Columnar Lithium Metal Anodes
The rechargeable lithium metal anode is of utmost importance for high‐energy‐density batteries. Regulating the deposition/dissolution characteristics of Li metal is critical in both fundamental researches and practical applications. In contrast to gray Li deposits featured with dendritic and mossy m...
Saved in:
Published in | Angewandte Chemie International Edition Vol. 56; no. 45; pp. 14207 - 14211 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
06.11.2017
|
Edition | International ed. in English |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The rechargeable lithium metal anode is of utmost importance for high‐energy‐density batteries. Regulating the deposition/dissolution characteristics of Li metal is critical in both fundamental researches and practical applications. In contrast to gray Li deposits featured with dendritic and mossy morphologies, columnar and uniform Li is herein plated on lithium‐fluoride (LiF)‐protected copper (Cu) current collectors. The electrochemical properties strongly depended on the microscale morphologies of deposited Li, which were further embodied as macroscale colors. The as‐obtained ultrathin and columnar Li anodes contributed to stable cycling in working batteries with a dendrite‐free feature. This work deepens the fundamental understanding of the role of LiF in the nucleation/growth of Li and provides emerging approaches to stabilize rechargeable Li metal anodes.
Columnar Li deposition is obtained on uniform and dense nucleation sites formed by regulation of LiF. The obvious relation between microstructure and macroscale color provides an emerging descriptor to judge the uniformity of the deposited Li. Ultrathin and stable Li anodes are further developed to meet the intensive demand for high‐energy‐density batteries. |
---|---|
AbstractList | The rechargeable lithium metal anode is of utmost importance for high-energy-density batteries. Regulating the deposition/dissolution characteristics of Li metal is critical in both fundamental researches and practical applications. In contrast to gray Li deposits featured with dendritic and mossy morphologies, columnar and uniform Li is herein plated on lithium-fluoride (LiF)-protected copper (Cu) current collectors. The electrochemical properties strongly depended on the microscale morphologies of deposited Li, which were further embodied as macroscale colors. The as-obtained ultrathin and columnar Li anodes contributed to stable cycling in working batteries with a dendrite-free feature. This work deepens the fundamental understanding of the role of LiF in the nucleation/growth of Li and provides emerging approaches to stabilize rechargeable Li metal anodes. The rechargeable lithium metal anode is of utmost importance for high‐energy‐density batteries. Regulating the deposition/dissolution characteristics of Li metal is critical in both fundamental researches and practical applications. In contrast to gray Li deposits featured with dendritic and mossy morphologies, columnar and uniform Li is herein plated on lithium‐fluoride (LiF)‐protected copper (Cu) current collectors. The electrochemical properties strongly depended on the microscale morphologies of deposited Li, which were further embodied as macroscale colors. The as‐obtained ultrathin and columnar Li anodes contributed to stable cycling in working batteries with a dendrite‐free feature. This work deepens the fundamental understanding of the role of LiF in the nucleation/growth of Li and provides emerging approaches to stabilize rechargeable Li metal anodes. Columnar Li deposition is obtained on uniform and dense nucleation sites formed by regulation of LiF. The obvious relation between microstructure and macroscale color provides an emerging descriptor to judge the uniformity of the deposited Li. Ultrathin and stable Li anodes are further developed to meet the intensive demand for high‐energy‐density batteries. The rechargeable lithium metal anode is of utmost importance for high-energy-density batteries. Regulating the deposition/dissolution characteristics of Li metal is critical in both fundamental researches and practical applications. In contrast to gray Li deposits featured with dendritic and mossy morphologies, columnar and uniform Li is herein plated on lithium-fluoride (LiF)-protected copper (Cu) current collectors. The electrochemical properties strongly depended on the microscale morphologies of deposited Li, which were further embodied as macroscale colors. The as-obtained ultrathin and columnar Li anodes contributed to stable cycling in working batteries with a dendrite-free feature. This work deepens the fundamental understanding of the role of LiF in the nucleation/growth of Li and provides emerging approaches to stabilize rechargeable Li metal anodes.The rechargeable lithium metal anode is of utmost importance for high-energy-density batteries. Regulating the deposition/dissolution characteristics of Li metal is critical in both fundamental researches and practical applications. In contrast to gray Li deposits featured with dendritic and mossy morphologies, columnar and uniform Li is herein plated on lithium-fluoride (LiF)-protected copper (Cu) current collectors. The electrochemical properties strongly depended on the microscale morphologies of deposited Li, which were further embodied as macroscale colors. The as-obtained ultrathin and columnar Li anodes contributed to stable cycling in working batteries with a dendrite-free feature. This work deepens the fundamental understanding of the role of LiF in the nucleation/growth of Li and provides emerging approaches to stabilize rechargeable Li metal anodes. |
Author | Huang, Jia‐Qi Xu, Rui Zhang, Qiang Cheng, Xin‐Bing Zhang, Rui Peng, Hong‐Jie Zhang, Xue‐Qiang Chen, Xiang |
Author_xml | – sequence: 1 givenname: Xue‐Qiang surname: Zhang fullname: Zhang, Xue‐Qiang organization: Tsinghua University – sequence: 2 givenname: Xiang surname: Chen fullname: Chen, Xiang organization: Tsinghua University – sequence: 3 givenname: Rui surname: Xu fullname: Xu, Rui organization: Beijing Institute of Technology – sequence: 4 givenname: Xin‐Bing surname: Cheng fullname: Cheng, Xin‐Bing organization: Tsinghua University – sequence: 5 givenname: Hong‐Jie surname: Peng fullname: Peng, Hong‐Jie organization: Tsinghua University – sequence: 6 givenname: Rui surname: Zhang fullname: Zhang, Rui organization: Tsinghua University – sequence: 7 givenname: Jia‐Qi surname: Huang fullname: Huang, Jia‐Qi organization: Beijing Institute of Technology – sequence: 8 givenname: Qiang orcidid: 0000-0002-3929-1541 surname: Zhang fullname: Zhang, Qiang email: zhang-qiang@mails.tsinghua.edu.cn organization: Tsinghua University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28868626$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkM1LwzAYh4Mozk2v3pSBFy-defPZHseYOph60XNI2xQz2lSTFtl_b8bmhIF4et_D87wfvyE6dq0zCF0CngDG5E47ayYEg8QSZ_QInQEnkFAp6XHsGaWJTDkM0DCEVeTTFItTNIhVpIKIM3Q1a-u-cdqPl7Z7t30zfjKdrsdT15YmnKOTStfBXOzqCL3dz19nj8ny5WExmy6TgklBE6iEkYApLyinpSkyalhJSkMANE4Zk5XEaSU4yUrQZS7ylOWaA-BCi1wApSN0u5374dvP3oRONTYUpq61M20fFGSUMwwZIRG9OUBXbe9dvC5SnHMi4tORut5Rfd6YUn1422i_Vj-PR2CyBQrfhuBNtUcAq02yapOs2icbBXYgFLbTnW1d57Wt_9ayrfZla7P-Z4maPi_mv-435NuJnQ |
CitedBy_id | crossref_primary_10_1016_j_ensm_2019_09_007 crossref_primary_10_1016_j_jallcom_2021_162389 crossref_primary_10_1002_batt_201800118 crossref_primary_10_1002_pssa_202000682 crossref_primary_10_1149_2_0111801jes crossref_primary_10_1021_acsnano_3c09849 crossref_primary_10_1016_j_ensm_2024_103295 crossref_primary_10_1021_acs_chemrev_0c00275 crossref_primary_10_1039_D0TA06020H crossref_primary_10_1002_ange_202106788 crossref_primary_10_1021_acs_jpcc_8b06650 crossref_primary_10_1002_anie_202300943 crossref_primary_10_1021_acsami_1c01476 crossref_primary_10_1016_j_ensm_2018_04_024 crossref_primary_10_1002_ange_201808714 crossref_primary_10_1007_s11426_017_9164_2 crossref_primary_10_1016_j_mtphys_2022_100672 crossref_primary_10_1002_smll_202001784 crossref_primary_10_1016_j_jechem_2020_03_059 crossref_primary_10_1039_D2CS00606E crossref_primary_10_1002_ange_201801513 crossref_primary_10_1016_j_ceramint_2018_09_287 crossref_primary_10_1021_acsaem_8b00821 crossref_primary_10_1016_j_ensm_2018_04_032 crossref_primary_10_1021_acssuschemeng_3c04714 crossref_primary_10_1002_adma_201901662 crossref_primary_10_1002_adma_202004128 crossref_primary_10_1002_aenm_202202518 crossref_primary_10_1021_acs_chemrev_0c01100 crossref_primary_10_1002_ange_201814031 crossref_primary_10_1016_j_chempr_2018_11_005 crossref_primary_10_1002_aenm_201800650 crossref_primary_10_1002_anie_201811291 crossref_primary_10_1007_s12274_022_5136_2 crossref_primary_10_1016_j_jechem_2022_12_060 crossref_primary_10_1016_j_nanoen_2023_109027 crossref_primary_10_1016_j_ensm_2018_04_001 crossref_primary_10_1016_j_ensm_2019_06_014 crossref_primary_10_1039_D1TA04741H crossref_primary_10_1021_acsenergylett_1c01977 crossref_primary_10_1016_j_est_2024_113439 crossref_primary_10_1002_adma_202000316 crossref_primary_10_1021_acsaem_2c02756 crossref_primary_10_3389_fenrg_2019_00115 crossref_primary_10_1016_j_ensm_2023_03_017 crossref_primary_10_1021_acsami_9b00507 crossref_primary_10_1021_acsaem_9b01416 crossref_primary_10_1039_C9CS00883G crossref_primary_10_1021_acs_nanolett_2c02484 crossref_primary_10_1039_D0TA03774E crossref_primary_10_1021_acsami_9b18703 crossref_primary_10_1021_jacs_8b13297 crossref_primary_10_1016_j_mattod_2022_01_015 crossref_primary_10_1002_ente_201901463 crossref_primary_10_1007_s41918_022_00158_2 crossref_primary_10_1007_s40242_020_9110_9 crossref_primary_10_1002_anie_201911229 crossref_primary_10_1515_ntrev_2020_0120 crossref_primary_10_1016_j_electacta_2019_03_162 crossref_primary_10_3390_batteries9030149 crossref_primary_10_1016_j_ensm_2019_05_019 crossref_primary_10_1016_j_ensm_2017_11_003 crossref_primary_10_1039_D4EE05862C crossref_primary_10_1016_j_ensm_2017_12_002 crossref_primary_10_1016_j_ensm_2018_03_001 crossref_primary_10_1038_s41467_023_38493_7 crossref_primary_10_1149_1945_7111_acd587 crossref_primary_10_1038_s41560_023_01202_1 crossref_primary_10_1002_aenm_202100046 crossref_primary_10_1021_acsami_8b13506 crossref_primary_10_1016_j_pmatsci_2022_100996 crossref_primary_10_1021_acs_nanolett_3c03321 crossref_primary_10_1002_aenm_201802912 crossref_primary_10_1002_adfm_202103522 crossref_primary_10_1016_j_ssi_2018_09_019 crossref_primary_10_1021_acsami_3c06456 crossref_primary_10_1007_s41918_018_0010_3 crossref_primary_10_1039_C9TA08312J crossref_primary_10_1016_j_elecom_2017_12_012 crossref_primary_10_1021_acsaem_2c03528 crossref_primary_10_1002_chem_202400424 crossref_primary_10_1016_j_cej_2019_04_068 crossref_primary_10_1002_smm2_1061 crossref_primary_10_1002_admi_201701097 crossref_primary_10_1002_ange_201911229 crossref_primary_10_1016_j_jechem_2020_11_016 crossref_primary_10_1126_sciadv_aar4410 crossref_primary_10_1002_adma_202300350 crossref_primary_10_1149_1945_7111_acef5e crossref_primary_10_1007_s11426_023_1827_0 crossref_primary_10_1016_j_nanoen_2020_104486 crossref_primary_10_1039_D0TA04302H crossref_primary_10_1016_j_joule_2019_09_022 crossref_primary_10_1016_j_cej_2020_126508 crossref_primary_10_1016_j_mattod_2018_04_007 crossref_primary_10_1016_j_trechm_2020_10_008 crossref_primary_10_1021_acsaem_1c01174 crossref_primary_10_1021_acs_chemrev_3c00826 crossref_primary_10_1002_adfm_201909887 crossref_primary_10_1021_acsami_8b10016 crossref_primary_10_1002_asia_201901668 crossref_primary_10_1002_aenm_202303088 crossref_primary_10_1021_acsami_4c02563 crossref_primary_10_1039_D2CC06174K crossref_primary_10_1002_batt_202000225 crossref_primary_10_1002_adfm_202110347 crossref_primary_10_1002_adfm_202205393 crossref_primary_10_1039_D0EE00694G crossref_primary_10_1007_s11426_019_9519_9 crossref_primary_10_1002_admt_202400116 crossref_primary_10_1021_acs_nanolett_8b03070 crossref_primary_10_1021_acs_jpcc_0c07695 crossref_primary_10_1002_eom2_12269 crossref_primary_10_1016_j_jechem_2018_11_016 crossref_primary_10_1002_aenm_202002360 crossref_primary_10_1016_j_cclet_2023_109274 crossref_primary_10_1002_adfm_202109378 crossref_primary_10_1039_C9TA04240G crossref_primary_10_1002_nano_202000003 crossref_primary_10_1016_j_jechem_2020_01_013 crossref_primary_10_1016_j_electacta_2018_09_120 crossref_primary_10_1007_s12274_024_6853_5 crossref_primary_10_1021_acsaem_1c00615 crossref_primary_10_1007_s43207_023_00293_6 crossref_primary_10_1021_acs_chemrev_9b00545 crossref_primary_10_1002_anie_201801513 crossref_primary_10_1021_acs_jpcc_8b02314 crossref_primary_10_1002_adfm_202104930 crossref_primary_10_1021_acsenergylett_3c00505 crossref_primary_10_1073_pnas_1911017116 crossref_primary_10_1016_j_ensm_2020_11_022 crossref_primary_10_1039_C8TA00343B crossref_primary_10_1002_eem2_12355 crossref_primary_10_1021_acs_jpclett_7b03165 crossref_primary_10_1021_acsenergylett_0c00257 crossref_primary_10_1016_j_matlet_2023_135449 crossref_primary_10_1016_j_ceramint_2023_06_153 crossref_primary_10_1002_smll_202301523 crossref_primary_10_1021_acs_jpcc_4c04588 crossref_primary_10_1002_ange_201811291 crossref_primary_10_1002_anie_202106788 crossref_primary_10_1016_j_fmre_2022_11_005 crossref_primary_10_1039_D0CS01017K crossref_primary_10_1021_acsami_2c18752 crossref_primary_10_1021_acs_chemmater_9b04385 crossref_primary_10_1002_anie_201814031 crossref_primary_10_3389_fenrg_2019_00071 crossref_primary_10_1002_anie_201808714 crossref_primary_10_1002_batt_202000258 crossref_primary_10_1002_admi_202000154 crossref_primary_10_1016_j_ensm_2021_11_037 crossref_primary_10_1016_j_cclet_2017_11_039 crossref_primary_10_1016_j_jpowsour_2019_227073 crossref_primary_10_1002_admt_201900806 crossref_primary_10_1016_j_ensm_2018_05_021 crossref_primary_10_1016_j_ensm_2019_03_029 crossref_primary_10_1002_adma_201804461 crossref_primary_10_1039_D0MH01167C crossref_primary_10_1016_j_cej_2022_135827 crossref_primary_10_1002_ange_202309622 crossref_primary_10_1002_smll_202208095 crossref_primary_10_1016_j_joule_2018_02_001 crossref_primary_10_1021_acsami_9b19655 crossref_primary_10_1149_1945_7111_acb66c crossref_primary_10_1016_j_electacta_2022_140286 crossref_primary_10_1016_j_jpowsour_2024_234571 crossref_primary_10_1002_adfm_202300980 crossref_primary_10_1002_smtd_201800551 crossref_primary_10_1002_adfm_201805638 crossref_primary_10_1002_adma_201707629 crossref_primary_10_20517_energymater_2023_61 crossref_primary_10_1002_ange_202300943 crossref_primary_10_1016_j_electacta_2021_139561 crossref_primary_10_1021_acs_nanolett_2c00338 crossref_primary_10_1002_anie_202309622 crossref_primary_10_1007_s40843_019_1277_3 crossref_primary_10_1021_acsnano_3c09120 crossref_primary_10_1039_D1TA09481E crossref_primary_10_1016_j_ensm_2022_10_054 crossref_primary_10_1016_j_jpowsour_2025_236346 crossref_primary_10_1016_j_ensm_2018_05_009 crossref_primary_10_1149_2_0151915jes crossref_primary_10_1016_j_ensm_2018_05_005 crossref_primary_10_1016_j_gee_2022_08_002 crossref_primary_10_1016_j_jechem_2020_08_044 crossref_primary_10_1016_j_eng_2018_10_008 crossref_primary_10_1002_ange_202407315 crossref_primary_10_1149_1945_7111_ac0d6a crossref_primary_10_1016_j_jcis_2024_04_142 crossref_primary_10_1039_D4TA07087A crossref_primary_10_1016_j_electacta_2018_09_165 crossref_primary_10_1021_acsaem_1c02158 crossref_primary_10_1039_D4EE00710G crossref_primary_10_1021_acsomega_7b01501 crossref_primary_10_1007_s12598_018_1049_3 crossref_primary_10_1002_adma_201805334 crossref_primary_10_1016_j_jechem_2021_10_003 crossref_primary_10_1016_j_jpowsour_2020_227977 crossref_primary_10_1002_aenm_202003746 crossref_primary_10_1002_ente_202000348 crossref_primary_10_1016_j_ensm_2018_05_014 crossref_primary_10_1007_s41918_018_0015_y crossref_primary_10_1039_D2CC04504D crossref_primary_10_1002_anie_202407315 crossref_primary_10_1038_s41467_023_36568_z crossref_primary_10_1021_acsami_8b05288 |
Cites_doi | 10.1021/jacs.6b05341 10.1002/ange.200390204 10.1002/adma.201602704 10.1149/2.100310jes 10.1038/451652a 10.1039/C3EE40795K 10.1016/j.aca.2011.11.056 10.1038/nmat4041 10.1002/adma.201700007 10.1016/j.chempr.2016.07.009 10.1021/acsenergylett.7b00300 10.1021/nl5039117 10.1002/aenm.201300815 10.1002/adma.201601409 10.1002/ange.201702099 10.1021/ja312241y 10.1038/ncomms9058 10.1038/ncomms10992 10.1002/advs.201600400 10.1002/adma.201605531 10.1021/acsenergylett.7b00164 10.1038/nenergy.2016.114 10.1016/j.nanoen.2015.04.009 10.1021/ja502133j 10.1002/advs.201500213 10.1016/S0378-7753(00)00431-6 10.1002/adma.201201953 10.1016/j.ensm.2016.01.007 10.1002/aenm.201700260 10.1038/ncomms7362 10.1016/j.ensm.2017.06.004 10.1038/nmat4834 10.1021/jacs.6b13314 10.1038/nnano.2017.16 10.1021/acs.chemrev.7b00115 10.1021/ja3091438 10.1038/nmat4821 10.1016/j.chempr.2017.01.003 10.1038/35104644 10.1021/cr500003w 10.1002/adma.201504117 10.1002/anie.200390235 10.1002/adma.201504526 10.1002/adfm.201605989 10.1021/jacs.6b08730 10.1021/acs.nanolett.7b01020 10.1039/C7CS00139H 10.1038/nnano.2014.152 10.1002/adma.201506124 10.1002/adma.201501490 10.1002/anie.201702099 10.1002/adma.201606042 10.1021/acs.nanolett.6b04755 10.1002/aenm.201600811 |
ContentType | Journal Article |
Copyright | 2017 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: 2017 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. – notice: 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | AAYXX CITATION NPM 7TM K9. 7X8 |
DOI | 10.1002/anie.201707093 |
DatabaseName | CrossRef PubMed Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed ProQuest Health & Medical Complete (Alumni) Nucleic Acids Abstracts MEDLINE - Academic |
DatabaseTitleList | PubMed ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3773 |
Edition | International ed. in English |
EndPage | 14211 |
ExternalDocumentID | 28868626 10_1002_anie_201707093 ANIE201707093 |
Genre | shortCommunication Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Natural Scientific Foundation of China funderid: 21676160 – fundername: Tsinghua National Laboratory for Information Science and Technology – fundername: National Key Research and Development Program funderid: 2016YFA0202500 and 2015CB932500 |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABLJU ABPPZ ABPVW ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BTSUX BY8 CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS EJD F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M53 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ TN5 UB1 UPT V2E VQA W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XSW XV2 YZZ ZZTAW ~IA ~KM ~WT AAYXX ABDBF ABJNI AETEA AEYWJ AGHNM AGYGG CITATION NPM YIN 7TM K9. 7X8 |
ID | FETCH-LOGICAL-c4763-1f6e71035c353dec93e4d2de211a08447f708f6529d1adb6b84ba5110ca6b6133 |
IEDL.DBID | DR2 |
ISSN | 1433-7851 1521-3773 |
IngestDate | Fri Jul 11 08:04:46 EDT 2025 Sun Jul 13 05:23:31 EDT 2025 Wed Feb 19 02:32:26 EST 2025 Thu Apr 24 22:58:02 EDT 2025 Tue Jul 01 02:26:10 EDT 2025 Wed Jan 22 16:22:09 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 45 |
Keywords | dendrites lithium fluoride nucleation lithium deposition electrochemistry |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4763-1f6e71035c353dec93e4d2de211a08447f708f6529d1adb6b84ba5110ca6b6133 |
Notes | These authors contributed equally to this work. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-3929-1541 |
PMID | 28868626 |
PQID | 1955526433 |
PQPubID | 946352 |
PageCount | 5 |
ParticipantIDs | proquest_miscellaneous_1935401922 proquest_journals_1955526433 pubmed_primary_28868626 crossref_primary_10_1002_anie_201707093 crossref_citationtrail_10_1002_anie_201707093 wiley_primary_10_1002_anie_201707093_ANIE201707093 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | November 6, 2017 |
PublicationDateYYYYMMDD | 2017-11-06 |
PublicationDate_xml | – month: 11 year: 2017 text: November 6, 2017 day: 06 |
PublicationDecade | 2010 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Angewandte Chemie International Edition |
PublicationTitleAlternate | Angew Chem Int Ed Engl |
PublicationYear | 2017 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2008 2016 2017 2017; 451 16 7 46 2014 2015 2016 2016 2017 2016 2016 2016; 4 6 7 28 9 1 28 28 2015; 15 2001 2013 2017 2017; 414 135 29 117 2017; 2 2016; 1 2017; 17 2014 2015 2017 2017; 13 27 17 27 2014 2017 2016 2014 2017 2016 2017; 136 16 28 9 139 138 29 2014; 14 2003 2003; 42 115 2016 2016 2012; 138 28 24 2017 2017; 56 129 2014; 7 2000 2014 2017 2015 2017 2013 2016 2016 2017 2017; 89 114 2 6 4 135 3 3 29 2 2013; 160 2012; 714 2017 2016; 12 6 e_1_2_2_2_3 e_1_2_2_4_1 e_1_2_2_2_4 e_1_2_2_4_2 e_1_2_2_6_1 e_1_2_2_6_2 e_1_2_2_2_1 e_1_2_2_2_2 e_1_2_2_6_7 e_1_2_2_6_8 e_1_2_2_6_9 e_1_2_2_6_3 e_1_2_2_8_2 e_1_2_2_6_4 e_1_2_2_8_1 e_1_2_2_6_5 e_1_2_2_6_6 e_1_2_2_8_3 e_1_2_2_13_1 e_1_2_2_11_1 e_1_2_2_17_1 e_1_2_2_15_2 e_1_2_2_15_1 e_1_2_2_6_10 e_1_2_2_1_4 e_1_2_2_5_1 e_1_2_2_7_1 e_1_2_2_1_1 e_1_2_2_1_2 e_1_2_2_1_3 e_1_2_2_3_1 e_1_2_2_7_6 e_1_2_2_9_5 e_1_2_2_7_7 e_1_2_2_9_4 e_1_2_2_9_7 e_1_2_2_9_6 e_1_2_2_7_2 e_1_2_2_9_1 e_1_2_2_7_3 e_1_2_2_7_4 e_1_2_2_9_3 e_1_2_2_7_5 e_1_2_2_9_2 e_1_2_2_9_8 e_1_2_2_14_1 e_1_2_2_10_4 e_1_2_2_12_2 e_1_2_2_10_3 e_1_2_2_12_1 e_1_2_2_10_2 e_1_2_2_10_1 e_1_2_2_18_1 e_1_2_2_16_1 |
References_xml | – volume: 1 start-page: 16114 year: 2016 publication-title: Nat. Energy – volume: 17 start-page: 1132 year: 2017 publication-title: Nano Lett. – volume: 414 135 29 117 start-page: 359 1167 1700007 10403 year: 2001 2013 2017 2017 publication-title: Nature J. Am. Chem. Soc. Adv. Mater. Chem. Rev. – volume: 56 129 start-page: 7764 7872 year: 2017 2017 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 12 6 start-page: 194 1600811 year: 2017 2016 publication-title: Nat. Nanotechnol. Adv. Energy Mater. – volume: 42 115 start-page: 894 922 year: 2003 2003 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 14 start-page: 6889 year: 2014 publication-title: Nano Lett. – volume: 451 16 7 46 start-page: 652 16 1700260 5237 year: 2008 2016 2017 2017 publication-title: Nature Nat. Mater. Adv. Energy Mater. Chem. Soc. Rev. – volume: 136 16 28 9 139 138 29 start-page: 7395 572 1853 618 4815 9385 1606042 year: 2014 2017 2016 2014 2017 2016 2017 publication-title: J. Am. Chem. Soc. Nat. Mater. Adv. Mater. Nat. Nanotechnol. J. Am. Chem. Soc. J. Am. Chem. Soc. Adv. Mater. – volume: 4 6 7 28 9 1 28 28 start-page: 1300815 8058 10992 2155 31 287 6932 9094 year: 2014 2015 2016 2016 2017 2016 2016 2016 publication-title: Adv. Energy Mater. Nat. Commun. Nat. Commun. Adv. Mater. Energy Storage Mater. Chem Adv. Mater. Adv. Mater. – volume: 714 start-page: 121 year: 2012 publication-title: Anal. Chim. Acta – volume: 15 start-page: 135 year: 2015 publication-title: Nano Energy – volume: 2 start-page: 795 year: 2017 publication-title: ACS Energy Lett. – volume: 138 28 24 start-page: 15443 2888 4430 year: 2016 2016 2012 publication-title: J. Am. Chem. Soc. Adv. Mater. Adv. Mater. – volume: 13 27 17 27 start-page: 961 5241 3731 1605989 year: 2014 2015 2017 2017 publication-title: Nat. Mater. Adv. Mater. Nano Lett. Adv. Funct. Mater. – volume: 160 start-page: 1894 year: 2013 publication-title: J. Electrochem. Soc. – volume: 89 114 2 6 4 135 3 3 29 2 start-page: 206 11503 258 6362 1600400 4450 1500213 77 1605531 1321 year: 2000 2014 2017 2015 2017 2013 2016 2016 2017 2017 publication-title: J. Power Sources Chem. Rev. Chem Nat. Commun. Adv. Sci. J. Am. Chem. Soc. Adv. Sci. Energy Storage Mater. Adv. Mater. ACS Energy Lett. – volume: 7 start-page: 513 year: 2014 publication-title: Energy Environ. Sci. – ident: e_1_2_2_7_6 doi: 10.1021/jacs.6b05341 – ident: e_1_2_2_15_2 doi: 10.1002/ange.200390204 – ident: e_1_2_2_9_8 doi: 10.1002/adma.201602704 – ident: e_1_2_2_17_1 doi: 10.1149/2.100310jes – ident: e_1_2_2_1_1 doi: 10.1038/451652a – ident: e_1_2_2_3_1 doi: 10.1039/C3EE40795K – ident: e_1_2_2_11_1 doi: 10.1016/j.aca.2011.11.056 – ident: e_1_2_2_10_1 doi: 10.1038/nmat4041 – ident: e_1_2_2_2_3 doi: 10.1002/adma.201700007 – ident: e_1_2_2_9_6 doi: 10.1016/j.chempr.2016.07.009 – ident: e_1_2_2_6_10 doi: 10.1021/acsenergylett.7b00300 – ident: e_1_2_2_16_1 doi: 10.1021/nl5039117 – ident: e_1_2_2_9_1 doi: 10.1002/aenm.201300815 – ident: e_1_2_2_9_7 doi: 10.1002/adma.201601409 – ident: e_1_2_2_12_2 doi: 10.1002/ange.201702099 – ident: e_1_2_2_6_6 doi: 10.1021/ja312241y – ident: e_1_2_2_9_2 doi: 10.1038/ncomms9058 – ident: e_1_2_2_9_3 doi: 10.1038/ncomms10992 – ident: e_1_2_2_6_5 doi: 10.1002/advs.201600400 – ident: e_1_2_2_6_9 doi: 10.1002/adma.201605531 – ident: e_1_2_2_13_1 doi: 10.1021/acsenergylett.7b00164 – ident: e_1_2_2_14_1 doi: 10.1038/nenergy.2016.114 – ident: e_1_2_2_18_1 doi: 10.1016/j.nanoen.2015.04.009 – ident: e_1_2_2_7_1 doi: 10.1021/ja502133j – ident: e_1_2_2_6_7 doi: 10.1002/advs.201500213 – ident: e_1_2_2_6_1 doi: 10.1016/S0378-7753(00)00431-6 – ident: e_1_2_2_8_3 doi: 10.1002/adma.201201953 – ident: e_1_2_2_6_8 doi: 10.1016/j.ensm.2016.01.007 – ident: e_1_2_2_1_3 doi: 10.1002/aenm.201700260 – ident: e_1_2_2_6_4 doi: 10.1038/ncomms7362 – ident: e_1_2_2_9_5 doi: 10.1016/j.ensm.2017.06.004 – ident: e_1_2_2_1_2 doi: 10.1038/nmat4834 – ident: e_1_2_2_7_5 doi: 10.1021/jacs.6b13314 – ident: e_1_2_2_4_1 doi: 10.1038/nnano.2017.16 – ident: e_1_2_2_2_4 doi: 10.1021/acs.chemrev.7b00115 – ident: e_1_2_2_2_2 doi: 10.1021/ja3091438 – ident: e_1_2_2_7_2 doi: 10.1038/nmat4821 – ident: e_1_2_2_6_3 doi: 10.1016/j.chempr.2017.01.003 – ident: e_1_2_2_2_1 doi: 10.1038/35104644 – ident: e_1_2_2_6_2 doi: 10.1021/cr500003w – ident: e_1_2_2_9_4 doi: 10.1002/adma.201504117 – ident: e_1_2_2_15_1 doi: 10.1002/anie.200390235 – ident: e_1_2_2_7_3 doi: 10.1002/adma.201504526 – ident: e_1_2_2_10_4 doi: 10.1002/adfm.201605989 – ident: e_1_2_2_8_1 doi: 10.1021/jacs.6b08730 – ident: e_1_2_2_10_3 doi: 10.1021/acs.nanolett.7b01020 – ident: e_1_2_2_1_4 doi: 10.1039/C7CS00139H – ident: e_1_2_2_7_4 doi: 10.1038/nnano.2014.152 – ident: e_1_2_2_8_2 doi: 10.1002/adma.201506124 – ident: e_1_2_2_10_2 doi: 10.1002/adma.201501490 – ident: e_1_2_2_12_1 doi: 10.1002/anie.201702099 – ident: e_1_2_2_7_7 doi: 10.1002/adma.201606042 – ident: e_1_2_2_5_1 doi: 10.1021/acs.nanolett.6b04755 – ident: e_1_2_2_4_2 doi: 10.1002/aenm.201600811 |
SSID | ssj0028806 |
Score | 2.624188 |
Snippet | The rechargeable lithium metal anode is of utmost importance for high‐energy‐density batteries. Regulating the deposition/dissolution characteristics of Li... The rechargeable lithium metal anode is of utmost importance for high-energy-density batteries. Regulating the deposition/dissolution characteristics of Li... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 14207 |
SubjectTerms | Accumulators Anodes Anodic dissolution Copper dendrites Dendritic structure Dissolution Electrochemical analysis Electrochemistry Fluorides Lithium lithium deposition lithium fluoride Metals nucleation Rechargeable batteries |
Title | Columnar Lithium Metal Anodes |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.201707093 https://www.ncbi.nlm.nih.gov/pubmed/28868626 https://www.proquest.com/docview/1955526433 https://www.proquest.com/docview/1935401922 |
Volume | 56 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS8MwFA_iRS9-f1Q3qSB46pa2Sdocx9iY4nYQB7uVJE1xqJ1s7cW_3rx-6RQR9NaShOYlLy-_pO_9HkJXNODA62SOJWY3dAiVoSNEKJ0Y_IU4pqGrIXZ4PGGjKbmd0dmnKP6SH6K5cIOVUdhrWOBCrrofpKEQgQ2uWYFRWg50n-CwBajovuGP8oxyluFFvu9AFvqatRF73fXm67vSN6i5jlyLrWe4i0Td6dLj5KmTZ7Kj3r7wOf5Hqj20U-FSu1cq0j7a0OkB2urX6eAOUbsPdiwVS_tunj3O8xd7rDNokS5ivTpC0-HgoT9yqtwKjiLGpDhuwrQBFz5VPvVjrbivSezF2pwHBQ4JCZIAhwmjHo9dEUsmQyKFAWdYCSYNBPCP0Wa6SPUpst2ECrBVFEtGhMI8wUnAsOCUiDBW1EJOPbaRqojHIf_Fc1RSJnsRCB01Qlvouqn_WlJu_FizVU9VVC29VeRySqmBeb4pvmyKzWDBnxCR6kUOdeC6y4Bbz0In5RQ3nzJKA1EzzEJeMVG_9CHqTW4GzdvZXxqdo214LiIcWQttZstctw3UyeRFoc7vyNbwmg |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8JAEJ4oHvTi-4GiYmLiqbjtPtoeCUpAgYOBxFuz224jUYuBcvHXu9PSGjTGRI_t7qb7mJ39djrzDcAld33kdTLXEnMaWowrz5LSU1aE_kI-4Z6tMXa4PxCdEbt75IU3IcbC5PwQpcENd0amr3GDo0H6-pM1FEOw0TfLNVLr01VYw7TeSJ9_81AySDlGPPMAI0otzENf8DYS53q5_fK59A1sLmPX7PBpb4Equp37nDw35qlqhO9fGB3_Na5t2FxA03ozl6UdWNHJLqy3ioxwe3DaQlWWyGm9N06fxvPXel-n2CKZRHq2D6P27bDVsRbpFayQGa1i2bHQBl9QHlJOIx36VLPIibS5EkriMebGLvFiwR0_smWkhPKYkgafkVAKZVAAPYBKMkn0EdTtmEtUV5wowWRI_JjEriDS50x6UcirYBWTG4QL7nFMgfES5KzJToCDDspBV-GqrP-Ws278WLNWrFWw2H2zwPY55wbpUVN8URabycKfITLRkznWQYuXwbdOFQ7zNS4_ZaQGA2dEFZxspX7pQ9AcdG_Lp-O_NDqH9c6w3wt63cH9CWzg-yzgUdSgkk7n-tQgn1SdZbL9Ae4z9LY |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ZS8QwEB50BfXF-1jPFQSfqmlztHmU1cVzEVHwrSRNiqJ2xe2--OvNtNvqKiLoY5sMzTEz-ZJmvgHY5aFEXie3LXGroce4jjylIu0ZvC8kCY98i7HDl11xcsvO7vjdpyj-kh-iPnBDyyj8NRr4i0kPPkhDMQIbr2aFTmklHYcJJojE5A1H1zWBVOC0s4wvotTDNPQVbSMJDkblR5elb1hzFLoWa09nFlTV6vLKyeP-INf7ydsXQsf_dGsOZobAtHVYatI8jNlsAabaVT64RdhsoyPL1Gvr4iG_fxg8ty5tjhJZz9j-Etx2jm_aJ94wuYKXMOdTPD8V1qELyhPKqbGJpJaZwFi3IVQkYixMQxKlggfS-MpooSOmlUNnJFFCOwxAl6GR9TK7Ci0_5QqdFSdaMJUQmZI0FERJzlRkEt4ErxrbOBkyj2MCjKe45EwOYux0XHe6CXt1_ZeSc-PHmhvVVMVD2-vHvuScO5xHXfFOXewGC3-FqMz2BlgHz7scug2asFJOcf0ppzQYNiOaEBQT9Usb4sPu6XH9tPYXoW2YvDrqxBen3fN1mMbXRbSj2IBG_jqwmw725Hqr0Ox3CJfzZQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Columnar+Lithium+Metal+Anodes&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Zhang%2C+Xue%E2%80%90Qiang&rft.au=Chen%2C+Xiang&rft.au=Xu%2C+Rui&rft.au=Cheng%2C+Xin%E2%80%90Bing&rft.date=2017-11-06&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=56&rft.issue=45&rft.spage=14207&rft.epage=14211&rft_id=info:doi/10.1002%2Fanie.201707093&rft.externalDBID=10.1002%252Fanie.201707093&rft.externalDocID=ANIE201707093 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon |