Developing Luminescent Ratiometric Thermometers Based on a Covalent Organic Framework (COF)
Covalent Organic Frameworks (COFs), an emerging class of crystalline porous materials, are proposed as a new type of support for grafting lanthanide ions (Ln3+) and employing these hybrid materials as ratiometric luminescent thermometers. A TpBpy‐COF—prepared from 1,3,5‐triformylphloroglucinol (Tp)...
Saved in:
Published in | Angewandte Chemie International Edition Vol. 59; no. 5; pp. 1932 - 1940 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
27.01.2020
|
Edition | International ed. in English |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Covalent Organic Frameworks (COFs), an emerging class of crystalline porous materials, are proposed as a new type of support for grafting lanthanide ions (Ln3+) and employing these hybrid materials as ratiometric luminescent thermometers. A TpBpy‐COF—prepared from 1,3,5‐triformylphloroglucinol (Tp) and 2,2′‐bipyridine‐5,5′‐diamine (Bpy) grafted with Eu/Tb and Dy acetylacetone (acac) complexes can be successfully used as a luminescent thermometer in the 10–360 K (Eu) and 280–440 K (Tb) ranges with good sensing properties (thermal sensitivity up to 1.403 % K−1, temperature uncertainty δT<1 K above 110 K). For the Eu/Tb systems, we observe an unusual and rarely reported behavior, that is, no thermal quenching of the Tb3+ emission, a result of the absence of ion‐to‐ligand/host energy back‐transfer. The LnCOF materials proposed here could be a new class of materials employed for temperature‐sensing applications following up on the well‐known luminescent metal–organic framework thermometers.
A hot candidate: Covalent organic frameworks (COFs) are reported to be an excellent support for the grafting of lanthanide ions/complexes and allow the development of novel types of luminescent thermometers. A unique behavior, that is, no thermal quenching of the Tb3+ emission, is observed in these LnCOF materials. |
---|---|
Bibliography: | These authors contibuted equally to this work. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ISSN: | 1433-7851 1521-3773 1521-3773 |
DOI: | 10.1002/anie.201913983 |