Developing Luminescent Ratiometric Thermometers Based on a Covalent Organic Framework (COF)
Covalent Organic Frameworks (COFs), an emerging class of crystalline porous materials, are proposed as a new type of support for grafting lanthanide ions (Ln3+) and employing these hybrid materials as ratiometric luminescent thermometers. A TpBpy‐COF—prepared from 1,3,5‐triformylphloroglucinol (Tp)...
Saved in:
Published in | Angewandte Chemie International Edition Vol. 59; no. 5; pp. 1932 - 1940 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
27.01.2020
|
Edition | International ed. in English |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Covalent Organic Frameworks (COFs), an emerging class of crystalline porous materials, are proposed as a new type of support for grafting lanthanide ions (Ln3+) and employing these hybrid materials as ratiometric luminescent thermometers. A TpBpy‐COF—prepared from 1,3,5‐triformylphloroglucinol (Tp) and 2,2′‐bipyridine‐5,5′‐diamine (Bpy) grafted with Eu/Tb and Dy acetylacetone (acac) complexes can be successfully used as a luminescent thermometer in the 10–360 K (Eu) and 280–440 K (Tb) ranges with good sensing properties (thermal sensitivity up to 1.403 % K−1, temperature uncertainty δT<1 K above 110 K). For the Eu/Tb systems, we observe an unusual and rarely reported behavior, that is, no thermal quenching of the Tb3+ emission, a result of the absence of ion‐to‐ligand/host energy back‐transfer. The LnCOF materials proposed here could be a new class of materials employed for temperature‐sensing applications following up on the well‐known luminescent metal–organic framework thermometers.
A hot candidate: Covalent organic frameworks (COFs) are reported to be an excellent support for the grafting of lanthanide ions/complexes and allow the development of novel types of luminescent thermometers. A unique behavior, that is, no thermal quenching of the Tb3+ emission, is observed in these LnCOF materials. |
---|---|
AbstractList | Covalent Organic Frameworks (COFs), an emerging class of crystalline porous materials, are proposed as a new type of support for grafting lanthanide ions (Ln
3+
) and employing these hybrid materials as ratiometric luminescent thermometers. A TpBpy‐COF—prepared from 1,3,5‐triformylphloroglucinol (Tp) and 2,2′‐bipyridine‐5,5′‐diamine (Bpy) grafted with Eu/Tb and Dy acetylacetone (acac) complexes can be successfully used as a luminescent thermometer in the 10–360 K (Eu) and 280–440 K (Tb) ranges with good sensing properties (thermal sensitivity up to 1.403 % K
−1
, temperature uncertainty δ
T
<1 K above 110 K). For the Eu/Tb systems, we observe an unusual and rarely reported behavior, that is, no thermal quenching of the Tb
3+
emission, a result of the absence of ion‐to‐ligand/host energy back‐transfer. The LnCOF materials proposed here could be a new class of materials employed for temperature‐sensing applications following up on the well‐known luminescent metal–organic framework thermometers. Covalent Organic Frameworks (COFs), an emerging class of crystalline porous materials, are proposed as a new type of support for grafting lanthanide ions (Ln3+ ) and employing these hybrid materials as ratiometric luminescent thermometers. A TpBpy-COF-prepared from 1,3,5-triformylphloroglucinol (Tp) and 2,2'-bipyridine-5,5'-diamine (Bpy) grafted with Eu/Tb and Dy acetylacetone (acac) complexes can be successfully used as a luminescent thermometer in the 10-360 K (Eu) and 280-440 K (Tb) ranges with good sensing properties (thermal sensitivity up to 1.403 % K-1 , temperature uncertainty δT<1 K above 110 K). For the Eu/Tb systems, we observe an unusual and rarely reported behavior, that is, no thermal quenching of the Tb3+ emission, a result of the absence of ion-to-ligand/host energy back-transfer. The LnCOF materials proposed here could be a new class of materials employed for temperature-sensing applications following up on the well-known luminescent metal-organic framework thermometers.Covalent Organic Frameworks (COFs), an emerging class of crystalline porous materials, are proposed as a new type of support for grafting lanthanide ions (Ln3+ ) and employing these hybrid materials as ratiometric luminescent thermometers. A TpBpy-COF-prepared from 1,3,5-triformylphloroglucinol (Tp) and 2,2'-bipyridine-5,5'-diamine (Bpy) grafted with Eu/Tb and Dy acetylacetone (acac) complexes can be successfully used as a luminescent thermometer in the 10-360 K (Eu) and 280-440 K (Tb) ranges with good sensing properties (thermal sensitivity up to 1.403 % K-1 , temperature uncertainty δT<1 K above 110 K). For the Eu/Tb systems, we observe an unusual and rarely reported behavior, that is, no thermal quenching of the Tb3+ emission, a result of the absence of ion-to-ligand/host energy back-transfer. The LnCOF materials proposed here could be a new class of materials employed for temperature-sensing applications following up on the well-known luminescent metal-organic framework thermometers. Covalent Organic Frameworks (COFs), an emerging class of crystalline porous materials, are proposed as a new type of support for grafting lanthanide ions (Ln3+) and employing these hybrid materials as ratiometric luminescent thermometers. A TpBpy‐COF—prepared from 1,3,5‐triformylphloroglucinol (Tp) and 2,2′‐bipyridine‐5,5′‐diamine (Bpy) grafted with Eu/Tb and Dy acetylacetone (acac) complexes can be successfully used as a luminescent thermometer in the 10–360 K (Eu) and 280–440 K (Tb) ranges with good sensing properties (thermal sensitivity up to 1.403 % K−1, temperature uncertainty δT<1 K above 110 K). For the Eu/Tb systems, we observe an unusual and rarely reported behavior, that is, no thermal quenching of the Tb3+ emission, a result of the absence of ion‐to‐ligand/host energy back‐transfer. The LnCOF materials proposed here could be a new class of materials employed for temperature‐sensing applications following up on the well‐known luminescent metal–organic framework thermometers. A hot candidate: Covalent organic frameworks (COFs) are reported to be an excellent support for the grafting of lanthanide ions/complexes and allow the development of novel types of luminescent thermometers. A unique behavior, that is, no thermal quenching of the Tb3+ emission, is observed in these LnCOF materials. Covalent Organic Frameworks (COFs), an emerging class of crystalline porous materials, are proposed as a new type of support for grafting lanthanide ions (Ln ) and employing these hybrid materials as ratiometric luminescent thermometers. A TpBpy-COF-prepared from 1,3,5-triformylphloroglucinol (Tp) and 2,2'-bipyridine-5,5'-diamine (Bpy) grafted with Eu/Tb and Dy acetylacetone (acac) complexes can be successfully used as a luminescent thermometer in the 10-360 K (Eu) and 280-440 K (Tb) ranges with good sensing properties (thermal sensitivity up to 1.403 % K , temperature uncertainty δT<1 K above 110 K). For the Eu/Tb systems, we observe an unusual and rarely reported behavior, that is, no thermal quenching of the Tb emission, a result of the absence of ion-to-ligand/host energy back-transfer. The LnCOF materials proposed here could be a new class of materials employed for temperature-sensing applications following up on the well-known luminescent metal-organic framework thermometers. Covalent Organic Frameworks (COFs), an emerging class of crystalline porous materials, are proposed as a new type of support for grafting lanthanide ions (Ln3+) and employing these hybrid materials as ratiometric luminescent thermometers. A TpBpy‐COF—prepared from 1,3,5‐triformylphloroglucinol (Tp) and 2,2′‐bipyridine‐5,5′‐diamine (Bpy) grafted with Eu/Tb and Dy acetylacetone (acac) complexes can be successfully used as a luminescent thermometer in the 10–360 K (Eu) and 280–440 K (Tb) ranges with good sensing properties (thermal sensitivity up to 1.403 % K−1, temperature uncertainty δT<1 K above 110 K). For the Eu/Tb systems, we observe an unusual and rarely reported behavior, that is, no thermal quenching of the Tb3+ emission, a result of the absence of ion‐to‐ligand/host energy back‐transfer. The LnCOF materials proposed here could be a new class of materials employed for temperature‐sensing applications following up on the well‐known luminescent metal–organic framework thermometers. |
Author | Artizzu, Flavia Liu, Ying‐Ya Kaczmarek, Mariusz K. Liu, Hengshuo Kaczmarek, Anna M. Carlos, Luís D. Van Der Voort, Pascal |
Author_xml | – sequence: 1 givenname: Anna M. surname: Kaczmarek fullname: Kaczmarek, Anna M. email: anna.kaczmarek@ugent.be organization: Ghent University – sequence: 2 givenname: Ying‐Ya surname: Liu fullname: Liu, Ying‐Ya organization: Dalian University of Technology – sequence: 3 givenname: Mariusz K. orcidid: 0000-0001-5254-8762 surname: Kaczmarek fullname: Kaczmarek, Mariusz K. organization: Kazimierz Wielki University in Bydgoszcz – sequence: 4 givenname: Hengshuo surname: Liu fullname: Liu, Hengshuo organization: Dalian University of Technology – sequence: 5 givenname: Flavia surname: Artizzu fullname: Artizzu, Flavia organization: Ghent University – sequence: 6 givenname: Luís D. surname: Carlos fullname: Carlos, Luís D. email: lcarlos@ua.pt organization: Universidade de Aveiro – sequence: 7 givenname: Pascal surname: Van Der Voort fullname: Van Der Voort, Pascal organization: Ghent University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31777996$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkUtLxDAURoMovrcuJeBGFx3zatMsdXRUGBwQXbkomfZWo20yJq3ivzdlfIAgrpLAOcmX-22hVessILRHyYgSwo61NTBihCrKVc5X0CZNGU24lHw17gXnicxTuoG2QniKfJ6TbB1tcCqlVCrbRPdn8AqNWxj7gKd9ayyEEmyHb3RnXAudNyW-fQTfDgfwAZ_qABV2Fms8dq-6GeCZf4g5SjzxuoU355_x4Xg2OdpBa7VuAux-rtvobnJ-O75MprOLq_HJNCmFzHiiiOIVIVlGRSmFrhXMcypTlWa0krWSaQ1aizymV7QiLONMCxKhec1IlacV30aHy3sX3r30ELqiNfEXTaMtuD4UjFMlFM9yGtGDX-iT672N6SIlBKOKCRap_U-qn7dQFQtvWu3fi6-xRWC0BErvQvBQfyOUFEMvxdBL8d1LFMQvoTTdMGLbeW2avzW11N5MA-__PFKcXF-d_7gfsMGgDw |
CitedBy_id | crossref_primary_10_1016_j_snb_2023_134078 crossref_primary_10_1021_acsami_1c11314 crossref_primary_10_1002_ange_202414472 crossref_primary_10_1016_j_xcrp_2022_100892 crossref_primary_10_1021_acsami_3c10648 crossref_primary_10_1002_advs_202206933 crossref_primary_10_1007_s12613_023_2690_x crossref_primary_10_1021_acs_inorgchem_0c01534 crossref_primary_10_1016_j_heliyon_2024_e33118 crossref_primary_10_1021_acs_jpcc_3c06499 crossref_primary_10_1016_j_microc_2023_109832 crossref_primary_10_1002_smtd_202401083 crossref_primary_10_1002_adom_202101870 crossref_primary_10_1002_adts_202000176 crossref_primary_10_1016_j_chroma_2021_462566 crossref_primary_10_1002_cplu_202400302 crossref_primary_10_1002_adom_202200770 crossref_primary_10_1021_acsnano_0c07547 crossref_primary_10_1039_D2CE00880G crossref_primary_10_1002_cptc_202000226 crossref_primary_10_1002_smll_202311064 crossref_primary_10_1016_j_matchemphys_2021_125424 crossref_primary_10_1039_D3QM00020F crossref_primary_10_1002_agt2_24 crossref_primary_10_1039_D1CS00983D crossref_primary_10_1002_adma_202313152 crossref_primary_10_1002_ange_202400195 crossref_primary_10_1016_j_foodchem_2023_135883 crossref_primary_10_1002_ange_202002724 crossref_primary_10_1039_D0NA00537A crossref_primary_10_1016_j_trac_2023_117482 crossref_primary_10_1016_j_dyepig_2020_108815 crossref_primary_10_1016_j_apcatb_2025_125301 crossref_primary_10_1016_j_seppur_2025_132091 crossref_primary_10_1002_ange_202013377 crossref_primary_10_1016_j_cej_2020_127850 crossref_primary_10_1002_anie_202004796 crossref_primary_10_1007_s00289_021_03809_4 crossref_primary_10_1016_j_molliq_2024_126125 crossref_primary_10_1039_D1CS00889G crossref_primary_10_1002_adfm_202003101 crossref_primary_10_1021_acsami_2c15079 crossref_primary_10_1002_cjoc_202300067 crossref_primary_10_1021_acsami_2c19839 crossref_primary_10_1021_acs_inorgchem_1c00310 crossref_primary_10_1002_ange_202306970 crossref_primary_10_1021_acssensors_2c02014 crossref_primary_10_1039_D0TC05865C crossref_primary_10_1002_advs_202100631 crossref_primary_10_1016_j_eurpolymj_2024_112853 crossref_primary_10_1039_D2TB01185A crossref_primary_10_1002_anie_202013377 crossref_primary_10_1039_D2TC01289H crossref_primary_10_1016_j_ccr_2021_214365 crossref_primary_10_1016_j_cej_2024_149174 crossref_primary_10_1002_smll_202006416 crossref_primary_10_1007_s12598_024_03090_0 crossref_primary_10_1016_j_jfoodeng_2024_112193 crossref_primary_10_1021_acsami_2c13980 crossref_primary_10_2139_ssrn_3986049 crossref_primary_10_1021_acs_analchem_4c06658 crossref_primary_10_1016_j_dyepig_2022_110190 crossref_primary_10_1039_D1PY00963J crossref_primary_10_1002_anie_202306970 crossref_primary_10_1039_D3DT03555G crossref_primary_10_1021_acsami_1c07812 crossref_primary_10_1002_adma_202302749 crossref_primary_10_1039_D1DT01550H crossref_primary_10_1002_chem_202301108 crossref_primary_10_1016_j_jssc_2022_123614 crossref_primary_10_1038_s41377_021_00677_5 crossref_primary_10_1016_j_apcata_2023_119283 crossref_primary_10_1038_s41467_023_36291_9 crossref_primary_10_1016_j_jallcom_2020_156744 crossref_primary_10_1016_j_snb_2021_130472 crossref_primary_10_1002_ange_202004796 crossref_primary_10_1039_D3TC04416E crossref_primary_10_1021_acs_analchem_0c05309 crossref_primary_10_1021_acs_analchem_4c00626 crossref_primary_10_1039_D3TA07940F crossref_primary_10_1016_j_dyepig_2021_109818 crossref_primary_10_1039_D1TC00999K crossref_primary_10_1002_smll_202100756 crossref_primary_10_1002_cplu_202200151 crossref_primary_10_1016_j_optcom_2024_131061 crossref_primary_10_1002_advs_202206165 crossref_primary_10_1016_j_snb_2024_135590 crossref_primary_10_1039_D2TC01348G crossref_primary_10_3390_s23083881 crossref_primary_10_1002_anie_202400195 crossref_primary_10_1021_jacs_4c11584 crossref_primary_10_1002_anie_202213268 crossref_primary_10_1002_chem_202100007 crossref_primary_10_1002_ange_202100870 crossref_primary_10_1002_chem_202002009 crossref_primary_10_1016_j_apsusc_2022_153621 crossref_primary_10_1021_acs_inorgchem_0c00516 crossref_primary_10_1039_D1DT00882J crossref_primary_10_1016_j_cej_2022_134907 crossref_primary_10_1016_j_chroma_2022_463188 crossref_primary_10_1016_j_inoche_2020_108094 crossref_primary_10_1021_acsami_3c00860 crossref_primary_10_1002_anie_202013867 crossref_primary_10_1016_j_aca_2021_339191 crossref_primary_10_1039_D3NJ01452E crossref_primary_10_3390_molecules30020336 crossref_primary_10_1016_j_mcat_2021_111663 crossref_primary_10_1016_j_nantod_2020_100952 crossref_primary_10_1039_D0RA01896A crossref_primary_10_1016_j_bios_2022_114527 crossref_primary_10_1039_D1BM01912K crossref_primary_10_1016_j_cej_2022_134994 crossref_primary_10_1002_ange_202213268 crossref_primary_10_1002_anie_202002724 crossref_primary_10_1016_j_dyepig_2023_111159 crossref_primary_10_1039_D2RA06162G crossref_primary_10_1002_anie_202100870 crossref_primary_10_1002_ange_202304234 crossref_primary_10_1039_D1MA00506E crossref_primary_10_1039_C9CS00829B crossref_primary_10_1002_anie_202414472 crossref_primary_10_1016_j_ccr_2023_215577 crossref_primary_10_1021_acsami_4c01779 crossref_primary_10_1021_acs_inorgchem_4c01788 crossref_primary_10_1021_acs_inorgchem_4c02635 crossref_primary_10_1002_ange_202013867 crossref_primary_10_1021_acsami_3c00478 crossref_primary_10_1021_acs_inorgchem_3c04386 crossref_primary_10_1007_s11664_021_08765_3 crossref_primary_10_1021_acsami_3c07544 crossref_primary_10_1039_D2TA04541A crossref_primary_10_1039_D3QM00151B crossref_primary_10_1039_D3QI02466K crossref_primary_10_1002_adma_202416100 crossref_primary_10_1002_adfm_202302225 crossref_primary_10_1016_j_ccr_2024_216280 crossref_primary_10_1039_D0CS00620C crossref_primary_10_1039_D0CS00236D crossref_primary_10_1002_adom_202401026 crossref_primary_10_1002_anie_202304234 |
Cites_doi | 10.1039/C4CC07038K 10.1021/jacs.7b07918 10.1039/C7DT01058C 10.1021/jacs.7b02648 10.1039/C7TC00921F 10.1021/cm201140r 10.1039/c2nr30663h 10.1021/jacs.9b02997 10.1039/C5TA10521H 10.1021/ja01077a015 10.1016/j.saa.2004.04.005 10.1039/C7TA07691F 10.1021/acsomega.9b01996 10.1515/pac-2014-1117 10.1016/j.snb.2018.06.086 10.1002/chem.201600860 10.1364/OL.37.005214 10.1039/b406082m 10.1038/s41467-018-07670-4 10.1038/s41598-019-38774-6 10.1007/s11426-018-9253-3 10.1021/acs.inorgchem.5b01924 10.1039/C6CC01476C 10.1126/science.aal1585 10.1016/j.ccr.2015.02.015 10.1039/c2nr30764b 10.1021/acsami.9b07779 10.1002/adfm.201500518 10.1021/acs.inorgchem.6b02130 10.1038/srep07866 10.1002/adfm.201505332 10.1021/nn100244a 10.3390/ma11040572 10.1021/acsami.9b14795 10.1021/ar0400894 10.1021/jacs.8b08312 10.1002/adma.201505004 10.1039/C9TC02328C 10.1002/adfm.201201712 10.1021/acs.inorgchem.9b01106 10.1039/C8TC01062E 10.1021/acs.chemmater.6b01370 10.1039/c2nr32203j 10.1038/s41467-018-04769-6 10.1039/C8NR08348G 10.1039/c0jm03474f 10.1021/nn402608w 10.1002/adma.201601176 |
ContentType | Journal Article |
Copyright | 2020 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim 2020 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. |
Copyright_xml | – notice: 2020 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2020 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. |
DBID | AAYXX CITATION NPM 7TM K9. 7X8 |
DOI | 10.1002/anie.201913983 |
DatabaseName | CrossRef PubMed Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed ProQuest Health & Medical Complete (Alumni) Nucleic Acids Abstracts MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic PubMed ProQuest Health & Medical Complete (Alumni) |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3773 |
Edition | International ed. in English |
EndPage | 1940 |
ExternalDocumentID | 31777996 10_1002_anie_201913983 ANIE201913983 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: Fundamental Research Funds for the Central Universities funderid: DUT17JC20 – fundername: Institute of Materials Research and Engineering funderid: FCT UID/CTM/50011/2019 – fundername: FWO-Vlaanderen funderid: 3G000117 – fundername: S&T Cooperation Program of China funderid: 2016YFE0109800 – fundername: Universiteit Gent – fundername: S&T Cooperation Program of China grantid: 2016YFE0109800 – fundername: FWO-Vlaanderen grantid: 3G000117 – fundername: Institute of Materials Research and Engineering grantid: FCT UID/CTM/50011/2019 – fundername: Fundamental Research Funds for the Central Universities grantid: DUT17JC20 |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABLJU ABPPZ ABPVW ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BTSUX BY8 CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES M53 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ TN5 UB1 UPT UQL V2E VQA W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XSW XV2 YZZ ZZTAW ~IA ~KM ~WT AAYXX ABDBF ABJNI AEYWJ AGHNM AGYGG CITATION NPM YIN 7TM K9. 7X8 |
ID | FETCH-LOGICAL-c4763-9093d006614c74af9eb81759561d7f975feaa4800291d02632a409ebbf20d85d3 |
IEDL.DBID | DR2 |
ISSN | 1433-7851 1521-3773 |
IngestDate | Fri Jul 11 01:08:00 EDT 2025 Fri Jul 25 10:38:44 EDT 2025 Wed Feb 19 02:31:10 EST 2025 Thu Apr 24 23:12:56 EDT 2025 Tue Jul 01 02:27:03 EDT 2025 Wed Jan 22 16:35:10 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | Sensors Lanthanides Ratiometric Thermometers Covalent Organic Frameworks Quenching |
Language | English |
License | 2020 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4763-9093d006614c74af9eb81759561d7f975feaa4800291d02632a409ebbf20d85d3 |
Notes | These authors contibuted equally to this work. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-5254-8762 |
PMID | 31777996 |
PQID | 2344219242 |
PQPubID | 946352 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_2319493681 proquest_journals_2344219242 pubmed_primary_31777996 crossref_primary_10_1002_anie_201913983 crossref_citationtrail_10_1002_anie_201913983 wiley_primary_10_1002_anie_201913983_ANIE201913983 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 27, 2020 |
PublicationDateYYYYMMDD | 2020-01-27 |
PublicationDate_xml | – month: 01 year: 2020 text: January 27, 2020 day: 27 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Angewandte Chemie International Edition |
PublicationTitleAlternate | Angew Chem Int Ed Engl |
PublicationYear | 2020 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2017; 5 2019; 7 2019; 9 2019; 4 2018; 140 2019; 11 2013; 23 2006; 39 2017; 46 2015; 54 2019; 58 2016; 52 1964; 86 2018; 61 2005; 61 2012; 37 2013; 7 2019; 141 2017; 355 2017; 139 2016; 4 2015; 295 2018; 6 2018; 273 2018; 9 2015; 25 2015; 87 2017; 56 2011; 21 2016 2011; 23 2015 2016; 28 2018; 11 2012; 4 2014; 50 2010; 4 2016; 26 2005; 34 2016; 22 e_1_2_6_32_1 e_1_2_6_30_1 e_1_2_6_19_1 e_1_2_6_13_1 e_1_2_6_36_1 e_1_2_6_11_1 e_1_2_6_34_1 e_1_2_6_17_1 e_1_2_6_15_1 e_1_2_6_38_1 e_1_2_6_43_1 e_1_2_6_20_1 e_1_2_6_41_1 e_1_2_6_9_1 e_1_2_6_5_1 e_1_2_6_7_1 e_1_2_6_24_1 e_1_2_6_49_1 e_1_2_6_3_1 e_1_2_6_22_1 e_1_2_6_28_1 e_1_2_6_45_1 e_1_2_6_26_1 e_1_2_6_47_1 e_1_2_6_10_1 e_1_2_6_31_1 e_1_2_6_14_1 e_1_2_6_35_1 e_1_2_6_12_1 e_1_2_6_33_1 e_1_2_6_18_1 e_1_2_6_39_1 e_1_2_6_16_1 e_1_2_6_37_1 Carlos L. D. (e_1_2_6_1_1) 2016 e_1_2_6_42_1 e_1_2_6_21_1 e_1_2_6_40_1 e_1_2_6_8_1 e_1_2_6_4_1 e_1_2_6_6_1 e_1_2_6_25_1 e_1_2_6_48_1 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_29_1 e_1_2_6_44_1 e_1_2_6_27_1 e_1_2_6_46_1 |
References_xml | – volume: 295 start-page: 1 year: 2015 publication-title: Coord. Chem. Rev. – volume: 140 start-page: 13367 year: 2018 publication-title: J. Am. Chem. Soc. – volume: 141 start-page: 7615 year: 2019 publication-title: J. Am. Chem. Soc. – volume: 139 start-page: 4258 year: 2017 publication-title: J. Am. Chem. Soc. – volume: 34 start-page: 1048 year: 2005 publication-title: Chem. Soc. Rev. – volume: 46 start-page: 5781 year: 2017 publication-title: Dalton Trans. – volume: 9 start-page: 2335 year: 2018 publication-title: Nat. Commun. – volume: 39 start-page: 53 year: 2006 publication-title: Acc. Chem. Res. – volume: 61 start-page: 1470 year: 2018 publication-title: Sci. China Chem. – volume: 4 start-page: 2682 year: 2016 publication-title: J. Mater. Chem. A – volume: 50 start-page: 15235 year: 2014 publication-title: Chem. Commun. – volume: 4 start-page: 6959 year: 2012 publication-title: Nanoscale – volume: 28 start-page: 7745 year: 2016 publication-title: Adv. Mater. – volume: 11 start-page: 39201 year: 2019 publication-title: ACS Appl. Mater. Interfaces – volume: 26 start-page: 3139 year: 2016 publication-title: Adv. Funct. Mater. – volume: 11 start-page: 833 year: 2019 end-page: 837 publication-title: Nanoscale – volume: 5 start-page: 22933 year: 2017 publication-title: J. Mater. Chem. A – volume: 6 start-page: 5916 year: 2018 publication-title: J. Mater. Chem. C – volume: 23 start-page: 4094 year: 2011 publication-title: Chem. Mater. – volume: 4 start-page: 4301 year: 2012 publication-title: Nanoscale – volume: 54 start-page: 11323 year: 2015 publication-title: Inorg. Chem. – volume: 273 start-page: 696 year: 2018 publication-title: Sens. Actuators B – volume: 7 start-page: 10972 year: 2019 publication-title: J. Mater. Chem. C – volume: 21 start-page: 3796 year: 2011 publication-title: J. Mater. Chem. – volume: 61 start-page: 185 year: 2005 publication-title: Spectrochim. Acta Part A – volume: 9 start-page: 2043 year: 2019 publication-title: Sci. Rep. – volume: 56 start-page: 3190 year: 2017 publication-title: Inorg. Chem. – volume: 37 start-page: 5214 year: 2012 publication-title: Opt. Lett. – volume: 52 start-page: 6613 year: 2016 publication-title: Chem. Commun. – start-page: 7866 year: 2015 publication-title: Sci. Rep. – volume: 23 start-page: 340 year: 2013 publication-title: Adv. Funct. Mater. – volume: 11 start-page: 572 year: 2018 publication-title: Materials – volume: 4 start-page: 3254 year: 2010 publication-title: ACS Nano – volume: 22 start-page: 14782 year: 2016 publication-title: Chem. Eur. J. – year: 2016 – volume: 7 start-page: 7213 year: 2013 publication-title: ACS Nano – volume: 5 start-page: 5044 year: 2017 publication-title: J. Mater. Chem. C – volume: 9 start-page: 5234 year: 2018 publication-title: Nat. Commun. – volume: 86 start-page: 5117 year: 1964 publication-title: J. Am. Chem. Soc. – volume: 4 start-page: 15947 year: 2019 publication-title: ACS Omega – volume: 58 start-page: 9956 year: 2019 publication-title: Inorg. Chem. – volume: 4 start-page: 4799 year: 2012 publication-title: Nanoscale – volume: 28 start-page: 2855 year: 2016 publication-title: Adv. Mater. – volume: 11 start-page: 27343 year: 2019 publication-title: ACS Appl. Mater. Interfaces – volume: 87 start-page: 1052 year: 2015 publication-title: Pure Appl. Chem. – volume: 25 start-page: 2824 year: 2015 publication-title: Adv. Funct. Mater. – volume: 355 start-page: 6328 year: 2017 publication-title: Science – volume: 139 start-page: 17082 year: 2017 publication-title: J. Am. Chem. Soc. – volume: 28 start-page: 4375 year: 2016 publication-title: Chem. Mater. – ident: e_1_2_6_5_1 doi: 10.1039/C4CC07038K – ident: e_1_2_6_23_1 doi: 10.1021/jacs.7b07918 – ident: e_1_2_6_43_1 doi: 10.1039/C7DT01058C – ident: e_1_2_6_24_1 doi: 10.1021/jacs.7b02648 – ident: e_1_2_6_13_1 doi: 10.1039/C7TC00921F – ident: e_1_2_6_34_1 doi: 10.1021/cm201140r – ident: e_1_2_6_6_1 doi: 10.1039/c2nr30663h – ident: e_1_2_6_36_1 doi: 10.1021/jacs.9b02997 – ident: e_1_2_6_32_1 doi: 10.1039/C5TA10521H – ident: e_1_2_6_33_1 doi: 10.1021/ja01077a015 – ident: e_1_2_6_38_1 doi: 10.1016/j.saa.2004.04.005 – ident: e_1_2_6_22_1 doi: 10.1039/C7TA07691F – ident: e_1_2_6_27_1 doi: 10.1021/acsomega.9b01996 – ident: e_1_2_6_35_1 doi: 10.1515/pac-2014-1117 – ident: e_1_2_6_42_1 doi: 10.1016/j.snb.2018.06.086 – ident: e_1_2_6_11_1 doi: 10.1002/chem.201600860 – ident: e_1_2_6_45_1 doi: 10.1364/OL.37.005214 – ident: e_1_2_6_17_1 doi: 10.1039/b406082m – volume-title: Thermometry at the Nanoscale: Techniques and Selected Applications year: 2016 ident: e_1_2_6_1_1 – ident: e_1_2_6_30_1 doi: 10.1038/s41467-018-07670-4 – ident: e_1_2_6_46_1 doi: 10.1038/s41598-019-38774-6 – ident: e_1_2_6_48_1 doi: 10.1007/s11426-018-9253-3 – ident: e_1_2_6_10_1 doi: 10.1021/acs.inorgchem.5b01924 – ident: e_1_2_6_47_1 doi: 10.1039/C6CC01476C – ident: e_1_2_6_20_1 doi: 10.1126/science.aal1585 – ident: e_1_2_6_40_1 doi: 10.1016/j.ccr.2015.02.015 – ident: e_1_2_6_2_1 doi: 10.1039/c2nr30764b – ident: e_1_2_6_25_1 doi: 10.1021/acsami.9b07779 – ident: e_1_2_6_3_1 doi: 10.1002/adfm.201500518 – ident: e_1_2_6_41_1 doi: 10.1021/acs.inorgchem.6b02130 – ident: e_1_2_6_44_1 doi: 10.1038/srep07866 – ident: e_1_2_6_9_1 doi: 10.1002/adfm.201505332 – ident: e_1_2_6_8_1 doi: 10.1021/nn100244a – ident: e_1_2_6_19_1 doi: 10.3390/ma11040572 – ident: e_1_2_6_28_1 doi: 10.1021/acsami.9b14795 – ident: e_1_2_6_18_1 doi: 10.1021/ar0400894 – ident: e_1_2_6_31_1 doi: 10.1021/jacs.8b08312 – ident: e_1_2_6_21_1 doi: 10.1002/adma.201505004 – ident: e_1_2_6_49_1 doi: 10.1039/C9TC02328C – ident: e_1_2_6_7_1 doi: 10.1002/adfm.201201712 – ident: e_1_2_6_26_1 doi: 10.1021/acs.inorgchem.9b01106 – ident: e_1_2_6_15_1 doi: 10.1039/C8TC01062E – ident: e_1_2_6_37_1 doi: 10.1021/acs.chemmater.6b01370 – ident: e_1_2_6_4_1 doi: 10.1039/c2nr32203j – ident: e_1_2_6_29_1 doi: 10.1038/s41467-018-04769-6 – ident: e_1_2_6_16_1 doi: 10.1039/C8NR08348G – ident: e_1_2_6_39_1 doi: 10.1039/c0jm03474f – ident: e_1_2_6_14_1 doi: 10.1021/nn402608w – ident: e_1_2_6_12_1 doi: 10.1002/adma.201601176 |
SSID | ssj0028806 |
Score | 2.6413298 |
Snippet | Covalent Organic Frameworks (COFs), an emerging class of crystalline porous materials, are proposed as a new type of support for grafting lanthanide ions... Covalent Organic Frameworks (COFs), an emerging class of crystalline porous materials, are proposed as a new type of support for grafting lanthanide ions (Ln... Covalent Organic Frameworks (COFs), an emerging class of crystalline porous materials, are proposed as a new type of support for grafting lanthanide ions (Ln )... Covalent Organic Frameworks (COFs), an emerging class of crystalline porous materials, are proposed as a new type of support for grafting lanthanide ions (Ln3+... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1932 |
SubjectTerms | Acetylacetone Covalent Organic Frameworks Diamines Lanthanides Metal-organic frameworks Porous materials Quenching Ratiometric Thermometers Sensors Thermometers |
Title | Developing Luminescent Ratiometric Thermometers Based on a Covalent Organic Framework (COF) |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.201913983 https://www.ncbi.nlm.nih.gov/pubmed/31777996 https://www.proquest.com/docview/2344219242 https://www.proquest.com/docview/2319493681 |
Volume | 59 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDLYQF7jwfpSXgoQEHAJtmi7NcQymgXhICCQkDlXSphdYh8Z24ddjr2thIIQEx6pOmyZ2_CW1PwPsiSzX6BkcVyLOuTTWctvII26EEmmsXOB8yka-um507uXFQ_TwKYu_5IeoD9zIMkbrNRm4sa_HH6ShlIFNoVnEaxkT3ScFbBEquq35owQqZ5leFIacqtBXrI2-OJ5sPumVvkHNSeQ6cj3teTBVp8uIk6ej4cAepW9f-Bz_81ULMDfGpaxZKtIiTLliCWZaVTm4ZXg8rdOr2OWwS9HyFNjJbmlqu1SXK2Woc_0uXSCmZCfoHzPWK5hhrR7qMwmXmZ8pa1chYeygddM-XIH79tldq8PHlRl4KnFB4trXYUZoJZCpkibXzsaIQyhJNlO5VlHujJGERXWQ-UQJb3Af6azNhZ_FURauwnTRK9w6MNSVTLhQKqlz9I2UyIvPws2yMy4WYeQBr2YmSce05VQ94zkpCZdFQkOW1EPmwX4t_1ISdvwouVVNdDI23NdEhFIK2pQKD3br2zjU9B_FFK43JJlASx024sCDtVJB6lchHFMK95AeiNE0_9KHpHl9flZfbfyl0SbMCjoD8AMu1BZMD_pDt41AaWB3RsbwDjLmB8E |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB7xOMClhdLSlEeNhFQ4GBLbWcdHWFgt7bJICKRKPUR24lxgswh2L_x6ZjaboC1CSHCMMk4ce8bz2Zn5BmBX5IVBz-C5FknBlXWOu1YRcyu0yBLtIx9SNvJ5v9W9Vr__xnU0IeXCVPwQzYEbWcZkvSYDpwPpw2fWUErBptgsIrZM5DwsUllvos8_uWwYpASqZ5VgJCWnOvQ1b2MoDmfbz_qlF2BzFrtOnE_nM7i621XMyc3BeOQOssf_GB0_9F0r8GkKTdlRpUurMOfLL7DUrivCrcG_kybDivXGAwqYp9hOdkmzO6DSXBlDtbsf0AXCSnaMLjJnw5JZ1h6iSpNwlfyZsU4dFcb22hed_a9w3Tm9anf5tDgDzxSuSdyERuYEWCKVaWUL412CUITyZHNdGB0X3lpFcNREeUis8Ba3kt65QoR5EufyGyyUw9J_B4bqkgsvlVamQPdIubz4LNwve-sTIeMAeD01aTZlLqcCGrdpxbksUhqytBmyAH418ncVZ8erkpv1TKdT231IhVRK0L5UBLDT3Mahpl8ptvTDMclERhnZSqIA1isNaV6FiExr3EYGICbz_EYf0qP-2Wlz9eM9jX7CUvfqvJf2zvp_NmBZ0JFAGHGhN2FhdD_2W4ibRm57YhlPumcL3Q |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT9wwEB0VKhUu_QbS0tZISG0PhsR21vGR7hJBgQWhIiFxiJzYvsBmEd299Nd3ZrNJWaqqUnuMMk4ce8bz7My8AdgWLhj0DJ5rkQWubFnyshdSboUWVaZ94mPKRj4Z9g4u1NfL9PJeFn_DD9EduJFlzNZrMvBbF3Z_kYZSBjaFZhGvZSaX4LHqxYaKNwzOOwIpgdrZ5BdJyakMfUvbGIvdxfaLbuk3rLkIXWe-J38Gtu11E3JyvTOdlDvVjweEjv_zWc_h6RyYsr1Gk17AI1-_hJV-Ww_uFVwNuvwqdjwdUbg8RXayc5rbERXmqhgq3d2ILhBUsi_oIB0b18yy_hgVmoSb1M-K5W1MGPvUP80_v4aLfP9b_4DPSzPwSuGKxE1spCO4kqhKKxuMLzMEIpQl63QwOg3eWkVg1CQuJk54ixtJX5ZBxC5LnVyD5Xpc-w1gqCxOeKm0MgGdI2Xy4rNwt-ytz4RMI-DtzBTVnLecymfcFA3jsihoyIpuyCL42MnfNowdf5TcbCe6mFvu90JIpQTtSkUEW91tHGr6kWJrP56STGKUkb0siWC9UZDuVYjHtMZNZARiNs1_6UOxNzzc767e_EujD_DkbJAXx4fDo7ewKug8IE640JuwPLmb-ncImibl-5ld_ASAhAqM |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Developing+Luminescent+Ratiometric+Thermometers+Based+on+a+Covalent+Organic+Framework+%28COF%29&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Kaczmarek%2C+Anna+M.&rft.au=Liu%2C+Ying%E2%80%90Ya&rft.au=Kaczmarek%2C+Mariusz+K.&rft.au=Liu%2C+Hengshuo&rft.date=2020-01-27&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=59&rft.issue=5&rft.spage=1932&rft.epage=1940&rft_id=info:doi/10.1002%2Fanie.201913983&rft.externalDBID=10.1002%252Fanie.201913983&rft.externalDocID=ANIE201913983 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon |