Recent Advances in Porous Carbon Materials for Electrochemical Energy Storage
Climate change and the energy crisis have promoted the rapid development of electrochemical energy‐storage devices. Owing to many intriguing physicochemical properties, such as excellent chemical stability, high electronic conductivity, and a large specific surface area, porous carbon materials have...
Saved in:
Published in | Chemistry, an Asian journal Vol. 13; no. 12; pp. 1518 - 1529 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
18.06.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Climate change and the energy crisis have promoted the rapid development of electrochemical energy‐storage devices. Owing to many intriguing physicochemical properties, such as excellent chemical stability, high electronic conductivity, and a large specific surface area, porous carbon materials have always been considering as a promising candidate for electrochemical energy storage. To date, a wide variety of porous carbon materials based upon molecular design, pore control, and compositional tailoring have been proposed for energy‐storage applications. This focus review summarizes recent advances in the synthesis of various porous carbon materials from the view of energy storage, particularly in the past three years. Their applications in representative electrochemical energy‐storage devices, such as lithium‐ion batteries, supercapacitors, and lithium‐ion hybrid capacitors, are discussed in this review, with a look forward to offer some inspiration and guidelines for the exploitation of advanced carbon‐based energy‐storage materials.
C, how versatile! Various porous carbon materials have been widely used as electrode materials in energy storage and transfer devices (see figure). Recent advances in the synthesis of porous carbon materials from the view of energy storage, particularly in the past three years, are summarized. Representative applications in lithium‐ion batteries, supercapacitors, and lithium‐ion hybrid capacitors are discussed. |
---|---|
AbstractList | Climate change and the energy crisis have promoted the rapid development of electrochemical energy‐storage devices. Owing to many intriguing physicochemical properties, such as excellent chemical stability, high electronic conductivity, and a large specific surface area, porous carbon materials have always been considering as a promising candidate for electrochemical energy storage. To date, a wide variety of porous carbon materials based upon molecular design, pore control, and compositional tailoring have been proposed for energy‐storage applications. This focus review summarizes recent advances in the synthesis of various porous carbon materials from the view of energy storage, particularly in the past three years. Their applications in representative electrochemical energy‐storage devices, such as lithium‐ion batteries, supercapacitors, and lithium‐ion hybrid capacitors, are discussed in this review, with a look forward to offer some inspiration and guidelines for the exploitation of advanced carbon‐based energy‐storage materials. Climate change and the energy crisis have promoted the rapid development of electrochemical energy‐storage devices. Owing to many intriguing physicochemical properties, such as excellent chemical stability, high electronic conductivity, and a large specific surface area, porous carbon materials have always been considering as a promising candidate for electrochemical energy storage. To date, a wide variety of porous carbon materials based upon molecular design, pore control, and compositional tailoring have been proposed for energy‐storage applications. This focus review summarizes recent advances in the synthesis of various porous carbon materials from the view of energy storage, particularly in the past three years. Their applications in representative electrochemical energy‐storage devices, such as lithium‐ion batteries, supercapacitors, and lithium‐ion hybrid capacitors, are discussed in this review, with a look forward to offer some inspiration and guidelines for the exploitation of advanced carbon‐based energy‐storage materials. C, how versatile! Various porous carbon materials have been widely used as electrode materials in energy storage and transfer devices (see figure). Recent advances in the synthesis of porous carbon materials from the view of energy storage, particularly in the past three years, are summarized. Representative applications in lithium‐ion batteries, supercapacitors, and lithium‐ion hybrid capacitors are discussed. Climate change and the energy crisis have promoted the rapid development of electrochemical energy-storage devices. Owing to many intriguing physicochemical properties, such as excellent chemical stability, high electronic conductivity, and a large specific surface area, porous carbon materials have always been considering as a promising candidate for electrochemical energy storage. To date, a wide variety of porous carbon materials based upon molecular design, pore control, and compositional tailoring have been proposed for energy-storage applications. This focus review summarizes recent advances in the synthesis of various porous carbon materials from the view of energy storage, particularly in the past three years. Their applications in representative electrochemical energy-storage devices, such as lithium-ion batteries, supercapacitors, and lithium-ion hybrid capacitors, are discussed in this review, with a look forward to offer some inspiration and guidelines for the exploitation of advanced carbon-based energy-storage materials.Climate change and the energy crisis have promoted the rapid development of electrochemical energy-storage devices. Owing to many intriguing physicochemical properties, such as excellent chemical stability, high electronic conductivity, and a large specific surface area, porous carbon materials have always been considering as a promising candidate for electrochemical energy storage. To date, a wide variety of porous carbon materials based upon molecular design, pore control, and compositional tailoring have been proposed for energy-storage applications. This focus review summarizes recent advances in the synthesis of various porous carbon materials from the view of energy storage, particularly in the past three years. Their applications in representative electrochemical energy-storage devices, such as lithium-ion batteries, supercapacitors, and lithium-ion hybrid capacitors, are discussed in this review, with a look forward to offer some inspiration and guidelines for the exploitation of advanced carbon-based energy-storage materials. The climate change and energy crisis promote the rapid development of electrochemical energy-storage devices. Of many intriguing physicochemical properties such as excellent chemical stability, high electronic conductivity and large specific surface area, porous carbon materials have always been considering as a promising candidate for electrochemical energy storage. Up to date, a wide variety of porous carbon materials upon molecular design, pore control and compositional tailoring have been proposed for energy-storage applications. This focus review summaries recent advances in the synthesis of various porous carbon materials from the view of energy storage, especially in the past three years. Their applications in representative electrochemical energy storage devices like lithium-ion batteries, supercapacitors, lithium-ion hybrid capacitors have been discussed in this review, looking forward to offering some inspirations and guidelines for the exploitation of advanced carbon-based energy-storage materials. |
Author | Hu, Xianluo Wang, Libin |
Author_xml | – sequence: 1 givenname: Libin surname: Wang fullname: Wang, Libin organization: Huazhong University of Science and Technology – sequence: 2 givenname: Xianluo orcidid: 0000-0002-5769-167X surname: Hu fullname: Hu, Xianluo email: huxl@mail.hust.edu.cn organization: Huazhong University of Science and Technology |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29667345$$D View this record in MEDLINE/PubMed |
BookMark | eNqF0UtLAzEUBeAgiu-tSwm4cdOaZCbJZFlKfYBF8QHuQiZzRyPTRJOp0n9vpFpBEFe5i-9cLjk7aN0HDwgdUDKkhLATk5wZMkIrQjgv1tA2rQQdlJI-rK9mVm2hnZSeM2FEVZtoiykhZFHybTS9AQu-x6PmzXgLCTuPr0MM84THJtbB46npITrTJdyGiCcd2D4G-wQzZ02HJx7i4wLf9iGaR9hDG22WsP_17qL708nd-HxweXV2MR5dDmwpRTFggje2Ng0pGK-kBcO5LJUgShW1YZxw0SjWKmsLxqAmrShZRnXJK6qs4rTYRcfLvS8xvM4h9XrmkoWuMx7y6ZoRJomQlVSZHv2iz2Eefb4uKy6pIIySrA6_1LyeQaNfopuZuNDfH5VBuQQ2hpQitNq63vQu-D4a12lK9Gcf-rMPveojx4a_Yt-b_wyoZeDddbD4R-vR7cXoJ_sBfyabfA |
CitedBy_id | crossref_primary_10_1002_celc_202100946 crossref_primary_10_1002_tcr_202200045 crossref_primary_10_1016_j_jelechem_2021_115522 crossref_primary_10_1016_j_mtchem_2023_101773 crossref_primary_10_1142_S0217979222502113 crossref_primary_10_1021_acssuschemeng_9b01261 crossref_primary_10_1016_j_ijhydene_2023_03_260 crossref_primary_10_1021_acs_jafc_2c01856 crossref_primary_10_1016_S1872_5805_23_60710_3 crossref_primary_10_3390_en14040979 crossref_primary_10_1016_j_indcrop_2020_113173 crossref_primary_10_1016_j_est_2022_104938 crossref_primary_10_1016_j_electacta_2021_138680 crossref_primary_10_1016_j_jaap_2024_106614 crossref_primary_10_1016_j_jelechem_2020_114668 crossref_primary_10_1007_s10853_023_08413_7 crossref_primary_10_1039_D0NJ00040J crossref_primary_10_3390_molecules29092081 crossref_primary_10_1186_s40580_020_00251_6 crossref_primary_10_1002_slct_202401225 crossref_primary_10_4028_www_scientific_net_KEM_824_23 crossref_primary_10_1016_j_jmrt_2023_09_115 crossref_primary_10_1016_j_electacta_2018_09_034 crossref_primary_10_1007_s40089_021_00328_y crossref_primary_10_1002_adsu_202200294 crossref_primary_10_1039_D4SU00009A crossref_primary_10_1016_j_ijbiomac_2019_12_187 crossref_primary_10_1039_C9NA00719A crossref_primary_10_3390_c5040084 crossref_primary_10_1016_j_jpowsour_2018_09_044 crossref_primary_10_3390_cryst13060912 crossref_primary_10_1002_advs_202105497 crossref_primary_10_1021_acsomega_3c00024 crossref_primary_10_1039_C9QM00062C crossref_primary_10_1116_1_5095413 crossref_primary_10_1002_tcr_202300234 crossref_primary_10_3390_catal9020133 crossref_primary_10_1021_acsanm_1c03933 crossref_primary_10_1016_j_jcis_2020_03_092 crossref_primary_10_1016_j_diamond_2024_111921 crossref_primary_10_1021_acs_energyfuels_2c00077 crossref_primary_10_1021_acsami_4c19266 crossref_primary_10_1016_j_diamond_2022_109080 crossref_primary_10_3390_molecules28227665 crossref_primary_10_1039_D4TC00237G crossref_primary_10_1149_2162_8777_acb8da crossref_primary_10_1016_j_cej_2022_139691 crossref_primary_10_1016_j_jallcom_2020_153862 crossref_primary_10_1002_nano_202300114 crossref_primary_10_1016_j_apsusc_2019_143735 crossref_primary_10_1016_j_jpowsour_2023_233876 crossref_primary_10_1039_D1SC00095K crossref_primary_10_1016_j_jallcom_2024_175234 crossref_primary_10_1002_slct_201900366 crossref_primary_10_1038_s41596_022_00718_2 crossref_primary_10_1016_j_materresbull_2018_12_035 crossref_primary_10_1016_j_carbon_2022_03_047 crossref_primary_10_1039_C8NR09557D crossref_primary_10_1246_bcsj_20220245 crossref_primary_10_1016_j_jelechem_2021_115163 crossref_primary_10_1002_batt_202100169 crossref_primary_10_1002_macp_201900532 crossref_primary_10_1039_D4NR00401A crossref_primary_10_1002_asia_202001216 crossref_primary_10_1002_cssc_201901519 crossref_primary_10_1007_s10854_021_05418_3 crossref_primary_10_3390_biology11030458 crossref_primary_10_1016_j_carbon_2020_06_001 crossref_primary_10_3390_molecules29163967 crossref_primary_10_1016_j_cej_2022_137292 crossref_primary_10_1021_acsnano_0c02731 crossref_primary_10_1088_2515_7639_ac4ee5 crossref_primary_10_1016_j_jpcs_2020_109447 crossref_primary_10_1002_bkcs_12145 crossref_primary_10_1016_j_apsusc_2020_148717 crossref_primary_10_1002_tcr_202400144 crossref_primary_10_1007_s10854_024_13254_4 crossref_primary_10_1007_s40097_021_00427_4 crossref_primary_10_1016_j_apsusc_2020_148565 crossref_primary_10_1007_s42823_023_00657_2 crossref_primary_10_1016_j_envadv_2022_100259 crossref_primary_10_1016_j_colsurfa_2024_134435 crossref_primary_10_1007_s12034_024_03393_z crossref_primary_10_1039_D1CP03456A crossref_primary_10_1016_j_est_2021_102496 crossref_primary_10_20964_2021_01_32 crossref_primary_10_1007_s40242_022_2030_0 crossref_primary_10_1016_j_apsusc_2022_155080 crossref_primary_10_1002_asia_202000747 crossref_primary_10_1016_j_jwpe_2024_106592 crossref_primary_10_1002_adma_201902670 crossref_primary_10_1016_j_ijbiomac_2022_08_026 crossref_primary_10_1021_acsami_1c05816 crossref_primary_10_1134_S0036024421010064 crossref_primary_10_1002_asia_202000106 crossref_primary_10_1021_acssensors_3c02383 crossref_primary_10_1039_D2GC02724K crossref_primary_10_1016_j_pmatsci_2024_101408 crossref_primary_10_1016_j_est_2021_103176 crossref_primary_10_1039_D1TA09654K crossref_primary_10_1016_j_ceramint_2024_08_369 crossref_primary_10_1007_s11581_018_2646_8 crossref_primary_10_1002_aoc_7227 crossref_primary_10_1002_tcr_202100124 crossref_primary_10_1021_acsaem_1c02051 crossref_primary_10_1007_s11581_021_04084_z crossref_primary_10_1007_s42823_023_00635_8 crossref_primary_10_1016_j_nanoen_2020_104762 crossref_primary_10_1016_j_ijhydene_2021_02_017 crossref_primary_10_1007_s10853_023_08984_5 crossref_primary_10_1039_D1RA03446D crossref_primary_10_1016_j_jclepro_2023_137956 crossref_primary_10_1016_j_ica_2019_02_034 crossref_primary_10_1021_acsmaterialslett_2c00672 crossref_primary_10_1016_j_diamond_2022_109164 crossref_primary_10_1002_adsu_202000169 |
Cites_doi | 10.1021/jacs.7b04096 10.1039/C5TA01360G 10.1039/b813846j 10.1039/C4NR05878J 10.1038/ncomms8221 10.1016/j.electacta.2014.11.140 10.1126/science.1102896 10.1002/adfm.201403273 10.1016/j.cej.2017.03.081 10.1039/C4CS00071D 10.1021/acsami.7b15473 10.1039/C5TA08591H 10.1039/C2CS35369E 10.1002/aenm.201701110 10.1021/acsami.6b14440 10.1021/cr020730k 10.1016/j.nanoen.2015.03.001 10.1039/C5TA04721H 10.1002/adma.201501452 10.1039/C7TA07088H 10.1038/ncomms13432 10.1016/j.micromeso.2017.03.019 10.1016/j.nanoen.2015.10.038 10.1002/chem.201504672 10.1039/C6EE00158K 10.1002/aenm.201401761 10.1002/adma.201402322 10.1002/anie.201701252 10.1039/C7TA01362K 10.1016/j.mattod.2017.06.002 10.1002/aenm.201500959 10.1002/chem.201605019 10.1002/adma.201702093 10.1039/C7TA00940B 10.1021/cr5000915 10.1039/C6TA02570F 10.1002/anie.201708732 10.1038/nmat2297 10.1039/C7CS00315C 10.1016/j.nanoen.2015.03.027 10.1021/am506815f 10.1016/j.nanoen.2017.09.041 10.1039/C5NR04768D 10.1021/acs.chemmater.7b01947 10.1016/j.jpowsour.2015.11.006 10.1039/C6CS00426A 10.1039/C5EE01985K 10.1016/j.carbon.2015.02.054 10.1016/j.electacta.2014.12.169 10.1002/anie.201407629 10.1016/j.jpowsour.2014.12.102 10.1039/C6EE00815A 10.1016/j.carbon.2017.01.070 10.1039/C6SC04903F 10.1016/j.nanoen.2015.05.010 10.1021/acsnano.5b04821 10.1016/j.carbon.2016.10.025 10.1002/adma.201503816 10.1039/C6TA06337C 10.1039/C7CC07002K 10.1016/j.nanoen.2015.02.035 10.1126/science.aab3798 10.1016/j.micromeso.2017.05.044 10.1039/C4TA06614F 10.1002/adma.201604898 10.1002/ange.201407629 10.1039/C5EE03149D 10.1126/science.1132195 10.1002/smll.201702961 10.1002/adma.201604569 10.1002/aenm.201601111 10.1038/s41467-017-00575-8 10.1016/j.carbon.2015.05.040 10.1016/j.carbon.2017.02.057 10.1002/aenm.201702930 10.1016/j.electacta.2016.10.050 10.1021/acsami.7b07877 10.1016/j.nanoen.2015.11.038 10.1039/C6NJ02458K 10.1016/j.carbon.2017.07.062 10.1002/adfm.201002094 10.1016/j.nanoen.2016.04.037 10.1039/C2CS35353A 10.1039/C5EE03109E 10.1021/ar300253f 10.1016/j.jpowsour.2016.12.022 10.1039/c3ee41638k 10.1039/C6TA09229B 10.1002/adma.201603414 10.1021/ja511539a 10.1039/C7TA07010A 10.1002/aenm.201701336 10.1002/ange.201701252 10.1039/C4GC02185A 10.1038/srep18966 10.1002/ange.201708732 10.1002/adma.200902812 10.1016/j.carbon.2015.05.056 10.1016/j.carbon.2016.11.050 10.1002/aenm.201502539 10.1039/C4TA06022A 10.1021/acs.nanolett.5b00738 |
ContentType | Journal Article |
Copyright | 2018 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. |
Copyright_xml | – notice: 2018 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. – notice: 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. |
DBID | AAYXX CITATION NPM K9. 7X8 |
DOI | 10.1002/asia.201800553 |
DatabaseName | CrossRef PubMed ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitleList | ProQuest Health & Medical Complete (Alumni) CrossRef MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1861-471X |
EndPage | 1529 |
ExternalDocumentID | 29667345 10_1002_asia_201800553 ASIA201800553 |
Genre | reviewArticle Journal Article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 51772116; 51522205; 51472098 |
GroupedDBID | --- 05W 0R~ 1L6 1OC 29B 33P 3WU 4.4 5GY 6J9 8-1 87K 8UM A00 AAESR AAHQN AAIHA AAMNL AANLZ AASGY AAXRX AAYCA AAZKR ABCUV ABDBF ABIJN ABJNI ACAHQ ACCZN ACGFS ACIWK ACPOU ACUHS ACXBN ACXQS ADBBV ADKYN ADMGS ADOZA ADXAS ADZMN AEGXH AEIGN AEUQT AEUYR AFBPY AFFPM AFGKR AFWVQ AHBTC AHMBA AITYG AIURR ALMA_UNASSIGNED_HOLDINGS ALVPJ AMYDB AZVAB BDRZF BFHJK BMXJE BRXPI CS3 DCZOG DRFUL DRSTM EBD EBS EJD F5P G-S HBH HGLYW HHY HHZ HZ~ LATKE LAW LEEKS LITHE LOXES LUTES LYRES MEWTI MXFUL MXSTM MY~ O66 O9- OIG P2W P4E PQQKQ QRW ROL RWI SUPJJ WBKPD WHG WOHZO WXSBR WYJ XSW XV2 ZZTAW ~S- AAYXX AEYWJ AGHNM AGYGG CITATION NPM K9. 7X8 |
ID | FETCH-LOGICAL-c4763-265dcbad032587cea5574960993ba25056d92f9cc322eb0f642ceab45819c9513 |
ISSN | 1861-4728 1861-471X |
IngestDate | Thu Jul 10 22:13:05 EDT 2025 Mon Jun 30 10:00:54 EDT 2025 Wed Feb 19 02:44:38 EST 2025 Thu Apr 24 23:02:05 EDT 2025 Tue Jul 01 02:15:25 EDT 2025 Wed Jan 22 16:45:19 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Keywords | porous carbon lithium-ion batteries hybrid capacitors energy storage supercapacitors |
Language | English |
License | 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c4763-265dcbad032587cea5574960993ba25056d92f9cc322eb0f642ceab45819c9513 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0002-5769-167X |
PMID | 29667345 |
PQID | 2057160210 |
PQPubID | 986338 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_2027067879 proquest_journals_2057160210 pubmed_primary_29667345 crossref_citationtrail_10_1002_asia_201800553 crossref_primary_10_1002_asia_201800553 wiley_primary_10_1002_asia_201800553_ASIA201800553 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | June 18, 2018 |
PublicationDateYYYYMMDD | 2018-06-18 |
PublicationDate_xml | – month: 06 year: 2018 text: June 18, 2018 day: 18 |
PublicationDecade | 2010 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Chemistry, an Asian journal |
PublicationTitleAlternate | Chem Asian J |
PublicationYear | 2018 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2017; 5 2017; 7 2017; 41 2017; 8 2017; 46 2014; 26 2008; 7 2016; 303 2017; 111 2017; 113 2013; 6 2017; 9 2017; 115 2017; 116 2010; 22 2018; 8 2015; 137 2015 2015; 54 127 2011; 21 2017; 320 2017; 123 2017; 246 2015; 13 2017; 20 2015; 15 2015; 17 2015; 6 2004; 104 2015; 5 2016; 19 2015; 3 2015; 93 2015; 92 2013; 46 2013; 42 2017; 23 2017; 251 2017; 29 2017 2017; 56 129 2004; 306 2015; 9 2006; 313 2015; 8 2015; 7 2014; 114 2017; 139 2014; 43 2016; 4 2015; 350 2015; 152 2016; 6 2017; 53 2015; 25 2016; 7 2015; 27 2016; 219 2015; 157 2015; 278 2016; 20 2018 2017; 341 2018; 10 2009; 38 2016; 25 2016; 9 2018; 14 2016; 22 e_1_2_7_3_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_60_1 e_1_2_7_83_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_64_1 e_1_2_7_87_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_68_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_90_1 e_1_2_7_94_1 e_1_2_7_71_1 e_1_2_7_52_1 e_1_2_7_98_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_75_1 e_1_2_7_56_2 e_1_2_7_56_1 e_1_2_7_37_1 e_1_2_7_79_1 e_1_2_7_4_1 e_1_2_7_8_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_82_1 e_1_2_7_63_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_86_1 e_1_2_7_67_2 e_1_2_7_67_1 e_1_2_7_48_1 e_1_2_7_29_1 e_1_2_7_51_1 e_1_2_7_70_1 e_1_2_7_93_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_55_1 e_1_2_7_74_1 e_1_2_7_97_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_59_1 e_1_2_7_78_1 e_1_2_7_5_1 e_1_2_7_9_1 e_1_2_7_17_1 e_1_2_7_62_1 e_1_2_7_81_1 e_1_2_7_1_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_66_1 e_1_2_7_85_1 e_1_2_7_47_1 e_1_2_7_89_1 e_1_2_7_28_1 e_1_2_7_73_1 e_1_2_7_50_1 e_1_2_7_92_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_77_1 e_1_2_7_54_1 e_1_2_7_96_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_58_1 e_1_2_7_39_1 e_1_2_7_6_1 e_1_2_7_80_1 e_1_2_7_18_1 e_1_2_7_84_1 e_1_2_7_61_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_88_1 e_1_2_7_65_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_69_1 e_1_2_7_27_1 e_1_2_7_91_1 e_1_2_7_72_1 e_1_2_7_95_1 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_76_1 e_1_2_7_99_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_57_1 e_1_2_7_57_2 e_1_2_7_38_1 |
References_xml | – volume: 9 start-page: 102 year: 2016 end-page: 106 publication-title: Energy Environ. Sci. – volume: 313 start-page: 1760 year: 2006 end-page: 1763 publication-title: Science – volume: 29 start-page: 1702093 year: 2017 publication-title: Adv. Mater. – volume: 3 start-page: 9861 year: 2015 end-page: 9868 publication-title: J. Mater. Chem. A – volume: 93 start-page: 412 year: 2015 end-page: 420 publication-title: Carbon – volume: 5 start-page: 24502 year: 2017 end-page: 24507 publication-title: J. Mater. Chem. A – volume: 15 start-page: 576 year: 2015 end-page: 586 publication-title: Nano Energy – volume: 6 start-page: 1502539 year: 2016 publication-title: Adv. Energy Mater. – volume: 7 start-page: 845 year: 2008 end-page: 854 publication-title: Nat. Mater. – volume: 15 start-page: 9 year: 2015 end-page: 23 publication-title: Nano Energy – volume: 8 start-page: 2916 year: 2015 end-page: 2921 publication-title: Energy Environ. Sci. – volume: 4 start-page: 11388 year: 2016 end-page: 11396 publication-title: J. Mater. Chem. A – volume: 3 start-page: 18154 year: 2015 end-page: 18162 publication-title: J. Mater. Chem. A – volume: 7 start-page: 17791 year: 2015 end-page: 17797 publication-title: Nanoscale – volume: 53 start-page: 11690 year: 2017 end-page: 11693 publication-title: Chem. Commun. – volume: 5 start-page: 1516 year: 2017 end-page: 1525 publication-title: J. Mater. Chem. A – volume: 115 start-page: 754 year: 2017 end-page: 762 publication-title: Carbon – volume: 246 start-page: 72 year: 2017 end-page: 80 publication-title: Microporous Mesoporous Mater. – volume: 25 start-page: 193 year: 2016 end-page: 202 publication-title: Nano Energy – volume: 29 start-page: 6058 year: 2017 end-page: 6065 publication-title: Chem. Mater. – volume: 5 start-page: 23085 year: 2017 end-page: 23093 publication-title: J. Mater. Chem. A – volume: 8 start-page: 482 year: 2017 publication-title: Nat. Commun. – volume: 306 start-page: 666 year: 2004 end-page: 669 publication-title: Science – volume: 303 start-page: 372 year: 2016 end-page: 378 publication-title: J. Power Sources – volume: 350 start-page: 1508 year: 2015 end-page: 1513 publication-title: Science – volume: 42 start-page: 2610 year: 2013 end-page: 2653 publication-title: Chem. Soc. Rev. – volume: 56 129 start-page: 8435 8555 year: 2017 2017 end-page: 8440 8560 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 56 129 start-page: 13790 13978 year: 2017 2017 end-page: 13794 13982 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 26 start-page: 6622 year: 2014 end-page: 6628 publication-title: Adv. Mater. – volume: 3 start-page: 6534 year: 2015 end-page: 6541 publication-title: J. Mater. Chem. A – volume: 43 start-page: 4341 year: 2014 end-page: 4356 publication-title: Chem. Soc. Rev. – volume: 6 start-page: 1601111 year: 2016 publication-title: Adv. Energy Mater. – volume: 5 start-page: 7345 year: 2017 end-page: 7354 publication-title: J. Mater. Chem. A – volume: 46 start-page: 5730 year: 2017 end-page: 5770 publication-title: Chem. Soc. Rev. – volume: 6 start-page: 18966 year: 2016 publication-title: Sci. Rep. – volume: 152 start-page: 338 year: 2015 end-page: 344 publication-title: Electrochim. Acta – volume: 8 start-page: 1701110 year: 2018 publication-title: Adv. Energy Mater. – volume: 20 start-page: 94 year: 2016 end-page: 107 publication-title: Nano Energy – volume: 29 start-page: 1604898 year: 2017 publication-title: Adv. Mater. – volume: 19 start-page: 165 year: 2016 end-page: 175 publication-title: Nano Energy – volume: 104 start-page: 4245 year: 2004 end-page: 4269 publication-title: Chem. Rev. – volume: 111 start-page: 419 year: 2017 end-page: 427 publication-title: Carbon – start-page: 1702930 year: 2018 publication-title: Adv. Energy Mater. – volume: 15 start-page: 3899 year: 2015 end-page: 3906 publication-title: Nano Lett. – volume: 3 start-page: 2914 year: 2015 end-page: 2923 publication-title: J. Mater. Chem. A – volume: 22 start-page: 813 year: 2010 end-page: 828 publication-title: Adv. Mater. – volume: 7 start-page: 13432 year: 2016 publication-title: Nat. Commun. – volume: 320 start-page: 576 year: 2017 end-page: 587 publication-title: Chem. Eng. J. – volume: 10 start-page: 1690 year: 2018 end-page: 1700 publication-title: ACS Appl. Mater. Interfaces – volume: 54 127 start-page: 588 598 year: 2015 2015 end-page: 593 603 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 93 start-page: 315 year: 2015 end-page: 324 publication-title: Carbon – volume: 7 start-page: 1132 year: 2015 end-page: 1139 publication-title: ACS Appl. Mater. Interfaces – volume: 23 start-page: 3683 year: 2017 end-page: 3690 publication-title: Chem. Eur. J. – volume: 25 start-page: 1053 year: 2015 end-page: 1062 publication-title: Adv. Funct. Mater. – volume: 92 start-page: 11 year: 2015 end-page: 14 publication-title: Carbon – volume: 20 start-page: 592 year: 2017 end-page: 610 publication-title: Mater. Today – volume: 9 start-page: 3702 year: 2017 end-page: 3712 publication-title: ACS Appl. Mater. Interfaces – volume: 21 start-page: 810 year: 2011 end-page: 833 publication-title: Adv. Funct. Mater. – volume: 113 start-page: 283 year: 2017 end-page: 291 publication-title: Carbon – volume: 7 start-page: 1791 year: 2015 end-page: 1795 publication-title: Nanoscale – volume: 29 start-page: 1604569 year: 2017 publication-title: Adv. Mater. – volume: 17 start-page: 1668 year: 2015 end-page: 1674 publication-title: Green Chem. – volume: 5 start-page: 1401761 year: 2015 publication-title: Adv. Energy Mater. – volume: 219 start-page: 592 year: 2016 end-page: 603 publication-title: Electrochim. Acta – volume: 22 start-page: 3239 year: 2016 end-page: 3244 publication-title: Chem. Eur. J. – volume: 341 start-page: 309 year: 2017 end-page: 317 publication-title: J. Power Sources – volume: 114 start-page: 11619 year: 2014 end-page: 11635 publication-title: Chem. Rev. – volume: 46 start-page: 1397 year: 2013 end-page: 1406 publication-title: Acc. Chem. Res. – volume: 13 start-page: 693 year: 2015 end-page: 701 publication-title: Nano Energy – volume: 41 start-page: 393 year: 2017 end-page: 402 publication-title: New J. Chem. – volume: 9 start-page: 26088 year: 2017 end-page: 26095 publication-title: ACS Appl. Mater. Interfaces – volume: 4 start-page: 372 year: 2016 end-page: 378 publication-title: J. Mater. Chem. A – volume: 38 start-page: 2520 year: 2009 end-page: 2531 publication-title: Chem. Soc. Rev. – volume: 9 start-page: 11225 year: 2015 end-page: 11233 publication-title: ACS Nano – volume: 6 start-page: 7221 year: 2015 publication-title: Nat. Commun. – volume: 14 start-page: 1702961 year: 2018 publication-title: Small – volume: 41 start-page: 285 year: 2017 end-page: 292 publication-title: Nano Energy – volume: 137 start-page: 1572 year: 2015 end-page: 1580 publication-title: J. Am. Chem. Soc. – volume: 5 start-page: 1500959 year: 2015 publication-title: Adv. Energy Mater. – volume: 278 start-page: 484 year: 2015 end-page: 489 publication-title: J. Power Sources – volume: 9 start-page: 729 year: 2016 end-page: 762 publication-title: Energy Environ. Sci. – volume: 157 start-page: 290 year: 2015 end-page: 298 publication-title: Electrochim. Acta – volume: 9 start-page: 1891 year: 2016 end-page: 1930 publication-title: Energy Environ. Sci. – volume: 9 start-page: 2249 year: 2016 end-page: 2256 publication-title: Energy Environ. Sci. – volume: 139 start-page: 8698 year: 2017 end-page: 8704 publication-title: J. Am. Chem. Soc. – volume: 15 start-page: 43 year: 2015 end-page: 53 publication-title: Nano Energy – volume: 8 start-page: 3538 year: 2017 end-page: 3546 publication-title: Chem. Sci. – volume: 123 start-page: 186 year: 2017 end-page: 192 publication-title: Carbon – volume: 4 start-page: 15006 year: 2016 end-page: 15014 publication-title: J. Mater. Chem. A – volume: 5 start-page: 11834 year: 2017 end-page: 11839 publication-title: J. Mater. Chem. A – volume: 6 start-page: 2497 year: 2013 end-page: 2504 publication-title: Energy Environ. Sci. – volume: 27 start-page: 5388 year: 2015 end-page: 5395 publication-title: Adv. Mater. – volume: 46 start-page: 2660 year: 2017 end-page: 2677 publication-title: Chem. Soc. Rev. – volume: 27 start-page: 7861 year: 2015 end-page: 7866 publication-title: Adv. Mater. – volume: 7 start-page: 1701336 year: 2017 publication-title: Adv. Energy Mater. – volume: 42 start-page: 794 year: 2013 end-page: 830 publication-title: Chem. Soc. Rev. – volume: 29 start-page: 1603414 year: 2017 publication-title: Adv. Mater. – volume: 116 start-page: 686 year: 2017 end-page: 694 publication-title: Carbon – volume: 251 start-page: 77 year: 2017 end-page: 82 publication-title: Microporous Mesoporous Mater. – ident: e_1_2_7_72_1 doi: 10.1021/jacs.7b04096 – ident: e_1_2_7_92_1 doi: 10.1039/C5TA01360G – ident: e_1_2_7_5_1 doi: 10.1039/b813846j – ident: e_1_2_7_58_1 doi: 10.1039/C4NR05878J – ident: e_1_2_7_82_1 doi: 10.1038/ncomms8221 – ident: e_1_2_7_91_1 doi: 10.1016/j.electacta.2014.11.140 – ident: e_1_2_7_13_1 doi: 10.1126/science.1102896 – ident: e_1_2_7_20_1 doi: 10.1002/adfm.201403273 – ident: e_1_2_7_78_1 doi: 10.1016/j.cej.2017.03.081 – ident: e_1_2_7_87_1 doi: 10.1039/C4CS00071D – ident: e_1_2_7_95_1 doi: 10.1021/acsami.7b15473 – ident: e_1_2_7_40_1 doi: 10.1039/C5TA08591H – ident: e_1_2_7_11_1 doi: 10.1039/C2CS35369E – ident: e_1_2_7_36_1 doi: 10.1002/aenm.201701110 – ident: e_1_2_7_79_1 doi: 10.1021/acsami.6b14440 – ident: e_1_2_7_2_1 doi: 10.1021/cr020730k – ident: e_1_2_7_96_1 doi: 10.1016/j.nanoen.2015.03.001 – ident: e_1_2_7_34_1 doi: 10.1039/C5TA04721H – ident: e_1_2_7_9_1 doi: 10.1002/adma.201501452 – ident: e_1_2_7_97_1 doi: 10.1039/C7TA07088H – ident: e_1_2_7_28_1 doi: 10.1038/ncomms13432 – ident: e_1_2_7_45_1 doi: 10.1016/j.micromeso.2017.03.019 – ident: e_1_2_7_22_1 doi: 10.1016/j.nanoen.2015.10.038 – ident: e_1_2_7_38_1 doi: 10.1002/chem.201504672 – ident: e_1_2_7_4_1 doi: 10.1039/C6EE00158K – ident: e_1_2_7_47_1 doi: 10.1002/aenm.201401761 – ident: e_1_2_7_65_1 doi: 10.1002/adma.201402322 – ident: e_1_2_7_67_1 doi: 10.1002/anie.201701252 – ident: e_1_2_7_68_1 doi: 10.1039/C7TA01362K – ident: e_1_2_7_12_1 doi: 10.1016/j.mattod.2017.06.002 – ident: e_1_2_7_16_1 doi: 10.1002/aenm.201500959 – ident: e_1_2_7_21_1 doi: 10.1002/chem.201605019 – ident: e_1_2_7_94_1 doi: 10.1002/adma.201702093 – ident: e_1_2_7_49_1 doi: 10.1039/C7TA00940B – ident: e_1_2_7_93_1 doi: 10.1021/cr5000915 – ident: e_1_2_7_33_1 doi: 10.1039/C6TA02570F – ident: e_1_2_7_57_1 doi: 10.1002/anie.201708732 – ident: e_1_2_7_1_1 doi: 10.1038/nmat2297 – ident: e_1_2_7_66_1 doi: 10.1039/C7CS00315C – ident: e_1_2_7_88_1 doi: 10.1016/j.nanoen.2015.03.027 – ident: e_1_2_7_44_1 doi: 10.1021/am506815f – ident: e_1_2_7_41_1 doi: 10.1016/j.nanoen.2017.09.041 – ident: e_1_2_7_46_1 doi: 10.1039/C5NR04768D – ident: e_1_2_7_85_1 doi: 10.1021/acs.chemmater.7b01947 – ident: e_1_2_7_19_1 doi: 10.1016/j.jpowsour.2015.11.006 – ident: e_1_2_7_64_1 doi: 10.1039/C6CS00426A – ident: e_1_2_7_63_1 doi: 10.1039/C5EE01985K – ident: e_1_2_7_31_1 doi: 10.1016/j.carbon.2015.02.054 – ident: e_1_2_7_23_1 doi: 10.1016/j.electacta.2014.12.169 – ident: e_1_2_7_56_1 doi: 10.1002/anie.201407629 – ident: e_1_2_7_18_1 doi: 10.1016/j.jpowsour.2014.12.102 – ident: e_1_2_7_14_1 doi: 10.1039/C6EE00815A – ident: e_1_2_7_83_1 doi: 10.1016/j.carbon.2017.01.070 – ident: e_1_2_7_69_1 doi: 10.1039/C6SC04903F – ident: e_1_2_7_17_1 doi: 10.1016/j.nanoen.2015.05.010 – ident: e_1_2_7_27_1 doi: 10.1021/acsnano.5b04821 – ident: e_1_2_7_60_1 doi: 10.1016/j.carbon.2016.10.025 – ident: e_1_2_7_62_1 doi: 10.1002/adma.201503816 – ident: e_1_2_7_43_1 doi: 10.1039/C6TA06337C – ident: e_1_2_7_74_1 doi: 10.1039/C7CC07002K – ident: e_1_2_7_84_1 doi: 10.1016/j.nanoen.2015.02.035 – ident: e_1_2_7_52_1 doi: 10.1126/science.aab3798 – ident: e_1_2_7_25_1 doi: 10.1016/j.micromeso.2017.05.044 – ident: e_1_2_7_39_1 doi: 10.1039/C4TA06614F – ident: e_1_2_7_70_1 doi: 10.1002/adma.201604898 – ident: e_1_2_7_56_2 doi: 10.1002/ange.201407629 – ident: e_1_2_7_37_1 doi: 10.1039/C5EE03149D – ident: e_1_2_7_75_1 doi: 10.1126/science.1132195 – ident: e_1_2_7_3_1 doi: 10.1002/smll.201702961 – ident: e_1_2_7_48_1 doi: 10.1002/adma.201604569 – ident: e_1_2_7_35_1 doi: 10.1002/aenm.201601111 – ident: e_1_2_7_54_1 doi: 10.1038/s41467-017-00575-8 – ident: e_1_2_7_32_1 doi: 10.1016/j.carbon.2015.05.040 – ident: e_1_2_7_73_1 doi: 10.1016/j.carbon.2017.02.057 – ident: e_1_2_7_6_1 doi: 10.1002/aenm.201702930 – ident: e_1_2_7_59_1 doi: 10.1016/j.electacta.2016.10.050 – ident: e_1_2_7_86_1 doi: 10.1021/acsami.7b07877 – ident: e_1_2_7_42_1 doi: 10.1016/j.nanoen.2015.11.038 – ident: e_1_2_7_89_1 doi: 10.1039/C6NJ02458K – ident: e_1_2_7_90_1 doi: 10.1016/j.carbon.2017.07.062 – ident: e_1_2_7_76_1 doi: 10.1002/adfm.201002094 – ident: e_1_2_7_55_1 doi: 10.1016/j.nanoen.2016.04.037 – ident: e_1_2_7_15_1 doi: 10.1039/C2CS35353A – ident: e_1_2_7_7_1 doi: 10.1039/C5EE03109E – ident: e_1_2_7_10_1 doi: 10.1021/ar300253f – ident: e_1_2_7_26_1 doi: 10.1016/j.jpowsour.2016.12.022 – ident: e_1_2_7_80_1 doi: 10.1039/c3ee41638k – ident: e_1_2_7_51_1 doi: 10.1039/C6TA09229B – ident: e_1_2_7_61_1 doi: 10.1002/adma.201603414 – ident: e_1_2_7_71_1 doi: 10.1021/ja511539a – ident: e_1_2_7_24_1 doi: 10.1039/C7TA07010A – ident: e_1_2_7_98_1 doi: 10.1002/aenm.201701336 – ident: e_1_2_7_67_2 doi: 10.1002/ange.201701252 – ident: e_1_2_7_30_1 doi: 10.1039/C4GC02185A – ident: e_1_2_7_99_1 doi: 10.1038/srep18966 – ident: e_1_2_7_57_2 doi: 10.1002/ange.201708732 – ident: e_1_2_7_8_1 doi: 10.1002/adma.200902812 – ident: e_1_2_7_29_1 doi: 10.1016/j.carbon.2015.05.056 – ident: e_1_2_7_77_1 doi: 10.1016/j.carbon.2016.11.050 – ident: e_1_2_7_53_1 doi: 10.1002/aenm.201502539 – ident: e_1_2_7_50_1 doi: 10.1039/C4TA06022A – ident: e_1_2_7_81_1 doi: 10.1021/acs.nanolett.5b00738 |
SSID | ssj0052098 |
Score | 2.5428507 |
SecondaryResourceType | review_article |
Snippet | Climate change and the energy crisis have promoted the rapid development of electrochemical energy‐storage devices. Owing to many intriguing physicochemical... The climate change and energy crisis promote the rapid development of electrochemical energy-storage devices. Of many intriguing physicochemical properties... Climate change and the energy crisis have promoted the rapid development of electrochemical energy-storage devices. Owing to many intriguing physicochemical... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1518 |
SubjectTerms | Carbon Chemistry Energy Energy storage graphene Lithium-ion batteries mesoporous materials Molecular chains nanostructures Organic chemistry Porous materials Storage batteries |
Title | Recent Advances in Porous Carbon Materials for Electrochemical Energy Storage |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fasia.201800553 https://www.ncbi.nlm.nih.gov/pubmed/29667345 https://www.proquest.com/docview/2057160210 https://www.proquest.com/docview/2027067879 |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELdge4CXiW8CAxkJiadAYzsffsxKq4HagbRW6ltkO45UaUpR173w13MXx0kKGxu8RK1jJdb9fjnf2XdnQt5bngiY2XmItbVCobgNM5nEwOWsKrXhmUoxd3h-lpwuxddVvOpzT5rskp3-aH5em1fyP6hCG-CKWbL_gGz3UGiA34AvXAFhuN4JY7D5cCs_d_v4TWTr980Wg1rHaqsB17nauXE00YQTd-SN8TUCJi7v7xzcbrUfEjT2x8C54E4Acd0u2PsxNWvwTk_M1npd9_TAphV0v7jaDJcUogxDn1oteDfFNVCYWQIQp22Ctx22NUfh9FqWD9nEBjoTbI5sMP-CQSGv1e2uVizmlmJEXobVw3g_i_md-7NvxXQ5mxWLyWpxnxwy8B5A_R3mJ59Ppn6KxtCfJkfSD95X8xyxT_vP37dW_nBB9j2axiRZPCJHrS9Bc0eMx-SerZ-QBx12T8ncEYR6gtB1TR1BqCMI7QhCgSD0N4JQRxDaEuQZWU4ni_Fp2J6fERoB00bIkrg0WpUjzuIsNVbFcSqwwqDkWjWmbylZJY0BpW71qAJXFDppAV-tNGB58-fkoN7U9iWhsRAs4gCN4lJEslTaRCJKrah0xXXCAxJ6ORWmLS6PZ5xcFK4sNitQrkUn14B86Pr_cGVVbux57MVetDS_hLsx-Pm4XBGQd91tEC7udqnaghwLXNVDUyyVAXnh4OpexSSedivigLAGv1vGUOTnX_Lu36u_j-g1edh_U8fkYLe9sm_AcN3pty0NfwFmIZPR |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recent+Advances+in+Porous+Carbon+Materials+for+Electrochemical+Energy+Storage&rft.jtitle=Chemistry%2C+an+Asian+journal&rft.au=Wang%2C+Libin&rft.au=Hu%2C+Xianluo&rft.date=2018-06-18&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1861-4728&rft.eissn=1861-471X&rft.volume=13&rft.issue=12&rft.spage=1518&rft.epage=1529&rft_id=info:doi/10.1002%2Fasia.201800553&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1861-4728&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1861-4728&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1861-4728&client=summon |