Developing Luminescent Ratiometric Thermometers Based on a Covalent Organic Framework (COF)

Covalent Organic Frameworks (COFs), an emerging class of crystalline porous materials, are proposed as a new type of support for grafting lanthanide ions (Ln3+) and employing these hybrid materials as ratiometric luminescent thermometers. A TpBpy‐COF—prepared from 1,3,5‐triformylphloroglucinol (Tp)...

Full description

Saved in:
Bibliographic Details
Published inAngewandte Chemie International Edition Vol. 59; no. 5; pp. 1932 - 1940
Main Authors Kaczmarek, Anna M., Liu, Ying‐Ya, Kaczmarek, Mariusz K., Liu, Hengshuo, Artizzu, Flavia, Carlos, Luís D., Van Der Voort, Pascal
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 27.01.2020
EditionInternational ed. in English
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Covalent Organic Frameworks (COFs), an emerging class of crystalline porous materials, are proposed as a new type of support for grafting lanthanide ions (Ln3+) and employing these hybrid materials as ratiometric luminescent thermometers. A TpBpy‐COF—prepared from 1,3,5‐triformylphloroglucinol (Tp) and 2,2′‐bipyridine‐5,5′‐diamine (Bpy) grafted with Eu/Tb and Dy acetylacetone (acac) complexes can be successfully used as a luminescent thermometer in the 10–360 K (Eu) and 280–440 K (Tb) ranges with good sensing properties (thermal sensitivity up to 1.403 % K−1, temperature uncertainty δT<1 K above 110 K). For the Eu/Tb systems, we observe an unusual and rarely reported behavior, that is, no thermal quenching of the Tb3+ emission, a result of the absence of ion‐to‐ligand/host energy back‐transfer. The LnCOF materials proposed here could be a new class of materials employed for temperature‐sensing applications following up on the well‐known luminescent metal–organic framework thermometers. A hot candidate: Covalent organic frameworks (COFs) are reported to be an excellent support for the grafting of lanthanide ions/complexes and allow the development of novel types of luminescent thermometers. A unique behavior, that is, no thermal quenching of the Tb3+ emission, is observed in these LnCOF materials.
AbstractList Covalent Organic Frameworks (COFs), an emerging class of crystalline porous materials, are proposed as a new type of support for grafting lanthanide ions (Ln 3+ ) and employing these hybrid materials as ratiometric luminescent thermometers. A TpBpy‐COF—prepared from 1,3,5‐triformylphloroglucinol (Tp) and 2,2′‐bipyridine‐5,5′‐diamine (Bpy) grafted with Eu/Tb and Dy acetylacetone (acac) complexes can be successfully used as a luminescent thermometer in the 10–360 K (Eu) and 280–440 K (Tb) ranges with good sensing properties (thermal sensitivity up to 1.403 % K −1 , temperature uncertainty δ T <1 K above 110 K). For the Eu/Tb systems, we observe an unusual and rarely reported behavior, that is, no thermal quenching of the Tb 3+ emission, a result of the absence of ion‐to‐ligand/host energy back‐transfer. The LnCOF materials proposed here could be a new class of materials employed for temperature‐sensing applications following up on the well‐known luminescent metal–organic framework thermometers.
Covalent Organic Frameworks (COFs), an emerging class of crystalline porous materials, are proposed as a new type of support for grafting lanthanide ions (Ln3+ ) and employing these hybrid materials as ratiometric luminescent thermometers. A TpBpy-COF-prepared from 1,3,5-triformylphloroglucinol (Tp) and 2,2'-bipyridine-5,5'-diamine (Bpy) grafted with Eu/Tb and Dy acetylacetone (acac) complexes can be successfully used as a luminescent thermometer in the 10-360 K (Eu) and 280-440 K (Tb) ranges with good sensing properties (thermal sensitivity up to 1.403 % K-1 , temperature uncertainty δT<1 K above 110 K). For the Eu/Tb systems, we observe an unusual and rarely reported behavior, that is, no thermal quenching of the Tb3+ emission, a result of the absence of ion-to-ligand/host energy back-transfer. The LnCOF materials proposed here could be a new class of materials employed for temperature-sensing applications following up on the well-known luminescent metal-organic framework thermometers.Covalent Organic Frameworks (COFs), an emerging class of crystalline porous materials, are proposed as a new type of support for grafting lanthanide ions (Ln3+ ) and employing these hybrid materials as ratiometric luminescent thermometers. A TpBpy-COF-prepared from 1,3,5-triformylphloroglucinol (Tp) and 2,2'-bipyridine-5,5'-diamine (Bpy) grafted with Eu/Tb and Dy acetylacetone (acac) complexes can be successfully used as a luminescent thermometer in the 10-360 K (Eu) and 280-440 K (Tb) ranges with good sensing properties (thermal sensitivity up to 1.403 % K-1 , temperature uncertainty δT<1 K above 110 K). For the Eu/Tb systems, we observe an unusual and rarely reported behavior, that is, no thermal quenching of the Tb3+ emission, a result of the absence of ion-to-ligand/host energy back-transfer. The LnCOF materials proposed here could be a new class of materials employed for temperature-sensing applications following up on the well-known luminescent metal-organic framework thermometers.
Covalent Organic Frameworks (COFs), an emerging class of crystalline porous materials, are proposed as a new type of support for grafting lanthanide ions (Ln3+) and employing these hybrid materials as ratiometric luminescent thermometers. A TpBpy‐COF—prepared from 1,3,5‐triformylphloroglucinol (Tp) and 2,2′‐bipyridine‐5,5′‐diamine (Bpy) grafted with Eu/Tb and Dy acetylacetone (acac) complexes can be successfully used as a luminescent thermometer in the 10–360 K (Eu) and 280–440 K (Tb) ranges with good sensing properties (thermal sensitivity up to 1.403 % K−1, temperature uncertainty δT<1 K above 110 K). For the Eu/Tb systems, we observe an unusual and rarely reported behavior, that is, no thermal quenching of the Tb3+ emission, a result of the absence of ion‐to‐ligand/host energy back‐transfer. The LnCOF materials proposed here could be a new class of materials employed for temperature‐sensing applications following up on the well‐known luminescent metal–organic framework thermometers. A hot candidate: Covalent organic frameworks (COFs) are reported to be an excellent support for the grafting of lanthanide ions/complexes and allow the development of novel types of luminescent thermometers. A unique behavior, that is, no thermal quenching of the Tb3+ emission, is observed in these LnCOF materials.
Covalent Organic Frameworks (COFs), an emerging class of crystalline porous materials, are proposed as a new type of support for grafting lanthanide ions (Ln ) and employing these hybrid materials as ratiometric luminescent thermometers. A TpBpy-COF-prepared from 1,3,5-triformylphloroglucinol (Tp) and 2,2'-bipyridine-5,5'-diamine (Bpy) grafted with Eu/Tb and Dy acetylacetone (acac) complexes can be successfully used as a luminescent thermometer in the 10-360 K (Eu) and 280-440 K (Tb) ranges with good sensing properties (thermal sensitivity up to 1.403 % K , temperature uncertainty δT<1 K above 110 K). For the Eu/Tb systems, we observe an unusual and rarely reported behavior, that is, no thermal quenching of the Tb emission, a result of the absence of ion-to-ligand/host energy back-transfer. The LnCOF materials proposed here could be a new class of materials employed for temperature-sensing applications following up on the well-known luminescent metal-organic framework thermometers.
Covalent Organic Frameworks (COFs), an emerging class of crystalline porous materials, are proposed as a new type of support for grafting lanthanide ions (Ln3+) and employing these hybrid materials as ratiometric luminescent thermometers. A TpBpy‐COF—prepared from 1,3,5‐triformylphloroglucinol (Tp) and 2,2′‐bipyridine‐5,5′‐diamine (Bpy) grafted with Eu/Tb and Dy acetylacetone (acac) complexes can be successfully used as a luminescent thermometer in the 10–360 K (Eu) and 280–440 K (Tb) ranges with good sensing properties (thermal sensitivity up to 1.403 % K−1, temperature uncertainty δT<1 K above 110 K). For the Eu/Tb systems, we observe an unusual and rarely reported behavior, that is, no thermal quenching of the Tb3+ emission, a result of the absence of ion‐to‐ligand/host energy back‐transfer. The LnCOF materials proposed here could be a new class of materials employed for temperature‐sensing applications following up on the well‐known luminescent metal–organic framework thermometers.
Author Artizzu, Flavia
Liu, Ying‐Ya
Kaczmarek, Mariusz K.
Liu, Hengshuo
Kaczmarek, Anna M.
Carlos, Luís D.
Van Der Voort, Pascal
Author_xml – sequence: 1
  givenname: Anna M.
  surname: Kaczmarek
  fullname: Kaczmarek, Anna M.
  email: anna.kaczmarek@ugent.be
  organization: Ghent University
– sequence: 2
  givenname: Ying‐Ya
  surname: Liu
  fullname: Liu, Ying‐Ya
  organization: Dalian University of Technology
– sequence: 3
  givenname: Mariusz K.
  orcidid: 0000-0001-5254-8762
  surname: Kaczmarek
  fullname: Kaczmarek, Mariusz K.
  organization: Kazimierz Wielki University in Bydgoszcz
– sequence: 4
  givenname: Hengshuo
  surname: Liu
  fullname: Liu, Hengshuo
  organization: Dalian University of Technology
– sequence: 5
  givenname: Flavia
  surname: Artizzu
  fullname: Artizzu, Flavia
  organization: Ghent University
– sequence: 6
  givenname: Luís D.
  surname: Carlos
  fullname: Carlos, Luís D.
  email: lcarlos@ua.pt
  organization: Universidade de Aveiro
– sequence: 7
  givenname: Pascal
  surname: Van Der Voort
  fullname: Van Der Voort, Pascal
  organization: Ghent University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31777996$$D View this record in MEDLINE/PubMed
BookMark eNqFkUtLxDAURoMovrcuJeBGFx3zatMsdXRUGBwQXbkomfZWo20yJq3ivzdlfIAgrpLAOcmX-22hVessILRHyYgSwo61NTBihCrKVc5X0CZNGU24lHw17gXnicxTuoG2QniKfJ6TbB1tcCqlVCrbRPdn8AqNWxj7gKd9ayyEEmyHb3RnXAudNyW-fQTfDgfwAZ_qABV2Fms8dq-6GeCZf4g5SjzxuoU355_x4Xg2OdpBa7VuAux-rtvobnJ-O75MprOLq_HJNCmFzHiiiOIVIVlGRSmFrhXMcypTlWa0krWSaQ1aizymV7QiLONMCxKhec1IlacV30aHy3sX3r30ELqiNfEXTaMtuD4UjFMlFM9yGtGDX-iT672N6SIlBKOKCRap_U-qn7dQFQtvWu3fi6-xRWC0BErvQvBQfyOUFEMvxdBL8d1LFMQvoTTdMGLbeW2avzW11N5MA-__PFKcXF-d_7gfsMGgDw
CitedBy_id crossref_primary_10_1016_j_snb_2023_134078
crossref_primary_10_1021_acsami_1c11314
crossref_primary_10_1002_ange_202414472
crossref_primary_10_1016_j_xcrp_2022_100892
crossref_primary_10_1021_acsami_3c10648
crossref_primary_10_1002_advs_202206933
crossref_primary_10_1007_s12613_023_2690_x
crossref_primary_10_1021_acs_inorgchem_0c01534
crossref_primary_10_1016_j_heliyon_2024_e33118
crossref_primary_10_1021_acs_jpcc_3c06499
crossref_primary_10_1016_j_microc_2023_109832
crossref_primary_10_1002_smtd_202401083
crossref_primary_10_1002_adom_202101870
crossref_primary_10_1002_adts_202000176
crossref_primary_10_1016_j_chroma_2021_462566
crossref_primary_10_1002_cplu_202400302
crossref_primary_10_1002_adom_202200770
crossref_primary_10_1021_acsnano_0c07547
crossref_primary_10_1039_D2CE00880G
crossref_primary_10_1002_cptc_202000226
crossref_primary_10_1002_smll_202311064
crossref_primary_10_1016_j_matchemphys_2021_125424
crossref_primary_10_1039_D3QM00020F
crossref_primary_10_1002_agt2_24
crossref_primary_10_1039_D1CS00983D
crossref_primary_10_1002_adma_202313152
crossref_primary_10_1002_ange_202400195
crossref_primary_10_1016_j_foodchem_2023_135883
crossref_primary_10_1002_ange_202002724
crossref_primary_10_1039_D0NA00537A
crossref_primary_10_1016_j_trac_2023_117482
crossref_primary_10_1016_j_dyepig_2020_108815
crossref_primary_10_1016_j_apcatb_2025_125301
crossref_primary_10_1016_j_seppur_2025_132091
crossref_primary_10_1002_ange_202013377
crossref_primary_10_1016_j_cej_2020_127850
crossref_primary_10_1002_anie_202004796
crossref_primary_10_1007_s00289_021_03809_4
crossref_primary_10_1016_j_molliq_2024_126125
crossref_primary_10_1039_D1CS00889G
crossref_primary_10_1002_adfm_202003101
crossref_primary_10_1021_acsami_2c15079
crossref_primary_10_1002_cjoc_202300067
crossref_primary_10_1021_acsami_2c19839
crossref_primary_10_1021_acs_inorgchem_1c00310
crossref_primary_10_1002_ange_202306970
crossref_primary_10_1021_acssensors_2c02014
crossref_primary_10_1039_D0TC05865C
crossref_primary_10_1002_advs_202100631
crossref_primary_10_1016_j_eurpolymj_2024_112853
crossref_primary_10_1039_D2TB01185A
crossref_primary_10_1002_anie_202013377
crossref_primary_10_1039_D2TC01289H
crossref_primary_10_1016_j_ccr_2021_214365
crossref_primary_10_1016_j_cej_2024_149174
crossref_primary_10_1002_smll_202006416
crossref_primary_10_1007_s12598_024_03090_0
crossref_primary_10_1016_j_jfoodeng_2024_112193
crossref_primary_10_1021_acsami_2c13980
crossref_primary_10_2139_ssrn_3986049
crossref_primary_10_1021_acs_analchem_4c06658
crossref_primary_10_1016_j_dyepig_2022_110190
crossref_primary_10_1039_D1PY00963J
crossref_primary_10_1002_anie_202306970
crossref_primary_10_1039_D3DT03555G
crossref_primary_10_1021_acsami_1c07812
crossref_primary_10_1002_adma_202302749
crossref_primary_10_1039_D1DT01550H
crossref_primary_10_1002_chem_202301108
crossref_primary_10_1016_j_jssc_2022_123614
crossref_primary_10_1038_s41377_021_00677_5
crossref_primary_10_1016_j_apcata_2023_119283
crossref_primary_10_1038_s41467_023_36291_9
crossref_primary_10_1016_j_jallcom_2020_156744
crossref_primary_10_1016_j_snb_2021_130472
crossref_primary_10_1002_ange_202004796
crossref_primary_10_1039_D3TC04416E
crossref_primary_10_1021_acs_analchem_0c05309
crossref_primary_10_1021_acs_analchem_4c00626
crossref_primary_10_1039_D3TA07940F
crossref_primary_10_1016_j_dyepig_2021_109818
crossref_primary_10_1039_D1TC00999K
crossref_primary_10_1002_smll_202100756
crossref_primary_10_1002_cplu_202200151
crossref_primary_10_1016_j_optcom_2024_131061
crossref_primary_10_1002_advs_202206165
crossref_primary_10_1016_j_snb_2024_135590
crossref_primary_10_1039_D2TC01348G
crossref_primary_10_3390_s23083881
crossref_primary_10_1002_anie_202400195
crossref_primary_10_1021_jacs_4c11584
crossref_primary_10_1002_anie_202213268
crossref_primary_10_1002_chem_202100007
crossref_primary_10_1002_ange_202100870
crossref_primary_10_1002_chem_202002009
crossref_primary_10_1016_j_apsusc_2022_153621
crossref_primary_10_1021_acs_inorgchem_0c00516
crossref_primary_10_1039_D1DT00882J
crossref_primary_10_1016_j_cej_2022_134907
crossref_primary_10_1016_j_chroma_2022_463188
crossref_primary_10_1016_j_inoche_2020_108094
crossref_primary_10_1021_acsami_3c00860
crossref_primary_10_1002_anie_202013867
crossref_primary_10_1016_j_aca_2021_339191
crossref_primary_10_1039_D3NJ01452E
crossref_primary_10_3390_molecules30020336
crossref_primary_10_1016_j_mcat_2021_111663
crossref_primary_10_1016_j_nantod_2020_100952
crossref_primary_10_1039_D0RA01896A
crossref_primary_10_1016_j_bios_2022_114527
crossref_primary_10_1039_D1BM01912K
crossref_primary_10_1016_j_cej_2022_134994
crossref_primary_10_1002_ange_202213268
crossref_primary_10_1002_anie_202002724
crossref_primary_10_1016_j_dyepig_2023_111159
crossref_primary_10_1039_D2RA06162G
crossref_primary_10_1002_anie_202100870
crossref_primary_10_1002_ange_202304234
crossref_primary_10_1039_D1MA00506E
crossref_primary_10_1039_C9CS00829B
crossref_primary_10_1002_anie_202414472
crossref_primary_10_1016_j_ccr_2023_215577
crossref_primary_10_1021_acsami_4c01779
crossref_primary_10_1021_acs_inorgchem_4c01788
crossref_primary_10_1021_acs_inorgchem_4c02635
crossref_primary_10_1002_ange_202013867
crossref_primary_10_1021_acsami_3c00478
crossref_primary_10_1021_acs_inorgchem_3c04386
crossref_primary_10_1007_s11664_021_08765_3
crossref_primary_10_1021_acsami_3c07544
crossref_primary_10_1039_D2TA04541A
crossref_primary_10_1039_D3QM00151B
crossref_primary_10_1039_D3QI02466K
crossref_primary_10_1002_adma_202416100
crossref_primary_10_1002_adfm_202302225
crossref_primary_10_1016_j_ccr_2024_216280
crossref_primary_10_1039_D0CS00620C
crossref_primary_10_1039_D0CS00236D
crossref_primary_10_1002_adom_202401026
crossref_primary_10_1002_anie_202304234
Cites_doi 10.1039/C4CC07038K
10.1021/jacs.7b07918
10.1039/C7DT01058C
10.1021/jacs.7b02648
10.1039/C7TC00921F
10.1021/cm201140r
10.1039/c2nr30663h
10.1021/jacs.9b02997
10.1039/C5TA10521H
10.1021/ja01077a015
10.1016/j.saa.2004.04.005
10.1039/C7TA07691F
10.1021/acsomega.9b01996
10.1515/pac-2014-1117
10.1016/j.snb.2018.06.086
10.1002/chem.201600860
10.1364/OL.37.005214
10.1039/b406082m
10.1038/s41467-018-07670-4
10.1038/s41598-019-38774-6
10.1007/s11426-018-9253-3
10.1021/acs.inorgchem.5b01924
10.1039/C6CC01476C
10.1126/science.aal1585
10.1016/j.ccr.2015.02.015
10.1039/c2nr30764b
10.1021/acsami.9b07779
10.1002/adfm.201500518
10.1021/acs.inorgchem.6b02130
10.1038/srep07866
10.1002/adfm.201505332
10.1021/nn100244a
10.3390/ma11040572
10.1021/acsami.9b14795
10.1021/ar0400894
10.1021/jacs.8b08312
10.1002/adma.201505004
10.1039/C9TC02328C
10.1002/adfm.201201712
10.1021/acs.inorgchem.9b01106
10.1039/C8TC01062E
10.1021/acs.chemmater.6b01370
10.1039/c2nr32203j
10.1038/s41467-018-04769-6
10.1039/C8NR08348G
10.1039/c0jm03474f
10.1021/nn402608w
10.1002/adma.201601176
ContentType Journal Article
Copyright 2020 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim
2020 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Copyright_xml – notice: 2020 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2020 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
DBID AAYXX
CITATION
NPM
7TM
K9.
7X8
DOI 10.1002/anie.201913983
DatabaseName CrossRef
PubMed
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
ProQuest Health & Medical Complete (Alumni)
Nucleic Acids Abstracts
MEDLINE - Academic
DatabaseTitleList CrossRef
MEDLINE - Academic

PubMed
ProQuest Health & Medical Complete (Alumni)
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3773
Edition International ed. in English
EndPage 1940
ExternalDocumentID 31777996
10_1002_anie_201913983
ANIE201913983
Genre article
Journal Article
GrantInformation_xml – fundername: Fundamental Research Funds for the Central Universities
  funderid: DUT17JC20
– fundername: Institute of Materials Research and Engineering
  funderid: FCT UID/CTM/50011/2019
– fundername: FWO-Vlaanderen
  funderid: 3G000117
– fundername: S&T Cooperation Program of China
  funderid: 2016YFE0109800
– fundername: Universiteit Gent
– fundername: S&T Cooperation Program of China
  grantid: 2016YFE0109800
– fundername: FWO-Vlaanderen
  grantid: 3G000117
– fundername: Institute of Materials Research and Engineering
  grantid: FCT UID/CTM/50011/2019
– fundername: Fundamental Research Funds for the Central Universities
  grantid: DUT17JC20
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABLJU
ABPPZ
ABPVW
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BTSUX
BY8
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
M53
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
TN5
UB1
UPT
UQL
V2E
VQA
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XSW
XV2
YZZ
ZZTAW
~IA
~KM
~WT
AAYXX
ABDBF
ABJNI
AEYWJ
AGHNM
AGYGG
CITATION
NPM
YIN
7TM
K9.
7X8
ID FETCH-LOGICAL-c4763-9093d006614c74af9eb81759561d7f975feaa4800291d02632a409ebbf20d85d3
IEDL.DBID DR2
ISSN 1433-7851
1521-3773
IngestDate Fri Jul 11 01:08:00 EDT 2025
Fri Jul 25 10:38:44 EDT 2025
Wed Feb 19 02:31:10 EST 2025
Thu Apr 24 23:12:56 EDT 2025
Tue Jul 01 02:27:03 EDT 2025
Wed Jan 22 16:35:10 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Sensors
Lanthanides
Ratiometric Thermometers
Covalent Organic Frameworks
Quenching
Language English
License 2020 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4763-9093d006614c74af9eb81759561d7f975feaa4800291d02632a409ebbf20d85d3
Notes These authors contibuted equally to this work.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-5254-8762
PMID 31777996
PQID 2344219242
PQPubID 946352
PageCount 9
ParticipantIDs proquest_miscellaneous_2319493681
proquest_journals_2344219242
pubmed_primary_31777996
crossref_primary_10_1002_anie_201913983
crossref_citationtrail_10_1002_anie_201913983
wiley_primary_10_1002_anie_201913983_ANIE201913983
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 27, 2020
PublicationDateYYYYMMDD 2020-01-27
PublicationDate_xml – month: 01
  year: 2020
  text: January 27, 2020
  day: 27
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Angewandte Chemie International Edition
PublicationTitleAlternate Angew Chem Int Ed Engl
PublicationYear 2020
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017; 5
2019; 7
2019; 9
2019; 4
2018; 140
2019; 11
2013; 23
2006; 39
2017; 46
2015; 54
2019; 58
2016; 52
1964; 86
2018; 61
2005; 61
2012; 37
2013; 7
2019; 141
2017; 355
2017; 139
2016; 4
2015; 295
2018; 6
2018; 273
2018; 9
2015; 25
2015; 87
2017; 56
2011; 21
2016
2011; 23
2015
2016; 28
2018; 11
2012; 4
2014; 50
2010; 4
2016; 26
2005; 34
2016; 22
e_1_2_6_32_1
e_1_2_6_30_1
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_17_1
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_43_1
e_1_2_6_20_1
e_1_2_6_41_1
e_1_2_6_9_1
e_1_2_6_5_1
e_1_2_6_7_1
e_1_2_6_24_1
e_1_2_6_49_1
e_1_2_6_3_1
e_1_2_6_22_1
e_1_2_6_28_1
e_1_2_6_45_1
e_1_2_6_26_1
e_1_2_6_47_1
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_14_1
e_1_2_6_35_1
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_18_1
e_1_2_6_39_1
e_1_2_6_16_1
e_1_2_6_37_1
Carlos L. D. (e_1_2_6_1_1) 2016
e_1_2_6_42_1
e_1_2_6_21_1
e_1_2_6_40_1
e_1_2_6_8_1
e_1_2_6_4_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_48_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_29_1
e_1_2_6_44_1
e_1_2_6_27_1
e_1_2_6_46_1
References_xml – volume: 295
  start-page: 1
  year: 2015
  publication-title: Coord. Chem. Rev.
– volume: 140
  start-page: 13367
  year: 2018
  publication-title: J. Am. Chem. Soc.
– volume: 141
  start-page: 7615
  year: 2019
  publication-title: J. Am. Chem. Soc.
– volume: 139
  start-page: 4258
  year: 2017
  publication-title: J. Am. Chem. Soc.
– volume: 34
  start-page: 1048
  year: 2005
  publication-title: Chem. Soc. Rev.
– volume: 46
  start-page: 5781
  year: 2017
  publication-title: Dalton Trans.
– volume: 9
  start-page: 2335
  year: 2018
  publication-title: Nat. Commun.
– volume: 39
  start-page: 53
  year: 2006
  publication-title: Acc. Chem. Res.
– volume: 61
  start-page: 1470
  year: 2018
  publication-title: Sci. China Chem.
– volume: 4
  start-page: 2682
  year: 2016
  publication-title: J. Mater. Chem. A
– volume: 50
  start-page: 15235
  year: 2014
  publication-title: Chem. Commun.
– volume: 4
  start-page: 6959
  year: 2012
  publication-title: Nanoscale
– volume: 28
  start-page: 7745
  year: 2016
  publication-title: Adv. Mater.
– volume: 11
  start-page: 39201
  year: 2019
  publication-title: ACS Appl. Mater. Interfaces
– volume: 26
  start-page: 3139
  year: 2016
  publication-title: Adv. Funct. Mater.
– volume: 11
  start-page: 833
  year: 2019
  end-page: 837
  publication-title: Nanoscale
– volume: 5
  start-page: 22933
  year: 2017
  publication-title: J. Mater. Chem. A
– volume: 6
  start-page: 5916
  year: 2018
  publication-title: J. Mater. Chem. C
– volume: 23
  start-page: 4094
  year: 2011
  publication-title: Chem. Mater.
– volume: 4
  start-page: 4301
  year: 2012
  publication-title: Nanoscale
– volume: 54
  start-page: 11323
  year: 2015
  publication-title: Inorg. Chem.
– volume: 273
  start-page: 696
  year: 2018
  publication-title: Sens. Actuators B
– volume: 7
  start-page: 10972
  year: 2019
  publication-title: J. Mater. Chem. C
– volume: 21
  start-page: 3796
  year: 2011
  publication-title: J. Mater. Chem.
– volume: 61
  start-page: 185
  year: 2005
  publication-title: Spectrochim. Acta Part A
– volume: 9
  start-page: 2043
  year: 2019
  publication-title: Sci. Rep.
– volume: 56
  start-page: 3190
  year: 2017
  publication-title: Inorg. Chem.
– volume: 37
  start-page: 5214
  year: 2012
  publication-title: Opt. Lett.
– volume: 52
  start-page: 6613
  year: 2016
  publication-title: Chem. Commun.
– start-page: 7866
  year: 2015
  publication-title: Sci. Rep.
– volume: 23
  start-page: 340
  year: 2013
  publication-title: Adv. Funct. Mater.
– volume: 11
  start-page: 572
  year: 2018
  publication-title: Materials
– volume: 4
  start-page: 3254
  year: 2010
  publication-title: ACS Nano
– volume: 22
  start-page: 14782
  year: 2016
  publication-title: Chem. Eur. J.
– year: 2016
– volume: 7
  start-page: 7213
  year: 2013
  publication-title: ACS Nano
– volume: 5
  start-page: 5044
  year: 2017
  publication-title: J. Mater. Chem. C
– volume: 9
  start-page: 5234
  year: 2018
  publication-title: Nat. Commun.
– volume: 86
  start-page: 5117
  year: 1964
  publication-title: J. Am. Chem. Soc.
– volume: 4
  start-page: 15947
  year: 2019
  publication-title: ACS Omega
– volume: 58
  start-page: 9956
  year: 2019
  publication-title: Inorg. Chem.
– volume: 4
  start-page: 4799
  year: 2012
  publication-title: Nanoscale
– volume: 28
  start-page: 2855
  year: 2016
  publication-title: Adv. Mater.
– volume: 11
  start-page: 27343
  year: 2019
  publication-title: ACS Appl. Mater. Interfaces
– volume: 87
  start-page: 1052
  year: 2015
  publication-title: Pure Appl. Chem.
– volume: 25
  start-page: 2824
  year: 2015
  publication-title: Adv. Funct. Mater.
– volume: 355
  start-page: 6328
  year: 2017
  publication-title: Science
– volume: 139
  start-page: 17082
  year: 2017
  publication-title: J. Am. Chem. Soc.
– volume: 28
  start-page: 4375
  year: 2016
  publication-title: Chem. Mater.
– ident: e_1_2_6_5_1
  doi: 10.1039/C4CC07038K
– ident: e_1_2_6_23_1
  doi: 10.1021/jacs.7b07918
– ident: e_1_2_6_43_1
  doi: 10.1039/C7DT01058C
– ident: e_1_2_6_24_1
  doi: 10.1021/jacs.7b02648
– ident: e_1_2_6_13_1
  doi: 10.1039/C7TC00921F
– ident: e_1_2_6_34_1
  doi: 10.1021/cm201140r
– ident: e_1_2_6_6_1
  doi: 10.1039/c2nr30663h
– ident: e_1_2_6_36_1
  doi: 10.1021/jacs.9b02997
– ident: e_1_2_6_32_1
  doi: 10.1039/C5TA10521H
– ident: e_1_2_6_33_1
  doi: 10.1021/ja01077a015
– ident: e_1_2_6_38_1
  doi: 10.1016/j.saa.2004.04.005
– ident: e_1_2_6_22_1
  doi: 10.1039/C7TA07691F
– ident: e_1_2_6_27_1
  doi: 10.1021/acsomega.9b01996
– ident: e_1_2_6_35_1
  doi: 10.1515/pac-2014-1117
– ident: e_1_2_6_42_1
  doi: 10.1016/j.snb.2018.06.086
– ident: e_1_2_6_11_1
  doi: 10.1002/chem.201600860
– ident: e_1_2_6_45_1
  doi: 10.1364/OL.37.005214
– ident: e_1_2_6_17_1
  doi: 10.1039/b406082m
– volume-title: Thermometry at the Nanoscale: Techniques and Selected Applications
  year: 2016
  ident: e_1_2_6_1_1
– ident: e_1_2_6_30_1
  doi: 10.1038/s41467-018-07670-4
– ident: e_1_2_6_46_1
  doi: 10.1038/s41598-019-38774-6
– ident: e_1_2_6_48_1
  doi: 10.1007/s11426-018-9253-3
– ident: e_1_2_6_10_1
  doi: 10.1021/acs.inorgchem.5b01924
– ident: e_1_2_6_47_1
  doi: 10.1039/C6CC01476C
– ident: e_1_2_6_20_1
  doi: 10.1126/science.aal1585
– ident: e_1_2_6_40_1
  doi: 10.1016/j.ccr.2015.02.015
– ident: e_1_2_6_2_1
  doi: 10.1039/c2nr30764b
– ident: e_1_2_6_25_1
  doi: 10.1021/acsami.9b07779
– ident: e_1_2_6_3_1
  doi: 10.1002/adfm.201500518
– ident: e_1_2_6_41_1
  doi: 10.1021/acs.inorgchem.6b02130
– ident: e_1_2_6_44_1
  doi: 10.1038/srep07866
– ident: e_1_2_6_9_1
  doi: 10.1002/adfm.201505332
– ident: e_1_2_6_8_1
  doi: 10.1021/nn100244a
– ident: e_1_2_6_19_1
  doi: 10.3390/ma11040572
– ident: e_1_2_6_28_1
  doi: 10.1021/acsami.9b14795
– ident: e_1_2_6_18_1
  doi: 10.1021/ar0400894
– ident: e_1_2_6_31_1
  doi: 10.1021/jacs.8b08312
– ident: e_1_2_6_21_1
  doi: 10.1002/adma.201505004
– ident: e_1_2_6_49_1
  doi: 10.1039/C9TC02328C
– ident: e_1_2_6_7_1
  doi: 10.1002/adfm.201201712
– ident: e_1_2_6_26_1
  doi: 10.1021/acs.inorgchem.9b01106
– ident: e_1_2_6_15_1
  doi: 10.1039/C8TC01062E
– ident: e_1_2_6_37_1
  doi: 10.1021/acs.chemmater.6b01370
– ident: e_1_2_6_4_1
  doi: 10.1039/c2nr32203j
– ident: e_1_2_6_29_1
  doi: 10.1038/s41467-018-04769-6
– ident: e_1_2_6_16_1
  doi: 10.1039/C8NR08348G
– ident: e_1_2_6_39_1
  doi: 10.1039/c0jm03474f
– ident: e_1_2_6_14_1
  doi: 10.1021/nn402608w
– ident: e_1_2_6_12_1
  doi: 10.1002/adma.201601176
SSID ssj0028806
Score 2.6413298
Snippet Covalent Organic Frameworks (COFs), an emerging class of crystalline porous materials, are proposed as a new type of support for grafting lanthanide ions...
Covalent Organic Frameworks (COFs), an emerging class of crystalline porous materials, are proposed as a new type of support for grafting lanthanide ions (Ln...
Covalent Organic Frameworks (COFs), an emerging class of crystalline porous materials, are proposed as a new type of support for grafting lanthanide ions (Ln )...
Covalent Organic Frameworks (COFs), an emerging class of crystalline porous materials, are proposed as a new type of support for grafting lanthanide ions (Ln3+...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1932
SubjectTerms Acetylacetone
Covalent Organic Frameworks
Diamines
Lanthanides
Metal-organic frameworks
Porous materials
Quenching
Ratiometric Thermometers
Sensors
Thermometers
Title Developing Luminescent Ratiometric Thermometers Based on a Covalent Organic Framework (COF)
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.201913983
https://www.ncbi.nlm.nih.gov/pubmed/31777996
https://www.proquest.com/docview/2344219242
https://www.proquest.com/docview/2319493681
Volume 59
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDLYQF7jwfpSXgoQEHAJtmi7NcQymgXhICCQkDlXSphdYh8Z24ddjr2thIIQEx6pOmyZ2_CW1PwPsiSzX6BkcVyLOuTTWctvII26EEmmsXOB8yka-um507uXFQ_TwKYu_5IeoD9zIMkbrNRm4sa_HH6ShlIFNoVnEaxkT3ScFbBEquq35owQqZ5leFIacqtBXrI2-OJ5sPumVvkHNSeQ6cj3teTBVp8uIk6ej4cAepW9f-Bz_81ULMDfGpaxZKtIiTLliCWZaVTm4ZXg8rdOr2OWwS9HyFNjJbmlqu1SXK2Woc_0uXSCmZCfoHzPWK5hhrR7qMwmXmZ8pa1chYeygddM-XIH79tldq8PHlRl4KnFB4trXYUZoJZCpkibXzsaIQyhJNlO5VlHujJGERXWQ-UQJb3Af6azNhZ_FURauwnTRK9w6MNSVTLhQKqlz9I2UyIvPws2yMy4WYeQBr2YmSce05VQ94zkpCZdFQkOW1EPmwX4t_1ISdvwouVVNdDI23NdEhFIK2pQKD3br2zjU9B_FFK43JJlASx024sCDtVJB6lchHFMK95AeiNE0_9KHpHl9flZfbfyl0SbMCjoD8AMu1BZMD_pDt41AaWB3RsbwDjLmB8E
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB7xOMClhdLSlEeNhFQ4GBLbWcdHWFgt7bJICKRKPUR24lxgswh2L_x6ZjaboC1CSHCMMk4ce8bz2Zn5BmBX5IVBz-C5FknBlXWOu1YRcyu0yBLtIx9SNvJ5v9W9Vr__xnU0IeXCVPwQzYEbWcZkvSYDpwPpw2fWUErBptgsIrZM5DwsUllvos8_uWwYpASqZ5VgJCWnOvQ1b2MoDmfbz_qlF2BzFrtOnE_nM7i621XMyc3BeOQOssf_GB0_9F0r8GkKTdlRpUurMOfLL7DUrivCrcG_kybDivXGAwqYp9hOdkmzO6DSXBlDtbsf0AXCSnaMLjJnw5JZ1h6iSpNwlfyZsU4dFcb22hed_a9w3Tm9anf5tDgDzxSuSdyERuYEWCKVaWUL412CUITyZHNdGB0X3lpFcNREeUis8Ba3kt65QoR5EufyGyyUw9J_B4bqkgsvlVamQPdIubz4LNwve-sTIeMAeD01aTZlLqcCGrdpxbksUhqytBmyAH418ncVZ8erkpv1TKdT231IhVRK0L5UBLDT3Mahpl8ptvTDMclERhnZSqIA1isNaV6FiExr3EYGICbz_EYf0qP-2Wlz9eM9jX7CUvfqvJf2zvp_NmBZ0JFAGHGhN2FhdD_2W4ibRm57YhlPumcL3Q
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT9wwEB0VKhUu_QbS0tZISG0PhsR21vGR7hJBgQWhIiFxiJzYvsBmEd299Nd3ZrNJWaqqUnuMMk4ce8bz7My8AdgWLhj0DJ5rkQWubFnyshdSboUWVaZ94mPKRj4Z9g4u1NfL9PJeFn_DD9EduJFlzNZrMvBbF3Z_kYZSBjaFZhGvZSaX4LHqxYaKNwzOOwIpgdrZ5BdJyakMfUvbGIvdxfaLbuk3rLkIXWe-J38Gtu11E3JyvTOdlDvVjweEjv_zWc_h6RyYsr1Gk17AI1-_hJV-Ww_uFVwNuvwqdjwdUbg8RXayc5rbERXmqhgq3d2ILhBUsi_oIB0b18yy_hgVmoSb1M-K5W1MGPvUP80_v4aLfP9b_4DPSzPwSuGKxE1spCO4kqhKKxuMLzMEIpQl63QwOg3eWkVg1CQuJk54ixtJX5ZBxC5LnVyD5Xpc-w1gqCxOeKm0MgGdI2Xy4rNwt-ytz4RMI-DtzBTVnLecymfcFA3jsihoyIpuyCL42MnfNowdf5TcbCe6mFvu90JIpQTtSkUEW91tHGr6kWJrP56STGKUkb0siWC9UZDuVYjHtMZNZARiNs1_6UOxNzzc767e_EujD_DkbJAXx4fDo7ewKug8IE640JuwPLmb-ncImibl-5ld_ASAhAqM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Developing+Luminescent+Ratiometric+Thermometers+Based+on+a+Covalent+Organic+Framework+%28COF%29&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Kaczmarek%2C+Anna+M.&rft.au=Liu%2C+Ying%E2%80%90Ya&rft.au=Kaczmarek%2C+Mariusz+K.&rft.au=Liu%2C+Hengshuo&rft.date=2020-01-27&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=59&rft.issue=5&rft.spage=1932&rft.epage=1940&rft_id=info:doi/10.1002%2Fanie.201913983&rft.externalDBID=10.1002%252Fanie.201913983&rft.externalDocID=ANIE201913983
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon