One‐Step Synthesis of Acylboron Compounds via Copper‐Catalyzed Carbonylative Borylation of Alkyl Halides
A copper‐catalyzed carbonylative borylation of unactivated alkyl halides has been developed, enabling efficient synthesis of aliphatic potassium acyltrifluoroborates (KATs) in high yields by treating the in situ formed tetracoordinated acylboron intermediates with aqueous KHF2. A variety of function...
Saved in:
Published in | Angewandte Chemie International Edition Vol. 60; no. 4; pp. 2094 - 2098 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
WEINHEIM
Wiley
25.01.2021
Wiley Subscription Services, Inc |
Edition | International ed. in English |
Subjects | |
Online Access | Get full text |
ISSN | 1433-7851 1521-3773 1521-3773 |
DOI | 10.1002/anie.202012373 |
Cover
Loading…
Abstract | A copper‐catalyzed carbonylative borylation of unactivated alkyl halides has been developed, enabling efficient synthesis of aliphatic potassium acyltrifluoroborates (KATs) in high yields by treating the in situ formed tetracoordinated acylboron intermediates with aqueous KHF2. A variety of functional groups are tolerated under the mild reaction conditions, and primary, secondary, and tertiary alkyl halides are all applicable. In addition, this method also provides facile access to N‐methyliminodiacetyl (MIDA) acylboronates as well as α‐methylated potassium acyltrifluoroborates in a one‐pot manner. Mechanistic studies indicate a radical atom transfer carbonylation (ATC) mechanism to form acyl halide intermediates that are subsequently borylated by (NHC)CuBpin.
A copper‐catalyzed carbonylative borylation of unactivated alkyl halides enables one‐step synthesis of acylborons which can be further transformed into potassium acyltrifluoroborates (KATs) as well as N‐methyliminodiacetyl (MIDA) acylboronate in a one‐pot manner. |
---|---|
AbstractList | A copper‐catalyzed carbonylative borylation of unactivated alkyl halides has been developed, enabling efficient synthesis of aliphatic potassium acyltrifluoroborates (KATs) in high yields by treating the in situ formed tetracoordinated acylboron intermediates with aqueous KHF
2
. A variety of functional groups are tolerated under the mild reaction conditions, and primary, secondary, and tertiary alkyl halides are all applicable. In addition, this method also provides facile access to
N
‐methyliminodiacetyl (MIDA) acylboronates as well as α‐methylated potassium acyltrifluoroborates in a one‐pot manner. Mechanistic studies indicate a radical atom transfer carbonylation (ATC) mechanism to form acyl halide intermediates that are subsequently borylated by (NHC)CuBpin. A copper‐catalyzed carbonylative borylation of unactivated alkyl halides has been developed, enabling efficient synthesis of aliphatic potassium acyltrifluoroborates (KATs) in high yields by treating the in situ formed tetracoordinated acylboron intermediates with aqueous KHF2. A variety of functional groups are tolerated under the mild reaction conditions, and primary, secondary, and tertiary alkyl halides are all applicable. In addition, this method also provides facile access to N‐methyliminodiacetyl (MIDA) acylboronates as well as α‐methylated potassium acyltrifluoroborates in a one‐pot manner. Mechanistic studies indicate a radical atom transfer carbonylation (ATC) mechanism to form acyl halide intermediates that are subsequently borylated by (NHC)CuBpin. A copper-catalyzed carbonylative borylation of unactivated alkyl halides has been developed, enabling efficient synthesis of aliphatic potassium acyltrifluoroborates (KATs) in high yields by treating the in situ formed tetracoordinated acylboron intermediates with aqueous KHF . A variety of functional groups are tolerated under the mild reaction conditions, and primary, secondary, and tertiary alkyl halides are all applicable. In addition, this method also provides facile access to N-methyliminodiacetyl (MIDA) acylboronates as well as α-methylated potassium acyltrifluoroborates in a one-pot manner. Mechanistic studies indicate a radical atom transfer carbonylation (ATC) mechanism to form acyl halide intermediates that are subsequently borylated by (NHC)CuBpin. A copper‐catalyzed carbonylative borylation of unactivated alkyl halides has been developed, enabling efficient synthesis of aliphatic potassium acyltrifluoroborates (KATs) in high yields by treating the in situ formed tetracoordinated acylboron intermediates with aqueous KHF2. A variety of functional groups are tolerated under the mild reaction conditions, and primary, secondary, and tertiary alkyl halides are all applicable. In addition, this method also provides facile access to N‐methyliminodiacetyl (MIDA) acylboronates as well as α‐methylated potassium acyltrifluoroborates in a one‐pot manner. Mechanistic studies indicate a radical atom transfer carbonylation (ATC) mechanism to form acyl halide intermediates that are subsequently borylated by (NHC)CuBpin. A copper‐catalyzed carbonylative borylation of unactivated alkyl halides enables one‐step synthesis of acylborons which can be further transformed into potassium acyltrifluoroborates (KATs) as well as N‐methyliminodiacetyl (MIDA) acylboronate in a one‐pot manner. A copper-catalyzed carbonylative borylation of unactivated alkyl halides has been developed, enabling efficient synthesis of aliphatic potassium acyltrifluoroborates (KATs) in high yields by treating the in situ formed tetracoordinated acylboron intermediates with aqueous KHF2. A variety of functional groups are tolerated under the mild reaction conditions, and primary, secondary, and tertiary alkyl halides are all applicable. In addition, this method also provides facile access to N-methyliminodiacetyl (MIDA) acylboronates as well as alpha-methylated potassium acyltrifluoroborates in a one-pot manner. Mechanistic studies indicate a radical atom transfer carbonylation (ATC) mechanism to form acyl halide intermediates that are subsequently borylated by (NHC)CuBpin. A copper-catalyzed carbonylative borylation of unactivated alkyl halides has been developed, enabling efficient synthesis of aliphatic potassium acyltrifluoroborates (KATs) in high yields by treating the in situ formed tetracoordinated acylboron intermediates with aqueous KHF2 . A variety of functional groups are tolerated under the mild reaction conditions, and primary, secondary, and tertiary alkyl halides are all applicable. In addition, this method also provides facile access to N-methyliminodiacetyl (MIDA) acylboronates as well as α-methylated potassium acyltrifluoroborates in a one-pot manner. Mechanistic studies indicate a radical atom transfer carbonylation (ATC) mechanism to form acyl halide intermediates that are subsequently borylated by (NHC)CuBpin.A copper-catalyzed carbonylative borylation of unactivated alkyl halides has been developed, enabling efficient synthesis of aliphatic potassium acyltrifluoroborates (KATs) in high yields by treating the in situ formed tetracoordinated acylboron intermediates with aqueous KHF2 . A variety of functional groups are tolerated under the mild reaction conditions, and primary, secondary, and tertiary alkyl halides are all applicable. In addition, this method also provides facile access to N-methyliminodiacetyl (MIDA) acylboronates as well as α-methylated potassium acyltrifluoroborates in a one-pot manner. Mechanistic studies indicate a radical atom transfer carbonylation (ATC) mechanism to form acyl halide intermediates that are subsequently borylated by (NHC)CuBpin. |
Author | Zhao, Siling Mankad, Neal P. Cheng, Li‐Jie |
Author_xml | – sequence: 1 givenname: Li‐Jie orcidid: 0000-0002-3272-3276 surname: Cheng fullname: Cheng, Li‐Jie organization: University of Illinois at Chicago – sequence: 2 givenname: Siling surname: Zhao fullname: Zhao, Siling organization: University of Illinois at Chicago – sequence: 3 givenname: Neal P. orcidid: 0000-0001-6923-5164 surname: Mankad fullname: Mankad, Neal P. email: npm@uic.edu organization: University of Illinois at Chicago |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33090619$$D View this record in MEDLINE/PubMed |
BookMark | eNqNks1u1DAQgC1U1J9trxxRJC5IKIt_Y-e4jQqtVNFDe4-cZCJcvHawk6Jw4hF4Rp4Eb3fZSpUQnDyWvm9mNDMn6MB5Bwi9InhJMKbvtTOwpJhiQplkL9AxEZTkTEp2kGLOWC6VIEfoJMb7xCuFi0N0xBgucUHKY2RvHPz68fN2hCG7nd34GaKJme-zVTvbxgfvssqvBz-5LmYPRqffMEBISqVHbefv0GWVDo13s9WjeYDs3IfHMJmbNPbLbLNLbU0H8RS97LWNcLZ7F-juw8VddZlf33y8qlbXectlwXIlQGHdd7oBUaqWC6UIcEVLWWhMZV80HLpCMEE1l1ywopCY8kYVgmsCwBbo7TbtEPzXCeJYr01swVrtwE-xphtHlYSJhL55ht77KbjUXKKk4pyrNMMFer2jpmYNXT0Es9Zhrv-MMQHvtsA3aHwfWwOuhT2GMRZlKkpEijBJtPp_ujLj4zCrtIIxqcut2gYfY4B-rxFcbw6i3hxEvT-IJPBnQrtLOAZt7N-1cteisTD_o0i9-nR18eT-BuRvyP4 |
CitedBy_id | crossref_primary_10_1002_ange_202114513 crossref_primary_10_1021_acs_orglett_1c00305 crossref_primary_10_1021_jacs_1c07354 crossref_primary_10_1002_chem_202302235 crossref_primary_10_1021_acs_orglett_1c00742 crossref_primary_10_1039_D1SC00905B crossref_primary_10_1002_cjoc_202300346 crossref_primary_10_1002_anie_202102197 crossref_primary_10_1002_cjoc_202400694 crossref_primary_10_1021_acs_accounts_1c00115 crossref_primary_10_1039_D2QO01419J crossref_primary_10_1039_D3QO00158J crossref_primary_10_1021_jacs_3c01224 crossref_primary_10_1002_ange_202200062 crossref_primary_10_1021_acs_orglett_2c02305 crossref_primary_10_1021_acs_chemrev_1c00255 crossref_primary_10_1002_anie_202114513 crossref_primary_10_1007_s11426_023_1722_8 crossref_primary_10_1021_acs_orglett_4c00967 crossref_primary_10_1039_D1CC06377D crossref_primary_10_1016_j_ica_2024_122263 crossref_primary_10_1021_acs_orglett_3c03189 crossref_primary_10_5059_yukigoseikyokaishi_82_1052 crossref_primary_10_1002_ange_202102197 crossref_primary_10_1021_acs_joc_2c02746 crossref_primary_10_1002_anie_202200062 crossref_primary_10_6023_cjoc202102015 crossref_primary_10_1039_D2CC04893K crossref_primary_10_1021_acs_joc_2c02188 |
Cites_doi | 10.1021/jacs.7b05205 10.1039/C5CC02316E 10.1039/C6OB02425D 10.1002/anie.201206501 10.1039/D0QO00214C 10.1002/ange.201507627 10.1039/c4cy00070f 10.1002/ange.201201077 10.1002/tcr.201000029 10.1021/ja064019z 10.1021/acs.orglett.5b02741 10.1002/chem.201500235 10.1002/ange.201907349 10.1002/ange.201403931 10.1002/anie.201901748 10.1002/ange.202005050 10.1002/9783527639328 10.1021/jacs.9b12043 10.1021/ol300668m 10.1021/ol100468f 10.1002/ange.201206501 10.1021/ja00883a020 10.1002/anie.201507627 10.1002/anie.201904576 10.1002/chem.201300443 10.1002/ange.201801814 10.1002/chem.201803823 10.1002/ange.201804883 10.1002/anie.201403931 10.1002/ange.201307551 10.1021/acs.orglett.6b02652 10.1002/anie.201907349 10.1021/jacs.7b12582 10.1002/ange.201611006 10.1002/anie.201106299 10.1021/acs.chemrev.6b00366 10.1039/C5OB02118A 10.1021/ja073037t 10.1002/ange.201904576 10.1002/anie.201804883 10.1002/anie.201801814 10.1021/acscatal.6b02918 10.1021/ar600015v 10.1002/anie.201307551 10.1021/ja5018442 10.1039/C6OB02369J 10.1021/acscatal.5b00790 10.1002/anie.201201077 10.1021/ar500035q 10.1039/C7SC00021A 10.1002/anie.201611006 10.1002/anie.201707933 10.1021/acscatal.5b02973 10.1021/ol203413w 10.1021/acs.orglett.8b00720 10.1002/anie.201707125 10.1039/C9SC00378A 10.1021/ja00987a043 10.1039/D0CS00316F 10.1021/jacs.7b00059 10.1021/ja401492s 10.1021/ja00987a042 10.1002/ange.201106299 10.1021/jo1004058 10.1021/acs.orglett.9b01951 10.1021/ar50015a001 10.1002/chem.201405829 10.1021/om00024a069 10.1039/C9CY00938H 10.1021/acs.orglett.9b04092 10.1021/ja00890a033 10.1002/ange.201707125 10.1002/ange.201707933 10.1002/ange.201901748 10.1039/D0SC01330G 10.1002/anie.202005050 10.1039/c9sc00378a 10.1002/ANGE.201106299 10.1039/c6ob02369j 10.1039/c9cy00938h 10.1039/c5ob02118a 10.1039/d0qo00214c 10.1039/c7sc00021a 10.1039/c5cc02316e 10.1039/d0cs00316f 10.1039/d0sc01330g 10.1039/c6ob02425d |
ContentType | Journal Article |
Copyright | 2020 Wiley‐VCH GmbH 2020 Wiley-VCH GmbH. 2021 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2020 Wiley‐VCH GmbH – notice: 2020 Wiley-VCH GmbH. – notice: 2021 Wiley‐VCH GmbH |
DBID | AAYXX CITATION 17B 1KM 1KN BLEPL DTL EGQ HGBXW NPM 7TM K9. 7X8 |
DOI | 10.1002/anie.202012373 |
DatabaseName | CrossRef Web of Knowledge Index Chemicus Current Chemical Reactions Web of Science Core Collection Science Citation Index Expanded Web of Science Primary (SCIE, SSCI & AHCI) Web of Science - Science Citation Index Expanded - 2021 PubMed Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef Web of Science PubMed ProQuest Health & Medical Complete (Alumni) Nucleic Acids Abstracts MEDLINE - Academic |
DatabaseTitleList | CrossRef ProQuest Health & Medical Complete (Alumni) PubMed Web of Science MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 1KN name: Current Chemical Reactions url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/woscc/search-with-editions?editions=WOS.CCR sourceTypes: Enrichment Source Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3773 |
Edition | International ed. in English |
EndPage | 2098 |
ExternalDocumentID | 33090619 000592451500001 10_1002_anie_202012373 ANIE202012373 |
Genre | shortCommunication Research Support, U.S. Gov't, Non-P.H.S Journal Article |
GrantInformation_xml | – fundername: Division of Chemistry funderid: CHE-1664632 – fundername: NSF; National Science Foundation (NSF) grantid: CHE-1664632 |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABLJU ABPPZ ABPVW ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BTSUX BY8 CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES M53 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ TN5 UB1 UPT UQL V2E VQA W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XSW XV2 YZZ ZZTAW ~IA ~KM ~WT AAYXX ABDBF ABJNI AEYWJ AGHNM AGYGG CITATION 17B 1KM 1KN BLEPL DTL GROUPED_WOS_SCIENCE_CITATION_INDEX_EXPANDED GROUPED_WOS_WEB_OF_SCIENCE NPM 7TM K9. 7X8 |
ID | FETCH-LOGICAL-c4763-85e80afdabe598c45881e482976a027f6b4ed65352a47453667024b8654a1ee3 |
IEDL.DBID | DR2 |
ISICitedReferencesCount | 33 |
ISICitedReferencesURI | https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestApp=WOS&DestLinkType=CitingArticles&UT=000592451500001 |
ISSN | 1433-7851 1521-3773 |
IngestDate | Thu Jul 10 19:23:21 EDT 2025 Fri Jul 25 10:24:56 EDT 2025 Mon Jul 21 06:03:57 EDT 2025 Wed Jul 09 20:27:53 EDT 2025 Fri Aug 29 16:02:33 EDT 2025 Tue Jul 01 01:17:50 EDT 2025 Thu Apr 24 22:53:16 EDT 2025 Wed Jan 22 16:30:18 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | CONVENIENT SYNTHESIS TRIALKYLBORANES BORON Bpin carbonylative borylation CARBON MONOXIDE ORGANOBORANES KATs acylboron ACYLTRIFLUOROBORATE copper ATMOSPHERIC PRESSURE RADICALS DIBORATION CYCLIZATION B2pin2 |
Language | English |
License | 2020 Wiley-VCH GmbH. |
LinkModel | DirectLink |
LogoURL | https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg |
MergedId | FETCHMERGED-LOGICAL-c4763-85e80afdabe598c45881e482976a027f6b4ed65352a47453667024b8654a1ee3 |
Notes | https://doi.org/10.26434/chemrxiv.12818180.v1 . A previous version of this manuscript has been deposited on a preprint server ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-6923-5164 0000-0002-3272-3276 0000-0003-4977-8000 |
PMID | 33090619 |
PQID | 2478444843 |
PQPubID | 946352 |
PageCount | 5 |
ParticipantIDs | proquest_miscellaneous_2453689135 webofscience_primary_000592451500001 crossref_citationtrail_10_1002_anie_202012373 wiley_primary_10_1002_anie_202012373_ANIE202012373 proquest_journals_2478444843 pubmed_primary_33090619 webofscience_primary_000592451500001CitationCount crossref_primary_10_1002_anie_202012373 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 25, 2021 |
PublicationDateYYYYMMDD | 2021-01-25 |
PublicationDate_xml | – month: 01 year: 2021 text: January 25, 2021 day: 25 |
PublicationDecade | 2020 |
PublicationPlace | WEINHEIM |
PublicationPlace_xml | – name: WEINHEIM – name: Germany – name: Weinheim |
PublicationTitle | Angewandte Chemie International Edition |
PublicationTitleAbbrev | ANGEW CHEM INT EDIT |
PublicationTitleAlternate | Angew Chem Int Ed Engl |
PublicationYear | 2021 |
Publisher | Wiley Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley – name: Wiley Subscription Services, Inc |
References | 2014 2014; 53 126 2010; 12 2010; 10 2017; 8 2010; 75 2019; 9 2007; 129 2015; 17 2015; 5 2018; 140 2011 2020; 142 2015; 51 1963; 85 1967; 89 2019; 10 2020 2020; 59 132 2014; 47 2020; 11 2017 2017; 56 129 2012; 14 2016; 18 2018; 20 2016; 14 2014; 136 2019 2019; 58 131 2017; 139 2018; 24 2013; 19 2020; 7 2016; 6 2014; 4 2017; 15 1969; 2 2019; 21 2012 2012; 51 124 2018 2018; 57 130 2015; 21 2020; 49 2015 2015; 54 127 1994; 13 2013; 135 2016; 116 2007; 40 1962; 84 2006; 128 e_1_2_2_24_2 e_1_2_2_47_2 e_1_2_2_4_2 e_1_2_2_47_3 e_1_2_2_22_2 e_1_2_2_49_2 e_1_2_2_6_2 e_1_2_2_20_2 e_1_2_2_2_1 e_1_2_2_62_2 e_1_2_2_41_2 e_1_2_2_64_2 e_1_2_2_41_3 e_1_2_2_6_3 e_1_2_2_8_2 e_1_2_2_43_2 e_1_2_2_26_3 e_1_2_2_28_1 e_1_2_2_66_1 e_1_2_2_26_2 e_1_2_2_45_2 e_1_2_2_68_2 e_1_2_2_60_1 e_1_2_2_13_2 e_1_2_2_59_2 e_1_2_2_38_1 e_1_2_2_11_2 e_1_2_2_38_2 e_1_2_2_74_2 e_1_2_2_51_1 e_1_2_2_19_2 e_1_2_2_30_2 e_1_2_2_53_2 e_1_2_2_32_1 e_1_2_2_17_2 e_1_2_2_32_2 e_1_2_2_55_2 e_1_2_2_34_2 e_1_2_2_76_2 e_1_2_2_15_1 e_1_2_2_34_3 e_1_2_2_36_1 e_1_2_2_57_1 e_1_2_2_70_1 e_1_2_2_72_1 e_1_2_2_3_2 e_1_2_2_25_1 e_1_2_2_23_2 e_1_2_2_48_2 e_1_2_2_69_2 e_1_2_2_5_2 e_1_2_2_48_3 e_1_2_2_7_1 e_1_2_2_21_1 e_1_2_2_1_1 e_1_2_2_40_1 e_1_2_2_61_3 e_1_2_2_61_2 e_1_2_2_29_3 e_1_2_2_65_1 e_1_2_2_29_2 e_1_2_2_42_2 e_1_2_2_63_2 e_1_2_2_44_1 e_1_2_2_67_1 e_1_2_2_27_2 e_1_2_2_9_2 e_1_2_2_46_2 e_1_2_2_14_1 e_1_2_2_35_3 e_1_2_2_37_1 e_1_2_2_12_2 e_1_2_2_37_2 e_1_2_2_58_2 e_1_2_2_39_1 e_1_2_2_10_2 e_1_2_2_39_2 e_1_2_2_50_2 e_1_2_2_75_2 e_1_2_2_73_1 e_1_2_2_18_2 e_1_2_2_31_2 e_1_2_2_52_2 e_1_2_2_16_3 e_1_2_2_31_3 e_1_2_2_33_1 e_1_2_2_16_2 e_1_2_2_54_2 e_1_2_2_77_1 e_1_2_2_35_2 e_1_2_2_56_2 e_1_2_2_71_1 BROWN, HC (WOS:A1969D758400001) 1969; 2 (000592451500001.35) 2017; 129 Adachi, S (WOS:000365462900021) 2015; 17 Liu, SZM (WOS:000386187300038) 2016; 18 YANG CT (WOS:000592451500001.65) 2012; 124 (000592451500001.40) 2019; 131 Saito, F (WOS:000397560500047) 2017; 8 Dumas, AM (WOS:000304814000030) 2012; 51 Scharnagl, FK (WOS:000395884000001) 2017; 15 Laitar, DS (WOS:000239932500027) 2006; 128 Cheng, LJ (WOS:000507144400014) 2020; 142 Sumino, S (WOS:000336415700012) 2014; 47 Dumas, AM (WOS:000302990100048) 2012; 14 (000592451500001.52) 2018; 130 (000592451500001.28) 2012; 124 Liu, SN (WOS:000532340500008) 2020; 7 Cheng, LJ (WOS:000590395000004) 2020; 49 Wu, D (WOS:000550441400001) 2020; 59 Kubota, K (WOS:000393128700002) 2017; 15 He, Z (WOS:000310479300027) 2012; 51 (000592451500001.42) 2015; 127 St Denis, JD (WOS:000361089700046) 2015; 5 Wu, D (WOS:000478635100050) 2019; 58 McIntosh, ML (WOS:000277212800027) 2010; 12 Cheng, LJ (WOS:000423496700045) 2018; 140 Schiesser, CH (WOS:000247563300001) 2007; 40 Taguchi, J (WOS:000474803100018) 2019; 58 (000592451500001.46) 2014; 126 Dewhurst, RD (WOS:000355558700001) 2015; 51 Cheng, LJ (WOS:000440135700055) 2018; 57 Zhao, SL (WOS:000504805500062) 2019; 21 Zhao, SL (WOS:000431488200052) 2018; 57 Suginome, M (WOS:000284057700011) 2010; 10 Semba, K (WOS:000319139400027) 2013; 19 Bose, SK (WOS:000389399400037) 2016; 6 Yoshida, H (WOS:000371755500050) 2016; 6 HILLMAN, MED (WOS:A19623088B00041) 1962; 84 Ito, H (WOS:000300458200057) 2012; 14 KABALKA, GW (WOS:A1994PW70000069) 1994; 13 Liu, QY (WOS:000485089300004) 2019; 21 Sajid, M (WOS:000329879500038) 2014; 53 Lin, SJ (WOS:000465940700013) 2019; 10 Liu, ZB (WOS:000350762400012) 2015; 21 Eros, G (WOS:000339564800036) 2014; 53 (000592451500001.7) 2020; 132 (000592451500001.25) 2014; 126 Jordan, AJ (WOS:000381332000002) 2016; 116 Lepage, ML (WOS:000416126600009) 2017; 56 Tan, DH (WOS:000482406400001) 2019; 58 Hall, D.G. (000592451500001.2) 2011; 2 Molander, GA (WOS:000278560700043) 2010; 75 Campos, J (WOS:000367722500060) 2015; 54 Pietsch, S (WOS:000353348100019) 2015; 21 (000592451500001.44) 2019; 131 HILLMAN, MED (WOS:A19633116B00022) 1963; 85 Schuhmacher, A (WOS:000555670200006) 2020; 11 (000592451500001.31) 2017; 129 Dobrovetsky, R (WOS:000317259300019) 2013; 135 Radius, M (WOS:000448057800004) 2018; 24 Noda, H (WOS:000366861800001) 2016; 14 BROWN, HC (WOS:A19679381000042) 1967; 89 Galvez, AO (WOS:000393848400030) 2017; 139 Hall, D. G. (000592451500001.1) 2011; 1 Noda, H (WOS:000334657600022) 2014; 136 (000592451500001.54) 2018; 130 Cheng, LJ (WOS:000407089500009) 2017; 139 Liu, SZM (WOS:000430898200058) 2018; 20 DUMAS AM (WOS:000592451500001.16) 2012; 124 Fujihara, T (WOS:000336158700025) 2014; 4 Taguchi, J (WOS:000413314800057) 2017; 56 (000592451500001.33) 2017; 129 (000592451500001.37) 2019; 131 BROWN, HC (WOS:A19679381000043) 1967; 89 Yang, CT (WOS:000298792100037) 2012; 51 Lee, CF (WOS:000401326300047) 2017; 56 Zhao, SL (WOS:000475507500002) 2019; 9 Yamashita, M (WOS:000248484400019) 2007; 129 |
References_xml | – year: 2011 – volume: 51 124 start-page: 528 543 year: 2012 2012 end-page: 532 547 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 10 start-page: 348 year: 2010 end-page: 358 publication-title: Chem. Rec. – volume: 6 start-page: 1799 year: 2016 end-page: 1811 publication-title: ACS Catal. – volume: 14 start-page: 16 year: 2016 end-page: 20 publication-title: Org. Biomol. Chem. – volume: 57 130 start-page: 10328 10485 year: 2018 2018 end-page: 10332 10489 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 20 start-page: 2378 year: 2018 end-page: 2381 publication-title: Org. Lett. – volume: 139 start-page: 10200 year: 2017 end-page: 10203 publication-title: J. Am. Chem. Soc. – volume: 56 129 start-page: 15257 15459 year: 2017 2017 end-page: 15261 15463 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 14 start-page: 890 year: 2012 end-page: 893 publication-title: Org. Lett. – volume: 58 131 start-page: 11058 11174 year: 2019 2019 end-page: 11062 11178 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 51 124 start-page: 5683 5781 year: 2012 2012 end-page: 5686 5784 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 89 start-page: 2737 year: 1967 end-page: 2738 publication-title: J. Am. Chem. Soc. – volume: 51 124 start-page: 11092 11254 year: 2012 2012 end-page: 11096 11258 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 75 start-page: 4304 year: 2010 end-page: 4306 publication-title: J. Org. Chem. – volume: 135 start-page: 4974 year: 2013 end-page: 4977 publication-title: J. Am. Chem. Soc. – volume: 40 start-page: 303 year: 2007 end-page: 313 publication-title: Acc. Chem. Res. – volume: 129 start-page: 9570 year: 2007 end-page: 9571 publication-title: J. Am. Chem. Soc. – volume: 84 start-page: 4715 year: 1962 end-page: 4720 publication-title: J. Am. Chem. Soc. – volume: 15 start-page: 1738 year: 2017 end-page: 1752 publication-title: Org. Biomol. Chem. – volume: 13 start-page: 5163 year: 1994 end-page: 5165 publication-title: Organometallics – volume: 18 start-page: 5336 year: 2016 end-page: 5339 publication-title: Org. Lett. – volume: 58 131 start-page: 7299 7377 year: 2019 2019 end-page: 7303 7381 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 58 131 start-page: 13784 13922 year: 2019 2019 end-page: 13788 13926 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 5 start-page: 5373 year: 2015 end-page: 5379 publication-title: ACS Catal. – volume: 136 start-page: 5611 year: 2014 end-page: 5614 publication-title: J. Am. Chem. Soc. – volume: 140 start-page: 1159 year: 2018 end-page: 1164 publication-title: J. Am. Chem. Soc. – volume: 9 start-page: 3603 year: 2019 end-page: 3613 publication-title: Catal. Sci. Technol. – volume: 59 132 start-page: 16847 16993 year: 2020 2020 end-page: 16858 17004 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 21 start-page: 3924 year: 2015 end-page: 3928 publication-title: Chem. Eur. J. – volume: 57 130 start-page: 5867 5969 year: 2018 2018 end-page: 5870 5972 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 54 127 start-page: 14159 14365 year: 2015 2015 end-page: 14163 14369 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 49 start-page: 8036 year: 2020 end-page: 8064 publication-title: Chem. Soc. Rev. – volume: 85 start-page: 982 year: 1963 end-page: 984 publication-title: J. Am. Chem. Soc. – volume: 21 start-page: 7082 year: 2015 end-page: 7099 publication-title: Chem. Eur. J. – volume: 139 start-page: 1826 year: 2017 end-page: 1829 publication-title: J. Am. Chem. Soc. – volume: 6 start-page: 8332 year: 2016 end-page: 8335 publication-title: ACS Catal. – volume: 10 start-page: 4684 year: 2019 end-page: 4691 publication-title: Chem. Sci. – volume: 53 126 start-page: 1118 1136 year: 2014 2014 end-page: 1121 1139 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 21 start-page: 6597 year: 2019 end-page: 6602 publication-title: Org. Lett. – volume: 19 start-page: 7125 year: 2013 end-page: 7132 publication-title: Chem. Eur. J. – volume: 12 start-page: 1996 year: 2010 end-page: 1999 publication-title: Org. Lett. – volume: 89 start-page: 2738 year: 1967 end-page: 2740 publication-title: J. Am. Chem. Soc. – volume: 56 129 start-page: 6264 6360 year: 2017 2017 end-page: 6267 6363 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 56 129 start-page: 13847 14035 year: 2017 2017 end-page: 13851 14039 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 24 start-page: 15744 year: 2018 end-page: 15749 publication-title: Chem. Eur. J. – volume: 2 start-page: 65 year: 1969 end-page: 72 publication-title: Acc. Chem. Res. – volume: 17 start-page: 5594 year: 2015 end-page: 5597 publication-title: Org. Lett. – volume: 128 start-page: 11036 year: 2006 end-page: 11037 publication-title: J. Am. Chem. Soc. – volume: 53 126 start-page: 7604 7734 year: 2014 2014 end-page: 7607 7737 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 142 start-page: 80 year: 2020 end-page: 84 publication-title: J. Am. Chem. Soc. – volume: 14 start-page: 2138 year: 2012 end-page: 2141 publication-title: Org. Lett. – volume: 11 start-page: 7609 year: 2020 end-page: 7614 publication-title: Chem. Sci. – volume: 8 start-page: 2878 year: 2017 end-page: 2884 publication-title: Chem. Sci. – volume: 47 start-page: 1563 year: 2014 end-page: 1574 publication-title: Acc. Chem. Res. – volume: 4 start-page: 1699 year: 2014 end-page: 1709 publication-title: Catal. Sci. Technol. – volume: 21 start-page: 10106 year: 2019 end-page: 10110 publication-title: Org. Lett. – volume: 15 start-page: 285 year: 2017 end-page: 300 publication-title: Org. Biomol. Chem. – volume: 7 start-page: 1137 year: 2020 end-page: 1148 publication-title: Org. Chem. Front. – volume: 116 start-page: 8318 year: 2016 end-page: 8372 publication-title: Chem. Rev. – volume: 51 start-page: 9594 year: 2015 end-page: 9607 publication-title: Chem. Commun. – ident: e_1_2_2_45_2 doi: 10.1021/jacs.7b05205 – ident: e_1_2_2_69_2 doi: 10.1039/C5CC02316E – ident: e_1_2_2_5_2 doi: 10.1039/C6OB02425D – ident: e_1_2_2_29_2 doi: 10.1002/anie.201206501 – ident: e_1_2_2_40_1 – ident: e_1_2_2_77_1 doi: 10.1039/D0QO00214C – ident: e_1_2_2_38_2 doi: 10.1002/ange.201507627 – ident: e_1_2_2_52_2 doi: 10.1039/c4cy00070f – ident: e_1_2_2_16_3 doi: 10.1002/ange.201201077 – ident: e_1_2_2_53_2 doi: 10.1002/tcr.201000029 – ident: e_1_2_2_58_2 doi: 10.1021/ja064019z – ident: e_1_2_2_30_2 doi: 10.1021/acs.orglett.5b02741 – ident: e_1_2_2_68_2 doi: 10.1002/chem.201500235 – ident: e_1_2_2_37_2 doi: 10.1002/ange.201907349 – ident: e_1_2_2_26_3 doi: 10.1002/ange.201403931 – ident: e_1_2_2_15_1 – ident: e_1_2_2_35_2 doi: 10.1002/anie.201901748 – ident: e_1_2_2_6_3 doi: 10.1002/ange.202005050 – ident: e_1_2_2_1_1 doi: 10.1002/9783527639328 – ident: e_1_2_2_49_2 doi: 10.1021/jacs.9b12043 – ident: e_1_2_2_28_1 – ident: e_1_2_2_23_2 doi: 10.1021/ol300668m – ident: e_1_2_2_59_2 doi: 10.1021/ol100468f – ident: e_1_2_2_25_1 – ident: e_1_2_2_29_3 doi: 10.1002/ange.201206501 – ident: e_1_2_2_8_2 doi: 10.1021/ja00883a020 – ident: e_1_2_2_38_1 doi: 10.1002/anie.201507627 – ident: e_1_2_2_39_1 doi: 10.1002/anie.201904576 – ident: e_1_2_2_33_1 – ident: e_1_2_2_72_1 doi: 10.1002/chem.201300443 – ident: e_1_2_2_48_3 doi: 10.1002/ange.201801814 – ident: e_1_2_2_43_2 doi: 10.1002/chem.201803823 – ident: e_1_2_2_47_3 doi: 10.1002/ange.201804883 – ident: e_1_2_2_26_2 doi: 10.1002/anie.201403931 – ident: e_1_2_2_41_3 doi: 10.1002/ange.201307551 – ident: e_1_2_2_24_2 doi: 10.1021/acs.orglett.6b02652 – ident: e_1_2_2_37_1 doi: 10.1002/anie.201907349 – ident: e_1_2_2_46_2 doi: 10.1021/jacs.7b12582 – ident: e_1_2_2_44_1 – ident: e_1_2_2_60_1 – ident: e_1_2_2_66_1 – ident: e_1_2_2_71_1 – ident: e_1_2_2_31_3 doi: 10.1002/ange.201611006 – ident: e_1_2_2_61_2 doi: 10.1002/anie.201106299 – ident: e_1_2_2_55_2 doi: 10.1021/acs.chemrev.6b00366 – ident: e_1_2_2_7_1 – ident: e_1_2_2_4_2 doi: 10.1039/C5OB02118A – ident: e_1_2_2_57_1 – ident: e_1_2_2_14_1 doi: 10.1021/ja073037t – ident: e_1_2_2_39_2 doi: 10.1002/ange.201904576 – ident: e_1_2_2_47_2 doi: 10.1002/anie.201804883 – ident: e_1_2_2_51_1 – ident: e_1_2_2_48_2 doi: 10.1002/anie.201801814 – ident: e_1_2_2_63_2 doi: 10.1021/acscatal.6b02918 – ident: e_1_2_2_74_2 doi: 10.1021/ar600015v – ident: e_1_2_2_41_2 doi: 10.1002/anie.201307551 – ident: e_1_2_2_17_2 doi: 10.1021/ja5018442 – ident: e_1_2_2_64_2 doi: 10.1039/C6OB02369J – ident: e_1_2_2_3_2 doi: 10.1021/acscatal.5b00790 – ident: e_1_2_2_16_2 doi: 10.1002/anie.201201077 – ident: e_1_2_2_73_1 – ident: e_1_2_2_75_2 doi: 10.1021/ar500035q – ident: e_1_2_2_19_2 doi: 10.1039/C7SC00021A – ident: e_1_2_2_31_2 doi: 10.1002/anie.201611006 – ident: e_1_2_2_34_2 doi: 10.1002/anie.201707933 – ident: e_1_2_2_54_2 doi: 10.1021/acscatal.5b02973 – ident: e_1_2_2_62_2 doi: 10.1021/ol203413w – ident: e_1_2_2_27_2 doi: 10.1021/acs.orglett.8b00720 – ident: e_1_2_2_32_1 doi: 10.1002/anie.201707125 – ident: e_1_2_2_36_1 doi: 10.1039/C9SC00378A – ident: e_1_2_2_12_2 doi: 10.1021/ja00987a043 – ident: e_1_2_2_56_2 doi: 10.1039/D0CS00316F – ident: e_1_2_2_18_2 doi: 10.1021/jacs.7b00059 – ident: e_1_2_2_42_2 doi: 10.1021/ja401492s – ident: e_1_2_2_11_2 doi: 10.1021/ja00987a042 – ident: e_1_2_2_61_3 doi: 10.1002/ange.201106299 – ident: e_1_2_2_22_2 doi: 10.1021/jo1004058 – ident: e_1_2_2_67_1 – ident: e_1_2_2_65_1 doi: 10.1021/acs.orglett.9b01951 – ident: e_1_2_2_10_2 doi: 10.1021/ar50015a001 – ident: e_1_2_2_70_1 doi: 10.1002/chem.201405829 – ident: e_1_2_2_2_1 – ident: e_1_2_2_13_2 doi: 10.1021/om00024a069 – ident: e_1_2_2_76_2 doi: 10.1039/C9CY00938H – ident: e_1_2_2_50_2 doi: 10.1021/acs.orglett.9b04092 – ident: e_1_2_2_9_2 doi: 10.1021/ja00890a033 – ident: e_1_2_2_21_1 – ident: e_1_2_2_32_2 doi: 10.1002/ange.201707125 – ident: e_1_2_2_34_3 doi: 10.1002/ange.201707933 – ident: e_1_2_2_35_3 doi: 10.1002/ange.201901748 – ident: e_1_2_2_20_2 doi: 10.1039/D0SC01330G – ident: e_1_2_2_6_2 doi: 10.1002/anie.202005050 – volume: 85 start-page: 982 year: 1963 ident: WOS:A19633116B00022 article-title: CARBONYLATION OF ORGANOBORANES .2. CARBONYLATION OF TRIALKYLBORANES IN PRESENCE OF GLYCOLS publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY – volume: 21 start-page: 3924 year: 2015 ident: WOS:000350762400012 article-title: From Minutes to Years: Predicting Organotrifluoroborate Solvolysis Rates publication-title: CHEMISTRY-A EUROPEAN JOURNAL doi: 10.1002/chem.201405829 – volume: 19 start-page: 7125 year: 2013 ident: WOS:000319139400027 article-title: Highly Selective Copper-Catalyzed Hydroboration of Allenes and 1,3-Dienes publication-title: CHEMISTRY-A EUROPEAN JOURNAL doi: 10.1002/chem.201300443 – volume: 53 start-page: 1118 year: 2014 ident: WOS:000329879500038 article-title: Formylborane Formation with Frustrated Lewis Pair Templates publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.201307551 – volume: 24 start-page: 15744 year: 2018 ident: WOS:000448057800004 article-title: alpha-Borylated Phosphorus Ylides (alpha-BCPs): Electronic Frustration within a C-B pi-Bond Arising from the Competition for a Lone Pair of Electrons publication-title: CHEMISTRY-A EUROPEAN JOURNAL doi: 10.1002/chem.201803823 – volume: 21 start-page: 6597 year: 2019 ident: WOS:000485089300004 article-title: Transition-Metal-Free Borylation of Alkyl Iodides via a Radical Mechanism publication-title: ORGANIC LETTERS doi: 10.1021/acs.orglett.9b01951 – volume: 124 start-page: 5781 year: 2012 ident: WOS:000592451500001.16 publication-title: ANGEW CHEM – volume: 6 start-page: 8332 year: 2016 ident: WOS:000389399400037 article-title: Highly Efficient Synthesis of Alkylboronate Esters via Cu(II)-Catalyzed Borylation of Unactivated Alkyl Bromides and Chlorides in Air publication-title: ACS CATALYSIS doi: 10.1021/acscatal.6b02918 – volume: 12 start-page: 1996 year: 2010 ident: WOS:000277212800027 article-title: Copper-Catalyzed Diboration of Ketones: Facile Synthesis of Tertiary alpha-Hydroxyboronate Esters publication-title: ORGANIC LETTERS doi: 10.1021/ol100468f – volume: 6 start-page: 1799 year: 2016 ident: WOS:000371755500050 article-title: Borylation of Alkynes under Base/Coinage Metal Catalysis: Some Recent Developments publication-title: ACS CATALYSIS doi: 10.1021/acscatal.5b02973 – volume: 129 start-page: 14035 year: 2017 ident: 000592451500001.35 publication-title: Angew. Chem. – volume: 10 start-page: 348 year: 2010 ident: WOS:000284057700011 article-title: Catalytic Carboborations publication-title: CHEMICAL RECORD doi: 10.1002/tcr.201000029 – volume: 56 start-page: 6264 year: 2017 ident: WOS:000401326300047 article-title: Oxalyl Boronates Enable Modular Synthesis of Bioactive Imidazoles publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.201611006 – volume: 135 start-page: 4974 year: 2013 ident: WOS:000317259300019 article-title: Stoichiometric Metal-Free Reduction of CO in Syn-Gas publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/ja401492s – volume: 129 start-page: 9570 year: 2007 ident: WOS:000248484400019 article-title: Synthesis, structure of borylmagnesium, and its reaction with benzaldehyde to form benzoylborane publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/ja073037t – volume: 14 start-page: 2138 year: 2012 ident: WOS:000302990100048 article-title: Synthesis of Acyltrifluoroborates publication-title: ORGANIC LETTERS doi: 10.1021/ol300668m – volume: 57 start-page: 5867 year: 2018 ident: WOS:000431488200052 article-title: Cu-Catalyzed Hydroxymethylation of Unactivated Alkyl Iodides with CO To Provide One-Carbon-Extended Alcohols publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.201801814 – volume: 136 start-page: 5611 year: 2014 ident: WOS:000334657600022 article-title: Rapid Ligations with Equimolar Reactants in Water with the Potassium Acyltrifluoroborate (KAT) Amide Formation publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/ja5018442 – volume: 10 start-page: 4684 year: 2019 ident: WOS:000465940700013 article-title: A modular and concise approach to MIDA acylboronates via chemoselective oxidation of unsymmetrical geminal diborylalkanes: unlocking access to a novel class of acylborons publication-title: CHEMICAL SCIENCE doi: 10.1039/c9sc00378a – volume: 51 start-page: 11092 year: 2012 ident: WOS:000310479300027 article-title: Oxidative Geminal Functionalization of Organoboron Compounds publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.201206501 – volume: 116 start-page: 8318 year: 2016 ident: WOS:000381332000002 article-title: Coinage Metal Hydrides: Synthesis, Characterization, and Reactivity publication-title: CHEMICAL REVIEWS doi: 10.1021/acs.chemrev.6b00366 – volume: 58 start-page: 7299 year: 2019 ident: WOS:000474803100018 article-title: Concise Synthesis of Potassium Acyltrifluoroborates from Aldehydes through Copper(I)-Catalyzed Borylation/Oxidation publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.201901748 – volume: 139 start-page: 1826 year: 2017 ident: WOS:000393848400030 article-title: Chemoselective Acylation of Primary Amines and Amides with Potassium Acyltrifluoroborates under Acidic Conditions publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/jacs.7b00059 – volume: 130 start-page: 10485 year: 2018 ident: 000592451500001.52 publication-title: Angew. Chem. – volume: 58 start-page: 13784 year: 2019 ident: WOS:000482406400001 article-title: Diversity-Oriented Synthesis of alpha-Functionalized Acylborons and Borylated Heteroarenes by Nucleophilic Ring Opening of alpha-Chloroepoxyboronates publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.201907349 – volume: 140 start-page: 1159 year: 2018 ident: WOS:000423496700045 article-title: Synthesis of Allylic Alcohols via Cu-Catalyzed Hydrocarbonylative Coupling of Alkynes with Alkyl Halides publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/jacs.7b12582 – volume: 2 year: 2011 ident: 000592451500001.2 publication-title: Preparation and Applications in Organic Synthesis Medicine and Materials – volume: 139 start-page: 10200 year: 2017 ident: WOS:000407089500009 article-title: Cu-Catalyzed Hydrocarbonylative C-C Coupling of Terminal Alkynes with Alkyl Iodides publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/jacs.7b05205 – volume: 124 start-page: 543 year: 2012 ident: WOS:000592451500001.65 publication-title: ANGEW CHEM doi: 10.1002/ANGE.201106299 – volume: 17 start-page: 5594 year: 2015 ident: WOS:000365462900021 article-title: Condensation-Driven Assembly of Boron-Containing Bis(Heteroaryl) Motifs Using a Linchpin Approach publication-title: ORGANIC LETTERS doi: 10.1021/acs.orglett.5b02741 – volume: 129 start-page: 6360 year: 2017 ident: 000592451500001.31 publication-title: Angew. Chem. – volume: 15 start-page: 285 year: 2017 ident: WOS:000393128700002 article-title: Formal nucleophilic borylation and borylative cyclization of organic halides publication-title: ORGANIC & BIOMOLECULAR CHEMISTRY doi: 10.1039/c6ob02369j – volume: 51 start-page: 5683 year: 2012 ident: WOS:000304814000030 article-title: Amide-Forming Ligation of Acyltrifluoroborates and Hydroxylamines in Water publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.201201077 – volume: 56 start-page: 13847 year: 2017 ident: WOS:000413314800057 article-title: Synthesis of Acylborons by Ozonolysis of Alkenylboronates: Preparation of an Enantioenriched Amino Acid Acylboronate publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.201707933 – volume: 9 start-page: 3603 year: 2019 ident: WOS:000475507500002 article-title: Metal-catalysed radical carbonylation reactions publication-title: CATALYSIS SCIENCE & TECHNOLOGY doi: 10.1039/c9cy00938h – volume: 128 start-page: 11036 year: 2006 ident: WOS:000239932500027 article-title: Catalytic diboration of aldehydes via insertion into the copper-boron bond publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/ja064019z – volume: 58 start-page: 11058 year: 2019 ident: WOS:000478635100050 article-title: Catalytic Synthesis of Potassium Acyltrifluoroborates (KATs) through Chemoselective Cross-Coupling with a Bifunctional Reagent publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.201904576 – volume: 126 start-page: 7734 year: 2014 ident: 000592451500001.25 publication-title: Angew. Chem. – volume: 4 start-page: 1699 year: 2014 ident: WOS:000336158700025 article-title: Regioselective transformation of alkynes catalyzed by a copper hydride or boryl copper species publication-title: CATALYSIS SCIENCE & TECHNOLOGY doi: 10.1039/c4cy00070f – volume: 20 start-page: 2378 year: 2018 ident: WOS:000430898200058 article-title: One-Step Synthesis of Aliphatic Potassium Acyltrifluoroborates (KATs) from Organocuprates publication-title: ORGANIC LETTERS doi: 10.1021/acs.orglett.8b00720 – volume: 56 start-page: 15257 year: 2017 ident: WOS:000416126600009 article-title: Direct Access to MIDA Acylboronates through Mild Oxidation of MIDA Vinylboronates publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.201707125 – volume: 75 start-page: 4304 year: 2010 ident: WOS:000278560700043 article-title: Synthesis of an Acyltrifluoroborate and Its Fusion with Azides To Form Amides publication-title: JOURNAL OF ORGANIC CHEMISTRY doi: 10.1021/jo1004058 – volume: 40 start-page: 303 year: 2007 ident: WOS:000247563300001 article-title: Radicals masquerading as electrophiles: Dual orbital effects in nitrogen-philic acyl radical cyclization and related addition reactions publication-title: ACCOUNTS OF CHEMICAL RESEARCH doi: 10.1021/ar600015v – volume: 47 start-page: 1563 year: 2014 ident: WOS:000336415700012 article-title: Carbonylation Reactions of Alkyl Iodides through the Interplay of Carbon Radicals and Pd Catalysts publication-title: ACCOUNTS OF CHEMICAL RESEARCH doi: 10.1021/ar500035q – volume: 129 start-page: 15459 year: 2017 ident: 000592451500001.33 publication-title: Angew. Chem. – volume: 2 start-page: 65 year: 1969 ident: WOS:A1969D758400001 article-title: ORGANOBORANE-CARBON MONOXIDE REACTIONS . A NEW VERSATILE APPROACH TO SYNTHESIS OF CARBON STRUCTURES publication-title: ACCOUNTS OF CHEMICAL RESEARCH – volume: 14 start-page: 16 year: 2016 ident: WOS:000366861800001 article-title: Synthesis and reactivities of monofluoro acylboronates in chemoselective amide bond forming ligation with hydroxylamines publication-title: ORGANIC & BIOMOLECULAR CHEMISTRY doi: 10.1039/c5ob02118a – volume: 1 year: 2011 ident: 000592451500001.1 publication-title: Boronic Acids: Preparation and Applications in Organic Synthesis Medicine and Materials – volume: 127 start-page: 14365 year: 2015 ident: 000592451500001.42 publication-title: Angew. Chem. – volume: 89 start-page: 2738 year: 1967 ident: WOS:A19679381000043 article-title: REACTION OF CARBON MONOXIDE AT ATMOSPHERIC PRESSURE WITH TRIALKYLBORANES IN PRESENCE OF WATER . A CONVENIENT SYNTHESIS OF DIALKYLKETONES VIA HYDROBORATION publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY – volume: 14 start-page: 890 year: 2012 ident: WOS:000300458200057 article-title: Copper(I)-Catalyzed Boryl Substitution of Unactivated Alkyl Halides publication-title: ORGANIC LETTERS doi: 10.1021/ol203413w – volume: 54 start-page: 14159 year: 2015 ident: WOS:000367722500060 article-title: Catalytic Borylation using an Air-Stable Zinc Boryl Reagent: Systematic Access to Elusive Acylboranes publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.201507627 – volume: 131 start-page: 7377 year: 2019 ident: 000592451500001.37 publication-title: Angew. Chem. – volume: 130 start-page: 5969 year: 2018 ident: 000592451500001.54 publication-title: Angew. Chem. – volume: 126 start-page: 1136 year: 2014 ident: 000592451500001.46 publication-title: Angew. Chem. – volume: 7 start-page: 1137 year: 2020 ident: WOS:000532340500008 article-title: The origin of regioselectivity in Cu-catalyzed hydrocarbonylative coupling of alkynes with alkyl halides publication-title: ORGANIC CHEMISTRY FRONTIERS doi: 10.1039/d0qo00214c – volume: 89 start-page: 2737 year: 1967 ident: WOS:A19679381000042 article-title: REACTION OF CARBON MONOXIDE AT ATMOSPHERIC PRESSURE WITH TRIALKYLBORANES . A CONVENIENT SYNTHESIS OF TRIALKYLCARBINOLS VIA HYDROBORATION publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY – volume: 142 start-page: 80 year: 2020 ident: WOS:000507144400014 article-title: Cu-Catalyzed Carbonylative Silylation of Alkyl Halides: Efficient Access to Acylsilanes publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/jacs.9b12043 – volume: 57 start-page: 10328 year: 2018 ident: WOS:000440135700055 article-title: Copper-Catalyzed Borocarbonylative Coupling of Internal Alkynes with Unactivated Alkyl Halides: Modular Synthesis of Tetrasubstituted beta-Borylenones publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.201804883 – volume: 132 start-page: 16993 year: 2020 ident: 000592451500001.7 publication-title: Angew. Chem. – volume: 8 start-page: 2878 year: 2017 ident: WOS:000397560500047 article-title: Synthesis and stabilities of peptide-based [1]rotaxanes: molecular grafting onto lasso peptide scaffolds publication-title: CHEMICAL SCIENCE doi: 10.1039/c7sc00021a – volume: 5 start-page: 5373 year: 2015 ident: WOS:000361089700046 article-title: Amphoteric alpha-Boryl Aldehyde Linchpins in the Synthesis of Heterocycles publication-title: ACS CATALYSIS doi: 10.1021/acscatal.5b00790 – volume: 21 start-page: 10106 year: 2019 ident: WOS:000504805500062 article-title: Synergistic Copper-Catalyzed Reductive.Aminocarbonylation of Alkyl Iodides with Nitroarenes publication-title: ORGANIC LETTERS doi: 10.1021/acs.orglett.9b04092 – volume: 131 start-page: 11174 year: 2019 ident: 000592451500001.44 publication-title: Angew. Chem. – volume: 51 start-page: 9594 year: 2015 ident: WOS:000355558700001 article-title: sp(2)-sp(3) diboranes: astounding structural variability and mild sources of nucleophilic boron for organic synthesis publication-title: CHEMICAL COMMUNICATIONS doi: 10.1039/c5cc02316e – volume: 124 start-page: 11254 year: 2012 ident: 000592451500001.28 publication-title: Angew. Chem. – volume: 131 start-page: 13922 year: 2019 ident: 000592451500001.40 publication-title: Angew. Chem. – volume: 13 start-page: 5163 year: 1994 ident: WOS:A1994PW70000069 article-title: EVIDENCE FOR THE FORMATION OF ACYLBORONATE INTERMEDIATES IN THE CARBONYLATION REACTIONS OF ORGANOBORANES publication-title: ORGANOMETALLICS – volume: 18 start-page: 5336 year: 2016 ident: WOS:000386187300038 article-title: Synthesis of Bifunctional Potassium Acyltrifluoroborates publication-title: ORGANIC LETTERS doi: 10.1021/acs.orglett.6b02652 – volume: 49 start-page: 8036 year: 2020 ident: WOS:000590395000004 article-title: C-C and C-X coupling reactions of unactivated alkyl electrophiles using copper catalysis publication-title: CHEMICAL SOCIETY REVIEWS doi: 10.1039/d0cs00316f – volume: 84 start-page: 4715 year: 1962 ident: WOS:A19623088B00041 article-title: CARBONYLATION OF ORGANOBORANES .1. CARBONYLATION OF TRIALKYLBORANES - A NOVEL SYNTHESIS OF TRIALKYLCARBINOLS publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY – volume: 53 start-page: 7604 year: 2014 ident: WOS:000339564800036 article-title: A Reagent for the One-Step Preparation of Potassium Acyltrifluoroborates (KATs) from Aryl- and Heteroarylhalides publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.201403931 – volume: 21 start-page: 7082 year: 2015 ident: WOS:000353348100019 article-title: Synthesis, Structure, and Reactivity of Anionic sp(2)-sp(3) Diboron Compounds: Readily Accessible Boryl Nucleophiles publication-title: CHEMISTRY-A EUROPEAN JOURNAL doi: 10.1002/chem.201500235 – volume: 59 start-page: 16847 year: 2020 ident: WOS:000550441400001 article-title: Synthesis of Acylboron Compounds publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.202005050 – volume: 51 start-page: 528 year: 2012 ident: WOS:000298792100037 article-title: Alkylboronic Esters from Copper-Catalyzed Borylation of Primary and Secondary Alkyl Halides and Pseudohalides publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.201106299 – volume: 11 start-page: 7609 year: 2020 ident: WOS:000555670200006 article-title: Synthesis of secondary and tertiary amides without coupling agents from amines and potassium acyltrifluoroborates (KATs) publication-title: CHEMICAL SCIENCE doi: 10.1039/d0sc01330g – volume: 15 start-page: 1738 year: 2017 ident: WOS:000395884000001 article-title: Acylboranes: synthetic strategies and applications publication-title: ORGANIC & BIOMOLECULAR CHEMISTRY doi: 10.1039/c6ob02425d |
SSID | ssj0028806 |
Score | 2.4958262 |
Snippet | A copper‐catalyzed carbonylative borylation of unactivated alkyl halides has been developed, enabling efficient synthesis of aliphatic potassium... A copper-catalyzed carbonylative borylation of unactivated alkyl halides has been developed, enabling efficient synthesis of aliphatic potassium... |
Source | Web of Science |
SourceID | proquest pubmed webofscience crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2094 |
SubjectTerms | acylboron B2pin2 carbonylative borylation Carbonyls Chemical synthesis Chemistry Chemistry, Multidisciplinary Copper Copper compounds Functional groups Halides Intermediates KATs Physical Sciences Potassium Science & Technology |
Title | One‐Step Synthesis of Acylboron Compounds via Copper‐Catalyzed Carbonylative Borylation of Alkyl Halides |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202012373 http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestApp=WOS&DestLinkType=FullRecord&UT=000592451500001 https://www.ncbi.nlm.nih.gov/pubmed/33090619 https://www.proquest.com/docview/2478444843 https://www.proquest.com/docview/2453689135 |
Volume | 60 |
WOS | 000592451500001 |
WOSCitedRecordID | wos000592451500001 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEB5KLu2l74eTtKgQ6EmJLUuyfdyahG2hKbQp5Gb0MoQY77LeLTin_IT-xv6SavxqNqW0tEehhxl5RvokzXwDcKCZiHmiHNWRTSh3saWpMhnVlksjSp3GJUYjfziV8y_8_bk4vxHF3_NDTBduaBndeo0GrnRz9JM0FCOw_fmOIShIkO4THbYQFX2a-KOYV84-vCiOKWahH1kbQ3a03X17V_oFat7albaBbLcTnTwANcrQO6BcHm7W-tBc3aJ3_B8hH8L9AaaSWa9Xj-COqx_D3XzMDvcEqo-1-379DZ3EyOe29jCyuWjIoiQz01YaaREILjWYtKkhXy-ULy2XbuW75Hhh1F45S3K10ugY33GPk7eLVds75nXDVJdtReb-lGBd8xTOTo7P8jkdMjdQw_2CRVPh0lCVVmknstRgNGzkOEbxSuXPwaXU3FmJzDKKJ1zEUiYeK-hUCq4i5-JnsFMvavcCiDIaESYTTnrwqYTSOmKRxZBem5nQBkDHH1eYgdUck2tURc_HzAqcwmKawgDeTO2XPZ_Hb1vuj3pQDHbdFIwnKfcnWu6rX0_VfurxmUXVbrHBNl4gfP0VATzv9Wf6VByHmUdQWQAHNxVqqu_4cvwAkeieXQKI_qZZPgiONAbrAFinUX8Qr5idvjueSrv_0mkP7jH08AkjysQ-7KxXG_fSQ7S1ftWZ4Q8SGDK8 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BOZQL5VkCBYxUiZPbxI88jktotYV2kWCRuEV27EhVo-xqs4u0PfUn8Bv5JXjygi1CIDhafkTjzNif7ZlvAPY1k1xEylIdmIgKyw2NVZ5QbUSYy0LHvMBo5LNJOP4k3n6WvTchxsK0_BDDhRtaRrNeo4HjhfThD9ZQDMF2BzyGqCDiN-EWpvXGJAZvPgwMUsypZxtgxDnFPPQ9b6PPDjf7b-5Lv4DNa_vSJpRt9qLjHdC9FK0LysXBaqkP8strBI__JeZduNMhVTJqVese3LDVfdhO-wRxD6B8X9lvV1_RT4x8XFcOSdbnNZkVZJSvS43MCARXG8zbVJMv58qV5nO7cF1SvDNaX1pDUrXQ6Bvf0I-T17PFuvXNa4YpL9YlGbuDgrH1Q5geH03TMe2SN9BcuDWLxtLGviqM0lYmcY4BsYEVGMgbKncULkItrAmRXEaJSEgehpGDCzoOpVCBtfwRbFWzyj4GonKNIJNJGzr8qaTSOmCBwahek-S-8YD2fy7LO2JzzK9RZi0lM8twCrNhCj14NbSft5Qev2251ytC1pl2nTERxcIdaoWrfjlUu6nHlxZV2dkK2ziB8AFYerDbKtDwKc79xIGoxIP9nzVqqG8oc9wAgWxeXjwI_qZZ2gmOTAZLD1ijUn8QLxtNTo6G0pN_6fQCtsfTs9Ps9GTy7incZujw4weUyT3YWi5W9plDbEv9vLHJ7ybPNtY |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BkYBLeUOggJEqcXKbOLaTHJfQ1ZbHgqBIvUV27EhVo-xqH5XSEz-B38gvwZMX3SIEgqPlRzTOjP3ZnvkGYFczEfJIWaoDE1FuQ0NjlSdUGy5zUeg4LDAa-f1UTr7wN8fi-EIUf8sPMVy4oWU06zUa-NwU-z9JQzEC253vGIKCKLwK17h0FoOw6NNAIMWcdrbxRWFIMQ19T9vos_3N_pvb0i9Y89K2tIlkm61ofAtUL0TrgXK6t17pvfz8Er_j_0h5G7Y7nEpGrWLdgSu2ugs30j493D0oP1T2-9dv6CVGPteVw5HLkyWZFWSU16VGXgSCaw1mbVqSsxPlSvO5XbguKd4Y1efWkFQtNHrGN-Tj5NVsUbeeec0w5Wldkok7Jhi7vA9H44OjdEK71A00527ForGwsa8Ko7QVSZxjOGxgOYbxSuUOwoXU3BqJ1DKKR1yEUkYOLOhYCq4Ca8MHsFXNKvsIiMo1QkwmrHToUwmldcACgzG9Jsl94wHtf1yWd7TmmF2jzFpCZpbhFGbDFHrwcmg_bwk9fttyp9eDrDPsZcZ4FHN3pOWu-sVQ7aYe31lUZWdrbOMEwudf4cHDVn-GT4WhnzgIlXiwe1GhhvqGMMcNEIjm3cWD4G-apZ3gyGOw8oA1GvUH8bLR9PBgKD3-l07P4frH1-Ps3eH07RO4ydDbxw8oEzuwtVqs7VMH11b6WWORPwBu_zWO |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=One%E2%80%90Step+Synthesis+of+Acylboron+Compounds+via+Copper%E2%80%90Catalyzed+Carbonylative+Borylation+of+Alkyl+Halides&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Cheng%2C+Li%E2%80%90Jie&rft.au=Zhao%2C+Siling&rft.au=Mankad%2C+Neal+P.&rft.date=2021-01-25&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=60&rft.issue=4&rft.spage=2094&rft.epage=2098&rft_id=info:doi/10.1002%2Fanie.202012373&rft.externalDBID=10.1002%252Fanie.202012373&rft.externalDocID=ANIE202012373 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon |