Adamantane‐Substituted Acridine Donor for Blue Dual Fluorescence and Efficient Organic Light‐Emitting Diodes
To date, blue dual fluorescence emission (DFE) has not been realized because of the limited choice of chemical moieties and severe geometric deformation of the DFE emitters leading to strong intramolecular charge transfer (ICT) with a large Stokes shift in excited states. Herein, an emitter (1′r,5′R...
Saved in:
Published in | Angewandte Chemie International Edition Vol. 58; no. 2; pp. 582 - 586 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
08.01.2019
|
Edition | International ed. in English |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | To date, blue dual fluorescence emission (DFE) has not been realized because of the limited choice of chemical moieties and severe geometric deformation of the DFE emitters leading to strong intramolecular charge transfer (ICT) with a large Stokes shift in excited states. Herein, an emitter (1′r,5′R,7′S)‐10‐(4‐(4,6‐diphenyl‐1,3,5‐triazin‐2‐yl)phenyl)‐10H‐spiro [acridine‐9,2′‐adamantane] (a‐DMAc‐TRZ) containing a novel adamantane‐substituted acridine donor is reported, which exhibits unusual blue DFE. The introduction of the rigid and bulky adamantane moiety not only suppressed the geometry relaxation in excited state, but also induced the formation of quasi‐axial conformer (QAC) and quasi‐equatorial conformer (QEC) geometries, leading to deep‐blue conventional fluorescence and sky‐blue thermally activated delayed fluorescence (TADF). The resulting organic light‐emitting diodes (OLEDs) achieved a maximum external quantum efficiency (EQE) of about 29 %, which is the highest reported for OLEDs based on dual‐conformation emitters.
Tangled up in blue: The introduction of the rigid and bulky adamantane moiety leads to deep‐blue conventional fluorescence and sky‐blue thermally activated delayed fluorescence. The rigid backbone suppresses non‐radiative processes as well as the degenerate alignment arising from quasi‐axial conformers (QAC) and quasi‐equatorial conformers (QEC) geometries. |
---|---|
AbstractList | To date, blue dual fluorescence emission (DFE) has not been realized because of the limited choice of chemical moieties and severe geometric deformation of the DFE emitters leading to strong intramolecular charge transfer (ICT) with a large Stokes shift in excited states. Herein, an emitter (1′r,5′R,7′S)‐10‐(4‐(4,6‐diphenyl‐1,3,5‐triazin‐2‐yl)phenyl)‐10H‐spiro [acridine‐9,2′‐adamantane] (a‐DMAc‐TRZ) containing a novel adamantane‐substituted acridine donor is reported, which exhibits unusual blue DFE. The introduction of the rigid and bulky adamantane moiety not only suppressed the geometry relaxation in excited state, but also induced the formation of quasi‐axial conformer (QAC) and quasi‐equatorial conformer (QEC) geometries, leading to deep‐blue conventional fluorescence and sky‐blue thermally activated delayed fluorescence (TADF). The resulting organic light‐emitting diodes (OLEDs) achieved a maximum external quantum efficiency (EQE) of about 29 %, which is the highest reported for OLEDs based on dual‐conformation emitters.
Tangled up in blue: The introduction of the rigid and bulky adamantane moiety leads to deep‐blue conventional fluorescence and sky‐blue thermally activated delayed fluorescence. The rigid backbone suppresses non‐radiative processes as well as the degenerate alignment arising from quasi‐axial conformers (QAC) and quasi‐equatorial conformers (QEC) geometries. To date, blue dual fluorescence emission (DFE) has not been realized because of the limited choice of chemical moieties and severe geometric deformation of the DFE emitters leading to strong intramolecular charge transfer (ICT) with a large Stokes shift in excited states. Herein, an emitter (1'r,5'R,7'S)-10-(4-(4,6-diphenyl-1,3,5-triazin-2-yl)phenyl)-10H-spiro [acridine-9,2'-adamantane] (a-DMAc-TRZ) containing a novel adamantane-substituted acridine donor is reported, which exhibits unusual blue DFE. The introduction of the rigid and bulky adamantane moiety not only suppressed the geometry relaxation in excited state, but also induced the formation of quasi-axial conformer (QAC) and quasi-equatorial conformer (QEC) geometries, leading to deep-blue conventional fluorescence and sky-blue thermally activated delayed fluorescence (TADF). The resulting organic light-emitting diodes (OLEDs) achieved a maximum external quantum efficiency (EQE) of about 29 %, which is the highest reported for OLEDs based on dual-conformation emitters. To date, blue dual fluorescence emission (DFE) has not been realized because of the limited choice of chemical moieties and severe geometric deformation of the DFE emitters leading to strong intramolecular charge transfer (ICT) with a large Stokes shift in excited states. Herein, an emitter (1'r,5'R,7'S)-10-(4-(4,6-diphenyl-1,3,5-triazin-2-yl)phenyl)-10H-spiro [acridine-9,2'-adamantane] (a-DMAc-TRZ) containing a novel adamantane-substituted acridine donor is reported, which exhibits unusual blue DFE. The introduction of the rigid and bulky adamantane moiety not only suppressed the geometry relaxation in excited state, but also induced the formation of quasi-axial conformer (QAC) and quasi-equatorial conformer (QEC) geometries, leading to deep-blue conventional fluorescence and sky-blue thermally activated delayed fluorescence (TADF). The resulting organic light-emitting diodes (OLEDs) achieved a maximum external quantum efficiency (EQE) of about 29 %, which is the highest reported for OLEDs based on dual-conformation emitters.To date, blue dual fluorescence emission (DFE) has not been realized because of the limited choice of chemical moieties and severe geometric deformation of the DFE emitters leading to strong intramolecular charge transfer (ICT) with a large Stokes shift in excited states. Herein, an emitter (1'r,5'R,7'S)-10-(4-(4,6-diphenyl-1,3,5-triazin-2-yl)phenyl)-10H-spiro [acridine-9,2'-adamantane] (a-DMAc-TRZ) containing a novel adamantane-substituted acridine donor is reported, which exhibits unusual blue DFE. The introduction of the rigid and bulky adamantane moiety not only suppressed the geometry relaxation in excited state, but also induced the formation of quasi-axial conformer (QAC) and quasi-equatorial conformer (QEC) geometries, leading to deep-blue conventional fluorescence and sky-blue thermally activated delayed fluorescence (TADF). The resulting organic light-emitting diodes (OLEDs) achieved a maximum external quantum efficiency (EQE) of about 29 %, which is the highest reported for OLEDs based on dual-conformation emitters. To date, blue dual fluorescence emission (DFE) has not been realized because of the limited choice of chemical moieties and severe geometric deformation of the DFE emitters leading to strong intramolecular charge transfer (ICT) with a large Stokes shift in excited states. Herein, an emitter (1′r,5′ R ,7′ S )‐10‐(4‐(4,6‐diphenyl‐1,3,5‐triazin‐2‐yl)phenyl)‐10H‐spiro [acridine‐9,2′‐adamantane] (a‐DMAc‐TRZ) containing a novel adamantane‐substituted acridine donor is reported, which exhibits unusual blue DFE. The introduction of the rigid and bulky adamantane moiety not only suppressed the geometry relaxation in excited state, but also induced the formation of quasi‐axial conformer (QAC) and quasi‐equatorial conformer (QEC) geometries, leading to deep‐blue conventional fluorescence and sky‐blue thermally activated delayed fluorescence (TADF). The resulting organic light‐emitting diodes (OLEDs) achieved a maximum external quantum efficiency (EQE) of about 29 %, which is the highest reported for OLEDs based on dual‐conformation emitters. |
Author | He, Yanmei Li, Binbin Cai, Xinyi Li, Wei Wu, Yuan‐Chun Su, Shi‐Jian Gan, Lin Liu, Kunkun Chen, Dongcheng |
Author_xml | – sequence: 1 givenname: Wei surname: Li fullname: Li, Wei organization: South China University of Technology – sequence: 2 givenname: Xinyi surname: Cai fullname: Cai, Xinyi organization: South China University of Technology – sequence: 3 givenname: Binbin surname: Li fullname: Li, Binbin organization: South China University of Technology – sequence: 4 givenname: Lin surname: Gan fullname: Gan, Lin organization: South China University of Technology – sequence: 5 givenname: Yanmei surname: He fullname: He, Yanmei organization: South China University of Technology – sequence: 6 givenname: Kunkun surname: Liu fullname: Liu, Kunkun organization: South China University of Technology – sequence: 7 givenname: Dongcheng surname: Chen fullname: Chen, Dongcheng organization: South China University of Technology – sequence: 8 givenname: Yuan‐Chun surname: Wu fullname: Wu, Yuan‐Chun organization: Shenzhen China Star Optoelectronics Semiconductor Display Technology Co., Ltd – sequence: 9 givenname: Shi‐Jian orcidid: 0000-0002-6545-9002 surname: Su fullname: Su, Shi‐Jian email: mssjsu@scut.edu.cn organization: South China University of Technology |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30457187$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkctu1DAYhS1URC-wZYkisWGTwX-cxM5yaKdQaUQXwNpynN-Dq8QefBHqjkfgGXkSXE0LUiXEwvLtO0fHPqfkyHmHhLwEugJKm7fKWVw1FAQAp-wJOYGugZpxzo7KumWs5qKDY3Ia403hhaD9M3LMaNtxEPyE7NeTWpRLyuGvHz8_5TEmm3LCqVrrYCfrsLrwzofKlPFuzmWb1VxdztkHjBqdxkq5qdoYY7VFl6rrsCuhdLW1u6-peG4Wm5J1u-rC-gnjc_LUqDnii_v5jHy53Hw-_1Bvr99fna-3tW55z2rQDe1apEZ3DeUaoNGUDQNrOzrQqRwM3dT3o1Ci0caI0SBQBSPFcsMMMnZG3hx898F_yxiTXGzJO8_lpT5H2QDraQ9CDAV9_Qi98Tm4kq5QPYOBAuOFenVP5XHBSe6DXVS4lQ9_WYD2AOjgYwxopLZJJetdCsrOEqi8q0zeVSb_VFZkq0eyB-d_CoaD4Lud8fY_tFx_vNr81f4GrxCqJg |
CitedBy_id | crossref_primary_10_1007_s11426_020_9831_y crossref_primary_10_1016_j_cej_2020_126107 crossref_primary_10_1016_j_scib_2020_08_023 crossref_primary_10_1021_acs_jpca_0c06695 crossref_primary_10_1002_anie_202409653 crossref_primary_10_1016_j_porgcoat_2023_107867 crossref_primary_10_1002_smll_202201548 crossref_primary_10_1021_acs_jpcc_0c08430 crossref_primary_10_1021_acs_jpcc_4c03344 crossref_primary_10_1002_adfm_202112881 crossref_primary_10_1039_C9TC05533A crossref_primary_10_1016_j_dyepig_2020_108367 crossref_primary_10_1016_j_jphotochem_2022_114098 crossref_primary_10_1016_j_synthmet_2025_117831 crossref_primary_10_1002_adom_202001074 crossref_primary_10_1016_j_dyepig_2024_112597 crossref_primary_10_1039_D3MH00676J crossref_primary_10_1016_j_dyepig_2024_112118 crossref_primary_10_1002_adfm_202211696 crossref_primary_10_1002_adom_202300017 crossref_primary_10_1016_j_cej_2021_133030 crossref_primary_10_1016_j_dyepig_2022_110329 crossref_primary_10_1039_D2TC05213J crossref_primary_10_2139_ssrn_4133493 crossref_primary_10_1002_adfm_202002681 crossref_primary_10_1002_anie_202108943 crossref_primary_10_1039_D1TC04699C crossref_primary_10_1016_j_mtener_2020_100581 crossref_primary_10_1002_lpor_202300758 crossref_primary_10_1002_adom_202100273 crossref_primary_10_1002_adpr_202200203 crossref_primary_10_1002_chem_202003526 crossref_primary_10_1016_j_molstruc_2022_134418 crossref_primary_10_1039_D1TC01537K crossref_primary_10_1002_anie_202217080 crossref_primary_10_1039_D2TC03875G crossref_primary_10_1016_j_cej_2023_142929 crossref_primary_10_1039_D0TC02289F crossref_primary_10_1002_adom_201902100 crossref_primary_10_1016_j_dyepig_2019_107636 crossref_primary_10_1016_j_cej_2019_05_192 crossref_primary_10_1039_C9SC04492B crossref_primary_10_1002_agt2_243 crossref_primary_10_1002_ajoc_202200009 crossref_primary_10_1021_acs_jpcc_9b05875 crossref_primary_10_1039_D2CP05119B crossref_primary_10_1002_advs_202101326 crossref_primary_10_1002_anie_202210687 crossref_primary_10_1002_adom_202401735 crossref_primary_10_1007_s10870_021_00890_5 crossref_primary_10_1002_adma_202001248 crossref_primary_10_1016_j_dyepig_2023_111225 crossref_primary_10_1039_C9TC05340A crossref_primary_10_1016_j_orgel_2024_107141 crossref_primary_10_1021_acs_jpclett_2c00779 crossref_primary_10_1016_j_chempr_2020_04_021 crossref_primary_10_1002_adom_202200504 crossref_primary_10_1016_j_orgel_2019_105449 crossref_primary_10_1016_j_orgel_2023_106795 crossref_primary_10_1021_acsami_2c12778 crossref_primary_10_1002_cptc_202300211 crossref_primary_10_1021_acsami_9b17585 crossref_primary_10_1002_adfm_202300910 crossref_primary_10_1039_C9TC01329F crossref_primary_10_1021_acsami_0c19302 crossref_primary_10_1039_D2CP05084F crossref_primary_10_1016_j_xcrp_2021_100733 crossref_primary_10_1021_acsami_9b07820 crossref_primary_10_1016_j_dyepig_2021_109495 crossref_primary_10_1039_C9TC05892C crossref_primary_10_1002_adom_202000052 crossref_primary_10_1016_j_cej_2022_134731 crossref_primary_10_1016_j_dyepig_2023_111298 crossref_primary_10_1016_j_orgel_2019_105610 crossref_primary_10_1002_chem_202004719 crossref_primary_10_1039_C9TC05917B crossref_primary_10_1002_ange_202217080 crossref_primary_10_1002_anie_201904272 crossref_primary_10_1021_acs_chemrev_3c00755 crossref_primary_10_1021_acsami_0c14123 crossref_primary_10_1016_j_snb_2023_134161 crossref_primary_10_1021_acs_jpca_3c04617 crossref_primary_10_1039_D0MH01521K crossref_primary_10_1039_D3OB01470C crossref_primary_10_1002_ange_202409653 crossref_primary_10_1021_acs_jpclett_1c03044 crossref_primary_10_1016_j_cej_2024_149150 crossref_primary_10_1002_ajoc_202000128 crossref_primary_10_1002_ange_202103187 crossref_primary_10_1002_ange_202210687 crossref_primary_10_1016_j_dyepig_2020_108336 crossref_primary_10_1039_C9TC01973A crossref_primary_10_1039_D1TC04939A crossref_primary_10_1039_C9TC02032B crossref_primary_10_1002_ange_201904272 crossref_primary_10_1038_s41467_023_38197_y crossref_primary_10_1002_ange_202409580 crossref_primary_10_1002_adfm_202415633 crossref_primary_10_1002_chem_202101188 crossref_primary_10_1016_j_dyepig_2022_110385 crossref_primary_10_1002_ange_202108943 crossref_primary_10_1002_anie_202103187 crossref_primary_10_1039_D0TC05343K crossref_primary_10_1002_adom_202101410 crossref_primary_10_1039_C9CC09769D crossref_primary_10_1002_anie_202409580 crossref_primary_10_1039_C9TC04284A crossref_primary_10_1021_acs_jpcc_0c04126 crossref_primary_10_1016_j_cej_2023_147977 crossref_primary_10_1039_C9SC01821B crossref_primary_10_1007_s11426_020_9908_5 crossref_primary_10_1088_1361_6633_ace06a crossref_primary_10_1039_C9CC08679J crossref_primary_10_1002_adom_202000480 crossref_primary_10_1002_lpor_202000412 crossref_primary_10_1016_j_tetlet_2022_154044 |
Cites_doi | 10.1002/anie.201400155 10.1002/ange.201703862 10.1021/ja510144h 10.1002/anie.201806800 10.1016/j.jlumin.2012.07.002 10.1002/ange.201502180 10.1002/ange.201308486 10.1007/s11426-017-9219-x 10.1002/anie.201109089 10.1039/C8TC00991K 10.1039/C5CC05022G 10.1063/1.1904586 10.1039/C5NR00554J 10.1103/PhysRevLett.52.997 10.1021/jp501017f 10.1039/C6SC03856E 10.1021/ac2001324 10.1039/C6SC00542J 10.1039/c4sc00308j 10.1021/acs.analchem.7b04375 10.1038/ncomms14987 10.1002/adma.201604856 10.1002/ange.201109089 10.1021/ja4035939 10.1002/anie.201308486 10.1002/anie.201703862 10.1002/adma.201701476 10.1002/anie.201502180 10.1039/C4CS00334A 10.1002/ange.201400155 10.1002/adma.201705641 10.1002/ange.201806800 10.1038/nchembio.69 10.1002/adfm.201603520 10.1039/C6SC04863C 10.1002/adma.201601675 |
ContentType | Journal Article |
Copyright | 2019 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. |
Copyright_xml | – notice: 2019 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. – notice: 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. |
DBID | AAYXX CITATION NPM 7TM K9. 7X8 |
DOI | 10.1002/anie.201811703 |
DatabaseName | CrossRef PubMed Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed ProQuest Health & Medical Complete (Alumni) Nucleic Acids Abstracts MEDLINE - Academic |
DatabaseTitleList | PubMed ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3773 |
Edition | International ed. in English |
EndPage | 586 |
ExternalDocumentID | 30457187 10_1002_anie_201811703 ANIE201811703 |
Genre | shortCommunication Journal Article |
GrantInformation_xml | – fundername: 973 Project funderid: 2015CB655003 – fundername: China Postdoctoral Science Foundation Funded Project funderid: 2017M622680 – fundername: National Natural Science Foundation of China funderid: 51625301, U1601651, 51573059 and 91233116 – fundername: National Key R&D Program of China funderid: 2016YFB0401004 – fundername: Guangdong Provincial Department of Science and Technology funderid: 2016B090906003 and 2016TX03C175 – fundername: Guangdong Provincial Department of Science and Technology grantid: 2016B090906003 and 2016TX03C175 – fundername: China Postdoctoral Science Foundation Funded Project grantid: 2017M622680 – fundername: National Natural Science Foundation of China grantid: 51625301, U1601651, 51573059 and 91233116 – fundername: National Key R&D Program of China grantid: 2016YFB0401004 – fundername: 973 Project grantid: 2015CB655003 |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABLJU ABPPZ ABPVW ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BTSUX BY8 CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS EJD F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES M53 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ TN5 UB1 UPT UQL V2E VQA W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XSW XV2 YZZ ZZTAW ~IA ~KM ~WT AAYXX ABDBF ABJNI AEYWJ AGHNM AGYGG CITATION LW6 NPM 7TM K9. 7X8 |
ID | FETCH-LOGICAL-c4763-1c2054e0fc5207c112c0399345090d7c195d66b8a82cff8bfe10a1b0ec193fe33 |
IEDL.DBID | DR2 |
ISSN | 1433-7851 1521-3773 |
IngestDate | Fri Jul 11 15:20:20 EDT 2025 Fri Jul 25 10:35:29 EDT 2025 Mon Jul 21 06:18:14 EDT 2025 Thu Apr 24 22:54:09 EDT 2025 Tue Jul 01 02:26:38 EDT 2025 Wed Jan 22 17:04:04 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | organic light-emitting diodes (OLEDs) thermally activated delayed fluorescence dual fluorescence emission materials science photochemistry |
Language | English |
License | 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4763-1c2054e0fc5207c112c0399345090d7c195d66b8a82cff8bfe10a1b0ec193fe33 |
Notes | These authors contributed equally to this work. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-6545-9002 |
PMID | 30457187 |
PQID | 2163190137 |
PQPubID | 946352 |
PageCount | 5 |
ParticipantIDs | proquest_miscellaneous_2136061889 proquest_journals_2163190137 pubmed_primary_30457187 crossref_citationtrail_10_1002_anie_201811703 crossref_primary_10_1002_anie_201811703 wiley_primary_10_1002_anie_201811703_ANIE201811703 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 8, 2019 |
PublicationDateYYYYMMDD | 2019-01-08 |
PublicationDate_xml | – month: 01 year: 2019 text: January 8, 2019 day: 08 |
PublicationDecade | 2010 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Angewandte Chemie International Edition |
PublicationTitleAlternate | Angew Chem Int Ed Engl |
PublicationYear | 2019 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2014; 118 2014 2014; 53 126 2017; 8 2015; 51 2011; 83 2017; 29 2018; 61 2017 2017; 56 129 2008; 4 2015; 7 2014; 136 2018; 6 1984; 52 2016; 7 2014; 5 2005; 123 2018 2018; 57 130 2012 2012; 51 124 2015; 44 2013; 134 2015 2015; 54 127 2018; 90 2013; 135 2018; 30 2016; 28 2016; 26 e_1_2_2_3_2 e_1_2_2_24_2 e_1_2_2_4_2 e_1_2_2_5_2 e_1_2_2_22_2 e_1_2_2_23_1 e_1_2_2_6_2 e_1_2_2_21_2 e_1_2_2_20_2 e_1_2_2_1_1 e_1_2_2_2_2 e_1_2_2_29_2 e_1_2_2_7_2 e_1_2_2_8_2 e_1_2_2_28_2 e_1_2_2_7_3 e_1_2_2_9_3 e_1_2_2_27_1 e_1_2_2_8_3 e_1_2_2_9_2 e_1_2_2_25_2 e_1_2_2_26_1 e_1_2_2_13_2 e_1_2_2_37_1 e_1_2_2_37_2 e_1_2_2_38_1 e_1_2_2_10_3 e_1_2_2_11_2 e_1_2_2_12_1 e_1_2_2_10_2 e_1_2_2_30_1 e_1_2_2_18_3 e_1_2_2_19_2 e_1_2_2_18_2 e_1_2_2_31_2 e_1_2_2_32_2 e_1_2_2_33_1 e_1_2_2_16_2 e_1_2_2_17_1 e_1_2_2_15_2 e_1_2_2_34_2 e_1_2_2_14_2 e_1_2_2_35_2 e_1_2_2_36_1 |
References_xml | – volume: 8 start-page: 1134 year: 2017 end-page: 1140 publication-title: Chem. Sci. – volume: 28 start-page: 6976 year: 2016 end-page: 6983 publication-title: Adv. Mater. – volume: 53 126 start-page: 4572 4660 year: 2014 2014 end-page: 4577 4665 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 135 start-page: 11595 year: 2013 end-page: 11602 publication-title: J. Am. Chem. Soc. – volume: 54 127 start-page: 7181 7287 year: 2015 2015 end-page: 7184 7290 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 83 start-page: 3126 year: 2011 end-page: 3132 publication-title: Anal. Chem. – volume: 8 start-page: 14987 year: 2017 publication-title: Nat. Commun. – volume: 26 start-page: 8042 year: 2016 end-page: 8052 publication-title: Adv. Funct. Mater. – volume: 90 start-page: 2648 year: 2018 end-page: 2654 publication-title: Anal. Chem. – volume: 51 124 start-page: 7185 7297 year: 2012 2012 end-page: 7189 7301 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 6 start-page: 4842 year: 2018 end-page: 4853 publication-title: J. Mater. Chem. C – volume: 57 130 start-page: 12473 12653 year: 2018 2018 end-page: 12477 12657 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 134 start-page: 729 year: 2013 end-page: 738 publication-title: J. Lumin. – volume: 8 start-page: 2677 year: 2017 end-page: 2686 publication-title: Chem. Sci. – volume: 4 start-page: 168 year: 2008 end-page: 175 publication-title: Nat. Chem. Biol. – volume: 30 start-page: 1705641 year: 2018 publication-title: Adv. Mater. – volume: 7 start-page: 8457 year: 2015 end-page: 8465 publication-title: Nanoscale – volume: 53 126 start-page: 2119 2151 year: 2014 2014 end-page: 2123 2155 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 29 start-page: 1604856 year: 2017 publication-title: Adv. Mater. – volume: 118 start-page: 15985 year: 2014 end-page: 15994 publication-title: J. Phys. Chem. C – volume: 51 start-page: 13662 year: 2015 end-page: 13665 publication-title: Chem. Commun. – volume: 123 start-page: 062206 year: 2005 publication-title: J. Chem. Phys. – volume: 52 start-page: 997 year: 1984 end-page: 1000 publication-title: Phys. Rev. Lett. – volume: 56 129 start-page: 11370 11528 year: 2017 2017 end-page: 11374 11532 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 44 start-page: 4203 year: 2015 end-page: 4211 publication-title: Chem. Soc. Rev. – volume: 136 start-page: 18070 year: 2014 end-page: 18081 publication-title: J. Am. Chem. Soc. – volume: 7 start-page: 4264 year: 2016 end-page: 4275 publication-title: Chem. Sci. – volume: 61 start-page: 677 year: 2018 end-page: 686 publication-title: Sci. China Chem. – volume: 5 start-page: 2177 year: 2014 end-page: 2183 publication-title: Chem. Sci. – volume: 29 start-page: 1701476 year: 2017 publication-title: Adv. Mater. – ident: e_1_2_2_8_2 doi: 10.1002/anie.201400155 – ident: e_1_2_2_10_3 doi: 10.1002/ange.201703862 – ident: e_1_2_2_1_1 – ident: e_1_2_2_34_2 doi: 10.1021/ja510144h – ident: e_1_2_2_7_2 doi: 10.1002/anie.201806800 – ident: e_1_2_2_20_2 doi: 10.1016/j.jlumin.2012.07.002 – ident: e_1_2_2_9_3 doi: 10.1002/ange.201502180 – ident: e_1_2_2_12_1 – ident: e_1_2_2_27_1 – ident: e_1_2_2_37_2 doi: 10.1002/ange.201308486 – ident: e_1_2_2_6_2 doi: 10.1007/s11426-017-9219-x – ident: e_1_2_2_18_2 doi: 10.1002/anie.201109089 – ident: e_1_2_2_5_2 doi: 10.1039/C8TC00991K – ident: e_1_2_2_24_2 doi: 10.1039/C5CC05022G – ident: e_1_2_2_38_1 – ident: e_1_2_2_32_2 doi: 10.1063/1.1904586 – ident: e_1_2_2_21_2 doi: 10.1039/C5NR00554J – ident: e_1_2_2_23_1 – ident: e_1_2_2_31_2 doi: 10.1103/PhysRevLett.52.997 – ident: e_1_2_2_2_2 doi: 10.1021/jp501017f – ident: e_1_2_2_15_2 doi: 10.1039/C6SC03856E – ident: e_1_2_2_13_2 doi: 10.1021/ac2001324 – ident: e_1_2_2_35_2 doi: 10.1039/C6SC00542J – ident: e_1_2_2_14_2 doi: 10.1039/c4sc00308j – ident: e_1_2_2_16_2 doi: 10.1021/acs.analchem.7b04375 – ident: e_1_2_2_3_2 doi: 10.1038/ncomms14987 – ident: e_1_2_2_29_2 doi: 10.1002/adma.201604856 – ident: e_1_2_2_18_3 doi: 10.1002/ange.201109089 – ident: e_1_2_2_19_2 doi: 10.1021/ja4035939 – ident: e_1_2_2_37_1 doi: 10.1002/anie.201308486 – ident: e_1_2_2_10_2 doi: 10.1002/anie.201703862 – ident: e_1_2_2_11_2 doi: 10.1002/adma.201701476 – ident: e_1_2_2_33_1 – ident: e_1_2_2_9_2 doi: 10.1002/anie.201502180 – ident: e_1_2_2_17_1 – ident: e_1_2_2_26_1 doi: 10.1039/C4CS00334A – ident: e_1_2_2_8_3 doi: 10.1002/ange.201400155 – ident: e_1_2_2_30_1 – ident: e_1_2_2_28_2 doi: 10.1002/adma.201705641 – ident: e_1_2_2_7_3 doi: 10.1002/ange.201806800 – ident: e_1_2_2_22_2 doi: 10.1038/nchembio.69 – ident: e_1_2_2_36_1 doi: 10.1002/adfm.201603520 – ident: e_1_2_2_4_2 doi: 10.1039/C6SC04863C – ident: e_1_2_2_25_2 doi: 10.1002/adma.201601675 |
SSID | ssj0028806 |
Score | 2.595207 |
Snippet | To date, blue dual fluorescence emission (DFE) has not been realized because of the limited choice of chemical moieties and severe geometric deformation of the... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 582 |
SubjectTerms | Acridine Charge transfer Conformation Deformation Diodes dual fluorescence emission Emitters Fluorescence materials science Organic chemistry Organic light emitting diodes organic light-emitting diodes (OLEDs) photochemistry Quantum efficiency Substitutes thermally activated delayed fluorescence |
Title | Adamantane‐Substituted Acridine Donor for Blue Dual Fluorescence and Efficient Organic Light‐Emitting Diodes |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.201811703 https://www.ncbi.nlm.nih.gov/pubmed/30457187 https://www.proquest.com/docview/2163190137 https://www.proquest.com/docview/2136061889 |
Volume | 58 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1PT9swFLcmLuzCBhusUJAnIXFK6zpO6hxLacWmjQMaUm-RYztSRUlQ21x24iPwGfkkvGc3gYIQ0naL4z9x_Oznn-33fibkmOncGJlkgco1C4QVJlDC6qCneSJlHkuu0d_590V8fiV-TqLJMy9-zw_RbLjhyHD6Gge4yhbdJ9JQ9MBG0yz0lHR0n2iwhajosuGP4tA5vXtRGAZ4C33N2sh4dz37-qz0CmquI1c39Yw_EVVX2lucXHeqZdbRf1_wOf7PX30mWytcSge-I22TD7bYIZvD-jq4L-R2YNQNiEEV9uHuHvWNNzIwdACKB2ZAS8_KopxTQMH0dFZBsIICx7OqnDvKKG2pKgwdOc4KmOqodwPV9BfuD0CZo5upM8KmZ9PS2MVXcjUe_RmeB6vrGgItQEuheAH_WZbriLO-BiCnGcIfAZiEGXiRRCaOM6lA_nkus9z2mOplzEJMmNsw3CUbRVnYb4RaWB73mVA2FlKoSClQLLxvooRDJpXFLRLU4kr1isscr9SYpZ6FmafYjmnTji1y0qS_9Sweb6Zs19JPV6N5kXIArQicwn6LfG-iof3xcAWavawwTQhrwZ6USYvs-V7TfApPowEDQG7uZP9OHdLBxY9RE9r_l0wH5CM8J26vSLbJxnJe2UNAT8vsyI2QRy2QEpc |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTtwwEB4heqCX_v8s0NaVKvUU8DpO1jluYVcLXfZQgdRb5NiOhFgStGwunHgEnpEn6Yy9SbWtqkpwTGInjscefx7PfAPwhZvSWpUVkS4Nj6STNtLSmahvRKZUmSphKN75ZJZOzuTxz6T1JqRYmMAP0RncaGZ4fU0TnAzS-79ZQykEm3yzKFSS-D6fUFpvv6v60TFICRyeIcAojiPKQ9_yNnKxv15_fV36C2yuY1e_-IyfQ9E2O_icXOw1y2LP3PzB6Pio_3oBz1bQlA3DWHoJG656BVsHbUa413A1tPoSJaErd397Ryon-BlYNkTdg4ugY4d1VS8YAmH2bd7gZYMvHM-beuFZo4xjurJs5GkrcLVjIRLUsCmZCPCdo8tz74fNDs9r667fwNl4dHowiVYZGyIjUVGRhBECOl6aRPCBQSxnOCEgibCEW7yRJTZNC6VxCJSlKkrX57pfcIdP4tLF8VvYrOrKvQfmcIc84FK7VCqpE61Rt4iBTTKBlXSR9iBq5ZWbFZ05ZdWY54GIWeTUj3nXjz342pW_CkQe_yy524o_X03o61wgbiXsFA968Ll7jP1P5yvY7XVDZWLcDvaVynrwLgyb7lN0II0wAGsLL_z_tCEfzo5G3dX2Qyp9gq3J6ck0nx7Nvu_AU7yfedOR2oXN5aJxHxBMLYuPfrr8Ak5ZFrI |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5VRQIuUN4LbTESEqe0XsfJOselu6sWygohKvUWOX5IFdtktd1ceupP4DfyS5iJN6FbVCGVo59xPOPx58d8BnjPjbdWZUWkveGRdNJGWjoT9Y3IlPKpEob8nb9M08MT-ek0Ob3mxR_4IboNNxoZjb2mAT63fv8PaSh5YNPVLPKUJLrPezLlivR69K0jkBKoncG_KI4jeoa-pW3kYn-9_Pq09BfWXIeuzdwzeQy6bXW4cvJjr14We-byBqHj__zWFjxaAVM2DJr0BDZc-RQeHLTvwT2D-dDqc5SDLt2vq59kcMItA8uGaHlwCnRsVJXVgiEMZh9nNQZrrHAyq6tFwxllHNOlZeOGtALnOhb8QA07pg0CrHN8ftbcwmajs8q6i-dwMhl_PziMVu81REaimSL5IgB03JtE8IFBJGc44R-JoIRbjMgSm6aF0qgA3qvCuz7X_YI7TIm9i-MXsFlWpXsFzOH6eMCldqlUUidao2URA5tkAgvpIu1B1IorNysyc3pTY5YHGmaRUz_mXT_24EOXfx5oPG7Nud1KP18N54tcIGol5BQPevCuS8b-p9MV7PaqpjwxLgb7SmU9eBm0pvsUHUcjCMDSopH9P9qQD6dH4y70-i6F3sL9r6NJfnw0_fwGHmJ01uwbqW3YXC5qt4NIalnsNoPlNxFNFWo |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Adamantane%E2%80%90Substituted+Acridine+Donor+for+Blue+Dual+Fluorescence+and+Efficient+Organic+Light%E2%80%90Emitting+Diodes&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Li%2C+Wei&rft.au=Cai%2C+Xinyi&rft.au=Li%2C+Binbin&rft.au=Gan%2C+Lin&rft.date=2019-01-08&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=58&rft.issue=2&rft.spage=582&rft.epage=586&rft_id=info:doi/10.1002%2Fanie.201811703&rft.externalDBID=10.1002%252Fanie.201811703&rft.externalDocID=ANIE201811703 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon |