Coupling of Solar Energy and Thermal Energy for Carbon Dioxide Reduction: Status and Prospects

Enormous efforts have been devoted to the reduction of carbon dioxide (CO2) by utilizing various driving forces, such as heat, electricity, and radiation. However, the efficient reduction of CO2 is still challenging because of sluggish kinetics. Recent pioneering studies from several groups, includi...

Full description

Saved in:
Bibliographic Details
Published inAngewandte Chemie International Edition Vol. 59; no. 21; pp. 8016 - 8035
Main Authors Wang, Zhou‐jun, Song, Hui, Liu, Huimin, Ye, Jinhua
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 18.05.2020
EditionInternational ed. in English
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Enormous efforts have been devoted to the reduction of carbon dioxide (CO2) by utilizing various driving forces, such as heat, electricity, and radiation. However, the efficient reduction of CO2 is still challenging because of sluggish kinetics. Recent pioneering studies from several groups, including us, have demonstrated that the coupling of solar energy and thermal energy offers a novel and promising strategy to promote the activity and/or manipulate selectivity in CO2 reduction. Herein, we clarify the definition and principles of coupling solar energy and thermal energy, and comprehensively review the status and prospects of CO2 reduction by coupling solar energy and thermal energy. Catalyst design, reactor configuration, photo‐mediated activity/selectivity, and mechanism studies in photo‐thermo CO2 reduction will be emphasized. The aim of this Review is to promote understanding towards CO2 activation and provide guidelines for the design of new catalysts for the efficient reduction of CO2. A bundle of energy: The coupling of solar energy and thermal energy is a promising strategy to mediate the activity and/or selectivity of CO2 reduction. The status and prospects of this topic are reviewed, with the aim of providing guidelines for the design of new catalysts.
AbstractList Enormous efforts have been devoted to the reduction of carbon dioxide (CO ) by utilizing various driving forces, such as heat, electricity, and radiation. However, the efficient reduction of CO is still challenging because of sluggish kinetics. Recent pioneering studies from several groups, including us, have demonstrated that the coupling of solar energy and thermal energy offers a novel and promising strategy to promote the activity and/or manipulate selectivity in CO reduction. Herein, we clarify the definition and principles of coupling solar energy and thermal energy, and comprehensively review the status and prospects of CO reduction by coupling solar energy and thermal energy. Catalyst design, reactor configuration, photo-mediated activity/selectivity, and mechanism studies in photo-thermo CO reduction will be emphasized. The aim of this Review is to promote understanding towards CO activation and provide guidelines for the design of new catalysts for the efficient reduction of CO .
Enormous efforts have been devoted to the reduction of carbon dioxide (CO2) by utilizing various driving forces, such as heat, electricity, and radiation. However, the efficient reduction of CO2 is still challenging because of sluggish kinetics. Recent pioneering studies from several groups, including us, have demonstrated that the coupling of solar energy and thermal energy offers a novel and promising strategy to promote the activity and/or manipulate selectivity in CO2 reduction. Herein, we clarify the definition and principles of coupling solar energy and thermal energy, and comprehensively review the status and prospects of CO2 reduction by coupling solar energy and thermal energy. Catalyst design, reactor configuration, photo‐mediated activity/selectivity, and mechanism studies in photo‐thermo CO2 reduction will be emphasized. The aim of this Review is to promote understanding towards CO2 activation and provide guidelines for the design of new catalysts for the efficient reduction of CO2. A bundle of energy: The coupling of solar energy and thermal energy is a promising strategy to mediate the activity and/or selectivity of CO2 reduction. The status and prospects of this topic are reviewed, with the aim of providing guidelines for the design of new catalysts.
Enormous efforts have been devoted to the reduction of carbon dioxide (CO2) by utilizing various driving forces, such as heat, electricity, and radiation. However, the efficient reduction of CO2 is still challenging because of sluggish kinetics. Recent pioneering studies from several groups, including us, have demonstrated that the coupling of solar energy and thermal energy offers a novel and promising strategy to promote the activity and/or manipulate selectivity in CO2 reduction. Herein, we clarify the definition and principles of coupling solar energy and thermal energy, and comprehensively review the status and prospects of CO2 reduction by coupling solar energy and thermal energy. Catalyst design, reactor configuration, photo‐mediated activity/selectivity, and mechanism studies in photo‐thermo CO2 reduction will be emphasized. The aim of this Review is to promote understanding towards CO2 activation and provide guidelines for the design of new catalysts for the efficient reduction of CO2.
Enormous efforts have been devoted to the reduction of carbon dioxide (CO 2 ) by utilizing various driving forces, such as heat, electricity, and radiation. However, the efficient reduction of CO 2 is still challenging because of sluggish kinetics. Recent pioneering studies from several groups, including us, have demonstrated that the coupling of solar energy and thermal energy offers a novel and promising strategy to promote the activity and/or manipulate selectivity in CO 2 reduction. Herein, we clarify the definition and principles of coupling solar energy and thermal energy, and comprehensively review the status and prospects of CO 2 reduction by coupling solar energy and thermal energy. Catalyst design, reactor configuration, photo‐mediated activity/selectivity, and mechanism studies in photo‐thermo CO 2 reduction will be emphasized. The aim of this Review is to promote understanding towards CO 2 activation and provide guidelines for the design of new catalysts for the efficient reduction of CO 2 .
Enormous efforts have been devoted to the reduction of carbon dioxide (CO2 ) by utilizing various driving forces, such as heat, electricity, and radiation. However, the efficient reduction of CO2 is still challenging because of sluggish kinetics. Recent pioneering studies from several groups, including us, have demonstrated that the coupling of solar energy and thermal energy offers a novel and promising strategy to promote the activity and/or manipulate selectivity in CO2 reduction. Herein, we clarify the definition and principles of coupling solar energy and thermal energy, and comprehensively review the status and prospects of CO2 reduction by coupling solar energy and thermal energy. Catalyst design, reactor configuration, photo-mediated activity/selectivity, and mechanism studies in photo-thermo CO2 reduction will be emphasized. The aim of this Review is to promote understanding towards CO2 activation and provide guidelines for the design of new catalysts for the efficient reduction of CO2 .Enormous efforts have been devoted to the reduction of carbon dioxide (CO2 ) by utilizing various driving forces, such as heat, electricity, and radiation. However, the efficient reduction of CO2 is still challenging because of sluggish kinetics. Recent pioneering studies from several groups, including us, have demonstrated that the coupling of solar energy and thermal energy offers a novel and promising strategy to promote the activity and/or manipulate selectivity in CO2 reduction. Herein, we clarify the definition and principles of coupling solar energy and thermal energy, and comprehensively review the status and prospects of CO2 reduction by coupling solar energy and thermal energy. Catalyst design, reactor configuration, photo-mediated activity/selectivity, and mechanism studies in photo-thermo CO2 reduction will be emphasized. The aim of this Review is to promote understanding towards CO2 activation and provide guidelines for the design of new catalysts for the efficient reduction of CO2 .
Author Ye, Jinhua
Wang, Zhou‐jun
Song, Hui
Liu, Huimin
Author_xml – sequence: 1
  givenname: Zhou‐jun
  orcidid: 0000-0002-9196-8062
  surname: Wang
  fullname: Wang, Zhou‐jun
  organization: National Institute for Materials Science (NIMS)
– sequence: 2
  givenname: Hui
  orcidid: 0000-0001-6424-7959
  surname: Song
  fullname: Song, Hui
  organization: Hokkaido University
– sequence: 3
  givenname: Huimin
  surname: Liu
  fullname: Liu, Huimin
  organization: The University of Sydney
– sequence: 4
  givenname: Jinhua
  orcidid: 0000-0002-8105-8903
  surname: Ye
  fullname: Ye, Jinhua
  email: Jinhua.YE@nims.go.jp
  organization: Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31309678$$D View this record in MEDLINE/PubMed
BookMark eNqFkUtPGzEYRa0KBCRl22VlqZtuEvyYzNjdoRAeEgJEsq7l8XymRhM7tWdU8u9xCAQJqWJjW9Y5ftw7QHs-eEDoGyVjSgg70d7BmBEqSVUU_As6ohNGR7yq-F5eF5yPKjGhh2iQ0mPmhSDlATrklBNZVuII_Z6GftU6_4CDxfPQ6ohnHuLDGmvf4MUfiEvdvm3ZEPFUxzp4fObCk2sA30PTm84F_wvPO9316cW7iyGtwHTpK9q3uk1w_DoP0eJ8tphejq5vL66mp9cjU1Qlz6OuG8GJtqKxBbdWCk6ZYE2leWmM1bUQBiTRUlgDVpvSEsknQEpWlqzmQ_Rze-wqhr89pE4tXTLQttpD6JNibCIqXrCcxxD9-IA-hj76_DjFCiKJkJKwTH1_pfp6CY1aRbfUca3egsvAeAuY_NUUwe4QStSmGbVpRu2ayULxQTAuB5aT66J27f81udX-uRbWn1yiTm-uZu_uMwYfomo
CitedBy_id crossref_primary_10_1016_j_est_2023_107923
crossref_primary_10_1039_D1NR05691C
crossref_primary_10_1021_acsmaterialslett_1c00081
crossref_primary_10_1016_j_fuel_2022_126496
crossref_primary_10_1039_D2CC02658A
crossref_primary_10_3389_fenrg_2024_1251188
crossref_primary_10_1021_acscatal_1c02644
crossref_primary_10_1021_acs_jpcc_3c04075
crossref_primary_10_1038_s41557_025_01766_3
crossref_primary_10_1016_j_apcatb_2021_120887
crossref_primary_10_1002_cctc_202201041
crossref_primary_10_1016_j_matpr_2020_12_702
crossref_primary_10_1021_acssuschemeng_2c00488
crossref_primary_10_3390_nano14161340
crossref_primary_10_1039_D1TA09498J
crossref_primary_10_1002_solr_202300216
crossref_primary_10_1002_ange_202219340
crossref_primary_10_3390_molecules29163882
crossref_primary_10_1016_j_cattod_2021_03_020
crossref_primary_10_1039_D1CS00983D
crossref_primary_10_1002_adma_202313152
crossref_primary_10_1016_S1872_5805_23_60722_X
crossref_primary_10_1088_1361_6528_ab85ea
crossref_primary_10_1007_s10854_024_12561_0
crossref_primary_10_1002_slct_202203080
crossref_primary_10_1016_j_eehl_2022_11_005
crossref_primary_10_1016_j_apenergy_2024_125193
crossref_primary_10_1016_j_mcat_2023_113205
crossref_primary_10_1002_adma_202201547
crossref_primary_10_1039_D2QI00004K
crossref_primary_10_2174_2665976X01999201022142435
crossref_primary_10_1002_anie_202105171
crossref_primary_10_1016_j_enconman_2022_116605
crossref_primary_10_1021_acsami_0c23036
crossref_primary_10_1002_ange_202218115
crossref_primary_10_1016_j_seppur_2023_125177
crossref_primary_10_1007_s43630_024_00599_2
crossref_primary_10_1002_aesr_202400069
crossref_primary_10_1002_adfm_202503531
crossref_primary_10_1016_j_cej_2023_148195
crossref_primary_10_1002_ghg_2267
crossref_primary_10_2139_ssrn_4184978
crossref_primary_10_1016_j_apenergy_2024_125186
crossref_primary_10_1002_ange_202313784
crossref_primary_10_1016_j_cattod_2022_05_014
crossref_primary_10_1016_j_jclepro_2021_129377
crossref_primary_10_1002_adma_202411813
crossref_primary_10_1039_D4SE00947A
crossref_primary_10_1002_adma_202400920
crossref_primary_10_1016_j_cjsc_2024_100348
crossref_primary_10_1002_cssc_202301775
crossref_primary_10_3390_app12094463
crossref_primary_10_1002_ange_202105468
crossref_primary_10_1016_j_cattod_2025_115207
crossref_primary_10_1016_j_gee_2022_02_006
crossref_primary_10_1016_j_apcatb_2021_120312
crossref_primary_10_1002_smll_202308142
crossref_primary_10_1039_D0CS00025F
crossref_primary_10_3866_PKU_WHXB202408015
crossref_primary_10_1021_acs_iecr_4c01375
crossref_primary_10_1039_D4CC03246B
crossref_primary_10_3390_catal12091042
crossref_primary_10_1002_anie_202105468
crossref_primary_10_1002_cssc_202002029
crossref_primary_10_1016_j_colsurfa_2022_130907
crossref_primary_10_1016_j_jechem_2020_11_005
crossref_primary_10_1016_j_nantod_2021_101183
crossref_primary_10_1016_j_jcou_2024_102845
crossref_primary_10_1016_j_apcatb_2021_120320
crossref_primary_10_1016_j_apcatb_2021_120440
crossref_primary_10_1016_j_cattod_2022_04_010
crossref_primary_10_1016_j_jece_2025_116291
crossref_primary_10_1021_acscatal_1c04904
crossref_primary_10_1016_j_apcatb_2022_122176
crossref_primary_10_1016_j_ijhydene_2024_12_264
crossref_primary_10_1002_smtd_202301554
crossref_primary_10_1016_j_apcatb_2023_122471
crossref_primary_10_1016_j_molstruc_2023_136711
crossref_primary_10_1039_D2TA08552F
crossref_primary_10_1039_D4EE04849K
crossref_primary_10_1016_j_fuel_2022_124491
crossref_primary_10_1021_acscatal_2c02072
crossref_primary_10_1039_D0TA09059J
crossref_primary_10_1002_cssc_202300377
crossref_primary_10_1002_anie_202314384
crossref_primary_10_1002_advs_202306604
crossref_primary_10_1016_j_ijhydene_2020_04_178
crossref_primary_10_1016_j_jcis_2024_03_172
crossref_primary_10_1039_D1SC00064K
crossref_primary_10_1016_j_apcatb_2021_120341
crossref_primary_10_1021_acsami_4c04803
crossref_primary_10_1038_s41467_022_30291_x
crossref_primary_10_1039_D4QI02332C
crossref_primary_10_1021_acscatal_0c05354
crossref_primary_10_1016_j_apcatb_2021_120598
crossref_primary_10_1016_j_jcou_2023_102454
crossref_primary_10_1007_s43979_022_00011_x
crossref_primary_10_1515_revac_2023_0061
crossref_primary_10_1021_acsami_1c15117
crossref_primary_10_1142_S1793604725500067
crossref_primary_10_1002_cctc_202000905
crossref_primary_10_1016_j_joule_2022_01_001
crossref_primary_10_1039_D0CY02061C
crossref_primary_10_1016_j_ijbiomac_2024_136567
crossref_primary_10_1021_acs_energyfuels_2c01507
crossref_primary_10_1016_j_cej_2021_129298
crossref_primary_10_1016_j_enconman_2023_116740
crossref_primary_10_3390_molecules26247552
crossref_primary_10_1039_D2DT03560J
crossref_primary_10_1016_j_jcis_2023_04_016
crossref_primary_10_1039_D3TC04332K
crossref_primary_10_1021_accountsmr_2c00154
crossref_primary_10_1016_j_gee_2025_02_008
crossref_primary_10_1088_2515_7655_ad3676
crossref_primary_10_1002_adma_202307217
crossref_primary_10_2139_ssrn_3995387
crossref_primary_10_1021_acssuschemeng_0c04975
crossref_primary_10_1038_s41467_023_36784_7
crossref_primary_10_1016_j_jcis_2023_10_049
crossref_primary_10_1016_j_ccr_2022_214794
crossref_primary_10_1021_acsami_4c15849
crossref_primary_10_1021_acsnano_2c09025
crossref_primary_10_1016_j_partic_2020_12_002
crossref_primary_10_1016_S1872_2067_20_63718_4
crossref_primary_10_1016_j_apcatb_2021_120146
crossref_primary_10_1038_s41467_021_21923_9
crossref_primary_10_1016_j_psep_2024_08_010
crossref_primary_10_1039_C9TA10629D
crossref_primary_10_1016_j_gee_2024_01_001
crossref_primary_10_1016_j_ijhydene_2024_05_101
crossref_primary_10_1021_acsanm_4c07137
crossref_primary_10_1039_D1DT00525A
crossref_primary_10_1021_acs_jpcc_1c04152
crossref_primary_10_1039_D1CY01067K
crossref_primary_10_1016_j_ccr_2022_214665
crossref_primary_10_3390_en14227620
crossref_primary_10_1016_j_apcatb_2022_122233
crossref_primary_10_1016_j_cclet_2022_107861
crossref_primary_10_1021_acsnano_2c12314
crossref_primary_10_1016_j_jechem_2021_06_039
crossref_primary_10_1016_j_enconman_2022_115496
crossref_primary_10_1039_D1MA01021B
crossref_primary_10_1002_adma_202311957
crossref_primary_10_2139_ssrn_4054185
crossref_primary_10_1002_cctc_202200361
crossref_primary_10_1039_D3DT00222E
crossref_primary_10_1016_j_apcatb_2023_122531
crossref_primary_10_1016_j_mattod_2021_03_016
crossref_primary_10_1021_acs_energyfuels_2c02800
crossref_primary_10_1016_j_jcou_2023_102413
crossref_primary_10_1016_j_ijhydene_2022_05_076
crossref_primary_10_1016_j_jcou_2022_102317
crossref_primary_10_1002_ange_202417384
crossref_primary_10_1002_eom2_12078
crossref_primary_10_1038_s41467_022_34798_1
crossref_primary_10_1021_jacsau_4c00153
crossref_primary_10_1002_ghg_2137
crossref_primary_10_1016_j_cej_2023_146717
crossref_primary_10_3390_nano12234153
crossref_primary_10_1016_j_fuel_2024_132617
crossref_primary_10_1021_cbe_3c00110
crossref_primary_10_1016_j_apsusc_2021_149305
crossref_primary_10_1016_j_cej_2024_153772
crossref_primary_10_1021_acs_inorgchem_4c03044
crossref_primary_10_1016_j_apsusc_2021_151971
crossref_primary_10_1002_cssc_202402106
crossref_primary_10_1016_j_jcis_2022_01_185
crossref_primary_10_1039_C9TA06923B
crossref_primary_10_1016_S1872_2067_21_63967_0
crossref_primary_10_1002_adfm_202111875
crossref_primary_10_1007_s41918_022_00132_y
crossref_primary_10_1016_j_mcat_2022_112565
crossref_primary_10_1016_S1872_2067_22_64159_7
crossref_primary_10_1016_j_cej_2020_127866
crossref_primary_10_1021_acsaem_3c01941
crossref_primary_10_1016_j_xcrp_2024_102246
crossref_primary_10_1021_acs_jpcc_2c01919
crossref_primary_10_1021_acs_langmuir_1c02894
crossref_primary_10_1016_j_cej_2022_134864
crossref_primary_10_1016_j_cej_2024_152798
crossref_primary_10_3389_fchem_2022_993691
crossref_primary_10_1039_D2TA03397F
crossref_primary_10_1016_j_apcatb_2022_121248
crossref_primary_10_1016_j_cej_2023_141491
crossref_primary_10_1016_j_molstruc_2021_132163
crossref_primary_10_1080_14686996_2022_2054666
crossref_primary_10_1016_j_jcis_2020_08_073
crossref_primary_10_1007_s11356_023_28190_9
crossref_primary_10_1021_acsenergylett_1c02591
crossref_primary_10_1016_j_cattod_2024_114702
crossref_primary_10_1016_S1872_5813_24_60478_0
crossref_primary_10_1021_acsami_4c03790
crossref_primary_10_1016_j_cej_2025_159458
crossref_primary_10_1016_j_ccr_2024_216292
crossref_primary_10_1039_D4TC04202F
crossref_primary_10_1016_j_seppur_2024_127998
crossref_primary_10_1016_j_catcom_2024_106902
crossref_primary_10_1039_D0NH00680G
crossref_primary_10_1016_j_ijheatmasstransfer_2023_123901
crossref_primary_10_2139_ssrn_4128536
crossref_primary_10_1002_chem_202303552
crossref_primary_10_1039_D3QO01176C
crossref_primary_10_1002_ghg_2102
crossref_primary_10_1016_S1872_2067_21_63857_3
crossref_primary_10_1021_acscatal_2c06145
crossref_primary_10_3390_molecules27051705
crossref_primary_10_3390_catal12060612
crossref_primary_10_1021_jacs_1c08033
crossref_primary_10_1016_j_envres_2021_110742
crossref_primary_10_1002_anie_202213124
crossref_primary_10_1002_cctc_202101958
crossref_primary_10_1002_cctc_202200049
crossref_primary_10_1016_j_catcom_2022_106419
crossref_primary_10_1002_anie_202306017
crossref_primary_10_1002_smll_202007025
crossref_primary_10_1016_j_mcat_2022_112654
crossref_primary_10_1002_anie_202214273
crossref_primary_10_1039_D1TA11052G
crossref_primary_10_1002_asia_202400993
crossref_primary_10_1016_j_checat_2024_100960
crossref_primary_10_1002_ange_202213124
crossref_primary_10_1016_j_jechem_2024_07_061
crossref_primary_10_1002_anie_202404911
crossref_primary_10_1016_j_cej_2022_139304
crossref_primary_10_1016_j_cej_2022_137129
crossref_primary_10_1016_j_envres_2021_111176
crossref_primary_10_1016_j_checat_2021_10_005
crossref_primary_10_1016_j_cej_2022_135071
crossref_primary_10_1186_s40807_024_00100_8
crossref_primary_10_1016_j_ceramint_2022_10_118
crossref_primary_10_1016_j_jece_2023_110324
crossref_primary_10_1021_acs_inorgchem_0c02733
crossref_primary_10_1002_cey2_127
crossref_primary_10_1007_s11426_023_1826_3
crossref_primary_10_1021_acs_iecr_2c00201
crossref_primary_10_1039_D2CP00269H
crossref_primary_10_1627_jpi_67_217
crossref_primary_10_1021_acssuschemeng_4c06883
crossref_primary_10_1016_j_cej_2021_132507
crossref_primary_10_1016_j_energy_2024_130275
crossref_primary_10_1021_acsnano_1c00990
crossref_primary_10_1016_j_jechem_2023_04_024
crossref_primary_10_1016_j_ccr_2022_215008
crossref_primary_10_3390_molecules27092701
crossref_primary_10_1021_acs_langmuir_4c00210
crossref_primary_10_1002_anie_202412408
crossref_primary_10_1007_s40820_023_01276_2
crossref_primary_10_1002_smll_202407206
crossref_primary_10_1016_j_apenergy_2024_123454
crossref_primary_10_1016_j_jece_2021_105422
crossref_primary_10_1002_cey2_499
crossref_primary_10_1039_D3SC02679E
crossref_primary_10_1002_anie_202410596
crossref_primary_10_1016_j_solmat_2024_112917
crossref_primary_10_1021_acsenergylett_1c00645
crossref_primary_10_1039_D3NR00745F
crossref_primary_10_1039_D0TA08781E
crossref_primary_10_1016_S1872_2067_24_60090_2
crossref_primary_10_1016_j_cattod_2024_114852
crossref_primary_10_1016_j_jaap_2022_105695
crossref_primary_10_1016_j_apcata_2024_119604
crossref_primary_10_1039_D0TA01256D
crossref_primary_10_1002_ange_202314384
crossref_primary_10_1002_cctc_202401388
crossref_primary_10_1016_j_cej_2024_158821
crossref_primary_10_3390_catal14110756
crossref_primary_10_1002_anie_202318166
crossref_primary_10_1002_ange_202412408
crossref_primary_10_1111_jace_19135
crossref_primary_10_1002_ange_202304452
crossref_primary_10_1016_j_ensm_2020_12_007
crossref_primary_10_1007_s12274_022_4795_3
crossref_primary_10_1016_j_mcat_2024_114226
crossref_primary_10_1021_acs_jpcc_1c05222
crossref_primary_10_1039_D1TA00890K
crossref_primary_10_1021_acsami_4c19523
crossref_primary_10_1016_j_jssc_2023_124375
crossref_primary_10_1002_adfm_202210283
crossref_primary_10_1016_j_cej_2021_131222
crossref_primary_10_1016_j_jes_2024_05_013
crossref_primary_10_1002_anie_202001701
crossref_primary_10_1002_ange_202404911
crossref_primary_10_1002_ange_202410596
crossref_primary_10_1002_cssc_202400551
crossref_primary_10_3390_molecules28041951
crossref_primary_10_1016_j_mcat_2024_114259
crossref_primary_10_1016_j_ccr_2022_214592
crossref_primary_10_1016_j_apcatb_2022_121747
crossref_primary_10_1021_acs_energyfuels_1c01881
crossref_primary_10_1021_acscatal_0c04826
crossref_primary_10_1039_D1NR01138C
crossref_primary_10_1016_j_jece_2021_105460
crossref_primary_10_1002_ange_202001701
crossref_primary_10_1002_smll_202305533
crossref_primary_10_1016_j_cej_2024_157717
crossref_primary_10_1016_j_chempr_2022_04_015
crossref_primary_10_1016_j_jcou_2022_101972
crossref_primary_10_1016_j_apcatb_2021_120905
crossref_primary_10_1039_D2CC06503G
crossref_primary_10_1002_adfm_202409904
crossref_primary_10_1039_D1TA00440A
crossref_primary_10_15541_jim20210458
crossref_primary_10_1002_cssc_202001604
crossref_primary_10_1039_D0GC02743J
crossref_primary_10_1016_j_mtnano_2021_100113
crossref_primary_10_1021_acs_iecr_1c02058
crossref_primary_10_1002_aic_17995
crossref_primary_10_1021_acs_energyfuels_2c01076
crossref_primary_10_1039_D1CS00782C
crossref_primary_10_3390_en15228395
crossref_primary_10_1021_acs_jpcc_1c10291
crossref_primary_10_3390_catal12121549
crossref_primary_10_1007_s12274_023_5782_z
crossref_primary_10_1016_j_mtnano_2023_100385
crossref_primary_10_1002_advs_202103926
crossref_primary_10_1007_s12598_024_02638_4
crossref_primary_10_1002_cssc_202200337
crossref_primary_10_1039_D3NR01176C
crossref_primary_10_1021_acscatal_2c03893
crossref_primary_10_1016_j_comptc_2024_114929
crossref_primary_10_1016_j_mcat_2024_114308
crossref_primary_10_1016_j_apcata_2022_118568
crossref_primary_10_1002_ange_202105171
crossref_primary_10_1002_slct_202202258
crossref_primary_10_1021_acscatal_0c04329
crossref_primary_10_1002_aesr_202300141
crossref_primary_10_1002_anie_202218115
crossref_primary_10_1002_anie_202304452
crossref_primary_10_3390_catal13040647
crossref_primary_10_1002_adma_202303654
crossref_primary_10_1016_j_apsusc_2024_161447
crossref_primary_10_1007_s40843_024_3199_9
crossref_primary_10_1016_j_ces_2023_119246
crossref_primary_10_1016_j_isci_2022_104107
crossref_primary_10_1016_j_ijhydene_2022_09_224
crossref_primary_10_1002_ange_202214273
crossref_primary_10_1016_j_physrep_2022_07_002
crossref_primary_10_1002_anie_202417384
crossref_primary_10_1016_j_apsusc_2022_153256
crossref_primary_10_1002_cctc_202301279
crossref_primary_10_1016_j_chemosphere_2022_135085
crossref_primary_10_1016_S1872_2067_24_60177_4
crossref_primary_10_1039_D3EY00106G
crossref_primary_10_1016_j_jclepro_2023_139542
crossref_primary_10_1021_acs_iecr_1c03590
crossref_primary_10_3390_inorganics11010006
crossref_primary_10_1016_j_jcat_2022_07_028
crossref_primary_10_1002_jctb_6562
crossref_primary_10_1002_aesr_202100169
crossref_primary_10_1016_j_mcat_2024_114686
crossref_primary_10_1016_j_device_2024_100604
crossref_primary_10_1002_cctc_202300170
crossref_primary_10_1016_j_cej_2020_127280
crossref_primary_10_1002_ange_202318166
crossref_primary_10_1021_jacs_1c04315
crossref_primary_10_1016_j_ceramint_2023_09_226
crossref_primary_10_1016_j_mcat_2024_114693
crossref_primary_10_1016_j_ccst_2024_100308
crossref_primary_10_1016_j_cej_2021_131617
crossref_primary_10_1016_j_ccst_2023_100144
crossref_primary_10_1021_acsanm_4c00598
crossref_primary_10_1021_acs_energyfuels_2c01394
crossref_primary_10_1016_j_cattod_2022_02_019
crossref_primary_10_1002_anie_202313784
crossref_primary_10_2139_ssrn_4154130
crossref_primary_10_1016_j_cogsc_2022_100652
crossref_primary_10_1016_j_joule_2023_12_013
crossref_primary_10_1016_j_solmat_2021_111353
crossref_primary_10_1016_j_cej_2021_128560
crossref_primary_10_1021_acsami_4c18398
crossref_primary_10_1002_cssc_202400829
crossref_primary_10_1016_j_cclet_2023_109240
crossref_primary_10_1016_j_cclet_2021_07_059
crossref_primary_10_1007_s10562_020_03479_3
crossref_primary_10_1002_solr_202200493
crossref_primary_10_1021_acs_inorgchem_0c03503
crossref_primary_10_1039_D4TA07561G
crossref_primary_10_1016_j_applthermaleng_2025_125532
crossref_primary_10_1039_D4QI02143F
crossref_primary_10_1007_s42114_024_00955_x
crossref_primary_10_1016_j_cej_2020_128397
crossref_primary_10_1021_acsami_0c21007
crossref_primary_10_1002_anie_202219340
crossref_primary_10_1002_adsu_202200115
crossref_primary_10_1021_acscatal_3c04989
crossref_primary_10_1016_j_device_2024_100652
crossref_primary_10_1021_acscatal_2c05741
crossref_primary_10_1021_acs_jpclett_3c02465
crossref_primary_10_1039_D2TA03219H
crossref_primary_10_1016_j_cej_2021_131513
crossref_primary_10_1016_j_enconman_2024_118634
crossref_primary_10_1039_D1TA09914K
crossref_primary_10_1016_j_seppur_2024_128174
crossref_primary_10_1002_chem_202102837
crossref_primary_10_1016_j_xcrp_2022_101127
crossref_primary_10_1002_ange_202306017
crossref_primary_10_1002_cnl2_107
crossref_primary_10_1002_chem_202401486
crossref_primary_10_1016_S1872_2067_22_64175_5
crossref_primary_10_1021_acs_energyfuels_2c01368
crossref_primary_10_1016_j_ceramint_2024_05_075
crossref_primary_10_1039_D1EE02714J
crossref_primary_10_1002_asia_202400208
crossref_primary_10_1039_D1TC03125B
crossref_primary_10_1021_acsnano_4c13030
crossref_primary_10_1002_adma_202208132
crossref_primary_10_1021_acsnano_3c03118
crossref_primary_10_1016_j_biortech_2020_122863
crossref_primary_10_1016_j_checat_2021_01_003
crossref_primary_10_2139_ssrn_4190897
crossref_primary_10_1039_D1CY01311D
crossref_primary_10_1021_acscatal_4c04732
crossref_primary_10_1039_D0CS00357C
crossref_primary_10_1016_j_jcis_2022_11_006
crossref_primary_10_1039_D2NJ03441G
Cites_doi 10.1038/s41929-018-0138-x
10.1002/ange.201411096
10.1080/10584587.2016.1176507
10.1002/anie.201207199
10.1039/C8CS00016F
10.1126/science.aat6967
10.1016/j.ijhydene.2015.05.129
10.1021/acscatal.5b00776
10.1021/acscatal.8b00272
10.1002/ange.201308145
10.1002/ange.201902324
10.1002/anie.201900781
10.1039/C7GC00199A
10.1002/adfm.201502253
10.1039/C5CS00838G
10.1039/C7RA04879C
10.1002/ange.201504933
10.1002/ange.201505802
10.1016/j.nanoen.2017.03.021
10.1021/jacs.5b06150
10.1016/j.apcatb.2017.02.080
10.1039/C5TA10737G
10.1021/jacs.7b00102
10.1039/C6TA05402A
10.1038/s41929-018-0170-x
10.1016/j.apcatb.2018.05.066
10.1021/acsnano.6b05416
10.1093/nsr/nwx019
10.1103/PhysRevLett.88.077402
10.1002/anie.201701370
10.1002/ange.201602973
10.1021/acsami.7b13043
10.1016/j.joule.2018.03.007
10.1002/anie.200800480
10.1039/C7EE02287E
10.1021/acscatal.5b02653
10.1002/adma.201505187
10.1002/cctc.201000358
10.1038/nmat4281
10.1016/j.apcatb.2016.11.054
10.1039/c2cp42745a
10.1039/C8EE02790K
10.1126/science.1253150
10.1016/j.catcom.2016.05.025
10.1021/acscatal.8b03924
10.1126/science.aaf1835
10.1016/j.apenergy.2015.07.028
10.1039/C6CS00862C
10.1002/anie.201308145
10.1016/j.apcatb.2018.02.041
10.1002/anie.201602973
10.1002/cssc.201500390
10.1002/cctc.201701565
10.1021/jacs.5b12521
10.1021/jacs.6b07272
10.1016/j.cattod.2018.11.005
10.1039/C5GC00119F
10.1002/anie.201810886
10.1016/j.apcatb.2017.10.071
10.1039/C8SC05608K
10.1002/anie.201608597
10.1016/j.apcatb.2019.03.003
10.1039/a704801g
10.1039/C3CS60395D
10.1016/j.apcatb.2017.05.085
10.1039/C5GC01893E
10.1002/anie.201409183
10.1038/s41467-017-00055-z
10.1021/acs.inorgchem.8b00896
10.1002/ange.201501788
10.1002/anie.201814313
10.1016/j.catcom.2017.09.010
10.1002/aenm.201601657
10.1039/C7PP00442G
10.1126/science.aah4321
10.1016/j.apcatb.2017.08.016
10.1021/ar400271c
10.1002/aenm.201801587
10.1039/C7TA07290B
10.1002/advs.201400001
10.1002/adma.201600305
10.1038/ncomms14542
10.1002/ange.201409183
10.1016/j.cattod.2019.04.042
10.1016/j.joule.2019.06.023
10.1002/adma.201705512
10.1002/zaac.201300356
10.1039/C6EE00383D
10.1039/C8CS00256H
10.1002/ange.200800480
10.1039/c1cs15008a
10.1038/s41563-018-0033-5
10.1039/C5SC01227A
10.1016/j.jechem.2017.09.029
10.1038/nmat3151
10.1002/ange.201207199
10.1021/jacs.6b08096
10.1007/s11244-016-0658-z
10.1039/C5TA01699A
10.1126/science.aac8522
10.1016/j.apcatb.2018.01.001
10.1039/C8EE02768D
10.1021/acscatal.6b00882
10.1002/anie.201601661
10.1073/pnas.1806950115
10.1002/adfm.201804762
10.1021/acs.chemrev.7b00435
10.1002/anie.201505802
10.1002/anie.201504933
10.1016/j.joule.2019.03.003
10.1038/nchem.1032
10.1039/C5TA10180H
10.1002/ange.201404953
10.1021/acsnano.6b02346
10.1002/ange.201608597
10.1016/j.apcatb.2018.04.060
10.1002/cctc.201801409
10.1038/s41929-019-0266-y
10.1039/C5CS00380F
10.1039/C7TA00704C
10.1002/ange.201701370
10.1016/j.apcatb.2017.06.054
10.1021/jacs.5b10179
10.1039/c3cc39054c
10.1002/ange.201601661
10.1021/acs.nanolett.7b04776
10.1016/j.nanoen.2017.09.023
10.1016/j.nanoen.2018.09.009
10.1021/acscatal.6b02089
10.1002/ange.201814313
10.1002/anie.201404953
10.1039/C5CP02613J
10.1002/anie.201411096
10.1002/anie.201501788
10.1039/C7GC03522E
10.1039/C5EE02657A
10.1002/ange.201900781
10.1016/j.nanoen.2016.05.045
10.1002/ese3.278
10.1002/advs.201600189
10.1002/anie.201902324
10.1021/jacs.6b05190
10.1002/ange.201810886
10.1002/adma.201704663
ContentType Journal Article
Copyright 2019 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim
2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
2020 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2019 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
– notice: 2020 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim
DBID AAYXX
CITATION
NPM
7TM
K9.
7X8
DOI 10.1002/anie.201907443
DatabaseName CrossRef
PubMed
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
ProQuest Health & Medical Complete (Alumni)
Nucleic Acids Abstracts
MEDLINE - Academic
DatabaseTitleList PubMed

ProQuest Health & Medical Complete (Alumni)
CrossRef
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3773
Edition International ed. in English
EndPage 8035
ExternalDocumentID 31309678
10_1002_anie_201907443
ANIE201907443
Genre reviewArticle
Journal Article
Review
GrantInformation_xml – fundername: National Basic Research Program of China
  funderid: 2014CB239301
– fundername: the World Premier International Research Center Initiative (WPI Initiative) on Materials Nanoarchitectonics (MANA), MEXT (Japan)
– fundername: National Natural Science Foundation of China
  funderid: 21633004; 21776007, 21811530293
– fundername: the Fundamental Research Funds for the Central Universities
  funderid: XK1802-1
– fundername: JSPS KAKENHI
  funderid: JP18H02065
– fundername: Scholarship by China Scholarship Council (CSC)
  funderid: 201606320239; 201706885023
– fundername: the Photo-excitonix Project in Hokkaido University
– fundername: National Natural Science Foundation of China
  grantid: 21776007, 21811530293
– fundername: the Fundamental Research Funds for the Central Universities
  grantid: XK1802-1
– fundername: JSPS KAKENHI
  grantid: JP18H02065
– fundername: National Basic Research Program of China
  grantid: 2014CB239301
– fundername: Scholarship by China Scholarship Council (CSC)
  grantid: 201606320239
– fundername: National Natural Science Foundation of China
  grantid: 21633004
– fundername: Scholarship by China Scholarship Council (CSC)
  grantid: 201706885023
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABLJU
ABPPZ
ABPVW
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BTSUX
BY8
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
M53
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
TN5
UB1
UPT
UQL
V2E
VQA
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XSW
XV2
YZZ
ZZTAW
~IA
~KM
~WT
AAYXX
ABDBF
ABJNI
AEYWJ
AGHNM
AGYGG
CITATION
EJD
NPM
YIN
7TM
K9.
7X8
ID FETCH-LOGICAL-c4763-c4abd830af8df43ff9831282d7a36ccfab88ce90a98fcefac6f0935e062662b3
IEDL.DBID DR2
ISSN 1433-7851
1521-3773
IngestDate Fri Jul 11 05:20:53 EDT 2025
Fri Jul 25 10:47:41 EDT 2025
Wed Feb 19 02:32:09 EST 2025
Thu Apr 24 23:07:45 EDT 2025
Tue Jul 01 02:26:53 EDT 2025
Wed Jan 22 16:38:11 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 21
Keywords carbon dioxide
heterogeneous catalysis
photocatalysis
reduction
nanostructures
Language English
License 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4763-c4abd830af8df43ff9831282d7a36ccfab88ce90a98fcefac6f0935e062662b3
Notes These authors contributed equally to this work
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0002-8105-8903
0000-0002-9196-8062
0000-0001-6424-7959
PMID 31309678
PQID 2409089902
PQPubID 946352
PageCount 20
ParticipantIDs proquest_miscellaneous_2258734243
proquest_journals_2409089902
pubmed_primary_31309678
crossref_primary_10_1002_anie_201907443
crossref_citationtrail_10_1002_anie_201907443
wiley_primary_10_1002_anie_201907443_ANIE201907443
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate May 18, 2020
PublicationDateYYYYMMDD 2020-05-18
PublicationDate_xml – month: 05
  year: 2020
  text: May 18, 2020
  day: 18
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Angewandte Chemie International Edition
PublicationTitleAlternate Angew Chem Int Ed Engl
PublicationYear 2020
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017; 5
2014 2014; 53 126
2018; 362
2017; 7
2017; 8
2017; 41
2017; 4
2019; 11
2019; 10
2019; 12
2017; 46
2011; 10
2015; 349
2008 2008; 47 120
2012; 14
2017; 357
2018; 47
2013 2013; 52 125
2014; 1
2017; 209
2018; 8
2018; 2
1997; 93
2015; 137
2018; 1
2013; 639
2015; 40
2018 2018; 57 130
2015; 44
2017; 34
2002; 88
2015 2015; 54 127
2019; 29
2016; 84
2018; 30
2016; 351
2020; 339
2017; 204
2016; 45
2017; 218
2017; 219
2019; 7
2018; 28
2015; 14
2019; 9
2015; 17
2015; 6
2019; 3
2015; 5
2015; 3
2013; 49
2018; 226
2019; 2
2011; 40
2018; 224
2018; 103
2016; 10
2014; 47
2017 2017; 56 129
2011; 3
2015; 8
2018; 20
2016; 59
2019 2019; 58 131
2017; 139
2014; 43
2017; 217
2018; 230
2016; 4
2016; 6
2018; 18
2015; 25
2018; 17
2016 2016; 55 128
2016; 3
2018; 237
2018; 118
2017; 10
2015; 156
2018; 115
2018; 235
2019; 335
2017; 19
2016; 138
2018; 12
2019; 250
2016; 28
2018; 10
2018; 53
2016; 26
2016; 9
2014; 344
2018; 57
2016; 172
e_1_2_8_45_2
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_68_1
e_1_2_8_132_1
e_1_2_8_1_2
e_1_2_8_5_1
e_1_2_8_9_1
e_1_2_8_117_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_64_1
e_1_2_8_87_1
Xu G. (e_1_2_8_29_1) 2018; 12
e_1_2_8_113_1
e_1_2_8_1_1
e_1_2_8_41_1
e_1_2_8_60_1
e_1_2_8_83_1
e_1_2_8_38_2
e_1_2_8_19_1
e_1_2_8_19_2
e_1_2_8_109_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_57_1
e_1_2_8_120_1
e_1_2_8_91_1
e_1_2_8_95_1
e_1_2_8_99_1
e_1_2_8_105_1
e_1_2_8_128_1
e_1_2_8_105_2
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_76_1
e_1_2_8_101_1
e_1_2_8_124_1
e_1_2_8_30_1
e_1_2_8_72_1
Hoch L. B. (e_1_2_8_106_1) 2014; 1
e_1_2_8_25_1
e_1_2_8_67_2
e_1_2_8_48_1
e_1_2_8_2_2
e_1_2_8_2_1
e_1_2_8_110_1
e_1_2_8_6_1
e_1_2_8_21_1
e_1_2_8_67_1
e_1_2_8_21_2
e_1_2_8_44_1
e_1_2_8_86_1
e_1_2_8_118_1
e_1_2_8_63_1
e_1_2_8_40_1
e_1_2_8_82_1
e_1_2_8_114_1
e_1_2_8_18_1
e_1_2_8_14_1
e_1_2_8_37_1
e_1_2_8_79_1
e_1_2_8_94_1
e_1_2_8_90_1
e_1_2_8_94_2
e_1_2_8_121_2
e_1_2_8_121_1
e_1_2_8_98_1
e_1_2_8_10_1
e_1_2_8_56_1
e_1_2_8_33_1
e_1_2_8_75_1
e_1_2_8_129_1
e_1_2_8_52_1
e_1_2_8_102_1
e_1_2_8_71_1
e_1_2_8_125_1
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_89_2
e_1_2_8_3_1
e_1_2_8_81_1
e_1_2_8_111_1
e_1_2_8_130_1
e_1_2_8_3_2
e_1_2_8_7_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_66_1
e_1_2_8_89_1
e_1_2_8_20_2
e_1_2_8_119_1
e_1_2_8_62_1
e_1_2_8_85_1
e_1_2_8_115_1
e_1_2_8_81_2
e_1_2_8_17_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_59_1
e_1_2_8_70_1
e_1_2_8_122_1
e_1_2_8_97_1
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_78_1
e_1_2_8_107_1
e_1_2_8_51_1
e_1_2_8_74_1
e_1_2_8_103_1
e_1_2_8_126_1
e_1_2_8_93_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_69_1
e_1_2_8_80_1
e_1_2_8_4_1
e_1_2_8_131_1
e_1_2_8_8_1
e_1_2_8_42_1
e_1_2_8_88_1
e_1_2_8_116_1
e_1_2_8_23_1
e_1_2_8_65_1
e_1_2_8_61_2
e_1_2_8_84_1
e_1_2_8_112_1
e_1_2_8_61_1
e_1_2_8_39_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_58_1
e_1_2_8_92_1
e_1_2_8_96_1
e_1_2_8_100_1
e_1_2_8_31_1
e_1_2_8_77_1
e_1_2_8_127_1
e_1_2_8_12_1
e_1_2_8_54_1
e_1_2_8_108_1
e_1_2_8_50_2
e_1_2_8_73_1
e_1_2_8_123_1
e_1_2_8_50_1
e_1_2_8_92_2
e_1_2_8_104_1
References_xml – volume: 118
  start-page: 434
  year: 2018
  end-page: 504
  publication-title: Chem. Rev.
– volume: 55 128
  start-page: 7968 8100
  year: 2016 2016
  end-page: 7973 8105
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 138
  start-page: 2917
  year: 2016
  end-page: 2920
  publication-title: J. Am. Chem. Soc.
– volume: 357
  start-page: 389
  year: 2017
  end-page: 393
  publication-title: Science
– volume: 54 127
  start-page: 13561 13765
  year: 2015 2015
  end-page: 13565 13769
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 10
  start-page: 2392
  year: 2017
  end-page: 2400
  publication-title: Energy Environ. Sci.
– volume: 5
  start-page: 10567
  year: 2017
  end-page: 10573
  publication-title: J. Mater. Chem. A
– volume: 57 130
  start-page: 16781 17023
  year: 2018 2018
  end-page: 16784 17026
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 14
  start-page: 15214
  year: 2012
  end-page: 15225
  publication-title: Phys. Chem. Chem. Phys.
– volume: 54 127
  start-page: 11350 11508
  year: 2015 2015
  end-page: 11365 11524
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 4
  start-page: 5314
  year: 2016
  end-page: 5322
  publication-title: J. Mater. Chem. A
– volume: 235
  start-page: 186
  year: 2018
  end-page: 196
  publication-title: Appl. Catal. B
– volume: 47
  start-page: 1220
  year: 2014
  end-page: 1227
  publication-title: Acc. Chem. Res.
– volume: 6
  start-page: 494
  year: 2016
  end-page: 497
  publication-title: ACS Catal.
– volume: 9
  start-page: 3026
  year: 2019
  end-page: 3053
  publication-title: ACS Catal.
– volume: 3
  start-page: 13299
  year: 2015
  end-page: 13307
  publication-title: J. Mater. Chem. A
– volume: 12
  start-page: 5333
  year: 2018
  end-page: 5340
  publication-title: ACS Catal.
– volume: 28
  start-page: 6781
  year: 2016
  end-page: 6803
  publication-title: Adv. Mater.
– volume: 7
  start-page: 45949
  year: 2017
  end-page: 45959
  publication-title: RSC Adv.
– volume: 138
  start-page: 9128
  year: 2016
  end-page: 9136
  publication-title: J. Am. Chem. Soc.
– volume: 224
  start-page: 563
  year: 2018
  end-page: 571
  publication-title: Appl. Catal. B
– volume: 2
  start-page: 1369
  year: 2018
  end-page: 1381
  publication-title: Joule
– volume: 53 126
  start-page: 11478 11662
  year: 2014 2014
  end-page: 11482 11666
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 639
  start-page: 2683
  year: 2013
  end-page: 2695
  publication-title: Z. Anorg. Allg. Chem.
– volume: 43
  start-page: 7813
  year: 2014
  end-page: 7837
  publication-title: Chem. Soc. Rev.
– volume: 3
  start-page: 529
  year: 2011
  end-page: 541
  publication-title: ChemCatChem
– volume: 53
  start-page: 508
  year: 2018
  end-page: 512
  publication-title: Nano Energy
– volume: 56 129
  start-page: 5570 5662
  year: 2017 2017
  end-page: 5574 5666
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 137
  start-page: 10104
  year: 2015
  end-page: 10107
  publication-title: J. Am. Chem. Soc.
– volume: 10
  start-page: 3161
  year: 2019
  end-page: 3167
  publication-title: Chem. Sci.
– volume: 8
  start-page: 27
  year: 2017
  publication-title: Nat. Commun.
– volume: 1
  start-page: 889
  year: 2018
  end-page: 896
  publication-title: Nat. Catal.
– volume: 7
  start-page: 4
  year: 2019
  end-page: 29
  publication-title: Energy Sci. Eng.
– volume: 41
  start-page: 308
  year: 2017
  end-page: 319
  publication-title: Nano Energy
– volume: 3
  start-page: 467
  year: 2011
  end-page: 472
  publication-title: Nat. Chem.
– volume: 12
  start-page: 923
  year: 2019
  end-page: 928
  publication-title: Energy Environ. Sci.
– volume: 10
  start-page: 5578
  year: 2016
  end-page: 5586
  publication-title: ACS Nano
– volume: 4
  start-page: 5773
  year: 2016
  end-page: 5783
  publication-title: J. Mater. Chem. A
– volume: 25
  start-page: 5360
  year: 2015
  end-page: 5367
  publication-title: Adv. Funct. Mater.
– volume: 230
  start-page: 220
  year: 2018
  end-page: 236
  publication-title: Appl. Catal. B
– volume: 44
  start-page: 7808
  year: 2015
  end-page: 7828
  publication-title: Chem. Soc. Rev.
– volume: 17
  start-page: 829
  year: 2018
  end-page: 834
  publication-title: Photochem. Photobiol. Sci.
– volume: 226
  start-page: 463
  year: 2018
  end-page: 472
  publication-title: Appl. Catal. B
– volume: 5
  start-page: 5342
  year: 2015
  end-page: 5348
  publication-title: ACS Catal.
– volume: 12
  start-page: 1122
  year: 2019
  end-page: 1142
  publication-title: Energy Environ. Sci.
– volume: 29
  start-page: 3
  year: 2019
  end-page: 7
  publication-title: J. Energy Chem.
– volume: 1
  start-page: 656
  year: 2018
  end-page: 665
  publication-title: Nat. Catal.
– volume: 88
  year: 2002
  publication-title: Phys. Rev. Lett.
– volume: 18
  start-page: 1714
  year: 2018
  end-page: 1723
  publication-title: Nano Lett.
– volume: 335
  start-page: 187
  year: 2019
  end-page: 192
  publication-title: Catal. Today
– volume: 58 131
  start-page: 6271 6337
  year: 2019 2019
  end-page: 6275 6341
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 7
  year: 2017
  publication-title: Adv. Energy Mater.
– volume: 4
  start-page: 13155
  year: 2016
  end-page: 13165
  publication-title: J. Mater. Chem. A
– volume: 53 126
  start-page: 2935 2979
  year: 2014 2014
  end-page: 2940 2984
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 59
  start-page: 1268
  year: 2016
  end-page: 1278
  publication-title: Top. Catal.
– volume: 217
  start-page: 494
  year: 2017
  end-page: 522
  publication-title: Appl. Catal. B
– volume: 93
  start-page: 4159
  year: 1997
  end-page: 4163
  publication-title: J. Chem. Soc. Faraday Trans.
– volume: 20
  start-page: 1169
  year: 2018
  end-page: 1192
  publication-title: Green Chem.
– volume: 46
  start-page: 1807
  year: 2017
  end-page: 1823
  publication-title: Chem. Soc. Rev.
– volume: 11
  start-page: 342
  year: 2019
  end-page: 356
  publication-title: ChemCatChem
– volume: 54 127
  start-page: 841 855
  year: 2015 2015
  end-page: 845 859
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 19
  start-page: 3707
  year: 2017
  end-page: 3728
  publication-title: Green Chem.
– volume: 58 131
  start-page: 7708 7790
  year: 2019 2019
  end-page: 7712 7794
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 17
  start-page: 2647
  year: 2015
  end-page: 2663
  publication-title: Green Chem.
– volume: 8
  start-page: 3556
  year: 2015
  end-page: 3575
  publication-title: ChemSusChem
– volume: 47
  start-page: 5423
  year: 2018
  end-page: 5443
  publication-title: Chem. Soc. Rev.
– volume: 218
  start-page: 672
  year: 2017
  end-page: 678
  publication-title: Appl. Catal. B
– volume: 57
  start-page: 8276
  year: 2018
  end-page: 8286
  publication-title: Inorg. Chem.
– volume: 17
  start-page: 14623
  year: 2015
  end-page: 14635
  publication-title: Phys. Chem. Chem. Phys.
– volume: 55 128
  start-page: 8840 8986
  year: 2016 2016
  end-page: 8845 8991
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 3
  year: 2016
  publication-title: Adv. Sci.
– volume: 10
  start-page: 408
  year: 2018
  end-page: 416
  publication-title: ACS Appl. Mater. Interfaces
– volume: 250
  start-page: 10
  year: 2019
  end-page: 16
  publication-title: Appl. Catal. B
– volume: 54 127
  start-page: 12868 13060
  year: 2015 2015
  end-page: 12884 13077
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 55 128
  start-page: 14310 14522
  year: 2016 2016
  end-page: 14314 14526
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 362
  start-page: 69
  year: 2018
  end-page: 72
  publication-title: Science
– volume: 351
  start-page: 1065
  year: 2016
  end-page: 1068
  publication-title: Science
– volume: 28
  start-page: 3703
  year: 2016
  end-page: 3710
  publication-title: Adv. Mater.
– volume: 138
  start-page: 13289
  year: 2016
  end-page: 13297
  publication-title: J. Am. Chem. Soc.
– volume: 10
  start-page: 9017
  year: 2016
  end-page: 9025
  publication-title: ACS Nano
– volume: 49
  start-page: 3664
  year: 2013
  end-page: 3666
  publication-title: Chem. Commun.
– volume: 219
  start-page: 611
  year: 2017
  end-page: 618
  publication-title: Appl. Catal. B
– volume: 8
  year: 2018
  publication-title: Adv. Energy Mater.
– volume: 10
  start-page: 940
  year: 2018
  end-page: 945
  publication-title: ChemCatChem
– volume: 6
  start-page: 5629
  year: 2016
  end-page: 5640
  publication-title: ACS Catal.
– volume: 47 120
  start-page: 3524 3578
  year: 2008 2008
  end-page: 3535 3590
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 139
  start-page: 5652
  year: 2017
  end-page: 5655
  publication-title: J. Am. Chem. Soc.
– volume: 26
  start-page: 398
  year: 2016
  end-page: 404
  publication-title: Nano Energy
– volume: 172
  start-page: 97
  year: 2016
  end-page: 108
  publication-title: Integr. Ferroelectr.
– volume: 28
  year: 2018
  publication-title: Adv. Funct. Mater.
– volume: 8
  start-page: 6582
  year: 2018
  end-page: 6593
  publication-title: ACS Catal.
– volume: 3
  start-page: 1606
  year: 2019
  end-page: 1636
  publication-title: Joule
– volume: 204
  start-page: 440
  year: 2017
  end-page: 455
  publication-title: Appl. Catal. B
– volume: 52 125
  start-page: 7372 7516
  year: 2013 2013
  end-page: 7408 7557
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 115
  start-page: 8278
  year: 2018
  end-page: 8283
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 6
  start-page: 7485
  year: 2016
  end-page: 7527
  publication-title: ACS Catal.
– volume: 138
  start-page: 14962
  year: 2016
  end-page: 14969
  publication-title: J. Am. Chem. Soc.
– volume: 54 127
  start-page: 11545 11707
  year: 2015 2015
  end-page: 11549 11711
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 40
  start-page: 3703
  year: 2011
  end-page: 3727
  publication-title: Chem. Soc. Rev.
– volume: 9
  start-page: 2177
  year: 2016
  end-page: 2196
  publication-title: Energy Environ. Sci.
– volume: 2
  start-page: 381
  year: 2019
  end-page: 386
  publication-title: Nat. Catal.
– volume: 344
  start-page: 616
  year: 2014
  end-page: 619
  publication-title: Science
– volume: 14
  start-page: 567
  year: 2015
  end-page: 576
  publication-title: Nat. Mater.
– volume: 5
  start-page: 21625
  year: 2017
  end-page: 21649
  publication-title: J. Mater. Chem. A
– volume: 8
  start-page: 14542
  year: 2017
  publication-title: Nat. Commun.
– volume: 40
  start-page: 9183
  year: 2015
  end-page: 9200
  publication-title: Int. J. Hydrogen Energy
– volume: 349
  start-page: 587
  year: 2015
  end-page: 588
  publication-title: Science
– volume: 17
  start-page: 5114
  year: 2015
  end-page: 5130
  publication-title: Green Chem.
– volume: 10
  start-page: 911
  year: 2011
  end-page: 921
  publication-title: Nat. Mater.
– volume: 84
  start-page: 30
  year: 2016
  end-page: 35
  publication-title: Catal. Commun.
– volume: 1
  year: 2014
  publication-title: Adv. Sci.
– volume: 6
  start-page: 4403
  year: 2015
  end-page: 4425
  publication-title: Chem. Sci.
– volume: 9
  start-page: 62
  year: 2016
  end-page: 73
  publication-title: Energy Environ. Sci.
– volume: 138
  start-page: 1206
  year: 2016
  end-page: 1214
  publication-title: J. Am. Chem. Soc.
– volume: 237
  start-page: 68
  year: 2018
  end-page: 73
  publication-title: Appl. Catal. B
– volume: 34
  start-page: 524
  year: 2017
  end-page: 532
  publication-title: Nano Energy
– volume: 3
  start-page: 920
  year: 2019
  end-page: 937
  publication-title: Joule
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 58 131
  start-page: 17528 17690
  year: 2019 2019
  end-page: 17551 17715
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 209
  start-page: 183
  year: 2017
  end-page: 189
  publication-title: Appl. Catal. B
– volume: 47
  start-page: 8134
  year: 2018
  end-page: 8172
  publication-title: Chem. Soc. Rev.
– volume: 103
  start-page: 24
  year: 2018
  end-page: 28
  publication-title: Catal. Commun.
– volume: 45
  start-page: 2603
  year: 2016
  end-page: 2636
  publication-title: Chem. Soc. Rev.
– volume: 339
  start-page: 321
  year: 2020
  end-page: 327
  publication-title: Catal. Today
– volume: 4
  start-page: 761
  year: 2017
  end-page: 780
  publication-title: Natl. Sci. Rev.
– volume: 17
  start-page: 301
  year: 2018
  end-page: 307
  publication-title: Nat. Mater.
– volume: 156
  start-page: 223
  year: 2015
  end-page: 229
  publication-title: Appl. Energy
– ident: e_1_2_8_95_1
  doi: 10.1038/s41929-018-0138-x
– ident: e_1_2_8_81_2
  doi: 10.1002/ange.201411096
– ident: e_1_2_8_123_1
  doi: 10.1080/10584587.2016.1176507
– ident: e_1_2_8_38_1
  doi: 10.1002/anie.201207199
– ident: e_1_2_8_40_1
  doi: 10.1039/C8CS00016F
– ident: e_1_2_8_91_1
  doi: 10.1126/science.aat6967
– ident: e_1_2_8_118_1
  doi: 10.1016/j.ijhydene.2015.05.129
– ident: e_1_2_8_120_1
  doi: 10.1021/acscatal.5b00776
– volume: 1
  start-page: 140013
  year: 2014
  ident: e_1_2_8_106_1
  publication-title: Adv. Sci.
– ident: e_1_2_8_86_1
  doi: 10.1021/acscatal.8b00272
– ident: e_1_2_8_92_2
  doi: 10.1002/ange.201308145
– ident: e_1_2_8_1_2
  doi: 10.1002/ange.201902324
– ident: e_1_2_8_3_1
  doi: 10.1002/anie.201900781
– ident: e_1_2_8_30_1
  doi: 10.1039/C7GC00199A
– ident: e_1_2_8_28_1
  doi: 10.1002/adfm.201502253
– ident: e_1_2_8_76_1
  doi: 10.1039/C5CS00838G
– ident: e_1_2_8_125_1
  doi: 10.1039/C7RA04879C
– ident: e_1_2_8_61_2
  doi: 10.1002/ange.201504933
– ident: e_1_2_8_2_2
  doi: 10.1002/ange.201505802
– ident: e_1_2_8_36_1
  doi: 10.1016/j.nanoen.2017.03.021
– ident: e_1_2_8_111_1
  doi: 10.1021/jacs.5b06150
– ident: e_1_2_8_65_1
  doi: 10.1016/j.apcatb.2017.02.080
– ident: e_1_2_8_74_1
  doi: 10.1039/C5TA10737G
– ident: e_1_2_8_32_1
  doi: 10.1021/jacs.7b00102
– ident: e_1_2_8_124_1
  doi: 10.1039/C6TA05402A
– ident: e_1_2_8_15_1
  doi: 10.1038/s41929-018-0170-x
– ident: e_1_2_8_35_1
  doi: 10.1016/j.apcatb.2018.05.066
– ident: e_1_2_8_110_1
  doi: 10.1021/acsnano.6b05416
– ident: e_1_2_8_83_1
  doi: 10.1093/nsr/nwx019
– ident: e_1_2_8_98_1
  doi: 10.1103/PhysRevLett.88.077402
– ident: e_1_2_8_19_1
  doi: 10.1002/anie.201701370
– ident: e_1_2_8_45_2
  doi: 10.1002/ange.201602973
– ident: e_1_2_8_66_1
  doi: 10.1021/acsami.7b13043
– ident: e_1_2_8_114_1
  doi: 10.1016/j.joule.2018.03.007
– ident: e_1_2_8_94_1
  doi: 10.1002/anie.200800480
– ident: e_1_2_8_55_1
  doi: 10.1039/C7EE02287E
– ident: e_1_2_8_58_1
  doi: 10.1021/acscatal.5b02653
– ident: e_1_2_8_62_1
  doi: 10.1002/adma.201505187
– ident: e_1_2_8_72_1
  doi: 10.1002/cctc.201000358
– ident: e_1_2_8_97_1
  doi: 10.1038/nmat4281
– ident: e_1_2_8_54_1
  doi: 10.1016/j.apcatb.2016.11.054
– ident: e_1_2_8_119_1
  doi: 10.1039/c2cp42745a
– ident: e_1_2_8_48_1
  doi: 10.1039/C8EE02790K
– ident: e_1_2_8_8_1
  doi: 10.1126/science.1253150
– ident: e_1_2_8_122_1
  doi: 10.1016/j.catcom.2016.05.025
– ident: e_1_2_8_112_1
  doi: 10.1021/acscatal.8b03924
– ident: e_1_2_8_5_1
  doi: 10.1126/science.aaf1835
– ident: e_1_2_8_84_1
  doi: 10.1016/j.apenergy.2015.07.028
– ident: e_1_2_8_6_1
– ident: e_1_2_8_27_1
  doi: 10.1039/C6CS00862C
– ident: e_1_2_8_92_1
  doi: 10.1002/anie.201308145
– ident: e_1_2_8_17_1
  doi: 10.1016/j.apcatb.2018.02.041
– ident: e_1_2_8_45_1
  doi: 10.1002/anie.201602973
– ident: e_1_2_8_41_1
  doi: 10.1002/cssc.201500390
– ident: e_1_2_8_25_1
– ident: e_1_2_8_59_1
  doi: 10.1002/cctc.201701565
– ident: e_1_2_8_130_1
  doi: 10.1021/jacs.5b12521
– ident: e_1_2_8_11_1
  doi: 10.1021/jacs.6b07272
– ident: e_1_2_8_68_1
  doi: 10.1016/j.cattod.2018.11.005
– ident: e_1_2_8_100_1
  doi: 10.1039/C5GC00119F
– ident: e_1_2_8_7_1
– ident: e_1_2_8_67_1
  doi: 10.1002/anie.201810886
– ident: e_1_2_8_103_1
  doi: 10.1016/j.apcatb.2017.10.071
– ident: e_1_2_8_113_1
  doi: 10.1039/C8SC05608K
– ident: e_1_2_8_20_1
  doi: 10.1002/anie.201608597
– ident: e_1_2_8_69_1
  doi: 10.1016/j.apcatb.2019.03.003
– ident: e_1_2_8_126_1
  doi: 10.1039/a704801g
– ident: e_1_2_8_71_1
  doi: 10.1039/C3CS60395D
– ident: e_1_2_8_73_1
  doi: 10.1016/j.apcatb.2017.05.085
– ident: e_1_2_8_31_1
  doi: 10.1039/C5GC01893E
– ident: e_1_2_8_21_1
  doi: 10.1002/anie.201409183
– ident: e_1_2_8_57_1
  doi: 10.1038/s41467-017-00055-z
– ident: e_1_2_8_44_1
  doi: 10.1021/acs.inorgchem.8b00896
– ident: e_1_2_8_121_2
  doi: 10.1002/ange.201501788
– ident: e_1_2_8_50_1
  doi: 10.1002/anie.201814313
– ident: e_1_2_8_128_1
  doi: 10.1016/j.catcom.2017.09.010
– ident: e_1_2_8_104_1
  doi: 10.1002/aenm.201601657
– ident: e_1_2_8_102_1
  doi: 10.1039/C7PP00442G
– ident: e_1_2_8_14_1
  doi: 10.1126/science.aah4321
– ident: e_1_2_8_23_1
  doi: 10.1016/j.apcatb.2017.08.016
– ident: e_1_2_8_131_1
  doi: 10.1021/ar400271c
– ident: e_1_2_8_80_1
  doi: 10.1002/aenm.201801587
– ident: e_1_2_8_37_1
  doi: 10.1039/C7TA07290B
– ident: e_1_2_8_53_1
  doi: 10.1002/advs.201400001
– ident: e_1_2_8_82_1
  doi: 10.1002/adma.201600305
– ident: e_1_2_8_56_1
  doi: 10.1038/ncomms14542
– ident: e_1_2_8_21_2
  doi: 10.1002/ange.201409183
– ident: e_1_2_8_52_1
  doi: 10.1016/j.cattod.2019.04.042
– ident: e_1_2_8_4_1
  doi: 10.1016/j.joule.2019.06.023
– ident: e_1_2_8_79_1
  doi: 10.1002/adma.201705512
– ident: e_1_2_8_115_1
  doi: 10.1002/zaac.201300356
– ident: e_1_2_8_77_1
  doi: 10.1039/C6EE00383D
– ident: e_1_2_8_33_1
  doi: 10.1039/C8CS00256H
– ident: e_1_2_8_94_2
  doi: 10.1002/ange.200800480
– ident: e_1_2_8_18_1
  doi: 10.1039/c1cs15008a
– ident: e_1_2_8_78_1
  doi: 10.1038/s41563-018-0033-5
– ident: e_1_2_8_132_1
  doi: 10.1039/C5SC01227A
– ident: e_1_2_8_101_1
  doi: 10.1016/j.jechem.2017.09.029
– ident: e_1_2_8_96_1
  doi: 10.1038/nmat3151
– ident: e_1_2_8_38_2
  doi: 10.1002/ange.201207199
– ident: e_1_2_8_10_1
  doi: 10.1021/jacs.6b08096
– ident: e_1_2_8_34_1
  doi: 10.1007/s11244-016-0658-z
– ident: e_1_2_8_117_1
  doi: 10.1039/C5TA01699A
– ident: e_1_2_8_99_1
  doi: 10.1126/science.aac8522
– ident: e_1_2_8_43_1
  doi: 10.1016/j.apcatb.2018.01.001
– volume: 12
  start-page: 5333
  year: 2018
  ident: e_1_2_8_29_1
  publication-title: ACS Catal.
– ident: e_1_2_8_46_1
  doi: 10.1039/C8EE02768D
– ident: e_1_2_8_13_1
  doi: 10.1021/acscatal.6b00882
– ident: e_1_2_8_105_1
  doi: 10.1002/anie.201601661
– ident: e_1_2_8_42_1
  doi: 10.1073/pnas.1806950115
– ident: e_1_2_8_16_1
  doi: 10.1002/adfm.201804762
– ident: e_1_2_8_26_1
  doi: 10.1021/acs.chemrev.7b00435
– ident: e_1_2_8_2_1
  doi: 10.1002/anie.201505802
– ident: e_1_2_8_61_1
  doi: 10.1002/anie.201504933
– ident: e_1_2_8_51_1
  doi: 10.1016/j.joule.2019.03.003
– ident: e_1_2_8_90_1
  doi: 10.1038/nchem.1032
– ident: e_1_2_8_60_1
  doi: 10.1039/C5TA10180H
– ident: e_1_2_8_89_2
  doi: 10.1002/ange.201404953
– ident: e_1_2_8_109_1
  doi: 10.1021/acsnano.6b02346
– ident: e_1_2_8_20_2
  doi: 10.1002/ange.201608597
– ident: e_1_2_8_116_1
  doi: 10.1016/j.apcatb.2018.04.060
– ident: e_1_2_8_49_1
  doi: 10.1002/cctc.201801409
– ident: e_1_2_8_47_1
  doi: 10.1038/s41929-019-0266-y
– ident: e_1_2_8_93_1
  doi: 10.1039/C5CS00380F
– ident: e_1_2_8_64_1
  doi: 10.1039/C7TA00704C
– ident: e_1_2_8_19_2
  doi: 10.1002/ange.201701370
– ident: e_1_2_8_22_1
  doi: 10.1016/j.apcatb.2017.06.054
– ident: e_1_2_8_108_1
  doi: 10.1021/jacs.5b10179
– ident: e_1_2_8_127_1
  doi: 10.1039/c3cc39054c
– ident: e_1_2_8_105_2
  doi: 10.1002/ange.201601661
– ident: e_1_2_8_129_1
  doi: 10.1021/acs.nanolett.7b04776
– ident: e_1_2_8_85_1
  doi: 10.1016/j.nanoen.2017.09.023
– ident: e_1_2_8_24_1
  doi: 10.1016/j.nanoen.2018.09.009
– ident: e_1_2_8_39_1
  doi: 10.1021/acscatal.6b02089
– ident: e_1_2_8_50_2
  doi: 10.1002/ange.201814313
– ident: e_1_2_8_89_1
  doi: 10.1002/anie.201404953
– ident: e_1_2_8_107_1
  doi: 10.1039/C5CP02613J
– ident: e_1_2_8_81_1
  doi: 10.1002/anie.201411096
– ident: e_1_2_8_121_1
  doi: 10.1002/anie.201501788
– ident: e_1_2_8_9_1
  doi: 10.1039/C7GC03522E
– ident: e_1_2_8_70_1
  doi: 10.1039/C5EE02657A
– ident: e_1_2_8_3_2
  doi: 10.1002/ange.201900781
– ident: e_1_2_8_63_1
  doi: 10.1016/j.nanoen.2016.05.045
– ident: e_1_2_8_75_1
  doi: 10.1002/ese3.278
– ident: e_1_2_8_87_1
  doi: 10.1002/advs.201600189
– ident: e_1_2_8_1_1
  doi: 10.1002/anie.201902324
– ident: e_1_2_8_12_1
  doi: 10.1021/jacs.6b05190
– ident: e_1_2_8_67_2
  doi: 10.1002/ange.201810886
– ident: e_1_2_8_88_1
  doi: 10.1002/adma.201704663
SSID ssj0028806
Score 2.700366
SecondaryResourceType review_article
Snippet Enormous efforts have been devoted to the reduction of carbon dioxide (CO2) by utilizing various driving forces, such as heat, electricity, and radiation....
Enormous efforts have been devoted to the reduction of carbon dioxide (CO 2 ) by utilizing various driving forces, such as heat, electricity, and radiation....
Enormous efforts have been devoted to the reduction of carbon dioxide (CO ) by utilizing various driving forces, such as heat, electricity, and radiation....
Enormous efforts have been devoted to the reduction of carbon dioxide (CO2 ) by utilizing various driving forces, such as heat, electricity, and radiation....
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 8016
SubjectTerms Carbon dioxide
Catalysts
Configuration management
Coupling
heterogeneous catalysis
nanostructures
photocatalysis
Reaction kinetics
Reduction
Selectivity
Solar energy
Thermal energy
Title Coupling of Solar Energy and Thermal Energy for Carbon Dioxide Reduction: Status and Prospects
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.201907443
https://www.ncbi.nlm.nih.gov/pubmed/31309678
https://www.proquest.com/docview/2409089902
https://www.proquest.com/docview/2258734243
Volume 59
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9swEBclL-3L1o99pE2LCoM9OfEkWZb7VtKUtNAyugzyNCPrY5QFuyQxlP71vbNjt1kphe3FYFuyZenu9DtL9ztCvgjmkyi2USCdBgflm4xA57QMmOUidlIkMsbg5KtrOf4pLqfR9FkUf80P0f5wQ82o7DUquM4WgyfSUIzAxq1Z6N0JpPvEDVuIim5a_igGwlmHF3EeYBb6hrUxZIP16uuz0guouY5cq6nn_D3RTaPrHSd_-uUy65uHv_gc_-ertsm7FS6lp7Ug7ZANl--SzWGTDm6P_BoWJUbv_qaFpz_QIaajKm6Q6txSkDaw8LPmEiBhOtTzrMjp2W1xf2sdvUGOWJSCE4oAt1xU9b7PiyrWc_GBTM5Hk-E4WCVnCIwAmwRHnVnFQ-2V9YJ7nygOcx2zsebSGK8zpYxLQp0ob5zXRnpcc3UheFCSZfwj6eRF7j4TKpLYgZ-qnJYJmBOdcR4aL-LISiaklV0SNGOTmhVxOebPmKU15TJLsdPSttO65Gtb_q6m7Hi1ZK8Z6nSluosUIE61FhqyLjlub0Nn40qKzl1RQhlobswFw0d8qkWkfRUHVAASrrqEVQP9RhvS0-uLUXu2_y-VDsgWw78AyCmreqSznJfuEKDSMjuq1OERUwMJEA
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED-N7WG8wMZnYQxPQuIpW7Adx-Ft6jp1sFXTKBJPRI4_pmlTgtpGQvz13CVNpoLQJPZSKY2dOPbd-Xe273cA7yQPWZK6JFLeoIPyQSWoc0ZF3AmZeiUzlVJw8tlEjb_KT9-S7jQhxcK0_BD9ghtpRmOvScFpQfrgljWUQrDpbBa5d1I8gA1K6030-UcXPYMUR_FsA4yEiCgPfcfbGPOD1fqr89JfYHMVuzaTz_FjKLpmt2dOrvfrRbFvf_3B6Hiv79qCR0toyg5bWdqGNV8-gc1hlxHuKXwfVjUF8F6yKrAv5BOzURM6yEzpGAocGvmb7i8Ew2xoZkVVsqOr6ueV8-yCaGJJED4ywrj1vKl3PquacM_5M5gej6bDcbTMzxBZiWYJf03htIhN0C5IEUKmBU533KVGKGuDKbS2PotNpoP1wVgVaNvVx-hEKV6I57BeVqV_CUxmqUdXVXujMrQophAitkGmiVNcKqcGEHWDk9sldzml0LjJW9ZlnlOn5X2nDeB9X_5Hy9rxz5I73VjnS-2d54hymu3QmA9gr7-NnU2bKab0VY1lsLmpkJwe8aKVkf5VAoEBCrkeAG9G-o425IeTk1F_9ep_Kr2FzfH07DQ_PZl8fg0POS0KEMWs3oH1xaz2bxA5LYrdRjd-A-lFDSw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BkaAXaHluaamRkDilDbbjONyqfailZVWVIvVE5PiBqlZJtbuREL--M8kmsCCEBJdISezEsWfG39iZbwDeSB6yJHVJpLxBB-WdSlDnjIq4EzL1SmYqpeDkj1N1-Fl-uEguforib_kh-gU30ozGXpOC37iw_4M0lCKw6dcs8u6kuAv3pIozSt4wOusJpDhKZxtfJEREaeg72saY76_WX52WfsOaq9C1mXsmj8B0rW5_ObnaqxfFnv3-C6Hj_3zWBjxcAlN20ErSJtzx5WN4MOzywT2BL8OqpvDdr6wK7BN5xGzcBA4yUzqG4oYm_rq7hFCYDc2sqEo2uqy-XTrPzogklsTgPSOEW8-beqezqgn2nD-F88n4fHgYLbMzRFaiUcKjKZwWsQnaBSlCyLTAyY671AhlbTCF1tZnscl0sD4YqwJtuvoYXSjFC_EM1sqq9C-AySz16Khqb1SG9sQUQsQ2yDRxikvl1ACibmxyu2QupwQa13nLucxz6rS877QBvO3L37ScHX8sud0Ndb7U3XmOGKfZDI35AF73t7GzaSvFlL6qsQw2NxWS0yOetyLSv0ogLEAR1wPgzUD_pQ35wfRo3J9t_UulXbh_OprkJ0fT45ewzmlFgPhl9TasLWa130HYtCheNZpxC65HC9s
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Coupling+of+Solar+Energy+and+Thermal+Energy+for+Carbon+Dioxide+Reduction%3A+Status+and+Prospects&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Wang%2C+Zhou-Jun&rft.au=Song%2C+Hui&rft.au=Liu%2C+Huimin&rft.au=Ye%2C+Jinhua&rft.date=2020-05-18&rft.issn=1521-3773&rft.eissn=1521-3773&rft.volume=59&rft.issue=21&rft.spage=8016&rft_id=info:doi/10.1002%2Fanie.201907443&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon