Developing Luminescent Ratiometric Thermometers Based on a Covalent Organic Framework (COF)

Covalent Organic Frameworks (COFs), an emerging class of crystalline porous materials, are proposed as a new type of support for grafting lanthanide ions (Ln3+) and employing these hybrid materials as ratiometric luminescent thermometers. A TpBpy‐COF—prepared from 1,3,5‐triformylphloroglucinol (Tp)...

Full description

Saved in:
Bibliographic Details
Published inAngewandte Chemie International Edition Vol. 59; no. 5; pp. 1932 - 1940
Main Authors Kaczmarek, Anna M., Liu, Ying‐Ya, Kaczmarek, Mariusz K., Liu, Hengshuo, Artizzu, Flavia, Carlos, Luís D., Van Der Voort, Pascal
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 27.01.2020
EditionInternational ed. in English
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Covalent Organic Frameworks (COFs), an emerging class of crystalline porous materials, are proposed as a new type of support for grafting lanthanide ions (Ln3+) and employing these hybrid materials as ratiometric luminescent thermometers. A TpBpy‐COF—prepared from 1,3,5‐triformylphloroglucinol (Tp) and 2,2′‐bipyridine‐5,5′‐diamine (Bpy) grafted with Eu/Tb and Dy acetylacetone (acac) complexes can be successfully used as a luminescent thermometer in the 10–360 K (Eu) and 280–440 K (Tb) ranges with good sensing properties (thermal sensitivity up to 1.403 % K−1, temperature uncertainty δT<1 K above 110 K). For the Eu/Tb systems, we observe an unusual and rarely reported behavior, that is, no thermal quenching of the Tb3+ emission, a result of the absence of ion‐to‐ligand/host energy back‐transfer. The LnCOF materials proposed here could be a new class of materials employed for temperature‐sensing applications following up on the well‐known luminescent metal–organic framework thermometers. A hot candidate: Covalent organic frameworks (COFs) are reported to be an excellent support for the grafting of lanthanide ions/complexes and allow the development of novel types of luminescent thermometers. A unique behavior, that is, no thermal quenching of the Tb3+ emission, is observed in these LnCOF materials.
Bibliography:These authors contibuted equally to this work.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1433-7851
1521-3773
1521-3773
DOI:10.1002/anie.201913983