One‐Step Synthesis of Acylboron Compounds via Copper‐Catalyzed Carbonylative Borylation of Alkyl Halides

A copper‐catalyzed carbonylative borylation of unactivated alkyl halides has been developed, enabling efficient synthesis of aliphatic potassium acyltrifluoroborates (KATs) in high yields by treating the in situ formed tetracoordinated acylboron intermediates with aqueous KHF2. A variety of function...

Full description

Saved in:
Bibliographic Details
Published inAngewandte Chemie International Edition Vol. 60; no. 4; pp. 2094 - 2098
Main Authors Cheng, Li‐Jie, Zhao, Siling, Mankad, Neal P.
Format Journal Article
LanguageEnglish
Published WEINHEIM Wiley 25.01.2021
Wiley Subscription Services, Inc
EditionInternational ed. in English
Subjects
Online AccessGet full text
ISSN1433-7851
1521-3773
1521-3773
DOI10.1002/anie.202012373

Cover

Loading…
Abstract A copper‐catalyzed carbonylative borylation of unactivated alkyl halides has been developed, enabling efficient synthesis of aliphatic potassium acyltrifluoroborates (KATs) in high yields by treating the in situ formed tetracoordinated acylboron intermediates with aqueous KHF2. A variety of functional groups are tolerated under the mild reaction conditions, and primary, secondary, and tertiary alkyl halides are all applicable. In addition, this method also provides facile access to N‐methyliminodiacetyl (MIDA) acylboronates as well as α‐methylated potassium acyltrifluoroborates in a one‐pot manner. Mechanistic studies indicate a radical atom transfer carbonylation (ATC) mechanism to form acyl halide intermediates that are subsequently borylated by (NHC)CuBpin. A copper‐catalyzed carbonylative borylation of unactivated alkyl halides enables one‐step synthesis of acylborons which can be further transformed into potassium acyltrifluoroborates (KATs) as well as N‐methyliminodiacetyl (MIDA) acylboronate in a one‐pot manner.
AbstractList A copper‐catalyzed carbonylative borylation of unactivated alkyl halides has been developed, enabling efficient synthesis of aliphatic potassium acyltrifluoroborates (KATs) in high yields by treating the in situ formed tetracoordinated acylboron intermediates with aqueous KHF 2 . A variety of functional groups are tolerated under the mild reaction conditions, and primary, secondary, and tertiary alkyl halides are all applicable. In addition, this method also provides facile access to N ‐methyliminodiacetyl (MIDA) acylboronates as well as α‐methylated potassium acyltrifluoroborates in a one‐pot manner. Mechanistic studies indicate a radical atom transfer carbonylation (ATC) mechanism to form acyl halide intermediates that are subsequently borylated by (NHC)CuBpin.
A copper‐catalyzed carbonylative borylation of unactivated alkyl halides has been developed, enabling efficient synthesis of aliphatic potassium acyltrifluoroborates (KATs) in high yields by treating the in situ formed tetracoordinated acylboron intermediates with aqueous KHF2. A variety of functional groups are tolerated under the mild reaction conditions, and primary, secondary, and tertiary alkyl halides are all applicable. In addition, this method also provides facile access to N‐methyliminodiacetyl (MIDA) acylboronates as well as α‐methylated potassium acyltrifluoroborates in a one‐pot manner. Mechanistic studies indicate a radical atom transfer carbonylation (ATC) mechanism to form acyl halide intermediates that are subsequently borylated by (NHC)CuBpin.
A copper-catalyzed carbonylative borylation of unactivated alkyl halides has been developed, enabling efficient synthesis of aliphatic potassium acyltrifluoroborates (KATs) in high yields by treating the in situ formed tetracoordinated acylboron intermediates with aqueous KHF . A variety of functional groups are tolerated under the mild reaction conditions, and primary, secondary, and tertiary alkyl halides are all applicable. In addition, this method also provides facile access to N-methyliminodiacetyl (MIDA) acylboronates as well as α-methylated potassium acyltrifluoroborates in a one-pot manner. Mechanistic studies indicate a radical atom transfer carbonylation (ATC) mechanism to form acyl halide intermediates that are subsequently borylated by (NHC)CuBpin.
A copper‐catalyzed carbonylative borylation of unactivated alkyl halides has been developed, enabling efficient synthesis of aliphatic potassium acyltrifluoroborates (KATs) in high yields by treating the in situ formed tetracoordinated acylboron intermediates with aqueous KHF2. A variety of functional groups are tolerated under the mild reaction conditions, and primary, secondary, and tertiary alkyl halides are all applicable. In addition, this method also provides facile access to N‐methyliminodiacetyl (MIDA) acylboronates as well as α‐methylated potassium acyltrifluoroborates in a one‐pot manner. Mechanistic studies indicate a radical atom transfer carbonylation (ATC) mechanism to form acyl halide intermediates that are subsequently borylated by (NHC)CuBpin. A copper‐catalyzed carbonylative borylation of unactivated alkyl halides enables one‐step synthesis of acylborons which can be further transformed into potassium acyltrifluoroborates (KATs) as well as N‐methyliminodiacetyl (MIDA) acylboronate in a one‐pot manner.
A copper-catalyzed carbonylative borylation of unactivated alkyl halides has been developed, enabling efficient synthesis of aliphatic potassium acyltrifluoroborates (KATs) in high yields by treating the in situ formed tetracoordinated acylboron intermediates with aqueous KHF2. A variety of functional groups are tolerated under the mild reaction conditions, and primary, secondary, and tertiary alkyl halides are all applicable. In addition, this method also provides facile access to N-methyliminodiacetyl (MIDA) acylboronates as well as alpha-methylated potassium acyltrifluoroborates in a one-pot manner. Mechanistic studies indicate a radical atom transfer carbonylation (ATC) mechanism to form acyl halide intermediates that are subsequently borylated by (NHC)CuBpin.
A copper-catalyzed carbonylative borylation of unactivated alkyl halides has been developed, enabling efficient synthesis of aliphatic potassium acyltrifluoroborates (KATs) in high yields by treating the in situ formed tetracoordinated acylboron intermediates with aqueous KHF2 . A variety of functional groups are tolerated under the mild reaction conditions, and primary, secondary, and tertiary alkyl halides are all applicable. In addition, this method also provides facile access to N-methyliminodiacetyl (MIDA) acylboronates as well as α-methylated potassium acyltrifluoroborates in a one-pot manner. Mechanistic studies indicate a radical atom transfer carbonylation (ATC) mechanism to form acyl halide intermediates that are subsequently borylated by (NHC)CuBpin.A copper-catalyzed carbonylative borylation of unactivated alkyl halides has been developed, enabling efficient synthesis of aliphatic potassium acyltrifluoroborates (KATs) in high yields by treating the in situ formed tetracoordinated acylboron intermediates with aqueous KHF2 . A variety of functional groups are tolerated under the mild reaction conditions, and primary, secondary, and tertiary alkyl halides are all applicable. In addition, this method also provides facile access to N-methyliminodiacetyl (MIDA) acylboronates as well as α-methylated potassium acyltrifluoroborates in a one-pot manner. Mechanistic studies indicate a radical atom transfer carbonylation (ATC) mechanism to form acyl halide intermediates that are subsequently borylated by (NHC)CuBpin.
Author Zhao, Siling
Mankad, Neal P.
Cheng, Li‐Jie
Author_xml – sequence: 1
  givenname: Li‐Jie
  orcidid: 0000-0002-3272-3276
  surname: Cheng
  fullname: Cheng, Li‐Jie
  organization: University of Illinois at Chicago
– sequence: 2
  givenname: Siling
  surname: Zhao
  fullname: Zhao, Siling
  organization: University of Illinois at Chicago
– sequence: 3
  givenname: Neal P.
  orcidid: 0000-0001-6923-5164
  surname: Mankad
  fullname: Mankad, Neal P.
  email: npm@uic.edu
  organization: University of Illinois at Chicago
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33090619$$D View this record in MEDLINE/PubMed
BookMark eNqNks1u1DAQgC1U1J9trxxRJC5IKIt_Y-e4jQqtVNFDe4-cZCJcvHawk6Jw4hF4Rp4Eb3fZSpUQnDyWvm9mNDMn6MB5Bwi9InhJMKbvtTOwpJhiQplkL9AxEZTkTEp2kGLOWC6VIEfoJMb7xCuFi0N0xBgucUHKY2RvHPz68fN2hCG7nd34GaKJme-zVTvbxgfvssqvBz-5LmYPRqffMEBISqVHbefv0GWVDo13s9WjeYDs3IfHMJmbNPbLbLNLbU0H8RS97LWNcLZ7F-juw8VddZlf33y8qlbXectlwXIlQGHdd7oBUaqWC6UIcEVLWWhMZV80HLpCMEE1l1ywopCY8kYVgmsCwBbo7TbtEPzXCeJYr01swVrtwE-xphtHlYSJhL55ht77KbjUXKKk4pyrNMMFer2jpmYNXT0Es9Zhrv-MMQHvtsA3aHwfWwOuhT2GMRZlKkpEijBJtPp_ujLj4zCrtIIxqcut2gYfY4B-rxFcbw6i3hxEvT-IJPBnQrtLOAZt7N-1cteisTD_o0i9-nR18eT-BuRvyP4
CitedBy_id crossref_primary_10_1002_ange_202114513
crossref_primary_10_1021_acs_orglett_1c00305
crossref_primary_10_1021_jacs_1c07354
crossref_primary_10_1002_chem_202302235
crossref_primary_10_1021_acs_orglett_1c00742
crossref_primary_10_1039_D1SC00905B
crossref_primary_10_1002_cjoc_202300346
crossref_primary_10_1002_anie_202102197
crossref_primary_10_1002_cjoc_202400694
crossref_primary_10_1021_acs_accounts_1c00115
crossref_primary_10_1039_D2QO01419J
crossref_primary_10_1039_D3QO00158J
crossref_primary_10_1021_jacs_3c01224
crossref_primary_10_1002_ange_202200062
crossref_primary_10_1021_acs_orglett_2c02305
crossref_primary_10_1021_acs_chemrev_1c00255
crossref_primary_10_1002_anie_202114513
crossref_primary_10_1007_s11426_023_1722_8
crossref_primary_10_1021_acs_orglett_4c00967
crossref_primary_10_1039_D1CC06377D
crossref_primary_10_1016_j_ica_2024_122263
crossref_primary_10_1021_acs_orglett_3c03189
crossref_primary_10_5059_yukigoseikyokaishi_82_1052
crossref_primary_10_1002_ange_202102197
crossref_primary_10_1021_acs_joc_2c02746
crossref_primary_10_1002_anie_202200062
crossref_primary_10_6023_cjoc202102015
crossref_primary_10_1039_D2CC04893K
crossref_primary_10_1021_acs_joc_2c02188
Cites_doi 10.1021/jacs.7b05205
10.1039/C5CC02316E
10.1039/C6OB02425D
10.1002/anie.201206501
10.1039/D0QO00214C
10.1002/ange.201507627
10.1039/c4cy00070f
10.1002/ange.201201077
10.1002/tcr.201000029
10.1021/ja064019z
10.1021/acs.orglett.5b02741
10.1002/chem.201500235
10.1002/ange.201907349
10.1002/ange.201403931
10.1002/anie.201901748
10.1002/ange.202005050
10.1002/9783527639328
10.1021/jacs.9b12043
10.1021/ol300668m
10.1021/ol100468f
10.1002/ange.201206501
10.1021/ja00883a020
10.1002/anie.201507627
10.1002/anie.201904576
10.1002/chem.201300443
10.1002/ange.201801814
10.1002/chem.201803823
10.1002/ange.201804883
10.1002/anie.201403931
10.1002/ange.201307551
10.1021/acs.orglett.6b02652
10.1002/anie.201907349
10.1021/jacs.7b12582
10.1002/ange.201611006
10.1002/anie.201106299
10.1021/acs.chemrev.6b00366
10.1039/C5OB02118A
10.1021/ja073037t
10.1002/ange.201904576
10.1002/anie.201804883
10.1002/anie.201801814
10.1021/acscatal.6b02918
10.1021/ar600015v
10.1002/anie.201307551
10.1021/ja5018442
10.1039/C6OB02369J
10.1021/acscatal.5b00790
10.1002/anie.201201077
10.1021/ar500035q
10.1039/C7SC00021A
10.1002/anie.201611006
10.1002/anie.201707933
10.1021/acscatal.5b02973
10.1021/ol203413w
10.1021/acs.orglett.8b00720
10.1002/anie.201707125
10.1039/C9SC00378A
10.1021/ja00987a043
10.1039/D0CS00316F
10.1021/jacs.7b00059
10.1021/ja401492s
10.1021/ja00987a042
10.1002/ange.201106299
10.1021/jo1004058
10.1021/acs.orglett.9b01951
10.1021/ar50015a001
10.1002/chem.201405829
10.1021/om00024a069
10.1039/C9CY00938H
10.1021/acs.orglett.9b04092
10.1021/ja00890a033
10.1002/ange.201707125
10.1002/ange.201707933
10.1002/ange.201901748
10.1039/D0SC01330G
10.1002/anie.202005050
10.1039/c9sc00378a
10.1002/ANGE.201106299
10.1039/c6ob02369j
10.1039/c9cy00938h
10.1039/c5ob02118a
10.1039/d0qo00214c
10.1039/c7sc00021a
10.1039/c5cc02316e
10.1039/d0cs00316f
10.1039/d0sc01330g
10.1039/c6ob02425d
ContentType Journal Article
Copyright 2020 Wiley‐VCH GmbH
2020 Wiley-VCH GmbH.
2021 Wiley‐VCH GmbH
Copyright_xml – notice: 2020 Wiley‐VCH GmbH
– notice: 2020 Wiley-VCH GmbH.
– notice: 2021 Wiley‐VCH GmbH
DBID AAYXX
CITATION
17B
1KM
1KN
BLEPL
DTL
EGQ
HGBXW
NPM
7TM
K9.
7X8
DOI 10.1002/anie.202012373
DatabaseName CrossRef
Web of Knowledge
Index Chemicus
Current Chemical Reactions
Web of Science Core Collection
Science Citation Index Expanded
Web of Science Primary (SCIE, SSCI & AHCI)
Web of Science - Science Citation Index Expanded - 2021
PubMed
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
Web of Science
PubMed
ProQuest Health & Medical Complete (Alumni)
Nucleic Acids Abstracts
MEDLINE - Academic
DatabaseTitleList CrossRef
ProQuest Health & Medical Complete (Alumni)
PubMed

Web of Science
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 1KN
  name: Current Chemical Reactions
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/woscc/search-with-editions?editions=WOS.CCR
  sourceTypes:
    Enrichment Source
    Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3773
Edition International ed. in English
EndPage 2098
ExternalDocumentID 33090619
000592451500001
10_1002_anie_202012373
ANIE202012373
Genre shortCommunication
Research Support, U.S. Gov't, Non-P.H.S
Journal Article
GrantInformation_xml – fundername: Division of Chemistry
  funderid: CHE-1664632
– fundername: NSF; National Science Foundation (NSF)
  grantid: CHE-1664632
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABLJU
ABPPZ
ABPVW
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BTSUX
BY8
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
M53
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
TN5
UB1
UPT
UQL
V2E
VQA
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XSW
XV2
YZZ
ZZTAW
~IA
~KM
~WT
AAYXX
ABDBF
ABJNI
AEYWJ
AGHNM
AGYGG
CITATION
17B
1KM
1KN
BLEPL
DTL
GROUPED_WOS_SCIENCE_CITATION_INDEX_EXPANDED
GROUPED_WOS_WEB_OF_SCIENCE
NPM
7TM
K9.
7X8
ID FETCH-LOGICAL-c4763-85e80afdabe598c45881e482976a027f6b4ed65352a47453667024b8654a1ee3
IEDL.DBID DR2
ISICitedReferencesCount 33
ISICitedReferencesURI https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestApp=WOS&DestLinkType=CitingArticles&UT=000592451500001
ISSN 1433-7851
1521-3773
IngestDate Thu Jul 10 19:23:21 EDT 2025
Fri Jul 25 10:24:56 EDT 2025
Mon Jul 21 06:03:57 EDT 2025
Wed Jul 09 20:27:53 EDT 2025
Fri Aug 29 16:02:33 EDT 2025
Tue Jul 01 01:17:50 EDT 2025
Thu Apr 24 22:53:16 EDT 2025
Wed Jan 22 16:30:18 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords CONVENIENT SYNTHESIS
TRIALKYLBORANES
BORON
Bpin
carbonylative borylation
CARBON MONOXIDE
ORGANOBORANES
KATs
acylboron
ACYLTRIFLUOROBORATE
copper
ATMOSPHERIC PRESSURE
RADICALS
DIBORATION
CYCLIZATION
B2pin2
Language English
License 2020 Wiley-VCH GmbH.
LinkModel DirectLink
LogoURL https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg
MergedId FETCHMERGED-LOGICAL-c4763-85e80afdabe598c45881e482976a027f6b4ed65352a47453667024b8654a1ee3
Notes https://doi.org/10.26434/chemrxiv.12818180.v1
.
A previous version of this manuscript has been deposited on a preprint server
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-6923-5164
0000-0002-3272-3276
0000-0003-4977-8000
PMID 33090619
PQID 2478444843
PQPubID 946352
PageCount 5
ParticipantIDs proquest_miscellaneous_2453689135
webofscience_primary_000592451500001
crossref_citationtrail_10_1002_anie_202012373
wiley_primary_10_1002_anie_202012373_ANIE202012373
proquest_journals_2478444843
pubmed_primary_33090619
webofscience_primary_000592451500001CitationCount
crossref_primary_10_1002_anie_202012373
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 25, 2021
PublicationDateYYYYMMDD 2021-01-25
PublicationDate_xml – month: 01
  year: 2021
  text: January 25, 2021
  day: 25
PublicationDecade 2020
PublicationPlace WEINHEIM
PublicationPlace_xml – name: WEINHEIM
– name: Germany
– name: Weinheim
PublicationTitle Angewandte Chemie International Edition
PublicationTitleAbbrev ANGEW CHEM INT EDIT
PublicationTitleAlternate Angew Chem Int Ed Engl
PublicationYear 2021
Publisher Wiley
Wiley Subscription Services, Inc
Publisher_xml – name: Wiley
– name: Wiley Subscription Services, Inc
References 2014 2014; 53 126
2010; 12
2010; 10
2017; 8
2010; 75
2019; 9
2007; 129
2015; 17
2015; 5
2018; 140
2011
2020; 142
2015; 51
1963; 85
1967; 89
2019; 10
2020 2020; 59 132
2014; 47
2020; 11
2017 2017; 56 129
2012; 14
2016; 18
2018; 20
2016; 14
2014; 136
2019 2019; 58 131
2017; 139
2018; 24
2013; 19
2020; 7
2016; 6
2014; 4
2017; 15
1969; 2
2019; 21
2012 2012; 51 124
2018 2018; 57 130
2015; 21
2020; 49
2015 2015; 54 127
1994; 13
2013; 135
2016; 116
2007; 40
1962; 84
2006; 128
e_1_2_2_24_2
e_1_2_2_47_2
e_1_2_2_4_2
e_1_2_2_47_3
e_1_2_2_22_2
e_1_2_2_49_2
e_1_2_2_6_2
e_1_2_2_20_2
e_1_2_2_2_1
e_1_2_2_62_2
e_1_2_2_41_2
e_1_2_2_64_2
e_1_2_2_41_3
e_1_2_2_6_3
e_1_2_2_8_2
e_1_2_2_43_2
e_1_2_2_26_3
e_1_2_2_28_1
e_1_2_2_66_1
e_1_2_2_26_2
e_1_2_2_45_2
e_1_2_2_68_2
e_1_2_2_60_1
e_1_2_2_13_2
e_1_2_2_59_2
e_1_2_2_38_1
e_1_2_2_11_2
e_1_2_2_38_2
e_1_2_2_74_2
e_1_2_2_51_1
e_1_2_2_19_2
e_1_2_2_30_2
e_1_2_2_53_2
e_1_2_2_32_1
e_1_2_2_17_2
e_1_2_2_32_2
e_1_2_2_55_2
e_1_2_2_34_2
e_1_2_2_76_2
e_1_2_2_15_1
e_1_2_2_34_3
e_1_2_2_36_1
e_1_2_2_57_1
e_1_2_2_70_1
e_1_2_2_72_1
e_1_2_2_3_2
e_1_2_2_25_1
e_1_2_2_23_2
e_1_2_2_48_2
e_1_2_2_69_2
e_1_2_2_5_2
e_1_2_2_48_3
e_1_2_2_7_1
e_1_2_2_21_1
e_1_2_2_1_1
e_1_2_2_40_1
e_1_2_2_61_3
e_1_2_2_61_2
e_1_2_2_29_3
e_1_2_2_65_1
e_1_2_2_29_2
e_1_2_2_42_2
e_1_2_2_63_2
e_1_2_2_44_1
e_1_2_2_67_1
e_1_2_2_27_2
e_1_2_2_9_2
e_1_2_2_46_2
e_1_2_2_14_1
e_1_2_2_35_3
e_1_2_2_37_1
e_1_2_2_12_2
e_1_2_2_37_2
e_1_2_2_58_2
e_1_2_2_39_1
e_1_2_2_10_2
e_1_2_2_39_2
e_1_2_2_50_2
e_1_2_2_75_2
e_1_2_2_73_1
e_1_2_2_18_2
e_1_2_2_31_2
e_1_2_2_52_2
e_1_2_2_16_3
e_1_2_2_31_3
e_1_2_2_33_1
e_1_2_2_16_2
e_1_2_2_54_2
e_1_2_2_77_1
e_1_2_2_35_2
e_1_2_2_56_2
e_1_2_2_71_1
BROWN, HC (WOS:A1969D758400001) 1969; 2
(000592451500001.35) 2017; 129
Adachi, S (WOS:000365462900021) 2015; 17
Liu, SZM (WOS:000386187300038) 2016; 18
YANG CT (WOS:000592451500001.65) 2012; 124
(000592451500001.40) 2019; 131
Saito, F (WOS:000397560500047) 2017; 8
Dumas, AM (WOS:000304814000030) 2012; 51
Scharnagl, FK (WOS:000395884000001) 2017; 15
Laitar, DS (WOS:000239932500027) 2006; 128
Cheng, LJ (WOS:000507144400014) 2020; 142
Sumino, S (WOS:000336415700012) 2014; 47
Dumas, AM (WOS:000302990100048) 2012; 14
(000592451500001.52) 2018; 130
(000592451500001.28) 2012; 124
Liu, SN (WOS:000532340500008) 2020; 7
Cheng, LJ (WOS:000590395000004) 2020; 49
Wu, D (WOS:000550441400001) 2020; 59
Kubota, K (WOS:000393128700002) 2017; 15
He, Z (WOS:000310479300027) 2012; 51
(000592451500001.42) 2015; 127
St Denis, JD (WOS:000361089700046) 2015; 5
Wu, D (WOS:000478635100050) 2019; 58
McIntosh, ML (WOS:000277212800027) 2010; 12
Cheng, LJ (WOS:000423496700045) 2018; 140
Schiesser, CH (WOS:000247563300001) 2007; 40
Taguchi, J (WOS:000474803100018) 2019; 58
(000592451500001.46) 2014; 126
Dewhurst, RD (WOS:000355558700001) 2015; 51
Cheng, LJ (WOS:000440135700055) 2018; 57
Zhao, SL (WOS:000504805500062) 2019; 21
Zhao, SL (WOS:000431488200052) 2018; 57
Suginome, M (WOS:000284057700011) 2010; 10
Semba, K (WOS:000319139400027) 2013; 19
Bose, SK (WOS:000389399400037) 2016; 6
Yoshida, H (WOS:000371755500050) 2016; 6
HILLMAN, MED (WOS:A19623088B00041) 1962; 84
Ito, H (WOS:000300458200057) 2012; 14
KABALKA, GW (WOS:A1994PW70000069) 1994; 13
Liu, QY (WOS:000485089300004) 2019; 21
Sajid, M (WOS:000329879500038) 2014; 53
Lin, SJ (WOS:000465940700013) 2019; 10
Liu, ZB (WOS:000350762400012) 2015; 21
Eros, G (WOS:000339564800036) 2014; 53
(000592451500001.7) 2020; 132
(000592451500001.25) 2014; 126
Jordan, AJ (WOS:000381332000002) 2016; 116
Lepage, ML (WOS:000416126600009) 2017; 56
Tan, DH (WOS:000482406400001) 2019; 58
Hall, D.G. (000592451500001.2) 2011; 2
Molander, GA (WOS:000278560700043) 2010; 75
Campos, J (WOS:000367722500060) 2015; 54
Pietsch, S (WOS:000353348100019) 2015; 21
(000592451500001.44) 2019; 131
HILLMAN, MED (WOS:A19633116B00022) 1963; 85
Schuhmacher, A (WOS:000555670200006) 2020; 11
(000592451500001.31) 2017; 129
Dobrovetsky, R (WOS:000317259300019) 2013; 135
Radius, M (WOS:000448057800004) 2018; 24
Noda, H (WOS:000366861800001) 2016; 14
BROWN, HC (WOS:A19679381000042) 1967; 89
Galvez, AO (WOS:000393848400030) 2017; 139
Hall, D. G. (000592451500001.1) 2011; 1
Noda, H (WOS:000334657600022) 2014; 136
(000592451500001.54) 2018; 130
Cheng, LJ (WOS:000407089500009) 2017; 139
Liu, SZM (WOS:000430898200058) 2018; 20
DUMAS AM (WOS:000592451500001.16) 2012; 124
Fujihara, T (WOS:000336158700025) 2014; 4
Taguchi, J (WOS:000413314800057) 2017; 56
(000592451500001.33) 2017; 129
(000592451500001.37) 2019; 131
BROWN, HC (WOS:A19679381000043) 1967; 89
Yang, CT (WOS:000298792100037) 2012; 51
Lee, CF (WOS:000401326300047) 2017; 56
Zhao, SL (WOS:000475507500002) 2019; 9
Yamashita, M (WOS:000248484400019) 2007; 129
References_xml – year: 2011
– volume: 51 124
  start-page: 528 543
  year: 2012 2012
  end-page: 532 547
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 10
  start-page: 348
  year: 2010
  end-page: 358
  publication-title: Chem. Rec.
– volume: 6
  start-page: 1799
  year: 2016
  end-page: 1811
  publication-title: ACS Catal.
– volume: 14
  start-page: 16
  year: 2016
  end-page: 20
  publication-title: Org. Biomol. Chem.
– volume: 57 130
  start-page: 10328 10485
  year: 2018 2018
  end-page: 10332 10489
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 20
  start-page: 2378
  year: 2018
  end-page: 2381
  publication-title: Org. Lett.
– volume: 139
  start-page: 10200
  year: 2017
  end-page: 10203
  publication-title: J. Am. Chem. Soc.
– volume: 56 129
  start-page: 15257 15459
  year: 2017 2017
  end-page: 15261 15463
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 14
  start-page: 890
  year: 2012
  end-page: 893
  publication-title: Org. Lett.
– volume: 58 131
  start-page: 11058 11174
  year: 2019 2019
  end-page: 11062 11178
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 51 124
  start-page: 5683 5781
  year: 2012 2012
  end-page: 5686 5784
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 89
  start-page: 2737
  year: 1967
  end-page: 2738
  publication-title: J. Am. Chem. Soc.
– volume: 51 124
  start-page: 11092 11254
  year: 2012 2012
  end-page: 11096 11258
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 75
  start-page: 4304
  year: 2010
  end-page: 4306
  publication-title: J. Org. Chem.
– volume: 135
  start-page: 4974
  year: 2013
  end-page: 4977
  publication-title: J. Am. Chem. Soc.
– volume: 40
  start-page: 303
  year: 2007
  end-page: 313
  publication-title: Acc. Chem. Res.
– volume: 129
  start-page: 9570
  year: 2007
  end-page: 9571
  publication-title: J. Am. Chem. Soc.
– volume: 84
  start-page: 4715
  year: 1962
  end-page: 4720
  publication-title: J. Am. Chem. Soc.
– volume: 15
  start-page: 1738
  year: 2017
  end-page: 1752
  publication-title: Org. Biomol. Chem.
– volume: 13
  start-page: 5163
  year: 1994
  end-page: 5165
  publication-title: Organometallics
– volume: 18
  start-page: 5336
  year: 2016
  end-page: 5339
  publication-title: Org. Lett.
– volume: 58 131
  start-page: 7299 7377
  year: 2019 2019
  end-page: 7303 7381
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 58 131
  start-page: 13784 13922
  year: 2019 2019
  end-page: 13788 13926
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 5
  start-page: 5373
  year: 2015
  end-page: 5379
  publication-title: ACS Catal.
– volume: 136
  start-page: 5611
  year: 2014
  end-page: 5614
  publication-title: J. Am. Chem. Soc.
– volume: 140
  start-page: 1159
  year: 2018
  end-page: 1164
  publication-title: J. Am. Chem. Soc.
– volume: 9
  start-page: 3603
  year: 2019
  end-page: 3613
  publication-title: Catal. Sci. Technol.
– volume: 59 132
  start-page: 16847 16993
  year: 2020 2020
  end-page: 16858 17004
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 21
  start-page: 3924
  year: 2015
  end-page: 3928
  publication-title: Chem. Eur. J.
– volume: 57 130
  start-page: 5867 5969
  year: 2018 2018
  end-page: 5870 5972
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 54 127
  start-page: 14159 14365
  year: 2015 2015
  end-page: 14163 14369
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 49
  start-page: 8036
  year: 2020
  end-page: 8064
  publication-title: Chem. Soc. Rev.
– volume: 85
  start-page: 982
  year: 1963
  end-page: 984
  publication-title: J. Am. Chem. Soc.
– volume: 21
  start-page: 7082
  year: 2015
  end-page: 7099
  publication-title: Chem. Eur. J.
– volume: 139
  start-page: 1826
  year: 2017
  end-page: 1829
  publication-title: J. Am. Chem. Soc.
– volume: 6
  start-page: 8332
  year: 2016
  end-page: 8335
  publication-title: ACS Catal.
– volume: 10
  start-page: 4684
  year: 2019
  end-page: 4691
  publication-title: Chem. Sci.
– volume: 53 126
  start-page: 1118 1136
  year: 2014 2014
  end-page: 1121 1139
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 21
  start-page: 6597
  year: 2019
  end-page: 6602
  publication-title: Org. Lett.
– volume: 19
  start-page: 7125
  year: 2013
  end-page: 7132
  publication-title: Chem. Eur. J.
– volume: 12
  start-page: 1996
  year: 2010
  end-page: 1999
  publication-title: Org. Lett.
– volume: 89
  start-page: 2738
  year: 1967
  end-page: 2740
  publication-title: J. Am. Chem. Soc.
– volume: 56 129
  start-page: 6264 6360
  year: 2017 2017
  end-page: 6267 6363
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 56 129
  start-page: 13847 14035
  year: 2017 2017
  end-page: 13851 14039
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 24
  start-page: 15744
  year: 2018
  end-page: 15749
  publication-title: Chem. Eur. J.
– volume: 2
  start-page: 65
  year: 1969
  end-page: 72
  publication-title: Acc. Chem. Res.
– volume: 17
  start-page: 5594
  year: 2015
  end-page: 5597
  publication-title: Org. Lett.
– volume: 128
  start-page: 11036
  year: 2006
  end-page: 11037
  publication-title: J. Am. Chem. Soc.
– volume: 53 126
  start-page: 7604 7734
  year: 2014 2014
  end-page: 7607 7737
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 142
  start-page: 80
  year: 2020
  end-page: 84
  publication-title: J. Am. Chem. Soc.
– volume: 14
  start-page: 2138
  year: 2012
  end-page: 2141
  publication-title: Org. Lett.
– volume: 11
  start-page: 7609
  year: 2020
  end-page: 7614
  publication-title: Chem. Sci.
– volume: 8
  start-page: 2878
  year: 2017
  end-page: 2884
  publication-title: Chem. Sci.
– volume: 47
  start-page: 1563
  year: 2014
  end-page: 1574
  publication-title: Acc. Chem. Res.
– volume: 4
  start-page: 1699
  year: 2014
  end-page: 1709
  publication-title: Catal. Sci. Technol.
– volume: 21
  start-page: 10106
  year: 2019
  end-page: 10110
  publication-title: Org. Lett.
– volume: 15
  start-page: 285
  year: 2017
  end-page: 300
  publication-title: Org. Biomol. Chem.
– volume: 7
  start-page: 1137
  year: 2020
  end-page: 1148
  publication-title: Org. Chem. Front.
– volume: 116
  start-page: 8318
  year: 2016
  end-page: 8372
  publication-title: Chem. Rev.
– volume: 51
  start-page: 9594
  year: 2015
  end-page: 9607
  publication-title: Chem. Commun.
– ident: e_1_2_2_45_2
  doi: 10.1021/jacs.7b05205
– ident: e_1_2_2_69_2
  doi: 10.1039/C5CC02316E
– ident: e_1_2_2_5_2
  doi: 10.1039/C6OB02425D
– ident: e_1_2_2_29_2
  doi: 10.1002/anie.201206501
– ident: e_1_2_2_40_1
– ident: e_1_2_2_77_1
  doi: 10.1039/D0QO00214C
– ident: e_1_2_2_38_2
  doi: 10.1002/ange.201507627
– ident: e_1_2_2_52_2
  doi: 10.1039/c4cy00070f
– ident: e_1_2_2_16_3
  doi: 10.1002/ange.201201077
– ident: e_1_2_2_53_2
  doi: 10.1002/tcr.201000029
– ident: e_1_2_2_58_2
  doi: 10.1021/ja064019z
– ident: e_1_2_2_30_2
  doi: 10.1021/acs.orglett.5b02741
– ident: e_1_2_2_68_2
  doi: 10.1002/chem.201500235
– ident: e_1_2_2_37_2
  doi: 10.1002/ange.201907349
– ident: e_1_2_2_26_3
  doi: 10.1002/ange.201403931
– ident: e_1_2_2_15_1
– ident: e_1_2_2_35_2
  doi: 10.1002/anie.201901748
– ident: e_1_2_2_6_3
  doi: 10.1002/ange.202005050
– ident: e_1_2_2_1_1
  doi: 10.1002/9783527639328
– ident: e_1_2_2_49_2
  doi: 10.1021/jacs.9b12043
– ident: e_1_2_2_28_1
– ident: e_1_2_2_23_2
  doi: 10.1021/ol300668m
– ident: e_1_2_2_59_2
  doi: 10.1021/ol100468f
– ident: e_1_2_2_25_1
– ident: e_1_2_2_29_3
  doi: 10.1002/ange.201206501
– ident: e_1_2_2_8_2
  doi: 10.1021/ja00883a020
– ident: e_1_2_2_38_1
  doi: 10.1002/anie.201507627
– ident: e_1_2_2_39_1
  doi: 10.1002/anie.201904576
– ident: e_1_2_2_33_1
– ident: e_1_2_2_72_1
  doi: 10.1002/chem.201300443
– ident: e_1_2_2_48_3
  doi: 10.1002/ange.201801814
– ident: e_1_2_2_43_2
  doi: 10.1002/chem.201803823
– ident: e_1_2_2_47_3
  doi: 10.1002/ange.201804883
– ident: e_1_2_2_26_2
  doi: 10.1002/anie.201403931
– ident: e_1_2_2_41_3
  doi: 10.1002/ange.201307551
– ident: e_1_2_2_24_2
  doi: 10.1021/acs.orglett.6b02652
– ident: e_1_2_2_37_1
  doi: 10.1002/anie.201907349
– ident: e_1_2_2_46_2
  doi: 10.1021/jacs.7b12582
– ident: e_1_2_2_44_1
– ident: e_1_2_2_60_1
– ident: e_1_2_2_66_1
– ident: e_1_2_2_71_1
– ident: e_1_2_2_31_3
  doi: 10.1002/ange.201611006
– ident: e_1_2_2_61_2
  doi: 10.1002/anie.201106299
– ident: e_1_2_2_55_2
  doi: 10.1021/acs.chemrev.6b00366
– ident: e_1_2_2_7_1
– ident: e_1_2_2_4_2
  doi: 10.1039/C5OB02118A
– ident: e_1_2_2_57_1
– ident: e_1_2_2_14_1
  doi: 10.1021/ja073037t
– ident: e_1_2_2_39_2
  doi: 10.1002/ange.201904576
– ident: e_1_2_2_47_2
  doi: 10.1002/anie.201804883
– ident: e_1_2_2_51_1
– ident: e_1_2_2_48_2
  doi: 10.1002/anie.201801814
– ident: e_1_2_2_63_2
  doi: 10.1021/acscatal.6b02918
– ident: e_1_2_2_74_2
  doi: 10.1021/ar600015v
– ident: e_1_2_2_41_2
  doi: 10.1002/anie.201307551
– ident: e_1_2_2_17_2
  doi: 10.1021/ja5018442
– ident: e_1_2_2_64_2
  doi: 10.1039/C6OB02369J
– ident: e_1_2_2_3_2
  doi: 10.1021/acscatal.5b00790
– ident: e_1_2_2_16_2
  doi: 10.1002/anie.201201077
– ident: e_1_2_2_73_1
– ident: e_1_2_2_75_2
  doi: 10.1021/ar500035q
– ident: e_1_2_2_19_2
  doi: 10.1039/C7SC00021A
– ident: e_1_2_2_31_2
  doi: 10.1002/anie.201611006
– ident: e_1_2_2_34_2
  doi: 10.1002/anie.201707933
– ident: e_1_2_2_54_2
  doi: 10.1021/acscatal.5b02973
– ident: e_1_2_2_62_2
  doi: 10.1021/ol203413w
– ident: e_1_2_2_27_2
  doi: 10.1021/acs.orglett.8b00720
– ident: e_1_2_2_32_1
  doi: 10.1002/anie.201707125
– ident: e_1_2_2_36_1
  doi: 10.1039/C9SC00378A
– ident: e_1_2_2_12_2
  doi: 10.1021/ja00987a043
– ident: e_1_2_2_56_2
  doi: 10.1039/D0CS00316F
– ident: e_1_2_2_18_2
  doi: 10.1021/jacs.7b00059
– ident: e_1_2_2_42_2
  doi: 10.1021/ja401492s
– ident: e_1_2_2_11_2
  doi: 10.1021/ja00987a042
– ident: e_1_2_2_61_3
  doi: 10.1002/ange.201106299
– ident: e_1_2_2_22_2
  doi: 10.1021/jo1004058
– ident: e_1_2_2_67_1
– ident: e_1_2_2_65_1
  doi: 10.1021/acs.orglett.9b01951
– ident: e_1_2_2_10_2
  doi: 10.1021/ar50015a001
– ident: e_1_2_2_70_1
  doi: 10.1002/chem.201405829
– ident: e_1_2_2_2_1
– ident: e_1_2_2_13_2
  doi: 10.1021/om00024a069
– ident: e_1_2_2_76_2
  doi: 10.1039/C9CY00938H
– ident: e_1_2_2_50_2
  doi: 10.1021/acs.orglett.9b04092
– ident: e_1_2_2_9_2
  doi: 10.1021/ja00890a033
– ident: e_1_2_2_21_1
– ident: e_1_2_2_32_2
  doi: 10.1002/ange.201707125
– ident: e_1_2_2_34_3
  doi: 10.1002/ange.201707933
– ident: e_1_2_2_35_3
  doi: 10.1002/ange.201901748
– ident: e_1_2_2_20_2
  doi: 10.1039/D0SC01330G
– ident: e_1_2_2_6_2
  doi: 10.1002/anie.202005050
– volume: 85
  start-page: 982
  year: 1963
  ident: WOS:A19633116B00022
  article-title: CARBONYLATION OF ORGANOBORANES .2. CARBONYLATION OF TRIALKYLBORANES IN PRESENCE OF GLYCOLS
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
– volume: 21
  start-page: 3924
  year: 2015
  ident: WOS:000350762400012
  article-title: From Minutes to Years: Predicting Organotrifluoroborate Solvolysis Rates
  publication-title: CHEMISTRY-A EUROPEAN JOURNAL
  doi: 10.1002/chem.201405829
– volume: 19
  start-page: 7125
  year: 2013
  ident: WOS:000319139400027
  article-title: Highly Selective Copper-Catalyzed Hydroboration of Allenes and 1,3-Dienes
  publication-title: CHEMISTRY-A EUROPEAN JOURNAL
  doi: 10.1002/chem.201300443
– volume: 53
  start-page: 1118
  year: 2014
  ident: WOS:000329879500038
  article-title: Formylborane Formation with Frustrated Lewis Pair Templates
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.201307551
– volume: 24
  start-page: 15744
  year: 2018
  ident: WOS:000448057800004
  article-title: alpha-Borylated Phosphorus Ylides (alpha-BCPs): Electronic Frustration within a C-B pi-Bond Arising from the Competition for a Lone Pair of Electrons
  publication-title: CHEMISTRY-A EUROPEAN JOURNAL
  doi: 10.1002/chem.201803823
– volume: 21
  start-page: 6597
  year: 2019
  ident: WOS:000485089300004
  article-title: Transition-Metal-Free Borylation of Alkyl Iodides via a Radical Mechanism
  publication-title: ORGANIC LETTERS
  doi: 10.1021/acs.orglett.9b01951
– volume: 124
  start-page: 5781
  year: 2012
  ident: WOS:000592451500001.16
  publication-title: ANGEW CHEM
– volume: 6
  start-page: 8332
  year: 2016
  ident: WOS:000389399400037
  article-title: Highly Efficient Synthesis of Alkylboronate Esters via Cu(II)-Catalyzed Borylation of Unactivated Alkyl Bromides and Chlorides in Air
  publication-title: ACS CATALYSIS
  doi: 10.1021/acscatal.6b02918
– volume: 12
  start-page: 1996
  year: 2010
  ident: WOS:000277212800027
  article-title: Copper-Catalyzed Diboration of Ketones: Facile Synthesis of Tertiary alpha-Hydroxyboronate Esters
  publication-title: ORGANIC LETTERS
  doi: 10.1021/ol100468f
– volume: 6
  start-page: 1799
  year: 2016
  ident: WOS:000371755500050
  article-title: Borylation of Alkynes under Base/Coinage Metal Catalysis: Some Recent Developments
  publication-title: ACS CATALYSIS
  doi: 10.1021/acscatal.5b02973
– volume: 129
  start-page: 14035
  year: 2017
  ident: 000592451500001.35
  publication-title: Angew. Chem.
– volume: 10
  start-page: 348
  year: 2010
  ident: WOS:000284057700011
  article-title: Catalytic Carboborations
  publication-title: CHEMICAL RECORD
  doi: 10.1002/tcr.201000029
– volume: 56
  start-page: 6264
  year: 2017
  ident: WOS:000401326300047
  article-title: Oxalyl Boronates Enable Modular Synthesis of Bioactive Imidazoles
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.201611006
– volume: 135
  start-page: 4974
  year: 2013
  ident: WOS:000317259300019
  article-title: Stoichiometric Metal-Free Reduction of CO in Syn-Gas
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/ja401492s
– volume: 129
  start-page: 9570
  year: 2007
  ident: WOS:000248484400019
  article-title: Synthesis, structure of borylmagnesium, and its reaction with benzaldehyde to form benzoylborane
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/ja073037t
– volume: 14
  start-page: 2138
  year: 2012
  ident: WOS:000302990100048
  article-title: Synthesis of Acyltrifluoroborates
  publication-title: ORGANIC LETTERS
  doi: 10.1021/ol300668m
– volume: 57
  start-page: 5867
  year: 2018
  ident: WOS:000431488200052
  article-title: Cu-Catalyzed Hydroxymethylation of Unactivated Alkyl Iodides with CO To Provide One-Carbon-Extended Alcohols
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.201801814
– volume: 136
  start-page: 5611
  year: 2014
  ident: WOS:000334657600022
  article-title: Rapid Ligations with Equimolar Reactants in Water with the Potassium Acyltrifluoroborate (KAT) Amide Formation
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/ja5018442
– volume: 10
  start-page: 4684
  year: 2019
  ident: WOS:000465940700013
  article-title: A modular and concise approach to MIDA acylboronates via chemoselective oxidation of unsymmetrical geminal diborylalkanes: unlocking access to a novel class of acylborons
  publication-title: CHEMICAL SCIENCE
  doi: 10.1039/c9sc00378a
– volume: 51
  start-page: 11092
  year: 2012
  ident: WOS:000310479300027
  article-title: Oxidative Geminal Functionalization of Organoboron Compounds
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.201206501
– volume: 116
  start-page: 8318
  year: 2016
  ident: WOS:000381332000002
  article-title: Coinage Metal Hydrides: Synthesis, Characterization, and Reactivity
  publication-title: CHEMICAL REVIEWS
  doi: 10.1021/acs.chemrev.6b00366
– volume: 58
  start-page: 7299
  year: 2019
  ident: WOS:000474803100018
  article-title: Concise Synthesis of Potassium Acyltrifluoroborates from Aldehydes through Copper(I)-Catalyzed Borylation/Oxidation
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.201901748
– volume: 139
  start-page: 1826
  year: 2017
  ident: WOS:000393848400030
  article-title: Chemoselective Acylation of Primary Amines and Amides with Potassium Acyltrifluoroborates under Acidic Conditions
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/jacs.7b00059
– volume: 130
  start-page: 10485
  year: 2018
  ident: 000592451500001.52
  publication-title: Angew. Chem.
– volume: 58
  start-page: 13784
  year: 2019
  ident: WOS:000482406400001
  article-title: Diversity-Oriented Synthesis of alpha-Functionalized Acylborons and Borylated Heteroarenes by Nucleophilic Ring Opening of alpha-Chloroepoxyboronates
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.201907349
– volume: 140
  start-page: 1159
  year: 2018
  ident: WOS:000423496700045
  article-title: Synthesis of Allylic Alcohols via Cu-Catalyzed Hydrocarbonylative Coupling of Alkynes with Alkyl Halides
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/jacs.7b12582
– volume: 2
  year: 2011
  ident: 000592451500001.2
  publication-title: Preparation and Applications in Organic Synthesis Medicine and Materials
– volume: 139
  start-page: 10200
  year: 2017
  ident: WOS:000407089500009
  article-title: Cu-Catalyzed Hydrocarbonylative C-C Coupling of Terminal Alkynes with Alkyl Iodides
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/jacs.7b05205
– volume: 124
  start-page: 543
  year: 2012
  ident: WOS:000592451500001.65
  publication-title: ANGEW CHEM
  doi: 10.1002/ANGE.201106299
– volume: 17
  start-page: 5594
  year: 2015
  ident: WOS:000365462900021
  article-title: Condensation-Driven Assembly of Boron-Containing Bis(Heteroaryl) Motifs Using a Linchpin Approach
  publication-title: ORGANIC LETTERS
  doi: 10.1021/acs.orglett.5b02741
– volume: 129
  start-page: 6360
  year: 2017
  ident: 000592451500001.31
  publication-title: Angew. Chem.
– volume: 15
  start-page: 285
  year: 2017
  ident: WOS:000393128700002
  article-title: Formal nucleophilic borylation and borylative cyclization of organic halides
  publication-title: ORGANIC & BIOMOLECULAR CHEMISTRY
  doi: 10.1039/c6ob02369j
– volume: 51
  start-page: 5683
  year: 2012
  ident: WOS:000304814000030
  article-title: Amide-Forming Ligation of Acyltrifluoroborates and Hydroxylamines in Water
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.201201077
– volume: 56
  start-page: 13847
  year: 2017
  ident: WOS:000413314800057
  article-title: Synthesis of Acylborons by Ozonolysis of Alkenylboronates: Preparation of an Enantioenriched Amino Acid Acylboronate
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.201707933
– volume: 9
  start-page: 3603
  year: 2019
  ident: WOS:000475507500002
  article-title: Metal-catalysed radical carbonylation reactions
  publication-title: CATALYSIS SCIENCE & TECHNOLOGY
  doi: 10.1039/c9cy00938h
– volume: 128
  start-page: 11036
  year: 2006
  ident: WOS:000239932500027
  article-title: Catalytic diboration of aldehydes via insertion into the copper-boron bond
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/ja064019z
– volume: 58
  start-page: 11058
  year: 2019
  ident: WOS:000478635100050
  article-title: Catalytic Synthesis of Potassium Acyltrifluoroborates (KATs) through Chemoselective Cross-Coupling with a Bifunctional Reagent
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.201904576
– volume: 126
  start-page: 7734
  year: 2014
  ident: 000592451500001.25
  publication-title: Angew. Chem.
– volume: 4
  start-page: 1699
  year: 2014
  ident: WOS:000336158700025
  article-title: Regioselective transformation of alkynes catalyzed by a copper hydride or boryl copper species
  publication-title: CATALYSIS SCIENCE & TECHNOLOGY
  doi: 10.1039/c4cy00070f
– volume: 20
  start-page: 2378
  year: 2018
  ident: WOS:000430898200058
  article-title: One-Step Synthesis of Aliphatic Potassium Acyltrifluoroborates (KATs) from Organocuprates
  publication-title: ORGANIC LETTERS
  doi: 10.1021/acs.orglett.8b00720
– volume: 56
  start-page: 15257
  year: 2017
  ident: WOS:000416126600009
  article-title: Direct Access to MIDA Acylboronates through Mild Oxidation of MIDA Vinylboronates
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.201707125
– volume: 75
  start-page: 4304
  year: 2010
  ident: WOS:000278560700043
  article-title: Synthesis of an Acyltrifluoroborate and Its Fusion with Azides To Form Amides
  publication-title: JOURNAL OF ORGANIC CHEMISTRY
  doi: 10.1021/jo1004058
– volume: 40
  start-page: 303
  year: 2007
  ident: WOS:000247563300001
  article-title: Radicals masquerading as electrophiles: Dual orbital effects in nitrogen-philic acyl radical cyclization and related addition reactions
  publication-title: ACCOUNTS OF CHEMICAL RESEARCH
  doi: 10.1021/ar600015v
– volume: 47
  start-page: 1563
  year: 2014
  ident: WOS:000336415700012
  article-title: Carbonylation Reactions of Alkyl Iodides through the Interplay of Carbon Radicals and Pd Catalysts
  publication-title: ACCOUNTS OF CHEMICAL RESEARCH
  doi: 10.1021/ar500035q
– volume: 129
  start-page: 15459
  year: 2017
  ident: 000592451500001.33
  publication-title: Angew. Chem.
– volume: 2
  start-page: 65
  year: 1969
  ident: WOS:A1969D758400001
  article-title: ORGANOBORANE-CARBON MONOXIDE REACTIONS . A NEW VERSATILE APPROACH TO SYNTHESIS OF CARBON STRUCTURES
  publication-title: ACCOUNTS OF CHEMICAL RESEARCH
– volume: 14
  start-page: 16
  year: 2016
  ident: WOS:000366861800001
  article-title: Synthesis and reactivities of monofluoro acylboronates in chemoselective amide bond forming ligation with hydroxylamines
  publication-title: ORGANIC & BIOMOLECULAR CHEMISTRY
  doi: 10.1039/c5ob02118a
– volume: 1
  year: 2011
  ident: 000592451500001.1
  publication-title: Boronic Acids: Preparation and Applications in Organic Synthesis Medicine and Materials
– volume: 127
  start-page: 14365
  year: 2015
  ident: 000592451500001.42
  publication-title: Angew. Chem.
– volume: 89
  start-page: 2738
  year: 1967
  ident: WOS:A19679381000043
  article-title: REACTION OF CARBON MONOXIDE AT ATMOSPHERIC PRESSURE WITH TRIALKYLBORANES IN PRESENCE OF WATER . A CONVENIENT SYNTHESIS OF DIALKYLKETONES VIA HYDROBORATION
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
– volume: 14
  start-page: 890
  year: 2012
  ident: WOS:000300458200057
  article-title: Copper(I)-Catalyzed Boryl Substitution of Unactivated Alkyl Halides
  publication-title: ORGANIC LETTERS
  doi: 10.1021/ol203413w
– volume: 54
  start-page: 14159
  year: 2015
  ident: WOS:000367722500060
  article-title: Catalytic Borylation using an Air-Stable Zinc Boryl Reagent: Systematic Access to Elusive Acylboranes
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.201507627
– volume: 131
  start-page: 7377
  year: 2019
  ident: 000592451500001.37
  publication-title: Angew. Chem.
– volume: 130
  start-page: 5969
  year: 2018
  ident: 000592451500001.54
  publication-title: Angew. Chem.
– volume: 126
  start-page: 1136
  year: 2014
  ident: 000592451500001.46
  publication-title: Angew. Chem.
– volume: 7
  start-page: 1137
  year: 2020
  ident: WOS:000532340500008
  article-title: The origin of regioselectivity in Cu-catalyzed hydrocarbonylative coupling of alkynes with alkyl halides
  publication-title: ORGANIC CHEMISTRY FRONTIERS
  doi: 10.1039/d0qo00214c
– volume: 89
  start-page: 2737
  year: 1967
  ident: WOS:A19679381000042
  article-title: REACTION OF CARBON MONOXIDE AT ATMOSPHERIC PRESSURE WITH TRIALKYLBORANES . A CONVENIENT SYNTHESIS OF TRIALKYLCARBINOLS VIA HYDROBORATION
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
– volume: 142
  start-page: 80
  year: 2020
  ident: WOS:000507144400014
  article-title: Cu-Catalyzed Carbonylative Silylation of Alkyl Halides: Efficient Access to Acylsilanes
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/jacs.9b12043
– volume: 57
  start-page: 10328
  year: 2018
  ident: WOS:000440135700055
  article-title: Copper-Catalyzed Borocarbonylative Coupling of Internal Alkynes with Unactivated Alkyl Halides: Modular Synthesis of Tetrasubstituted beta-Borylenones
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.201804883
– volume: 132
  start-page: 16993
  year: 2020
  ident: 000592451500001.7
  publication-title: Angew. Chem.
– volume: 8
  start-page: 2878
  year: 2017
  ident: WOS:000397560500047
  article-title: Synthesis and stabilities of peptide-based [1]rotaxanes: molecular grafting onto lasso peptide scaffolds
  publication-title: CHEMICAL SCIENCE
  doi: 10.1039/c7sc00021a
– volume: 5
  start-page: 5373
  year: 2015
  ident: WOS:000361089700046
  article-title: Amphoteric alpha-Boryl Aldehyde Linchpins in the Synthesis of Heterocycles
  publication-title: ACS CATALYSIS
  doi: 10.1021/acscatal.5b00790
– volume: 21
  start-page: 10106
  year: 2019
  ident: WOS:000504805500062
  article-title: Synergistic Copper-Catalyzed Reductive.Aminocarbonylation of Alkyl Iodides with Nitroarenes
  publication-title: ORGANIC LETTERS
  doi: 10.1021/acs.orglett.9b04092
– volume: 131
  start-page: 11174
  year: 2019
  ident: 000592451500001.44
  publication-title: Angew. Chem.
– volume: 51
  start-page: 9594
  year: 2015
  ident: WOS:000355558700001
  article-title: sp(2)-sp(3) diboranes: astounding structural variability and mild sources of nucleophilic boron for organic synthesis
  publication-title: CHEMICAL COMMUNICATIONS
  doi: 10.1039/c5cc02316e
– volume: 124
  start-page: 11254
  year: 2012
  ident: 000592451500001.28
  publication-title: Angew. Chem.
– volume: 131
  start-page: 13922
  year: 2019
  ident: 000592451500001.40
  publication-title: Angew. Chem.
– volume: 13
  start-page: 5163
  year: 1994
  ident: WOS:A1994PW70000069
  article-title: EVIDENCE FOR THE FORMATION OF ACYLBORONATE INTERMEDIATES IN THE CARBONYLATION REACTIONS OF ORGANOBORANES
  publication-title: ORGANOMETALLICS
– volume: 18
  start-page: 5336
  year: 2016
  ident: WOS:000386187300038
  article-title: Synthesis of Bifunctional Potassium Acyltrifluoroborates
  publication-title: ORGANIC LETTERS
  doi: 10.1021/acs.orglett.6b02652
– volume: 49
  start-page: 8036
  year: 2020
  ident: WOS:000590395000004
  article-title: C-C and C-X coupling reactions of unactivated alkyl electrophiles using copper catalysis
  publication-title: CHEMICAL SOCIETY REVIEWS
  doi: 10.1039/d0cs00316f
– volume: 84
  start-page: 4715
  year: 1962
  ident: WOS:A19623088B00041
  article-title: CARBONYLATION OF ORGANOBORANES .1. CARBONYLATION OF TRIALKYLBORANES - A NOVEL SYNTHESIS OF TRIALKYLCARBINOLS
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
– volume: 53
  start-page: 7604
  year: 2014
  ident: WOS:000339564800036
  article-title: A Reagent for the One-Step Preparation of Potassium Acyltrifluoroborates (KATs) from Aryl- and Heteroarylhalides
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.201403931
– volume: 21
  start-page: 7082
  year: 2015
  ident: WOS:000353348100019
  article-title: Synthesis, Structure, and Reactivity of Anionic sp(2)-sp(3) Diboron Compounds: Readily Accessible Boryl Nucleophiles
  publication-title: CHEMISTRY-A EUROPEAN JOURNAL
  doi: 10.1002/chem.201500235
– volume: 59
  start-page: 16847
  year: 2020
  ident: WOS:000550441400001
  article-title: Synthesis of Acylboron Compounds
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.202005050
– volume: 51
  start-page: 528
  year: 2012
  ident: WOS:000298792100037
  article-title: Alkylboronic Esters from Copper-Catalyzed Borylation of Primary and Secondary Alkyl Halides and Pseudohalides
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.201106299
– volume: 11
  start-page: 7609
  year: 2020
  ident: WOS:000555670200006
  article-title: Synthesis of secondary and tertiary amides without coupling agents from amines and potassium acyltrifluoroborates (KATs)
  publication-title: CHEMICAL SCIENCE
  doi: 10.1039/d0sc01330g
– volume: 15
  start-page: 1738
  year: 2017
  ident: WOS:000395884000001
  article-title: Acylboranes: synthetic strategies and applications
  publication-title: ORGANIC & BIOMOLECULAR CHEMISTRY
  doi: 10.1039/c6ob02425d
SSID ssj0028806
Score 2.4958262
Snippet A copper‐catalyzed carbonylative borylation of unactivated alkyl halides has been developed, enabling efficient synthesis of aliphatic potassium...
A copper-catalyzed carbonylative borylation of unactivated alkyl halides has been developed, enabling efficient synthesis of aliphatic potassium...
Source Web of Science
SourceID proquest
pubmed
webofscience
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2094
SubjectTerms acylboron
B2pin2
carbonylative borylation
Carbonyls
Chemical synthesis
Chemistry
Chemistry, Multidisciplinary
Copper
Copper compounds
Functional groups
Halides
Intermediates
KATs
Physical Sciences
Potassium
Science & Technology
Title One‐Step Synthesis of Acylboron Compounds via Copper‐Catalyzed Carbonylative Borylation of Alkyl Halides
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202012373
http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestApp=WOS&DestLinkType=FullRecord&UT=000592451500001
https://www.ncbi.nlm.nih.gov/pubmed/33090619
https://www.proquest.com/docview/2478444843
https://www.proquest.com/docview/2453689135
Volume 60
WOS 000592451500001
WOSCitedRecordID wos000592451500001
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEB5KLu2l74eTtKgQ6EmJLUuyfdyahG2hKbQp5Gb0MoQY77LeLTin_IT-xv6SavxqNqW0tEehhxl5RvokzXwDcKCZiHmiHNWRTSh3saWpMhnVlksjSp3GJUYjfziV8y_8_bk4vxHF3_NDTBduaBndeo0GrnRz9JM0FCOw_fmOIShIkO4THbYQFX2a-KOYV84-vCiOKWahH1kbQ3a03X17V_oFat7albaBbLcTnTwANcrQO6BcHm7W-tBc3aJ3_B8hH8L9AaaSWa9Xj-COqx_D3XzMDvcEqo-1-379DZ3EyOe29jCyuWjIoiQz01YaaREILjWYtKkhXy-ULy2XbuW75Hhh1F45S3K10ugY33GPk7eLVds75nXDVJdtReb-lGBd8xTOTo7P8jkdMjdQw_2CRVPh0lCVVmknstRgNGzkOEbxSuXPwaXU3FmJzDKKJ1zEUiYeK-hUCq4i5-JnsFMvavcCiDIaESYTTnrwqYTSOmKRxZBem5nQBkDHH1eYgdUck2tURc_HzAqcwmKawgDeTO2XPZ_Hb1vuj3pQDHbdFIwnKfcnWu6rX0_VfurxmUXVbrHBNl4gfP0VATzv9Wf6VByHmUdQWQAHNxVqqu_4cvwAkeieXQKI_qZZPgiONAbrAFinUX8Qr5idvjueSrv_0mkP7jH08AkjysQ-7KxXG_fSQ7S1ftWZ4Q8SGDK8
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BOZQL5VkCBYxUiZPbxI88jktotYV2kWCRuEV27EhVo-xqs4u0PfUn8Bv5JXjygi1CIDhafkTjzNif7ZlvAPY1k1xEylIdmIgKyw2NVZ5QbUSYy0LHvMBo5LNJOP4k3n6WvTchxsK0_BDDhRtaRrNeo4HjhfThD9ZQDMF2BzyGqCDiN-EWpvXGJAZvPgwMUsypZxtgxDnFPPQ9b6PPDjf7b-5Lv4DNa_vSJpRt9qLjHdC9FK0LysXBaqkP8strBI__JeZduNMhVTJqVese3LDVfdhO-wRxD6B8X9lvV1_RT4x8XFcOSdbnNZkVZJSvS43MCARXG8zbVJMv58qV5nO7cF1SvDNaX1pDUrXQ6Bvf0I-T17PFuvXNa4YpL9YlGbuDgrH1Q5geH03TMe2SN9BcuDWLxtLGviqM0lYmcY4BsYEVGMgbKncULkItrAmRXEaJSEgehpGDCzoOpVCBtfwRbFWzyj4GonKNIJNJGzr8qaTSOmCBwahek-S-8YD2fy7LO2JzzK9RZi0lM8twCrNhCj14NbSft5Qev2251ytC1pl2nTERxcIdaoWrfjlUu6nHlxZV2dkK2ziB8AFYerDbKtDwKc79xIGoxIP9nzVqqG8oc9wAgWxeXjwI_qZZ2gmOTAZLD1ijUn8QLxtNTo6G0pN_6fQCtsfTs9Ps9GTy7incZujw4weUyT3YWi5W9plDbEv9vLHJ7ybPNtY
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BkYBLeUOggJEqcXKbOLaTHJfQ1ZbHgqBIvUV27EhVo-xqH5XSEz-B38gvwZMX3SIEgqPlRzTOjP3ZnvkGYFczEfJIWaoDE1FuQ0NjlSdUGy5zUeg4LDAa-f1UTr7wN8fi-EIUf8sPMVy4oWU06zUa-NwU-z9JQzEC253vGIKCKLwK17h0FoOw6NNAIMWcdrbxRWFIMQ19T9vos_3N_pvb0i9Y89K2tIlkm61ofAtUL0TrgXK6t17pvfz8Er_j_0h5G7Y7nEpGrWLdgSu2ugs30j493D0oP1T2-9dv6CVGPteVw5HLkyWZFWSU16VGXgSCaw1mbVqSsxPlSvO5XbguKd4Y1efWkFQtNHrGN-Tj5NVsUbeeec0w5Wldkok7Jhi7vA9H44OjdEK71A00527ForGwsa8Ko7QVSZxjOGxgOYbxSuUOwoXU3BqJ1DKKR1yEUkYOLOhYCq4Ca8MHsFXNKvsIiMo1QkwmrHToUwmldcACgzG9Jsl94wHtf1yWd7TmmF2jzFpCZpbhFGbDFHrwcmg_bwk9fttyp9eDrDPsZcZ4FHN3pOWu-sVQ7aYe31lUZWdrbOMEwudf4cHDVn-GT4WhnzgIlXiwe1GhhvqGMMcNEIjm3cWD4G-apZ3gyGOw8oA1GvUH8bLR9PBgKD3-l07P4frH1-Ps3eH07RO4ydDbxw8oEzuwtVqs7VMH11b6WWORPwBu_zWO
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=One%E2%80%90Step+Synthesis+of+Acylboron+Compounds+via+Copper%E2%80%90Catalyzed+Carbonylative+Borylation+of+Alkyl+Halides&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Cheng%2C+Li%E2%80%90Jie&rft.au=Zhao%2C+Siling&rft.au=Mankad%2C+Neal+P.&rft.date=2021-01-25&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=60&rft.issue=4&rft.spage=2094&rft.epage=2098&rft_id=info:doi/10.1002%2Fanie.202012373&rft.externalDBID=10.1002%252Fanie.202012373&rft.externalDocID=ANIE202012373
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon