Adamantane‐Substituted Acridine Donor for Blue Dual Fluorescence and Efficient Organic Light‐Emitting Diodes

To date, blue dual fluorescence emission (DFE) has not been realized because of the limited choice of chemical moieties and severe geometric deformation of the DFE emitters leading to strong intramolecular charge transfer (ICT) with a large Stokes shift in excited states. Herein, an emitter (1′r,5′R...

Full description

Saved in:
Bibliographic Details
Published inAngewandte Chemie International Edition Vol. 58; no. 2; pp. 582 - 586
Main Authors Li, Wei, Cai, Xinyi, Li, Binbin, Gan, Lin, He, Yanmei, Liu, Kunkun, Chen, Dongcheng, Wu, Yuan‐Chun, Su, Shi‐Jian
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 08.01.2019
EditionInternational ed. in English
Subjects
Online AccessGet full text

Cover

Loading…
Abstract To date, blue dual fluorescence emission (DFE) has not been realized because of the limited choice of chemical moieties and severe geometric deformation of the DFE emitters leading to strong intramolecular charge transfer (ICT) with a large Stokes shift in excited states. Herein, an emitter (1′r,5′R,7′S)‐10‐(4‐(4,6‐diphenyl‐1,3,5‐triazin‐2‐yl)phenyl)‐10H‐spiro [acridine‐9,2′‐adamantane] (a‐DMAc‐TRZ) containing a novel adamantane‐substituted acridine donor is reported, which exhibits unusual blue DFE. The introduction of the rigid and bulky adamantane moiety not only suppressed the geometry relaxation in excited state, but also induced the formation of quasi‐axial conformer (QAC) and quasi‐equatorial conformer (QEC) geometries, leading to deep‐blue conventional fluorescence and sky‐blue thermally activated delayed fluorescence (TADF). The resulting organic light‐emitting diodes (OLEDs) achieved a maximum external quantum efficiency (EQE) of about 29 %, which is the highest reported for OLEDs based on dual‐conformation emitters. Tangled up in blue: The introduction of the rigid and bulky adamantane moiety leads to deep‐blue conventional fluorescence and sky‐blue thermally activated delayed fluorescence. The rigid backbone suppresses non‐radiative processes as well as the degenerate alignment arising from quasi‐axial conformers (QAC) and quasi‐equatorial conformers (QEC) geometries.
AbstractList To date, blue dual fluorescence emission (DFE) has not been realized because of the limited choice of chemical moieties and severe geometric deformation of the DFE emitters leading to strong intramolecular charge transfer (ICT) with a large Stokes shift in excited states. Herein, an emitter (1′r,5′R,7′S)‐10‐(4‐(4,6‐diphenyl‐1,3,5‐triazin‐2‐yl)phenyl)‐10H‐spiro [acridine‐9,2′‐adamantane] (a‐DMAc‐TRZ) containing a novel adamantane‐substituted acridine donor is reported, which exhibits unusual blue DFE. The introduction of the rigid and bulky adamantane moiety not only suppressed the geometry relaxation in excited state, but also induced the formation of quasi‐axial conformer (QAC) and quasi‐equatorial conformer (QEC) geometries, leading to deep‐blue conventional fluorescence and sky‐blue thermally activated delayed fluorescence (TADF). The resulting organic light‐emitting diodes (OLEDs) achieved a maximum external quantum efficiency (EQE) of about 29 %, which is the highest reported for OLEDs based on dual‐conformation emitters. Tangled up in blue: The introduction of the rigid and bulky adamantane moiety leads to deep‐blue conventional fluorescence and sky‐blue thermally activated delayed fluorescence. The rigid backbone suppresses non‐radiative processes as well as the degenerate alignment arising from quasi‐axial conformers (QAC) and quasi‐equatorial conformers (QEC) geometries.
To date, blue dual fluorescence emission (DFE) has not been realized because of the limited choice of chemical moieties and severe geometric deformation of the DFE emitters leading to strong intramolecular charge transfer (ICT) with a large Stokes shift in excited states. Herein, an emitter (1'r,5'R,7'S)-10-(4-(4,6-diphenyl-1,3,5-triazin-2-yl)phenyl)-10H-spiro [acridine-9,2'-adamantane] (a-DMAc-TRZ) containing a novel adamantane-substituted acridine donor is reported, which exhibits unusual blue DFE. The introduction of the rigid and bulky adamantane moiety not only suppressed the geometry relaxation in excited state, but also induced the formation of quasi-axial conformer (QAC) and quasi-equatorial conformer (QEC) geometries, leading to deep-blue conventional fluorescence and sky-blue thermally activated delayed fluorescence (TADF). The resulting organic light-emitting diodes (OLEDs) achieved a maximum external quantum efficiency (EQE) of about 29 %, which is the highest reported for OLEDs based on dual-conformation emitters.
To date, blue dual fluorescence emission (DFE) has not been realized because of the limited choice of chemical moieties and severe geometric deformation of the DFE emitters leading to strong intramolecular charge transfer (ICT) with a large Stokes shift in excited states. Herein, an emitter (1'r,5'R,7'S)-10-(4-(4,6-diphenyl-1,3,5-triazin-2-yl)phenyl)-10H-spiro [acridine-9,2'-adamantane] (a-DMAc-TRZ) containing a novel adamantane-substituted acridine donor is reported, which exhibits unusual blue DFE. The introduction of the rigid and bulky adamantane moiety not only suppressed the geometry relaxation in excited state, but also induced the formation of quasi-axial conformer (QAC) and quasi-equatorial conformer (QEC) geometries, leading to deep-blue conventional fluorescence and sky-blue thermally activated delayed fluorescence (TADF). The resulting organic light-emitting diodes (OLEDs) achieved a maximum external quantum efficiency (EQE) of about 29 %, which is the highest reported for OLEDs based on dual-conformation emitters.To date, blue dual fluorescence emission (DFE) has not been realized because of the limited choice of chemical moieties and severe geometric deformation of the DFE emitters leading to strong intramolecular charge transfer (ICT) with a large Stokes shift in excited states. Herein, an emitter (1'r,5'R,7'S)-10-(4-(4,6-diphenyl-1,3,5-triazin-2-yl)phenyl)-10H-spiro [acridine-9,2'-adamantane] (a-DMAc-TRZ) containing a novel adamantane-substituted acridine donor is reported, which exhibits unusual blue DFE. The introduction of the rigid and bulky adamantane moiety not only suppressed the geometry relaxation in excited state, but also induced the formation of quasi-axial conformer (QAC) and quasi-equatorial conformer (QEC) geometries, leading to deep-blue conventional fluorescence and sky-blue thermally activated delayed fluorescence (TADF). The resulting organic light-emitting diodes (OLEDs) achieved a maximum external quantum efficiency (EQE) of about 29 %, which is the highest reported for OLEDs based on dual-conformation emitters.
To date, blue dual fluorescence emission (DFE) has not been realized because of the limited choice of chemical moieties and severe geometric deformation of the DFE emitters leading to strong intramolecular charge transfer (ICT) with a large Stokes shift in excited states. Herein, an emitter (1′r,5′ R ,7′ S )‐10‐(4‐(4,6‐diphenyl‐1,3,5‐triazin‐2‐yl)phenyl)‐10H‐spiro [acridine‐9,2′‐adamantane] (a‐DMAc‐TRZ) containing a novel adamantane‐substituted acridine donor is reported, which exhibits unusual blue DFE. The introduction of the rigid and bulky adamantane moiety not only suppressed the geometry relaxation in excited state, but also induced the formation of quasi‐axial conformer (QAC) and quasi‐equatorial conformer (QEC) geometries, leading to deep‐blue conventional fluorescence and sky‐blue thermally activated delayed fluorescence (TADF). The resulting organic light‐emitting diodes (OLEDs) achieved a maximum external quantum efficiency (EQE) of about 29 %, which is the highest reported for OLEDs based on dual‐conformation emitters.
Author He, Yanmei
Li, Binbin
Cai, Xinyi
Li, Wei
Wu, Yuan‐Chun
Su, Shi‐Jian
Gan, Lin
Liu, Kunkun
Chen, Dongcheng
Author_xml – sequence: 1
  givenname: Wei
  surname: Li
  fullname: Li, Wei
  organization: South China University of Technology
– sequence: 2
  givenname: Xinyi
  surname: Cai
  fullname: Cai, Xinyi
  organization: South China University of Technology
– sequence: 3
  givenname: Binbin
  surname: Li
  fullname: Li, Binbin
  organization: South China University of Technology
– sequence: 4
  givenname: Lin
  surname: Gan
  fullname: Gan, Lin
  organization: South China University of Technology
– sequence: 5
  givenname: Yanmei
  surname: He
  fullname: He, Yanmei
  organization: South China University of Technology
– sequence: 6
  givenname: Kunkun
  surname: Liu
  fullname: Liu, Kunkun
  organization: South China University of Technology
– sequence: 7
  givenname: Dongcheng
  surname: Chen
  fullname: Chen, Dongcheng
  organization: South China University of Technology
– sequence: 8
  givenname: Yuan‐Chun
  surname: Wu
  fullname: Wu, Yuan‐Chun
  organization: Shenzhen China Star Optoelectronics Semiconductor Display Technology Co., Ltd
– sequence: 9
  givenname: Shi‐Jian
  orcidid: 0000-0002-6545-9002
  surname: Su
  fullname: Su, Shi‐Jian
  email: mssjsu@scut.edu.cn
  organization: South China University of Technology
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30457187$$D View this record in MEDLINE/PubMed
BookMark eNqFkctu1DAYhS1URC-wZYkisWGTwX-cxM5yaKdQaUQXwNpynN-Dq8QefBHqjkfgGXkSXE0LUiXEwvLtO0fHPqfkyHmHhLwEugJKm7fKWVw1FAQAp-wJOYGugZpxzo7KumWs5qKDY3Ia403hhaD9M3LMaNtxEPyE7NeTWpRLyuGvHz8_5TEmm3LCqVrrYCfrsLrwzofKlPFuzmWb1VxdztkHjBqdxkq5qdoYY7VFl6rrsCuhdLW1u6-peG4Wm5J1u-rC-gnjc_LUqDnii_v5jHy53Hw-_1Bvr99fna-3tW55z2rQDe1apEZ3DeUaoNGUDQNrOzrQqRwM3dT3o1Ci0caI0SBQBSPFcsMMMnZG3hx898F_yxiTXGzJO8_lpT5H2QDraQ9CDAV9_Qi98Tm4kq5QPYOBAuOFenVP5XHBSe6DXVS4lQ9_WYD2AOjgYwxopLZJJetdCsrOEqi8q0zeVSb_VFZkq0eyB-d_CoaD4Lud8fY_tFx_vNr81f4GrxCqJg
CitedBy_id crossref_primary_10_1007_s11426_020_9831_y
crossref_primary_10_1016_j_cej_2020_126107
crossref_primary_10_1016_j_scib_2020_08_023
crossref_primary_10_1021_acs_jpca_0c06695
crossref_primary_10_1002_anie_202409653
crossref_primary_10_1016_j_porgcoat_2023_107867
crossref_primary_10_1002_smll_202201548
crossref_primary_10_1021_acs_jpcc_0c08430
crossref_primary_10_1021_acs_jpcc_4c03344
crossref_primary_10_1002_adfm_202112881
crossref_primary_10_1039_C9TC05533A
crossref_primary_10_1016_j_dyepig_2020_108367
crossref_primary_10_1016_j_jphotochem_2022_114098
crossref_primary_10_1016_j_synthmet_2025_117831
crossref_primary_10_1002_adom_202001074
crossref_primary_10_1016_j_dyepig_2024_112597
crossref_primary_10_1039_D3MH00676J
crossref_primary_10_1016_j_dyepig_2024_112118
crossref_primary_10_1002_adfm_202211696
crossref_primary_10_1002_adom_202300017
crossref_primary_10_1016_j_cej_2021_133030
crossref_primary_10_1016_j_dyepig_2022_110329
crossref_primary_10_1039_D2TC05213J
crossref_primary_10_2139_ssrn_4133493
crossref_primary_10_1002_adfm_202002681
crossref_primary_10_1002_anie_202108943
crossref_primary_10_1039_D1TC04699C
crossref_primary_10_1016_j_mtener_2020_100581
crossref_primary_10_1002_lpor_202300758
crossref_primary_10_1002_adom_202100273
crossref_primary_10_1002_adpr_202200203
crossref_primary_10_1002_chem_202003526
crossref_primary_10_1016_j_molstruc_2022_134418
crossref_primary_10_1039_D1TC01537K
crossref_primary_10_1002_anie_202217080
crossref_primary_10_1039_D2TC03875G
crossref_primary_10_1016_j_cej_2023_142929
crossref_primary_10_1039_D0TC02289F
crossref_primary_10_1002_adom_201902100
crossref_primary_10_1016_j_dyepig_2019_107636
crossref_primary_10_1016_j_cej_2019_05_192
crossref_primary_10_1039_C9SC04492B
crossref_primary_10_1002_agt2_243
crossref_primary_10_1002_ajoc_202200009
crossref_primary_10_1021_acs_jpcc_9b05875
crossref_primary_10_1039_D2CP05119B
crossref_primary_10_1002_advs_202101326
crossref_primary_10_1002_anie_202210687
crossref_primary_10_1002_adom_202401735
crossref_primary_10_1007_s10870_021_00890_5
crossref_primary_10_1002_adma_202001248
crossref_primary_10_1016_j_dyepig_2023_111225
crossref_primary_10_1039_C9TC05340A
crossref_primary_10_1016_j_orgel_2024_107141
crossref_primary_10_1021_acs_jpclett_2c00779
crossref_primary_10_1016_j_chempr_2020_04_021
crossref_primary_10_1002_adom_202200504
crossref_primary_10_1016_j_orgel_2019_105449
crossref_primary_10_1016_j_orgel_2023_106795
crossref_primary_10_1021_acsami_2c12778
crossref_primary_10_1002_cptc_202300211
crossref_primary_10_1021_acsami_9b17585
crossref_primary_10_1002_adfm_202300910
crossref_primary_10_1039_C9TC01329F
crossref_primary_10_1021_acsami_0c19302
crossref_primary_10_1039_D2CP05084F
crossref_primary_10_1016_j_xcrp_2021_100733
crossref_primary_10_1021_acsami_9b07820
crossref_primary_10_1016_j_dyepig_2021_109495
crossref_primary_10_1039_C9TC05892C
crossref_primary_10_1002_adom_202000052
crossref_primary_10_1016_j_cej_2022_134731
crossref_primary_10_1016_j_dyepig_2023_111298
crossref_primary_10_1016_j_orgel_2019_105610
crossref_primary_10_1002_chem_202004719
crossref_primary_10_1039_C9TC05917B
crossref_primary_10_1002_ange_202217080
crossref_primary_10_1002_anie_201904272
crossref_primary_10_1021_acs_chemrev_3c00755
crossref_primary_10_1021_acsami_0c14123
crossref_primary_10_1016_j_snb_2023_134161
crossref_primary_10_1021_acs_jpca_3c04617
crossref_primary_10_1039_D0MH01521K
crossref_primary_10_1039_D3OB01470C
crossref_primary_10_1002_ange_202409653
crossref_primary_10_1021_acs_jpclett_1c03044
crossref_primary_10_1016_j_cej_2024_149150
crossref_primary_10_1002_ajoc_202000128
crossref_primary_10_1002_ange_202103187
crossref_primary_10_1002_ange_202210687
crossref_primary_10_1016_j_dyepig_2020_108336
crossref_primary_10_1039_C9TC01973A
crossref_primary_10_1039_D1TC04939A
crossref_primary_10_1039_C9TC02032B
crossref_primary_10_1002_ange_201904272
crossref_primary_10_1038_s41467_023_38197_y
crossref_primary_10_1002_ange_202409580
crossref_primary_10_1002_adfm_202415633
crossref_primary_10_1002_chem_202101188
crossref_primary_10_1016_j_dyepig_2022_110385
crossref_primary_10_1002_ange_202108943
crossref_primary_10_1002_anie_202103187
crossref_primary_10_1039_D0TC05343K
crossref_primary_10_1002_adom_202101410
crossref_primary_10_1039_C9CC09769D
crossref_primary_10_1002_anie_202409580
crossref_primary_10_1039_C9TC04284A
crossref_primary_10_1021_acs_jpcc_0c04126
crossref_primary_10_1016_j_cej_2023_147977
crossref_primary_10_1039_C9SC01821B
crossref_primary_10_1007_s11426_020_9908_5
crossref_primary_10_1088_1361_6633_ace06a
crossref_primary_10_1039_C9CC08679J
crossref_primary_10_1002_adom_202000480
crossref_primary_10_1002_lpor_202000412
crossref_primary_10_1016_j_tetlet_2022_154044
Cites_doi 10.1002/anie.201400155
10.1002/ange.201703862
10.1021/ja510144h
10.1002/anie.201806800
10.1016/j.jlumin.2012.07.002
10.1002/ange.201502180
10.1002/ange.201308486
10.1007/s11426-017-9219-x
10.1002/anie.201109089
10.1039/C8TC00991K
10.1039/C5CC05022G
10.1063/1.1904586
10.1039/C5NR00554J
10.1103/PhysRevLett.52.997
10.1021/jp501017f
10.1039/C6SC03856E
10.1021/ac2001324
10.1039/C6SC00542J
10.1039/c4sc00308j
10.1021/acs.analchem.7b04375
10.1038/ncomms14987
10.1002/adma.201604856
10.1002/ange.201109089
10.1021/ja4035939
10.1002/anie.201308486
10.1002/anie.201703862
10.1002/adma.201701476
10.1002/anie.201502180
10.1039/C4CS00334A
10.1002/ange.201400155
10.1002/adma.201705641
10.1002/ange.201806800
10.1038/nchembio.69
10.1002/adfm.201603520
10.1039/C6SC04863C
10.1002/adma.201601675
ContentType Journal Article
Copyright 2019 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim
2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Copyright_xml – notice: 2019 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
– notice: 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
DBID AAYXX
CITATION
NPM
7TM
K9.
7X8
DOI 10.1002/anie.201811703
DatabaseName CrossRef
PubMed
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
ProQuest Health & Medical Complete (Alumni)
Nucleic Acids Abstracts
MEDLINE - Academic
DatabaseTitleList
PubMed
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3773
Edition International ed. in English
EndPage 586
ExternalDocumentID 30457187
10_1002_anie_201811703
ANIE201811703
Genre shortCommunication
Journal Article
GrantInformation_xml – fundername: 973 Project
  funderid: 2015CB655003
– fundername: China Postdoctoral Science Foundation Funded Project
  funderid: 2017M622680
– fundername: National Natural Science Foundation of China
  funderid: 51625301, U1601651, 51573059 and 91233116
– fundername: National Key R&D Program of China
  funderid: 2016YFB0401004
– fundername: Guangdong Provincial Department of Science and Technology
  funderid: 2016B090906003 and 2016TX03C175
– fundername: Guangdong Provincial Department of Science and Technology
  grantid: 2016B090906003 and 2016TX03C175
– fundername: China Postdoctoral Science Foundation Funded Project
  grantid: 2017M622680
– fundername: National Natural Science Foundation of China
  grantid: 51625301, U1601651, 51573059 and 91233116
– fundername: National Key R&D Program of China
  grantid: 2016YFB0401004
– fundername: 973 Project
  grantid: 2015CB655003
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABLJU
ABPPZ
ABPVW
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BTSUX
BY8
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
M53
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
TN5
UB1
UPT
UQL
V2E
VQA
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XSW
XV2
YZZ
ZZTAW
~IA
~KM
~WT
AAYXX
ABDBF
ABJNI
AEYWJ
AGHNM
AGYGG
CITATION
LW6
NPM
7TM
K9.
7X8
ID FETCH-LOGICAL-c4763-1c2054e0fc5207c112c0399345090d7c195d66b8a82cff8bfe10a1b0ec193fe33
IEDL.DBID DR2
ISSN 1433-7851
1521-3773
IngestDate Fri Jul 11 15:20:20 EDT 2025
Fri Jul 25 10:35:29 EDT 2025
Mon Jul 21 06:18:14 EDT 2025
Thu Apr 24 22:54:09 EDT 2025
Tue Jul 01 02:26:38 EDT 2025
Wed Jan 22 17:04:04 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords organic light-emitting diodes (OLEDs)
thermally activated delayed fluorescence
dual fluorescence emission
materials science
photochemistry
Language English
License 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4763-1c2054e0fc5207c112c0399345090d7c195d66b8a82cff8bfe10a1b0ec193fe33
Notes These authors contributed equally to this work.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-6545-9002
PMID 30457187
PQID 2163190137
PQPubID 946352
PageCount 5
ParticipantIDs proquest_miscellaneous_2136061889
proquest_journals_2163190137
pubmed_primary_30457187
crossref_citationtrail_10_1002_anie_201811703
crossref_primary_10_1002_anie_201811703
wiley_primary_10_1002_anie_201811703_ANIE201811703
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 8, 2019
PublicationDateYYYYMMDD 2019-01-08
PublicationDate_xml – month: 01
  year: 2019
  text: January 8, 2019
  day: 08
PublicationDecade 2010
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Angewandte Chemie International Edition
PublicationTitleAlternate Angew Chem Int Ed Engl
PublicationYear 2019
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2014; 118
2014 2014; 53 126
2017; 8
2015; 51
2011; 83
2017; 29
2018; 61
2017 2017; 56 129
2008; 4
2015; 7
2014; 136
2018; 6
1984; 52
2016; 7
2014; 5
2005; 123
2018 2018; 57 130
2012 2012; 51 124
2015; 44
2013; 134
2015 2015; 54 127
2018; 90
2013; 135
2018; 30
2016; 28
2016; 26
e_1_2_2_3_2
e_1_2_2_24_2
e_1_2_2_4_2
e_1_2_2_5_2
e_1_2_2_22_2
e_1_2_2_23_1
e_1_2_2_6_2
e_1_2_2_21_2
e_1_2_2_20_2
e_1_2_2_1_1
e_1_2_2_2_2
e_1_2_2_29_2
e_1_2_2_7_2
e_1_2_2_8_2
e_1_2_2_28_2
e_1_2_2_7_3
e_1_2_2_9_3
e_1_2_2_27_1
e_1_2_2_8_3
e_1_2_2_9_2
e_1_2_2_25_2
e_1_2_2_26_1
e_1_2_2_13_2
e_1_2_2_37_1
e_1_2_2_37_2
e_1_2_2_38_1
e_1_2_2_10_3
e_1_2_2_11_2
e_1_2_2_12_1
e_1_2_2_10_2
e_1_2_2_30_1
e_1_2_2_18_3
e_1_2_2_19_2
e_1_2_2_18_2
e_1_2_2_31_2
e_1_2_2_32_2
e_1_2_2_33_1
e_1_2_2_16_2
e_1_2_2_17_1
e_1_2_2_15_2
e_1_2_2_34_2
e_1_2_2_14_2
e_1_2_2_35_2
e_1_2_2_36_1
References_xml – volume: 8
  start-page: 1134
  year: 2017
  end-page: 1140
  publication-title: Chem. Sci.
– volume: 28
  start-page: 6976
  year: 2016
  end-page: 6983
  publication-title: Adv. Mater.
– volume: 53 126
  start-page: 4572 4660
  year: 2014 2014
  end-page: 4577 4665
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 135
  start-page: 11595
  year: 2013
  end-page: 11602
  publication-title: J. Am. Chem. Soc.
– volume: 54 127
  start-page: 7181 7287
  year: 2015 2015
  end-page: 7184 7290
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 83
  start-page: 3126
  year: 2011
  end-page: 3132
  publication-title: Anal. Chem.
– volume: 8
  start-page: 14987
  year: 2017
  publication-title: Nat. Commun.
– volume: 26
  start-page: 8042
  year: 2016
  end-page: 8052
  publication-title: Adv. Funct. Mater.
– volume: 90
  start-page: 2648
  year: 2018
  end-page: 2654
  publication-title: Anal. Chem.
– volume: 51 124
  start-page: 7185 7297
  year: 2012 2012
  end-page: 7189 7301
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 6
  start-page: 4842
  year: 2018
  end-page: 4853
  publication-title: J. Mater. Chem. C
– volume: 57 130
  start-page: 12473 12653
  year: 2018 2018
  end-page: 12477 12657
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 134
  start-page: 729
  year: 2013
  end-page: 738
  publication-title: J. Lumin.
– volume: 8
  start-page: 2677
  year: 2017
  end-page: 2686
  publication-title: Chem. Sci.
– volume: 4
  start-page: 168
  year: 2008
  end-page: 175
  publication-title: Nat. Chem. Biol.
– volume: 30
  start-page: 1705641
  year: 2018
  publication-title: Adv. Mater.
– volume: 7
  start-page: 8457
  year: 2015
  end-page: 8465
  publication-title: Nanoscale
– volume: 53 126
  start-page: 2119 2151
  year: 2014 2014
  end-page: 2123 2155
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 29
  start-page: 1604856
  year: 2017
  publication-title: Adv. Mater.
– volume: 118
  start-page: 15985
  year: 2014
  end-page: 15994
  publication-title: J. Phys. Chem. C
– volume: 51
  start-page: 13662
  year: 2015
  end-page: 13665
  publication-title: Chem. Commun.
– volume: 123
  start-page: 062206
  year: 2005
  publication-title: J. Chem. Phys.
– volume: 52
  start-page: 997
  year: 1984
  end-page: 1000
  publication-title: Phys. Rev. Lett.
– volume: 56 129
  start-page: 11370 11528
  year: 2017 2017
  end-page: 11374 11532
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 44
  start-page: 4203
  year: 2015
  end-page: 4211
  publication-title: Chem. Soc. Rev.
– volume: 136
  start-page: 18070
  year: 2014
  end-page: 18081
  publication-title: J. Am. Chem. Soc.
– volume: 7
  start-page: 4264
  year: 2016
  end-page: 4275
  publication-title: Chem. Sci.
– volume: 61
  start-page: 677
  year: 2018
  end-page: 686
  publication-title: Sci. China Chem.
– volume: 5
  start-page: 2177
  year: 2014
  end-page: 2183
  publication-title: Chem. Sci.
– volume: 29
  start-page: 1701476
  year: 2017
  publication-title: Adv. Mater.
– ident: e_1_2_2_8_2
  doi: 10.1002/anie.201400155
– ident: e_1_2_2_10_3
  doi: 10.1002/ange.201703862
– ident: e_1_2_2_1_1
– ident: e_1_2_2_34_2
  doi: 10.1021/ja510144h
– ident: e_1_2_2_7_2
  doi: 10.1002/anie.201806800
– ident: e_1_2_2_20_2
  doi: 10.1016/j.jlumin.2012.07.002
– ident: e_1_2_2_9_3
  doi: 10.1002/ange.201502180
– ident: e_1_2_2_12_1
– ident: e_1_2_2_27_1
– ident: e_1_2_2_37_2
  doi: 10.1002/ange.201308486
– ident: e_1_2_2_6_2
  doi: 10.1007/s11426-017-9219-x
– ident: e_1_2_2_18_2
  doi: 10.1002/anie.201109089
– ident: e_1_2_2_5_2
  doi: 10.1039/C8TC00991K
– ident: e_1_2_2_24_2
  doi: 10.1039/C5CC05022G
– ident: e_1_2_2_38_1
– ident: e_1_2_2_32_2
  doi: 10.1063/1.1904586
– ident: e_1_2_2_21_2
  doi: 10.1039/C5NR00554J
– ident: e_1_2_2_23_1
– ident: e_1_2_2_31_2
  doi: 10.1103/PhysRevLett.52.997
– ident: e_1_2_2_2_2
  doi: 10.1021/jp501017f
– ident: e_1_2_2_15_2
  doi: 10.1039/C6SC03856E
– ident: e_1_2_2_13_2
  doi: 10.1021/ac2001324
– ident: e_1_2_2_35_2
  doi: 10.1039/C6SC00542J
– ident: e_1_2_2_14_2
  doi: 10.1039/c4sc00308j
– ident: e_1_2_2_16_2
  doi: 10.1021/acs.analchem.7b04375
– ident: e_1_2_2_3_2
  doi: 10.1038/ncomms14987
– ident: e_1_2_2_29_2
  doi: 10.1002/adma.201604856
– ident: e_1_2_2_18_3
  doi: 10.1002/ange.201109089
– ident: e_1_2_2_19_2
  doi: 10.1021/ja4035939
– ident: e_1_2_2_37_1
  doi: 10.1002/anie.201308486
– ident: e_1_2_2_10_2
  doi: 10.1002/anie.201703862
– ident: e_1_2_2_11_2
  doi: 10.1002/adma.201701476
– ident: e_1_2_2_33_1
– ident: e_1_2_2_9_2
  doi: 10.1002/anie.201502180
– ident: e_1_2_2_17_1
– ident: e_1_2_2_26_1
  doi: 10.1039/C4CS00334A
– ident: e_1_2_2_8_3
  doi: 10.1002/ange.201400155
– ident: e_1_2_2_30_1
– ident: e_1_2_2_28_2
  doi: 10.1002/adma.201705641
– ident: e_1_2_2_7_3
  doi: 10.1002/ange.201806800
– ident: e_1_2_2_22_2
  doi: 10.1038/nchembio.69
– ident: e_1_2_2_36_1
  doi: 10.1002/adfm.201603520
– ident: e_1_2_2_4_2
  doi: 10.1039/C6SC04863C
– ident: e_1_2_2_25_2
  doi: 10.1002/adma.201601675
SSID ssj0028806
Score 2.595207
Snippet To date, blue dual fluorescence emission (DFE) has not been realized because of the limited choice of chemical moieties and severe geometric deformation of the...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 582
SubjectTerms Acridine
Charge transfer
Conformation
Deformation
Diodes
dual fluorescence emission
Emitters
Fluorescence
materials science
Organic chemistry
Organic light emitting diodes
organic light-emitting diodes (OLEDs)
photochemistry
Quantum efficiency
Substitutes
thermally activated delayed fluorescence
Title Adamantane‐Substituted Acridine Donor for Blue Dual Fluorescence and Efficient Organic Light‐Emitting Diodes
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.201811703
https://www.ncbi.nlm.nih.gov/pubmed/30457187
https://www.proquest.com/docview/2163190137
https://www.proquest.com/docview/2136061889
Volume 58
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1PT9swFLcmLuzCBhusUJAnIXFK6zpO6hxLacWmjQMaUm-RYztSRUlQ21x24iPwGfkkvGc3gYIQ0naL4z9x_Oznn-33fibkmOncGJlkgco1C4QVJlDC6qCneSJlHkuu0d_590V8fiV-TqLJMy9-zw_RbLjhyHD6Gge4yhbdJ9JQ9MBG0yz0lHR0n2iwhajosuGP4tA5vXtRGAZ4C33N2sh4dz37-qz0CmquI1c39Yw_EVVX2lucXHeqZdbRf1_wOf7PX30mWytcSge-I22TD7bYIZvD-jq4L-R2YNQNiEEV9uHuHvWNNzIwdACKB2ZAS8_KopxTQMH0dFZBsIICx7OqnDvKKG2pKgwdOc4KmOqodwPV9BfuD0CZo5upM8KmZ9PS2MVXcjUe_RmeB6vrGgItQEuheAH_WZbriLO-BiCnGcIfAZiEGXiRRCaOM6lA_nkus9z2mOplzEJMmNsw3CUbRVnYb4RaWB73mVA2FlKoSClQLLxvooRDJpXFLRLU4kr1isscr9SYpZ6FmafYjmnTji1y0qS_9Sweb6Zs19JPV6N5kXIArQicwn6LfG-iof3xcAWavawwTQhrwZ6USYvs-V7TfApPowEDQG7uZP9OHdLBxY9RE9r_l0wH5CM8J26vSLbJxnJe2UNAT8vsyI2QRy2QEpc
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTtwwEB4heqCX_v8s0NaVKvUU8DpO1jluYVcLXfZQgdRb5NiOhFgStGwunHgEnpEn6Yy9SbWtqkpwTGInjscefx7PfAPwhZvSWpUVkS4Nj6STNtLSmahvRKZUmSphKN75ZJZOzuTxz6T1JqRYmMAP0RncaGZ4fU0TnAzS-79ZQykEm3yzKFSS-D6fUFpvv6v60TFICRyeIcAojiPKQ9_yNnKxv15_fV36C2yuY1e_-IyfQ9E2O_icXOw1y2LP3PzB6Pio_3oBz1bQlA3DWHoJG656BVsHbUa413A1tPoSJaErd397Ryon-BlYNkTdg4ugY4d1VS8YAmH2bd7gZYMvHM-beuFZo4xjurJs5GkrcLVjIRLUsCmZCPCdo8tz74fNDs9r667fwNl4dHowiVYZGyIjUVGRhBECOl6aRPCBQSxnOCEgibCEW7yRJTZNC6VxCJSlKkrX57pfcIdP4tLF8VvYrOrKvQfmcIc84FK7VCqpE61Rt4iBTTKBlXSR9iBq5ZWbFZ05ZdWY54GIWeTUj3nXjz342pW_CkQe_yy524o_X03o61wgbiXsFA968Ll7jP1P5yvY7XVDZWLcDvaVynrwLgyb7lN0II0wAGsLL_z_tCEfzo5G3dX2Qyp9gq3J6ck0nx7Nvu_AU7yfedOR2oXN5aJxHxBMLYuPfrr8Ak5ZFrI
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5VRQIuUN4LbTESEqe0XsfJOselu6sWygohKvUWOX5IFdtktd1ceupP4DfyS5iJN6FbVCGVo59xPOPx58d8BnjPjbdWZUWkveGRdNJGWjoT9Y3IlPKpEob8nb9M08MT-ek0Ob3mxR_4IboNNxoZjb2mAT63fv8PaSh5YNPVLPKUJLrPezLlivR69K0jkBKoncG_KI4jeoa-pW3kYn-9_Pq09BfWXIeuzdwzeQy6bXW4cvJjr14We-byBqHj__zWFjxaAVM2DJr0BDZc-RQeHLTvwT2D-dDqc5SDLt2vq59kcMItA8uGaHlwCnRsVJXVgiEMZh9nNQZrrHAyq6tFwxllHNOlZeOGtALnOhb8QA07pg0CrHN8ftbcwmajs8q6i-dwMhl_PziMVu81REaimSL5IgB03JtE8IFBJGc44R-JoIRbjMgSm6aF0qgA3qvCuz7X_YI7TIm9i-MXsFlWpXsFzOH6eMCldqlUUidao2URA5tkAgvpIu1B1IorNysyc3pTY5YHGmaRUz_mXT_24EOXfx5oPG7Nud1KP18N54tcIGol5BQPevCuS8b-p9MV7PaqpjwxLgb7SmU9eBm0pvsUHUcjCMDSopH9P9qQD6dH4y70-i6F3sL9r6NJfnw0_fwGHmJ01uwbqW3YXC5qt4NIalnsNoPlNxFNFWo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Adamantane%E2%80%90Substituted+Acridine+Donor+for+Blue+Dual+Fluorescence+and+Efficient+Organic+Light%E2%80%90Emitting+Diodes&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Li%2C+Wei&rft.au=Cai%2C+Xinyi&rft.au=Li%2C+Binbin&rft.au=Gan%2C+Lin&rft.date=2019-01-08&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=58&rft.issue=2&rft.spage=582&rft.epage=586&rft_id=info:doi/10.1002%2Fanie.201811703&rft.externalDBID=10.1002%252Fanie.201811703&rft.externalDocID=ANIE201811703
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon