395 crossref_primary_10_1021_acs_jpcc_1c10291 crossref_primary_10_3390_catal12121549 crossref_primary_10_1007_s12274_023_5782_z crossref_primary_10_1016_j_mtnano_2023_100385 crossref_primary_10_1002_advs_202103926 crossref_primary_10_1007_s12598_024_02638_4 crossref_primary_10_1002_cssc_202200337 crossref_primary_10_1039_D3NR01176C crossref_primary_10_1021_acscatal_2c03893 crossref_primary_10_1016_j_comptc_2024_114929 crossref_primary_10_1016_j_mcat_2024_114308 crossref_primary_10_1016_j_apcata_2022_118568 crossref_primary_10_1002_ange_202105171 crossref_primary_10_1002_slct_202202258 crossref_primary_10_1021_acscatal_0c04329 crossref_primary_10_1002_aesr_202300141 crossref_primary_10_1002_anie_202218115 crossref_primary_10_1002_anie_202304452 crossref_primary_10_3390_catal13040647 crossref_primary_10_1002_adma_202303654 crossref_primary_10_1016_j_apsusc_2024_161447 crossref_primary_10_1007_s40843_024_3199_9 crossref_primary_10_1016_j_ces_2023_119246 crossref_primary_10_1016_j_isci_2022_104107 crossref_primary_10_1016_j_ijhydene_2022_09_224 crossref_primary_10_1002_ange_202214273 crossref_primary_10_1016_j_physrep_2022_07_002 crossref_primary_10_1002_anie_202417384 crossref_primary_10_1016_j_apsusc_2022_153256 crossref_primary_10_1002_cctc_202301279 crossref_primary_10_1016_j_chemosphere_2022_135085 crossref_primary_10_1016_S1872_2067_24_60177_4 crossref_primary_10_1039_D3EY00106G crossref_primary_10_1016_j_jclepro_2023_139542 crossref_primary_10_1021_acs_iecr_1c03590 crossref_primary_10_3390_inorganics11010006 crossref_primary_10_1016_j_jcat_2022_07_028 crossref_primary_10_1002_jctb_6562 crossref_primary_10_1002_aesr_202100169 crossref_primary_10_1016_j_mcat_2024_114686 crossref_primary_10_1016_j_device_2024_100604 crossref_primary_10_1002_cctc_202300170 crossref_primary_10_1016_j_cej_2020_127280 crossref_primary_10_1002_ange_202318166 crossref_primary_10_1021_jacs_1c04315 crossref_primary_10_1016_j_ceramint_2023_09_226 crossref_primary_10_1016_j_mcat_2024_114693 crossref_primary_10_1016_j_ccst_2024_100308 crossref_primary_10_1016_j_cej_2021_131617 crossref_primary_10_1016_j_ccst_2023_100144 crossref_primary_10_1021_acsanm_4c00598 crossref_primary_10_1021_acs_energyfuels_2c01394 crossref_primary_10_1016_j_cattod_2022_02_019 crossref_primary_10_1002_anie_202313784 crossref_primary_10_2139_ssrn_4154130 crossref_primary_10_1016_j_cogsc_2022_100652 crossref_primary_10_1016_j_joule_2023_12_013 crossref_primary_10_1016_j_solmat_2021_111353 crossref_primary_10_1016_j_cej_2021_128560 crossref_primary_10_1021_acsami_4c18398 crossref_primary_10_1002_cssc_202400829 crossref_primary_10_1016_j_cclet_2023_109240 crossref_primary_10_1016_j_cclet_2021_07_059 crossref_primary_10_1007_s10562_020_03479_3 crossref_primary_10_1002_solr_202200493 crossref_primary_10_1021_acs_inorgchem_0c03503 crossref_primary_10_1039_D4TA07561G crossref_primary_10_1016_j_applthermaleng_2025_125532 crossref_primary_10_1039_D4QI02143F crossref_primary_10_1007_s42114_024_00955_x crossref_primary_10_1016_j_cej_2020_128397 crossref_primary_10_1021_acsami_0c21007 crossref_primary_10_1002_anie_202219340 crossref_primary_10_1002_adsu_202200115 crossref_primary_10_1021_acscatal_3c04989 crossref_primary_10_1016_j_device_2024_100652 crossref_primary_10_1021_acscatal_2c05741 crossref_primary_10_1021_acs_jpclett_3c02465 crossref_primary_10_1039_D2TA03219H crossref_primary_10_1016_j_cej_2021_131513 crossref_primary_10_1016_j_enconman_2024_118634 crossref_primary_10_1039_D1TA09914K crossref_primary_10_1016_j_seppur_2024_128174 crossref_primary_10_1002_chem_202102837 crossref_primary_10_1016_j_xcrp_2022_101127 crossref_primary_10_1002_ange_202306017 crossref_primary_10_1002_cnl2_107 crossref_primary_10_1002_chem_202401486 crossref_primary_10_1016_S1872_2067_22_64175_5 crossref_primary_10_1021_acs_energyfuels_2c01368 crossref_primary_10_1016_j_ceramint_2024_05_075 crossref_primary_10_1039_D1EE02714J crossref_primary_10_1002_asia_202400208 crossref_primary_10_1039_D1TC03125B crossref_primary_10_1021_acsnano_4c13030 crossref_primary_10_1002_adma_202208132 crossref_primary_10_1021_acsnano_3c03118 crossref_primary_10_1016_j_biortech_2020_122863 crossref_primary_10_1016_j_checat_2021_01_003 crossref_primary_10_2139_ssrn_4190897 crossref_primary_10_1039_D1CY01311D crossref_primary_10_1021_acscatal_4c04732 crossref_primary_10_1039_D0CS00357C crossref_primary_10_1016_j_jcis_2022_11_006 crossref_primary_10_1039_D2NJ03441G |
Cites_doi | 10.1038/s41929-018-0138-x 10.1002/ange.201411096 10.1080/10584587.2016.1176507 10.1002/anie.201207199 10.1039/C8CS00016F 10.1126/science.aat6967 10.1016/j.ijhydene.2015.05.129 10.1021/acscatal.5b00776 10.1021/acscatal.8b00272 10.1002/ange.201308145 10.1002/ange.201902324 10.1002/anie.201900781 10.1039/C7GC00199A 10.1002/adfm.201502253 10.1039/C5CS00838G 10.1039/C7RA04879C 10.1002/ange.201504933 10.1002/ange.201505802 10.1016/j.nanoen.2017.03.021 10.1021/jacs.5b06150 10.1016/j.apcatb.2017.02.080 10.1039/C5TA10737G 10.1021/jacs.7b00102 10.1039/C6TA05402A 10.1038/s41929-018-0170-x 10.1016/j.apcatb.2018.05.066 10.1021/acsnano.6b05416 10.1093/nsr/nwx019 10.1103/PhysRevLett.88.077402 10.1002/anie.201701370 10.1002/ange.201602973 10.1021/acsami.7b13043 10.1016/j.joule.2018.03.007 10.1002/anie.200800480 10.1039/C7EE02287E 10.1021/acscatal.5b02653 10.1002/adma.201505187 10.1002/cctc.201000358 10.1038/nmat4281 10.1016/j.apcatb.2016.11.054 10.1039/c2cp42745a 10.1039/C8EE02790K 10.1126/science.1253150 10.1016/j.catcom.2016.05.025 10.1021/acscatal.8b03924 10.1126/science.aaf1835 10.1016/j.apenergy.2015.07.028 10.1039/C6CS00862C 10.1002/anie.201308145 10.1016/j.apcatb.2018.02.041 10.1002/anie.201602973 10.1002/cssc.201500390 10.1002/cctc.201701565 10.1021/jacs.5b12521 10.1021/jacs.6b07272 10.1016/j.cattod.2018.11.005 10.1039/C5GC00119F 10.1002/anie.201810886 10.1016/j.apcatb.2017.10.071 10.1039/C8SC05608K 10.1002/anie.201608597 10.1016/j.apcatb.2019.03.003 10.1039/a704801g 10.1039/C3CS60395D 10.1016/j.apcatb.2017.05.085 10.1039/C5GC01893E 10.1002/anie.201409183 10.1038/s41467-017-00055-z 10.1021/acs.inorgchem.8b00896 10.1002/ange.201501788 10.1002/anie.201814313 10.1016/j.catcom.2017.09.010 10.1002/aenm.201601657 10.1039/C7PP00442G 10.1126/science.aah4321 10.1016/j.apcatb.2017.08.016 10.1021/ar400271c 10.1002/aenm.201801587 10.1039/C7TA07290B 10.1002/advs.201400001 10.1002/adma.201600305 10.1038/ncomms14542 10.1002/ange.201409183 10.1016/j.cattod.2019.04.042 10.1016/j.joule.2019.06.023 10.1002/adma.201705512 10.1002/zaac.201300356 10.1039/C6EE00383D 10.1039/C8CS00256H 10.1002/ange.200800480 10.1039/c1cs15008a 10.1038/s41563-018-0033-5 10.1039/C5SC01227A 10.1016/j.jechem.2017.09.029 10.1038/nmat3151 10.1002/ange.201207199 10.1021/jacs.6b08096 10.1007/s11244-016-0658-z 10.1039/C5TA01699A 10.1126/science.aac8522 10.1016/j.apcatb.2018.01.001 10.1039/C8EE02768D 10.1021/acscatal.6b00882 10.1002/anie.201601661 10.1073/pnas.1806950115 10.1002/adfm.201804762 10.1021/acs.chemrev.7b00435 10.1002/anie.201505802 10.1002/anie.201504933 10.1016/j.joule.2019.03.003 10.1038/nchem.1032 10.1039/C5TA10180H 10.1002/ange.201404953 10.1021/acsnano.6b02346 10.1002/ange.201608597 10.1016/j.apcatb.2018.04.060 10.1002/cctc.201801409 10.1038/s41929-019-0266-y 10.1039/C5CS00380F 10.1039/C7TA00704C 10.1002/ange.201701370 10.1016/j.apcatb.2017.06.054 10.1021/jacs.5b10179 10.1039/c3cc39054c 10.1002/ange.201601661 10.1021/acs.nanolett.7b04776 10.1016/j.nanoen.2017.09.023 10.1016/j.nanoen.2018.09.009 10.1021/acscatal.6b02089 10.1002/ange.201814313 10.1002/anie.201404953 10.1039/C5CP02613J 10.1002/anie.201411096 10.1002/anie.201501788 10.1039/C7GC03522E 10.1039/C5EE02657A 10.1002/ange.201900781 10.1016/j.nanoen.2016.05.045 10.1002/ese3.278 10.1002/advs.201600189 10.1002/anie.201902324 10.1021/jacs.6b05190 10.1002/ange.201810886 10.1002/adma.201704663 |
ContentType | Journal Article |
Copyright | 2019 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. 2020 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: 2019 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. – notice: 2020 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | AAYXX CITATION NPM 7TM K9. 7X8 |
DOI | 10.1002/anie.201907443 |
DatabaseName | CrossRef PubMed Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed ProQuest Health & Medical Complete (Alumni) Nucleic Acids Abstracts MEDLINE - Academic |
DatabaseTitleList | PubMed ProQuest Health & Medical Complete (Alumni) CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3773 |
Edition | International ed. in English |
EndPage | 8035 |
ExternalDocumentID | 31309678 10_1002_anie_201907443 ANIE201907443 |
Genre | reviewArticle Journal Article Review |
GrantInformation_xml | – fundername: National Basic Research Program of China funderid: 2014CB239301 – fundername: the World Premier International Research Center Initiative (WPI Initiative) on Materials Nanoarchitectonics (MANA), MEXT (Japan) – fundername: National Natural Science Foundation of China funderid: 21633004; 21776007, 21811530293 – fundername: the Fundamental Research Funds for the Central Universities funderid: XK1802-1 – fundername: JSPS KAKENHI funderid: JP18H02065 – fundername: Scholarship by China Scholarship Council (CSC) funderid: 201606320239; 201706885023 – fundername: the Photo-excitonix Project in Hokkaido University – fundername: National Natural Science Foundation of China grantid: 21776007, 21811530293 – fundername: the Fundamental Research Funds for the Central Universities grantid: XK1802-1 – fundername: JSPS KAKENHI grantid: JP18H02065 – fundername: National Basic Research Program of China grantid: 2014CB239301 – fundername: Scholarship by China Scholarship Council (CSC) grantid: 201606320239 – fundername: National Natural Science Foundation of China grantid: 21633004 – fundername: Scholarship by China Scholarship Council (CSC) grantid: 201706885023 |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABLJU ABPPZ ABPVW ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BTSUX BY8 CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES M53 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ TN5 UB1 UPT UQL V2E VQA W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XSW XV2 YZZ ZZTAW ~IA ~KM ~WT AAYXX ABDBF ABJNI AEYWJ AGHNM AGYGG CITATION EJD NPM YIN 7TM K9. 7X8 |
ID | FETCH-LOGICAL-c4763-c4abd830af8df43ff9831282d7a36ccfab88ce90a98fcefac6f0935e062662b3 |
IEDL.DBID | DR2 |
ISSN | 1433-7851 1521-3773 |
IngestDate | Fri Jul 11 05:20:53 EDT 2025 Fri Jul 25 10:47:41 EDT 2025 Wed Feb 19 02:32:09 EST 2025 Thu Apr 24 23:07:45 EDT 2025 Tue Jul 01 02:26:53 EDT 2025 Wed Jan 22 16:38:11 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 21 |
Keywords | carbon dioxide heterogeneous catalysis photocatalysis reduction nanostructures |
Language | English |
License | 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4763-c4abd830af8df43ff9831282d7a36ccfab88ce90a98fcefac6f0935e062662b3 |
Notes | These authors contributed equally to this work ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0002-8105-8903 0000-0002-9196-8062 0000-0001-6424-7959 |
PMID | 31309678 |
PQID | 2409089902 |
PQPubID | 946352 |
PageCount | 20 |
ParticipantIDs | proquest_miscellaneous_2258734243 proquest_journals_2409089902 pubmed_primary_31309678 crossref_primary_10_1002_anie_201907443 crossref_citationtrail_10_1002_anie_201907443 wiley_primary_10_1002_anie_201907443_ANIE201907443 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | May 18, 2020 |
PublicationDateYYYYMMDD | 2020-05-18 |
PublicationDate_xml | – month: 05 year: 2020 text: May 18, 2020 day: 18 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Angewandte Chemie International Edition |
PublicationTitleAlternate | Angew Chem Int Ed Engl |
PublicationYear | 2020 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2017; 5 2014 2014; 53 126 2018; 362 2017; 7 2017; 8 2017; 41 2017; 4 2019; 11 2019; 10 2019; 12 2017; 46 2011; 10 2015; 349 2008 2008; 47 120 2012; 14 2017; 357 2018; 47 2013 2013; 52 125 2014; 1 2017; 209 2018; 8 2018; 2 1997; 93 2015; 137 2018; 1 2013; 639 2015; 40 2018 2018; 57 130 2015; 44 2017; 34 2002; 88 2015 2015; 54 127 2019; 29 2016; 84 2018; 30 2016; 351 2020; 339 2017; 204 2016; 45 2017; 218 2017; 219 2019; 7 2018; 28 2015; 14 2019; 9 2015; 17 2015; 6 2019; 3 2015; 5 2015; 3 2013; 49 2018; 226 2019; 2 2011; 40 2018; 224 2018; 103 2016; 10 2014; 47 2017 2017; 56 129 2011; 3 2015; 8 2018; 20 2016; 59 2019 2019; 58 131 2017; 139 2014; 43 2017; 217 2018; 230 2016; 4 2016; 6 2018; 18 2015; 25 2018; 17 2016 2016; 55 128 2016; 3 2018; 237 2018; 118 2017; 10 2015; 156 2018; 115 2018; 235 2019; 335 2017; 19 2016; 138 2018; 12 2019; 250 2016; 28 2018; 10 2018; 53 2016; 26 2016; 9 2014; 344 2018; 57 2016; 172 e_1_2_8_45_2 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_68_1 e_1_2_8_132_1 e_1_2_8_1_2 e_1_2_8_5_1 e_1_2_8_9_1 e_1_2_8_117_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_64_1 e_1_2_8_87_1 Xu G. (e_1_2_8_29_1) 2018; 12 e_1_2_8_113_1 e_1_2_8_1_1 e_1_2_8_41_1 e_1_2_8_60_1 e_1_2_8_83_1 e_1_2_8_38_2 e_1_2_8_19_1 e_1_2_8_19_2 e_1_2_8_109_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_57_1 e_1_2_8_120_1 e_1_2_8_91_1 e_1_2_8_95_1 e_1_2_8_99_1 e_1_2_8_105_1 e_1_2_8_128_1 e_1_2_8_105_2 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_76_1 e_1_2_8_101_1 e_1_2_8_124_1 e_1_2_8_30_1 e_1_2_8_72_1 Hoch L. B. (e_1_2_8_106_1) 2014; 1 e_1_2_8_25_1 e_1_2_8_67_2 e_1_2_8_48_1 e_1_2_8_2_2 e_1_2_8_2_1 e_1_2_8_110_1 e_1_2_8_6_1 e_1_2_8_21_1 e_1_2_8_67_1 e_1_2_8_21_2 e_1_2_8_44_1 e_1_2_8_86_1 e_1_2_8_118_1 e_1_2_8_63_1 e_1_2_8_40_1 e_1_2_8_82_1 e_1_2_8_114_1 e_1_2_8_18_1 e_1_2_8_14_1 e_1_2_8_37_1 e_1_2_8_79_1 e_1_2_8_94_1 e_1_2_8_90_1 e_1_2_8_94_2 e_1_2_8_121_2 e_1_2_8_121_1 e_1_2_8_98_1 e_1_2_8_10_1 e_1_2_8_56_1 e_1_2_8_33_1 e_1_2_8_75_1 e_1_2_8_129_1 e_1_2_8_52_1 e_1_2_8_102_1 e_1_2_8_71_1 e_1_2_8_125_1 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_89_2 e_1_2_8_3_1 e_1_2_8_81_1 e_1_2_8_111_1 e_1_2_8_130_1 e_1_2_8_3_2 e_1_2_8_7_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_66_1 e_1_2_8_89_1 e_1_2_8_20_2 e_1_2_8_119_1 e_1_2_8_62_1 e_1_2_8_85_1 e_1_2_8_115_1 e_1_2_8_81_2 e_1_2_8_17_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_59_1 e_1_2_8_70_1 e_1_2_8_122_1 e_1_2_8_97_1 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_78_1 e_1_2_8_107_1 e_1_2_8_51_1 e_1_2_8_74_1 e_1_2_8_103_1 e_1_2_8_126_1 e_1_2_8_93_1 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_69_1 e_1_2_8_80_1 e_1_2_8_4_1 e_1_2_8_131_1 e_1_2_8_8_1 e_1_2_8_42_1 e_1_2_8_88_1 e_1_2_8_116_1 e_1_2_8_23_1 e_1_2_8_65_1 e_1_2_8_61_2 e_1_2_8_84_1 e_1_2_8_112_1 e_1_2_8_61_1 e_1_2_8_39_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_58_1 e_1_2_8_92_1 e_1_2_8_96_1 e_1_2_8_100_1 e_1_2_8_31_1 e_1_2_8_77_1 e_1_2_8_127_1 e_1_2_8_12_1 e_1_2_8_54_1 e_1_2_8_108_1 e_1_2_8_50_2 e_1_2_8_73_1 e_1_2_8_123_1 e_1_2_8_50_1 e_1_2_8_92_2 e_1_2_8_104_1 |
References_xml | – volume: 118 start-page: 434 year: 2018 end-page: 504 publication-title: Chem. Rev. – volume: 55 128 start-page: 7968 8100 year: 2016 2016 end-page: 7973 8105 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 138 start-page: 2917 year: 2016 end-page: 2920 publication-title: J. Am. Chem. Soc. – volume: 357 start-page: 389 year: 2017 end-page: 393 publication-title: Science – volume: 54 127 start-page: 13561 13765 year: 2015 2015 end-page: 13565 13769 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 10 start-page: 2392 year: 2017 end-page: 2400 publication-title: Energy Environ. Sci. – volume: 5 start-page: 10567 year: 2017 end-page: 10573 publication-title: J. Mater. Chem. A – volume: 57 130 start-page: 16781 17023 year: 2018 2018 end-page: 16784 17026 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 14 start-page: 15214 year: 2012 end-page: 15225 publication-title: Phys. Chem. Chem. Phys. – volume: 54 127 start-page: 11350 11508 year: 2015 2015 end-page: 11365 11524 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 4 start-page: 5314 year: 2016 end-page: 5322 publication-title: J. Mater. Chem. A – volume: 235 start-page: 186 year: 2018 end-page: 196 publication-title: Appl. Catal. B – volume: 47 start-page: 1220 year: 2014 end-page: 1227 publication-title: Acc. Chem. Res. – volume: 6 start-page: 494 year: 2016 end-page: 497 publication-title: ACS Catal. – volume: 9 start-page: 3026 year: 2019 end-page: 3053 publication-title: ACS Catal. – volume: 3 start-page: 13299 year: 2015 end-page: 13307 publication-title: J. Mater. Chem. A – volume: 12 start-page: 5333 year: 2018 end-page: 5340 publication-title: ACS Catal. – volume: 28 start-page: 6781 year: 2016 end-page: 6803 publication-title: Adv. Mater. – volume: 7 start-page: 45949 year: 2017 end-page: 45959 publication-title: RSC Adv. – volume: 138 start-page: 9128 year: 2016 end-page: 9136 publication-title: J. Am. Chem. Soc. – volume: 224 start-page: 563 year: 2018 end-page: 571 publication-title: Appl. Catal. B – volume: 2 start-page: 1369 year: 2018 end-page: 1381 publication-title: Joule – volume: 53 126 start-page: 11478 11662 year: 2014 2014 end-page: 11482 11666 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 639 start-page: 2683 year: 2013 end-page: 2695 publication-title: Z. Anorg. Allg. Chem. – volume: 43 start-page: 7813 year: 2014 end-page: 7837 publication-title: Chem. Soc. Rev. – volume: 3 start-page: 529 year: 2011 end-page: 541 publication-title: ChemCatChem – volume: 53 start-page: 508 year: 2018 end-page: 512 publication-title: Nano Energy – volume: 56 129 start-page: 5570 5662 year: 2017 2017 end-page: 5574 5666 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 137 start-page: 10104 year: 2015 end-page: 10107 publication-title: J. Am. Chem. Soc. – volume: 10 start-page: 3161 year: 2019 end-page: 3167 publication-title: Chem. Sci. – volume: 8 start-page: 27 year: 2017 publication-title: Nat. Commun. – volume: 1 start-page: 889 year: 2018 end-page: 896 publication-title: Nat. Catal. – volume: 7 start-page: 4 year: 2019 end-page: 29 publication-title: Energy Sci. Eng. – volume: 41 start-page: 308 year: 2017 end-page: 319 publication-title: Nano Energy – volume: 3 start-page: 467 year: 2011 end-page: 472 publication-title: Nat. Chem. – volume: 12 start-page: 923 year: 2019 end-page: 928 publication-title: Energy Environ. Sci. – volume: 10 start-page: 5578 year: 2016 end-page: 5586 publication-title: ACS Nano – volume: 4 start-page: 5773 year: 2016 end-page: 5783 publication-title: J. Mater. Chem. A – volume: 25 start-page: 5360 year: 2015 end-page: 5367 publication-title: Adv. Funct. Mater. – volume: 230 start-page: 220 year: 2018 end-page: 236 publication-title: Appl. Catal. B – volume: 44 start-page: 7808 year: 2015 end-page: 7828 publication-title: Chem. Soc. Rev. – volume: 17 start-page: 829 year: 2018 end-page: 834 publication-title: Photochem. Photobiol. Sci. – volume: 226 start-page: 463 year: 2018 end-page: 472 publication-title: Appl. Catal. B – volume: 5 start-page: 5342 year: 2015 end-page: 5348 publication-title: ACS Catal. – volume: 12 start-page: 1122 year: 2019 end-page: 1142 publication-title: Energy Environ. Sci. – volume: 29 start-page: 3 year: 2019 end-page: 7 publication-title: J. Energy Chem. – volume: 1 start-page: 656 year: 2018 end-page: 665 publication-title: Nat. Catal. – volume: 88 year: 2002 publication-title: Phys. Rev. Lett. – volume: 18 start-page: 1714 year: 2018 end-page: 1723 publication-title: Nano Lett. – volume: 335 start-page: 187 year: 2019 end-page: 192 publication-title: Catal. Today – volume: 58 131 start-page: 6271 6337 year: 2019 2019 end-page: 6275 6341 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 7 year: 2017 publication-title: Adv. Energy Mater. – volume: 4 start-page: 13155 year: 2016 end-page: 13165 publication-title: J. Mater. Chem. A – volume: 53 126 start-page: 2935 2979 year: 2014 2014 end-page: 2940 2984 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 59 start-page: 1268 year: 2016 end-page: 1278 publication-title: Top. Catal. – volume: 217 start-page: 494 year: 2017 end-page: 522 publication-title: Appl. Catal. B – volume: 93 start-page: 4159 year: 1997 end-page: 4163 publication-title: J. Chem. Soc. Faraday Trans. – volume: 20 start-page: 1169 year: 2018 end-page: 1192 publication-title: Green Chem. – volume: 46 start-page: 1807 year: 2017 end-page: 1823 publication-title: Chem. Soc. Rev. – volume: 11 start-page: 342 year: 2019 end-page: 356 publication-title: ChemCatChem – volume: 54 127 start-page: 841 855 year: 2015 2015 end-page: 845 859 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 19 start-page: 3707 year: 2017 end-page: 3728 publication-title: Green Chem. – volume: 58 131 start-page: 7708 7790 year: 2019 2019 end-page: 7712 7794 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 17 start-page: 2647 year: 2015 end-page: 2663 publication-title: Green Chem. – volume: 8 start-page: 3556 year: 2015 end-page: 3575 publication-title: ChemSusChem – volume: 47 start-page: 5423 year: 2018 end-page: 5443 publication-title: Chem. Soc. Rev. – volume: 218 start-page: 672 year: 2017 end-page: 678 publication-title: Appl. Catal. B – volume: 57 start-page: 8276 year: 2018 end-page: 8286 publication-title: Inorg. Chem. – volume: 17 start-page: 14623 year: 2015 end-page: 14635 publication-title: Phys. Chem. Chem. Phys. – volume: 55 128 start-page: 8840 8986 year: 2016 2016 end-page: 8845 8991 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 3 year: 2016 publication-title: Adv. Sci. – volume: 10 start-page: 408 year: 2018 end-page: 416 publication-title: ACS Appl. Mater. Interfaces – volume: 250 start-page: 10 year: 2019 end-page: 16 publication-title: Appl. Catal. B – volume: 54 127 start-page: 12868 13060 year: 2015 2015 end-page: 12884 13077 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 55 128 start-page: 14310 14522 year: 2016 2016 end-page: 14314 14526 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 362 start-page: 69 year: 2018 end-page: 72 publication-title: Science – volume: 351 start-page: 1065 year: 2016 end-page: 1068 publication-title: Science – volume: 28 start-page: 3703 year: 2016 end-page: 3710 publication-title: Adv. Mater. – volume: 138 start-page: 13289 year: 2016 end-page: 13297 publication-title: J. Am. Chem. Soc. – volume: 10 start-page: 9017 year: 2016 end-page: 9025 publication-title: ACS Nano – volume: 49 start-page: 3664 year: 2013 end-page: 3666 publication-title: Chem. Commun. – volume: 219 start-page: 611 year: 2017 end-page: 618 publication-title: Appl. Catal. B – volume: 8 year: 2018 publication-title: Adv. Energy Mater. – volume: 10 start-page: 940 year: 2018 end-page: 945 publication-title: ChemCatChem – volume: 6 start-page: 5629 year: 2016 end-page: 5640 publication-title: ACS Catal. – volume: 47 120 start-page: 3524 3578 year: 2008 2008 end-page: 3535 3590 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 139 start-page: 5652 year: 2017 end-page: 5655 publication-title: J. Am. Chem. Soc. – volume: 26 start-page: 398 year: 2016 end-page: 404 publication-title: Nano Energy – volume: 172 start-page: 97 year: 2016 end-page: 108 publication-title: Integr. Ferroelectr. – volume: 28 year: 2018 publication-title: Adv. Funct. Mater. – volume: 8 start-page: 6582 year: 2018 end-page: 6593 publication-title: ACS Catal. – volume: 3 start-page: 1606 year: 2019 end-page: 1636 publication-title: Joule – volume: 204 start-page: 440 year: 2017 end-page: 455 publication-title: Appl. Catal. B – volume: 52 125 start-page: 7372 7516 year: 2013 2013 end-page: 7408 7557 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 115 start-page: 8278 year: 2018 end-page: 8283 publication-title: Proc. Natl. Acad. Sci. USA – volume: 6 start-page: 7485 year: 2016 end-page: 7527 publication-title: ACS Catal. – volume: 138 start-page: 14962 year: 2016 end-page: 14969 publication-title: J. Am. Chem. Soc. – volume: 54 127 start-page: 11545 11707 year: 2015 2015 end-page: 11549 11711 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 40 start-page: 3703 year: 2011 end-page: 3727 publication-title: Chem. Soc. Rev. – volume: 9 start-page: 2177 year: 2016 end-page: 2196 publication-title: Energy Environ. Sci. – volume: 2 start-page: 381 year: 2019 end-page: 386 publication-title: Nat. Catal. – volume: 344 start-page: 616 year: 2014 end-page: 619 publication-title: Science – volume: 14 start-page: 567 year: 2015 end-page: 576 publication-title: Nat. Mater. – volume: 5 start-page: 21625 year: 2017 end-page: 21649 publication-title: J. Mater. Chem. A – volume: 8 start-page: 14542 year: 2017 publication-title: Nat. Commun. – volume: 40 start-page: 9183 year: 2015 end-page: 9200 publication-title: Int. J. Hydrogen Energy – volume: 349 start-page: 587 year: 2015 end-page: 588 publication-title: Science – volume: 17 start-page: 5114 year: 2015 end-page: 5130 publication-title: Green Chem. – volume: 10 start-page: 911 year: 2011 end-page: 921 publication-title: Nat. Mater. – volume: 84 start-page: 30 year: 2016 end-page: 35 publication-title: Catal. Commun. – volume: 1 year: 2014 publication-title: Adv. Sci. – volume: 6 start-page: 4403 year: 2015 end-page: 4425 publication-title: Chem. Sci. – volume: 9 start-page: 62 year: 2016 end-page: 73 publication-title: Energy Environ. Sci. – volume: 138 start-page: 1206 year: 2016 end-page: 1214 publication-title: J. Am. Chem. Soc. – volume: 237 start-page: 68 year: 2018 end-page: 73 publication-title: Appl. Catal. B – volume: 34 start-page: 524 year: 2017 end-page: 532 publication-title: Nano Energy – volume: 3 start-page: 920 year: 2019 end-page: 937 publication-title: Joule – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 58 131 start-page: 17528 17690 year: 2019 2019 end-page: 17551 17715 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 209 start-page: 183 year: 2017 end-page: 189 publication-title: Appl. Catal. B – volume: 47 start-page: 8134 year: 2018 end-page: 8172 publication-title: Chem. Soc. Rev. – volume: 103 start-page: 24 year: 2018 end-page: 28 publication-title: Catal. Commun. – volume: 45 start-page: 2603 year: 2016 end-page: 2636 publication-title: Chem. Soc. Rev. – volume: 339 start-page: 321 year: 2020 end-page: 327 publication-title: Catal. Today – volume: 4 start-page: 761 year: 2017 end-page: 780 publication-title: Natl. Sci. Rev. – volume: 17 start-page: 301 year: 2018 end-page: 307 publication-title: Nat. Mater. – volume: 156 start-page: 223 year: 2015 end-page: 229 publication-title: Appl. Energy – ident: e_1_2_8_95_1 doi: 10.1038/s41929-018-0138-x – ident: e_1_2_8_81_2 doi: 10.1002/ange.201411096 – ident: e_1_2_8_123_1 doi: 10.1080/10584587.2016.1176507 – ident: e_1_2_8_38_1 doi: 10.1002/anie.201207199 – ident: e_1_2_8_40_1 doi: 10.1039/C8CS00016F – ident: e_1_2_8_91_1 doi: 10.1126/science.aat6967 – ident: e_1_2_8_118_1 doi: 10.1016/j.ijhydene.2015.05.129 – ident: e_1_2_8_120_1 doi: 10.1021/acscatal.5b00776 – volume: 1 start-page: 140013 year: 2014 ident: e_1_2_8_106_1 publication-title: Adv. Sci. – ident: e_1_2_8_86_1 doi: 10.1021/acscatal.8b00272 – ident: e_1_2_8_92_2 doi: 10.1002/ange.201308145 – ident: e_1_2_8_1_2 doi: 10.1002/ange.201902324 – ident: e_1_2_8_3_1 doi: 10.1002/anie.201900781 – ident: e_1_2_8_30_1 doi: 10.1039/C7GC00199A – ident: e_1_2_8_28_1 doi: 10.1002/adfm.201502253 – ident: e_1_2_8_76_1 doi: 10.1039/C5CS00838G – ident: e_1_2_8_125_1 doi: 10.1039/C7RA04879C – ident: e_1_2_8_61_2 doi: 10.1002/ange.201504933 – ident: e_1_2_8_2_2 doi: 10.1002/ange.201505802 – ident: e_1_2_8_36_1 doi: 10.1016/j.nanoen.2017.03.021 – ident: e_1_2_8_111_1 doi: 10.1021/jacs.5b06150 – ident: e_1_2_8_65_1 doi: 10.1016/j.apcatb.2017.02.080 – ident: e_1_2_8_74_1 doi: 10.1039/C5TA10737G – ident: e_1_2_8_32_1 doi: 10.1021/jacs.7b00102 – ident: e_1_2_8_124_1 doi: 10.1039/C6TA05402A – ident: e_1_2_8_15_1 doi: 10.1038/s41929-018-0170-x – ident: e_1_2_8_35_1 doi: 10.1016/j.apcatb.2018.05.066 – ident: e_1_2_8_110_1 doi: 10.1021/acsnano.6b05416 – ident: e_1_2_8_83_1 doi: 10.1093/nsr/nwx019 – ident: e_1_2_8_98_1 doi: 10.1103/PhysRevLett.88.077402 – ident: e_1_2_8_19_1 doi: 10.1002/anie.201701370 – ident: e_1_2_8_45_2 doi: 10.1002/ange.201602973 – ident: e_1_2_8_66_1 doi: 10.1021/acsami.7b13043 – ident: e_1_2_8_114_1 doi: 10.1016/j.joule.2018.03.007 – ident: e_1_2_8_94_1 doi: 10.1002/anie.200800480 – ident: e_1_2_8_55_1 doi: 10.1039/C7EE02287E – ident: e_1_2_8_58_1 doi: 10.1021/acscatal.5b02653 – ident: e_1_2_8_62_1 doi: 10.1002/adma.201505187 – ident: e_1_2_8_72_1 doi: 10.1002/cctc.201000358 – ident: e_1_2_8_97_1 doi: 10.1038/nmat4281 – ident: e_1_2_8_54_1 doi: 10.1016/j.apcatb.2016.11.054 – ident: e_1_2_8_119_1 doi: 10.1039/c2cp42745a – ident: e_1_2_8_48_1 doi: 10.1039/C8EE02790K – ident: e_1_2_8_8_1 doi: 10.1126/science.1253150 – ident: e_1_2_8_122_1 doi: 10.1016/j.catcom.2016.05.025 – ident: e_1_2_8_112_1 doi: 10.1021/acscatal.8b03924 – ident: e_1_2_8_5_1 doi: 10.1126/science.aaf1835 – ident: e_1_2_8_84_1 doi: 10.1016/j.apenergy.2015.07.028 – ident: e_1_2_8_6_1 – ident: e_1_2_8_27_1 doi: 10.1039/C6CS00862C – ident: e_1_2_8_92_1 doi: 10.1002/anie.201308145 – ident: e_1_2_8_17_1 doi: 10.1016/j.apcatb.2018.02.041 – ident: e_1_2_8_45_1 doi: 10.1002/anie.201602973 – ident: e_1_2_8_41_1 doi: 10.1002/cssc.201500390 – ident: e_1_2_8_25_1 – ident: e_1_2_8_59_1 doi: 10.1002/cctc.201701565 – ident: e_1_2_8_130_1 doi: 10.1021/jacs.5b12521 – ident: e_1_2_8_11_1 doi: 10.1021/jacs.6b07272 – ident: e_1_2_8_68_1 doi: 10.1016/j.cattod.2018.11.005 – ident: e_1_2_8_100_1 doi: 10.1039/C5GC00119F – ident: e_1_2_8_7_1 – ident: e_1_2_8_67_1 doi: 10.1002/anie.201810886 – ident: e_1_2_8_103_1 doi: 10.1016/j.apcatb.2017.10.071 – ident: e_1_2_8_113_1 doi: 10.1039/C8SC05608K – ident: e_1_2_8_20_1 doi: 10.1002/anie.201608597 – ident: e_1_2_8_69_1 doi: 10.1016/j.apcatb.2019.03.003 – ident: e_1_2_8_126_1 doi: 10.1039/a704801g – ident: e_1_2_8_71_1 doi: 10.1039/C3CS60395D – ident: e_1_2_8_73_1 doi: 10.1016/j.apcatb.2017.05.085 – ident: e_1_2_8_31_1 doi: 10.1039/C5GC01893E – ident: e_1_2_8_21_1 doi: 10.1002/anie.201409183 – ident: e_1_2_8_57_1 doi: 10.1038/s41467-017-00055-z – ident: e_1_2_8_44_1 doi: 10.1021/acs.inorgchem.8b00896 – ident: e_1_2_8_121_2 doi: 10.1002/ange.201501788 – ident: e_1_2_8_50_1 doi: 10.1002/anie.201814313 – ident: e_1_2_8_128_1 doi: 10.1016/j.catcom.2017.09.010 – ident: e_1_2_8_104_1 doi: 10.1002/aenm.201601657 – ident: e_1_2_8_102_1 doi: 10.1039/C7PP00442G – ident: e_1_2_8_14_1 doi: 10.1126/science.aah4321 – ident: e_1_2_8_23_1 doi: 10.1016/j.apcatb.2017.08.016 – ident: e_1_2_8_131_1 doi: 10.1021/ar400271c – ident: e_1_2_8_80_1 doi: 10.1002/aenm.201801587 – ident: e_1_2_8_37_1 doi: 10.1039/C7TA07290B – ident: e_1_2_8_53_1 doi: 10.1002/advs.201400001 – ident: e_1_2_8_82_1 doi: 10.1002/adma.201600305 – ident: e_1_2_8_56_1 doi: 10.1038/ncomms14542 – ident: e_1_2_8_21_2 doi: 10.1002/ange.201409183 – ident: e_1_2_8_52_1 doi: 10.1016/j.cattod.2019.04.042 – ident: e_1_2_8_4_1 doi: 10.1016/j.joule.2019.06.023 – ident: e_1_2_8_79_1 doi: 10.1002/adma.201705512 – ident: e_1_2_8_115_1 doi: 10.1002/zaac.201300356 – ident: e_1_2_8_77_1 doi: 10.1039/C6EE00383D – ident: e_1_2_8_33_1 doi: 10.1039/C8CS00256H – ident: e_1_2_8_94_2 doi: 10.1002/ange.200800480 – ident: e_1_2_8_18_1 doi: 10.1039/c1cs15008a – ident: e_1_2_8_78_1 doi: 10.1038/s41563-018-0033-5 – ident: e_1_2_8_132_1 doi: 10.1039/C5SC01227A – ident: e_1_2_8_101_1 doi: 10.1016/j.jechem.2017.09.029 – ident: e_1_2_8_96_1 doi: 10.1038/nmat3151 – ident: e_1_2_8_38_2 doi: 10.1002/ange.201207199 – ident: e_1_2_8_10_1 doi: 10.1021/jacs.6b08096 – ident: e_1_2_8_34_1 doi: 10.1007/s11244-016-0658-z – ident: e_1_2_8_117_1 doi: 10.1039/C5TA01699A – ident: e_1_2_8_99_1 doi: 10.1126/science.aac8522 – ident: e_1_2_8_43_1 doi: 10.1016/j.apcatb.2018.01.001 – volume: 12 start-page: 5333 year: 2018 ident: e_1_2_8_29_1 publication-title: ACS Catal. – ident: e_1_2_8_46_1 doi: 10.1039/C8EE02768D – ident: e_1_2_8_13_1 doi: 10.1021/acscatal.6b00882 – ident: e_1_2_8_105_1 doi: 10.1002/anie.201601661 – ident: e_1_2_8_42_1 doi: 10.1073/pnas.1806950115 – ident: e_1_2_8_16_1 doi: 10.1002/adfm.201804762 – ident: e_1_2_8_26_1 doi: 10.1021/acs.chemrev.7b00435 – ident: e_1_2_8_2_1 doi: 10.1002/anie.201505802 – ident: e_1_2_8_61_1 doi: 10.1002/anie.201504933 – ident: e_1_2_8_51_1 doi: 10.1016/j.joule.2019.03.003 – ident: e_1_2_8_90_1 doi: 10.1038/nchem.1032 – ident: e_1_2_8_60_1 doi: 10.1039/C5TA10180H – ident: e_1_2_8_89_2 doi: 10.1002/ange.201404953 – ident: e_1_2_8_109_1 doi: 10.1021/acsnano.6b02346 – ident: e_1_2_8_20_2 doi: 10.1002/ange.201608597 – ident: e_1_2_8_116_1 doi: 10.1016/j.apcatb.2018.04.060 – ident: e_1_2_8_49_1 doi: 10.1002/cctc.201801409 – ident: e_1_2_8_47_1 doi: 10.1038/s41929-019-0266-y – ident: e_1_2_8_93_1 doi: 10.1039/C5CS00380F – ident: e_1_2_8_64_1 doi: 10.1039/C7TA00704C – ident: e_1_2_8_19_2 doi: 10.1002/ange.201701370 – ident: e_1_2_8_22_1 doi: 10.1016/j.apcatb.2017.06.054 – ident: e_1_2_8_108_1 doi: 10.1021/jacs.5b10179 – ident: e_1_2_8_127_1 doi: 10.1039/c3cc39054c – ident: e_1_2_8_105_2 doi: 10.1002/ange.201601661 – ident: e_1_2_8_129_1 doi: 10.1021/acs.nanolett.7b04776 – ident: e_1_2_8_85_1 doi: 10.1016/j.nanoen.2017.09.023 – ident: e_1_2_8_24_1 doi: 10.1016/j.nanoen.2018.09.009 – ident: e_1_2_8_39_1 doi: 10.1021/acscatal.6b02089 – ident: e_1_2_8_50_2 doi: 10.1002/ange.201814313 – ident: e_1_2_8_89_1 doi: 10.1002/anie.201404953 – ident: e_1_2_8_107_1 doi: 10.1039/C5CP02613J – ident: e_1_2_8_81_1 doi: 10.1002/anie.201411096 – ident: e_1_2_8_121_1 doi: 10.1002/anie.201501788 – ident: e_1_2_8_9_1 doi: 10.1039/C7GC03522E – ident: e_1_2_8_70_1 doi: 10.1039/C5EE02657A – ident: e_1_2_8_3_2 doi: 10.1002/ange.201900781 – ident: e_1_2_8_63_1 doi: 10.1016/j.nanoen.2016.05.045 – ident: e_1_2_8_75_1 doi: 10.1002/ese3.278 – ident: e_1_2_8_87_1 doi: 10.1002/advs.201600189 – ident: e_1_2_8_1_1 doi: 10.1002/anie.201902324 – ident: e_1_2_8_12_1 doi: 10.1021/jacs.6b05190 – ident: e_1_2_8_67_2 doi: 10.1002/ange.201810886 – ident: e_1_2_8_88_1 doi: 10.1002/adma.201704663 |
SSID | ssj0028806 |
Score | 2.700366 |
SecondaryResourceType | review_article |
Snippet | Enormous efforts have been devoted to the reduction of carbon dioxide (CO2) by utilizing various driving forces, such as heat, electricity, and radiation.... Enormous efforts have been devoted to the reduction of carbon dioxide (CO 2 ) by utilizing various driving forces, such as heat, electricity, and radiation.... Enormous efforts have been devoted to the reduction of carbon dioxide (CO ) by utilizing various driving forces, such as heat, electricity, and radiation.... Enormous efforts have been devoted to the reduction of carbon dioxide (CO2 ) by utilizing various driving forces, such as heat, electricity, and radiation.... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 8016 |
SubjectTerms | Carbon dioxide Catalysts Configuration management Coupling heterogeneous catalysis nanostructures photocatalysis Reaction kinetics Reduction Selectivity Solar energy Thermal energy |
Title | Coupling of Solar Energy and Thermal Energy for Carbon Dioxide Reduction: Status and Prospects |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.201907443 https://www.ncbi.nlm.nih.gov/pubmed/31309678 https://www.proquest.com/docview/2409089902 https://www.proquest.com/docview/2258734243 |
Volume | 59 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9swEBclL-3L1o99pE2LCoM9OfEkWZb7VtKUtNAyugzyNCPrY5QFuyQxlP71vbNjt1kphe3FYFuyZenu9DtL9ztCvgjmkyi2USCdBgflm4xA57QMmOUidlIkMsbg5KtrOf4pLqfR9FkUf80P0f5wQ82o7DUquM4WgyfSUIzAxq1Z6N0JpPvEDVuIim5a_igGwlmHF3EeYBb6hrUxZIP16uuz0guouY5cq6nn_D3RTaPrHSd_-uUy65uHv_gc_-ertsm7FS6lp7Ug7ZANl--SzWGTDm6P_BoWJUbv_qaFpz_QIaajKm6Q6txSkDaw8LPmEiBhOtTzrMjp2W1xf2sdvUGOWJSCE4oAt1xU9b7PiyrWc_GBTM5Hk-E4WCVnCIwAmwRHnVnFQ-2V9YJ7nygOcx2zsebSGK8zpYxLQp0ob5zXRnpcc3UheFCSZfwj6eRF7j4TKpLYgZ-qnJYJmBOdcR4aL-LISiaklV0SNGOTmhVxOebPmKU15TJLsdPSttO65Gtb_q6m7Hi1ZK8Z6nSluosUIE61FhqyLjlub0Nn40qKzl1RQhlobswFw0d8qkWkfRUHVAASrrqEVQP9RhvS0-uLUXu2_y-VDsgWw78AyCmreqSznJfuEKDSMjuq1OERUwMJEA |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED-N7WG8wMZnYQxPQuIpW7Adx-Ft6jp1sFXTKBJPRI4_pmlTgtpGQvz13CVNpoLQJPZSKY2dOPbd-Xe273cA7yQPWZK6JFLeoIPyQSWoc0ZF3AmZeiUzlVJw8tlEjb_KT9-S7jQhxcK0_BD9ghtpRmOvScFpQfrgljWUQrDpbBa5d1I8gA1K6030-UcXPYMUR_FsA4yEiCgPfcfbGPOD1fqr89JfYHMVuzaTz_FjKLpmt2dOrvfrRbFvf_3B6Hiv79qCR0toyg5bWdqGNV8-gc1hlxHuKXwfVjUF8F6yKrAv5BOzURM6yEzpGAocGvmb7i8Ew2xoZkVVsqOr6ueV8-yCaGJJED4ywrj1vKl3PquacM_5M5gej6bDcbTMzxBZiWYJf03htIhN0C5IEUKmBU533KVGKGuDKbS2PotNpoP1wVgVaNvVx-hEKV6I57BeVqV_CUxmqUdXVXujMrQophAitkGmiVNcKqcGEHWDk9sldzml0LjJW9ZlnlOn5X2nDeB9X_5Hy9rxz5I73VjnS-2d54hymu3QmA9gr7-NnU2bKab0VY1lsLmpkJwe8aKVkf5VAoEBCrkeAG9G-o425IeTk1F_9ep_Kr2FzfH07DQ_PZl8fg0POS0KEMWs3oH1xaz2bxA5LYrdRjd-A-lFDSw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BkaAXaHluaamRkDilDbbjONyqfailZVWVIvVE5PiBqlZJtbuREL--M8kmsCCEBJdISezEsWfG39iZbwDeSB6yJHVJpLxBB-WdSlDnjIq4EzL1SmYqpeDkj1N1-Fl-uEguforib_kh-gU30ozGXpOC37iw_4M0lCKw6dcs8u6kuAv3pIozSt4wOusJpDhKZxtfJEREaeg72saY76_WX52WfsOaq9C1mXsmj8B0rW5_ObnaqxfFnv3-C6Hj_3zWBjxcAlN20ErSJtzx5WN4MOzywT2BL8OqpvDdr6wK7BN5xGzcBA4yUzqG4oYm_rq7hFCYDc2sqEo2uqy-XTrPzogklsTgPSOEW8-beqezqgn2nD-F88n4fHgYLbMzRFaiUcKjKZwWsQnaBSlCyLTAyY671AhlbTCF1tZnscl0sD4YqwJtuvoYXSjFC_EM1sqq9C-AySz16Khqb1SG9sQUQsQ2yDRxikvl1ACibmxyu2QupwQa13nLucxz6rS877QBvO3L37ScHX8sud0Ndb7U3XmOGKfZDI35AF73t7GzaSvFlL6qsQw2NxWS0yOetyLSv0ogLEAR1wPgzUD_pQ35wfRo3J9t_UulXbh_OprkJ0fT45ewzmlFgPhl9TasLWa130HYtCheNZpxC65HC9s |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Coupling+of+Solar+Energy+and+Thermal+Energy+for+Carbon+Dioxide+Reduction%3A+Status+and+Prospects&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Wang%2C+Zhou-Jun&rft.au=Song%2C+Hui&rft.au=Liu%2C+Huimin&rft.au=Ye%2C+Jinhua&rft.date=2020-05-18&rft.issn=1521-3773&rft.eissn=1521-3773&rft.volume=59&rft.issue=21&rft.spage=8016&rft_id=info:doi/10.1002%2Fanie.201907443&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon |