Nickel‐Based Transition Metal Nitride Electrocatalysts for the Oxygen Evolution Reaction

Electrocatalysis is an efficient and promising means of energy conversion, with minimal environmental footprint. To enhance reaction rates, catalysts are required to minimize overpotential. Alternatives to noble metal electrocatalysts are essential to address these needs on a large scale. In this co...

Full description

Saved in:
Bibliographic Details
Published inChemSusChem Vol. 12; no. 17; pp. 3941 - 3954
Main Authors Tareen, Ayesha Khan, Priyanga, G. Sudha, Khan, Karim, Pervaiz, Erum, Thomas, Tiju, Yang, Minghui
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 06.09.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Electrocatalysis is an efficient and promising means of energy conversion, with minimal environmental footprint. To enhance reaction rates, catalysts are required to minimize overpotential. Alternatives to noble metal electrocatalysts are essential to address these needs on a large scale. In this context, transition metal nitride (TMN) nanoparticles have attracted much attention owing to their high catalytic activity, distinctive electronic structures, and enhanced surface morphologies. Nickel‐based materials are an ideal choice for electrocatalysts given nickel's abundance and low cost in comparison to noble metals. In this Minireview, advancements made specifically in Ni‐based binary and ternary TMNs as electrocatalysts for the oxygen evolution reaction (OER) are critically evaluated. When used as OER electrocatalysts, Ni‐based nanomaterials with 3 D architectures on a suitable support (e.g., a foam support) speed up electron transfer as a result of well‐oriented crystal structures and also assist intermediate diffusion, during reaction, of evolved gases. 2 D Ni‐based nitride sheet materials synthesized without supports usually perform better than 3 D supported electrocatalysts. The focus of this Minireview is a systematic description of OER activity for state‐of‐the‐art Ni‐based nitrides as nanostructured electrocatalysts. A revolution in evolution: The electrocatalytic oxygen evolution reaction is a promising means of efficient energy conversion, with minimal environmental footprint. Transition metal nitride nanoparticles have attracted much attention owing to their high electrocatalytic activities, distinctive electronic structures, and enhanced surface morphologies. Nickel‐based electrocatalysts are of particular interest, given their abundance and low cost.
AbstractList Electrocatalysis is an efficient and promising means of energy conversion, with minimal environmental footprint. To enhance reaction rates, catalysts are required to minimize overpotential. Alternatives to noble metal electrocatalysts are essential to address these needs on a large scale. In this context, transition metal nitride (TMN) nanoparticles have attracted much attention owing to their high catalytic activity, distinctive electronic structures, and enhanced surface morphologies. Nickel‐based materials are an ideal choice for electrocatalysts given nickel's abundance and low cost in comparison to noble metals. In this Minireview, advancements made specifically in Ni‐based binary and ternary TMNs as electrocatalysts for the oxygen evolution reaction (OER) are critically evaluated. When used as OER electrocatalysts, Ni‐based nanomaterials with 3 D architectures on a suitable support (e.g., a foam support) speed up electron transfer as a result of well‐oriented crystal structures and also assist intermediate diffusion, during reaction, of evolved gases. 2 D Ni‐based nitride sheet materials synthesized without supports usually perform better than 3 D supported electrocatalysts. The focus of this Minireview is a systematic description of OER activity for state‐of‐the‐art Ni‐based nitrides as nanostructured electrocatalysts.
Electrocatalysis is an efficient and promising means of energy conversion, with minimal environmental footprint. To enhance reaction rates, catalysts are required to minimize overpotential. Alternatives to noble metal electrocatalysts are essential to address these needs on a large scale. In this context, transition metal nitride (TMN) nanoparticles have attracted much attention owing to their high catalytic activity, distinctive electronic structures, and enhanced surface morphologies. Nickel‐based materials are an ideal choice for electrocatalysts given nickel's abundance and low cost in comparison to noble metals. In this Minireview, advancements made specifically in Ni‐based binary and ternary TMNs as electrocatalysts for the oxygen evolution reaction (OER) are critically evaluated. When used as OER electrocatalysts, Ni‐based nanomaterials with 3 D architectures on a suitable support (e.g., a foam support) speed up electron transfer as a result of well‐oriented crystal structures and also assist intermediate diffusion, during reaction, of evolved gases. 2 D Ni‐based nitride sheet materials synthesized without supports usually perform better than 3 D supported electrocatalysts. The focus of this Minireview is a systematic description of OER activity for state‐of‐the‐art Ni‐based nitrides as nanostructured electrocatalysts. A revolution in evolution: The electrocatalytic oxygen evolution reaction is a promising means of efficient energy conversion, with minimal environmental footprint. Transition metal nitride nanoparticles have attracted much attention owing to their high electrocatalytic activities, distinctive electronic structures, and enhanced surface morphologies. Nickel‐based electrocatalysts are of particular interest, given their abundance and low cost.
Electrocatalysis is an efficient and promising means of energy conversion, with minimal environmental footprint. To enhance reaction rates, catalysts are required to minimize overpotential. Alternatives to noble metal electrocatalysts are essential to address these needs on a large scale. In this context, transition metal nitride (TMN) nanoparticles have attracted much attention owing to their high catalytic activity, distinctive electronic structures, and enhanced surface morphologies. Nickel-based materials are an ideal choice for electrocatalysts given nickel's abundance and low cost in comparison to noble metals. In this Minireview, advancements made specifically in Ni-based binary and ternary TMNs as electrocatalysts for the oxygen evolution reaction (OER) are critically evaluated. When used as OER electrocatalysts, Ni-based nanomaterials with 3 D architectures on a suitable support (e.g., a foam support) speed up electron transfer as a result of well-oriented crystal structures and also assist intermediate diffusion, during reaction, of evolved gases. 2 D Ni-based nitride sheet materials synthesized without supports usually perform better than 3 D supported electrocatalysts. The focus of this Minireview is a systematic description of OER activity for state-of-the-art Ni-based nitrides as nanostructured electrocatalysts.Electrocatalysis is an efficient and promising means of energy conversion, with minimal environmental footprint. To enhance reaction rates, catalysts are required to minimize overpotential. Alternatives to noble metal electrocatalysts are essential to address these needs on a large scale. In this context, transition metal nitride (TMN) nanoparticles have attracted much attention owing to their high catalytic activity, distinctive electronic structures, and enhanced surface morphologies. Nickel-based materials are an ideal choice for electrocatalysts given nickel's abundance and low cost in comparison to noble metals. In this Minireview, advancements made specifically in Ni-based binary and ternary TMNs as electrocatalysts for the oxygen evolution reaction (OER) are critically evaluated. When used as OER electrocatalysts, Ni-based nanomaterials with 3 D architectures on a suitable support (e.g., a foam support) speed up electron transfer as a result of well-oriented crystal structures and also assist intermediate diffusion, during reaction, of evolved gases. 2 D Ni-based nitride sheet materials synthesized without supports usually perform better than 3 D supported electrocatalysts. The focus of this Minireview is a systematic description of OER activity for state-of-the-art Ni-based nitrides as nanostructured electrocatalysts.
Author Priyanga, G. Sudha
Yang, Minghui
Khan, Karim
Thomas, Tiju
Tareen, Ayesha Khan
Pervaiz, Erum
Author_xml – sequence: 1
  givenname: Ayesha Khan
  orcidid: 0000-0003-0328-4267
  surname: Tareen
  fullname: Tareen, Ayesha Khan
  email: chemistayesha@yahoo.com
  organization: Shenzhen University
– sequence: 2
  givenname: G. Sudha
  surname: Priyanga
  fullname: Priyanga, G. Sudha
  organization: Indian Institute of Technology Madras
– sequence: 3
  givenname: Karim
  surname: Khan
  fullname: Khan, Karim
  organization: Indian Institute of Technology Madras
– sequence: 4
  givenname: Erum
  surname: Pervaiz
  fullname: Pervaiz, Erum
  organization: National University of Sciences and Technology
– sequence: 5
  givenname: Tiju
  surname: Thomas
  fullname: Thomas, Tiju
  email: tijuthomas@iitm.ac.in
  organization: Indian Institute of Technology Madras
– sequence: 6
  givenname: Minghui
  surname: Yang
  fullname: Yang, Minghui
  email: myang@nimte.ac.cn
  organization: Chinese Academy of Sciences
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31197961$$D View this record in MEDLINE/PubMed
BookMark eNqFkctO3DAUhi0EKpd2y7KK1A2bGXyLkyzpaKBIXKRCpaqbyDk5aQ2eGGynZXZ9BJ6xT1KHoVMJqerKR9b3-fj8Z5ds9q5HQvYZnTJK-SGEAFNOWUVpnosNssNKJSe5kp8317Vg22Q3hBtKFa2UekW2BWNVUSm2Q75cGLhF--vn43sdsM2uve6Dicb12TlGbbMLE71pMZtbhOgd6HS5DDFknfNZ_IbZ5cPyK_bZ_Luzw5P3ETWMxWuy1Wkb8M3zuUc-Hc-vZx8mZ5cnp7OjswnIQolJU0LJG8UrJQCkVgVW0HYd5m0OZSnTZFwx1aqm4rngIGTb5CXjQEUap6Vc7JGD1bt33t0PGGK9MAHQWt2jG0LNecELkXqN6LsX6I0bfJ9-l6iyGCOUMlFvn6mhWWBb33mz0H5Z_0ktAdMVAN6F4LFbI4zW41rqcS31ei1JkC8EMFGPIUWvjf23Vq20H8bi8j9N6tnV1eyv-xuxXaH1
CitedBy_id crossref_primary_10_1002_cssc_202201551
crossref_primary_10_1039_D3NJ01381B
crossref_primary_10_3389_fchem_2021_700020
crossref_primary_10_1016_j_matchemphys_2023_127432
crossref_primary_10_1063_5_0250821
crossref_primary_10_1016_j_apsusc_2022_153041
crossref_primary_10_1246_bcsj_20210362
crossref_primary_10_1016_j_apcatb_2020_119367
crossref_primary_10_1016_j_cej_2020_124845
crossref_primary_10_1016_j_mtnano_2020_100095
crossref_primary_10_1039_D3NJ02322B
crossref_primary_10_1007_s11814_022_1123_2
crossref_primary_10_1007_s40820_020_00504_3
crossref_primary_10_1016_j_jmrt_2023_02_135
crossref_primary_10_26599_NR_2025_94907102
crossref_primary_10_1002_asia_202300625
crossref_primary_10_1039_D1SE01235E
crossref_primary_10_1016_j_ijhydene_2021_09_207
crossref_primary_10_1039_D3NJ03799A
crossref_primary_10_1016_j_mtener_2021_100850
crossref_primary_10_1039_D3TA03069E
crossref_primary_10_1016_j_progsolidstchem_2021_100326
crossref_primary_10_1016_j_jallcom_2020_157353
crossref_primary_10_1016_j_apsusc_2023_157896
crossref_primary_10_1016_j_colsurfa_2022_129324
crossref_primary_10_1016_j_ensm_2022_09_030
crossref_primary_10_1002_slct_202300885
crossref_primary_10_3762_bjnano_14_34
crossref_primary_10_1002_smll_202206147
crossref_primary_10_1007_s00339_023_07105_y
crossref_primary_10_1007_s10311_023_01616_z
crossref_primary_10_1016_j_electacta_2023_142844
crossref_primary_10_1016_j_cattod_2022_05_036
crossref_primary_10_2139_ssrn_4198963
crossref_primary_10_1016_j_elecom_2020_106828
crossref_primary_10_1021_acssuschemeng_1c05907
crossref_primary_10_1007_s12274_021_3885_y
crossref_primary_10_1002_cctc_202301446
crossref_primary_10_1016_j_matlet_2021_130371
crossref_primary_10_1002_adfm_202005957
crossref_primary_10_1016_j_jallcom_2024_173792
crossref_primary_10_1016_j_progsolidstchem_2021_100336
crossref_primary_10_1016_j_electacta_2023_142294
crossref_primary_10_1039_D2TA06066C
crossref_primary_10_1039_D0EE02800B
crossref_primary_10_1016_j_inoche_2024_112474
crossref_primary_10_1007_s43207_024_00411_y
crossref_primary_10_1016_j_gee_2021_01_018
crossref_primary_10_1039_D4SE01320D
crossref_primary_10_1016_j_cej_2020_126803
crossref_primary_10_1016_j_nantod_2021_101207
crossref_primary_10_1039_D3QI02043F
crossref_primary_10_1016_j_jallcom_2023_170828
crossref_primary_10_1016_j_jiec_2023_04_015
crossref_primary_10_1039_D1MA01208H
crossref_primary_10_1016_j_nanoen_2022_107927
crossref_primary_10_1039_D2TC02233H
crossref_primary_10_1002_cey2_375
crossref_primary_10_1021_acsmaterialslett_4c00699
crossref_primary_10_1016_j_mtener_2022_101001
crossref_primary_10_1016_j_jcis_2020_07_117
crossref_primary_10_1002_admi_202202172
crossref_primary_10_1016_j_poly_2022_116035
crossref_primary_10_1016_j_jelechem_2022_116720
crossref_primary_10_1016_j_jpcs_2023_111569
crossref_primary_10_1088_2053_1591_ac72ff
crossref_primary_10_1016_j_materresbull_2021_111312
crossref_primary_10_1002_chem_201904510
crossref_primary_10_1016_j_jcis_2020_08_041
crossref_primary_10_1088_2053_1583_acbfcb
crossref_primary_10_1016_j_jechem_2023_01_064
crossref_primary_10_1016_j_matpr_2023_05_725
crossref_primary_10_1039_D1DT03936A
crossref_primary_10_1016_j_ijhydene_2023_07_276
crossref_primary_10_1088_1361_6528_acebf2
crossref_primary_10_3390_catal12080877
crossref_primary_10_1016_j_jechem_2021_08_035
crossref_primary_10_1021_acs_inorgchem_1c02903
crossref_primary_10_1016_j_electacta_2023_142504
crossref_primary_10_1007_s41918_024_00224_x
crossref_primary_10_1039_D0NR00001A
crossref_primary_10_1016_j_cej_2020_126192
crossref_primary_10_1016_j_jelechem_2023_117701
crossref_primary_10_2174_1389201022999210101235233
crossref_primary_10_1007_s10008_022_05232_9
crossref_primary_10_1016_j_diamond_2024_111751
crossref_primary_10_1016_j_apsusc_2023_159102
crossref_primary_10_1021_acsaem_4c02297
crossref_primary_10_1016_j_diamond_2025_112201
crossref_primary_10_1021_acsami_0c11824
crossref_primary_10_1002_ejic_202200682
crossref_primary_10_1016_j_ijhydene_2023_01_183
crossref_primary_10_1016_j_jallcom_2023_171861
crossref_primary_10_1002_cssc_202002946
crossref_primary_10_1039_D4TA03393K
crossref_primary_10_1016_j_susmat_2021_e00252
crossref_primary_10_1039_D2TC03227A
crossref_primary_10_1039_D0DT03448G
crossref_primary_10_1039_D1SE01716K
crossref_primary_10_1016_j_jallcom_2021_160833
crossref_primary_10_1016_j_diamond_2021_108464
crossref_primary_10_1016_j_jallcom_2023_173083
crossref_primary_10_1002_adfm_202408255
crossref_primary_10_1021_acs_inorgchem_2c01072
crossref_primary_10_3390_catal10020188
crossref_primary_10_1016_j_electacta_2021_137830
crossref_primary_10_1021_acscatal_1c03260
crossref_primary_10_1039_D0NR05941B
crossref_primary_10_1016_j_jelechem_2021_115555
crossref_primary_10_1021_acs_energyfuels_4c04337
crossref_primary_10_1039_D1CS00135C
crossref_primary_10_1016_j_cclet_2020_01_037
crossref_primary_10_1002_smll_201906766
crossref_primary_10_1021_acsaem_0c00211
crossref_primary_10_1039_D2TA02584A
crossref_primary_10_1016_j_apcatb_2023_122599
crossref_primary_10_1039_D1NJ02644E
crossref_primary_10_1039_D4TA00196F
crossref_primary_10_1002_cssc_202001229
crossref_primary_10_1016_j_jece_2022_107693
crossref_primary_10_1039_D0QM00326C
crossref_primary_10_1016_j_susmat_2023_e00645
crossref_primary_10_1016_j_nxmate_2023_100040
crossref_primary_10_1016_j_progsolidstchem_2023_100416
crossref_primary_10_1016_j_mtchem_2022_101205
crossref_primary_10_1016_j_colsurfa_2024_133959
crossref_primary_10_1021_acs_chemrev_3c00005
crossref_primary_10_1002_cssc_202101800
crossref_primary_10_1021_acs_inorgchem_3c01384
crossref_primary_10_1021_acs_inorgchem_2c02706
crossref_primary_10_1016_j_ijhydene_2020_07_017
crossref_primary_10_1002_ente_202400941
crossref_primary_10_3389_fchem_2019_00934
crossref_primary_10_1016_j_electacta_2021_139473
crossref_primary_10_1021_acscatal_4c05777
crossref_primary_10_1016_j_apsusc_2021_150706
crossref_primary_10_1039_D2TA09278F
crossref_primary_10_1039_D0QI00700E
crossref_primary_10_1007_s42114_023_00737_x
crossref_primary_10_1016_j_cej_2023_146134
crossref_primary_10_3390_molecules28114464
crossref_primary_10_1016_j_ceramint_2025_02_180
crossref_primary_10_1016_j_jallcom_2021_162675
crossref_primary_10_1016_j_apsusc_2022_155751
crossref_primary_10_1016_j_fuel_2021_121823
crossref_primary_10_1016_j_cej_2023_145831
crossref_primary_10_1016_j_jallcom_2022_167989
crossref_primary_10_1007_s41204_024_00387_4
crossref_primary_10_1016_j_cej_2022_135291
crossref_primary_10_1016_j_ijhydene_2024_02_079
crossref_primary_10_3389_fchem_2024_1402563
crossref_primary_10_1016_j_ijhydene_2022_06_009
crossref_primary_10_1016_j_progsolidstchem_2022_100370
crossref_primary_10_1016_j_progsolidstchem_2023_100392
crossref_primary_10_1016_j_ijhydene_2021_09_137
crossref_primary_10_1039_D0DT00657B
crossref_primary_10_1016_j_progsolidstchem_2020_100294
crossref_primary_10_1116_6_0002484
crossref_primary_10_1002_smtd_202200515
crossref_primary_10_1016_j_jallcom_2022_167060
crossref_primary_10_1016_j_apcatb_2022_121988
crossref_primary_10_1002_er_6799
crossref_primary_10_1002_adsu_202200076
crossref_primary_10_1016_j_cej_2020_127002
crossref_primary_10_1039_D1QM00629K
crossref_primary_10_3390_nano12172996
Cites_doi 10.1002/zaac.19432510205
10.1039/C4NR07243J
10.1149/2.0561706jes
10.1039/C4SC02019G
10.1002/ange.201506480
10.1021/acsami.7b18671
10.1149/1.2119829
10.1007/s10008-008-0744-7
10.1021/acs.iecr.7b03351
10.1002/cssc.201801337
10.1021/cr200434v
10.1016/j.progsolidstchem.2018.11.001
10.1021/ja4081056
10.1021/acscatal.8b02712
10.1039/C5TA00078E
10.1002/ange.201402822
10.1039/C5QI00197H
10.1039/C8CC02872A
10.1039/C7TA07795E
10.1021/acscatal.8b03489
10.1088/2516-1075/aae7f4
10.1002/aenm.201601275
10.3390/nano8100747
10.1002/ange.201403946
10.1021/jacs.8b05134
10.1038/ncomms5477
10.1021/acsami.7b04667
10.1021/cs3002644
10.1002/aenm.201601189
10.1039/C8TA06529B
10.1016/j.ijhydene.2008.06.008
10.1039/C6CS00918B
10.1039/c3ee41572d
10.1021/cs3003098
10.1016/j.mattod.2015.10.006
10.1016/j.ijhydene.2007.05.023
10.1016/j.jcat.2017.10.027
10.1021/acscatal.6b03132
10.1002/smtd.201700209
10.1039/C4TA03472D
10.1016/S1452-3981(23)19595-2
10.1149/2.0801614jes
10.1039/C7NR02385E
10.1016/j.jcat.2017.11.017
10.1002/cssc.201701456
10.1016/j.nanoen.2017.06.045
10.1039/C7CC07962A
10.1021/acssuschemeng.7b01541
10.1016/j.apsusc.2015.10.097
10.1021/ja403102j
10.1016/j.jpowsour.2007.11.106
10.1039/C8DT02548G
10.1016/j.nanoen.2018.07.033
10.1039/C5TA05678K
10.1016/j.ccr.2012.12.012
10.1016/j.electacta.2017.07.025
10.1021/acsami.6b05811
10.1021/cs4011875
10.1149/1.2115548
10.1038/nchem.1589
10.1038/ncomms10364
10.1039/C7NR00740J
10.1021/acscatal.7b01800
10.1038/s41467-017-02667-x
10.1002/ente.201700108
10.1021/ja4027715
10.1021/j100238a048
10.1016/j.jpowsour.2017.10.062
10.1021/acscatal.8b01821
10.1016/j.apcatb.2017.07.086
10.1021/acscatal.5b01638
10.1016/j.jpowsour.2014.12.085
10.1007/s40843-017-9157-9
10.1016/j.electacta.2018.01.192
10.1002/chem.201703712
10.1021/ja5119495
10.1016/j.jpowsour.2016.09.152
10.1038/nmat3313
10.1038/s41565-018-0157-4
10.1002/advs.201500286
10.1021/ja502379c
10.1016/j.jelechem.2018.07.004
10.1021/acsami.8b09854
10.1038/srep28367
10.1016/0013-4686(66)80045-2
10.1016/j.mattod.2017.03.019
ContentType Journal Article
Copyright 2019 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim
2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Copyright_xml – notice: 2019 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
DBID AAYXX
CITATION
NPM
7SR
8BQ
8FD
JG9
K9.
7X8
DOI 10.1002/cssc.201900553
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
ProQuest Health & Medical Complete (Alumni)
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList Materials Research Database
CrossRef

MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1864-564X
EndPage 3954
ExternalDocumentID 31197961
10_1002_cssc_201900553
CSSC201900553
Genre reviewArticle
Journal Article
Review
GroupedDBID ---
05W
0R~
1OC
29B
33P
4.4
5GY
5VS
66C
77Q
8-1
A00
AAESR
AAHHS
AAHQN
AAIHA
AAMNL
AANLZ
AASGY
AAXRX
AAYCA
AAZKR
ABCUV
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADKYN
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AENEX
AEQDE
AEUYR
AFBPY
AFFPM
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMYDB
AZVAB
BDRZF
BFHJK
BRXPI
CS3
DCZOG
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F5P
G-S
HGLYW
HZ~
IX1
LATKE
LAW
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MY~
O9-
OIG
P2W
P4E
PQQKQ
ROL
SUPJJ
SV3
W99
WBKPD
WOHZO
WXSBR
WYJ
XV2
ZZTAW
~S-
AAYXX
AEYWJ
AGYGG
CITATION
NPM
7SR
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
K9.
7X8
ID FETCH-LOGICAL-c4763-b8c82b62963cc4a67e9cdffe5d5c8841902616d6b92532c34db5812c03060d023
IEDL.DBID DR2
ISSN 1864-5631
1864-564X
IngestDate Fri Jul 11 01:51:42 EDT 2025
Fri Jul 25 12:12:11 EDT 2025
Wed Feb 19 02:31:33 EST 2025
Tue Jul 01 00:36:09 EDT 2025
Thu Apr 24 23:12:10 EDT 2025
Wed Jan 22 16:38:34 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 17
Keywords metal nitrides
nickel
oxygen evolution reaction
nanoparticles
electrocatalysis
Language English
License 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4763-b8c82b62963cc4a67e9cdffe5d5c8841902616d6b92532c34db5812c03060d023
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0003-0328-4267
PMID 31197961
PQID 2287055344
PQPubID 986333
PageCount 14
ParticipantIDs proquest_miscellaneous_2272734762
proquest_journals_2287055344
pubmed_primary_31197961
crossref_primary_10_1002_cssc_201900553
crossref_citationtrail_10_1002_cssc_201900553
wiley_primary_10_1002_cssc_201900553_CSSC201900553
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate September 6, 2019
PublicationDateYYYYMMDD 2019-09-06
PublicationDate_xml – month: 09
  year: 2019
  text: September 6, 2019
  day: 06
PublicationDecade 2010
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle ChemSusChem
PublicationTitleAlternate ChemSusChem
PublicationYear 2019
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017; 5
2017; 7
2017; 1
2019; 53
2017; 46
2008; 33
2007; 32
2013; 5
2013; 6
2012; 11
1966; 11
2017; 9
2014; 136
2018; 47
2018; 6
2018; 9
2018; 8
2009; 13
2014; 5
2014; 4
2014; 2
2015; 137
2017; 39
1943
2017; 164
2017; 247
2014; 126
2017; 20
2018; 220
2015; 5
2018; 140
2015; 3
2016; 19
1983; 130
2015; 127
2018; 823
2019; 1
2018; 267
2017; 23
2017; 372
2018; 61
2015; 7
2016; 163
2017; 53
2016; 6
2016; 7
2012; 2
1984; 131
2012; 112
2016; 3
2018; 358
2015; 278
2017; 10
2018; 357
2017; 56
2016; 333
1983; 87
2013; 257
2013; 135
2018; 52
2015; 359
2008; 177
2018; 11
2012; 7
2018; 54
2018; 10
2016; 8
2018; 13
e_1_2_12_4_1
e_1_2_12_6_1
e_1_2_12_19_1
e_1_2_12_2_1
e_1_2_12_17_1
e_1_2_12_38_1
e_1_2_12_20_1
e_1_2_12_41_1
e_1_2_12_66_1
e_1_2_12_87_1
e_1_2_12_22_1
e_1_2_12_43_1
e_1_2_12_64_1
e_1_2_12_85_1
e_1_2_12_24_1
e_1_2_12_45_1
e_1_2_12_26_1
e_1_2_12_47_1
e_1_2_12_68_1
e_1_2_12_62_1
e_1_2_12_83_1
e_1_2_12_60_1
e_1_2_12_81_1
e_1_2_12_28_1
e_1_2_12_49_1
e_1_2_12_31_1
e_1_2_12_52_1
e_1_2_12_77_1
e_1_2_12_33_1
e_1_2_12_54_1
e_1_2_12_75_1
e_1_2_12_35_1
e_1_2_12_56_1
e_1_2_12_37_1
e_1_2_12_58_1
e_1_2_12_79_1
e_1_2_12_14_1
e_1_2_12_12_1
e_1_2_12_8_1
e_1_2_12_10_1
e_1_2_12_73_1
e_1_2_12_50_2
e_1_2_12_71_1
e_1_2_12_3_1
e_1_2_12_5_1
e_1_2_12_18_1
e_1_2_12_1_1
e_1_2_12_16_1
e_1_2_12_39_1
e_1_2_12_42_1
e_1_2_12_65_1
e_1_2_12_21_1
e_1_2_12_44_1
e_1_2_12_63_1
e_1_2_12_86_1
e_1_2_12_23_1
e_1_2_12_46_1
e_1_2_12_69_1
e_1_2_12_25_1
e_1_2_12_48_1
e_1_2_12_67_1
e_1_2_12_80_1
e_1_2_12_61_1
e_1_2_12_84_1
e_1_2_12_40_1
e_1_2_12_82_1
e_1_2_12_27_1
e_1_2_12_29_1
e_1_2_12_30_1
e_1_2_12_53_1
e_1_2_12_76_1
e_1_2_12_51_2
e_1_2_12_32_1
e_1_2_12_55_1
e_1_2_12_74_1
e_1_2_12_34_1
e_1_2_12_57_1
e_1_2_12_36_1
e_1_2_12_59_1
e_1_2_12_78_1
e_1_2_12_15_1
e_1_2_12_13_1
e_1_2_12_11_1
e_1_2_12_72_1
e_1_2_12_7_1
e_1_2_12_70_1
e_1_2_12_9_1
References_xml – volume: 56
  start-page: 14245
  year: 2017
  end-page: 14251
  publication-title: Ind. Eng. Chem. Res.
– volume: 372
  start-page: 46
  year: 2017
  end-page: 53
  publication-title: J. Power Sources
– volume: 33
  start-page: 4260
  year: 2008
  end-page: 4264
  publication-title: Int. J. Hydrogen Energy
– volume: 131
  start-page: 72
  year: 1984
  end-page: 77
  publication-title: J. Electrochem. Soc.
– volume: 3
  start-page: 8171
  year: 2015
  end-page: 8177
  publication-title: J. Mater. Chem. A
– volume: 54
  start-page: 6400
  year: 2018
  end-page: 643
  publication-title: Chem. Commun.
– volume: 46
  start-page: 1933
  year: 2017
  end-page: 1954
  publication-title: Chem. Soc. Rev.
– volume: 10
  start-page: 4170
  year: 2017
  end-page: 4177
  publication-title: ChemSusChem
– volume: 5
  start-page: 263
  year: 2013
  publication-title: Nat. Chem.
– volume: 278
  start-page: 445
  year: 2015
  end-page: 451
  publication-title: J. Power Sources
– volume: 163
  start-page: 3022
  year: 2016
  end-page: 3035
  publication-title: J. Electrochem. Soc.
– volume: 53
  start-page: 1
  year: 2019
  end-page: 26
  publication-title: Prog. Solid State Chem.
– volume: 140
  start-page: 13644
  year: 2018
  end-page: 13653
  publication-title: J. Am. Chem. Soc.
– volume: 135
  start-page: 19186
  year: 2013
  end-page: 19192
  publication-title: J. Am. Chem. Soc.
– volume: 2
  start-page: 1765
  year: 2012
  end-page: 1772
  publication-title: ACS Catal.
– volume: 8
  start-page: 9686
  year: 2018
  end-page: 9696
  publication-title: ACS Catal.
– volume: 87
  start-page: 2960
  year: 1983
  end-page: 2971
  publication-title: J. Phys. Chem.
– volume: 126
  start-page: 7714
  year: 2014
  end-page: 7718
  publication-title: Angew. Chem.
– volume: 20
  start-page: 425
  year: 2017
  end-page: 451
  publication-title: Mater. Today
– volume: 127
  start-page: 14923
  year: 2015
  end-page: 14927
  publication-title: Angew. Chem.
– volume: 5
  start-page: 5380
  year: 2015
  end-page: 5387
  publication-title: ACS Catal.
– volume: 8
  start-page: 747
  year: 2018
  publication-title: Nanomaterials
– volume: 1
  start-page: 1700209
  year: 2017
  publication-title: Small Methods
– volume: 220
  start-page: 88
  year: 2018
  end-page: 97
  publication-title: Appl. Catal. B
– volume: 53
  start-page: 13237
  year: 2017
  end-page: 13240
  publication-title: Chem. Commun.
– volume: 39
  start-page: 101
  year: 2017
  end-page: 110
  publication-title: Nano Energy
– volume: 5
  start-page: 4477
  year: 2014
  publication-title: Nat. Commun.
– volume: 7
  start-page: 10364
  year: 2016
  publication-title: Nat. Commun.
– volume: 823
  start-page: 499
  year: 2018
  end-page: 504
  publication-title: J. Electroanal. Chem.
– volume: 112
  start-page: 4124
  year: 2012
  end-page: 4155
  publication-title: Chem. Rev.
– volume: 164
  start-page: 307
  year: 2017
  end-page: 310
  publication-title: J. Electrochem. Soc.
– volume: 9
  start-page: 154
  year: 2018
  publication-title: Nat. Commun.
– volume: 2
  start-page: 16217
  year: 2014
  end-page: 16223
  publication-title: J. Mater. Chem. A
– volume: 7
  start-page: 1601275
  year: 2017
  publication-title: Adv. Energy Mater.
– volume: 32
  start-page: 4142
  year: 2007
  end-page: 4152
  publication-title: Int. J. Hydrogen Energy
– volume: 333
  start-page: 53
  year: 2016
  end-page: 60
  publication-title: J. Power Sources
– volume: 7
  start-page: 2052
  year: 2017
  end-page: 2057
  publication-title: ACS Catal.
– volume: 5
  start-page: 24407
  year: 2017
  end-page: 24415
  publication-title: J. Mater. Chem. A
– volume: 137
  start-page: 4119
  year: 2015
  end-page: 4125
  publication-title: J. Am. Chem. Soc.
– volume: 8
  start-page: 18652
  year: 2016
  end-page: 18657
  publication-title: ACS Appl. Mater. Interfaces
– volume: 10
  start-page: 30400
  year: 2018
  end-page: 30408
  publication-title: ACS Appl. Mater. Interfaces
– volume: 6
  start-page: 1601189
  year: 2016
  publication-title: Adv. Energy Mater.
– volume: 126
  start-page: 7409
  year: 2014
  end-page: 7413
  publication-title: Angew. Chem.
– volume: 11
  start-page: 550
  year: 2012
  publication-title: Nat. Mater.
– volume: 3
  start-page: 1500286
  year: 2016
  publication-title: Adv. Sci.
– volume: 247
  start-page: 666
  year: 2017
  end-page: 673
  publication-title: Electrochim. Acta
– volume: 4
  start-page: 1426
  year: 2014
  end-page: 1440
  publication-title: ACS Catal.
– volume: 135
  start-page: 11580
  year: 2013
  end-page: 11586
  publication-title: J. Am. Chem. Soc.
– volume: 8
  start-page: 9765
  year: 2018
  end-page: 9774
  publication-title: ACS Catal.
– volume: 358
  start-page: 1
  year: 2018
  end-page: 7
  publication-title: J. Catal.
– volume: 13
  start-page: 444
  year: 2018
  end-page: 450
  publication-title: Nat. Nanotechnol.
– volume: 8
  start-page: 11342
  year: 2018
  end-page: 11351
  publication-title: ACS Catal.
– volume: 7
  start-page: 7196
  year: 2017
  end-page: 7225
  publication-title: ACS Catal.
– volume: 5
  start-page: 4615
  year: 2014
  end-page: 4620
  publication-title: Chem. Sci.
– volume: 11
  start-page: 3198
  year: 2018
  end-page: 3207
  publication-title: ChemSusChem
– volume: 6
  start-page: 28367
  year: 2016
  publication-title: Sci. Rep.
– volume: 257
  start-page: 1946
  year: 2013
  end-page: 1956
  publication-title: Coord. Chem. Rev.
– volume: 47
  start-page: 13498
  year: 2018
  end-page: 13506
  publication-title: Dalton Trans.
– volume: 5
  start-page: 1908
  year: 2017
  end-page: 1911
  publication-title: Energy Technol.
– volume: 135
  start-page: 8452
  year: 2013
  end-page: 8455
  publication-title: J. Am. Chem. Soc.
– volume: 9
  start-page: 22490
  year: 2017
  end-page: 22501
  publication-title: ACS Appl. Mater. Interfaces
– volume: 6
  start-page: 2921
  year: 2013
  end-page: 2924
  publication-title: Energy Environ. Sci.
– start-page: 201
  year: 1943
  publication-title: Z. Anorg. Allg. Chem.
– volume: 9
  start-page: 4793
  year: 2017
  end-page: 4800
  publication-title: Nanoscale
– volume: 7
  start-page: 4959
  year: 2012
  end-page: 4973
  publication-title: Int. J. Electrochem. Sci.
– volume: 3
  start-page: 236
  year: 2016
  end-page: 242
  publication-title: Inorg. Chem. Front.
– volume: 9
  start-page: 8623
  year: 2017
  end-page: 8630
  publication-title: Nanoscale
– volume: 19
  start-page: 213
  year: 2016
  end-page: 226
  publication-title: Mater. Today
– volume: 5
  start-page: 9735
  year: 2017
  end-page: 9748
  publication-title: ACS Sustainable Chem. Eng.
– volume: 177
  start-page: 470
  year: 2008
  end-page: 477
  publication-title: J. Power Sources
– volume: 7
  start-page: 8920
  year: 2015
  end-page: 8930
  publication-title: Nanoscale
– volume: 61
  start-page: 697
  year: 2018
  end-page: 706
  publication-title: Sci. China Mater.
– volume: 359
  start-page: 172
  year: 2015
  end-page: 176
  publication-title: Appl. Surf. Sci.
– volume: 1
  start-page: 015002
  year: 2019
  publication-title: Electron. Struct.
– volume: 13
  start-page: 1613
  year: 2009
  end-page: 1619
  publication-title: J. Solid State Electrochem.
– volume: 357
  start-page: 238
  year: 2018
  end-page: 246
  publication-title: J. Catal.
– volume: 2
  start-page: 1793
  year: 2012
  end-page: 1801
  publication-title: ACS Catal.
– volume: 6
  start-page: 19912
  year: 2018
  end-page: 19933
  publication-title: J. Mater. Chem. A
– volume: 10
  start-page: 3699
  year: 2018
  end-page: 3706
  publication-title: ACS Appl. Mater. Interfaces
– volume: 3
  start-page: 22750
  year: 2015
  end-page: 22758
  publication-title: J. Mater. Chem. A
– volume: 267
  start-page: 8
  year: 2018
  end-page: 14
  publication-title: Electrochim. Acta
– volume: 23
  start-page: 16862
  year: 2017
  end-page: 16870
  publication-title: Chem. Eur. J.
– volume: 11
  start-page: 1079
  year: 1966
  end-page: 1087
  publication-title: Electrochim. Acta
– volume: 52
  start-page: 29
  year: 2018
  end-page: 37
  publication-title: Nano Energy
– volume: 136
  start-page: 6744
  year: 2014
  end-page: 6753
  publication-title: J. Am. Chem. Soc.
– volume: 130
  start-page: 825
  year: 1983
  end-page: 829
  publication-title: J. Electrochem. Soc.
– ident: e_1_2_12_42_1
  doi: 10.1002/zaac.19432510205
– ident: e_1_2_12_62_1
  doi: 10.1039/C4NR07243J
– ident: e_1_2_12_69_1
  doi: 10.1149/2.0561706jes
– ident: e_1_2_12_38_1
  doi: 10.1039/C4SC02019G
– ident: e_1_2_12_46_1
  doi: 10.1002/ange.201506480
– ident: e_1_2_12_80_1
  doi: 10.1021/acsami.7b18671
– ident: e_1_2_12_34_1
  doi: 10.1149/1.2119829
– ident: e_1_2_12_13_1
  doi: 10.1007/s10008-008-0744-7
– ident: e_1_2_12_45_1
  doi: 10.1021/acs.iecr.7b03351
– ident: e_1_2_12_56_1
  doi: 10.1002/cssc.201801337
– ident: e_1_2_12_66_1
  doi: 10.1021/cr200434v
– ident: e_1_2_12_20_1
  doi: 10.1016/j.progsolidstchem.2018.11.001
– ident: e_1_2_12_39_1
  doi: 10.1021/ja4081056
– ident: e_1_2_12_51_2
  doi: 10.1021/acscatal.8b02712
– ident: e_1_2_12_77_1
  doi: 10.1039/C5TA00078E
– ident: e_1_2_12_75_1
  doi: 10.1002/ange.201402822
– ident: e_1_2_12_52_1
  doi: 10.1039/C5QI00197H
– ident: e_1_2_12_65_1
  doi: 10.1039/C8CC02872A
– ident: e_1_2_12_70_1
  doi: 10.1039/C7TA07795E
– ident: e_1_2_12_4_1
  doi: 10.1021/acscatal.8b03489
– ident: e_1_2_12_41_1
  doi: 10.1088/2516-1075/aae7f4
– ident: e_1_2_12_49_1
– ident: e_1_2_12_29_1
  doi: 10.1002/aenm.201601275
– ident: e_1_2_12_25_1
  doi: 10.3390/nano8100747
– ident: e_1_2_12_10_1
  doi: 10.1002/ange.201403946
– ident: e_1_2_12_3_1
  doi: 10.1021/jacs.8b05134
– ident: e_1_2_12_68_1
  doi: 10.1038/ncomms5477
– ident: e_1_2_12_11_1
  doi: 10.1021/acsami.7b04667
– ident: e_1_2_12_61_1
  doi: 10.1021/cs3002644
– ident: e_1_2_12_58_1
  doi: 10.1002/aenm.201601189
– ident: e_1_2_12_30_1
  doi: 10.1039/C8TA06529B
– ident: e_1_2_12_15_1
  doi: 10.1016/j.ijhydene.2008.06.008
– ident: e_1_2_12_27_1
  doi: 10.1039/C6CS00918B
– ident: e_1_2_12_26_1
  doi: 10.1039/c3ee41572d
– ident: e_1_2_12_36_1
  doi: 10.1021/cs3003098
– ident: e_1_2_12_17_1
  doi: 10.1016/j.mattod.2015.10.006
– ident: e_1_2_12_59_1
  doi: 10.1016/j.ijhydene.2007.05.023
– ident: e_1_2_12_19_1
  doi: 10.1016/j.jcat.2017.10.027
– ident: e_1_2_12_47_1
  doi: 10.1021/acscatal.6b03132
– ident: e_1_2_12_87_1
  doi: 10.1002/smtd.201700209
– ident: e_1_2_12_18_1
  doi: 10.1039/C4TA03472D
– ident: e_1_2_12_63_1
  doi: 10.1016/S1452-3981(23)19595-2
– ident: e_1_2_12_7_1
  doi: 10.1149/2.0801614jes
– ident: e_1_2_12_9_1
  doi: 10.1039/C7NR02385E
– ident: e_1_2_12_22_1
  doi: 10.1016/j.jcat.2017.11.017
– ident: e_1_2_12_55_1
  doi: 10.1002/cssc.201701456
– ident: e_1_2_12_5_1
  doi: 10.1016/j.nanoen.2017.06.045
– ident: e_1_2_12_53_1
  doi: 10.1039/C7CC07962A
– ident: e_1_2_12_12_1
  doi: 10.1021/acssuschemeng.7b01541
– ident: e_1_2_12_21_1
  doi: 10.1016/j.apsusc.2015.10.097
– ident: e_1_2_12_64_1
  doi: 10.1021/ja403102j
– ident: e_1_2_12_48_1
  doi: 10.1016/j.jpowsour.2007.11.106
– ident: e_1_2_12_2_1
  doi: 10.1039/C8DT02548G
– ident: e_1_2_12_6_1
  doi: 10.1016/j.nanoen.2018.07.033
– ident: e_1_2_12_14_1
  doi: 10.1039/C5TA05678K
– ident: e_1_2_12_43_1
  doi: 10.1016/j.ccr.2012.12.012
– ident: e_1_2_12_78_1
  doi: 10.1016/j.electacta.2017.07.025
– ident: e_1_2_12_79_1
  doi: 10.1021/acsami.6b05811
– ident: e_1_2_12_37_1
  doi: 10.1021/cs4011875
– ident: e_1_2_12_35_1
  doi: 10.1149/1.2115548
– ident: e_1_2_12_60_1
  doi: 10.1038/nchem.1589
– ident: e_1_2_12_8_1
  doi: 10.1038/ncomms10364
– ident: e_1_2_12_44_1
  doi: 10.1039/C7NR00740J
– ident: e_1_2_12_33_1
  doi: 10.1021/acscatal.7b01800
– ident: e_1_2_12_81_1
  doi: 10.1038/s41467-017-02667-x
– ident: e_1_2_12_82_1
  doi: 10.1002/ente.201700108
– ident: e_1_2_12_67_1
  doi: 10.1021/ja4027715
– ident: e_1_2_12_50_2
  doi: 10.1021/j100238a048
– ident: e_1_2_12_23_1
  doi: 10.1016/j.jpowsour.2017.10.062
– ident: e_1_2_12_57_1
  doi: 10.1021/acscatal.8b01821
– ident: e_1_2_12_85_1
  doi: 10.1016/j.apcatb.2017.07.086
– ident: e_1_2_12_76_1
  doi: 10.1021/acscatal.5b01638
– ident: e_1_2_12_16_1
  doi: 10.1016/j.jpowsour.2014.12.085
– ident: e_1_2_12_1_1
  doi: 10.1007/s40843-017-9157-9
– ident: e_1_2_12_40_1
  doi: 10.1016/j.electacta.2018.01.192
– ident: e_1_2_12_54_1
  doi: 10.1002/chem.201703712
– ident: e_1_2_12_28_1
  doi: 10.1021/ja5119495
– ident: e_1_2_12_71_1
  doi: 10.1016/j.jpowsour.2016.09.152
– ident: e_1_2_12_73_1
  doi: 10.1038/nmat3313
– ident: e_1_2_12_84_1
  doi: 10.1038/s41565-018-0157-4
– ident: e_1_2_12_32_1
  doi: 10.1002/advs.201500286
– ident: e_1_2_12_24_1
  doi: 10.1021/ja502379c
– ident: e_1_2_12_72_1
  doi: 10.1016/j.jelechem.2018.07.004
– ident: e_1_2_12_83_1
  doi: 10.1021/acsami.8b09854
– ident: e_1_2_12_86_1
  doi: 10.1038/srep28367
– ident: e_1_2_12_74_1
  doi: 10.1016/0013-4686(66)80045-2
– ident: e_1_2_12_31_1
  doi: 10.1016/j.mattod.2017.03.019
SSID ssj0060966
Score 2.6124039
SecondaryResourceType review_article
Snippet Electrocatalysis is an efficient and promising means of energy conversion, with minimal environmental footprint. To enhance reaction rates, catalysts are...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3941
SubjectTerms Catalysis
Catalytic activity
Crystal structure
electrocatalysis
Electrocatalysts
Electron transfer
Energy conversion
Environmental impact
Materials selection
Metal nitrides
Morphology
Nanomaterials
Nanoparticles
Nickel
Noble metals
oxygen evolution reaction
Oxygen evolution reactions
Transition metals
Title Nickel‐Based Transition Metal Nitride Electrocatalysts for the Oxygen Evolution Reaction
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcssc.201900553
https://www.ncbi.nlm.nih.gov/pubmed/31197961
https://www.proquest.com/docview/2287055344
https://www.proquest.com/docview/2272734762
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS-RAEC7Ei17W52pclRYW9hTN9MvkqMOICCroCuIlTD8CooxiMsu6J3-Cv3F_yVZ1Hjory4LeErqbdLqqur7urv4K4GvhhBI-K2LeszYmAro4y4xAgewWxsjCJz6wfZ7owwt5dKkuX93ir_khug03sowwX5OBD02580IaasuSKAjRoSVKEd0nBWwRKjrr-KM04vNwvSjVMlZa9FrWxoTvTDaf9EpvoOYkcg2u52AOhm2n64iTm-1xZbbtr7_4HD_yV_PwqcGlbK9WpAWY8qNFmOm36eCW4Ap15sbf_n563kfH51hwciHeix17RPDs5Lp6uHaeDerEOmFf6LGsSoawmCHMZKc_H1Fb2eBHo-3szNe3Kpbh4mDwvX8YN4kZYitxPopNalNuNEfjtVYO9a7PrCsKr5yyaSqx87gu006bjCvBrZDOKAQSltYniUOU8BmmR3cjvwpMWZxgisSSKhH5n_GJ8FJLg-uonnA2grgVTG4b1nJKnnGb13zLPKcRy7sRi-BbV_--5uv4Z831Vs55Y7dlzuncFwuljGCrK8aRpmOU4cjfjakOYT4cCB7BSq0f3acEncpmuhcBD1L-Tx_y_vl5v3tbe0-jLzBLzyHsTa_DdPUw9huIkyqzGWzhD22tChQ
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JTxRBFH4RPMBFXAAbUcvExFNDT210H3UyZFQYE5bEeOlQSycTyAyZ7iHAyZ_gb_SX-F71YkZDTPDYXVXp6rfU-2r7HsDbwgklfFbEvGdtTAR0cZYZgQrZK4yRhU98YPsc6eGp_PRVtacJ6S5MzQ_RLbiRZ4TxmhycFqR3f7OG2rIkDkKMaIlSYgkeUlrvMKs66hikNCL0cMEo1TJWWvRa3saE7y62X4xLf4HNRewags_-Gpi22_WZk_OdeWV27O0fjI7_9V-P4VEDTdn72paewAM_eQor_TYj3DP4hmZz7i9-fv_xAWOfYyHOhSNf7NAjiGejcTUbO88GdW6dsDR0U1YlQ2TMEGmyL9c3aLBscNUYPDvy9cWKdTjdH5z0h3GTmyG2Eoek2KQ25UZz9F9r5Zne85l1ReGVUzZNJXYep2baaZNxJbgV0hmFWMLSFCVxCBQ2YHkynfjnwJTFMaZILFkT8f8ZnwgvtTQ4leoJZyOIW83ktiEup_wZF3lNucxzkljeSSyCd139y5qy486a262i88Z1y5zT1i8WShnBm64YJU07KWcTP51THYJ9KAgewWZtIN2nBG3MZroXAQ9q_kcf8v7xcb972rpPo9ewMjw5PMgPPo4-v4BVeh9OweltWK5mc_8SYVNlXgXH-AULug4v
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JT9wwFH4qIFEuFOhCKAVXQuopkPFGcmyHGQFtB8QiIS7ReImEQAMiGQSc-An8Rn5Jn52FDghVKsfEtuK8xe_z9j2AlcwwwWyShbSldegI6MIkUQwVsp4pxTMbWc_22ZObh3z7SBz9dYu_5IdoFtycZ_jx2jn4hcnWHklDdZ47CkIMaJEQbAwmuIxiZ9cbew2BlESA7u8XxZKHQrJWTdsY0bXR9qNh6RnWHIWuPvZ030G_7nV55OR0dVioVX37hNDxNb81A9MVMCXfS0uahTd2MAdv23U-uPdwjEZzas8e7u5_YOQzxEc5f-CL_LYI4UnvpLg8MZZ0ysw6fmHoJi9ygriYIM4kO9c3aK6kc1WZO9mz5bWKD3DY7Ry0N8MqM0OoOQ5IoYp1TJWk6L1a875ct4k2WWaFETqOOXYeJ2bSSJVQwahm3CiBSEK7CUpkECZ8hPHB-cDOAxEaR5gs0s6WHPufshGzXHKFE6kWMzqAsFZMqivacpc94ywtCZdp6iSWNhIL4FtT_6Ik7Hix5mKt57Ry3DylbuMXCzkP4GtTjJJ2-yj9gT0fujoO9KEgaACfSvtoPsXctmwiWwFQr-V_9CFt7--3m6eF_2m0DJO7G93011bv52eYcq_9ETi5COPF5dB-QcxUqCXvFn8A7NUM5w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nickel%E2%80%90Based+Transition+Metal+Nitride+Electrocatalysts+for+the+Oxygen+Evolution+Reaction&rft.jtitle=ChemSusChem&rft.au=Tareen%2C+Ayesha+Khan&rft.au=Priyanga%2C+G.+Sudha&rft.au=Khan%2C+Karim&rft.au=Pervaiz%2C+Erum&rft.date=2019-09-06&rft.issn=1864-5631&rft.eissn=1864-564X&rft.volume=12&rft.issue=17&rft.spage=3941&rft.epage=3954&rft_id=info:doi/10.1002%2Fcssc.201900553&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_cssc_201900553
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1864-5631&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1864-5631&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1864-5631&client=summon