Recent Advances in the Development of Water Oxidation Electrocatalysts at Mild pH
Developing anodic oxygen evolution reaction (OER) electrocatalysts with high catalytic activities is of great importance for effective water splitting. Compared with the water‐oxidation electrocatalysts that are commonly utilized in alkaline conditions, the ones operating efficiently under neutral o...
Saved in:
Published in | Small (Weinheim an der Bergstrasse, Germany) Vol. 15; no. 13; pp. e1805103 - n/a |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.03.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Developing anodic oxygen evolution reaction (OER) electrocatalysts with high catalytic activities is of great importance for effective water splitting. Compared with the water‐oxidation electrocatalysts that are commonly utilized in alkaline conditions, the ones operating efficiently under neutral or near neutral conditions are more environmentally friendly with less corrosion issues. This review starts with a brief introduction of OER, the importance of OER in mild‐pH media, as well as the fundamentals and performance parameters of OER electrocatalysts. Then, recent progress of the rational design of electrocatalysts for OER in mild‐pH conditions is discussed. The chemical structures or components, synthetic approaches, and catalytic performances of the OER catalysts will be reviewed. Some interesting insights into the catalytic mechanism are also included and discussed. It concludes with a brief outlook on the possible remaining challenges and future trends of neutral or near‐neutral OER electrocatalysts. It hopefully provides the readers with a distinct perspective of the history, present, and future of OER electrocatalysts at mild conditions.
Electrocatalytic water oxidation under environmentally‐friendly conditions has received considerable recent research attention. This paper reviews recent advances in the design and development of water oxidation electrocatalysts operating at mild pH, and current challenges and future research directions are also provided. |
---|---|
AbstractList | Developing anodic oxygen evolution reaction (OER) electrocatalysts with high catalytic activities is of great importance for effective water splitting. Compared with the water-oxidation electrocatalysts that are commonly utilized in alkaline conditions, the ones operating efficiently under neutral or near neutral conditions are more environmentally friendly with less corrosion issues. This review starts with a brief introduction of OER, the importance of OER in mild-pH media, as well as the fundamentals and performance parameters of OER electrocatalysts. Then, recent progress of the rational design of electrocatalysts for OER in mild-pH conditions is discussed. The chemical structures or components, synthetic approaches, and catalytic performances of the OER catalysts will be reviewed. Some interesting insights into the catalytic mechanism are also included and discussed. It concludes with a brief outlook on the possible remaining challenges and future trends of neutral or near-neutral OER electrocatalysts. It hopefully provides the readers with a distinct perspective of the history, present, and future of OER electrocatalysts at mild conditions.Developing anodic oxygen evolution reaction (OER) electrocatalysts with high catalytic activities is of great importance for effective water splitting. Compared with the water-oxidation electrocatalysts that are commonly utilized in alkaline conditions, the ones operating efficiently under neutral or near neutral conditions are more environmentally friendly with less corrosion issues. This review starts with a brief introduction of OER, the importance of OER in mild-pH media, as well as the fundamentals and performance parameters of OER electrocatalysts. Then, recent progress of the rational design of electrocatalysts for OER in mild-pH conditions is discussed. The chemical structures or components, synthetic approaches, and catalytic performances of the OER catalysts will be reviewed. Some interesting insights into the catalytic mechanism are also included and discussed. It concludes with a brief outlook on the possible remaining challenges and future trends of neutral or near-neutral OER electrocatalysts. It hopefully provides the readers with a distinct perspective of the history, present, and future of OER electrocatalysts at mild conditions. Developing anodic oxygen evolution reaction (OER) electrocatalysts with high catalytic activities is of great importance for effective water splitting. Compared with the water-oxidation electrocatalysts that are commonly utilized in alkaline conditions, the ones operating efficiently under neutral or near neutral conditions are more environmentally friendly with less corrosion issues. This review starts with a brief introduction of OER, the importance of OER in mild-pH media, as well as the fundamentals and performance parameters of OER electrocatalysts. Then, recent progress of the rational design of electrocatalysts for OER in mild-pH conditions is discussed. The chemical structures or components, synthetic approaches, and catalytic performances of the OER catalysts will be reviewed. Some interesting insights into the catalytic mechanism are also included and discussed. It concludes with a brief outlook on the possible remaining challenges and future trends of neutral or near-neutral OER electrocatalysts. It hopefully provides the readers with a distinct perspective of the history, present, and future of OER electrocatalysts at mild conditions. Developing anodic oxygen evolution reaction (OER) electrocatalysts with high catalytic activities is of great importance for effective water splitting. Compared with the water‐oxidation electrocatalysts that are commonly utilized in alkaline conditions, the ones operating efficiently under neutral or near neutral conditions are more environmentally friendly with less corrosion issues. This review starts with a brief introduction of OER, the importance of OER in mild‐pH media, as well as the fundamentals and performance parameters of OER electrocatalysts. Then, recent progress of the rational design of electrocatalysts for OER in mild‐pH conditions is discussed. The chemical structures or components, synthetic approaches, and catalytic performances of the OER catalysts will be reviewed. Some interesting insights into the catalytic mechanism are also included and discussed. It concludes with a brief outlook on the possible remaining challenges and future trends of neutral or near‐neutral OER electrocatalysts. It hopefully provides the readers with a distinct perspective of the history, present, and future of OER electrocatalysts at mild conditions. Electrocatalytic water oxidation under environmentally‐friendly conditions has received considerable recent research attention. This paper reviews recent advances in the design and development of water oxidation electrocatalysts operating at mild pH, and current challenges and future research directions are also provided. |
Author | Zhang, Youyu Liu, Qian Sun, Xuping Wang, Huanbo Shi, Xifeng Zhao, Runbo Wei, Peipei Li, Tingshuai Liu, Meiling Chen, Hongyu Li, Peipei Huang, Hong |
Author_xml | – sequence: 1 givenname: Peipei surname: Li fullname: Li, Peipei organization: Hunan Normal University – sequence: 2 givenname: Runbo surname: Zhao fullname: Zhao, Runbo organization: University of Electronic Science and Technology of China – sequence: 3 givenname: Hongyu surname: Chen fullname: Chen, Hongyu organization: University of Electronic Science and Technology of China – sequence: 4 givenname: Huanbo surname: Wang fullname: Wang, Huanbo organization: Southwest University of Science and Technology – sequence: 5 givenname: Peipei surname: Wei fullname: Wei, Peipei organization: University of Electronic Science and Technology of China – sequence: 6 givenname: Hong surname: Huang fullname: Huang, Hong organization: University of Electronic Science and Technology of China – sequence: 7 givenname: Qian surname: Liu fullname: Liu, Qian organization: University of Electronic Science and Technology of China – sequence: 8 givenname: Tingshuai surname: Li fullname: Li, Tingshuai organization: University of Electronic Science and Technology of China – sequence: 9 givenname: Xifeng surname: Shi fullname: Shi, Xifeng organization: Chemical Engineering and Materials Science – sequence: 10 givenname: Youyu surname: Zhang fullname: Zhang, Youyu organization: Hunan Normal University – sequence: 11 givenname: Meiling surname: Liu fullname: Liu, Meiling email: liuml@hunnu.edu.cn organization: Hunan Normal University – sequence: 12 givenname: Xuping orcidid: 0000-0002-5326-3838 surname: Sun fullname: Sun, Xuping email: xpsun@uestc.edu.cn organization: University of Electronic Science and Technology of China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30773809$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkUtLKzEYhoMo3rcuJeDGTWsu08lkKV6OByriDZdDJvmCkcykJmm1_97pqaeCIK4S-J7nS3jfHbTehQ4QOqBkSAlhJ6n1fsgIrciIEr6GtmlJ-aCsmFxf3SnZQjspvRDCKSvEJtriRAheEbmNbu9AQ5fxqZmpTkPCrsP5GfA5zMCHSbuYBYufVIaIb96dUdmFDl940DkGrbLy85QTVhlfO2_w5GoPbVjlE-x_nrvo8fLi4exqML758_fsdDzQhSj5gDa2EqCZHPHSMNWUoIRttNC2qIwkojQF7Ucg2cjYhnJqrWgMh0qXWlnJ-C46Xu6dxPA6hZTr1iUN3qsOwjTVjFacStpH06NH39CXMI1d_7uekoKVkheLhYef1LRpwdST6FoV5_X_sHpguAR0DClFsCuEknrRRr1oo1610QvFN0G7_C_AHJXzP2tyqb05D_NfHqnvr8fjL_cDdTaeVw |
CitedBy_id | crossref_primary_10_1021_acsami_0c13247 crossref_primary_10_1002_slct_202402784 crossref_primary_10_1021_acs_chemrev_0c00394 crossref_primary_10_1002_adfm_202415143 crossref_primary_10_1007_s10853_023_08176_1 crossref_primary_10_1016_j_jcat_2019_08_005 crossref_primary_10_1002_ange_202107510 crossref_primary_10_1021_acssuschemeng_9b06959 crossref_primary_10_1016_j_renene_2022_03_137 crossref_primary_10_1002_cplu_201900512 crossref_primary_10_1002_cssc_201902921 crossref_primary_10_1016_j_ijhydene_2019_05_121 crossref_primary_10_1039_D5CP00243E crossref_primary_10_1016_j_apsusc_2020_148518 crossref_primary_10_1016_j_jcis_2022_08_141 crossref_primary_10_1002_smll_202411479 crossref_primary_10_1039_C9QI00953A crossref_primary_10_1039_D3MH00366C crossref_primary_10_1016_j_coelec_2022_100961 crossref_primary_10_1016_j_ijhydene_2020_05_279 crossref_primary_10_1021_acssuschemeng_9b05514 crossref_primary_10_1016_j_nanoen_2020_105392 crossref_primary_10_1021_acs_inorgchem_4c03897 crossref_primary_10_1016_j_clay_2020_105511 crossref_primary_10_1039_C9TA08812A crossref_primary_10_1002_anie_202308335 crossref_primary_10_1021_acs_chemrev_3c00206 crossref_primary_10_1007_s12274_020_2618_y crossref_primary_10_1016_j_molstruc_2019_05_052 crossref_primary_10_1002_anie_202317844 crossref_primary_10_3390_coatings13040726 crossref_primary_10_1039_C9CC08838E crossref_primary_10_1016_j_xcrp_2022_100910 crossref_primary_10_1021_acsestengg_1c00456 crossref_primary_10_1021_acs_jpcc_2c05174 crossref_primary_10_1002_ente_202100769 crossref_primary_10_1039_D1SE00162K crossref_primary_10_1002_ange_202210753 crossref_primary_10_1021_jacs_9b05268 crossref_primary_10_1002_slct_201901465 crossref_primary_10_1039_D1TB01798E crossref_primary_10_1016_j_electacta_2019_134568 crossref_primary_10_1016_j_apsusc_2020_145828 crossref_primary_10_1016_j_jcis_2023_03_003 crossref_primary_10_1039_C9CE01575B crossref_primary_10_1002_adma_202002297 crossref_primary_10_1016_j_ijhydene_2019_09_008 crossref_primary_10_1039_D0DT02220A crossref_primary_10_1021_acscatal_1c04978 crossref_primary_10_3390_nano12111819 crossref_primary_10_1039_C9NA00356H crossref_primary_10_1039_D0DT03182H crossref_primary_10_1002_ange_202009854 crossref_primary_10_1021_acssuschemeng_9b02705 crossref_primary_10_1016_j_apsusc_2020_145390 crossref_primary_10_1002_smtd_202000719 crossref_primary_10_1016_j_apcatb_2021_120559 crossref_primary_10_1002_celc_202100742 crossref_primary_10_1007_s12613_021_2352_9 crossref_primary_10_1007_s10853_024_09620_6 crossref_primary_10_1002_celc_201901201 crossref_primary_10_1007_s10973_022_11435_z crossref_primary_10_3390_met12050800 crossref_primary_10_1002_nano_202000189 crossref_primary_10_1021_acs_inorgchem_9b00463 crossref_primary_10_1002_aenm_202303281 crossref_primary_10_1016_j_ccr_2022_214925 crossref_primary_10_1016_j_ijhydene_2021_01_063 crossref_primary_10_1039_D2QI02436E crossref_primary_10_1002_ange_202211142 crossref_primary_10_1039_C9CC05115E crossref_primary_10_1021_acsaem_2c02543 crossref_primary_10_1016_j_jallcom_2020_153913 crossref_primary_10_1016_S1872_5805_24_60829_2 crossref_primary_10_1039_D2CY02109A crossref_primary_10_1021_acsaem_2c00238 crossref_primary_10_1039_C9NA00169G crossref_primary_10_1021_acssuschemeng_9b03653 crossref_primary_10_1002_adfm_202301559 crossref_primary_10_1039_C9NR08297B crossref_primary_10_1002_smll_202002550 crossref_primary_10_1021_acsnano_9b05571 crossref_primary_10_1002_asia_202400851 crossref_primary_10_1002_smll_201905884 crossref_primary_10_1016_j_ijhydene_2019_09_214 crossref_primary_10_1021_acsanm_1c03850 crossref_primary_10_1002_cssc_202201808 crossref_primary_10_1039_D1DT01144H crossref_primary_10_1016_j_mattod_2023_08_024 crossref_primary_10_1007_s41918_021_00104_8 crossref_primary_10_1016_j_arabjc_2019_08_006 crossref_primary_10_1002_cctc_202000004 crossref_primary_10_1021_acs_inorgchem_1c02254 crossref_primary_10_1016_j_jallcom_2020_156094 crossref_primary_10_1063_5_0139558 crossref_primary_10_1002_ente_202300461 crossref_primary_10_1039_C9RA05165A crossref_primary_10_1007_s10853_021_06710_7 crossref_primary_10_1016_j_jcis_2020_08_005 crossref_primary_10_1021_acsami_9b06635 crossref_primary_10_1039_C9TA07171G crossref_primary_10_1039_D0TA08894C crossref_primary_10_1021_acsami_9b09112 crossref_primary_10_26599_NRE_2022_9120028 crossref_primary_10_1149_1945_7111_ad0df1 crossref_primary_10_1002_aesr_202100093 crossref_primary_10_1016_j_cej_2022_138608 crossref_primary_10_1016_j_jcis_2023_05_042 crossref_primary_10_1039_D1MA00229E crossref_primary_10_1002_aenm_201902494 crossref_primary_10_1021_acscatal_1c01395 crossref_primary_10_1002_aesr_202000090 crossref_primary_10_1039_D1SE00363A crossref_primary_10_1021_acsanm_9b00441 crossref_primary_10_1002_admi_202100879 crossref_primary_10_1016_j_apsusc_2021_150293 crossref_primary_10_1016_j_cej_2020_125537 crossref_primary_10_1007_s10562_024_04894_6 crossref_primary_10_1039_D2NR00522K crossref_primary_10_1016_j_ijhydene_2020_04_073 crossref_primary_10_1039_D3EY00314K crossref_primary_10_1016_j_fuel_2022_124477 crossref_primary_10_1016_j_ijhydene_2021_10_186 crossref_primary_10_1016_j_mtener_2019_04_007 crossref_primary_10_1142_S1793292019500899 crossref_primary_10_1149_1945_7111_ac47ec crossref_primary_10_3389_fctls_2022_950384 crossref_primary_10_1002_ange_202308335 crossref_primary_10_1002_anie_202009854 crossref_primary_10_1039_D0TA12424A crossref_primary_10_1002_adsu_202300193 crossref_primary_10_1016_j_ijhydene_2021_12_239 crossref_primary_10_1016_j_jpowsour_2019_04_050 crossref_primary_10_1007_s10853_022_07150_7 crossref_primary_10_1016_j_ccr_2023_215274 crossref_primary_10_1002_ange_202317844 crossref_primary_10_1002_celc_201900656 crossref_primary_10_1021_acscatal_2c04185 crossref_primary_10_1002_smm2_1085 crossref_primary_10_1021_acscatal_0c01733 crossref_primary_10_1021_acs_inorgchem_0c01927 crossref_primary_10_1016_j_jelechem_2023_117323 crossref_primary_10_1002_anie_202405839 crossref_primary_10_1002_anie_202210753 crossref_primary_10_1016_j_electacta_2019_134976 crossref_primary_10_1021_acs_analchem_0c00760 crossref_primary_10_1002_cssc_202101844 crossref_primary_10_1016_j_cej_2022_137420 crossref_primary_10_1021_acsami_0c13303 crossref_primary_10_1016_j_jcis_2025_01_041 crossref_primary_10_1039_D0CC00177E crossref_primary_10_1039_D2YA00076H crossref_primary_10_1007_s11705_020_1920_2 crossref_primary_10_1016_j_bios_2020_112730 crossref_primary_10_1016_j_ijhydene_2019_10_229 crossref_primary_10_1039_D4QI01507J crossref_primary_10_1016_j_chemosphere_2021_131680 crossref_primary_10_1002_chem_201904510 crossref_primary_10_1016_j_ijhydene_2019_10_211 crossref_primary_10_1039_D1DT03936A crossref_primary_10_1016_j_ijhydene_2020_01_085 crossref_primary_10_1002_celc_201900675 crossref_primary_10_1016_j_ijhydene_2020_07_049 crossref_primary_10_1021_acsaem_1c01036 crossref_primary_10_1002_anie_202211142 crossref_primary_10_1002_anie_202107510 crossref_primary_10_1007_s12678_024_00911_9 crossref_primary_10_1016_j_apsusc_2021_151729 crossref_primary_10_1016_j_ijhydene_2019_08_040 crossref_primary_10_1021_acsomega_0c03435 crossref_primary_10_1016_j_apsusc_2022_155781 crossref_primary_10_3390_magnetochemistry7120161 crossref_primary_10_1039_D0DT04133E crossref_primary_10_1016_j_ijhydene_2019_07_228 crossref_primary_10_1016_j_cogsc_2021_100492 crossref_primary_10_1039_D0DT03448G crossref_primary_10_1002_er_5018 crossref_primary_10_1016_j_inoche_2019_107674 crossref_primary_10_3390_w14030371 crossref_primary_10_1002_sstr_202000048 crossref_primary_10_1002_ange_202405839 crossref_primary_10_1039_C9TA13775K crossref_primary_10_1016_j_ijhydene_2019_11_159 crossref_primary_10_1039_D2SE00320A crossref_primary_10_1007_s11581_024_05443_2 crossref_primary_10_1039_C9NR03401C crossref_primary_10_1002_smll_202407177 crossref_primary_10_1021_acsaem_0c01782 crossref_primary_10_1021_acsaem_4c00840 crossref_primary_10_1002_smll_202105830 crossref_primary_10_1039_D3TA03145D crossref_primary_10_1038_s41929_022_00783_6 crossref_primary_10_1002_cplu_202000729 crossref_primary_10_1007_s13391_020_00260_x crossref_primary_10_1016_j_molstruc_2019_06_016 crossref_primary_10_1016_S1872_2067_22_64149_4 crossref_primary_10_1016_j_mtener_2019_07_007 crossref_primary_10_1039_D2GC04205C crossref_primary_10_1021_acssuschemeng_2c04074 crossref_primary_10_1002_aenm_202102074 crossref_primary_10_1007_s12274_021_3580_z crossref_primary_10_1063_5_0232980 crossref_primary_10_1016_j_jpowsour_2019_227654 crossref_primary_10_1002_cctc_202000412 crossref_primary_10_1016_j_ijhydene_2019_09_042 crossref_primary_10_1039_D0TA10596A crossref_primary_10_1016_j_jpowsour_2021_229779 crossref_primary_10_1039_C9CY01485C crossref_primary_10_1021_acsami_9b23356 crossref_primary_10_1016_j_ijhydene_2020_01_043 crossref_primary_10_1007_s11467_021_1066_9 crossref_primary_10_1021_acsanm_0c00061 crossref_primary_10_1039_D3CS01031G crossref_primary_10_1021_acsenergylett_1c01937 crossref_primary_10_1016_j_jcis_2022_12_040 crossref_primary_10_1021_acsenergylett_4c01589 crossref_primary_10_1016_j_chempr_2022_06_012 crossref_primary_10_1016_j_ceramint_2021_02_215 crossref_primary_10_1016_j_jallcom_2019_153463 crossref_primary_10_1016_j_nanoen_2022_108124 |
Cites_doi | 10.1021/acscatal.5b00979 10.1016/j.elecom.2018.08.009 10.1007/s12678-018-0476-0 10.1002/anie.201808929 10.1016/j.chempr.2017.09.009 10.1039/C4NR03822C 10.1021/jp904022e 10.1002/advs.201500426 10.1021/ja809108y 10.1021/ja106102b 10.1021/acscatal.7b02071 10.1016/0013-4686(66)80045-2 10.1021/ja301018q 10.1038/nmat3385 10.1002/cctc.201600796 10.1021/acsami.7b01637 10.1021/cr200247n 10.1021/ar900117k 10.1021/acsnano.7b05971 10.1038/ncomms5477 10.1039/C6CP08495H 10.1021/ja5127165 10.1039/C8TA08519F 10.1002/cplu.201700005 10.1016/j.jelechem.2018.06.051 10.1016/j.electacta.2014.11.079 10.1016/j.jelechem.2014.11.019 10.1021/ja017895f 10.1039/C5TA06411B 10.1021/cr5003563 10.1016/0013-4686(79)87019-X 10.1021/jacs.5b08139 10.1021/cs3007523 10.1039/C7TA01586K 10.1021/ja9063298 10.1007/0-306-48127-8 10.1021/jacs.5b05093 10.1002/cssc.201000161 10.1002/anie.201810102 10.1002/anie.201509982 10.1039/c2ee21191b 10.1002/cctc.201700350 10.1039/c2ee03250c 10.1002/ejic.201403015 10.1021/acsami.8b00986 10.1002/adfm.201503666 10.1038/nchem.1350 10.1021/ja410223j 10.1016/j.jpowsour.2015.04.031 10.1002/ange.201505320 10.1002/anie.201209116 10.1039/c3cp50202c 10.1002/chem.201702314 10.1021/acs.nanolett.6b04732 10.1002/anie.201701642 10.1021/acs.inorgchem.5b00924 10.1039/C7TA02333B 10.1021/acsomega.8b01375 10.1039/C6NR03147A 10.1016/j.energy.2006.07.014 10.1126/science.aad4998 10.1039/C7RA11330G 10.1002/cssc.201501474 10.1021/nn3044325 10.1002/cssc.201500666 10.1021/acs.jpcc.5b06102 10.1021/ja00352a050 10.1016/j.ijhydene.2012.07.001 10.1002/anie.201409333 10.1039/C6DT01891B 10.1016/j.ijhydene.2008.05.106 10.1039/C0EE00518E 10.1002/anie.201511032 10.1002/adfm.201606635 10.1016/j.elecom.2007.06.011 10.1016/j.ijhydene.2016.07.126 10.1073/pnas.1001859107 10.1039/C7DT00302A 10.1002/anie.201610776 10.1002/smll.201100485 10.1038/nchem.1140 10.1021/ja1023767 10.1021/ja1013344 10.1016/j.cattod.2015.10.018 10.1039/C8NJ02652A 10.1039/C7CC02400B 10.1002/cssc.201801351 10.1002/cctc.201501073 10.1039/C3TA13531D 10.1002/adma.201502696 10.1002/anie.201408854 10.1002/adma.201602270 10.1039/c3ee41194j 10.1007/s10853-017-1955-z 10.1021/ja306499n 10.1002/celc.201800744 10.1002/cssc.201402533 10.1021/ja405351s 10.1007/s11705-018-1717-8 10.1021/acs.inorgchem.6b03171 10.1039/C6NR09790A 10.1039/C6NR09585B 10.1002/cplu.201800218 10.1126/science.1162018 10.1021/ja309771h 10.1016/0257-8972(88)90119-3 10.4191/kcers.2017.54.1.12 10.1039/C8CC02021C 10.1126/science.aaf5050 10.1038/nchem.2886 10.1038/ncomms9253 10.1021/ja403656w 10.1002/celc.201700883 10.1016/j.electacta.2018.06.167 10.1039/C6TA08075H 10.1002/celc.201600518 10.1039/B802885K 10.1016/S1452-3981(23)15306-5 10.1021/am4007897 10.1016/j.electacta.2008.01.081 10.1002/advs.201600380 10.1039/C7CY00703E 10.1002/anie.201412389 10.1002/adfm.201200920 10.1021/cr0307143 10.1002/chem.201801412 10.1039/C6TA00313C 10.1002/advs.201700226 10.1039/C6TA03436E 10.1002/anie.201406848 10.1039/C6CC00766J 10.1002/anie.201801538 10.1021/jacs.5b00281 10.1038/natrevmats.2017.30 10.1021/ja511559d 10.1021/ja3097515 10.1038/nchem.931 10.1038/s41467-018-05758-5 10.1021/acscatal.6b01837 10.1039/C7CY01949A 10.1002/aenm.201301929 10.1021/ja5096733 10.1021/ja3126432 10.1002/smll.201700394 10.1021/ja0625632 10.1039/C7CC08301G 10.1021/cs3003098 10.1021/acscatal.5b01269 10.1021/acs.chemrev.5b00073 10.1039/C4CS00470A 10.1039/C6RA22499G 10.1002/celc.201700392 10.1039/C6TA02334G 10.1002/anie.201407131 10.1039/C7TA03198J 10.1021/acssuschemeng.7b03780 10.1002/anie.201411625 10.1039/C5CP06890H 10.1007/s12274-012-0237-y 10.1021/ja807769r 10.1021/cr020628n 10.1039/C6QI00594B 10.1002/chem.201501452 10.1021/ja015721s 10.1007/s12678-015-0263-0 10.1002/aenm.201402031 10.1039/C8TA01902A 10.1016/j.elspec.2017.09.012 10.1021/ja054791m 10.1039/C7TA00982H 10.1002/anie.201808818 10.1021/acscatal.5b00132 10.1002/slct.201702876 10.1002/ange.201207215 10.1039/C7CC03146G 10.1039/C4TA03962A 10.1039/C8TA01288A 10.1039/C6CC09893B 10.1021/acsenergylett.8b00621 10.1039/C6CC04400J 10.1039/C5TA03430B 10.1002/adfm.201801397 10.1002/cssc.201700693 10.1021/acsami.5b02601 10.1021/ja307507a 10.1039/C5RA26748J 10.1073/pnas.1315383110 10.1016/0013-4686(77)85081-0 10.1021/ja206511w 10.1002/anie.201107625 10.1021/ic101515g 10.1039/C7NR02929B 10.1039/C6CS00306K 10.1021/cs501724v 10.1002/adma.201707522 10.1002/cctc.201100434 10.1002/cctc.201800312 10.1016/j.ijhydene.2011.03.096 10.1002/aenm.201400252 10.1021/ja5110393 10.1002/advs.201600371 10.1039/C5CP04248H 10.1002/cssc.201700113 10.1021/acsami.5b06195 10.1002/cssc.201300975 10.1002/slct.201800943 10.1021/ja412822u 10.1002/chem.201700408 10.1021/jacs.6b13287 10.1021/acscatal.6b03132 10.1021/cr9500500 10.1039/C6RA01217E 10.1039/C5NH00002E 10.1021/ja104766z 10.1021/ja104587v 10.1039/c3nr01735d 10.1021/acsenergylett.8b00982 10.1021/ja406242y 10.1021/ja502637s 10.1021/am503938c 10.1016/j.jcis.2018.08.040 10.1016/0013-4686(94)85135-2 10.1021/acscatal.6b00798 10.1021/jacs.5b06382 10.1021/jacs.5b07756 10.1007/s10800-008-9651-y 10.1039/C8TA05985C 10.1021/acs.iecr.7b04812 10.1016/j.electacta.2018.04.079 10.1021/acs.jpcc.8b01012 10.1038/s41570-016-0003 10.1039/C5DT02046H 10.1039/c3dt52304g 10.1016/j.ijhydene.2013.06.038 10.1039/c2dt32326e 10.1021/ja407115p 10.1021/ja503372r |
ContentType | Journal Article |
Copyright | 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
Copyright_xml | – notice: 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
DBID | AAYXX CITATION NPM 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
DOI | 10.1002/smll.201805103 |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed Materials Research Database CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1613-6829 |
EndPage | n/a |
ExternalDocumentID | 30773809 10_1002_smll_201805103 SMLL201805103 |
Genre | reviewArticle Journal Article Review |
GrantInformation_xml | – fundername: Scientific Research Fund of Hunan Provincial Education Department funderid: 14B116 – fundername: National Natural Science Foundation of China funderid: 21575137; 21645008; 21305042; 21375037 – fundername: Science and Technology Department funderid: 14JJ4030 – fundername: National Natural Science Foundation of China grantid: 21645008 – fundername: National Natural Science Foundation of China grantid: 21575137 – fundername: Scientific Research Fund of Hunan Provincial Education Department grantid: 14B116 – fundername: Science and Technology Department grantid: 14JJ4030 – fundername: National Natural Science Foundation of China grantid: 21375037 – fundername: National Natural Science Foundation of China grantid: 21305042 |
GroupedDBID | --- 05W 0R~ 123 1L6 1OC 33P 3SF 3WU 4.4 50Y 52U 53G 5VS 66C 8-0 8-1 8UM A00 AAESR AAEVG AAHHS AAHQN AAIHA AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCUV ABIJN ABJNI ABLJU ABRTZ ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZVAB BFHJK BHBCM BMNLL BMXJE BNHUX BOGZA BRXPI CS3 DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBD EBS EJD EMOBN F5P G-S GNP HBH HGLYW HHY HHZ HZ~ IX1 KQQ LATKE LAW LEEKS LITHE LOXES LUTES LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM MY~ O66 O9- OIG P2P P2W P4E QRW R.K RIWAO RNS ROL RWI RX1 RYL SUPJJ SV3 V2E W99 WBKPD WFSAM WIH WIK WJL WOHZO WXSBR WYISQ WYJ XV2 Y6R ZZTAW ~S- 31~ AANHP AAYOK AAYXX ACBWZ ACRPL ACYXJ ADNMO AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN BDRZF CITATION FEDTE GODZA HVGLF AAMMB AEFGJ AGXDD AIDQK AIDYY NPM 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
ID | FETCH-LOGICAL-c4763-1bf87ec29536d2ab6ea7fbc7cf48d9076d41536e925dfb131ff7bd3e8c6caf923 |
IEDL.DBID | DR2 |
ISSN | 1613-6810 1613-6829 |
IngestDate | Fri Jul 11 15:16:30 EDT 2025 Fri Jul 25 12:13:32 EDT 2025 Mon Jul 21 05:58:23 EDT 2025 Tue Jul 01 02:10:40 EDT 2025 Thu Apr 24 23:09:42 EDT 2025 Wed Jan 22 16:29:44 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 13 |
Keywords | electrocatalysts water oxidation oxygen evolution reaction (OER) mild pH earth-abundant metals |
Language | English |
License | 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4763-1bf87ec29536d2ab6ea7fbc7cf48d9076d41536e925dfb131ff7bd3e8c6caf923 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0002-5326-3838 |
PMID | 30773809 |
PQID | 2197269342 |
PQPubID | 1046358 |
PageCount | 27 |
ParticipantIDs | proquest_miscellaneous_2183191018 proquest_journals_2197269342 pubmed_primary_30773809 crossref_primary_10_1002_smll_201805103 crossref_citationtrail_10_1002_smll_201805103 wiley_primary_10_1002_smll_201805103_SMLL201805103 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-03-01 |
PublicationDateYYYYMMDD | 2019-03-01 |
PublicationDate_xml | – month: 03 year: 2019 text: 2019-03-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Small (Weinheim an der Bergstrasse, Germany) |
PublicationTitleAlternate | Small |
PublicationYear | 2019 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2013; 3 2018; 283 2017; 82 2010; 107 2013; 125 2009; 113 1977; 22 2008; 33 2013; 5 2012; 11 2013; 6 2018; 42 2014; 136 2016; 262 2018; 6 2018; 9 2018; 8 2018; 3 1979; 24 2012; 134 2018; 5 2015; 137 2005; 105 2013; 52 2007; 9 2016; 41 2018; 30 2013; 110 2010; 3 2010; 5 2016; 45 2018; 28 2015; 127 2015; 54 2018; 224 1996; 96 2012; 37 2008; 53 2016; 18 2011; 4 2011; 3 2011; 7 2017; 139 2018; 24 2016; 4 2017; 53 2016; 6 2010; 49 2016; 1 2012; 112 2016; 3 2015; 115 2002; 124 2017; 54 2005; 127 2017; 56 2015; 2015 2015; 119 2018; 94 2018; 12 2016; 28 2018; 11 2018; 10 2016; 8 2016; 9 2017; 5 2017; 7 2018; 122 2017; 1 2017; 2 2017; 3 2017; 4 2009; 42 2013; 23 2015; 740 2017; 46 1988; 34 2018; 83 2007; 32 2017; 355 1966; 11 2017; 9 2012; 51 1983; 105 2014; 5 2013; 15 2014; 4 2014; 2 2015; 44 2018; 532 2016; 353 1994; 39 1996; 4 2014; 7 2006; 128 2014; 6 2014; 53 2001; 123 2015; 6 2015; 17 2015; 5 2004; 104 2015; 3 2018; 823 2017; 27 2015; 287 2013; 42 2017; 23 2016; 52 2009; 131 2011; 36 2008; 321 2015; 8 2015; 7 2016; 55 2015; 152 2018; 273 2015; 25 2012; 2 2013; 38 2017; 17 2017; 10 1980; 4 2017; 13 2015; 21 2010; 132 2013; 135 2017; 19 2012; 6 2012; 4 2018; 54 2012; 5 2018; 53 2009; 38 2009; 39 2018; 57 e_1_2_7_3_1 e_1_2_7_104_1 e_1_2_7_127_1 e_1_2_7_19_1 e_1_2_7_60_1 e_1_2_7_83_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_68_1 e_1_2_7_142_1 e_1_2_7_165_1 e_1_2_7_188_1 e_1_2_7_202_1 e_1_2_7_225_1 e_1_2_7_116_1 e_1_2_7_94_1 e_1_2_7_71_1 e_1_2_7_180_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_56_1 e_1_2_7_79_1 e_1_2_7_131_1 e_1_2_7_154_1 e_1_2_7_237_1 e_1_2_7_177_1 e_1_2_7_214_1 e_1_2_7_139_1 e_1_2_7_4_1 e_1_2_7_128_1 e_1_2_7_105_1 e_1_2_7_82_1 e_1_2_7_120_1 e_1_2_7_192_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_67_1 e_1_2_7_143_1 e_1_2_7_189_1 e_1_2_7_29_1 e_1_2_7_203_1 e_1_2_7_226_1 e_1_2_7_166_1 e_1_2_7_117_1 e_1_2_7_70_1 e_1_2_7_93_1 e_1_2_7_181_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_55_1 e_1_2_7_238_1 e_1_2_7_78_1 e_1_2_7_193_1 e_1_2_7_132_1 e_1_2_7_155_1 e_1_2_7_178_1 e_1_2_7_215_1 e_1_2_7_230_1 e_1_2_7_106_1 e_1_2_7_129_1 e_1_2_7_9_1 e_1_2_7_81_1 e_1_2_7_121_1 e_1_2_7_1_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_66_1 e_1_2_7_170_1 e_1_2_7_227_1 e_1_2_7_89_1 e_1_2_7_182_1 e_1_2_7_28_1 e_1_2_7_144_1 e_1_2_7_167_1 e_1_2_7_204_1 e_1_2_7_118_1 e_1_2_7_110_1 e_1_2_7_92_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_77_1 e_1_2_7_171_1 e_1_2_7_216_1 e_1_2_7_194_1 e_1_2_7_39_1 e_1_2_7_133_1 e_1_2_7_156_1 e_1_2_7_179_1 e_1_2_7_231_1 e_1_2_7_107_1 e_1_2_7_80_1 e_1_2_7_122_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_88_1 e_1_2_7_65_1 e_1_2_7_205_1 e_1_2_7_228_1 e_1_2_7_160_1 e_1_2_7_183_1 e_1_2_7_27_1 e_1_2_7_145_1 e_1_2_7_220_1 e_1_2_7_168_1 e_1_2_7_119_1 e_1_2_7_91_1 e_1_2_7_111_1 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_76_1 e_1_2_7_99_1 e_1_2_7_172_1 e_1_2_7_195_1 e_1_2_7_217_1 e_1_2_7_38_1 e_1_2_7_134_1 e_1_2_7_232_1 e_1_2_7_157_1 e_1_2_7_108_1 Hamdani M. (e_1_2_7_191_1) 2010; 5 e_1_2_7_7_1 e_1_2_7_100_1 e_1_2_7_123_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_64_1 e_1_2_7_87_1 e_1_2_7_161_1 e_1_2_7_184_1 e_1_2_7_206_1 e_1_2_7_26_1 e_1_2_7_229_1 e_1_2_7_49_1 e_1_2_7_146_1 e_1_2_7_169_1 e_1_2_7_221_1 e_1_2_7_90_1 e_1_2_7_112_1 e_1_2_7_52_1 e_1_2_7_98_1 e_1_2_7_75_1 e_1_2_7_150_1 e_1_2_7_196_1 e_1_2_7_37_1 e_1_2_7_173_1 e_1_2_7_218_1 e_1_2_7_135_1 e_1_2_7_158_1 e_1_2_7_233_1 e_1_2_7_210_1 e_1_2_7_109_1 e_1_2_7_8_1 Shafirovich V. Y. (e_1_2_7_54_1) 1980; 4 e_1_2_7_124_1 e_1_2_7_101_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_63_1 e_1_2_7_86_1 e_1_2_7_185_1 e_1_2_7_207_1 e_1_2_7_48_1 e_1_2_7_162_1 e_1_2_7_147_1 e_1_2_7_222_1 e_1_2_7_113_1 e_1_2_7_51_1 e_1_2_7_74_1 e_1_2_7_97_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_59_1 e_1_2_7_151_1 e_1_2_7_174_1 e_1_2_7_219_1 e_1_2_7_197_1 e_1_2_7_234_1 e_1_2_7_136_1 e_1_2_7_211_1 e_1_2_7_159_1 e_1_2_7_5_1 e_1_2_7_102_1 e_1_2_7_125_1 e_1_2_7_17_1 e_1_2_7_62_1 e_1_2_7_85_1 e_1_2_7_47_1 e_1_2_7_140_1 e_1_2_7_163_1 e_1_2_7_208_1 e_1_2_7_223_1 e_1_2_7_186_1 e_1_2_7_148_1 e_1_2_7_200_1 e_1_2_7_114_1 e_1_2_7_73_1 e_1_2_7_50_1 e_1_2_7_96_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_58_1 e_1_2_7_152_1 e_1_2_7_175_1 e_1_2_7_212_1 e_1_2_7_198_1 e_1_2_7_235_1 e_1_2_7_137_1 e_1_2_7_6_1 e_1_2_7_126_1 e_1_2_7_103_1 e_1_2_7_18_1 e_1_2_7_84_1 e_1_2_7_61_1 e_1_2_7_209_1 e_1_2_7_190_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_69_1 e_1_2_7_141_1 e_1_2_7_201_1 e_1_2_7_224_1 e_1_2_7_164_1 e_1_2_7_187_1 e_1_2_7_149_1 e_1_2_7_115_1 e_1_2_7_72_1 e_1_2_7_95_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_57_1 e_1_2_7_130_1 e_1_2_7_153_1 e_1_2_7_176_1 e_1_2_7_199_1 e_1_2_7_213_1 e_1_2_7_236_1 e_1_2_7_138_1 |
References_xml | – volume: 57 start-page: 1441 year: 2018 publication-title: Ind. Eng. Chem. Res. – volume: 6 start-page: 30552 year: 2016 publication-title: RSC Adv. – volume: 1 start-page: 0003 year: 2017 publication-title: Nat. Rev. Chem. – volume: 56 start-page: 5061 year: 2017 publication-title: Angew. Chem., Int. Ed. – volume: 132 start-page: 10990 year: 2010 publication-title: J. Am. Chem. Soc. – volume: 6 start-page: 24767 year: 2018 publication-title: J. Mater. Chem. A – volume: 6 start-page: 113694 year: 2016 publication-title: RSC Adv. – volume: 5 start-page: 3422 year: 2015 publication-title: ACS Catal. – volume: 7 start-page: 21852 year: 2015 publication-title: ACS Appl. Mater. Interfaces – volume: 5 start-page: 2842 year: 2018 publication-title: ChemElectroChem – volume: 11 start-page: 802 year: 2012 publication-title: Nat. Mater. – volume: 53 start-page: 3070 year: 2017 publication-title: Chem. Commun. – volume: 5 start-page: 6012 year: 2012 publication-title: Energy Environ. Sci. – volume: 17 start-page: 22576 year: 2015 publication-title: Phys. Chem. Chem. Phys. – volume: 131 start-page: 926 year: 2009 publication-title: J. Am. Chem. Soc. – volume: 4 start-page: 17587 year: 2016 publication-title: J. Mater. Chem. A – volume: 4 start-page: 81 year: 1980 publication-title: New J. Chem. – volume: 8 start-page: 5338 year: 2018 publication-title: RSC Adv. – volume: 135 start-page: 13270 year: 2013 publication-title: J. Am. Chem. Soc. – volume: 9 start-page: 3485 year: 2018 publication-title: Nat. Commun. – volume: 41 start-page: 17193 year: 2016 publication-title: Int. J. Hydrogen Energy – volume: 37 start-page: 13249 year: 2012 publication-title: Int. J. Hydrogen Energy – volume: 46 start-page: 4645 year: 2017 publication-title: Chem. Soc. Rev. – volume: 21 start-page: 12991 year: 2015 publication-title: Chem. ‐ Eur. J. – volume: 7 start-page: 2052 year: 2017 publication-title: ACS Catal. – volume: 54 start-page: 4870 year: 2015 publication-title: Angew. Chem., Int. Ed. – volume: 55 start-page: 2488 year: 2016 publication-title: Angew. Chem., Int. Ed. – volume: 7 start-page: 6609 year: 2017 publication-title: ACS Catal. – volume: 124 start-page: 11114 year: 2002 publication-title: J. Am. Chem. Soc. – volume: 7 start-page: 15765 year: 2015 publication-title: ACS Appl. Mater. Interfaces – volume: 5 start-page: 521 year: 2012 publication-title: Nano Res. – volume: 5 start-page: 4477 year: 2014 publication-title: Nat. Commun. – volume: 135 start-page: 3662 year: 2013 publication-title: J. Am. Chem. Soc. – volume: 55 start-page: 11736 year: 2016 publication-title: Angew. Chem., Int. Ed. – volume: 4 start-page: 1400252 year: 2014 publication-title: Adv. Energy Mater. – volume: 1 start-page: 41 year: 2016 publication-title: Nanoscale Horiz. – volume: 38 start-page: 109 year: 2009 publication-title: Chem. Soc. Rev. – volume: 24 start-page: 10372 year: 2018 publication-title: Chem. ‐ Eur. J. – volume: 134 start-page: 18153 year: 2012 publication-title: J. Am. Chem. Soc. – volume: 136 start-page: 5531 year: 2014 publication-title: J. Am. Chem. Soc. – volume: 54 start-page: 4909 year: 2015 publication-title: Angew. Chem., Int. Ed. – volume: 39 start-page: 1559 year: 1994 publication-title: Electrochim. Acta – volume: 32 start-page: 431 year: 2007 publication-title: Energy – volume: 139 start-page: 3774 year: 2017 publication-title: J. Am. Chem. Soc. – volume: 53 start-page: 4351 year: 2008 publication-title: Electrochim. Acta – volume: 9 start-page: 7714 year: 2017 publication-title: Nanoscale – volume: 4 start-page: 1301929 year: 2014 publication-title: Adv. Energy Mater. – volume: 56 start-page: 1064 year: 2017 publication-title: Angew. Chem., Int. Ed. – volume: 262 start-page: 65 year: 2016 publication-title: Catal. Today – volume: 3 start-page: 560 year: 2017 publication-title: Chem – volume: 34 start-page: 287 year: 1988 publication-title: Surf. Coat. Technol. – volume: 112 start-page: 3356 year: 2012 publication-title: Chem. Rev. – volume: 224 start-page: 3 year: 2018 publication-title: J. Electron Spectrosc. Relat. Phenom. – volume: 3 start-page: 79 year: 2011 publication-title: Nat. Chem. – volume: 5 start-page: 2017 year: 2015 publication-title: ACS Catal. – volume: 3 start-page: 16190 year: 2015 publication-title: J. Mater. Chem. A – volume: 125 start-page: 728 year: 2013 publication-title: Angew. Chem. – volume: 740 start-page: 14 year: 2015 publication-title: J. Electroanal. Chem. – volume: 10 start-page: 8231 year: 2018 publication-title: ACS Appl. Mater. Interfaces – volume: 13 start-page: 1700394 year: 2017 publication-title: Small – volume: 110 start-page: 15579 year: 2013 publication-title: Proc. Natl. Acad. Sci. USA – volume: 5 start-page: 7806 year: 2017 publication-title: J. Mater. Chem. A – volume: 115 start-page: 4823 year: 2015 publication-title: Chem. Rev. – volume: 54 start-page: 354 year: 2018 publication-title: Chem. Commun. – volume: 30 start-page: e1707522 year: 2018 publication-title: Adv. Mater. – volume: 122 start-page: 13894 year: 2018 publication-title: J. Phys. Chem. C – volume: 57 start-page: 6073 year: 2018 publication-title: Angew. Chem., Int. Ed. – volume: 3 start-page: 22300 year: 2015 publication-title: J. Mater. Chem. A – volume: 10 start-page: 149 year: 2018 publication-title: Nat. Chem. – volume: 136 start-page: 17681 year: 2014 publication-title: J. Am. Chem. Soc. – volume: 24 start-page: 357 year: 1979 publication-title: Electrochim. Acta – volume: 2 start-page: 123 year: 2014 publication-title: J. Mater. Chem. A – volume: 38 start-page: 10191 year: 2013 publication-title: Int. J. Hydrogen Energy – volume: 123 start-page: 6203 year: 2001 publication-title: J. Am. Chem. Soc. – volume: 4 start-page: 3110 year: 2017 publication-title: ChemElectroChem – volume: 273 start-page: 462 year: 2018 publication-title: Electrochim. Acta – volume: 54 start-page: 4979 year: 2018 publication-title: Chem. Commun. – volume: 7 start-page: 82 year: 2014 publication-title: ChemSusChem – volume: 321 start-page: 1072 year: 2008 publication-title: Science – volume: 23 start-page: 9741 year: 2017 publication-title: Chem. ‐ Eur. J. – volume: 9 start-page: 682 year: 2018 publication-title: Electrocatalysis – volume: 4 start-page: 840 year: 2017 publication-title: Inorg. Chem. Front. – volume: 33 start-page: 5931 year: 2008 publication-title: Int. J. Hydrogen Energy – volume: 113 start-page: 15068 year: 2009 publication-title: J. Phys. Chem. C – volume: 135 start-page: 2048 year: 2013 publication-title: J. Am. Chem. Soc. – volume: 137 start-page: 3638 year: 2015 publication-title: J. Am. Chem. Soc. – volume: 53 start-page: 12226 year: 2014 publication-title: Angew. Chem., Int. Ed. – volume: 2 start-page: 1765 year: 2012 publication-title: ACS Catal. – volume: 135 start-page: 10492 year: 2013 publication-title: J. Am. Chem. Soc. – volume: 25 start-page: 7337 year: 2015 publication-title: Adv. Funct. Mater. – volume: 287 start-page: 50 year: 2015 publication-title: J. Power Sources – volume: 9 start-page: 2082 year: 2007 publication-title: Electrochem. Commun. – volume: 4 start-page: 1600380 year: 2017 publication-title: Adv. Sci. – volume: 115 start-page: 9869 year: 2015 publication-title: Chem. Rev. – volume: 6 start-page: 15395 year: 2014 publication-title: ACS Appl. Mater. Interfaces – volume: 11 start-page: 3661 year: 2018 publication-title: ChemSusChem – volume: 6 start-page: 8855 year: 2018 publication-title: J. Mater. Chem. A – volume: 134 start-page: 1519 year: 2012 publication-title: J. Am. Chem. Soc. – volume: 7 start-page: 2087 year: 2011 publication-title: Small – volume: 27 start-page: 1606635 year: 2017 publication-title: Adv. Funct. Mater. – volume: 12 start-page: 245 year: 2018 publication-title: ACS Nano – volume: 3 start-page: 807 year: 2011 publication-title: Nat. Chem. – volume: 42 start-page: 16683 year: 2013 publication-title: Dalton Trans. – volume: 6 start-page: 9915 year: 2018 publication-title: J. Mater. Chem. A – volume: 17 start-page: 578 year: 2017 publication-title: Nano Lett. – volume: 28 start-page: 215 year: 2016 publication-title: Adv. Mater. – volume: 137 start-page: 14305 year: 2015 publication-title: J. Am. Chem. Soc. – volume: 136 start-page: 4201 year: 2014 publication-title: J. Am. Chem. Soc. – volume: 6 start-page: 9647 year: 2016 publication-title: RSC Adv. – volume: 6 start-page: 15905 year: 2018 publication-title: J. Mater. Chem. A – volume: 54 start-page: 2073 year: 2015 publication-title: Angew. Chem., Int. Ed. – volume: 4 start-page: 851 year: 2012 publication-title: ChemCatChem – volume: 6 start-page: 331 year: 2015 publication-title: Electrocatalysis – volume: 3 start-page: 2021 year: 2018 publication-title: ACS Energy Lett. – volume: 355 start-page: eaad4998 year: 2017 publication-title: Science – volume: 39 start-page: 191 year: 2009 publication-title: J. Appl. Electrochem. – volume: 46 start-page: 10602 year: 2017 publication-title: Dalton Trans. – volume: 105 start-page: 4832 year: 1983 publication-title: J. Am. Chem. Soc. – volume: 4 start-page: 75 year: 2017 publication-title: ChemElectroChem – volume: 127 start-page: 11383 year: 2015 publication-title: Angew. Chem. – volume: 4 start-page: 1700226 year: 2017 publication-title: Adv. Sci. – volume: 283 start-page: 104 year: 2018 publication-title: Electrochim. Acta – volume: 127 start-page: 12802 year: 2005 publication-title: J. Am. Chem. Soc. – volume: 5 start-page: 1402031 year: 2015 publication-title: Adv. Energy Mater. – volume: 532 start-page: 774 year: 2018 publication-title: J. Colloid Interface Sci. – volume: 53 start-page: 4939 year: 2018 publication-title: J. Mater. Sci. – volume: 7 start-page: 3442 year: 2014 publication-title: ChemSusChem – volume: 4 start-page: 499 year: 2011 publication-title: Energy Environ. Sci. – volume: 5 start-page: 556 year: 2010 publication-title: Int. J. Electrochem. Sci. – volume: 136 start-page: 7587 year: 2014 publication-title: J. Am. Chem. Soc. – volume: 19 start-page: 9755 year: 2017 publication-title: Phys. Chem. Chem. Phys. – volume: 52 start-page: 1789 year: 2013 publication-title: Angew. Chem., Int. Ed. – volume: 8 start-page: 15033 year: 2016 publication-title: Nanoscale – volume: 96 start-page: 2841 year: 1996 publication-title: Chem. Rev. – volume: 44 start-page: 2060 year: 2015 publication-title: Chem. Soc. Rev. – volume: 49 start-page: 11030 year: 2010 publication-title: Inorg. Chem. – volume: 131 start-page: 2615 year: 2009 publication-title: J. Am. Chem. Soc. – volume: 45 start-page: 12685 year: 2016 publication-title: Dalton Trans. – volume: 11 start-page: 1079 year: 1966 publication-title: Electrochim. Acta – volume: 23 start-page: 227 year: 2013 publication-title: Adv. Funct. Mater. – volume: 57 start-page: 15445 year: 2018 publication-title: Angew. Chem., Int. Ed. – volume: 137 start-page: 8384 year: 2015 publication-title: J. Am. Chem. Soc. – volume: 15 start-page: 7363 year: 2013 publication-title: Phys. Chem. Chem. Phys. – volume: 2 start-page: 18420 year: 2014 publication-title: J. Mater. Chem. A – volume: 5 start-page: 5002 year: 2013 publication-title: ACS Appl. Mater. Interfaces – volume: 10 start-page: 2826 year: 2018 publication-title: ChemCatChem – volume: 94 start-page: 59 year: 2018 publication-title: Electrochem. Commun. – volume: 3 start-page: 1254 year: 2018 publication-title: ACS Energy Lett. – volume: 44 start-page: 15628 year: 2015 publication-title: Dalton Trans. – volume: 134 start-page: 19572 year: 2012 publication-title: J. Am. Chem. Soc. – volume: 353 start-page: 1011 year: 2016 publication-title: Science – volume: 132 start-page: 13692 year: 2010 publication-title: J. Am. Chem. Soc. – volume: 8 start-page: 3287 year: 2016 publication-title: ChemCatChem – volume: 51 start-page: 1616 year: 2012 publication-title: Angew. Chem., Int. Ed. – volume: 8 start-page: 532 year: 2016 publication-title: ChemCatChem – volume: 134 start-page: 17253 year: 2012 publication-title: J. Am. Chem. Soc. – volume: 5 start-page: 4624 year: 2015 publication-title: ACS Catal. – volume: 9 start-page: 19502 year: 2017 publication-title: ACS Appl. Mater. Interfaces – volume: 8 start-page: 4030 year: 2018 publication-title: Catal. Sci. Technol. – volume: 23 start-page: 6959 year: 2017 publication-title: Chem. ‐ Eur. J. – volume: 52 start-page: 9255 year: 2016 publication-title: Chem. Commun. – volume: 5 start-page: 5525 year: 2015 publication-title: ACS Catal. – volume: 107 start-page: 10337 year: 2010 publication-title: Proc. Natl. Acad. Sci. USA – volume: 137 start-page: 13980 year: 2015 publication-title: J. Am. Chem. Soc. – volume: 53 start-page: 7812 year: 2017 publication-title: Chem. Commun. – volume: 6 start-page: 8253 year: 2015 publication-title: Nat. Commun. – volume: 82 start-page: 483 year: 2017 publication-title: ChemPlusChem – volume: 6 start-page: 10896 year: 2014 publication-title: Nanoscale – volume: 56 start-page: 3131 year: 2017 publication-title: Inorg. Chem. – volume: 137 start-page: 2688 year: 2015 publication-title: J. Am. Chem. Soc. – volume: 42 start-page: 13963 year: 2018 publication-title: New J. Chem. – volume: 5 start-page: 7305 year: 2017 publication-title: J. Mater. Chem. A – volume: 83 start-page: 934 year: 2018 publication-title: ChemPlusChem – volume: 119 start-page: 19279 year: 2015 publication-title: J. Phys. Chem. C – volume: 8 start-page: 3099 year: 2015 publication-title: ChemSusChem – volume: 42 start-page: 1871 year: 2009 publication-title: Acc. Chem. Res. – volume: 53 start-page: 12855 year: 2014 publication-title: Angew. Chem., Int. Ed. – volume: 4 start-page: 1840 year: 2017 publication-title: ChemElectroChem – volume: 54 start-page: 2472 year: 2015 publication-title: Angew. Chem., Int. Ed. – volume: 3 start-page: 678 year: 2018 publication-title: ChemistrySelect – volume: 105 start-page: 2253 year: 2005 publication-title: Chem. Rev. – volume: 4 start-page: 1600371 year: 2017 publication-title: Adv. Sci. – volume: 4 start-page: 11973 year: 2016 publication-title: J. Mater. Chem. A – volume: 54 start-page: 5604 year: 2015 publication-title: Inorg. Chem. – volume: 5 start-page: 12091 year: 2017 publication-title: J. Mater. Chem. A – volume: 137 start-page: 1305 year: 2015 publication-title: J. Am. Chem. Soc. – volume: 135 start-page: 12329 year: 2013 publication-title: J. Am. Chem. Soc. – volume: 54 start-page: 1 year: 2017 publication-title: J. Korean Ceram. Soc. – volume: 4 year: 1996 – volume: 3 start-page: 1500426 year: 2016 publication-title: Adv. Sci. – volume: 36 start-page: 7374 year: 2011 publication-title: Int. J. Hydrogen Energy – volume: 28 start-page: 1801397 year: 2018 publication-title: Adv. Funct. Mater. – volume: 42 start-page: 3617 year: 2013 publication-title: Dalton Trans. – volume: 2015 start-page: 49 year: 2015 publication-title: Eur. J. Inorg. Chem. – volume: 53 start-page: 6195 year: 2017 publication-title: Chem. Commun. – volume: 823 start-page: 482 year: 2018 publication-title: J. Electroanal. Chem. – volume: 4 start-page: 9781 year: 2016 publication-title: J. Mater. Chem. A – volume: 10 start-page: 1370 year: 2017 publication-title: ChemSusChem – volume: 9 start-page: 3752 year: 2017 publication-title: Nanoscale – volume: 5 start-page: 6826 year: 2013 publication-title: Nanoscale – volume: 52 start-page: 5753 year: 2016 publication-title: Chem. Commun. – volume: 132 start-page: 6882 year: 2010 publication-title: J. Am. Chem. Soc. – volume: 132 start-page: 13612 year: 2010 publication-title: J. Am. Chem. Soc. – volume: 134 start-page: 6801 year: 2012 publication-title: J. Am. Chem. Soc. – volume: 104 start-page: 939 year: 2004 publication-title: Chem. Rev. – volume: 4 start-page: 498 year: 2012 publication-title: Nat. Chem. – volume: 136 start-page: 16481 year: 2014 publication-title: J. Am. Chem. Soc. – volume: 9 start-page: 485 year: 2016 publication-title: ChemSusChem – volume: 28 start-page: 9266 year: 2016 publication-title: Adv. Mater. – volume: 3 start-page: 1176 year: 2010 publication-title: ChemSusChem – volume: 128 start-page: 10668 year: 2006 publication-title: J. Am. Chem. Soc. – volume: 6 start-page: 10497 year: 2012 publication-title: ACS Nano – volume: 3 start-page: 383 year: 2013 publication-title: ACS Catal. – volume: 10 start-page: 3188 year: 2017 publication-title: ChemSusChem – volume: 7 start-page: 2689 year: 2017 publication-title: Catal. Sci. Technol. – volume: 2 start-page: 17030 year: 2017 publication-title: Nat. Rev. Mater. – volume: 152 start-page: 280 year: 2015 publication-title: Electrochim. Acta – volume: 12 start-page: 467 year: 2018 publication-title: Front. Chem. Sci. Eng. – volume: 5 start-page: 7081 year: 2012 publication-title: Energy Environ. Sci. – volume: 18 start-page: 9295 year: 2016 publication-title: Phys. Chem. Chem. Phys. – volume: 57 start-page: 12840 year: 2018 publication-title: Angew. Chem., Int. Ed. – volume: 22 start-page: 325 year: 1977 publication-title: Electrochim. Acta – volume: 3 start-page: 8621 year: 2018 publication-title: ACS Omega – volume: 4 start-page: 3655 year: 2016 publication-title: J. Mater. Chem. A – volume: 6 start-page: 1527 year: 2018 publication-title: ACS Sustainable Chem. Eng. – volume: 6 start-page: 2745 year: 2013 publication-title: Energy Environ. Sci. – volume: 6 start-page: 5062 year: 2016 publication-title: ACS Catal. – volume: 5 start-page: 8583 year: 2017 publication-title: J. Mater. Chem. A – volume: 9 start-page: 4751 year: 2017 publication-title: Nanoscale – volume: 136 start-page: 6854 year: 2014 publication-title: J. Am. Chem. Soc. – volume: 57 start-page: 14862 year: 2018 publication-title: Angew. Chem., Int. Ed. – volume: 9 start-page: 3138 year: 2017 publication-title: ChemCatChem – volume: 135 start-page: 16977 year: 2013 publication-title: J. Am. Chem. Soc. – volume: 6 start-page: 6987 year: 2016 publication-title: ACS Catal. – volume: 131 start-page: 15578 year: 2009 publication-title: J. Am. Chem. Soc. – volume: 132 start-page: 16501 year: 2010 publication-title: J. Am. Chem. Soc. – volume: 3 start-page: 4979 year: 2018 publication-title: ChemistrySelect – volume: 137 start-page: 14887 year: 2015 publication-title: J. Am. Chem. Soc. – ident: e_1_2_7_225_1 doi: 10.1021/acscatal.5b00979 – ident: e_1_2_7_36_1 doi: 10.1016/j.elecom.2018.08.009 – ident: e_1_2_7_219_1 doi: 10.1007/s12678-018-0476-0 – ident: e_1_2_7_203_1 doi: 10.1002/anie.201808929 – ident: e_1_2_7_238_1 doi: 10.1016/j.chempr.2017.09.009 – ident: e_1_2_7_109_1 doi: 10.1039/C4NR03822C – ident: e_1_2_7_45_1 doi: 10.1021/jp904022e – ident: e_1_2_7_79_1 doi: 10.1002/advs.201500426 – ident: e_1_2_7_27_1 doi: 10.1021/ja809108y – ident: e_1_2_7_59_1 doi: 10.1021/ja106102b – ident: e_1_2_7_91_1 doi: 10.1021/acscatal.7b02071 – ident: e_1_2_7_129_1 doi: 10.1016/0013-4686(66)80045-2 – ident: e_1_2_7_133_1 doi: 10.1021/ja301018q – ident: e_1_2_7_68_1 doi: 10.1038/nmat3385 – ident: e_1_2_7_153_1 doi: 10.1002/cctc.201600796 – ident: e_1_2_7_209_1 doi: 10.1021/acsami.7b01637 – ident: e_1_2_7_22_1 doi: 10.1021/cr200247n – ident: e_1_2_7_106_1 doi: 10.1021/ar900117k – ident: e_1_2_7_89_1 doi: 10.1021/acsnano.7b05971 – ident: e_1_2_7_46_1 doi: 10.1038/ncomms5477 – ident: e_1_2_7_102_1 doi: 10.1039/C6CP08495H – ident: e_1_2_7_48_1 doi: 10.1021/ja5127165 – ident: e_1_2_7_71_1 doi: 10.1039/C8TA08519F – ident: e_1_2_7_210_1 doi: 10.1002/cplu.201700005 – ident: e_1_2_7_196_1 doi: 10.1016/j.jelechem.2018.06.051 – ident: e_1_2_7_182_1 doi: 10.1016/j.electacta.2014.11.079 – ident: e_1_2_7_67_1 doi: 10.1016/j.jelechem.2014.11.019 – ident: e_1_2_7_30_1 doi: 10.1021/ja017895f – ident: e_1_2_7_77_1 doi: 10.1039/C5TA06411B – ident: e_1_2_7_86_1 doi: 10.1021/cr5003563 – ident: e_1_2_7_112_1 doi: 10.1016/0013-4686(79)87019-X – ident: e_1_2_7_150_1 doi: 10.1021/jacs.5b08139 – ident: e_1_2_7_69_1 doi: 10.1021/cs3007523 – ident: e_1_2_7_211_1 doi: 10.1039/C7TA01586K – ident: e_1_2_7_29_1 doi: 10.1021/ja9063298 – ident: e_1_2_7_10_1 doi: 10.1007/0-306-48127-8 – ident: e_1_2_7_124_1 doi: 10.1021/jacs.5b05093 – ident: e_1_2_7_18_1 doi: 10.1002/cssc.201000161 – ident: e_1_2_7_43_1 doi: 10.1002/anie.201810102 – ident: e_1_2_7_230_1 doi: 10.1002/anie.201509982 – ident: e_1_2_7_116_1 doi: 10.1039/c2ee21191b – ident: e_1_2_7_140_1 doi: 10.1002/cctc.201700350 – ident: e_1_2_7_4_1 doi: 10.1039/c2ee03250c – ident: e_1_2_7_100_1 doi: 10.1002/ejic.201403015 – ident: e_1_2_7_76_1 doi: 10.1021/acsami.8b00986 – ident: e_1_2_7_47_1 doi: 10.1002/adfm.201503666 – ident: e_1_2_7_176_1 doi: 10.1038/nchem.1350 – ident: e_1_2_7_120_1 doi: 10.1021/ja410223j – ident: e_1_2_7_103_1 doi: 10.1016/j.jpowsour.2015.04.031 – ident: e_1_2_7_16_1 doi: 10.1002/ange.201505320 – ident: e_1_2_7_162_1 doi: 10.1002/anie.201209116 – ident: e_1_2_7_213_1 doi: 10.1039/c3cp50202c – ident: e_1_2_7_205_1 doi: 10.1002/chem.201702314 – ident: e_1_2_7_94_1 doi: 10.1021/acs.nanolett.6b04732 – ident: e_1_2_7_148_1 doi: 10.1002/anie.201701642 – ident: e_1_2_7_154_1 doi: 10.1021/acs.inorgchem.5b00924 – ident: e_1_2_7_142_1 doi: 10.1039/C7TA02333B – ident: e_1_2_7_201_1 doi: 10.1021/acsomega.8b01375 – ident: e_1_2_7_39_1 doi: 10.1039/C6NR03147A – ident: e_1_2_7_11_1 doi: 10.1016/j.energy.2006.07.014 – ident: e_1_2_7_186_1 doi: 10.1126/science.aad4998 – ident: e_1_2_7_195_1 doi: 10.1039/C7RA11330G – ident: e_1_2_7_152_1 doi: 10.1002/cssc.201501474 – ident: e_1_2_7_60_1 doi: 10.1021/nn3044325 – ident: e_1_2_7_227_1 doi: 10.1002/cssc.201500666 – ident: e_1_2_7_135_1 doi: 10.1021/acs.jpcc.5b06102 – ident: e_1_2_7_55_1 doi: 10.1021/ja00352a050 – ident: e_1_2_7_41_1 doi: 10.1016/j.ijhydene.2012.07.001 – ident: e_1_2_7_66_1 doi: 10.1002/anie.201409333 – ident: e_1_2_7_175_1 doi: 10.1039/C6DT01891B – volume: 4 start-page: 81 year: 1980 ident: e_1_2_7_54_1 publication-title: New J. Chem. – ident: e_1_2_7_44_1 doi: 10.1016/j.ijhydene.2008.05.106 – ident: e_1_2_7_58_1 doi: 10.1039/C0EE00518E – ident: e_1_2_7_52_1 doi: 10.1002/anie.201511032 – ident: e_1_2_7_221_1 doi: 10.1002/adfm.201606635 – ident: e_1_2_7_110_1 doi: 10.1016/j.elecom.2007.06.011 – ident: e_1_2_7_167_1 doi: 10.1016/j.ijhydene.2016.07.126 – ident: e_1_2_7_131_1 doi: 10.1073/pnas.1001859107 – ident: e_1_2_7_197_1 doi: 10.1039/C7DT00302A – ident: e_1_2_7_83_1 doi: 10.1002/anie.201610776 – ident: e_1_2_7_31_1 doi: 10.1002/smll.201100485 – ident: e_1_2_7_160_1 doi: 10.1038/nchem.1140 – ident: e_1_2_7_17_1 doi: 10.1021/ja1023767 – ident: e_1_2_7_61_1 doi: 10.1021/ja1013344 – ident: e_1_2_7_192_1 doi: 10.1016/j.cattod.2015.10.018 – ident: e_1_2_7_215_1 doi: 10.1039/C8NJ02652A – ident: e_1_2_7_101_1 doi: 10.1039/C7CC02400B – ident: e_1_2_7_228_1 doi: 10.1002/cssc.201801351 – ident: e_1_2_7_123_1 doi: 10.1002/cctc.201501073 – ident: e_1_2_7_126_1 doi: 10.1039/C3TA13531D – ident: e_1_2_7_49_1 doi: 10.1002/adma.201502696 – ident: e_1_2_7_184_1 doi: 10.1002/anie.201408854 – ident: e_1_2_7_9_1 doi: 10.1002/adma.201602270 – ident: e_1_2_7_118_1 doi: 10.1039/c3ee41194j – ident: e_1_2_7_33_1 doi: 10.1007/s10853-017-1955-z – ident: e_1_2_7_115_1 doi: 10.1021/ja306499n – ident: e_1_2_7_172_1 doi: 10.1002/celc.201800744 – ident: e_1_2_7_226_1 doi: 10.1002/cssc.201402533 – ident: e_1_2_7_189_1 doi: 10.1021/ja405351s – ident: e_1_2_7_143_1 doi: 10.1007/s11705-018-1717-8 – ident: e_1_2_7_170_1 doi: 10.1021/acs.inorgchem.6b03171 – ident: e_1_2_7_169_1 doi: 10.1039/C6NR09790A – ident: e_1_2_7_26_1 doi: 10.1039/C6NR09585B – ident: e_1_2_7_99_1 doi: 10.1002/cplu.201800218 – ident: e_1_2_7_19_1 doi: 10.1126/science.1162018 – ident: e_1_2_7_161_1 doi: 10.1021/ja309771h – ident: e_1_2_7_107_1 doi: 10.1016/0257-8972(88)90119-3 – ident: e_1_2_7_128_1 doi: 10.4191/kcers.2017.54.1.12 – ident: e_1_2_7_185_1 doi: 10.1039/C8CC02021C – ident: e_1_2_7_12_1 doi: 10.1126/science.aaf5050 – ident: e_1_2_7_204_1 doi: 10.1038/nchem.2886 – ident: e_1_2_7_62_1 doi: 10.1038/ncomms9253 – ident: e_1_2_7_134_1 doi: 10.1021/ja403656w – ident: e_1_2_7_42_1 doi: 10.1002/celc.201700883 – ident: e_1_2_7_136_1 doi: 10.1016/j.electacta.2018.06.167 – ident: e_1_2_7_3_1 doi: 10.1039/C6TA08075H – ident: e_1_2_7_183_1 doi: 10.1002/celc.201600518 – ident: e_1_2_7_56_1 doi: 10.1039/B802885K – volume: 5 start-page: 556 year: 2010 ident: e_1_2_7_191_1 publication-title: Int. J. Electrochem. Sci. doi: 10.1016/S1452-3981(23)15306-5 – ident: e_1_2_7_200_1 doi: 10.1021/am4007897 – ident: e_1_2_7_113_1 doi: 10.1016/j.electacta.2008.01.081 – ident: e_1_2_7_8_1 doi: 10.1002/advs.201600380 – ident: e_1_2_7_75_1 doi: 10.1039/C7CY00703E – ident: e_1_2_7_164_1 doi: 10.1002/anie.201412389 – ident: e_1_2_7_50_1 doi: 10.1002/adfm.201200920 – ident: e_1_2_7_155_1 doi: 10.1021/cr0307143 – ident: e_1_2_7_93_1 doi: 10.1002/chem.201801412 – ident: e_1_2_7_168_1 doi: 10.1039/C6TA00313C – ident: e_1_2_7_193_1 doi: 10.1002/advs.201700226 – ident: e_1_2_7_80_1 doi: 10.1039/C6TA03436E – ident: e_1_2_7_81_1 doi: 10.1002/anie.201406848 – ident: e_1_2_7_166_1 doi: 10.1039/C6CC00766J – ident: e_1_2_7_235_1 doi: 10.1002/anie.201801538 – ident: e_1_2_7_188_1 doi: 10.1021/jacs.5b00281 – ident: e_1_2_7_231_1 doi: 10.1038/natrevmats.2017.30 – ident: e_1_2_7_13_1 doi: 10.1021/ja511559d – ident: e_1_2_7_177_1 doi: 10.1021/ja3097515 – ident: e_1_2_7_190_1 doi: 10.1038/nchem.931 – ident: e_1_2_7_236_1 doi: 10.1038/s41467-018-05758-5 – ident: e_1_2_7_156_1 doi: 10.1021/acscatal.6b01837 – ident: e_1_2_7_149_1 doi: 10.1039/C7CY01949A – ident: e_1_2_7_137_1 doi: 10.1002/aenm.201301929 – ident: e_1_2_7_212_1 doi: 10.1021/ja5096733 – ident: e_1_2_7_132_1 doi: 10.1021/ja3126432 – ident: e_1_2_7_187_1 doi: 10.1002/smll.201700394 – ident: e_1_2_7_28_1 doi: 10.1021/ja0625632 – ident: e_1_2_7_179_1 doi: 10.1039/C7CC08301G – ident: e_1_2_7_14_1 doi: 10.1021/cs3003098 – ident: e_1_2_7_122_1 doi: 10.1021/acscatal.5b01269 – ident: e_1_2_7_20_1 doi: 10.1021/acs.chemrev.5b00073 – ident: e_1_2_7_2_1 doi: 10.1039/C4CS00470A – ident: e_1_2_7_223_1 doi: 10.1039/C6RA22499G – ident: e_1_2_7_85_1 doi: 10.1002/celc.201700392 – ident: e_1_2_7_6_1 doi: 10.1039/C6TA02334G – ident: e_1_2_7_181_1 doi: 10.1002/anie.201407131 – ident: e_1_2_7_206_1 doi: 10.1039/C7TA03198J – ident: e_1_2_7_214_1 doi: 10.1021/acssuschemeng.7b03780 – ident: e_1_2_7_178_1 doi: 10.1002/anie.201411625 – ident: e_1_2_7_32_1 doi: 10.1039/C5CP06890H – ident: e_1_2_7_87_1 doi: 10.1007/s12274-012-0237-y – ident: e_1_2_7_57_1 doi: 10.1021/ja807769r – ident: e_1_2_7_158_1 doi: 10.1021/cr020628n – ident: e_1_2_7_139_1 doi: 10.1039/C6QI00594B – ident: e_1_2_7_202_1 doi: 10.1002/chem.201501452 – ident: e_1_2_7_174_1 doi: 10.1021/ja015721s – ident: e_1_2_7_73_1 doi: 10.1007/s12678-015-0263-0 – ident: e_1_2_7_199_1 doi: 10.1002/aenm.201402031 – ident: e_1_2_7_216_1 doi: 10.1039/C8TA01902A – ident: e_1_2_7_95_1 doi: 10.1016/j.elspec.2017.09.012 – ident: e_1_2_7_24_1 doi: 10.1021/ja054791m – ident: e_1_2_7_84_1 doi: 10.1039/C7TA00982H – ident: e_1_2_7_234_1 doi: 10.1002/anie.201808818 – ident: e_1_2_7_25_1 doi: 10.1021/acscatal.5b00132 – ident: e_1_2_7_40_1 doi: 10.1002/slct.201702876 – ident: e_1_2_7_180_1 doi: 10.1002/ange.201207215 – ident: e_1_2_7_208_1 doi: 10.1039/C7CC03146G – ident: e_1_2_7_88_1 doi: 10.1039/C4TA03962A – ident: e_1_2_7_37_1 doi: 10.1039/C8TA01288A – ident: e_1_2_7_138_1 doi: 10.1039/C6CC09893B – ident: e_1_2_7_63_1 doi: 10.1021/acsenergylett.8b00621 – ident: e_1_2_7_146_1 doi: 10.1039/C6CC04400J – ident: e_1_2_7_78_1 doi: 10.1039/C5TA03430B – ident: e_1_2_7_171_1 doi: 10.1002/adfm.201801397 – ident: e_1_2_7_222_1 doi: 10.1002/cssc.201700693 – ident: e_1_2_7_35_1 doi: 10.1021/acsami.5b02601 – ident: e_1_2_7_64_1 doi: 10.1021/ja307507a – ident: e_1_2_7_220_1 doi: 10.1039/C5RA26748J – ident: e_1_2_7_105_1 doi: 10.1073/pnas.1315383110 – ident: e_1_2_7_111_1 doi: 10.1016/0013-4686(77)85081-0 – ident: e_1_2_7_114_1 doi: 10.1021/ja206511w – ident: e_1_2_7_65_1 doi: 10.1002/anie.201107625 – ident: e_1_2_7_173_1 doi: 10.1021/ic101515g – ident: e_1_2_7_207_1 doi: 10.1039/C7NR02929B – ident: e_1_2_7_5_1 doi: 10.1039/C6CS00306K – ident: e_1_2_7_74_1 doi: 10.1021/cs501724v – ident: e_1_2_7_98_1 doi: 10.1002/adma.201707522 – ident: e_1_2_7_125_1 doi: 10.1002/cctc.201100434 – ident: e_1_2_7_145_1 doi: 10.1002/cctc.201800312 – ident: e_1_2_7_38_1 doi: 10.1016/j.ijhydene.2011.03.096 – ident: e_1_2_7_51_1 doi: 10.1002/aenm.201400252 – ident: e_1_2_7_151_1 doi: 10.1021/ja5110393 – ident: e_1_2_7_1_1 doi: 10.1002/advs.201600371 – ident: e_1_2_7_218_1 doi: 10.1039/C5CP04248H – ident: e_1_2_7_53_1 doi: 10.1002/cssc.201700113 – ident: e_1_2_7_165_1 doi: 10.1021/acsami.5b06195 – ident: e_1_2_7_97_1 doi: 10.1002/cssc.201300975 – ident: e_1_2_7_70_1 doi: 10.1002/slct.201800943 – ident: e_1_2_7_163_1 doi: 10.1021/ja412822u – ident: e_1_2_7_141_1 doi: 10.1002/chem.201700408 – ident: e_1_2_7_237_1 doi: 10.1021/jacs.6b13287 – ident: e_1_2_7_90_1 doi: 10.1021/acscatal.6b03132 – ident: e_1_2_7_157_1 doi: 10.1021/cr9500500 – ident: e_1_2_7_127_1 doi: 10.1039/C6RA01217E – ident: e_1_2_7_92_1 doi: 10.1039/C5NH00002E – ident: e_1_2_7_159_1 doi: 10.1021/ja104766z – ident: e_1_2_7_108_1 doi: 10.1021/ja104587v – ident: e_1_2_7_96_1 doi: 10.1039/c3nr01735d – ident: e_1_2_7_147_1 doi: 10.1021/acsenergylett.8b00982 – ident: e_1_2_7_229_1 doi: 10.1021/ja406242y – ident: e_1_2_7_23_1 doi: 10.1021/ja502637s – ident: e_1_2_7_144_1 doi: 10.1021/am503938c – ident: e_1_2_7_217_1 doi: 10.1016/j.jcis.2018.08.040 – ident: e_1_2_7_130_1 doi: 10.1016/0013-4686(94)85135-2 – ident: e_1_2_7_104_1 doi: 10.1021/acscatal.6b00798 – ident: e_1_2_7_121_1 doi: 10.1021/jacs.5b06382 – ident: e_1_2_7_198_1 doi: 10.1021/jacs.5b07756 – ident: e_1_2_7_21_1 doi: 10.1007/s10800-008-9651-y – ident: e_1_2_7_232_1 doi: 10.1039/C8TA05985C – ident: e_1_2_7_72_1 doi: 10.1021/acs.iecr.7b04812 – ident: e_1_2_7_194_1 doi: 10.1016/j.electacta.2018.04.079 – ident: e_1_2_7_233_1 doi: 10.1021/acs.jpcc.8b01012 – ident: e_1_2_7_7_1 doi: 10.1038/s41570-016-0003 – ident: e_1_2_7_224_1 doi: 10.1039/C5DT02046H – ident: e_1_2_7_119_1 doi: 10.1039/c3dt52304g – ident: e_1_2_7_117_1 doi: 10.1016/j.ijhydene.2013.06.038 – ident: e_1_2_7_34_1 doi: 10.1039/c2dt32326e – ident: e_1_2_7_15_1 doi: 10.1021/ja407115p – ident: e_1_2_7_82_1 doi: 10.1021/ja503372r |
SSID | ssj0031247 |
Score | 2.6565738 |
SecondaryResourceType | review_article |
Snippet | Developing anodic oxygen evolution reaction (OER) electrocatalysts with high catalytic activities is of great importance for effective water splitting.... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e1805103 |
SubjectTerms | Anodizing Catalysis earth‐abundant metals Electrocatalysts mild pH Nanotechnology Organic chemistry Oxidation oxygen evolution reaction (OER) Oxygen evolution reactions water oxidation Water splitting |
Title | Recent Advances in the Development of Water Oxidation Electrocatalysts at Mild pH |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.201805103 https://www.ncbi.nlm.nih.gov/pubmed/30773809 https://www.proquest.com/docview/2197269342 https://www.proquest.com/docview/2183191018 |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB6kJz34fkSrrCB4Spt30mORliJW8VH0FvYJxZqKSUH99c5m29gqIugtIbsk2dmZ-WZ39huAEz_wKHNDgUGOCjFAQVlQrtetZCSow2KHlYfC-pdRbxCcP4QPc6f4DT9EteCmNaO011rBKcubn6Sh-dNIbx24SUkKh0ZYJ2xpVHRT8Uf56LzK6iros2xNvDVjbXS85mL3Ra_0DWouItfS9XTXgM4-2mScPDYmBWvw9y98jv_5q3VYneJS0jYTaQOWZLYJK3NshVtwjRATXRRpm7SBnAwzgvCRzOUdkbEi94heX8jV69BUayIdU2inXCd6y4uc0IL0hyNBnnvbMOh27s569rQig80DNES2y1QSS-7pPV-BQo4kjRXjMVdBIjDMjgTiAT-SLS8Uirm-q1TMhC8THnGqEEvuQC0bZ3IPCGNJqASNHeH7AVMBo24iMJbSh3UjBGkW2DOJpHxKV66rZoxSQ7TspXqo0mqoLDit2j8boo4fW9ZnAk6nCpunni6_FrVw6lpwXD1GVdP7JzST44luk6DB0hRnFuyaiVG9Ck1l7CdOywKvFO8v35De9i8uqrv9v3Q6gGW8bpl8uDrUipeJPESAVLCjUgk-AB_lBpc |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3JbtRAEC1F4QAc2BdDgEYCcXJit_cDh4gkmpCZICARuTm9SiMGTxR7BOGv-BW-iCq3bTIghISUA0fbbbndtVdXvwJ4FsVcyDDRGOTYBAMUpIVQlLcyqRaBzALZHgqb7Kejw_j1UXK0At_6szAOH2JIuJFktPqaBJwS0hs_UUPrTzPaOwjzFhWuq6vcM2efMWqrX-5uIYmfc76zffBq5HeNBXwVozz5obR5ZhSnrUuNc02NyKxUmbJxrjFaTDWatSg1BU-0lWEUWptJHZlcpUrYgrAOUOtfojbiBNe_9W5ArIrQXLb9XNBK-gT11eNEBnxjeb7LdvA353bZV26N3c51-N4vk6tx-bi-aOS6-voLguR_tY434FrnerNNJys3YcVUt-DqOUDG2_AWvWi0wmzTVUbUbFox9JDZudIqNrfsAzrop-zNl6lrSMW2XS-hNhV2Vjc1Ew2bTGeanYzuwOGF_NNdWK3mlbkPTMo8sVpkgY6iWNpYijDXGC7SeeQU_VAP_J4FStUhslNjkFnpsKR5SaQpB9J48GIYf-KwSP44cq3nqLLTSXXJqcNcWqB0evB0eIzahLaIRGXmCxqTo04mFDcP7jlOHD6F1iCL8qDwgLf89Jc5lO8n4_Fw9eBfXnoCl0cHk3E53t3fewhX8H7hyv_WYLU5XZhH6A828nErgQyOL5pVfwBNo2bv |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB5VRUJwKG8IFDASiFPaxEmc5MChYrva0t3yrOgt9VNadcmumqyg_Cr-Cv-IcZyELgghIfXAMYmjOPY8vrHH3wA8jWLKRZgoDHJMggEKzgWXdt1KM8UDkQaiORQ2OWCjw_jVUXK0Bt-6szCOH6JfcLOa0dhrq-ALZbZ_koZWn2Z26yDMGlK4Nq1yX599xqCterE3wBl-Rulw98PLkd_WFfBljOrkh8JkqZbU7lwq7CrTPDVCptLEmcJgkSn0ahHTOU2UEWEUGpMKFelMMslNbqkO0OhfilmQ22IRg3c9YVWE3rIp54JO0rdMXx1NZEC3V_u76gZ_w7arULnxdcNr8L0bJZficrK1rMWW_PoLgeT_NIzXYaMF3mTHacoNWNPlTbh6jo7xFrxFDI0-mOy4vIiKTEuC-JicS6wic0M-Ijw_Ja-_TF05KrLrKgk1C2FnVV0RXpPJdKbIYnQbDi_kn-7Aejkv9T0gQmSJUTwNVBTFwsSCh5nCYNGeRmaIQj3wOwkoZMvHbsuCzArHJE0LOzVFPzUePO_bLxwTyR9bbnYCVbQWqSqorS_HctRND570j9GW2A0iXur50rbJ0CJbDjcP7jpB7D-FviCNsiD3gDbi9Jc-FO8n43F_df9fXnoMl98MhsV472D_AVzB27nL_duE9fp0qR8iGKzFo0b_CBxftKT-AJdqZZ4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recent+Advances+in+the+Development+of+Water+Oxidation+Electrocatalysts+at+Mild+pH&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Li%2C+Peipei&rft.au=Zhao%2C+Runbo&rft.au=Chen%2C+Hongyu&rft.au=Wang%2C+Huanbo&rft.date=2019-03-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1613-6810&rft.eissn=1613-6829&rft.volume=15&rft.issue=13&rft_id=info:doi/10.1002%2Fsmll.201805103&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon |