Nickel‐Based Transition Metal Nitride Electrocatalysts for the Oxygen Evolution Reaction
Electrocatalysis is an efficient and promising means of energy conversion, with minimal environmental footprint. To enhance reaction rates, catalysts are required to minimize overpotential. Alternatives to noble metal electrocatalysts are essential to address these needs on a large scale. In this co...
Saved in:
Published in | ChemSusChem Vol. 12; no. 17; pp. 3941 - 3954 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
06.09.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Electrocatalysis is an efficient and promising means of energy conversion, with minimal environmental footprint. To enhance reaction rates, catalysts are required to minimize overpotential. Alternatives to noble metal electrocatalysts are essential to address these needs on a large scale. In this context, transition metal nitride (TMN) nanoparticles have attracted much attention owing to their high catalytic activity, distinctive electronic structures, and enhanced surface morphologies. Nickel‐based materials are an ideal choice for electrocatalysts given nickel's abundance and low cost in comparison to noble metals. In this Minireview, advancements made specifically in Ni‐based binary and ternary TMNs as electrocatalysts for the oxygen evolution reaction (OER) are critically evaluated. When used as OER electrocatalysts, Ni‐based nanomaterials with 3 D architectures on a suitable support (e.g., a foam support) speed up electron transfer as a result of well‐oriented crystal structures and also assist intermediate diffusion, during reaction, of evolved gases. 2 D Ni‐based nitride sheet materials synthesized without supports usually perform better than 3 D supported electrocatalysts. The focus of this Minireview is a systematic description of OER activity for state‐of‐the‐art Ni‐based nitrides as nanostructured electrocatalysts.
A revolution in evolution: The electrocatalytic oxygen evolution reaction is a promising means of efficient energy conversion, with minimal environmental footprint. Transition metal nitride nanoparticles have attracted much attention owing to their high electrocatalytic activities, distinctive electronic structures, and enhanced surface morphologies. Nickel‐based electrocatalysts are of particular interest, given their abundance and low cost. |
---|---|
AbstractList | Electrocatalysis is an efficient and promising means of energy conversion, with minimal environmental footprint. To enhance reaction rates, catalysts are required to minimize overpotential. Alternatives to noble metal electrocatalysts are essential to address these needs on a large scale. In this context, transition metal nitride (TMN) nanoparticles have attracted much attention owing to their high catalytic activity, distinctive electronic structures, and enhanced surface morphologies. Nickel‐based materials are an ideal choice for electrocatalysts given nickel's abundance and low cost in comparison to noble metals. In this Minireview, advancements made specifically in Ni‐based binary and ternary TMNs as electrocatalysts for the oxygen evolution reaction (OER) are critically evaluated. When used as OER electrocatalysts, Ni‐based nanomaterials with 3 D architectures on a suitable support (e.g., a foam support) speed up electron transfer as a result of well‐oriented crystal structures and also assist intermediate diffusion, during reaction, of evolved gases. 2 D Ni‐based nitride sheet materials synthesized without supports usually perform better than 3 D supported electrocatalysts. The focus of this Minireview is a systematic description of OER activity for state‐of‐the‐art Ni‐based nitrides as nanostructured electrocatalysts. Electrocatalysis is an efficient and promising means of energy conversion, with minimal environmental footprint. To enhance reaction rates, catalysts are required to minimize overpotential. Alternatives to noble metal electrocatalysts are essential to address these needs on a large scale. In this context, transition metal nitride (TMN) nanoparticles have attracted much attention owing to their high catalytic activity, distinctive electronic structures, and enhanced surface morphologies. Nickel‐based materials are an ideal choice for electrocatalysts given nickel's abundance and low cost in comparison to noble metals. In this Minireview, advancements made specifically in Ni‐based binary and ternary TMNs as electrocatalysts for the oxygen evolution reaction (OER) are critically evaluated. When used as OER electrocatalysts, Ni‐based nanomaterials with 3 D architectures on a suitable support (e.g., a foam support) speed up electron transfer as a result of well‐oriented crystal structures and also assist intermediate diffusion, during reaction, of evolved gases. 2 D Ni‐based nitride sheet materials synthesized without supports usually perform better than 3 D supported electrocatalysts. The focus of this Minireview is a systematic description of OER activity for state‐of‐the‐art Ni‐based nitrides as nanostructured electrocatalysts. A revolution in evolution: The electrocatalytic oxygen evolution reaction is a promising means of efficient energy conversion, with minimal environmental footprint. Transition metal nitride nanoparticles have attracted much attention owing to their high electrocatalytic activities, distinctive electronic structures, and enhanced surface morphologies. Nickel‐based electrocatalysts are of particular interest, given their abundance and low cost. Electrocatalysis is an efficient and promising means of energy conversion, with minimal environmental footprint. To enhance reaction rates, catalysts are required to minimize overpotential. Alternatives to noble metal electrocatalysts are essential to address these needs on a large scale. In this context, transition metal nitride (TMN) nanoparticles have attracted much attention owing to their high catalytic activity, distinctive electronic structures, and enhanced surface morphologies. Nickel-based materials are an ideal choice for electrocatalysts given nickel's abundance and low cost in comparison to noble metals. In this Minireview, advancements made specifically in Ni-based binary and ternary TMNs as electrocatalysts for the oxygen evolution reaction (OER) are critically evaluated. When used as OER electrocatalysts, Ni-based nanomaterials with 3 D architectures on a suitable support (e.g., a foam support) speed up electron transfer as a result of well-oriented crystal structures and also assist intermediate diffusion, during reaction, of evolved gases. 2 D Ni-based nitride sheet materials synthesized without supports usually perform better than 3 D supported electrocatalysts. The focus of this Minireview is a systematic description of OER activity for state-of-the-art Ni-based nitrides as nanostructured electrocatalysts.Electrocatalysis is an efficient and promising means of energy conversion, with minimal environmental footprint. To enhance reaction rates, catalysts are required to minimize overpotential. Alternatives to noble metal electrocatalysts are essential to address these needs on a large scale. In this context, transition metal nitride (TMN) nanoparticles have attracted much attention owing to their high catalytic activity, distinctive electronic structures, and enhanced surface morphologies. Nickel-based materials are an ideal choice for electrocatalysts given nickel's abundance and low cost in comparison to noble metals. In this Minireview, advancements made specifically in Ni-based binary and ternary TMNs as electrocatalysts for the oxygen evolution reaction (OER) are critically evaluated. When used as OER electrocatalysts, Ni-based nanomaterials with 3 D architectures on a suitable support (e.g., a foam support) speed up electron transfer as a result of well-oriented crystal structures and also assist intermediate diffusion, during reaction, of evolved gases. 2 D Ni-based nitride sheet materials synthesized without supports usually perform better than 3 D supported electrocatalysts. The focus of this Minireview is a systematic description of OER activity for state-of-the-art Ni-based nitrides as nanostructured electrocatalysts. |
Author | Priyanga, G. Sudha Yang, Minghui Khan, Karim Thomas, Tiju Tareen, Ayesha Khan Pervaiz, Erum |
Author_xml | – sequence: 1 givenname: Ayesha Khan orcidid: 0000-0003-0328-4267 surname: Tareen fullname: Tareen, Ayesha Khan email: chemistayesha@yahoo.com organization: Shenzhen University – sequence: 2 givenname: G. Sudha surname: Priyanga fullname: Priyanga, G. Sudha organization: Indian Institute of Technology Madras – sequence: 3 givenname: Karim surname: Khan fullname: Khan, Karim organization: Indian Institute of Technology Madras – sequence: 4 givenname: Erum surname: Pervaiz fullname: Pervaiz, Erum organization: National University of Sciences and Technology – sequence: 5 givenname: Tiju surname: Thomas fullname: Thomas, Tiju email: tijuthomas@iitm.ac.in organization: Indian Institute of Technology Madras – sequence: 6 givenname: Minghui surname: Yang fullname: Yang, Minghui email: myang@nimte.ac.cn organization: Chinese Academy of Sciences |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31197961$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkctO3DAUhi0EKpd2y7KK1A2bGXyLkyzpaKBIXKRCpaqbyDk5aQ2eGGynZXZ9BJ6xT1KHoVMJqerKR9b3-fj8Z5ds9q5HQvYZnTJK-SGEAFNOWUVpnosNssNKJSe5kp8317Vg22Q3hBtKFa2UekW2BWNVUSm2Q75cGLhF--vn43sdsM2uve6Dicb12TlGbbMLE71pMZtbhOgd6HS5DDFknfNZ_IbZ5cPyK_bZ_Luzw5P3ETWMxWuy1Wkb8M3zuUc-Hc-vZx8mZ5cnp7OjswnIQolJU0LJG8UrJQCkVgVW0HYd5m0OZSnTZFwx1aqm4rngIGTb5CXjQEUap6Vc7JGD1bt33t0PGGK9MAHQWt2jG0LNecELkXqN6LsX6I0bfJ9-l6iyGCOUMlFvn6mhWWBb33mz0H5Z_0ktAdMVAN6F4LFbI4zW41rqcS31ei1JkC8EMFGPIUWvjf23Vq20H8bi8j9N6tnV1eyv-xuxXaH1 |
CitedBy_id | crossref_primary_10_1002_cssc_202201551 crossref_primary_10_1039_D3NJ01381B crossref_primary_10_3389_fchem_2021_700020 crossref_primary_10_1016_j_matchemphys_2023_127432 crossref_primary_10_1063_5_0250821 crossref_primary_10_1016_j_apsusc_2022_153041 crossref_primary_10_1246_bcsj_20210362 crossref_primary_10_1016_j_apcatb_2020_119367 crossref_primary_10_1016_j_cej_2020_124845 crossref_primary_10_1016_j_mtnano_2020_100095 crossref_primary_10_1039_D3NJ02322B crossref_primary_10_1007_s11814_022_1123_2 crossref_primary_10_1007_s40820_020_00504_3 crossref_primary_10_1016_j_jmrt_2023_02_135 crossref_primary_10_26599_NR_2025_94907102 crossref_primary_10_1002_asia_202300625 crossref_primary_10_1039_D1SE01235E crossref_primary_10_1016_j_ijhydene_2021_09_207 crossref_primary_10_1039_D3NJ03799A crossref_primary_10_1016_j_mtener_2021_100850 crossref_primary_10_1039_D3TA03069E crossref_primary_10_1016_j_progsolidstchem_2021_100326 crossref_primary_10_1016_j_jallcom_2020_157353 crossref_primary_10_1016_j_apsusc_2023_157896 crossref_primary_10_1016_j_colsurfa_2022_129324 crossref_primary_10_1016_j_ensm_2022_09_030 crossref_primary_10_1002_slct_202300885 crossref_primary_10_3762_bjnano_14_34 crossref_primary_10_1002_smll_202206147 crossref_primary_10_1007_s00339_023_07105_y crossref_primary_10_1007_s10311_023_01616_z crossref_primary_10_1016_j_electacta_2023_142844 crossref_primary_10_1016_j_cattod_2022_05_036 crossref_primary_10_2139_ssrn_4198963 crossref_primary_10_1016_j_elecom_2020_106828 crossref_primary_10_1021_acssuschemeng_1c05907 crossref_primary_10_1007_s12274_021_3885_y crossref_primary_10_1002_cctc_202301446 crossref_primary_10_1016_j_matlet_2021_130371 crossref_primary_10_1002_adfm_202005957 crossref_primary_10_1016_j_jallcom_2024_173792 crossref_primary_10_1016_j_progsolidstchem_2021_100336 crossref_primary_10_1016_j_electacta_2023_142294 crossref_primary_10_1039_D2TA06066C crossref_primary_10_1039_D0EE02800B crossref_primary_10_1016_j_inoche_2024_112474 crossref_primary_10_1007_s43207_024_00411_y crossref_primary_10_1016_j_gee_2021_01_018 crossref_primary_10_1039_D4SE01320D crossref_primary_10_1016_j_cej_2020_126803 crossref_primary_10_1016_j_nantod_2021_101207 crossref_primary_10_1039_D3QI02043F crossref_primary_10_1016_j_jallcom_2023_170828 crossref_primary_10_1016_j_jiec_2023_04_015 crossref_primary_10_1039_D1MA01208H crossref_primary_10_1016_j_nanoen_2022_107927 crossref_primary_10_1039_D2TC02233H crossref_primary_10_1002_cey2_375 crossref_primary_10_1021_acsmaterialslett_4c00699 crossref_primary_10_1016_j_mtener_2022_101001 crossref_primary_10_1016_j_jcis_2020_07_117 crossref_primary_10_1002_admi_202202172 crossref_primary_10_1016_j_poly_2022_116035 crossref_primary_10_1016_j_jelechem_2022_116720 crossref_primary_10_1016_j_jpcs_2023_111569 crossref_primary_10_1088_2053_1591_ac72ff crossref_primary_10_1016_j_materresbull_2021_111312 crossref_primary_10_1002_chem_201904510 crossref_primary_10_1016_j_jcis_2020_08_041 crossref_primary_10_1088_2053_1583_acbfcb crossref_primary_10_1016_j_jechem_2023_01_064 crossref_primary_10_1016_j_matpr_2023_05_725 crossref_primary_10_1039_D1DT03936A crossref_primary_10_1016_j_ijhydene_2023_07_276 crossref_primary_10_1088_1361_6528_acebf2 crossref_primary_10_3390_catal12080877 crossref_primary_10_1016_j_jechem_2021_08_035 crossref_primary_10_1021_acs_inorgchem_1c02903 crossref_primary_10_1016_j_electacta_2023_142504 crossref_primary_10_1007_s41918_024_00224_x crossref_primary_10_1039_D0NR00001A crossref_primary_10_1016_j_cej_2020_126192 crossref_primary_10_1016_j_jelechem_2023_117701 crossref_primary_10_2174_1389201022999210101235233 crossref_primary_10_1007_s10008_022_05232_9 crossref_primary_10_1016_j_diamond_2024_111751 crossref_primary_10_1016_j_apsusc_2023_159102 crossref_primary_10_1021_acsaem_4c02297 crossref_primary_10_1016_j_diamond_2025_112201 crossref_primary_10_1021_acsami_0c11824 crossref_primary_10_1002_ejic_202200682 crossref_primary_10_1016_j_ijhydene_2023_01_183 crossref_primary_10_1016_j_jallcom_2023_171861 crossref_primary_10_1002_cssc_202002946 crossref_primary_10_1039_D4TA03393K crossref_primary_10_1016_j_susmat_2021_e00252 crossref_primary_10_1039_D2TC03227A crossref_primary_10_1039_D0DT03448G crossref_primary_10_1039_D1SE01716K crossref_primary_10_1016_j_jallcom_2021_160833 crossref_primary_10_1016_j_diamond_2021_108464 crossref_primary_10_1016_j_jallcom_2023_173083 crossref_primary_10_1002_adfm_202408255 crossref_primary_10_1021_acs_inorgchem_2c01072 crossref_primary_10_3390_catal10020188 crossref_primary_10_1016_j_electacta_2021_137830 crossref_primary_10_1021_acscatal_1c03260 crossref_primary_10_1039_D0NR05941B crossref_primary_10_1016_j_jelechem_2021_115555 crossref_primary_10_1021_acs_energyfuels_4c04337 crossref_primary_10_1039_D1CS00135C crossref_primary_10_1016_j_cclet_2020_01_037 crossref_primary_10_1002_smll_201906766 crossref_primary_10_1021_acsaem_0c00211 crossref_primary_10_1039_D2TA02584A crossref_primary_10_1016_j_apcatb_2023_122599 crossref_primary_10_1039_D1NJ02644E crossref_primary_10_1039_D4TA00196F crossref_primary_10_1002_cssc_202001229 crossref_primary_10_1016_j_jece_2022_107693 crossref_primary_10_1039_D0QM00326C crossref_primary_10_1016_j_susmat_2023_e00645 crossref_primary_10_1016_j_nxmate_2023_100040 crossref_primary_10_1016_j_progsolidstchem_2023_100416 crossref_primary_10_1016_j_mtchem_2022_101205 crossref_primary_10_1016_j_colsurfa_2024_133959 crossref_primary_10_1021_acs_chemrev_3c00005 crossref_primary_10_1002_cssc_202101800 crossref_primary_10_1021_acs_inorgchem_3c01384 crossref_primary_10_1021_acs_inorgchem_2c02706 crossref_primary_10_1016_j_ijhydene_2020_07_017 crossref_primary_10_1002_ente_202400941 crossref_primary_10_3389_fchem_2019_00934 crossref_primary_10_1016_j_electacta_2021_139473 crossref_primary_10_1021_acscatal_4c05777 crossref_primary_10_1016_j_apsusc_2021_150706 crossref_primary_10_1039_D2TA09278F crossref_primary_10_1039_D0QI00700E crossref_primary_10_1007_s42114_023_00737_x crossref_primary_10_1016_j_cej_2023_146134 crossref_primary_10_3390_molecules28114464 crossref_primary_10_1016_j_ceramint_2025_02_180 crossref_primary_10_1016_j_jallcom_2021_162675 crossref_primary_10_1016_j_apsusc_2022_155751 crossref_primary_10_1016_j_fuel_2021_121823 crossref_primary_10_1016_j_cej_2023_145831 crossref_primary_10_1016_j_jallcom_2022_167989 crossref_primary_10_1007_s41204_024_00387_4 crossref_primary_10_1016_j_cej_2022_135291 crossref_primary_10_1016_j_ijhydene_2024_02_079 crossref_primary_10_3389_fchem_2024_1402563 crossref_primary_10_1016_j_ijhydene_2022_06_009 crossref_primary_10_1016_j_progsolidstchem_2022_100370 crossref_primary_10_1016_j_progsolidstchem_2023_100392 crossref_primary_10_1016_j_ijhydene_2021_09_137 crossref_primary_10_1039_D0DT00657B crossref_primary_10_1016_j_progsolidstchem_2020_100294 crossref_primary_10_1116_6_0002484 crossref_primary_10_1002_smtd_202200515 crossref_primary_10_1016_j_jallcom_2022_167060 crossref_primary_10_1016_j_apcatb_2022_121988 crossref_primary_10_1002_er_6799 crossref_primary_10_1002_adsu_202200076 crossref_primary_10_1016_j_cej_2020_127002 crossref_primary_10_1039_D1QM00629K crossref_primary_10_3390_nano12172996 |
Cites_doi | 10.1002/zaac.19432510205 10.1039/C4NR07243J 10.1149/2.0561706jes 10.1039/C4SC02019G 10.1002/ange.201506480 10.1021/acsami.7b18671 10.1149/1.2119829 10.1007/s10008-008-0744-7 10.1021/acs.iecr.7b03351 10.1002/cssc.201801337 10.1021/cr200434v 10.1016/j.progsolidstchem.2018.11.001 10.1021/ja4081056 10.1021/acscatal.8b02712 10.1039/C5TA00078E 10.1002/ange.201402822 10.1039/C5QI00197H 10.1039/C8CC02872A 10.1039/C7TA07795E 10.1021/acscatal.8b03489 10.1088/2516-1075/aae7f4 10.1002/aenm.201601275 10.3390/nano8100747 10.1002/ange.201403946 10.1021/jacs.8b05134 10.1038/ncomms5477 10.1021/acsami.7b04667 10.1021/cs3002644 10.1002/aenm.201601189 10.1039/C8TA06529B 10.1016/j.ijhydene.2008.06.008 10.1039/C6CS00918B 10.1039/c3ee41572d 10.1021/cs3003098 10.1016/j.mattod.2015.10.006 10.1016/j.ijhydene.2007.05.023 10.1016/j.jcat.2017.10.027 10.1021/acscatal.6b03132 10.1002/smtd.201700209 10.1039/C4TA03472D 10.1016/S1452-3981(23)19595-2 10.1149/2.0801614jes 10.1039/C7NR02385E 10.1016/j.jcat.2017.11.017 10.1002/cssc.201701456 10.1016/j.nanoen.2017.06.045 10.1039/C7CC07962A 10.1021/acssuschemeng.7b01541 10.1016/j.apsusc.2015.10.097 10.1021/ja403102j 10.1016/j.jpowsour.2007.11.106 10.1039/C8DT02548G 10.1016/j.nanoen.2018.07.033 10.1039/C5TA05678K 10.1016/j.ccr.2012.12.012 10.1016/j.electacta.2017.07.025 10.1021/acsami.6b05811 10.1021/cs4011875 10.1149/1.2115548 10.1038/nchem.1589 10.1038/ncomms10364 10.1039/C7NR00740J 10.1021/acscatal.7b01800 10.1038/s41467-017-02667-x 10.1002/ente.201700108 10.1021/ja4027715 10.1021/j100238a048 10.1016/j.jpowsour.2017.10.062 10.1021/acscatal.8b01821 10.1016/j.apcatb.2017.07.086 10.1021/acscatal.5b01638 10.1016/j.jpowsour.2014.12.085 10.1007/s40843-017-9157-9 10.1016/j.electacta.2018.01.192 10.1002/chem.201703712 10.1021/ja5119495 10.1016/j.jpowsour.2016.09.152 10.1038/nmat3313 10.1038/s41565-018-0157-4 10.1002/advs.201500286 10.1021/ja502379c 10.1016/j.jelechem.2018.07.004 10.1021/acsami.8b09854 10.1038/srep28367 10.1016/0013-4686(66)80045-2 10.1016/j.mattod.2017.03.019 |
ContentType | Journal Article |
Copyright | 2019 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. |
Copyright_xml | – notice: 2019 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. |
DBID | AAYXX CITATION NPM 7SR 8BQ 8FD JG9 K9. 7X8 |
DOI | 10.1002/cssc.201900553 |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database ProQuest Health & Medical Complete (Alumni) Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | Materials Research Database CrossRef MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1864-564X |
EndPage | 3954 |
ExternalDocumentID | 31197961 10_1002_cssc_201900553 CSSC201900553 |
Genre | reviewArticle Journal Article Review |
GroupedDBID | --- 05W 0R~ 1OC 29B 33P 4.4 5GY 5VS 66C 77Q 8-1 A00 AAESR AAHHS AAHQN AAIHA AAMNL AANLZ AASGY AAXRX AAYCA AAZKR ABCUV ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADKYN ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AENEX AEQDE AEUYR AFBPY AFFPM AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMYDB AZVAB BDRZF BFHJK BRXPI CS3 DCZOG DR2 DRFUL DRSTM DU5 EBD EBS EJD EMOBN F5P G-S HGLYW HZ~ IX1 LATKE LAW LEEKS LITHE LOXES LUTES LYRES MEWTI MY~ O9- OIG P2W P4E PQQKQ ROL SUPJJ SV3 W99 WBKPD WOHZO WXSBR WYJ XV2 ZZTAW ~S- AAYXX AEYWJ AGYGG CITATION NPM 7SR 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 K9. 7X8 |
ID | FETCH-LOGICAL-c4763-b8c82b62963cc4a67e9cdffe5d5c8841902616d6b92532c34db5812c03060d023 |
IEDL.DBID | DR2 |
ISSN | 1864-5631 1864-564X |
IngestDate | Fri Jul 11 01:51:42 EDT 2025 Fri Jul 25 12:12:11 EDT 2025 Wed Feb 19 02:31:33 EST 2025 Tue Jul 01 00:36:09 EDT 2025 Thu Apr 24 23:12:10 EDT 2025 Wed Jan 22 16:38:34 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 17 |
Keywords | metal nitrides nickel oxygen evolution reaction nanoparticles electrocatalysis |
Language | English |
License | 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4763-b8c82b62963cc4a67e9cdffe5d5c8841902616d6b92532c34db5812c03060d023 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0003-0328-4267 |
PMID | 31197961 |
PQID | 2287055344 |
PQPubID | 986333 |
PageCount | 14 |
ParticipantIDs | proquest_miscellaneous_2272734762 proquest_journals_2287055344 pubmed_primary_31197961 crossref_primary_10_1002_cssc_201900553 crossref_citationtrail_10_1002_cssc_201900553 wiley_primary_10_1002_cssc_201900553_CSSC201900553 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | September 6, 2019 |
PublicationDateYYYYMMDD | 2019-09-06 |
PublicationDate_xml | – month: 09 year: 2019 text: September 6, 2019 day: 06 |
PublicationDecade | 2010 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | ChemSusChem |
PublicationTitleAlternate | ChemSusChem |
PublicationYear | 2019 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2017; 5 2017; 7 2017; 1 2019; 53 2017; 46 2008; 33 2007; 32 2013; 5 2013; 6 2012; 11 1966; 11 2017; 9 2014; 136 2018; 47 2018; 6 2018; 9 2018; 8 2009; 13 2014; 5 2014; 4 2014; 2 2015; 137 2017; 39 1943 2017; 164 2017; 247 2014; 126 2017; 20 2018; 220 2015; 5 2018; 140 2015; 3 2016; 19 1983; 130 2015; 127 2018; 823 2019; 1 2018; 267 2017; 23 2017; 372 2018; 61 2015; 7 2016; 163 2017; 53 2016; 6 2016; 7 2012; 2 1984; 131 2012; 112 2016; 3 2018; 358 2015; 278 2017; 10 2018; 357 2017; 56 2016; 333 1983; 87 2013; 257 2013; 135 2018; 52 2015; 359 2008; 177 2018; 11 2012; 7 2018; 54 2018; 10 2016; 8 2018; 13 e_1_2_12_4_1 e_1_2_12_6_1 e_1_2_12_19_1 e_1_2_12_2_1 e_1_2_12_17_1 e_1_2_12_38_1 e_1_2_12_20_1 e_1_2_12_41_1 e_1_2_12_66_1 e_1_2_12_87_1 e_1_2_12_22_1 e_1_2_12_43_1 e_1_2_12_64_1 e_1_2_12_85_1 e_1_2_12_24_1 e_1_2_12_45_1 e_1_2_12_26_1 e_1_2_12_47_1 e_1_2_12_68_1 e_1_2_12_62_1 e_1_2_12_83_1 e_1_2_12_60_1 e_1_2_12_81_1 e_1_2_12_28_1 e_1_2_12_49_1 e_1_2_12_31_1 e_1_2_12_52_1 e_1_2_12_77_1 e_1_2_12_33_1 e_1_2_12_54_1 e_1_2_12_75_1 e_1_2_12_35_1 e_1_2_12_56_1 e_1_2_12_37_1 e_1_2_12_58_1 e_1_2_12_79_1 e_1_2_12_14_1 e_1_2_12_12_1 e_1_2_12_8_1 e_1_2_12_10_1 e_1_2_12_73_1 e_1_2_12_50_2 e_1_2_12_71_1 e_1_2_12_3_1 e_1_2_12_5_1 e_1_2_12_18_1 e_1_2_12_1_1 e_1_2_12_16_1 e_1_2_12_39_1 e_1_2_12_42_1 e_1_2_12_65_1 e_1_2_12_21_1 e_1_2_12_44_1 e_1_2_12_63_1 e_1_2_12_86_1 e_1_2_12_23_1 e_1_2_12_46_1 e_1_2_12_69_1 e_1_2_12_25_1 e_1_2_12_48_1 e_1_2_12_67_1 e_1_2_12_80_1 e_1_2_12_61_1 e_1_2_12_84_1 e_1_2_12_40_1 e_1_2_12_82_1 e_1_2_12_27_1 e_1_2_12_29_1 e_1_2_12_30_1 e_1_2_12_53_1 e_1_2_12_76_1 e_1_2_12_51_2 e_1_2_12_32_1 e_1_2_12_55_1 e_1_2_12_74_1 e_1_2_12_34_1 e_1_2_12_57_1 e_1_2_12_36_1 e_1_2_12_59_1 e_1_2_12_78_1 e_1_2_12_15_1 e_1_2_12_13_1 e_1_2_12_11_1 e_1_2_12_72_1 e_1_2_12_7_1 e_1_2_12_70_1 e_1_2_12_9_1 |
References_xml | – volume: 56 start-page: 14245 year: 2017 end-page: 14251 publication-title: Ind. Eng. Chem. Res. – volume: 372 start-page: 46 year: 2017 end-page: 53 publication-title: J. Power Sources – volume: 33 start-page: 4260 year: 2008 end-page: 4264 publication-title: Int. J. Hydrogen Energy – volume: 131 start-page: 72 year: 1984 end-page: 77 publication-title: J. Electrochem. Soc. – volume: 3 start-page: 8171 year: 2015 end-page: 8177 publication-title: J. Mater. Chem. A – volume: 54 start-page: 6400 year: 2018 end-page: 643 publication-title: Chem. Commun. – volume: 46 start-page: 1933 year: 2017 end-page: 1954 publication-title: Chem. Soc. Rev. – volume: 10 start-page: 4170 year: 2017 end-page: 4177 publication-title: ChemSusChem – volume: 5 start-page: 263 year: 2013 publication-title: Nat. Chem. – volume: 278 start-page: 445 year: 2015 end-page: 451 publication-title: J. Power Sources – volume: 163 start-page: 3022 year: 2016 end-page: 3035 publication-title: J. Electrochem. Soc. – volume: 53 start-page: 1 year: 2019 end-page: 26 publication-title: Prog. Solid State Chem. – volume: 140 start-page: 13644 year: 2018 end-page: 13653 publication-title: J. Am. Chem. Soc. – volume: 135 start-page: 19186 year: 2013 end-page: 19192 publication-title: J. Am. Chem. Soc. – volume: 2 start-page: 1765 year: 2012 end-page: 1772 publication-title: ACS Catal. – volume: 8 start-page: 9686 year: 2018 end-page: 9696 publication-title: ACS Catal. – volume: 87 start-page: 2960 year: 1983 end-page: 2971 publication-title: J. Phys. Chem. – volume: 126 start-page: 7714 year: 2014 end-page: 7718 publication-title: Angew. Chem. – volume: 20 start-page: 425 year: 2017 end-page: 451 publication-title: Mater. Today – volume: 127 start-page: 14923 year: 2015 end-page: 14927 publication-title: Angew. Chem. – volume: 5 start-page: 5380 year: 2015 end-page: 5387 publication-title: ACS Catal. – volume: 8 start-page: 747 year: 2018 publication-title: Nanomaterials – volume: 1 start-page: 1700209 year: 2017 publication-title: Small Methods – volume: 220 start-page: 88 year: 2018 end-page: 97 publication-title: Appl. Catal. B – volume: 53 start-page: 13237 year: 2017 end-page: 13240 publication-title: Chem. Commun. – volume: 39 start-page: 101 year: 2017 end-page: 110 publication-title: Nano Energy – volume: 5 start-page: 4477 year: 2014 publication-title: Nat. Commun. – volume: 7 start-page: 10364 year: 2016 publication-title: Nat. Commun. – volume: 823 start-page: 499 year: 2018 end-page: 504 publication-title: J. Electroanal. Chem. – volume: 112 start-page: 4124 year: 2012 end-page: 4155 publication-title: Chem. Rev. – volume: 164 start-page: 307 year: 2017 end-page: 310 publication-title: J. Electrochem. Soc. – volume: 9 start-page: 154 year: 2018 publication-title: Nat. Commun. – volume: 2 start-page: 16217 year: 2014 end-page: 16223 publication-title: J. Mater. Chem. A – volume: 7 start-page: 1601275 year: 2017 publication-title: Adv. Energy Mater. – volume: 32 start-page: 4142 year: 2007 end-page: 4152 publication-title: Int. J. Hydrogen Energy – volume: 333 start-page: 53 year: 2016 end-page: 60 publication-title: J. Power Sources – volume: 7 start-page: 2052 year: 2017 end-page: 2057 publication-title: ACS Catal. – volume: 5 start-page: 24407 year: 2017 end-page: 24415 publication-title: J. Mater. Chem. A – volume: 137 start-page: 4119 year: 2015 end-page: 4125 publication-title: J. Am. Chem. Soc. – volume: 8 start-page: 18652 year: 2016 end-page: 18657 publication-title: ACS Appl. Mater. Interfaces – volume: 10 start-page: 30400 year: 2018 end-page: 30408 publication-title: ACS Appl. Mater. Interfaces – volume: 6 start-page: 1601189 year: 2016 publication-title: Adv. Energy Mater. – volume: 126 start-page: 7409 year: 2014 end-page: 7413 publication-title: Angew. Chem. – volume: 11 start-page: 550 year: 2012 publication-title: Nat. Mater. – volume: 3 start-page: 1500286 year: 2016 publication-title: Adv. Sci. – volume: 247 start-page: 666 year: 2017 end-page: 673 publication-title: Electrochim. Acta – volume: 4 start-page: 1426 year: 2014 end-page: 1440 publication-title: ACS Catal. – volume: 135 start-page: 11580 year: 2013 end-page: 11586 publication-title: J. Am. Chem. Soc. – volume: 8 start-page: 9765 year: 2018 end-page: 9774 publication-title: ACS Catal. – volume: 358 start-page: 1 year: 2018 end-page: 7 publication-title: J. Catal. – volume: 13 start-page: 444 year: 2018 end-page: 450 publication-title: Nat. Nanotechnol. – volume: 8 start-page: 11342 year: 2018 end-page: 11351 publication-title: ACS Catal. – volume: 7 start-page: 7196 year: 2017 end-page: 7225 publication-title: ACS Catal. – volume: 5 start-page: 4615 year: 2014 end-page: 4620 publication-title: Chem. Sci. – volume: 11 start-page: 3198 year: 2018 end-page: 3207 publication-title: ChemSusChem – volume: 6 start-page: 28367 year: 2016 publication-title: Sci. Rep. – volume: 257 start-page: 1946 year: 2013 end-page: 1956 publication-title: Coord. Chem. Rev. – volume: 47 start-page: 13498 year: 2018 end-page: 13506 publication-title: Dalton Trans. – volume: 5 start-page: 1908 year: 2017 end-page: 1911 publication-title: Energy Technol. – volume: 135 start-page: 8452 year: 2013 end-page: 8455 publication-title: J. Am. Chem. Soc. – volume: 9 start-page: 22490 year: 2017 end-page: 22501 publication-title: ACS Appl. Mater. Interfaces – volume: 6 start-page: 2921 year: 2013 end-page: 2924 publication-title: Energy Environ. Sci. – start-page: 201 year: 1943 publication-title: Z. Anorg. Allg. Chem. – volume: 9 start-page: 4793 year: 2017 end-page: 4800 publication-title: Nanoscale – volume: 7 start-page: 4959 year: 2012 end-page: 4973 publication-title: Int. J. Electrochem. Sci. – volume: 3 start-page: 236 year: 2016 end-page: 242 publication-title: Inorg. Chem. Front. – volume: 9 start-page: 8623 year: 2017 end-page: 8630 publication-title: Nanoscale – volume: 19 start-page: 213 year: 2016 end-page: 226 publication-title: Mater. Today – volume: 5 start-page: 9735 year: 2017 end-page: 9748 publication-title: ACS Sustainable Chem. Eng. – volume: 177 start-page: 470 year: 2008 end-page: 477 publication-title: J. Power Sources – volume: 7 start-page: 8920 year: 2015 end-page: 8930 publication-title: Nanoscale – volume: 61 start-page: 697 year: 2018 end-page: 706 publication-title: Sci. China Mater. – volume: 359 start-page: 172 year: 2015 end-page: 176 publication-title: Appl. Surf. Sci. – volume: 1 start-page: 015002 year: 2019 publication-title: Electron. Struct. – volume: 13 start-page: 1613 year: 2009 end-page: 1619 publication-title: J. Solid State Electrochem. – volume: 357 start-page: 238 year: 2018 end-page: 246 publication-title: J. Catal. – volume: 2 start-page: 1793 year: 2012 end-page: 1801 publication-title: ACS Catal. – volume: 6 start-page: 19912 year: 2018 end-page: 19933 publication-title: J. Mater. Chem. A – volume: 10 start-page: 3699 year: 2018 end-page: 3706 publication-title: ACS Appl. Mater. Interfaces – volume: 3 start-page: 22750 year: 2015 end-page: 22758 publication-title: J. Mater. Chem. A – volume: 267 start-page: 8 year: 2018 end-page: 14 publication-title: Electrochim. Acta – volume: 23 start-page: 16862 year: 2017 end-page: 16870 publication-title: Chem. Eur. J. – volume: 11 start-page: 1079 year: 1966 end-page: 1087 publication-title: Electrochim. Acta – volume: 52 start-page: 29 year: 2018 end-page: 37 publication-title: Nano Energy – volume: 136 start-page: 6744 year: 2014 end-page: 6753 publication-title: J. Am. Chem. Soc. – volume: 130 start-page: 825 year: 1983 end-page: 829 publication-title: J. Electrochem. Soc. – ident: e_1_2_12_42_1 doi: 10.1002/zaac.19432510205 – ident: e_1_2_12_62_1 doi: 10.1039/C4NR07243J – ident: e_1_2_12_69_1 doi: 10.1149/2.0561706jes – ident: e_1_2_12_38_1 doi: 10.1039/C4SC02019G – ident: e_1_2_12_46_1 doi: 10.1002/ange.201506480 – ident: e_1_2_12_80_1 doi: 10.1021/acsami.7b18671 – ident: e_1_2_12_34_1 doi: 10.1149/1.2119829 – ident: e_1_2_12_13_1 doi: 10.1007/s10008-008-0744-7 – ident: e_1_2_12_45_1 doi: 10.1021/acs.iecr.7b03351 – ident: e_1_2_12_56_1 doi: 10.1002/cssc.201801337 – ident: e_1_2_12_66_1 doi: 10.1021/cr200434v – ident: e_1_2_12_20_1 doi: 10.1016/j.progsolidstchem.2018.11.001 – ident: e_1_2_12_39_1 doi: 10.1021/ja4081056 – ident: e_1_2_12_51_2 doi: 10.1021/acscatal.8b02712 – ident: e_1_2_12_77_1 doi: 10.1039/C5TA00078E – ident: e_1_2_12_75_1 doi: 10.1002/ange.201402822 – ident: e_1_2_12_52_1 doi: 10.1039/C5QI00197H – ident: e_1_2_12_65_1 doi: 10.1039/C8CC02872A – ident: e_1_2_12_70_1 doi: 10.1039/C7TA07795E – ident: e_1_2_12_4_1 doi: 10.1021/acscatal.8b03489 – ident: e_1_2_12_41_1 doi: 10.1088/2516-1075/aae7f4 – ident: e_1_2_12_49_1 – ident: e_1_2_12_29_1 doi: 10.1002/aenm.201601275 – ident: e_1_2_12_25_1 doi: 10.3390/nano8100747 – ident: e_1_2_12_10_1 doi: 10.1002/ange.201403946 – ident: e_1_2_12_3_1 doi: 10.1021/jacs.8b05134 – ident: e_1_2_12_68_1 doi: 10.1038/ncomms5477 – ident: e_1_2_12_11_1 doi: 10.1021/acsami.7b04667 – ident: e_1_2_12_61_1 doi: 10.1021/cs3002644 – ident: e_1_2_12_58_1 doi: 10.1002/aenm.201601189 – ident: e_1_2_12_30_1 doi: 10.1039/C8TA06529B – ident: e_1_2_12_15_1 doi: 10.1016/j.ijhydene.2008.06.008 – ident: e_1_2_12_27_1 doi: 10.1039/C6CS00918B – ident: e_1_2_12_26_1 doi: 10.1039/c3ee41572d – ident: e_1_2_12_36_1 doi: 10.1021/cs3003098 – ident: e_1_2_12_17_1 doi: 10.1016/j.mattod.2015.10.006 – ident: e_1_2_12_59_1 doi: 10.1016/j.ijhydene.2007.05.023 – ident: e_1_2_12_19_1 doi: 10.1016/j.jcat.2017.10.027 – ident: e_1_2_12_47_1 doi: 10.1021/acscatal.6b03132 – ident: e_1_2_12_87_1 doi: 10.1002/smtd.201700209 – ident: e_1_2_12_18_1 doi: 10.1039/C4TA03472D – ident: e_1_2_12_63_1 doi: 10.1016/S1452-3981(23)19595-2 – ident: e_1_2_12_7_1 doi: 10.1149/2.0801614jes – ident: e_1_2_12_9_1 doi: 10.1039/C7NR02385E – ident: e_1_2_12_22_1 doi: 10.1016/j.jcat.2017.11.017 – ident: e_1_2_12_55_1 doi: 10.1002/cssc.201701456 – ident: e_1_2_12_5_1 doi: 10.1016/j.nanoen.2017.06.045 – ident: e_1_2_12_53_1 doi: 10.1039/C7CC07962A – ident: e_1_2_12_12_1 doi: 10.1021/acssuschemeng.7b01541 – ident: e_1_2_12_21_1 doi: 10.1016/j.apsusc.2015.10.097 – ident: e_1_2_12_64_1 doi: 10.1021/ja403102j – ident: e_1_2_12_48_1 doi: 10.1016/j.jpowsour.2007.11.106 – ident: e_1_2_12_2_1 doi: 10.1039/C8DT02548G – ident: e_1_2_12_6_1 doi: 10.1016/j.nanoen.2018.07.033 – ident: e_1_2_12_14_1 doi: 10.1039/C5TA05678K – ident: e_1_2_12_43_1 doi: 10.1016/j.ccr.2012.12.012 – ident: e_1_2_12_78_1 doi: 10.1016/j.electacta.2017.07.025 – ident: e_1_2_12_79_1 doi: 10.1021/acsami.6b05811 – ident: e_1_2_12_37_1 doi: 10.1021/cs4011875 – ident: e_1_2_12_35_1 doi: 10.1149/1.2115548 – ident: e_1_2_12_60_1 doi: 10.1038/nchem.1589 – ident: e_1_2_12_8_1 doi: 10.1038/ncomms10364 – ident: e_1_2_12_44_1 doi: 10.1039/C7NR00740J – ident: e_1_2_12_33_1 doi: 10.1021/acscatal.7b01800 – ident: e_1_2_12_81_1 doi: 10.1038/s41467-017-02667-x – ident: e_1_2_12_82_1 doi: 10.1002/ente.201700108 – ident: e_1_2_12_67_1 doi: 10.1021/ja4027715 – ident: e_1_2_12_50_2 doi: 10.1021/j100238a048 – ident: e_1_2_12_23_1 doi: 10.1016/j.jpowsour.2017.10.062 – ident: e_1_2_12_57_1 doi: 10.1021/acscatal.8b01821 – ident: e_1_2_12_85_1 doi: 10.1016/j.apcatb.2017.07.086 – ident: e_1_2_12_76_1 doi: 10.1021/acscatal.5b01638 – ident: e_1_2_12_16_1 doi: 10.1016/j.jpowsour.2014.12.085 – ident: e_1_2_12_1_1 doi: 10.1007/s40843-017-9157-9 – ident: e_1_2_12_40_1 doi: 10.1016/j.electacta.2018.01.192 – ident: e_1_2_12_54_1 doi: 10.1002/chem.201703712 – ident: e_1_2_12_28_1 doi: 10.1021/ja5119495 – ident: e_1_2_12_71_1 doi: 10.1016/j.jpowsour.2016.09.152 – ident: e_1_2_12_73_1 doi: 10.1038/nmat3313 – ident: e_1_2_12_84_1 doi: 10.1038/s41565-018-0157-4 – ident: e_1_2_12_32_1 doi: 10.1002/advs.201500286 – ident: e_1_2_12_24_1 doi: 10.1021/ja502379c – ident: e_1_2_12_72_1 doi: 10.1016/j.jelechem.2018.07.004 – ident: e_1_2_12_83_1 doi: 10.1021/acsami.8b09854 – ident: e_1_2_12_86_1 doi: 10.1038/srep28367 – ident: e_1_2_12_74_1 doi: 10.1016/0013-4686(66)80045-2 – ident: e_1_2_12_31_1 doi: 10.1016/j.mattod.2017.03.019 |
SSID | ssj0060966 |
Score | 2.6124039 |
SecondaryResourceType | review_article |
Snippet | Electrocatalysis is an efficient and promising means of energy conversion, with minimal environmental footprint. To enhance reaction rates, catalysts are... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 3941 |
SubjectTerms | Catalysis Catalytic activity Crystal structure electrocatalysis Electrocatalysts Electron transfer Energy conversion Environmental impact Materials selection Metal nitrides Morphology Nanomaterials Nanoparticles Nickel Noble metals oxygen evolution reaction Oxygen evolution reactions Transition metals |
Title | Nickel‐Based Transition Metal Nitride Electrocatalysts for the Oxygen Evolution Reaction |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcssc.201900553 https://www.ncbi.nlm.nih.gov/pubmed/31197961 https://www.proquest.com/docview/2287055344 https://www.proquest.com/docview/2272734762 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS-RAEC7Ei17W52pclRYW9hTN9MvkqMOICCroCuIlTD8CooxiMsu6J3-Cv3F_yVZ1Hjory4LeErqbdLqqur7urv4K4GvhhBI-K2LeszYmAro4y4xAgewWxsjCJz6wfZ7owwt5dKkuX93ir_khug03sowwX5OBD02580IaasuSKAjRoSVKEd0nBWwRKjrr-KM04vNwvSjVMlZa9FrWxoTvTDaf9EpvoOYkcg2u52AOhm2n64iTm-1xZbbtr7_4HD_yV_PwqcGlbK9WpAWY8qNFmOm36eCW4Ap15sbf_n563kfH51hwciHeix17RPDs5Lp6uHaeDerEOmFf6LGsSoawmCHMZKc_H1Fb2eBHo-3szNe3Kpbh4mDwvX8YN4kZYitxPopNalNuNEfjtVYO9a7PrCsKr5yyaSqx87gu006bjCvBrZDOKAQSltYniUOU8BmmR3cjvwpMWZxgisSSKhH5n_GJ8FJLg-uonnA2grgVTG4b1nJKnnGb13zLPKcRy7sRi-BbV_--5uv4Z831Vs55Y7dlzuncFwuljGCrK8aRpmOU4cjfjakOYT4cCB7BSq0f3acEncpmuhcBD1L-Tx_y_vl5v3tbe0-jLzBLzyHsTa_DdPUw9huIkyqzGWzhD22tChQ |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JTxRBFH4RPMBFXAAbUcvExFNDT210H3UyZFQYE5bEeOlQSycTyAyZ7iHAyZ_gb_SX-F71YkZDTPDYXVXp6rfU-2r7HsDbwgklfFbEvGdtTAR0cZYZgQrZK4yRhU98YPsc6eGp_PRVtacJ6S5MzQ_RLbiRZ4TxmhycFqR3f7OG2rIkDkKMaIlSYgkeUlrvMKs66hikNCL0cMEo1TJWWvRa3saE7y62X4xLf4HNRewags_-Gpi22_WZk_OdeWV27O0fjI7_9V-P4VEDTdn72paewAM_eQor_TYj3DP4hmZz7i9-fv_xAWOfYyHOhSNf7NAjiGejcTUbO88GdW6dsDR0U1YlQ2TMEGmyL9c3aLBscNUYPDvy9cWKdTjdH5z0h3GTmyG2Eoek2KQ25UZz9F9r5Zne85l1ReGVUzZNJXYep2baaZNxJbgV0hmFWMLSFCVxCBQ2YHkynfjnwJTFMaZILFkT8f8ZnwgvtTQ4leoJZyOIW83ktiEup_wZF3lNucxzkljeSSyCd139y5qy486a262i88Z1y5zT1i8WShnBm64YJU07KWcTP51THYJ9KAgewWZtIN2nBG3MZroXAQ9q_kcf8v7xcb972rpPo9ewMjw5PMgPPo4-v4BVeh9OweltWK5mc_8SYVNlXgXH-AULug4v |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JT9wwFH4qIFEuFOhCKAVXQuopkPFGcmyHGQFtB8QiIS7ReImEQAMiGQSc-An8Rn5Jn52FDghVKsfEtuK8xe_z9j2AlcwwwWyShbSldegI6MIkUQwVsp4pxTMbWc_22ZObh3z7SBz9dYu_5IdoFtycZ_jx2jn4hcnWHklDdZ47CkIMaJEQbAwmuIxiZ9cbew2BlESA7u8XxZKHQrJWTdsY0bXR9qNh6RnWHIWuPvZ030G_7nV55OR0dVioVX37hNDxNb81A9MVMCXfS0uahTd2MAdv23U-uPdwjEZzas8e7u5_YOQzxEc5f-CL_LYI4UnvpLg8MZZ0ysw6fmHoJi9ygriYIM4kO9c3aK6kc1WZO9mz5bWKD3DY7Ry0N8MqM0OoOQ5IoYp1TJWk6L1a875ct4k2WWaFETqOOXYeJ2bSSJVQwahm3CiBSEK7CUpkECZ8hPHB-cDOAxEaR5gs0s6WHPufshGzXHKFE6kWMzqAsFZMqivacpc94ywtCZdp6iSWNhIL4FtT_6Ik7Hix5mKt57Ry3DylbuMXCzkP4GtTjJJ2-yj9gT0fujoO9KEgaACfSvtoPsXctmwiWwFQr-V_9CFt7--3m6eF_2m0DJO7G93011bv52eYcq_9ETi5COPF5dB-QcxUqCXvFn8A7NUM5w |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nickel%E2%80%90Based+Transition+Metal+Nitride+Electrocatalysts+for+the+Oxygen+Evolution+Reaction&rft.jtitle=ChemSusChem&rft.au=Tareen%2C+Ayesha+Khan&rft.au=Priyanga%2C+G.+Sudha&rft.au=Khan%2C+Karim&rft.au=Pervaiz%2C+Erum&rft.date=2019-09-06&rft.issn=1864-5631&rft.eissn=1864-564X&rft.volume=12&rft.issue=17&rft.spage=3941&rft.epage=3954&rft_id=info:doi/10.1002%2Fcssc.201900553&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_cssc_201900553 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1864-5631&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1864-5631&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1864-5631&client=summon |