Recent Advances in Porous Carbon Materials for Electrochemical Energy Storage

Climate change and the energy crisis have promoted the rapid development of electrochemical energy‐storage devices. Owing to many intriguing physicochemical properties, such as excellent chemical stability, high electronic conductivity, and a large specific surface area, porous carbon materials have...

Full description

Saved in:
Bibliographic Details
Published inChemistry, an Asian journal Vol. 13; no. 12; pp. 1518 - 1529
Main Authors Wang, Libin, Hu, Xianluo
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 18.06.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Climate change and the energy crisis have promoted the rapid development of electrochemical energy‐storage devices. Owing to many intriguing physicochemical properties, such as excellent chemical stability, high electronic conductivity, and a large specific surface area, porous carbon materials have always been considering as a promising candidate for electrochemical energy storage. To date, a wide variety of porous carbon materials based upon molecular design, pore control, and compositional tailoring have been proposed for energy‐storage applications. This focus review summarizes recent advances in the synthesis of various porous carbon materials from the view of energy storage, particularly in the past three years. Their applications in representative electrochemical energy‐storage devices, such as lithium‐ion batteries, supercapacitors, and lithium‐ion hybrid capacitors, are discussed in this review, with a look forward to offer some inspiration and guidelines for the exploitation of advanced carbon‐based energy‐storage materials. C, how versatile! Various porous carbon materials have been widely used as electrode materials in energy storage and transfer devices (see figure). Recent advances in the synthesis of porous carbon materials from the view of energy storage, particularly in the past three years, are summarized. Representative applications in lithium‐ion batteries, supercapacitors, and lithium‐ion hybrid capacitors are discussed.
AbstractList Climate change and the energy crisis have promoted the rapid development of electrochemical energy‐storage devices. Owing to many intriguing physicochemical properties, such as excellent chemical stability, high electronic conductivity, and a large specific surface area, porous carbon materials have always been considering as a promising candidate for electrochemical energy storage. To date, a wide variety of porous carbon materials based upon molecular design, pore control, and compositional tailoring have been proposed for energy‐storage applications. This focus review summarizes recent advances in the synthesis of various porous carbon materials from the view of energy storage, particularly in the past three years. Their applications in representative electrochemical energy‐storage devices, such as lithium‐ion batteries, supercapacitors, and lithium‐ion hybrid capacitors, are discussed in this review, with a look forward to offer some inspiration and guidelines for the exploitation of advanced carbon‐based energy‐storage materials.
Climate change and the energy crisis have promoted the rapid development of electrochemical energy‐storage devices. Owing to many intriguing physicochemical properties, such as excellent chemical stability, high electronic conductivity, and a large specific surface area, porous carbon materials have always been considering as a promising candidate for electrochemical energy storage. To date, a wide variety of porous carbon materials based upon molecular design, pore control, and compositional tailoring have been proposed for energy‐storage applications. This focus review summarizes recent advances in the synthesis of various porous carbon materials from the view of energy storage, particularly in the past three years. Their applications in representative electrochemical energy‐storage devices, such as lithium‐ion batteries, supercapacitors, and lithium‐ion hybrid capacitors, are discussed in this review, with a look forward to offer some inspiration and guidelines for the exploitation of advanced carbon‐based energy‐storage materials. C, how versatile! Various porous carbon materials have been widely used as electrode materials in energy storage and transfer devices (see figure). Recent advances in the synthesis of porous carbon materials from the view of energy storage, particularly in the past three years, are summarized. Representative applications in lithium‐ion batteries, supercapacitors, and lithium‐ion hybrid capacitors are discussed.
Climate change and the energy crisis have promoted the rapid development of electrochemical energy-storage devices. Owing to many intriguing physicochemical properties, such as excellent chemical stability, high electronic conductivity, and a large specific surface area, porous carbon materials have always been considering as a promising candidate for electrochemical energy storage. To date, a wide variety of porous carbon materials based upon molecular design, pore control, and compositional tailoring have been proposed for energy-storage applications. This focus review summarizes recent advances in the synthesis of various porous carbon materials from the view of energy storage, particularly in the past three years. Their applications in representative electrochemical energy-storage devices, such as lithium-ion batteries, supercapacitors, and lithium-ion hybrid capacitors, are discussed in this review, with a look forward to offer some inspiration and guidelines for the exploitation of advanced carbon-based energy-storage materials.Climate change and the energy crisis have promoted the rapid development of electrochemical energy-storage devices. Owing to many intriguing physicochemical properties, such as excellent chemical stability, high electronic conductivity, and a large specific surface area, porous carbon materials have always been considering as a promising candidate for electrochemical energy storage. To date, a wide variety of porous carbon materials based upon molecular design, pore control, and compositional tailoring have been proposed for energy-storage applications. This focus review summarizes recent advances in the synthesis of various porous carbon materials from the view of energy storage, particularly in the past three years. Their applications in representative electrochemical energy-storage devices, such as lithium-ion batteries, supercapacitors, and lithium-ion hybrid capacitors, are discussed in this review, with a look forward to offer some inspiration and guidelines for the exploitation of advanced carbon-based energy-storage materials.
The climate change and energy crisis promote the rapid development of electrochemical energy-storage devices. Of many intriguing physicochemical properties such as excellent chemical stability, high electronic conductivity and large specific surface area, porous carbon materials have always been considering as a promising candidate for electrochemical energy storage. Up to date, a wide variety of porous carbon materials upon molecular design, pore control and compositional tailoring have been proposed for energy-storage applications. This focus review summaries recent advances in the synthesis of various porous carbon materials from the view of energy storage, especially in the past three years. Their applications in representative electrochemical energy storage devices like lithium-ion batteries, supercapacitors, lithium-ion hybrid capacitors have been discussed in this review, looking forward to offering some inspirations and guidelines for the exploitation of advanced carbon-based energy-storage materials.
Author Hu, Xianluo
Wang, Libin
Author_xml – sequence: 1
  givenname: Libin
  surname: Wang
  fullname: Wang, Libin
  organization: Huazhong University of Science and Technology
– sequence: 2
  givenname: Xianluo
  orcidid: 0000-0002-5769-167X
  surname: Hu
  fullname: Hu, Xianluo
  email: huxl@mail.hust.edu.cn
  organization: Huazhong University of Science and Technology
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29667345$$D View this record in MEDLINE/PubMed
BookMark eNqF0UtLAzEUBeAgiu-tSwm4cdOaZCbJZFlKfYBF8QHuQiZzRyPTRJOp0n9vpFpBEFe5i-9cLjk7aN0HDwgdUDKkhLATk5wZMkIrQjgv1tA2rQQdlJI-rK9mVm2hnZSeM2FEVZtoiykhZFHybTS9AQu-x6PmzXgLCTuPr0MM84THJtbB46npITrTJdyGiCcd2D4G-wQzZ02HJx7i4wLf9iGaR9hDG22WsP_17qL708nd-HxweXV2MR5dDmwpRTFggje2Ng0pGK-kBcO5LJUgShW1YZxw0SjWKmsLxqAmrShZRnXJK6qs4rTYRcfLvS8xvM4h9XrmkoWuMx7y6ZoRJomQlVSZHv2iz2Eefb4uKy6pIIySrA6_1LyeQaNfopuZuNDfH5VBuQQ2hpQitNq63vQu-D4a12lK9Gcf-rMPveojx4a_Yt-b_wyoZeDddbD4R-vR7cXoJ_sBfyabfA
CitedBy_id crossref_primary_10_1002_celc_202100946
crossref_primary_10_1002_tcr_202200045
crossref_primary_10_1016_j_jelechem_2021_115522
crossref_primary_10_1016_j_mtchem_2023_101773
crossref_primary_10_1142_S0217979222502113
crossref_primary_10_1021_acssuschemeng_9b01261
crossref_primary_10_1016_j_ijhydene_2023_03_260
crossref_primary_10_1021_acs_jafc_2c01856
crossref_primary_10_1016_S1872_5805_23_60710_3
crossref_primary_10_3390_en14040979
crossref_primary_10_1016_j_indcrop_2020_113173
crossref_primary_10_1016_j_est_2022_104938
crossref_primary_10_1016_j_electacta_2021_138680
crossref_primary_10_1016_j_jaap_2024_106614
crossref_primary_10_1016_j_jelechem_2020_114668
crossref_primary_10_1007_s10853_023_08413_7
crossref_primary_10_1039_D0NJ00040J
crossref_primary_10_3390_molecules29092081
crossref_primary_10_1186_s40580_020_00251_6
crossref_primary_10_1002_slct_202401225
crossref_primary_10_4028_www_scientific_net_KEM_824_23
crossref_primary_10_1016_j_jmrt_2023_09_115
crossref_primary_10_1016_j_electacta_2018_09_034
crossref_primary_10_1007_s40089_021_00328_y
crossref_primary_10_1002_adsu_202200294
crossref_primary_10_1039_D4SU00009A
crossref_primary_10_1016_j_ijbiomac_2019_12_187
crossref_primary_10_1039_C9NA00719A
crossref_primary_10_3390_c5040084
crossref_primary_10_1016_j_jpowsour_2018_09_044
crossref_primary_10_3390_cryst13060912
crossref_primary_10_1002_advs_202105497
crossref_primary_10_1021_acsomega_3c00024
crossref_primary_10_1039_C9QM00062C
crossref_primary_10_1116_1_5095413
crossref_primary_10_1002_tcr_202300234
crossref_primary_10_3390_catal9020133
crossref_primary_10_1021_acsanm_1c03933
crossref_primary_10_1016_j_jcis_2020_03_092
crossref_primary_10_1016_j_diamond_2024_111921
crossref_primary_10_1021_acs_energyfuels_2c00077
crossref_primary_10_1021_acsami_4c19266
crossref_primary_10_1016_j_diamond_2022_109080
crossref_primary_10_3390_molecules28227665
crossref_primary_10_1039_D4TC00237G
crossref_primary_10_1149_2162_8777_acb8da
crossref_primary_10_1016_j_cej_2022_139691
crossref_primary_10_1016_j_jallcom_2020_153862
crossref_primary_10_1002_nano_202300114
crossref_primary_10_1016_j_apsusc_2019_143735
crossref_primary_10_1016_j_jpowsour_2023_233876
crossref_primary_10_1039_D1SC00095K
crossref_primary_10_1016_j_jallcom_2024_175234
crossref_primary_10_1002_slct_201900366
crossref_primary_10_1038_s41596_022_00718_2
crossref_primary_10_1016_j_materresbull_2018_12_035
crossref_primary_10_1016_j_carbon_2022_03_047
crossref_primary_10_1039_C8NR09557D
crossref_primary_10_1246_bcsj_20220245
crossref_primary_10_1016_j_jelechem_2021_115163
crossref_primary_10_1002_batt_202100169
crossref_primary_10_1002_macp_201900532
crossref_primary_10_1039_D4NR00401A
crossref_primary_10_1002_asia_202001216
crossref_primary_10_1002_cssc_201901519
crossref_primary_10_1007_s10854_021_05418_3
crossref_primary_10_3390_biology11030458
crossref_primary_10_1016_j_carbon_2020_06_001
crossref_primary_10_3390_molecules29163967
crossref_primary_10_1016_j_cej_2022_137292
crossref_primary_10_1021_acsnano_0c02731
crossref_primary_10_1088_2515_7639_ac4ee5
crossref_primary_10_1016_j_jpcs_2020_109447
crossref_primary_10_1002_bkcs_12145
crossref_primary_10_1016_j_apsusc_2020_148717
crossref_primary_10_1002_tcr_202400144
crossref_primary_10_1007_s10854_024_13254_4
crossref_primary_10_1007_s40097_021_00427_4
crossref_primary_10_1016_j_apsusc_2020_148565
crossref_primary_10_1007_s42823_023_00657_2
crossref_primary_10_1016_j_envadv_2022_100259
crossref_primary_10_1016_j_colsurfa_2024_134435
crossref_primary_10_1007_s12034_024_03393_z
crossref_primary_10_1039_D1CP03456A
crossref_primary_10_1016_j_est_2021_102496
crossref_primary_10_20964_2021_01_32
crossref_primary_10_1007_s40242_022_2030_0
crossref_primary_10_1016_j_apsusc_2022_155080
crossref_primary_10_1002_asia_202000747
crossref_primary_10_1016_j_jwpe_2024_106592
crossref_primary_10_1002_adma_201902670
crossref_primary_10_1016_j_ijbiomac_2022_08_026
crossref_primary_10_1021_acsami_1c05816
crossref_primary_10_1134_S0036024421010064
crossref_primary_10_1002_asia_202000106
crossref_primary_10_1021_acssensors_3c02383
crossref_primary_10_1039_D2GC02724K
crossref_primary_10_1016_j_pmatsci_2024_101408
crossref_primary_10_1016_j_est_2021_103176
crossref_primary_10_1039_D1TA09654K
crossref_primary_10_1016_j_ceramint_2024_08_369
crossref_primary_10_1007_s11581_018_2646_8
crossref_primary_10_1002_aoc_7227
crossref_primary_10_1002_tcr_202100124
crossref_primary_10_1021_acsaem_1c02051
crossref_primary_10_1007_s11581_021_04084_z
crossref_primary_10_1007_s42823_023_00635_8
crossref_primary_10_1016_j_nanoen_2020_104762
crossref_primary_10_1016_j_ijhydene_2021_02_017
crossref_primary_10_1007_s10853_023_08984_5
crossref_primary_10_1039_D1RA03446D
crossref_primary_10_1016_j_jclepro_2023_137956
crossref_primary_10_1016_j_ica_2019_02_034
crossref_primary_10_1021_acsmaterialslett_2c00672
crossref_primary_10_1016_j_diamond_2022_109164
crossref_primary_10_1002_adsu_202000169
Cites_doi 10.1021/jacs.7b04096
10.1039/C5TA01360G
10.1039/b813846j
10.1039/C4NR05878J
10.1038/ncomms8221
10.1016/j.electacta.2014.11.140
10.1126/science.1102896
10.1002/adfm.201403273
10.1016/j.cej.2017.03.081
10.1039/C4CS00071D
10.1021/acsami.7b15473
10.1039/C5TA08591H
10.1039/C2CS35369E
10.1002/aenm.201701110
10.1021/acsami.6b14440
10.1021/cr020730k
10.1016/j.nanoen.2015.03.001
10.1039/C5TA04721H
10.1002/adma.201501452
10.1039/C7TA07088H
10.1038/ncomms13432
10.1016/j.micromeso.2017.03.019
10.1016/j.nanoen.2015.10.038
10.1002/chem.201504672
10.1039/C6EE00158K
10.1002/aenm.201401761
10.1002/adma.201402322
10.1002/anie.201701252
10.1039/C7TA01362K
10.1016/j.mattod.2017.06.002
10.1002/aenm.201500959
10.1002/chem.201605019
10.1002/adma.201702093
10.1039/C7TA00940B
10.1021/cr5000915
10.1039/C6TA02570F
10.1002/anie.201708732
10.1038/nmat2297
10.1039/C7CS00315C
10.1016/j.nanoen.2015.03.027
10.1021/am506815f
10.1016/j.nanoen.2017.09.041
10.1039/C5NR04768D
10.1021/acs.chemmater.7b01947
10.1016/j.jpowsour.2015.11.006
10.1039/C6CS00426A
10.1039/C5EE01985K
10.1016/j.carbon.2015.02.054
10.1016/j.electacta.2014.12.169
10.1002/anie.201407629
10.1016/j.jpowsour.2014.12.102
10.1039/C6EE00815A
10.1016/j.carbon.2017.01.070
10.1039/C6SC04903F
10.1016/j.nanoen.2015.05.010
10.1021/acsnano.5b04821
10.1016/j.carbon.2016.10.025
10.1002/adma.201503816
10.1039/C6TA06337C
10.1039/C7CC07002K
10.1016/j.nanoen.2015.02.035
10.1126/science.aab3798
10.1016/j.micromeso.2017.05.044
10.1039/C4TA06614F
10.1002/adma.201604898
10.1002/ange.201407629
10.1039/C5EE03149D
10.1126/science.1132195
10.1002/smll.201702961
10.1002/adma.201604569
10.1002/aenm.201601111
10.1038/s41467-017-00575-8
10.1016/j.carbon.2015.05.040
10.1016/j.carbon.2017.02.057
10.1002/aenm.201702930
10.1016/j.electacta.2016.10.050
10.1021/acsami.7b07877
10.1016/j.nanoen.2015.11.038
10.1039/C6NJ02458K
10.1016/j.carbon.2017.07.062
10.1002/adfm.201002094
10.1016/j.nanoen.2016.04.037
10.1039/C2CS35353A
10.1039/C5EE03109E
10.1021/ar300253f
10.1016/j.jpowsour.2016.12.022
10.1039/c3ee41638k
10.1039/C6TA09229B
10.1002/adma.201603414
10.1021/ja511539a
10.1039/C7TA07010A
10.1002/aenm.201701336
10.1002/ange.201701252
10.1039/C4GC02185A
10.1038/srep18966
10.1002/ange.201708732
10.1002/adma.200902812
10.1016/j.carbon.2015.05.056
10.1016/j.carbon.2016.11.050
10.1002/aenm.201502539
10.1039/C4TA06022A
10.1021/acs.nanolett.5b00738
ContentType Journal Article
Copyright 2018 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim
2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Copyright_xml – notice: 2018 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
– notice: 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
DBID AAYXX
CITATION
NPM
K9.
7X8
DOI 10.1002/asia.201800553
DatabaseName CrossRef
PubMed
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitleList ProQuest Health & Medical Complete (Alumni)
CrossRef

MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1861-471X
EndPage 1529
ExternalDocumentID 29667345
10_1002_asia_201800553
ASIA201800553
Genre reviewArticle
Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 51772116; 51522205; 51472098
GroupedDBID ---
05W
0R~
1L6
1OC
29B
33P
3WU
4.4
5GY
6J9
8-1
87K
8UM
A00
AAESR
AAHQN
AAIHA
AAMNL
AANLZ
AASGY
AAXRX
AAYCA
AAZKR
ABCUV
ABDBF
ABIJN
ABJNI
ACAHQ
ACCZN
ACGFS
ACIWK
ACPOU
ACUHS
ACXBN
ACXQS
ADBBV
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEGXH
AEIGN
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFWVQ
AHBTC
AHMBA
AITYG
AIURR
ALMA_UNASSIGNED_HOLDINGS
ALVPJ
AMYDB
AZVAB
BDRZF
BFHJK
BMXJE
BRXPI
CS3
DCZOG
DRFUL
DRSTM
EBD
EBS
EJD
F5P
G-S
HBH
HGLYW
HHY
HHZ
HZ~
LATKE
LAW
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MXFUL
MXSTM
MY~
O66
O9-
OIG
P2W
P4E
PQQKQ
QRW
ROL
RWI
SUPJJ
WBKPD
WHG
WOHZO
WXSBR
WYJ
XSW
XV2
ZZTAW
~S-
AAYXX
AEYWJ
AGHNM
AGYGG
CITATION
NPM
K9.
7X8
ID FETCH-LOGICAL-c4763-265dcbad032587cea5574960993ba25056d92f9cc322eb0f642ceab45819c9513
ISSN 1861-4728
1861-471X
IngestDate Thu Jul 10 22:13:05 EDT 2025
Mon Jun 30 10:00:54 EDT 2025
Wed Feb 19 02:44:38 EST 2025
Thu Apr 24 23:02:05 EDT 2025
Tue Jul 01 02:15:25 EDT 2025
Wed Jan 22 16:45:19 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords porous carbon
lithium-ion batteries
hybrid capacitors
energy storage
supercapacitors
Language English
License 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c4763-265dcbad032587cea5574960993ba25056d92f9cc322eb0f642ceab45819c9513
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0002-5769-167X
PMID 29667345
PQID 2057160210
PQPubID 986338
PageCount 12
ParticipantIDs proquest_miscellaneous_2027067879
proquest_journals_2057160210
pubmed_primary_29667345
crossref_citationtrail_10_1002_asia_201800553
crossref_primary_10_1002_asia_201800553
wiley_primary_10_1002_asia_201800553_ASIA201800553
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate June 18, 2018
PublicationDateYYYYMMDD 2018-06-18
PublicationDate_xml – month: 06
  year: 2018
  text: June 18, 2018
  day: 18
PublicationDecade 2010
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Chemistry, an Asian journal
PublicationTitleAlternate Chem Asian J
PublicationYear 2018
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017; 5
2017; 7
2017; 41
2017; 8
2017; 46
2014; 26
2008; 7
2016; 303
2017; 111
2017; 113
2013; 6
2017; 9
2017; 115
2017; 116
2010; 22
2018; 8
2015; 137
2015 2015; 54 127
2011; 21
2017; 320
2017; 123
2017; 246
2015; 13
2017; 20
2015; 15
2015; 17
2015; 6
2004; 104
2015; 5
2016; 19
2015; 3
2015; 93
2015; 92
2013; 46
2013; 42
2017; 23
2017; 251
2017; 29
2017 2017; 56 129
2004; 306
2015; 9
2006; 313
2015; 8
2015; 7
2014; 114
2017; 139
2014; 43
2016; 4
2015; 350
2015; 152
2016; 6
2017; 53
2015; 25
2016; 7
2015; 27
2016; 219
2015; 157
2015; 278
2016; 20
2018
2017; 341
2018; 10
2009; 38
2016; 25
2016; 9
2018; 14
2016; 22
e_1_2_7_3_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_60_1
e_1_2_7_83_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_64_1
e_1_2_7_87_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_68_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_90_1
e_1_2_7_94_1
e_1_2_7_71_1
e_1_2_7_52_1
e_1_2_7_98_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_75_1
e_1_2_7_56_2
e_1_2_7_56_1
e_1_2_7_37_1
e_1_2_7_79_1
e_1_2_7_4_1
e_1_2_7_8_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_82_1
e_1_2_7_63_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_86_1
e_1_2_7_67_2
e_1_2_7_67_1
e_1_2_7_48_1
e_1_2_7_29_1
e_1_2_7_51_1
e_1_2_7_70_1
e_1_2_7_93_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_55_1
e_1_2_7_74_1
e_1_2_7_97_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_59_1
e_1_2_7_78_1
e_1_2_7_5_1
e_1_2_7_9_1
e_1_2_7_17_1
e_1_2_7_62_1
e_1_2_7_81_1
e_1_2_7_1_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_66_1
e_1_2_7_85_1
e_1_2_7_47_1
e_1_2_7_89_1
e_1_2_7_28_1
e_1_2_7_73_1
e_1_2_7_50_1
e_1_2_7_92_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_77_1
e_1_2_7_54_1
e_1_2_7_96_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_58_1
e_1_2_7_39_1
e_1_2_7_6_1
e_1_2_7_80_1
e_1_2_7_18_1
e_1_2_7_84_1
e_1_2_7_61_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_88_1
e_1_2_7_65_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_69_1
e_1_2_7_27_1
e_1_2_7_91_1
e_1_2_7_72_1
e_1_2_7_95_1
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_76_1
e_1_2_7_99_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_57_1
e_1_2_7_57_2
e_1_2_7_38_1
References_xml – volume: 9
  start-page: 102
  year: 2016
  end-page: 106
  publication-title: Energy Environ. Sci.
– volume: 313
  start-page: 1760
  year: 2006
  end-page: 1763
  publication-title: Science
– volume: 29
  start-page: 1702093
  year: 2017
  publication-title: Adv. Mater.
– volume: 3
  start-page: 9861
  year: 2015
  end-page: 9868
  publication-title: J. Mater. Chem. A
– volume: 93
  start-page: 412
  year: 2015
  end-page: 420
  publication-title: Carbon
– volume: 5
  start-page: 24502
  year: 2017
  end-page: 24507
  publication-title: J. Mater. Chem. A
– volume: 15
  start-page: 576
  year: 2015
  end-page: 586
  publication-title: Nano Energy
– volume: 6
  start-page: 1502539
  year: 2016
  publication-title: Adv. Energy Mater.
– volume: 7
  start-page: 845
  year: 2008
  end-page: 854
  publication-title: Nat. Mater.
– volume: 15
  start-page: 9
  year: 2015
  end-page: 23
  publication-title: Nano Energy
– volume: 8
  start-page: 2916
  year: 2015
  end-page: 2921
  publication-title: Energy Environ. Sci.
– volume: 4
  start-page: 11388
  year: 2016
  end-page: 11396
  publication-title: J. Mater. Chem. A
– volume: 3
  start-page: 18154
  year: 2015
  end-page: 18162
  publication-title: J. Mater. Chem. A
– volume: 7
  start-page: 17791
  year: 2015
  end-page: 17797
  publication-title: Nanoscale
– volume: 53
  start-page: 11690
  year: 2017
  end-page: 11693
  publication-title: Chem. Commun.
– volume: 5
  start-page: 1516
  year: 2017
  end-page: 1525
  publication-title: J. Mater. Chem. A
– volume: 115
  start-page: 754
  year: 2017
  end-page: 762
  publication-title: Carbon
– volume: 246
  start-page: 72
  year: 2017
  end-page: 80
  publication-title: Microporous Mesoporous Mater.
– volume: 25
  start-page: 193
  year: 2016
  end-page: 202
  publication-title: Nano Energy
– volume: 29
  start-page: 6058
  year: 2017
  end-page: 6065
  publication-title: Chem. Mater.
– volume: 5
  start-page: 23085
  year: 2017
  end-page: 23093
  publication-title: J. Mater. Chem. A
– volume: 8
  start-page: 482
  year: 2017
  publication-title: Nat. Commun.
– volume: 306
  start-page: 666
  year: 2004
  end-page: 669
  publication-title: Science
– volume: 303
  start-page: 372
  year: 2016
  end-page: 378
  publication-title: J. Power Sources
– volume: 350
  start-page: 1508
  year: 2015
  end-page: 1513
  publication-title: Science
– volume: 42
  start-page: 2610
  year: 2013
  end-page: 2653
  publication-title: Chem. Soc. Rev.
– volume: 56 129
  start-page: 8435 8555
  year: 2017 2017
  end-page: 8440 8560
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 56 129
  start-page: 13790 13978
  year: 2017 2017
  end-page: 13794 13982
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 26
  start-page: 6622
  year: 2014
  end-page: 6628
  publication-title: Adv. Mater.
– volume: 3
  start-page: 6534
  year: 2015
  end-page: 6541
  publication-title: J. Mater. Chem. A
– volume: 43
  start-page: 4341
  year: 2014
  end-page: 4356
  publication-title: Chem. Soc. Rev.
– volume: 6
  start-page: 1601111
  year: 2016
  publication-title: Adv. Energy Mater.
– volume: 5
  start-page: 7345
  year: 2017
  end-page: 7354
  publication-title: J. Mater. Chem. A
– volume: 46
  start-page: 5730
  year: 2017
  end-page: 5770
  publication-title: Chem. Soc. Rev.
– volume: 6
  start-page: 18966
  year: 2016
  publication-title: Sci. Rep.
– volume: 152
  start-page: 338
  year: 2015
  end-page: 344
  publication-title: Electrochim. Acta
– volume: 8
  start-page: 1701110
  year: 2018
  publication-title: Adv. Energy Mater.
– volume: 20
  start-page: 94
  year: 2016
  end-page: 107
  publication-title: Nano Energy
– volume: 29
  start-page: 1604898
  year: 2017
  publication-title: Adv. Mater.
– volume: 19
  start-page: 165
  year: 2016
  end-page: 175
  publication-title: Nano Energy
– volume: 104
  start-page: 4245
  year: 2004
  end-page: 4269
  publication-title: Chem. Rev.
– volume: 111
  start-page: 419
  year: 2017
  end-page: 427
  publication-title: Carbon
– start-page: 1702930
  year: 2018
  publication-title: Adv. Energy Mater.
– volume: 15
  start-page: 3899
  year: 2015
  end-page: 3906
  publication-title: Nano Lett.
– volume: 3
  start-page: 2914
  year: 2015
  end-page: 2923
  publication-title: J. Mater. Chem. A
– volume: 22
  start-page: 813
  year: 2010
  end-page: 828
  publication-title: Adv. Mater.
– volume: 7
  start-page: 13432
  year: 2016
  publication-title: Nat. Commun.
– volume: 320
  start-page: 576
  year: 2017
  end-page: 587
  publication-title: Chem. Eng. J.
– volume: 10
  start-page: 1690
  year: 2018
  end-page: 1700
  publication-title: ACS Appl. Mater. Interfaces
– volume: 54 127
  start-page: 588 598
  year: 2015 2015
  end-page: 593 603
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 93
  start-page: 315
  year: 2015
  end-page: 324
  publication-title: Carbon
– volume: 7
  start-page: 1132
  year: 2015
  end-page: 1139
  publication-title: ACS Appl. Mater. Interfaces
– volume: 23
  start-page: 3683
  year: 2017
  end-page: 3690
  publication-title: Chem. Eur. J.
– volume: 25
  start-page: 1053
  year: 2015
  end-page: 1062
  publication-title: Adv. Funct. Mater.
– volume: 92
  start-page: 11
  year: 2015
  end-page: 14
  publication-title: Carbon
– volume: 20
  start-page: 592
  year: 2017
  end-page: 610
  publication-title: Mater. Today
– volume: 9
  start-page: 3702
  year: 2017
  end-page: 3712
  publication-title: ACS Appl. Mater. Interfaces
– volume: 21
  start-page: 810
  year: 2011
  end-page: 833
  publication-title: Adv. Funct. Mater.
– volume: 113
  start-page: 283
  year: 2017
  end-page: 291
  publication-title: Carbon
– volume: 7
  start-page: 1791
  year: 2015
  end-page: 1795
  publication-title: Nanoscale
– volume: 29
  start-page: 1604569
  year: 2017
  publication-title: Adv. Mater.
– volume: 17
  start-page: 1668
  year: 2015
  end-page: 1674
  publication-title: Green Chem.
– volume: 5
  start-page: 1401761
  year: 2015
  publication-title: Adv. Energy Mater.
– volume: 219
  start-page: 592
  year: 2016
  end-page: 603
  publication-title: Electrochim. Acta
– volume: 22
  start-page: 3239
  year: 2016
  end-page: 3244
  publication-title: Chem. Eur. J.
– volume: 341
  start-page: 309
  year: 2017
  end-page: 317
  publication-title: J. Power Sources
– volume: 114
  start-page: 11619
  year: 2014
  end-page: 11635
  publication-title: Chem. Rev.
– volume: 46
  start-page: 1397
  year: 2013
  end-page: 1406
  publication-title: Acc. Chem. Res.
– volume: 13
  start-page: 693
  year: 2015
  end-page: 701
  publication-title: Nano Energy
– volume: 41
  start-page: 393
  year: 2017
  end-page: 402
  publication-title: New J. Chem.
– volume: 9
  start-page: 26088
  year: 2017
  end-page: 26095
  publication-title: ACS Appl. Mater. Interfaces
– volume: 4
  start-page: 372
  year: 2016
  end-page: 378
  publication-title: J. Mater. Chem. A
– volume: 38
  start-page: 2520
  year: 2009
  end-page: 2531
  publication-title: Chem. Soc. Rev.
– volume: 9
  start-page: 11225
  year: 2015
  end-page: 11233
  publication-title: ACS Nano
– volume: 6
  start-page: 7221
  year: 2015
  publication-title: Nat. Commun.
– volume: 14
  start-page: 1702961
  year: 2018
  publication-title: Small
– volume: 41
  start-page: 285
  year: 2017
  end-page: 292
  publication-title: Nano Energy
– volume: 137
  start-page: 1572
  year: 2015
  end-page: 1580
  publication-title: J. Am. Chem. Soc.
– volume: 5
  start-page: 1500959
  year: 2015
  publication-title: Adv. Energy Mater.
– volume: 278
  start-page: 484
  year: 2015
  end-page: 489
  publication-title: J. Power Sources
– volume: 9
  start-page: 729
  year: 2016
  end-page: 762
  publication-title: Energy Environ. Sci.
– volume: 157
  start-page: 290
  year: 2015
  end-page: 298
  publication-title: Electrochim. Acta
– volume: 9
  start-page: 1891
  year: 2016
  end-page: 1930
  publication-title: Energy Environ. Sci.
– volume: 9
  start-page: 2249
  year: 2016
  end-page: 2256
  publication-title: Energy Environ. Sci.
– volume: 139
  start-page: 8698
  year: 2017
  end-page: 8704
  publication-title: J. Am. Chem. Soc.
– volume: 15
  start-page: 43
  year: 2015
  end-page: 53
  publication-title: Nano Energy
– volume: 8
  start-page: 3538
  year: 2017
  end-page: 3546
  publication-title: Chem. Sci.
– volume: 123
  start-page: 186
  year: 2017
  end-page: 192
  publication-title: Carbon
– volume: 4
  start-page: 15006
  year: 2016
  end-page: 15014
  publication-title: J. Mater. Chem. A
– volume: 5
  start-page: 11834
  year: 2017
  end-page: 11839
  publication-title: J. Mater. Chem. A
– volume: 6
  start-page: 2497
  year: 2013
  end-page: 2504
  publication-title: Energy Environ. Sci.
– volume: 27
  start-page: 5388
  year: 2015
  end-page: 5395
  publication-title: Adv. Mater.
– volume: 46
  start-page: 2660
  year: 2017
  end-page: 2677
  publication-title: Chem. Soc. Rev.
– volume: 27
  start-page: 7861
  year: 2015
  end-page: 7866
  publication-title: Adv. Mater.
– volume: 7
  start-page: 1701336
  year: 2017
  publication-title: Adv. Energy Mater.
– volume: 42
  start-page: 794
  year: 2013
  end-page: 830
  publication-title: Chem. Soc. Rev.
– volume: 29
  start-page: 1603414
  year: 2017
  publication-title: Adv. Mater.
– volume: 116
  start-page: 686
  year: 2017
  end-page: 694
  publication-title: Carbon
– volume: 251
  start-page: 77
  year: 2017
  end-page: 82
  publication-title: Microporous Mesoporous Mater.
– ident: e_1_2_7_72_1
  doi: 10.1021/jacs.7b04096
– ident: e_1_2_7_92_1
  doi: 10.1039/C5TA01360G
– ident: e_1_2_7_5_1
  doi: 10.1039/b813846j
– ident: e_1_2_7_58_1
  doi: 10.1039/C4NR05878J
– ident: e_1_2_7_82_1
  doi: 10.1038/ncomms8221
– ident: e_1_2_7_91_1
  doi: 10.1016/j.electacta.2014.11.140
– ident: e_1_2_7_13_1
  doi: 10.1126/science.1102896
– ident: e_1_2_7_20_1
  doi: 10.1002/adfm.201403273
– ident: e_1_2_7_78_1
  doi: 10.1016/j.cej.2017.03.081
– ident: e_1_2_7_87_1
  doi: 10.1039/C4CS00071D
– ident: e_1_2_7_95_1
  doi: 10.1021/acsami.7b15473
– ident: e_1_2_7_40_1
  doi: 10.1039/C5TA08591H
– ident: e_1_2_7_11_1
  doi: 10.1039/C2CS35369E
– ident: e_1_2_7_36_1
  doi: 10.1002/aenm.201701110
– ident: e_1_2_7_79_1
  doi: 10.1021/acsami.6b14440
– ident: e_1_2_7_2_1
  doi: 10.1021/cr020730k
– ident: e_1_2_7_96_1
  doi: 10.1016/j.nanoen.2015.03.001
– ident: e_1_2_7_34_1
  doi: 10.1039/C5TA04721H
– ident: e_1_2_7_9_1
  doi: 10.1002/adma.201501452
– ident: e_1_2_7_97_1
  doi: 10.1039/C7TA07088H
– ident: e_1_2_7_28_1
  doi: 10.1038/ncomms13432
– ident: e_1_2_7_45_1
  doi: 10.1016/j.micromeso.2017.03.019
– ident: e_1_2_7_22_1
  doi: 10.1016/j.nanoen.2015.10.038
– ident: e_1_2_7_38_1
  doi: 10.1002/chem.201504672
– ident: e_1_2_7_4_1
  doi: 10.1039/C6EE00158K
– ident: e_1_2_7_47_1
  doi: 10.1002/aenm.201401761
– ident: e_1_2_7_65_1
  doi: 10.1002/adma.201402322
– ident: e_1_2_7_67_1
  doi: 10.1002/anie.201701252
– ident: e_1_2_7_68_1
  doi: 10.1039/C7TA01362K
– ident: e_1_2_7_12_1
  doi: 10.1016/j.mattod.2017.06.002
– ident: e_1_2_7_16_1
  doi: 10.1002/aenm.201500959
– ident: e_1_2_7_21_1
  doi: 10.1002/chem.201605019
– ident: e_1_2_7_94_1
  doi: 10.1002/adma.201702093
– ident: e_1_2_7_49_1
  doi: 10.1039/C7TA00940B
– ident: e_1_2_7_93_1
  doi: 10.1021/cr5000915
– ident: e_1_2_7_33_1
  doi: 10.1039/C6TA02570F
– ident: e_1_2_7_57_1
  doi: 10.1002/anie.201708732
– ident: e_1_2_7_1_1
  doi: 10.1038/nmat2297
– ident: e_1_2_7_66_1
  doi: 10.1039/C7CS00315C
– ident: e_1_2_7_88_1
  doi: 10.1016/j.nanoen.2015.03.027
– ident: e_1_2_7_44_1
  doi: 10.1021/am506815f
– ident: e_1_2_7_41_1
  doi: 10.1016/j.nanoen.2017.09.041
– ident: e_1_2_7_46_1
  doi: 10.1039/C5NR04768D
– ident: e_1_2_7_85_1
  doi: 10.1021/acs.chemmater.7b01947
– ident: e_1_2_7_19_1
  doi: 10.1016/j.jpowsour.2015.11.006
– ident: e_1_2_7_64_1
  doi: 10.1039/C6CS00426A
– ident: e_1_2_7_63_1
  doi: 10.1039/C5EE01985K
– ident: e_1_2_7_31_1
  doi: 10.1016/j.carbon.2015.02.054
– ident: e_1_2_7_23_1
  doi: 10.1016/j.electacta.2014.12.169
– ident: e_1_2_7_56_1
  doi: 10.1002/anie.201407629
– ident: e_1_2_7_18_1
  doi: 10.1016/j.jpowsour.2014.12.102
– ident: e_1_2_7_14_1
  doi: 10.1039/C6EE00815A
– ident: e_1_2_7_83_1
  doi: 10.1016/j.carbon.2017.01.070
– ident: e_1_2_7_69_1
  doi: 10.1039/C6SC04903F
– ident: e_1_2_7_17_1
  doi: 10.1016/j.nanoen.2015.05.010
– ident: e_1_2_7_27_1
  doi: 10.1021/acsnano.5b04821
– ident: e_1_2_7_60_1
  doi: 10.1016/j.carbon.2016.10.025
– ident: e_1_2_7_62_1
  doi: 10.1002/adma.201503816
– ident: e_1_2_7_43_1
  doi: 10.1039/C6TA06337C
– ident: e_1_2_7_74_1
  doi: 10.1039/C7CC07002K
– ident: e_1_2_7_84_1
  doi: 10.1016/j.nanoen.2015.02.035
– ident: e_1_2_7_52_1
  doi: 10.1126/science.aab3798
– ident: e_1_2_7_25_1
  doi: 10.1016/j.micromeso.2017.05.044
– ident: e_1_2_7_39_1
  doi: 10.1039/C4TA06614F
– ident: e_1_2_7_70_1
  doi: 10.1002/adma.201604898
– ident: e_1_2_7_56_2
  doi: 10.1002/ange.201407629
– ident: e_1_2_7_37_1
  doi: 10.1039/C5EE03149D
– ident: e_1_2_7_75_1
  doi: 10.1126/science.1132195
– ident: e_1_2_7_3_1
  doi: 10.1002/smll.201702961
– ident: e_1_2_7_48_1
  doi: 10.1002/adma.201604569
– ident: e_1_2_7_35_1
  doi: 10.1002/aenm.201601111
– ident: e_1_2_7_54_1
  doi: 10.1038/s41467-017-00575-8
– ident: e_1_2_7_32_1
  doi: 10.1016/j.carbon.2015.05.040
– ident: e_1_2_7_73_1
  doi: 10.1016/j.carbon.2017.02.057
– ident: e_1_2_7_6_1
  doi: 10.1002/aenm.201702930
– ident: e_1_2_7_59_1
  doi: 10.1016/j.electacta.2016.10.050
– ident: e_1_2_7_86_1
  doi: 10.1021/acsami.7b07877
– ident: e_1_2_7_42_1
  doi: 10.1016/j.nanoen.2015.11.038
– ident: e_1_2_7_89_1
  doi: 10.1039/C6NJ02458K
– ident: e_1_2_7_90_1
  doi: 10.1016/j.carbon.2017.07.062
– ident: e_1_2_7_76_1
  doi: 10.1002/adfm.201002094
– ident: e_1_2_7_55_1
  doi: 10.1016/j.nanoen.2016.04.037
– ident: e_1_2_7_15_1
  doi: 10.1039/C2CS35353A
– ident: e_1_2_7_7_1
  doi: 10.1039/C5EE03109E
– ident: e_1_2_7_10_1
  doi: 10.1021/ar300253f
– ident: e_1_2_7_26_1
  doi: 10.1016/j.jpowsour.2016.12.022
– ident: e_1_2_7_80_1
  doi: 10.1039/c3ee41638k
– ident: e_1_2_7_51_1
  doi: 10.1039/C6TA09229B
– ident: e_1_2_7_61_1
  doi: 10.1002/adma.201603414
– ident: e_1_2_7_71_1
  doi: 10.1021/ja511539a
– ident: e_1_2_7_24_1
  doi: 10.1039/C7TA07010A
– ident: e_1_2_7_98_1
  doi: 10.1002/aenm.201701336
– ident: e_1_2_7_67_2
  doi: 10.1002/ange.201701252
– ident: e_1_2_7_30_1
  doi: 10.1039/C4GC02185A
– ident: e_1_2_7_99_1
  doi: 10.1038/srep18966
– ident: e_1_2_7_57_2
  doi: 10.1002/ange.201708732
– ident: e_1_2_7_8_1
  doi: 10.1002/adma.200902812
– ident: e_1_2_7_29_1
  doi: 10.1016/j.carbon.2015.05.056
– ident: e_1_2_7_77_1
  doi: 10.1016/j.carbon.2016.11.050
– ident: e_1_2_7_53_1
  doi: 10.1002/aenm.201502539
– ident: e_1_2_7_50_1
  doi: 10.1039/C4TA06022A
– ident: e_1_2_7_81_1
  doi: 10.1021/acs.nanolett.5b00738
SSID ssj0052098
Score 2.5428507
SecondaryResourceType review_article
Snippet Climate change and the energy crisis have promoted the rapid development of electrochemical energy‐storage devices. Owing to many intriguing physicochemical...
The climate change and energy crisis promote the rapid development of electrochemical energy-storage devices. Of many intriguing physicochemical properties...
Climate change and the energy crisis have promoted the rapid development of electrochemical energy-storage devices. Owing to many intriguing physicochemical...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1518
SubjectTerms Carbon
Chemistry
Energy
Energy storage
graphene
Lithium-ion batteries
mesoporous materials
Molecular chains
nanostructures
Organic chemistry
Porous materials
Storage batteries
Title Recent Advances in Porous Carbon Materials for Electrochemical Energy Storage
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fasia.201800553
https://www.ncbi.nlm.nih.gov/pubmed/29667345
https://www.proquest.com/docview/2057160210
https://www.proquest.com/docview/2027067879
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELdge4CXiW8CAxkJiadAYzsffsxKq4HagbRW6ltkO45UaUpR173w13MXx0kKGxu8RK1jJdb9fjnf2XdnQt5bngiY2XmItbVCobgNM5nEwOWsKrXhmUoxd3h-lpwuxddVvOpzT5rskp3-aH5em1fyP6hCG-CKWbL_gGz3UGiA34AvXAFhuN4JY7D5cCs_d_v4TWTr980Wg1rHaqsB17nauXE00YQTd-SN8TUCJi7v7xzcbrUfEjT2x8C54E4Acd0u2PsxNWvwTk_M1npd9_TAphV0v7jaDJcUogxDn1oteDfFNVCYWQIQp22Ctx22NUfh9FqWD9nEBjoTbI5sMP-CQSGv1e2uVizmlmJEXobVw3g_i_md-7NvxXQ5mxWLyWpxnxwy8B5A_R3mJ59Ppn6KxtCfJkfSD95X8xyxT_vP37dW_nBB9j2axiRZPCJHrS9Bc0eMx-SerZ-QBx12T8ncEYR6gtB1TR1BqCMI7QhCgSD0N4JQRxDaEuQZWU4ni_Fp2J6fERoB00bIkrg0WpUjzuIsNVbFcSqwwqDkWjWmbylZJY0BpW71qAJXFDppAV-tNGB58-fkoN7U9iWhsRAs4gCN4lJEslTaRCJKrah0xXXCAxJ6ORWmLS6PZ5xcFK4sNitQrkUn14B86Pr_cGVVbux57MVetDS_hLsx-Pm4XBGQd91tEC7udqnaghwLXNVDUyyVAXnh4OpexSSedivigLAGv1vGUOTnX_Lu36u_j-g1edh_U8fkYLe9sm_AcN3pty0NfwFmIZPR
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recent+Advances+in+Porous+Carbon+Materials+for+Electrochemical+Energy+Storage&rft.jtitle=Chemistry%2C+an+Asian+journal&rft.au=Wang%2C+Libin&rft.au=Hu%2C+Xianluo&rft.date=2018-06-18&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1861-4728&rft.eissn=1861-471X&rft.volume=13&rft.issue=12&rft.spage=1518&rft.epage=1529&rft_id=info:doi/10.1002%2Fasia.201800553&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1861-4728&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1861-4728&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1861-4728&client=summon