Columnar Lithium Metal Anodes

The rechargeable lithium metal anode is of utmost importance for high‐energy‐density batteries. Regulating the deposition/dissolution characteristics of Li metal is critical in both fundamental researches and practical applications. In contrast to gray Li deposits featured with dendritic and mossy m...

Full description

Saved in:
Bibliographic Details
Published inAngewandte Chemie International Edition Vol. 56; no. 45; pp. 14207 - 14211
Main Authors Zhang, Xue‐Qiang, Chen, Xiang, Xu, Rui, Cheng, Xin‐Bing, Peng, Hong‐Jie, Zhang, Rui, Huang, Jia‐Qi, Zhang, Qiang
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 06.11.2017
EditionInternational ed. in English
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The rechargeable lithium metal anode is of utmost importance for high‐energy‐density batteries. Regulating the deposition/dissolution characteristics of Li metal is critical in both fundamental researches and practical applications. In contrast to gray Li deposits featured with dendritic and mossy morphologies, columnar and uniform Li is herein plated on lithium‐fluoride (LiF)‐protected copper (Cu) current collectors. The electrochemical properties strongly depended on the microscale morphologies of deposited Li, which were further embodied as macroscale colors. The as‐obtained ultrathin and columnar Li anodes contributed to stable cycling in working batteries with a dendrite‐free feature. This work deepens the fundamental understanding of the role of LiF in the nucleation/growth of Li and provides emerging approaches to stabilize rechargeable Li metal anodes. Columnar Li deposition is obtained on uniform and dense nucleation sites formed by regulation of LiF. The obvious relation between microstructure and macroscale color provides an emerging descriptor to judge the uniformity of the deposited Li. Ultrathin and stable Li anodes are further developed to meet the intensive demand for high‐energy‐density batteries.
AbstractList The rechargeable lithium metal anode is of utmost importance for high-energy-density batteries. Regulating the deposition/dissolution characteristics of Li metal is critical in both fundamental researches and practical applications. In contrast to gray Li deposits featured with dendritic and mossy morphologies, columnar and uniform Li is herein plated on lithium-fluoride (LiF)-protected copper (Cu) current collectors. The electrochemical properties strongly depended on the microscale morphologies of deposited Li, which were further embodied as macroscale colors. The as-obtained ultrathin and columnar Li anodes contributed to stable cycling in working batteries with a dendrite-free feature. This work deepens the fundamental understanding of the role of LiF in the nucleation/growth of Li and provides emerging approaches to stabilize rechargeable Li metal anodes.
The rechargeable lithium metal anode is of utmost importance for high‐energy‐density batteries. Regulating the deposition/dissolution characteristics of Li metal is critical in both fundamental researches and practical applications. In contrast to gray Li deposits featured with dendritic and mossy morphologies, columnar and uniform Li is herein plated on lithium‐fluoride (LiF)‐protected copper (Cu) current collectors. The electrochemical properties strongly depended on the microscale morphologies of deposited Li, which were further embodied as macroscale colors. The as‐obtained ultrathin and columnar Li anodes contributed to stable cycling in working batteries with a dendrite‐free feature. This work deepens the fundamental understanding of the role of LiF in the nucleation/growth of Li and provides emerging approaches to stabilize rechargeable Li metal anodes. Columnar Li deposition is obtained on uniform and dense nucleation sites formed by regulation of LiF. The obvious relation between microstructure and macroscale color provides an emerging descriptor to judge the uniformity of the deposited Li. Ultrathin and stable Li anodes are further developed to meet the intensive demand for high‐energy‐density batteries.
The rechargeable lithium metal anode is of utmost importance for high-energy-density batteries. Regulating the deposition/dissolution characteristics of Li metal is critical in both fundamental researches and practical applications. In contrast to gray Li deposits featured with dendritic and mossy morphologies, columnar and uniform Li is herein plated on lithium-fluoride (LiF)-protected copper (Cu) current collectors. The electrochemical properties strongly depended on the microscale morphologies of deposited Li, which were further embodied as macroscale colors. The as-obtained ultrathin and columnar Li anodes contributed to stable cycling in working batteries with a dendrite-free feature. This work deepens the fundamental understanding of the role of LiF in the nucleation/growth of Li and provides emerging approaches to stabilize rechargeable Li metal anodes.The rechargeable lithium metal anode is of utmost importance for high-energy-density batteries. Regulating the deposition/dissolution characteristics of Li metal is critical in both fundamental researches and practical applications. In contrast to gray Li deposits featured with dendritic and mossy morphologies, columnar and uniform Li is herein plated on lithium-fluoride (LiF)-protected copper (Cu) current collectors. The electrochemical properties strongly depended on the microscale morphologies of deposited Li, which were further embodied as macroscale colors. The as-obtained ultrathin and columnar Li anodes contributed to stable cycling in working batteries with a dendrite-free feature. This work deepens the fundamental understanding of the role of LiF in the nucleation/growth of Li and provides emerging approaches to stabilize rechargeable Li metal anodes.
Author Huang, Jia‐Qi
Xu, Rui
Zhang, Qiang
Cheng, Xin‐Bing
Zhang, Rui
Peng, Hong‐Jie
Zhang, Xue‐Qiang
Chen, Xiang
Author_xml – sequence: 1
  givenname: Xue‐Qiang
  surname: Zhang
  fullname: Zhang, Xue‐Qiang
  organization: Tsinghua University
– sequence: 2
  givenname: Xiang
  surname: Chen
  fullname: Chen, Xiang
  organization: Tsinghua University
– sequence: 3
  givenname: Rui
  surname: Xu
  fullname: Xu, Rui
  organization: Beijing Institute of Technology
– sequence: 4
  givenname: Xin‐Bing
  surname: Cheng
  fullname: Cheng, Xin‐Bing
  organization: Tsinghua University
– sequence: 5
  givenname: Hong‐Jie
  surname: Peng
  fullname: Peng, Hong‐Jie
  organization: Tsinghua University
– sequence: 6
  givenname: Rui
  surname: Zhang
  fullname: Zhang, Rui
  organization: Tsinghua University
– sequence: 7
  givenname: Jia‐Qi
  surname: Huang
  fullname: Huang, Jia‐Qi
  organization: Beijing Institute of Technology
– sequence: 8
  givenname: Qiang
  orcidid: 0000-0002-3929-1541
  surname: Zhang
  fullname: Zhang, Qiang
  email: zhang-qiang@mails.tsinghua.edu.cn
  organization: Tsinghua University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28868626$$D View this record in MEDLINE/PubMed
BookMark eNqFkM1LwzAYh4Mozk2v3pSBFy-defPZHseYOph60XNI2xQz2lSTFtl_b8bmhIF4et_D87wfvyE6dq0zCF0CngDG5E47ayYEg8QSZ_QInQEnkFAp6XHsGaWJTDkM0DCEVeTTFItTNIhVpIKIM3Q1a-u-cdqPl7Z7t30zfjKdrsdT15YmnKOTStfBXOzqCL3dz19nj8ny5WExmy6TgklBE6iEkYApLyinpSkyalhJSkMANE4Zk5XEaSU4yUrQZS7ylOWaA-BCi1wApSN0u5374dvP3oRONTYUpq61M20fFGSUMwwZIRG9OUBXbe9dvC5SnHMi4tORut5Rfd6YUn1422i_Vj-PR2CyBQrfhuBNtUcAq02yapOs2icbBXYgFLbTnW1d57Wt_9ayrfZla7P-Z4maPi_mv-435NuJnQ
CitedBy_id crossref_primary_10_1016_j_ensm_2019_09_007
crossref_primary_10_1016_j_jallcom_2021_162389
crossref_primary_10_1002_batt_201800118
crossref_primary_10_1002_pssa_202000682
crossref_primary_10_1149_2_0111801jes
crossref_primary_10_1021_acsnano_3c09849
crossref_primary_10_1016_j_ensm_2024_103295
crossref_primary_10_1021_acs_chemrev_0c00275
crossref_primary_10_1039_D0TA06020H
crossref_primary_10_1002_ange_202106788
crossref_primary_10_1021_acs_jpcc_8b06650
crossref_primary_10_1002_anie_202300943
crossref_primary_10_1021_acsami_1c01476
crossref_primary_10_1016_j_ensm_2018_04_024
crossref_primary_10_1002_ange_201808714
crossref_primary_10_1007_s11426_017_9164_2
crossref_primary_10_1016_j_mtphys_2022_100672
crossref_primary_10_1002_smll_202001784
crossref_primary_10_1016_j_jechem_2020_03_059
crossref_primary_10_1039_D2CS00606E
crossref_primary_10_1002_ange_201801513
crossref_primary_10_1016_j_ceramint_2018_09_287
crossref_primary_10_1021_acsaem_8b00821
crossref_primary_10_1016_j_ensm_2018_04_032
crossref_primary_10_1021_acssuschemeng_3c04714
crossref_primary_10_1002_adma_201901662
crossref_primary_10_1002_adma_202004128
crossref_primary_10_1002_aenm_202202518
crossref_primary_10_1021_acs_chemrev_0c01100
crossref_primary_10_1002_ange_201814031
crossref_primary_10_1016_j_chempr_2018_11_005
crossref_primary_10_1002_aenm_201800650
crossref_primary_10_1002_anie_201811291
crossref_primary_10_1007_s12274_022_5136_2
crossref_primary_10_1016_j_jechem_2022_12_060
crossref_primary_10_1016_j_nanoen_2023_109027
crossref_primary_10_1016_j_ensm_2018_04_001
crossref_primary_10_1016_j_ensm_2019_06_014
crossref_primary_10_1039_D1TA04741H
crossref_primary_10_1021_acsenergylett_1c01977
crossref_primary_10_1016_j_est_2024_113439
crossref_primary_10_1002_adma_202000316
crossref_primary_10_1021_acsaem_2c02756
crossref_primary_10_3389_fenrg_2019_00115
crossref_primary_10_1016_j_ensm_2023_03_017
crossref_primary_10_1021_acsami_9b00507
crossref_primary_10_1021_acsaem_9b01416
crossref_primary_10_1039_C9CS00883G
crossref_primary_10_1021_acs_nanolett_2c02484
crossref_primary_10_1039_D0TA03774E
crossref_primary_10_1021_acsami_9b18703
crossref_primary_10_1021_jacs_8b13297
crossref_primary_10_1016_j_mattod_2022_01_015
crossref_primary_10_1002_ente_201901463
crossref_primary_10_1007_s41918_022_00158_2
crossref_primary_10_1007_s40242_020_9110_9
crossref_primary_10_1002_anie_201911229
crossref_primary_10_1515_ntrev_2020_0120
crossref_primary_10_1016_j_electacta_2019_03_162
crossref_primary_10_3390_batteries9030149
crossref_primary_10_1016_j_ensm_2019_05_019
crossref_primary_10_1016_j_ensm_2017_11_003
crossref_primary_10_1039_D4EE05862C
crossref_primary_10_1016_j_ensm_2017_12_002
crossref_primary_10_1016_j_ensm_2018_03_001
crossref_primary_10_1038_s41467_023_38493_7
crossref_primary_10_1149_1945_7111_acd587
crossref_primary_10_1038_s41560_023_01202_1
crossref_primary_10_1002_aenm_202100046
crossref_primary_10_1021_acsami_8b13506
crossref_primary_10_1016_j_pmatsci_2022_100996
crossref_primary_10_1021_acs_nanolett_3c03321
crossref_primary_10_1002_aenm_201802912
crossref_primary_10_1002_adfm_202103522
crossref_primary_10_1016_j_ssi_2018_09_019
crossref_primary_10_1021_acsami_3c06456
crossref_primary_10_1007_s41918_018_0010_3
crossref_primary_10_1039_C9TA08312J
crossref_primary_10_1016_j_elecom_2017_12_012
crossref_primary_10_1021_acsaem_2c03528
crossref_primary_10_1002_chem_202400424
crossref_primary_10_1016_j_cej_2019_04_068
crossref_primary_10_1002_smm2_1061
crossref_primary_10_1002_admi_201701097
crossref_primary_10_1002_ange_201911229
crossref_primary_10_1016_j_jechem_2020_11_016
crossref_primary_10_1126_sciadv_aar4410
crossref_primary_10_1002_adma_202300350
crossref_primary_10_1149_1945_7111_acef5e
crossref_primary_10_1007_s11426_023_1827_0
crossref_primary_10_1016_j_nanoen_2020_104486
crossref_primary_10_1039_D0TA04302H
crossref_primary_10_1016_j_joule_2019_09_022
crossref_primary_10_1016_j_cej_2020_126508
crossref_primary_10_1016_j_mattod_2018_04_007
crossref_primary_10_1016_j_trechm_2020_10_008
crossref_primary_10_1021_acsaem_1c01174
crossref_primary_10_1021_acs_chemrev_3c00826
crossref_primary_10_1002_adfm_201909887
crossref_primary_10_1021_acsami_8b10016
crossref_primary_10_1002_asia_201901668
crossref_primary_10_1002_aenm_202303088
crossref_primary_10_1021_acsami_4c02563
crossref_primary_10_1039_D2CC06174K
crossref_primary_10_1002_batt_202000225
crossref_primary_10_1002_adfm_202110347
crossref_primary_10_1002_adfm_202205393
crossref_primary_10_1039_D0EE00694G
crossref_primary_10_1007_s11426_019_9519_9
crossref_primary_10_1002_admt_202400116
crossref_primary_10_1021_acs_nanolett_8b03070
crossref_primary_10_1021_acs_jpcc_0c07695
crossref_primary_10_1002_eom2_12269
crossref_primary_10_1016_j_jechem_2018_11_016
crossref_primary_10_1002_aenm_202002360
crossref_primary_10_1016_j_cclet_2023_109274
crossref_primary_10_1002_adfm_202109378
crossref_primary_10_1039_C9TA04240G
crossref_primary_10_1002_nano_202000003
crossref_primary_10_1016_j_jechem_2020_01_013
crossref_primary_10_1016_j_electacta_2018_09_120
crossref_primary_10_1007_s12274_024_6853_5
crossref_primary_10_1021_acsaem_1c00615
crossref_primary_10_1007_s43207_023_00293_6
crossref_primary_10_1021_acs_chemrev_9b00545
crossref_primary_10_1002_anie_201801513
crossref_primary_10_1021_acs_jpcc_8b02314
crossref_primary_10_1002_adfm_202104930
crossref_primary_10_1021_acsenergylett_3c00505
crossref_primary_10_1073_pnas_1911017116
crossref_primary_10_1016_j_ensm_2020_11_022
crossref_primary_10_1039_C8TA00343B
crossref_primary_10_1002_eem2_12355
crossref_primary_10_1021_acs_jpclett_7b03165
crossref_primary_10_1021_acsenergylett_0c00257
crossref_primary_10_1016_j_matlet_2023_135449
crossref_primary_10_1016_j_ceramint_2023_06_153
crossref_primary_10_1002_smll_202301523
crossref_primary_10_1021_acs_jpcc_4c04588
crossref_primary_10_1002_ange_201811291
crossref_primary_10_1002_anie_202106788
crossref_primary_10_1016_j_fmre_2022_11_005
crossref_primary_10_1039_D0CS01017K
crossref_primary_10_1021_acsami_2c18752
crossref_primary_10_1021_acs_chemmater_9b04385
crossref_primary_10_1002_anie_201814031
crossref_primary_10_3389_fenrg_2019_00071
crossref_primary_10_1002_anie_201808714
crossref_primary_10_1002_batt_202000258
crossref_primary_10_1002_admi_202000154
crossref_primary_10_1016_j_ensm_2021_11_037
crossref_primary_10_1016_j_cclet_2017_11_039
crossref_primary_10_1016_j_jpowsour_2019_227073
crossref_primary_10_1002_admt_201900806
crossref_primary_10_1016_j_ensm_2018_05_021
crossref_primary_10_1016_j_ensm_2019_03_029
crossref_primary_10_1002_adma_201804461
crossref_primary_10_1039_D0MH01167C
crossref_primary_10_1016_j_cej_2022_135827
crossref_primary_10_1002_ange_202309622
crossref_primary_10_1002_smll_202208095
crossref_primary_10_1016_j_joule_2018_02_001
crossref_primary_10_1021_acsami_9b19655
crossref_primary_10_1149_1945_7111_acb66c
crossref_primary_10_1016_j_electacta_2022_140286
crossref_primary_10_1016_j_jpowsour_2024_234571
crossref_primary_10_1002_adfm_202300980
crossref_primary_10_1002_smtd_201800551
crossref_primary_10_1002_adfm_201805638
crossref_primary_10_1002_adma_201707629
crossref_primary_10_20517_energymater_2023_61
crossref_primary_10_1002_ange_202300943
crossref_primary_10_1016_j_electacta_2021_139561
crossref_primary_10_1021_acs_nanolett_2c00338
crossref_primary_10_1002_anie_202309622
crossref_primary_10_1007_s40843_019_1277_3
crossref_primary_10_1021_acsnano_3c09120
crossref_primary_10_1039_D1TA09481E
crossref_primary_10_1016_j_ensm_2022_10_054
crossref_primary_10_1016_j_jpowsour_2025_236346
crossref_primary_10_1016_j_ensm_2018_05_009
crossref_primary_10_1149_2_0151915jes
crossref_primary_10_1016_j_ensm_2018_05_005
crossref_primary_10_1016_j_gee_2022_08_002
crossref_primary_10_1016_j_jechem_2020_08_044
crossref_primary_10_1016_j_eng_2018_10_008
crossref_primary_10_1002_ange_202407315
crossref_primary_10_1149_1945_7111_ac0d6a
crossref_primary_10_1016_j_jcis_2024_04_142
crossref_primary_10_1039_D4TA07087A
crossref_primary_10_1016_j_electacta_2018_09_165
crossref_primary_10_1021_acsaem_1c02158
crossref_primary_10_1039_D4EE00710G
crossref_primary_10_1021_acsomega_7b01501
crossref_primary_10_1007_s12598_018_1049_3
crossref_primary_10_1002_adma_201805334
crossref_primary_10_1016_j_jechem_2021_10_003
crossref_primary_10_1016_j_jpowsour_2020_227977
crossref_primary_10_1002_aenm_202003746
crossref_primary_10_1002_ente_202000348
crossref_primary_10_1016_j_ensm_2018_05_014
crossref_primary_10_1007_s41918_018_0015_y
crossref_primary_10_1039_D2CC04504D
crossref_primary_10_1002_anie_202407315
crossref_primary_10_1038_s41467_023_36568_z
crossref_primary_10_1021_acsami_8b05288
Cites_doi 10.1021/jacs.6b05341
10.1002/ange.200390204
10.1002/adma.201602704
10.1149/2.100310jes
10.1038/451652a
10.1039/C3EE40795K
10.1016/j.aca.2011.11.056
10.1038/nmat4041
10.1002/adma.201700007
10.1016/j.chempr.2016.07.009
10.1021/acsenergylett.7b00300
10.1021/nl5039117
10.1002/aenm.201300815
10.1002/adma.201601409
10.1002/ange.201702099
10.1021/ja312241y
10.1038/ncomms9058
10.1038/ncomms10992
10.1002/advs.201600400
10.1002/adma.201605531
10.1021/acsenergylett.7b00164
10.1038/nenergy.2016.114
10.1016/j.nanoen.2015.04.009
10.1021/ja502133j
10.1002/advs.201500213
10.1016/S0378-7753(00)00431-6
10.1002/adma.201201953
10.1016/j.ensm.2016.01.007
10.1002/aenm.201700260
10.1038/ncomms7362
10.1016/j.ensm.2017.06.004
10.1038/nmat4834
10.1021/jacs.6b13314
10.1038/nnano.2017.16
10.1021/acs.chemrev.7b00115
10.1021/ja3091438
10.1038/nmat4821
10.1016/j.chempr.2017.01.003
10.1038/35104644
10.1021/cr500003w
10.1002/adma.201504117
10.1002/anie.200390235
10.1002/adma.201504526
10.1002/adfm.201605989
10.1021/jacs.6b08730
10.1021/acs.nanolett.7b01020
10.1039/C7CS00139H
10.1038/nnano.2014.152
10.1002/adma.201506124
10.1002/adma.201501490
10.1002/anie.201702099
10.1002/adma.201606042
10.1021/acs.nanolett.6b04755
10.1002/aenm.201600811
ContentType Journal Article
Copyright 2017 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim
2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2017 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
– notice: 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
DBID AAYXX
CITATION
NPM
7TM
K9.
7X8
DOI 10.1002/anie.201707093
DatabaseName CrossRef
PubMed
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
ProQuest Health & Medical Complete (Alumni)
Nucleic Acids Abstracts
MEDLINE - Academic
DatabaseTitleList PubMed
ProQuest Health & Medical Complete (Alumni)

MEDLINE - Academic
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3773
Edition International ed. in English
EndPage 14211
ExternalDocumentID 28868626
10_1002_anie_201707093
ANIE201707093
Genre shortCommunication
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Natural Scientific Foundation of China
  funderid: 21676160
– fundername: Tsinghua National Laboratory for Information Science and Technology
– fundername: National Key Research and Development Program
  funderid: 2016YFA0202500 and 2015CB932500
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABLJU
ABPPZ
ABPVW
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BTSUX
BY8
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M53
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
VQA
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XSW
XV2
YZZ
ZZTAW
~IA
~KM
~WT
AAYXX
ABDBF
ABJNI
AETEA
AEYWJ
AGHNM
AGYGG
CITATION
NPM
YIN
7TM
K9.
7X8
ID FETCH-LOGICAL-c4763-1f6e71035c353dec93e4d2de211a08447f708f6529d1adb6b84ba5110ca6b6133
IEDL.DBID DR2
ISSN 1433-7851
1521-3773
IngestDate Fri Jul 11 08:04:46 EDT 2025
Sun Jul 13 05:23:31 EDT 2025
Wed Feb 19 02:32:26 EST 2025
Thu Apr 24 22:58:02 EDT 2025
Tue Jul 01 02:26:10 EDT 2025
Wed Jan 22 16:22:09 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 45
Keywords dendrites
lithium fluoride
nucleation
lithium deposition
electrochemistry
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4763-1f6e71035c353dec93e4d2de211a08447f708f6529d1adb6b84ba5110ca6b6133
Notes These authors contributed equally to this work.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-3929-1541
PMID 28868626
PQID 1955526433
PQPubID 946352
PageCount 5
ParticipantIDs proquest_miscellaneous_1935401922
proquest_journals_1955526433
pubmed_primary_28868626
crossref_primary_10_1002_anie_201707093
crossref_citationtrail_10_1002_anie_201707093
wiley_primary_10_1002_anie_201707093_ANIE201707093
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate November 6, 2017
PublicationDateYYYYMMDD 2017-11-06
PublicationDate_xml – month: 11
  year: 2017
  text: November 6, 2017
  day: 06
PublicationDecade 2010
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Angewandte Chemie International Edition
PublicationTitleAlternate Angew Chem Int Ed Engl
PublicationYear 2017
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2008 2016 2017 2017; 451 16 7 46
2014 2015 2016 2016 2017 2016 2016 2016; 4 6 7 28 9 1 28 28
2015; 15
2001 2013 2017 2017; 414 135 29 117
2017; 2
2016; 1
2017; 17
2014 2015 2017 2017; 13 27 17 27
2014 2017 2016 2014 2017 2016 2017; 136 16 28 9 139 138 29
2014; 14
2003 2003; 42 115
2016 2016 2012; 138 28 24
2017 2017; 56 129
2014; 7
2000 2014 2017 2015 2017 2013 2016 2016 2017 2017; 89 114 2 6 4 135 3 3 29 2
2013; 160
2012; 714
2017 2016; 12 6
e_1_2_2_2_3
e_1_2_2_4_1
e_1_2_2_2_4
e_1_2_2_4_2
e_1_2_2_6_1
e_1_2_2_6_2
e_1_2_2_2_1
e_1_2_2_2_2
e_1_2_2_6_7
e_1_2_2_6_8
e_1_2_2_6_9
e_1_2_2_6_3
e_1_2_2_8_2
e_1_2_2_6_4
e_1_2_2_8_1
e_1_2_2_6_5
e_1_2_2_6_6
e_1_2_2_8_3
e_1_2_2_13_1
e_1_2_2_11_1
e_1_2_2_17_1
e_1_2_2_15_2
e_1_2_2_15_1
e_1_2_2_6_10
e_1_2_2_1_4
e_1_2_2_5_1
e_1_2_2_7_1
e_1_2_2_1_1
e_1_2_2_1_2
e_1_2_2_1_3
e_1_2_2_3_1
e_1_2_2_7_6
e_1_2_2_9_5
e_1_2_2_7_7
e_1_2_2_9_4
e_1_2_2_9_7
e_1_2_2_9_6
e_1_2_2_7_2
e_1_2_2_9_1
e_1_2_2_7_3
e_1_2_2_7_4
e_1_2_2_9_3
e_1_2_2_7_5
e_1_2_2_9_2
e_1_2_2_9_8
e_1_2_2_14_1
e_1_2_2_10_4
e_1_2_2_12_2
e_1_2_2_10_3
e_1_2_2_12_1
e_1_2_2_10_2
e_1_2_2_10_1
e_1_2_2_18_1
e_1_2_2_16_1
References_xml – volume: 1
  start-page: 16114
  year: 2016
  publication-title: Nat. Energy
– volume: 17
  start-page: 1132
  year: 2017
  publication-title: Nano Lett.
– volume: 414 135 29 117
  start-page: 359 1167 1700007 10403
  year: 2001 2013 2017 2017
  publication-title: Nature J. Am. Chem. Soc. Adv. Mater. Chem. Rev.
– volume: 56 129
  start-page: 7764 7872
  year: 2017 2017
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 12 6
  start-page: 194 1600811
  year: 2017 2016
  publication-title: Nat. Nanotechnol. Adv. Energy Mater.
– volume: 42 115
  start-page: 894 922
  year: 2003 2003
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 14
  start-page: 6889
  year: 2014
  publication-title: Nano Lett.
– volume: 451 16 7 46
  start-page: 652 16 1700260 5237
  year: 2008 2016 2017 2017
  publication-title: Nature Nat. Mater. Adv. Energy Mater. Chem. Soc. Rev.
– volume: 136 16 28 9 139 138 29
  start-page: 7395 572 1853 618 4815 9385 1606042
  year: 2014 2017 2016 2014 2017 2016 2017
  publication-title: J. Am. Chem. Soc. Nat. Mater. Adv. Mater. Nat. Nanotechnol. J. Am. Chem. Soc. J. Am. Chem. Soc. Adv. Mater.
– volume: 4 6 7 28 9 1 28 28
  start-page: 1300815 8058 10992 2155 31 287 6932 9094
  year: 2014 2015 2016 2016 2017 2016 2016 2016
  publication-title: Adv. Energy Mater. Nat. Commun. Nat. Commun. Adv. Mater. Energy Storage Mater. Chem Adv. Mater. Adv. Mater.
– volume: 714
  start-page: 121
  year: 2012
  publication-title: Anal. Chim. Acta
– volume: 15
  start-page: 135
  year: 2015
  publication-title: Nano Energy
– volume: 2
  start-page: 795
  year: 2017
  publication-title: ACS Energy Lett.
– volume: 138 28 24
  start-page: 15443 2888 4430
  year: 2016 2016 2012
  publication-title: J. Am. Chem. Soc. Adv. Mater. Adv. Mater.
– volume: 13 27 17 27
  start-page: 961 5241 3731 1605989
  year: 2014 2015 2017 2017
  publication-title: Nat. Mater. Adv. Mater. Nano Lett. Adv. Funct. Mater.
– volume: 160
  start-page: 1894
  year: 2013
  publication-title: J. Electrochem. Soc.
– volume: 89 114 2 6 4 135 3 3 29 2
  start-page: 206 11503 258 6362 1600400 4450 1500213 77 1605531 1321
  year: 2000 2014 2017 2015 2017 2013 2016 2016 2017 2017
  publication-title: J. Power Sources Chem. Rev. Chem Nat. Commun. Adv. Sci. J. Am. Chem. Soc. Adv. Sci. Energy Storage Mater. Adv. Mater. ACS Energy Lett.
– volume: 7
  start-page: 513
  year: 2014
  publication-title: Energy Environ. Sci.
– ident: e_1_2_2_7_6
  doi: 10.1021/jacs.6b05341
– ident: e_1_2_2_15_2
  doi: 10.1002/ange.200390204
– ident: e_1_2_2_9_8
  doi: 10.1002/adma.201602704
– ident: e_1_2_2_17_1
  doi: 10.1149/2.100310jes
– ident: e_1_2_2_1_1
  doi: 10.1038/451652a
– ident: e_1_2_2_3_1
  doi: 10.1039/C3EE40795K
– ident: e_1_2_2_11_1
  doi: 10.1016/j.aca.2011.11.056
– ident: e_1_2_2_10_1
  doi: 10.1038/nmat4041
– ident: e_1_2_2_2_3
  doi: 10.1002/adma.201700007
– ident: e_1_2_2_9_6
  doi: 10.1016/j.chempr.2016.07.009
– ident: e_1_2_2_6_10
  doi: 10.1021/acsenergylett.7b00300
– ident: e_1_2_2_16_1
  doi: 10.1021/nl5039117
– ident: e_1_2_2_9_1
  doi: 10.1002/aenm.201300815
– ident: e_1_2_2_9_7
  doi: 10.1002/adma.201601409
– ident: e_1_2_2_12_2
  doi: 10.1002/ange.201702099
– ident: e_1_2_2_6_6
  doi: 10.1021/ja312241y
– ident: e_1_2_2_9_2
  doi: 10.1038/ncomms9058
– ident: e_1_2_2_9_3
  doi: 10.1038/ncomms10992
– ident: e_1_2_2_6_5
  doi: 10.1002/advs.201600400
– ident: e_1_2_2_6_9
  doi: 10.1002/adma.201605531
– ident: e_1_2_2_13_1
  doi: 10.1021/acsenergylett.7b00164
– ident: e_1_2_2_14_1
  doi: 10.1038/nenergy.2016.114
– ident: e_1_2_2_18_1
  doi: 10.1016/j.nanoen.2015.04.009
– ident: e_1_2_2_7_1
  doi: 10.1021/ja502133j
– ident: e_1_2_2_6_7
  doi: 10.1002/advs.201500213
– ident: e_1_2_2_6_1
  doi: 10.1016/S0378-7753(00)00431-6
– ident: e_1_2_2_8_3
  doi: 10.1002/adma.201201953
– ident: e_1_2_2_6_8
  doi: 10.1016/j.ensm.2016.01.007
– ident: e_1_2_2_1_3
  doi: 10.1002/aenm.201700260
– ident: e_1_2_2_6_4
  doi: 10.1038/ncomms7362
– ident: e_1_2_2_9_5
  doi: 10.1016/j.ensm.2017.06.004
– ident: e_1_2_2_1_2
  doi: 10.1038/nmat4834
– ident: e_1_2_2_7_5
  doi: 10.1021/jacs.6b13314
– ident: e_1_2_2_4_1
  doi: 10.1038/nnano.2017.16
– ident: e_1_2_2_2_4
  doi: 10.1021/acs.chemrev.7b00115
– ident: e_1_2_2_2_2
  doi: 10.1021/ja3091438
– ident: e_1_2_2_7_2
  doi: 10.1038/nmat4821
– ident: e_1_2_2_6_3
  doi: 10.1016/j.chempr.2017.01.003
– ident: e_1_2_2_2_1
  doi: 10.1038/35104644
– ident: e_1_2_2_6_2
  doi: 10.1021/cr500003w
– ident: e_1_2_2_9_4
  doi: 10.1002/adma.201504117
– ident: e_1_2_2_15_1
  doi: 10.1002/anie.200390235
– ident: e_1_2_2_7_3
  doi: 10.1002/adma.201504526
– ident: e_1_2_2_10_4
  doi: 10.1002/adfm.201605989
– ident: e_1_2_2_8_1
  doi: 10.1021/jacs.6b08730
– ident: e_1_2_2_10_3
  doi: 10.1021/acs.nanolett.7b01020
– ident: e_1_2_2_1_4
  doi: 10.1039/C7CS00139H
– ident: e_1_2_2_7_4
  doi: 10.1038/nnano.2014.152
– ident: e_1_2_2_8_2
  doi: 10.1002/adma.201506124
– ident: e_1_2_2_10_2
  doi: 10.1002/adma.201501490
– ident: e_1_2_2_12_1
  doi: 10.1002/anie.201702099
– ident: e_1_2_2_7_7
  doi: 10.1002/adma.201606042
– ident: e_1_2_2_5_1
  doi: 10.1021/acs.nanolett.6b04755
– ident: e_1_2_2_4_2
  doi: 10.1002/aenm.201600811
SSID ssj0028806
Score 2.624188
Snippet The rechargeable lithium metal anode is of utmost importance for high‐energy‐density batteries. Regulating the deposition/dissolution characteristics of Li...
The rechargeable lithium metal anode is of utmost importance for high-energy-density batteries. Regulating the deposition/dissolution characteristics of Li...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 14207
SubjectTerms Accumulators
Anodes
Anodic dissolution
Copper
dendrites
Dendritic structure
Dissolution
Electrochemical analysis
Electrochemistry
Fluorides
Lithium
lithium deposition
lithium fluoride
Metals
nucleation
Rechargeable batteries
Title Columnar Lithium Metal Anodes
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.201707093
https://www.ncbi.nlm.nih.gov/pubmed/28868626
https://www.proquest.com/docview/1955526433
https://www.proquest.com/docview/1935401922
Volume 56
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS8MwFA_iRS9-f1Q3qSB46pa2Sdocx9iY4nYQB7uVJE1xqJ1s7cW_3rx-6RQR9NaShOYlLy-_pO_9HkJXNODA62SOJWY3dAiVoSNEKJ0Y_IU4pqGrIXZ4PGGjKbmd0dmnKP6SH6K5cIOVUdhrWOBCrrofpKEQgQ2uWYFRWg50n-CwBajovuGP8oxyluFFvu9AFvqatRF73fXm67vSN6i5jlyLrWe4i0Td6dLj5KmTZ7Kj3r7wOf5Hqj20U-FSu1cq0j7a0OkB2urX6eAOUbsPdiwVS_tunj3O8xd7rDNokS5ivTpC0-HgoT9yqtwKjiLGpDhuwrQBFz5VPvVjrbivSezF2pwHBQ4JCZIAhwmjHo9dEUsmQyKFAWdYCSYNBPCP0Wa6SPUpst2ECrBVFEtGhMI8wUnAsOCUiDBW1EJOPbaRqojHIf_Fc1RSJnsRCB01Qlvouqn_WlJu_FizVU9VVC29VeRySqmBeb4pvmyKzWDBnxCR6kUOdeC6y4Bbz0In5RQ3nzJKA1EzzEJeMVG_9CHqTW4GzdvZXxqdo214LiIcWQttZstctw3UyeRFoc7vyNbwmg
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8JAEJ4oHvTi-4GiYmLiqbjtPtoeCUpAgYOBxFuz224jUYuBcvHXu9PSGjTGRI_t7qb7mJ39djrzDcAld33kdTLXEnMaWowrz5LSU1aE_kI-4Z6tMXa4PxCdEbt75IU3IcbC5PwQpcENd0amr3GDo0H6-pM1FEOw0TfLNVLr01VYw7TeSJ9_81AySDlGPPMAI0otzENf8DYS53q5_fK59A1sLmPX7PBpb4Equp37nDw35qlqhO9fGB3_Na5t2FxA03ozl6UdWNHJLqy3ioxwe3DaQlWWyGm9N06fxvPXel-n2CKZRHq2D6P27bDVsRbpFayQGa1i2bHQBl9QHlJOIx36VLPIibS5EkriMebGLvFiwR0_smWkhPKYkgafkVAKZVAAPYBKMkn0EdTtmEtUV5wowWRI_JjEriDS50x6UcirYBWTG4QL7nFMgfES5KzJToCDDspBV-GqrP-Ws278WLNWrFWw2H2zwPY55wbpUVN8URabycKfITLRkznWQYuXwbdOFQ7zNS4_ZaQGA2dEFZxspX7pQ9AcdG_Lp-O_NDqH9c6w3wt63cH9CWzg-yzgUdSgkk7n-tQgn1SdZbL9Ae4z9LY
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ZS8QwEB50BfXF-1jPFQSfqmlztHmU1cVzEVHwrSRNiqJ2xe2--OvNtNvqKiLoY5sMzTEz-ZJmvgHY5aFEXie3LXGroce4jjylIu0ZvC8kCY98i7HDl11xcsvO7vjdpyj-kh-iPnBDyyj8NRr4i0kPPkhDMQIbr2aFTmklHYcJJojE5A1H1zWBVOC0s4wvotTDNPQVbSMJDkblR5elb1hzFLoWa09nFlTV6vLKyeP-INf7ydsXQsf_dGsOZobAtHVYatI8jNlsAabaVT64RdhsoyPL1Gvr4iG_fxg8ty5tjhJZz9j-Etx2jm_aJ94wuYKXMOdTPD8V1qELyhPKqbGJpJaZwFi3IVQkYixMQxKlggfS-MpooSOmlUNnJFFCOwxAl6GR9TK7Ci0_5QqdFSdaMJUQmZI0FERJzlRkEt4ErxrbOBkyj2MCjKe45EwOYux0XHe6CXt1_ZeSc-PHmhvVVMVD2-vHvuScO5xHXfFOXewGC3-FqMz2BlgHz7scug2asFJOcf0ppzQYNiOaEBQT9Usb4sPu6XH9tPYXoW2YvDrqxBen3fN1mMbXRbSj2IBG_jqwmw725Hqr0Ox3CJfzZQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Columnar+Lithium+Metal+Anodes&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Zhang%2C+Xue%E2%80%90Qiang&rft.au=Chen%2C+Xiang&rft.au=Xu%2C+Rui&rft.au=Cheng%2C+Xin%E2%80%90Bing&rft.date=2017-11-06&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=56&rft.issue=45&rft.spage=14207&rft.epage=14211&rft_id=info:doi/10.1002%2Fanie.201707093&rft.externalDBID=10.1002%252Fanie.201707093&rft.externalDocID=ANIE201707093
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon