Recent Advances in the Development of Water Oxidation Electrocatalysts at Mild pH

Developing anodic oxygen evolution reaction (OER) electrocatalysts with high catalytic activities is of great importance for effective water splitting. Compared with the water‐oxidation electrocatalysts that are commonly utilized in alkaline conditions, the ones operating efficiently under neutral o...

Full description

Saved in:
Bibliographic Details
Published inSmall (Weinheim an der Bergstrasse, Germany) Vol. 15; no. 13; pp. e1805103 - n/a
Main Authors Li, Peipei, Zhao, Runbo, Chen, Hongyu, Wang, Huanbo, Wei, Peipei, Huang, Hong, Liu, Qian, Li, Tingshuai, Shi, Xifeng, Zhang, Youyu, Liu, Meiling, Sun, Xuping
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.03.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Developing anodic oxygen evolution reaction (OER) electrocatalysts with high catalytic activities is of great importance for effective water splitting. Compared with the water‐oxidation electrocatalysts that are commonly utilized in alkaline conditions, the ones operating efficiently under neutral or near neutral conditions are more environmentally friendly with less corrosion issues. This review starts with a brief introduction of OER, the importance of OER in mild‐pH media, as well as the fundamentals and performance parameters of OER electrocatalysts. Then, recent progress of the rational design of electrocatalysts for OER in mild‐pH conditions is discussed. The chemical structures or components, synthetic approaches, and catalytic performances of the OER catalysts will be reviewed. Some interesting insights into the catalytic mechanism are also included and discussed. It concludes with a brief outlook on the possible remaining challenges and future trends of neutral or near‐neutral OER electrocatalysts. It hopefully provides the readers with a distinct perspective of the history, present, and future of OER electrocatalysts at mild conditions. Electrocatalytic water oxidation under environmentally‐friendly conditions has received considerable recent research attention. This paper reviews recent advances in the design and development of water oxidation electrocatalysts operating at mild pH, and current challenges and future research directions are also provided.
AbstractList Developing anodic oxygen evolution reaction (OER) electrocatalysts with high catalytic activities is of great importance for effective water splitting. Compared with the water-oxidation electrocatalysts that are commonly utilized in alkaline conditions, the ones operating efficiently under neutral or near neutral conditions are more environmentally friendly with less corrosion issues. This review starts with a brief introduction of OER, the importance of OER in mild-pH media, as well as the fundamentals and performance parameters of OER electrocatalysts. Then, recent progress of the rational design of electrocatalysts for OER in mild-pH conditions is discussed. The chemical structures or components, synthetic approaches, and catalytic performances of the OER catalysts will be reviewed. Some interesting insights into the catalytic mechanism are also included and discussed. It concludes with a brief outlook on the possible remaining challenges and future trends of neutral or near-neutral OER electrocatalysts. It hopefully provides the readers with a distinct perspective of the history, present, and future of OER electrocatalysts at mild conditions.Developing anodic oxygen evolution reaction (OER) electrocatalysts with high catalytic activities is of great importance for effective water splitting. Compared with the water-oxidation electrocatalysts that are commonly utilized in alkaline conditions, the ones operating efficiently under neutral or near neutral conditions are more environmentally friendly with less corrosion issues. This review starts with a brief introduction of OER, the importance of OER in mild-pH media, as well as the fundamentals and performance parameters of OER electrocatalysts. Then, recent progress of the rational design of electrocatalysts for OER in mild-pH conditions is discussed. The chemical structures or components, synthetic approaches, and catalytic performances of the OER catalysts will be reviewed. Some interesting insights into the catalytic mechanism are also included and discussed. It concludes with a brief outlook on the possible remaining challenges and future trends of neutral or near-neutral OER electrocatalysts. It hopefully provides the readers with a distinct perspective of the history, present, and future of OER electrocatalysts at mild conditions.
Developing anodic oxygen evolution reaction (OER) electrocatalysts with high catalytic activities is of great importance for effective water splitting. Compared with the water-oxidation electrocatalysts that are commonly utilized in alkaline conditions, the ones operating efficiently under neutral or near neutral conditions are more environmentally friendly with less corrosion issues. This review starts with a brief introduction of OER, the importance of OER in mild-pH media, as well as the fundamentals and performance parameters of OER electrocatalysts. Then, recent progress of the rational design of electrocatalysts for OER in mild-pH conditions is discussed. The chemical structures or components, synthetic approaches, and catalytic performances of the OER catalysts will be reviewed. Some interesting insights into the catalytic mechanism are also included and discussed. It concludes with a brief outlook on the possible remaining challenges and future trends of neutral or near-neutral OER electrocatalysts. It hopefully provides the readers with a distinct perspective of the history, present, and future of OER electrocatalysts at mild conditions.
Developing anodic oxygen evolution reaction (OER) electrocatalysts with high catalytic activities is of great importance for effective water splitting. Compared with the water‐oxidation electrocatalysts that are commonly utilized in alkaline conditions, the ones operating efficiently under neutral or near neutral conditions are more environmentally friendly with less corrosion issues. This review starts with a brief introduction of OER, the importance of OER in mild‐pH media, as well as the fundamentals and performance parameters of OER electrocatalysts. Then, recent progress of the rational design of electrocatalysts for OER in mild‐pH conditions is discussed. The chemical structures or components, synthetic approaches, and catalytic performances of the OER catalysts will be reviewed. Some interesting insights into the catalytic mechanism are also included and discussed. It concludes with a brief outlook on the possible remaining challenges and future trends of neutral or near‐neutral OER electrocatalysts. It hopefully provides the readers with a distinct perspective of the history, present, and future of OER electrocatalysts at mild conditions. Electrocatalytic water oxidation under environmentally‐friendly conditions has received considerable recent research attention. This paper reviews recent advances in the design and development of water oxidation electrocatalysts operating at mild pH, and current challenges and future research directions are also provided.
Author Zhang, Youyu
Liu, Qian
Sun, Xuping
Wang, Huanbo
Shi, Xifeng
Zhao, Runbo
Wei, Peipei
Li, Tingshuai
Liu, Meiling
Chen, Hongyu
Li, Peipei
Huang, Hong
Author_xml – sequence: 1
  givenname: Peipei
  surname: Li
  fullname: Li, Peipei
  organization: Hunan Normal University
– sequence: 2
  givenname: Runbo
  surname: Zhao
  fullname: Zhao, Runbo
  organization: University of Electronic Science and Technology of China
– sequence: 3
  givenname: Hongyu
  surname: Chen
  fullname: Chen, Hongyu
  organization: University of Electronic Science and Technology of China
– sequence: 4
  givenname: Huanbo
  surname: Wang
  fullname: Wang, Huanbo
  organization: Southwest University of Science and Technology
– sequence: 5
  givenname: Peipei
  surname: Wei
  fullname: Wei, Peipei
  organization: University of Electronic Science and Technology of China
– sequence: 6
  givenname: Hong
  surname: Huang
  fullname: Huang, Hong
  organization: University of Electronic Science and Technology of China
– sequence: 7
  givenname: Qian
  surname: Liu
  fullname: Liu, Qian
  organization: University of Electronic Science and Technology of China
– sequence: 8
  givenname: Tingshuai
  surname: Li
  fullname: Li, Tingshuai
  organization: University of Electronic Science and Technology of China
– sequence: 9
  givenname: Xifeng
  surname: Shi
  fullname: Shi, Xifeng
  organization: Chemical Engineering and Materials Science
– sequence: 10
  givenname: Youyu
  surname: Zhang
  fullname: Zhang, Youyu
  organization: Hunan Normal University
– sequence: 11
  givenname: Meiling
  surname: Liu
  fullname: Liu, Meiling
  email: liuml@hunnu.edu.cn
  organization: Hunan Normal University
– sequence: 12
  givenname: Xuping
  orcidid: 0000-0002-5326-3838
  surname: Sun
  fullname: Sun, Xuping
  email: xpsun@uestc.edu.cn
  organization: University of Electronic Science and Technology of China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30773809$$D View this record in MEDLINE/PubMed
BookMark eNqFkUtLKzEYhoMo3rcuJeDGTWsu08lkKV6OByriDZdDJvmCkcykJmm1_97pqaeCIK4S-J7nS3jfHbTehQ4QOqBkSAlhJ6n1fsgIrciIEr6GtmlJ-aCsmFxf3SnZQjspvRDCKSvEJtriRAheEbmNbu9AQ5fxqZmpTkPCrsP5GfA5zMCHSbuYBYufVIaIb96dUdmFDl940DkGrbLy85QTVhlfO2_w5GoPbVjlE-x_nrvo8fLi4exqML758_fsdDzQhSj5gDa2EqCZHPHSMNWUoIRttNC2qIwkojQF7Ucg2cjYhnJqrWgMh0qXWlnJ-C46Xu6dxPA6hZTr1iUN3qsOwjTVjFacStpH06NH39CXMI1d_7uekoKVkheLhYef1LRpwdST6FoV5_X_sHpguAR0DClFsCuEknrRRr1oo1610QvFN0G7_C_AHJXzP2tyqb05D_NfHqnvr8fjL_cDdTaeVw
CitedBy_id crossref_primary_10_1021_acsami_0c13247
crossref_primary_10_1002_slct_202402784
crossref_primary_10_1021_acs_chemrev_0c00394
crossref_primary_10_1002_adfm_202415143
crossref_primary_10_1007_s10853_023_08176_1
crossref_primary_10_1016_j_jcat_2019_08_005
crossref_primary_10_1002_ange_202107510
crossref_primary_10_1021_acssuschemeng_9b06959
crossref_primary_10_1016_j_renene_2022_03_137
crossref_primary_10_1002_cplu_201900512
crossref_primary_10_1002_cssc_201902921
crossref_primary_10_1016_j_ijhydene_2019_05_121
crossref_primary_10_1039_D5CP00243E
crossref_primary_10_1016_j_apsusc_2020_148518
crossref_primary_10_1016_j_jcis_2022_08_141
crossref_primary_10_1002_smll_202411479
crossref_primary_10_1039_C9QI00953A
crossref_primary_10_1039_D3MH00366C
crossref_primary_10_1016_j_coelec_2022_100961
crossref_primary_10_1016_j_ijhydene_2020_05_279
crossref_primary_10_1021_acssuschemeng_9b05514
crossref_primary_10_1016_j_nanoen_2020_105392
crossref_primary_10_1021_acs_inorgchem_4c03897
crossref_primary_10_1016_j_clay_2020_105511
crossref_primary_10_1039_C9TA08812A
crossref_primary_10_1002_anie_202308335
crossref_primary_10_1021_acs_chemrev_3c00206
crossref_primary_10_1007_s12274_020_2618_y
crossref_primary_10_1016_j_molstruc_2019_05_052
crossref_primary_10_1002_anie_202317844
crossref_primary_10_3390_coatings13040726
crossref_primary_10_1039_C9CC08838E
crossref_primary_10_1016_j_xcrp_2022_100910
crossref_primary_10_1021_acsestengg_1c00456
crossref_primary_10_1021_acs_jpcc_2c05174
crossref_primary_10_1002_ente_202100769
crossref_primary_10_1039_D1SE00162K
crossref_primary_10_1002_ange_202210753
crossref_primary_10_1021_jacs_9b05268
crossref_primary_10_1002_slct_201901465
crossref_primary_10_1039_D1TB01798E
crossref_primary_10_1016_j_electacta_2019_134568
crossref_primary_10_1016_j_apsusc_2020_145828
crossref_primary_10_1016_j_jcis_2023_03_003
crossref_primary_10_1039_C9CE01575B
crossref_primary_10_1002_adma_202002297
crossref_primary_10_1016_j_ijhydene_2019_09_008
crossref_primary_10_1039_D0DT02220A
crossref_primary_10_1021_acscatal_1c04978
crossref_primary_10_3390_nano12111819
crossref_primary_10_1039_C9NA00356H
crossref_primary_10_1039_D0DT03182H
crossref_primary_10_1002_ange_202009854
crossref_primary_10_1021_acssuschemeng_9b02705
crossref_primary_10_1016_j_apsusc_2020_145390
crossref_primary_10_1002_smtd_202000719
crossref_primary_10_1016_j_apcatb_2021_120559
crossref_primary_10_1002_celc_202100742
crossref_primary_10_1007_s12613_021_2352_9
crossref_primary_10_1007_s10853_024_09620_6
crossref_primary_10_1002_celc_201901201
crossref_primary_10_1007_s10973_022_11435_z
crossref_primary_10_3390_met12050800
crossref_primary_10_1002_nano_202000189
crossref_primary_10_1021_acs_inorgchem_9b00463
crossref_primary_10_1002_aenm_202303281
crossref_primary_10_1016_j_ccr_2022_214925
crossref_primary_10_1016_j_ijhydene_2021_01_063
crossref_primary_10_1039_D2QI02436E
crossref_primary_10_1002_ange_202211142
crossref_primary_10_1039_C9CC05115E
crossref_primary_10_1021_acsaem_2c02543
crossref_primary_10_1016_j_jallcom_2020_153913
crossref_primary_10_1016_S1872_5805_24_60829_2
crossref_primary_10_1039_D2CY02109A
crossref_primary_10_1021_acsaem_2c00238
crossref_primary_10_1039_C9NA00169G
crossref_primary_10_1021_acssuschemeng_9b03653
crossref_primary_10_1002_adfm_202301559
crossref_primary_10_1039_C9NR08297B
crossref_primary_10_1002_smll_202002550
crossref_primary_10_1021_acsnano_9b05571
crossref_primary_10_1002_asia_202400851
crossref_primary_10_1002_smll_201905884
crossref_primary_10_1016_j_ijhydene_2019_09_214
crossref_primary_10_1021_acsanm_1c03850
crossref_primary_10_1002_cssc_202201808
crossref_primary_10_1039_D1DT01144H
crossref_primary_10_1016_j_mattod_2023_08_024
crossref_primary_10_1007_s41918_021_00104_8
crossref_primary_10_1016_j_arabjc_2019_08_006
crossref_primary_10_1002_cctc_202000004
crossref_primary_10_1021_acs_inorgchem_1c02254
crossref_primary_10_1016_j_jallcom_2020_156094
crossref_primary_10_1063_5_0139558
crossref_primary_10_1002_ente_202300461
crossref_primary_10_1039_C9RA05165A
crossref_primary_10_1007_s10853_021_06710_7
crossref_primary_10_1016_j_jcis_2020_08_005
crossref_primary_10_1021_acsami_9b06635
crossref_primary_10_1039_C9TA07171G
crossref_primary_10_1039_D0TA08894C
crossref_primary_10_1021_acsami_9b09112
crossref_primary_10_26599_NRE_2022_9120028
crossref_primary_10_1149_1945_7111_ad0df1
crossref_primary_10_1002_aesr_202100093
crossref_primary_10_1016_j_cej_2022_138608
crossref_primary_10_1016_j_jcis_2023_05_042
crossref_primary_10_1039_D1MA00229E
crossref_primary_10_1002_aenm_201902494
crossref_primary_10_1021_acscatal_1c01395
crossref_primary_10_1002_aesr_202000090
crossref_primary_10_1039_D1SE00363A
crossref_primary_10_1021_acsanm_9b00441
crossref_primary_10_1002_admi_202100879
crossref_primary_10_1016_j_apsusc_2021_150293
crossref_primary_10_1016_j_cej_2020_125537
crossref_primary_10_1007_s10562_024_04894_6
crossref_primary_10_1039_D2NR00522K
crossref_primary_10_1016_j_ijhydene_2020_04_073
crossref_primary_10_1039_D3EY00314K
crossref_primary_10_1016_j_fuel_2022_124477
crossref_primary_10_1016_j_ijhydene_2021_10_186
crossref_primary_10_1016_j_mtener_2019_04_007
crossref_primary_10_1142_S1793292019500899
crossref_primary_10_1149_1945_7111_ac47ec
crossref_primary_10_3389_fctls_2022_950384
crossref_primary_10_1002_ange_202308335
crossref_primary_10_1002_anie_202009854
crossref_primary_10_1039_D0TA12424A
crossref_primary_10_1002_adsu_202300193
crossref_primary_10_1016_j_ijhydene_2021_12_239
crossref_primary_10_1016_j_jpowsour_2019_04_050
crossref_primary_10_1007_s10853_022_07150_7
crossref_primary_10_1016_j_ccr_2023_215274
crossref_primary_10_1002_ange_202317844
crossref_primary_10_1002_celc_201900656
crossref_primary_10_1021_acscatal_2c04185
crossref_primary_10_1002_smm2_1085
crossref_primary_10_1021_acscatal_0c01733
crossref_primary_10_1021_acs_inorgchem_0c01927
crossref_primary_10_1016_j_jelechem_2023_117323
crossref_primary_10_1002_anie_202405839
crossref_primary_10_1002_anie_202210753
crossref_primary_10_1016_j_electacta_2019_134976
crossref_primary_10_1021_acs_analchem_0c00760
crossref_primary_10_1002_cssc_202101844
crossref_primary_10_1016_j_cej_2022_137420
crossref_primary_10_1021_acsami_0c13303
crossref_primary_10_1016_j_jcis_2025_01_041
crossref_primary_10_1039_D0CC00177E
crossref_primary_10_1039_D2YA00076H
crossref_primary_10_1007_s11705_020_1920_2
crossref_primary_10_1016_j_bios_2020_112730
crossref_primary_10_1016_j_ijhydene_2019_10_229
crossref_primary_10_1039_D4QI01507J
crossref_primary_10_1016_j_chemosphere_2021_131680
crossref_primary_10_1002_chem_201904510
crossref_primary_10_1016_j_ijhydene_2019_10_211
crossref_primary_10_1039_D1DT03936A
crossref_primary_10_1016_j_ijhydene_2020_01_085
crossref_primary_10_1002_celc_201900675
crossref_primary_10_1016_j_ijhydene_2020_07_049
crossref_primary_10_1021_acsaem_1c01036
crossref_primary_10_1002_anie_202211142
crossref_primary_10_1002_anie_202107510
crossref_primary_10_1007_s12678_024_00911_9
crossref_primary_10_1016_j_apsusc_2021_151729
crossref_primary_10_1016_j_ijhydene_2019_08_040
crossref_primary_10_1021_acsomega_0c03435
crossref_primary_10_1016_j_apsusc_2022_155781
crossref_primary_10_3390_magnetochemistry7120161
crossref_primary_10_1039_D0DT04133E
crossref_primary_10_1016_j_ijhydene_2019_07_228
crossref_primary_10_1016_j_cogsc_2021_100492
crossref_primary_10_1039_D0DT03448G
crossref_primary_10_1002_er_5018
crossref_primary_10_1016_j_inoche_2019_107674
crossref_primary_10_3390_w14030371
crossref_primary_10_1002_sstr_202000048
crossref_primary_10_1002_ange_202405839
crossref_primary_10_1039_C9TA13775K
crossref_primary_10_1016_j_ijhydene_2019_11_159
crossref_primary_10_1039_D2SE00320A
crossref_primary_10_1007_s11581_024_05443_2
crossref_primary_10_1039_C9NR03401C
crossref_primary_10_1002_smll_202407177
crossref_primary_10_1021_acsaem_0c01782
crossref_primary_10_1021_acsaem_4c00840
crossref_primary_10_1002_smll_202105830
crossref_primary_10_1039_D3TA03145D
crossref_primary_10_1038_s41929_022_00783_6
crossref_primary_10_1002_cplu_202000729
crossref_primary_10_1007_s13391_020_00260_x
crossref_primary_10_1016_j_molstruc_2019_06_016
crossref_primary_10_1016_S1872_2067_22_64149_4
crossref_primary_10_1016_j_mtener_2019_07_007
crossref_primary_10_1039_D2GC04205C
crossref_primary_10_1021_acssuschemeng_2c04074
crossref_primary_10_1002_aenm_202102074
crossref_primary_10_1007_s12274_021_3580_z
crossref_primary_10_1063_5_0232980
crossref_primary_10_1016_j_jpowsour_2019_227654
crossref_primary_10_1002_cctc_202000412
crossref_primary_10_1016_j_ijhydene_2019_09_042
crossref_primary_10_1039_D0TA10596A
crossref_primary_10_1016_j_jpowsour_2021_229779
crossref_primary_10_1039_C9CY01485C
crossref_primary_10_1021_acsami_9b23356
crossref_primary_10_1016_j_ijhydene_2020_01_043
crossref_primary_10_1007_s11467_021_1066_9
crossref_primary_10_1021_acsanm_0c00061
crossref_primary_10_1039_D3CS01031G
crossref_primary_10_1021_acsenergylett_1c01937
crossref_primary_10_1016_j_jcis_2022_12_040
crossref_primary_10_1021_acsenergylett_4c01589
crossref_primary_10_1016_j_chempr_2022_06_012
crossref_primary_10_1016_j_ceramint_2021_02_215
crossref_primary_10_1016_j_jallcom_2019_153463
crossref_primary_10_1016_j_nanoen_2022_108124
Cites_doi 10.1021/acscatal.5b00979
10.1016/j.elecom.2018.08.009
10.1007/s12678-018-0476-0
10.1002/anie.201808929
10.1016/j.chempr.2017.09.009
10.1039/C4NR03822C
10.1021/jp904022e
10.1002/advs.201500426
10.1021/ja809108y
10.1021/ja106102b
10.1021/acscatal.7b02071
10.1016/0013-4686(66)80045-2
10.1021/ja301018q
10.1038/nmat3385
10.1002/cctc.201600796
10.1021/acsami.7b01637
10.1021/cr200247n
10.1021/ar900117k
10.1021/acsnano.7b05971
10.1038/ncomms5477
10.1039/C6CP08495H
10.1021/ja5127165
10.1039/C8TA08519F
10.1002/cplu.201700005
10.1016/j.jelechem.2018.06.051
10.1016/j.electacta.2014.11.079
10.1016/j.jelechem.2014.11.019
10.1021/ja017895f
10.1039/C5TA06411B
10.1021/cr5003563
10.1016/0013-4686(79)87019-X
10.1021/jacs.5b08139
10.1021/cs3007523
10.1039/C7TA01586K
10.1021/ja9063298
10.1007/0-306-48127-8
10.1021/jacs.5b05093
10.1002/cssc.201000161
10.1002/anie.201810102
10.1002/anie.201509982
10.1039/c2ee21191b
10.1002/cctc.201700350
10.1039/c2ee03250c
10.1002/ejic.201403015
10.1021/acsami.8b00986
10.1002/adfm.201503666
10.1038/nchem.1350
10.1021/ja410223j
10.1016/j.jpowsour.2015.04.031
10.1002/ange.201505320
10.1002/anie.201209116
10.1039/c3cp50202c
10.1002/chem.201702314
10.1021/acs.nanolett.6b04732
10.1002/anie.201701642
10.1021/acs.inorgchem.5b00924
10.1039/C7TA02333B
10.1021/acsomega.8b01375
10.1039/C6NR03147A
10.1016/j.energy.2006.07.014
10.1126/science.aad4998
10.1039/C7RA11330G
10.1002/cssc.201501474
10.1021/nn3044325
10.1002/cssc.201500666
10.1021/acs.jpcc.5b06102
10.1021/ja00352a050
10.1016/j.ijhydene.2012.07.001
10.1002/anie.201409333
10.1039/C6DT01891B
10.1016/j.ijhydene.2008.05.106
10.1039/C0EE00518E
10.1002/anie.201511032
10.1002/adfm.201606635
10.1016/j.elecom.2007.06.011
10.1016/j.ijhydene.2016.07.126
10.1073/pnas.1001859107
10.1039/C7DT00302A
10.1002/anie.201610776
10.1002/smll.201100485
10.1038/nchem.1140
10.1021/ja1023767
10.1021/ja1013344
10.1016/j.cattod.2015.10.018
10.1039/C8NJ02652A
10.1039/C7CC02400B
10.1002/cssc.201801351
10.1002/cctc.201501073
10.1039/C3TA13531D
10.1002/adma.201502696
10.1002/anie.201408854
10.1002/adma.201602270
10.1039/c3ee41194j
10.1007/s10853-017-1955-z
10.1021/ja306499n
10.1002/celc.201800744
10.1002/cssc.201402533
10.1021/ja405351s
10.1007/s11705-018-1717-8
10.1021/acs.inorgchem.6b03171
10.1039/C6NR09790A
10.1039/C6NR09585B
10.1002/cplu.201800218
10.1126/science.1162018
10.1021/ja309771h
10.1016/0257-8972(88)90119-3
10.4191/kcers.2017.54.1.12
10.1039/C8CC02021C
10.1126/science.aaf5050
10.1038/nchem.2886
10.1038/ncomms9253
10.1021/ja403656w
10.1002/celc.201700883
10.1016/j.electacta.2018.06.167
10.1039/C6TA08075H
10.1002/celc.201600518
10.1039/B802885K
10.1016/S1452-3981(23)15306-5
10.1021/am4007897
10.1016/j.electacta.2008.01.081
10.1002/advs.201600380
10.1039/C7CY00703E
10.1002/anie.201412389
10.1002/adfm.201200920
10.1021/cr0307143
10.1002/chem.201801412
10.1039/C6TA00313C
10.1002/advs.201700226
10.1039/C6TA03436E
10.1002/anie.201406848
10.1039/C6CC00766J
10.1002/anie.201801538
10.1021/jacs.5b00281
10.1038/natrevmats.2017.30
10.1021/ja511559d
10.1021/ja3097515
10.1038/nchem.931
10.1038/s41467-018-05758-5
10.1021/acscatal.6b01837
10.1039/C7CY01949A
10.1002/aenm.201301929
10.1021/ja5096733
10.1021/ja3126432
10.1002/smll.201700394
10.1021/ja0625632
10.1039/C7CC08301G
10.1021/cs3003098
10.1021/acscatal.5b01269
10.1021/acs.chemrev.5b00073
10.1039/C4CS00470A
10.1039/C6RA22499G
10.1002/celc.201700392
10.1039/C6TA02334G
10.1002/anie.201407131
10.1039/C7TA03198J
10.1021/acssuschemeng.7b03780
10.1002/anie.201411625
10.1039/C5CP06890H
10.1007/s12274-012-0237-y
10.1021/ja807769r
10.1021/cr020628n
10.1039/C6QI00594B
10.1002/chem.201501452
10.1021/ja015721s
10.1007/s12678-015-0263-0
10.1002/aenm.201402031
10.1039/C8TA01902A
10.1016/j.elspec.2017.09.012
10.1021/ja054791m
10.1039/C7TA00982H
10.1002/anie.201808818
10.1021/acscatal.5b00132
10.1002/slct.201702876
10.1002/ange.201207215
10.1039/C7CC03146G
10.1039/C4TA03962A
10.1039/C8TA01288A
10.1039/C6CC09893B
10.1021/acsenergylett.8b00621
10.1039/C6CC04400J
10.1039/C5TA03430B
10.1002/adfm.201801397
10.1002/cssc.201700693
10.1021/acsami.5b02601
10.1021/ja307507a
10.1039/C5RA26748J
10.1073/pnas.1315383110
10.1016/0013-4686(77)85081-0
10.1021/ja206511w
10.1002/anie.201107625
10.1021/ic101515g
10.1039/C7NR02929B
10.1039/C6CS00306K
10.1021/cs501724v
10.1002/adma.201707522
10.1002/cctc.201100434
10.1002/cctc.201800312
10.1016/j.ijhydene.2011.03.096
10.1002/aenm.201400252
10.1021/ja5110393
10.1002/advs.201600371
10.1039/C5CP04248H
10.1002/cssc.201700113
10.1021/acsami.5b06195
10.1002/cssc.201300975
10.1002/slct.201800943
10.1021/ja412822u
10.1002/chem.201700408
10.1021/jacs.6b13287
10.1021/acscatal.6b03132
10.1021/cr9500500
10.1039/C6RA01217E
10.1039/C5NH00002E
10.1021/ja104766z
10.1021/ja104587v
10.1039/c3nr01735d
10.1021/acsenergylett.8b00982
10.1021/ja406242y
10.1021/ja502637s
10.1021/am503938c
10.1016/j.jcis.2018.08.040
10.1016/0013-4686(94)85135-2
10.1021/acscatal.6b00798
10.1021/jacs.5b06382
10.1021/jacs.5b07756
10.1007/s10800-008-9651-y
10.1039/C8TA05985C
10.1021/acs.iecr.7b04812
10.1016/j.electacta.2018.04.079
10.1021/acs.jpcc.8b01012
10.1038/s41570-016-0003
10.1039/C5DT02046H
10.1039/c3dt52304g
10.1016/j.ijhydene.2013.06.038
10.1039/c2dt32326e
10.1021/ja407115p
10.1021/ja503372r
ContentType Journal Article
Copyright 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Copyright_xml – notice: 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DBID AAYXX
CITATION
NPM
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
DOI 10.1002/smll.201805103
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed

Materials Research Database
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1613-6829
EndPage n/a
ExternalDocumentID 30773809
10_1002_smll_201805103
SMLL201805103
Genre reviewArticle
Journal Article
Review
GrantInformation_xml – fundername: Scientific Research Fund of Hunan Provincial Education Department
  funderid: 14B116
– fundername: National Natural Science Foundation of China
  funderid: 21575137; 21645008; 21305042; 21375037
– fundername: Science and Technology Department
  funderid: 14JJ4030
– fundername: National Natural Science Foundation of China
  grantid: 21645008
– fundername: National Natural Science Foundation of China
  grantid: 21575137
– fundername: Scientific Research Fund of Hunan Provincial Education Department
  grantid: 14B116
– fundername: Science and Technology Department
  grantid: 14JJ4030
– fundername: National Natural Science Foundation of China
  grantid: 21375037
– fundername: National Natural Science Foundation of China
  grantid: 21305042
GroupedDBID ---
05W
0R~
123
1L6
1OC
33P
3SF
3WU
4.4
50Y
52U
53G
5VS
66C
8-0
8-1
8UM
A00
AAESR
AAEVG
AAHHS
AAHQN
AAIHA
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCUV
ABIJN
ABJNI
ABLJU
ABRTZ
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZVAB
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BOGZA
BRXPI
CS3
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F5P
G-S
GNP
HBH
HGLYW
HHY
HHZ
HZ~
IX1
KQQ
LATKE
LAW
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O66
O9-
OIG
P2P
P2W
P4E
QRW
R.K
RIWAO
RNS
ROL
RWI
RX1
RYL
SUPJJ
SV3
V2E
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WXSBR
WYISQ
WYJ
XV2
Y6R
ZZTAW
~S-
31~
AANHP
AAYOK
AAYXX
ACBWZ
ACRPL
ACYXJ
ADNMO
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
BDRZF
CITATION
FEDTE
GODZA
HVGLF
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
NPM
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
ID FETCH-LOGICAL-c4763-1bf87ec29536d2ab6ea7fbc7cf48d9076d41536e925dfb131ff7bd3e8c6caf923
IEDL.DBID DR2
ISSN 1613-6810
1613-6829
IngestDate Fri Jul 11 15:16:30 EDT 2025
Fri Jul 25 12:13:32 EDT 2025
Mon Jul 21 05:58:23 EDT 2025
Tue Jul 01 02:10:40 EDT 2025
Thu Apr 24 23:09:42 EDT 2025
Wed Jan 22 16:29:44 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 13
Keywords electrocatalysts
water oxidation
oxygen evolution reaction (OER)
mild pH
earth-abundant metals
Language English
License 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4763-1bf87ec29536d2ab6ea7fbc7cf48d9076d41536e925dfb131ff7bd3e8c6caf923
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0002-5326-3838
PMID 30773809
PQID 2197269342
PQPubID 1046358
PageCount 27
ParticipantIDs proquest_miscellaneous_2183191018
proquest_journals_2197269342
pubmed_primary_30773809
crossref_primary_10_1002_smll_201805103
crossref_citationtrail_10_1002_smll_201805103
wiley_primary_10_1002_smll_201805103_SMLL201805103
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-03-01
PublicationDateYYYYMMDD 2019-03-01
PublicationDate_xml – month: 03
  year: 2019
  text: 2019-03-01
  day: 01
PublicationDecade 2010
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Small (Weinheim an der Bergstrasse, Germany)
PublicationTitleAlternate Small
PublicationYear 2019
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2013; 3
2018; 283
2017; 82
2010; 107
2013; 125
2009; 113
1977; 22
2008; 33
2013; 5
2012; 11
2013; 6
2018; 42
2014; 136
2016; 262
2018; 6
2018; 9
2018; 8
2018; 3
1979; 24
2012; 134
2018; 5
2015; 137
2005; 105
2013; 52
2007; 9
2016; 41
2018; 30
2013; 110
2010; 3
2010; 5
2016; 45
2018; 28
2015; 127
2015; 54
2018; 224
1996; 96
2012; 37
2008; 53
2016; 18
2011; 4
2011; 3
2011; 7
2017; 139
2018; 24
2016; 4
2017; 53
2016; 6
2010; 49
2016; 1
2012; 112
2016; 3
2015; 115
2002; 124
2017; 54
2005; 127
2017; 56
2015; 2015
2015; 119
2018; 94
2018; 12
2016; 28
2018; 11
2018; 10
2016; 8
2016; 9
2017; 5
2017; 7
2018; 122
2017; 1
2017; 2
2017; 3
2017; 4
2009; 42
2013; 23
2015; 740
2017; 46
1988; 34
2018; 83
2007; 32
2017; 355
1966; 11
2017; 9
2012; 51
1983; 105
2014; 5
2013; 15
2014; 4
2014; 2
2015; 44
2018; 532
2016; 353
1994; 39
1996; 4
2014; 7
2006; 128
2014; 6
2014; 53
2001; 123
2015; 6
2015; 17
2015; 5
2004; 104
2015; 3
2018; 823
2017; 27
2015; 287
2013; 42
2017; 23
2016; 52
2009; 131
2011; 36
2008; 321
2015; 8
2015; 7
2016; 55
2015; 152
2018; 273
2015; 25
2012; 2
2013; 38
2017; 17
2017; 10
1980; 4
2017; 13
2015; 21
2010; 132
2013; 135
2017; 19
2012; 6
2012; 4
2018; 54
2012; 5
2018; 53
2009; 38
2009; 39
2018; 57
e_1_2_7_3_1
e_1_2_7_104_1
e_1_2_7_127_1
e_1_2_7_19_1
e_1_2_7_60_1
e_1_2_7_83_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_68_1
e_1_2_7_142_1
e_1_2_7_165_1
e_1_2_7_188_1
e_1_2_7_202_1
e_1_2_7_225_1
e_1_2_7_116_1
e_1_2_7_94_1
e_1_2_7_71_1
e_1_2_7_180_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_56_1
e_1_2_7_79_1
e_1_2_7_131_1
e_1_2_7_154_1
e_1_2_7_237_1
e_1_2_7_177_1
e_1_2_7_214_1
e_1_2_7_139_1
e_1_2_7_4_1
e_1_2_7_128_1
e_1_2_7_105_1
e_1_2_7_82_1
e_1_2_7_120_1
e_1_2_7_192_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_67_1
e_1_2_7_143_1
e_1_2_7_189_1
e_1_2_7_29_1
e_1_2_7_203_1
e_1_2_7_226_1
e_1_2_7_166_1
e_1_2_7_117_1
e_1_2_7_70_1
e_1_2_7_93_1
e_1_2_7_181_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_55_1
e_1_2_7_238_1
e_1_2_7_78_1
e_1_2_7_193_1
e_1_2_7_132_1
e_1_2_7_155_1
e_1_2_7_178_1
e_1_2_7_215_1
e_1_2_7_230_1
e_1_2_7_106_1
e_1_2_7_129_1
e_1_2_7_9_1
e_1_2_7_81_1
e_1_2_7_121_1
e_1_2_7_1_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_66_1
e_1_2_7_170_1
e_1_2_7_227_1
e_1_2_7_89_1
e_1_2_7_182_1
e_1_2_7_28_1
e_1_2_7_144_1
e_1_2_7_167_1
e_1_2_7_204_1
e_1_2_7_118_1
e_1_2_7_110_1
e_1_2_7_92_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_77_1
e_1_2_7_171_1
e_1_2_7_216_1
e_1_2_7_194_1
e_1_2_7_39_1
e_1_2_7_133_1
e_1_2_7_156_1
e_1_2_7_179_1
e_1_2_7_231_1
e_1_2_7_107_1
e_1_2_7_80_1
e_1_2_7_122_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_88_1
e_1_2_7_65_1
e_1_2_7_205_1
e_1_2_7_228_1
e_1_2_7_160_1
e_1_2_7_183_1
e_1_2_7_27_1
e_1_2_7_145_1
e_1_2_7_220_1
e_1_2_7_168_1
e_1_2_7_119_1
e_1_2_7_91_1
e_1_2_7_111_1
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_76_1
e_1_2_7_99_1
e_1_2_7_172_1
e_1_2_7_195_1
e_1_2_7_217_1
e_1_2_7_38_1
e_1_2_7_134_1
e_1_2_7_232_1
e_1_2_7_157_1
e_1_2_7_108_1
Hamdani M. (e_1_2_7_191_1) 2010; 5
e_1_2_7_7_1
e_1_2_7_100_1
e_1_2_7_123_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_64_1
e_1_2_7_87_1
e_1_2_7_161_1
e_1_2_7_184_1
e_1_2_7_206_1
e_1_2_7_26_1
e_1_2_7_229_1
e_1_2_7_49_1
e_1_2_7_146_1
e_1_2_7_169_1
e_1_2_7_221_1
e_1_2_7_90_1
e_1_2_7_112_1
e_1_2_7_52_1
e_1_2_7_98_1
e_1_2_7_75_1
e_1_2_7_150_1
e_1_2_7_196_1
e_1_2_7_37_1
e_1_2_7_173_1
e_1_2_7_218_1
e_1_2_7_135_1
e_1_2_7_158_1
e_1_2_7_233_1
e_1_2_7_210_1
e_1_2_7_109_1
e_1_2_7_8_1
Shafirovich V. Y. (e_1_2_7_54_1) 1980; 4
e_1_2_7_124_1
e_1_2_7_101_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_63_1
e_1_2_7_86_1
e_1_2_7_185_1
e_1_2_7_207_1
e_1_2_7_48_1
e_1_2_7_162_1
e_1_2_7_147_1
e_1_2_7_222_1
e_1_2_7_113_1
e_1_2_7_51_1
e_1_2_7_74_1
e_1_2_7_97_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_59_1
e_1_2_7_151_1
e_1_2_7_174_1
e_1_2_7_219_1
e_1_2_7_197_1
e_1_2_7_234_1
e_1_2_7_136_1
e_1_2_7_211_1
e_1_2_7_159_1
e_1_2_7_5_1
e_1_2_7_102_1
e_1_2_7_125_1
e_1_2_7_17_1
e_1_2_7_62_1
e_1_2_7_85_1
e_1_2_7_47_1
e_1_2_7_140_1
e_1_2_7_163_1
e_1_2_7_208_1
e_1_2_7_223_1
e_1_2_7_186_1
e_1_2_7_148_1
e_1_2_7_200_1
e_1_2_7_114_1
e_1_2_7_73_1
e_1_2_7_50_1
e_1_2_7_96_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_58_1
e_1_2_7_152_1
e_1_2_7_175_1
e_1_2_7_212_1
e_1_2_7_198_1
e_1_2_7_235_1
e_1_2_7_137_1
e_1_2_7_6_1
e_1_2_7_126_1
e_1_2_7_103_1
e_1_2_7_18_1
e_1_2_7_84_1
e_1_2_7_61_1
e_1_2_7_209_1
e_1_2_7_190_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_69_1
e_1_2_7_141_1
e_1_2_7_201_1
e_1_2_7_224_1
e_1_2_7_164_1
e_1_2_7_187_1
e_1_2_7_149_1
e_1_2_7_115_1
e_1_2_7_72_1
e_1_2_7_95_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_57_1
e_1_2_7_130_1
e_1_2_7_153_1
e_1_2_7_176_1
e_1_2_7_199_1
e_1_2_7_213_1
e_1_2_7_236_1
e_1_2_7_138_1
References_xml – volume: 57
  start-page: 1441
  year: 2018
  publication-title: Ind. Eng. Chem. Res.
– volume: 6
  start-page: 30552
  year: 2016
  publication-title: RSC Adv.
– volume: 1
  start-page: 0003
  year: 2017
  publication-title: Nat. Rev. Chem.
– volume: 56
  start-page: 5061
  year: 2017
  publication-title: Angew. Chem., Int. Ed.
– volume: 132
  start-page: 10990
  year: 2010
  publication-title: J. Am. Chem. Soc.
– volume: 6
  start-page: 24767
  year: 2018
  publication-title: J. Mater. Chem. A
– volume: 6
  start-page: 113694
  year: 2016
  publication-title: RSC Adv.
– volume: 5
  start-page: 3422
  year: 2015
  publication-title: ACS Catal.
– volume: 7
  start-page: 21852
  year: 2015
  publication-title: ACS Appl. Mater. Interfaces
– volume: 5
  start-page: 2842
  year: 2018
  publication-title: ChemElectroChem
– volume: 11
  start-page: 802
  year: 2012
  publication-title: Nat. Mater.
– volume: 53
  start-page: 3070
  year: 2017
  publication-title: Chem. Commun.
– volume: 5
  start-page: 6012
  year: 2012
  publication-title: Energy Environ. Sci.
– volume: 17
  start-page: 22576
  year: 2015
  publication-title: Phys. Chem. Chem. Phys.
– volume: 131
  start-page: 926
  year: 2009
  publication-title: J. Am. Chem. Soc.
– volume: 4
  start-page: 17587
  year: 2016
  publication-title: J. Mater. Chem. A
– volume: 4
  start-page: 81
  year: 1980
  publication-title: New J. Chem.
– volume: 8
  start-page: 5338
  year: 2018
  publication-title: RSC Adv.
– volume: 135
  start-page: 13270
  year: 2013
  publication-title: J. Am. Chem. Soc.
– volume: 9
  start-page: 3485
  year: 2018
  publication-title: Nat. Commun.
– volume: 41
  start-page: 17193
  year: 2016
  publication-title: Int. J. Hydrogen Energy
– volume: 37
  start-page: 13249
  year: 2012
  publication-title: Int. J. Hydrogen Energy
– volume: 46
  start-page: 4645
  year: 2017
  publication-title: Chem. Soc. Rev.
– volume: 21
  start-page: 12991
  year: 2015
  publication-title: Chem. ‐ Eur. J.
– volume: 7
  start-page: 2052
  year: 2017
  publication-title: ACS Catal.
– volume: 54
  start-page: 4870
  year: 2015
  publication-title: Angew. Chem., Int. Ed.
– volume: 55
  start-page: 2488
  year: 2016
  publication-title: Angew. Chem., Int. Ed.
– volume: 7
  start-page: 6609
  year: 2017
  publication-title: ACS Catal.
– volume: 124
  start-page: 11114
  year: 2002
  publication-title: J. Am. Chem. Soc.
– volume: 7
  start-page: 15765
  year: 2015
  publication-title: ACS Appl. Mater. Interfaces
– volume: 5
  start-page: 521
  year: 2012
  publication-title: Nano Res.
– volume: 5
  start-page: 4477
  year: 2014
  publication-title: Nat. Commun.
– volume: 135
  start-page: 3662
  year: 2013
  publication-title: J. Am. Chem. Soc.
– volume: 55
  start-page: 11736
  year: 2016
  publication-title: Angew. Chem., Int. Ed.
– volume: 4
  start-page: 1400252
  year: 2014
  publication-title: Adv. Energy Mater.
– volume: 1
  start-page: 41
  year: 2016
  publication-title: Nanoscale Horiz.
– volume: 38
  start-page: 109
  year: 2009
  publication-title: Chem. Soc. Rev.
– volume: 24
  start-page: 10372
  year: 2018
  publication-title: Chem. ‐ Eur. J.
– volume: 134
  start-page: 18153
  year: 2012
  publication-title: J. Am. Chem. Soc.
– volume: 136
  start-page: 5531
  year: 2014
  publication-title: J. Am. Chem. Soc.
– volume: 54
  start-page: 4909
  year: 2015
  publication-title: Angew. Chem., Int. Ed.
– volume: 39
  start-page: 1559
  year: 1994
  publication-title: Electrochim. Acta
– volume: 32
  start-page: 431
  year: 2007
  publication-title: Energy
– volume: 139
  start-page: 3774
  year: 2017
  publication-title: J. Am. Chem. Soc.
– volume: 53
  start-page: 4351
  year: 2008
  publication-title: Electrochim. Acta
– volume: 9
  start-page: 7714
  year: 2017
  publication-title: Nanoscale
– volume: 4
  start-page: 1301929
  year: 2014
  publication-title: Adv. Energy Mater.
– volume: 56
  start-page: 1064
  year: 2017
  publication-title: Angew. Chem., Int. Ed.
– volume: 262
  start-page: 65
  year: 2016
  publication-title: Catal. Today
– volume: 3
  start-page: 560
  year: 2017
  publication-title: Chem
– volume: 34
  start-page: 287
  year: 1988
  publication-title: Surf. Coat. Technol.
– volume: 112
  start-page: 3356
  year: 2012
  publication-title: Chem. Rev.
– volume: 224
  start-page: 3
  year: 2018
  publication-title: J. Electron Spectrosc. Relat. Phenom.
– volume: 3
  start-page: 79
  year: 2011
  publication-title: Nat. Chem.
– volume: 5
  start-page: 2017
  year: 2015
  publication-title: ACS Catal.
– volume: 3
  start-page: 16190
  year: 2015
  publication-title: J. Mater. Chem. A
– volume: 125
  start-page: 728
  year: 2013
  publication-title: Angew. Chem.
– volume: 740
  start-page: 14
  year: 2015
  publication-title: J. Electroanal. Chem.
– volume: 10
  start-page: 8231
  year: 2018
  publication-title: ACS Appl. Mater. Interfaces
– volume: 13
  start-page: 1700394
  year: 2017
  publication-title: Small
– volume: 110
  start-page: 15579
  year: 2013
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 5
  start-page: 7806
  year: 2017
  publication-title: J. Mater. Chem. A
– volume: 115
  start-page: 4823
  year: 2015
  publication-title: Chem. Rev.
– volume: 54
  start-page: 354
  year: 2018
  publication-title: Chem. Commun.
– volume: 30
  start-page: e1707522
  year: 2018
  publication-title: Adv. Mater.
– volume: 122
  start-page: 13894
  year: 2018
  publication-title: J. Phys. Chem. C
– volume: 57
  start-page: 6073
  year: 2018
  publication-title: Angew. Chem., Int. Ed.
– volume: 3
  start-page: 22300
  year: 2015
  publication-title: J. Mater. Chem. A
– volume: 10
  start-page: 149
  year: 2018
  publication-title: Nat. Chem.
– volume: 136
  start-page: 17681
  year: 2014
  publication-title: J. Am. Chem. Soc.
– volume: 24
  start-page: 357
  year: 1979
  publication-title: Electrochim. Acta
– volume: 2
  start-page: 123
  year: 2014
  publication-title: J. Mater. Chem. A
– volume: 38
  start-page: 10191
  year: 2013
  publication-title: Int. J. Hydrogen Energy
– volume: 123
  start-page: 6203
  year: 2001
  publication-title: J. Am. Chem. Soc.
– volume: 4
  start-page: 3110
  year: 2017
  publication-title: ChemElectroChem
– volume: 273
  start-page: 462
  year: 2018
  publication-title: Electrochim. Acta
– volume: 54
  start-page: 4979
  year: 2018
  publication-title: Chem. Commun.
– volume: 7
  start-page: 82
  year: 2014
  publication-title: ChemSusChem
– volume: 321
  start-page: 1072
  year: 2008
  publication-title: Science
– volume: 23
  start-page: 9741
  year: 2017
  publication-title: Chem. ‐ Eur. J.
– volume: 9
  start-page: 682
  year: 2018
  publication-title: Electrocatalysis
– volume: 4
  start-page: 840
  year: 2017
  publication-title: Inorg. Chem. Front.
– volume: 33
  start-page: 5931
  year: 2008
  publication-title: Int. J. Hydrogen Energy
– volume: 113
  start-page: 15068
  year: 2009
  publication-title: J. Phys. Chem. C
– volume: 135
  start-page: 2048
  year: 2013
  publication-title: J. Am. Chem. Soc.
– volume: 137
  start-page: 3638
  year: 2015
  publication-title: J. Am. Chem. Soc.
– volume: 53
  start-page: 12226
  year: 2014
  publication-title: Angew. Chem., Int. Ed.
– volume: 2
  start-page: 1765
  year: 2012
  publication-title: ACS Catal.
– volume: 135
  start-page: 10492
  year: 2013
  publication-title: J. Am. Chem. Soc.
– volume: 25
  start-page: 7337
  year: 2015
  publication-title: Adv. Funct. Mater.
– volume: 287
  start-page: 50
  year: 2015
  publication-title: J. Power Sources
– volume: 9
  start-page: 2082
  year: 2007
  publication-title: Electrochem. Commun.
– volume: 4
  start-page: 1600380
  year: 2017
  publication-title: Adv. Sci.
– volume: 115
  start-page: 9869
  year: 2015
  publication-title: Chem. Rev.
– volume: 6
  start-page: 15395
  year: 2014
  publication-title: ACS Appl. Mater. Interfaces
– volume: 11
  start-page: 3661
  year: 2018
  publication-title: ChemSusChem
– volume: 6
  start-page: 8855
  year: 2018
  publication-title: J. Mater. Chem. A
– volume: 134
  start-page: 1519
  year: 2012
  publication-title: J. Am. Chem. Soc.
– volume: 7
  start-page: 2087
  year: 2011
  publication-title: Small
– volume: 27
  start-page: 1606635
  year: 2017
  publication-title: Adv. Funct. Mater.
– volume: 12
  start-page: 245
  year: 2018
  publication-title: ACS Nano
– volume: 3
  start-page: 807
  year: 2011
  publication-title: Nat. Chem.
– volume: 42
  start-page: 16683
  year: 2013
  publication-title: Dalton Trans.
– volume: 6
  start-page: 9915
  year: 2018
  publication-title: J. Mater. Chem. A
– volume: 17
  start-page: 578
  year: 2017
  publication-title: Nano Lett.
– volume: 28
  start-page: 215
  year: 2016
  publication-title: Adv. Mater.
– volume: 137
  start-page: 14305
  year: 2015
  publication-title: J. Am. Chem. Soc.
– volume: 136
  start-page: 4201
  year: 2014
  publication-title: J. Am. Chem. Soc.
– volume: 6
  start-page: 9647
  year: 2016
  publication-title: RSC Adv.
– volume: 6
  start-page: 15905
  year: 2018
  publication-title: J. Mater. Chem. A
– volume: 54
  start-page: 2073
  year: 2015
  publication-title: Angew. Chem., Int. Ed.
– volume: 4
  start-page: 851
  year: 2012
  publication-title: ChemCatChem
– volume: 6
  start-page: 331
  year: 2015
  publication-title: Electrocatalysis
– volume: 3
  start-page: 2021
  year: 2018
  publication-title: ACS Energy Lett.
– volume: 355
  start-page: eaad4998
  year: 2017
  publication-title: Science
– volume: 39
  start-page: 191
  year: 2009
  publication-title: J. Appl. Electrochem.
– volume: 46
  start-page: 10602
  year: 2017
  publication-title: Dalton Trans.
– volume: 105
  start-page: 4832
  year: 1983
  publication-title: J. Am. Chem. Soc.
– volume: 4
  start-page: 75
  year: 2017
  publication-title: ChemElectroChem
– volume: 127
  start-page: 11383
  year: 2015
  publication-title: Angew. Chem.
– volume: 4
  start-page: 1700226
  year: 2017
  publication-title: Adv. Sci.
– volume: 283
  start-page: 104
  year: 2018
  publication-title: Electrochim. Acta
– volume: 127
  start-page: 12802
  year: 2005
  publication-title: J. Am. Chem. Soc.
– volume: 5
  start-page: 1402031
  year: 2015
  publication-title: Adv. Energy Mater.
– volume: 532
  start-page: 774
  year: 2018
  publication-title: J. Colloid Interface Sci.
– volume: 53
  start-page: 4939
  year: 2018
  publication-title: J. Mater. Sci.
– volume: 7
  start-page: 3442
  year: 2014
  publication-title: ChemSusChem
– volume: 4
  start-page: 499
  year: 2011
  publication-title: Energy Environ. Sci.
– volume: 5
  start-page: 556
  year: 2010
  publication-title: Int. J. Electrochem. Sci.
– volume: 136
  start-page: 7587
  year: 2014
  publication-title: J. Am. Chem. Soc.
– volume: 19
  start-page: 9755
  year: 2017
  publication-title: Phys. Chem. Chem. Phys.
– volume: 52
  start-page: 1789
  year: 2013
  publication-title: Angew. Chem., Int. Ed.
– volume: 8
  start-page: 15033
  year: 2016
  publication-title: Nanoscale
– volume: 96
  start-page: 2841
  year: 1996
  publication-title: Chem. Rev.
– volume: 44
  start-page: 2060
  year: 2015
  publication-title: Chem. Soc. Rev.
– volume: 49
  start-page: 11030
  year: 2010
  publication-title: Inorg. Chem.
– volume: 131
  start-page: 2615
  year: 2009
  publication-title: J. Am. Chem. Soc.
– volume: 45
  start-page: 12685
  year: 2016
  publication-title: Dalton Trans.
– volume: 11
  start-page: 1079
  year: 1966
  publication-title: Electrochim. Acta
– volume: 23
  start-page: 227
  year: 2013
  publication-title: Adv. Funct. Mater.
– volume: 57
  start-page: 15445
  year: 2018
  publication-title: Angew. Chem., Int. Ed.
– volume: 137
  start-page: 8384
  year: 2015
  publication-title: J. Am. Chem. Soc.
– volume: 15
  start-page: 7363
  year: 2013
  publication-title: Phys. Chem. Chem. Phys.
– volume: 2
  start-page: 18420
  year: 2014
  publication-title: J. Mater. Chem. A
– volume: 5
  start-page: 5002
  year: 2013
  publication-title: ACS Appl. Mater. Interfaces
– volume: 10
  start-page: 2826
  year: 2018
  publication-title: ChemCatChem
– volume: 94
  start-page: 59
  year: 2018
  publication-title: Electrochem. Commun.
– volume: 3
  start-page: 1254
  year: 2018
  publication-title: ACS Energy Lett.
– volume: 44
  start-page: 15628
  year: 2015
  publication-title: Dalton Trans.
– volume: 134
  start-page: 19572
  year: 2012
  publication-title: J. Am. Chem. Soc.
– volume: 353
  start-page: 1011
  year: 2016
  publication-title: Science
– volume: 132
  start-page: 13692
  year: 2010
  publication-title: J. Am. Chem. Soc.
– volume: 8
  start-page: 3287
  year: 2016
  publication-title: ChemCatChem
– volume: 51
  start-page: 1616
  year: 2012
  publication-title: Angew. Chem., Int. Ed.
– volume: 8
  start-page: 532
  year: 2016
  publication-title: ChemCatChem
– volume: 134
  start-page: 17253
  year: 2012
  publication-title: J. Am. Chem. Soc.
– volume: 5
  start-page: 4624
  year: 2015
  publication-title: ACS Catal.
– volume: 9
  start-page: 19502
  year: 2017
  publication-title: ACS Appl. Mater. Interfaces
– volume: 8
  start-page: 4030
  year: 2018
  publication-title: Catal. Sci. Technol.
– volume: 23
  start-page: 6959
  year: 2017
  publication-title: Chem. ‐ Eur. J.
– volume: 52
  start-page: 9255
  year: 2016
  publication-title: Chem. Commun.
– volume: 5
  start-page: 5525
  year: 2015
  publication-title: ACS Catal.
– volume: 107
  start-page: 10337
  year: 2010
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 137
  start-page: 13980
  year: 2015
  publication-title: J. Am. Chem. Soc.
– volume: 53
  start-page: 7812
  year: 2017
  publication-title: Chem. Commun.
– volume: 6
  start-page: 8253
  year: 2015
  publication-title: Nat. Commun.
– volume: 82
  start-page: 483
  year: 2017
  publication-title: ChemPlusChem
– volume: 6
  start-page: 10896
  year: 2014
  publication-title: Nanoscale
– volume: 56
  start-page: 3131
  year: 2017
  publication-title: Inorg. Chem.
– volume: 137
  start-page: 2688
  year: 2015
  publication-title: J. Am. Chem. Soc.
– volume: 42
  start-page: 13963
  year: 2018
  publication-title: New J. Chem.
– volume: 5
  start-page: 7305
  year: 2017
  publication-title: J. Mater. Chem. A
– volume: 83
  start-page: 934
  year: 2018
  publication-title: ChemPlusChem
– volume: 119
  start-page: 19279
  year: 2015
  publication-title: J. Phys. Chem. C
– volume: 8
  start-page: 3099
  year: 2015
  publication-title: ChemSusChem
– volume: 42
  start-page: 1871
  year: 2009
  publication-title: Acc. Chem. Res.
– volume: 53
  start-page: 12855
  year: 2014
  publication-title: Angew. Chem., Int. Ed.
– volume: 4
  start-page: 1840
  year: 2017
  publication-title: ChemElectroChem
– volume: 54
  start-page: 2472
  year: 2015
  publication-title: Angew. Chem., Int. Ed.
– volume: 3
  start-page: 678
  year: 2018
  publication-title: ChemistrySelect
– volume: 105
  start-page: 2253
  year: 2005
  publication-title: Chem. Rev.
– volume: 4
  start-page: 1600371
  year: 2017
  publication-title: Adv. Sci.
– volume: 4
  start-page: 11973
  year: 2016
  publication-title: J. Mater. Chem. A
– volume: 54
  start-page: 5604
  year: 2015
  publication-title: Inorg. Chem.
– volume: 5
  start-page: 12091
  year: 2017
  publication-title: J. Mater. Chem. A
– volume: 137
  start-page: 1305
  year: 2015
  publication-title: J. Am. Chem. Soc.
– volume: 135
  start-page: 12329
  year: 2013
  publication-title: J. Am. Chem. Soc.
– volume: 54
  start-page: 1
  year: 2017
  publication-title: J. Korean Ceram. Soc.
– volume: 4
  year: 1996
– volume: 3
  start-page: 1500426
  year: 2016
  publication-title: Adv. Sci.
– volume: 36
  start-page: 7374
  year: 2011
  publication-title: Int. J. Hydrogen Energy
– volume: 28
  start-page: 1801397
  year: 2018
  publication-title: Adv. Funct. Mater.
– volume: 42
  start-page: 3617
  year: 2013
  publication-title: Dalton Trans.
– volume: 2015
  start-page: 49
  year: 2015
  publication-title: Eur. J. Inorg. Chem.
– volume: 53
  start-page: 6195
  year: 2017
  publication-title: Chem. Commun.
– volume: 823
  start-page: 482
  year: 2018
  publication-title: J. Electroanal. Chem.
– volume: 4
  start-page: 9781
  year: 2016
  publication-title: J. Mater. Chem. A
– volume: 10
  start-page: 1370
  year: 2017
  publication-title: ChemSusChem
– volume: 9
  start-page: 3752
  year: 2017
  publication-title: Nanoscale
– volume: 5
  start-page: 6826
  year: 2013
  publication-title: Nanoscale
– volume: 52
  start-page: 5753
  year: 2016
  publication-title: Chem. Commun.
– volume: 132
  start-page: 6882
  year: 2010
  publication-title: J. Am. Chem. Soc.
– volume: 132
  start-page: 13612
  year: 2010
  publication-title: J. Am. Chem. Soc.
– volume: 134
  start-page: 6801
  year: 2012
  publication-title: J. Am. Chem. Soc.
– volume: 104
  start-page: 939
  year: 2004
  publication-title: Chem. Rev.
– volume: 4
  start-page: 498
  year: 2012
  publication-title: Nat. Chem.
– volume: 136
  start-page: 16481
  year: 2014
  publication-title: J. Am. Chem. Soc.
– volume: 9
  start-page: 485
  year: 2016
  publication-title: ChemSusChem
– volume: 28
  start-page: 9266
  year: 2016
  publication-title: Adv. Mater.
– volume: 3
  start-page: 1176
  year: 2010
  publication-title: ChemSusChem
– volume: 128
  start-page: 10668
  year: 2006
  publication-title: J. Am. Chem. Soc.
– volume: 6
  start-page: 10497
  year: 2012
  publication-title: ACS Nano
– volume: 3
  start-page: 383
  year: 2013
  publication-title: ACS Catal.
– volume: 10
  start-page: 3188
  year: 2017
  publication-title: ChemSusChem
– volume: 7
  start-page: 2689
  year: 2017
  publication-title: Catal. Sci. Technol.
– volume: 2
  start-page: 17030
  year: 2017
  publication-title: Nat. Rev. Mater.
– volume: 152
  start-page: 280
  year: 2015
  publication-title: Electrochim. Acta
– volume: 12
  start-page: 467
  year: 2018
  publication-title: Front. Chem. Sci. Eng.
– volume: 5
  start-page: 7081
  year: 2012
  publication-title: Energy Environ. Sci.
– volume: 18
  start-page: 9295
  year: 2016
  publication-title: Phys. Chem. Chem. Phys.
– volume: 57
  start-page: 12840
  year: 2018
  publication-title: Angew. Chem., Int. Ed.
– volume: 22
  start-page: 325
  year: 1977
  publication-title: Electrochim. Acta
– volume: 3
  start-page: 8621
  year: 2018
  publication-title: ACS Omega
– volume: 4
  start-page: 3655
  year: 2016
  publication-title: J. Mater. Chem. A
– volume: 6
  start-page: 1527
  year: 2018
  publication-title: ACS Sustainable Chem. Eng.
– volume: 6
  start-page: 2745
  year: 2013
  publication-title: Energy Environ. Sci.
– volume: 6
  start-page: 5062
  year: 2016
  publication-title: ACS Catal.
– volume: 5
  start-page: 8583
  year: 2017
  publication-title: J. Mater. Chem. A
– volume: 9
  start-page: 4751
  year: 2017
  publication-title: Nanoscale
– volume: 136
  start-page: 6854
  year: 2014
  publication-title: J. Am. Chem. Soc.
– volume: 57
  start-page: 14862
  year: 2018
  publication-title: Angew. Chem., Int. Ed.
– volume: 9
  start-page: 3138
  year: 2017
  publication-title: ChemCatChem
– volume: 135
  start-page: 16977
  year: 2013
  publication-title: J. Am. Chem. Soc.
– volume: 6
  start-page: 6987
  year: 2016
  publication-title: ACS Catal.
– volume: 131
  start-page: 15578
  year: 2009
  publication-title: J. Am. Chem. Soc.
– volume: 132
  start-page: 16501
  year: 2010
  publication-title: J. Am. Chem. Soc.
– volume: 3
  start-page: 4979
  year: 2018
  publication-title: ChemistrySelect
– volume: 137
  start-page: 14887
  year: 2015
  publication-title: J. Am. Chem. Soc.
– ident: e_1_2_7_225_1
  doi: 10.1021/acscatal.5b00979
– ident: e_1_2_7_36_1
  doi: 10.1016/j.elecom.2018.08.009
– ident: e_1_2_7_219_1
  doi: 10.1007/s12678-018-0476-0
– ident: e_1_2_7_203_1
  doi: 10.1002/anie.201808929
– ident: e_1_2_7_238_1
  doi: 10.1016/j.chempr.2017.09.009
– ident: e_1_2_7_109_1
  doi: 10.1039/C4NR03822C
– ident: e_1_2_7_45_1
  doi: 10.1021/jp904022e
– ident: e_1_2_7_79_1
  doi: 10.1002/advs.201500426
– ident: e_1_2_7_27_1
  doi: 10.1021/ja809108y
– ident: e_1_2_7_59_1
  doi: 10.1021/ja106102b
– ident: e_1_2_7_91_1
  doi: 10.1021/acscatal.7b02071
– ident: e_1_2_7_129_1
  doi: 10.1016/0013-4686(66)80045-2
– ident: e_1_2_7_133_1
  doi: 10.1021/ja301018q
– ident: e_1_2_7_68_1
  doi: 10.1038/nmat3385
– ident: e_1_2_7_153_1
  doi: 10.1002/cctc.201600796
– ident: e_1_2_7_209_1
  doi: 10.1021/acsami.7b01637
– ident: e_1_2_7_22_1
  doi: 10.1021/cr200247n
– ident: e_1_2_7_106_1
  doi: 10.1021/ar900117k
– ident: e_1_2_7_89_1
  doi: 10.1021/acsnano.7b05971
– ident: e_1_2_7_46_1
  doi: 10.1038/ncomms5477
– ident: e_1_2_7_102_1
  doi: 10.1039/C6CP08495H
– ident: e_1_2_7_48_1
  doi: 10.1021/ja5127165
– ident: e_1_2_7_71_1
  doi: 10.1039/C8TA08519F
– ident: e_1_2_7_210_1
  doi: 10.1002/cplu.201700005
– ident: e_1_2_7_196_1
  doi: 10.1016/j.jelechem.2018.06.051
– ident: e_1_2_7_182_1
  doi: 10.1016/j.electacta.2014.11.079
– ident: e_1_2_7_67_1
  doi: 10.1016/j.jelechem.2014.11.019
– ident: e_1_2_7_30_1
  doi: 10.1021/ja017895f
– ident: e_1_2_7_77_1
  doi: 10.1039/C5TA06411B
– ident: e_1_2_7_86_1
  doi: 10.1021/cr5003563
– ident: e_1_2_7_112_1
  doi: 10.1016/0013-4686(79)87019-X
– ident: e_1_2_7_150_1
  doi: 10.1021/jacs.5b08139
– ident: e_1_2_7_69_1
  doi: 10.1021/cs3007523
– ident: e_1_2_7_211_1
  doi: 10.1039/C7TA01586K
– ident: e_1_2_7_29_1
  doi: 10.1021/ja9063298
– ident: e_1_2_7_10_1
  doi: 10.1007/0-306-48127-8
– ident: e_1_2_7_124_1
  doi: 10.1021/jacs.5b05093
– ident: e_1_2_7_18_1
  doi: 10.1002/cssc.201000161
– ident: e_1_2_7_43_1
  doi: 10.1002/anie.201810102
– ident: e_1_2_7_230_1
  doi: 10.1002/anie.201509982
– ident: e_1_2_7_116_1
  doi: 10.1039/c2ee21191b
– ident: e_1_2_7_140_1
  doi: 10.1002/cctc.201700350
– ident: e_1_2_7_4_1
  doi: 10.1039/c2ee03250c
– ident: e_1_2_7_100_1
  doi: 10.1002/ejic.201403015
– ident: e_1_2_7_76_1
  doi: 10.1021/acsami.8b00986
– ident: e_1_2_7_47_1
  doi: 10.1002/adfm.201503666
– ident: e_1_2_7_176_1
  doi: 10.1038/nchem.1350
– ident: e_1_2_7_120_1
  doi: 10.1021/ja410223j
– ident: e_1_2_7_103_1
  doi: 10.1016/j.jpowsour.2015.04.031
– ident: e_1_2_7_16_1
  doi: 10.1002/ange.201505320
– ident: e_1_2_7_162_1
  doi: 10.1002/anie.201209116
– ident: e_1_2_7_213_1
  doi: 10.1039/c3cp50202c
– ident: e_1_2_7_205_1
  doi: 10.1002/chem.201702314
– ident: e_1_2_7_94_1
  doi: 10.1021/acs.nanolett.6b04732
– ident: e_1_2_7_148_1
  doi: 10.1002/anie.201701642
– ident: e_1_2_7_154_1
  doi: 10.1021/acs.inorgchem.5b00924
– ident: e_1_2_7_142_1
  doi: 10.1039/C7TA02333B
– ident: e_1_2_7_201_1
  doi: 10.1021/acsomega.8b01375
– ident: e_1_2_7_39_1
  doi: 10.1039/C6NR03147A
– ident: e_1_2_7_11_1
  doi: 10.1016/j.energy.2006.07.014
– ident: e_1_2_7_186_1
  doi: 10.1126/science.aad4998
– ident: e_1_2_7_195_1
  doi: 10.1039/C7RA11330G
– ident: e_1_2_7_152_1
  doi: 10.1002/cssc.201501474
– ident: e_1_2_7_60_1
  doi: 10.1021/nn3044325
– ident: e_1_2_7_227_1
  doi: 10.1002/cssc.201500666
– ident: e_1_2_7_135_1
  doi: 10.1021/acs.jpcc.5b06102
– ident: e_1_2_7_55_1
  doi: 10.1021/ja00352a050
– ident: e_1_2_7_41_1
  doi: 10.1016/j.ijhydene.2012.07.001
– ident: e_1_2_7_66_1
  doi: 10.1002/anie.201409333
– ident: e_1_2_7_175_1
  doi: 10.1039/C6DT01891B
– volume: 4
  start-page: 81
  year: 1980
  ident: e_1_2_7_54_1
  publication-title: New J. Chem.
– ident: e_1_2_7_44_1
  doi: 10.1016/j.ijhydene.2008.05.106
– ident: e_1_2_7_58_1
  doi: 10.1039/C0EE00518E
– ident: e_1_2_7_52_1
  doi: 10.1002/anie.201511032
– ident: e_1_2_7_221_1
  doi: 10.1002/adfm.201606635
– ident: e_1_2_7_110_1
  doi: 10.1016/j.elecom.2007.06.011
– ident: e_1_2_7_167_1
  doi: 10.1016/j.ijhydene.2016.07.126
– ident: e_1_2_7_131_1
  doi: 10.1073/pnas.1001859107
– ident: e_1_2_7_197_1
  doi: 10.1039/C7DT00302A
– ident: e_1_2_7_83_1
  doi: 10.1002/anie.201610776
– ident: e_1_2_7_31_1
  doi: 10.1002/smll.201100485
– ident: e_1_2_7_160_1
  doi: 10.1038/nchem.1140
– ident: e_1_2_7_17_1
  doi: 10.1021/ja1023767
– ident: e_1_2_7_61_1
  doi: 10.1021/ja1013344
– ident: e_1_2_7_192_1
  doi: 10.1016/j.cattod.2015.10.018
– ident: e_1_2_7_215_1
  doi: 10.1039/C8NJ02652A
– ident: e_1_2_7_101_1
  doi: 10.1039/C7CC02400B
– ident: e_1_2_7_228_1
  doi: 10.1002/cssc.201801351
– ident: e_1_2_7_123_1
  doi: 10.1002/cctc.201501073
– ident: e_1_2_7_126_1
  doi: 10.1039/C3TA13531D
– ident: e_1_2_7_49_1
  doi: 10.1002/adma.201502696
– ident: e_1_2_7_184_1
  doi: 10.1002/anie.201408854
– ident: e_1_2_7_9_1
  doi: 10.1002/adma.201602270
– ident: e_1_2_7_118_1
  doi: 10.1039/c3ee41194j
– ident: e_1_2_7_33_1
  doi: 10.1007/s10853-017-1955-z
– ident: e_1_2_7_115_1
  doi: 10.1021/ja306499n
– ident: e_1_2_7_172_1
  doi: 10.1002/celc.201800744
– ident: e_1_2_7_226_1
  doi: 10.1002/cssc.201402533
– ident: e_1_2_7_189_1
  doi: 10.1021/ja405351s
– ident: e_1_2_7_143_1
  doi: 10.1007/s11705-018-1717-8
– ident: e_1_2_7_170_1
  doi: 10.1021/acs.inorgchem.6b03171
– ident: e_1_2_7_169_1
  doi: 10.1039/C6NR09790A
– ident: e_1_2_7_26_1
  doi: 10.1039/C6NR09585B
– ident: e_1_2_7_99_1
  doi: 10.1002/cplu.201800218
– ident: e_1_2_7_19_1
  doi: 10.1126/science.1162018
– ident: e_1_2_7_161_1
  doi: 10.1021/ja309771h
– ident: e_1_2_7_107_1
  doi: 10.1016/0257-8972(88)90119-3
– ident: e_1_2_7_128_1
  doi: 10.4191/kcers.2017.54.1.12
– ident: e_1_2_7_185_1
  doi: 10.1039/C8CC02021C
– ident: e_1_2_7_12_1
  doi: 10.1126/science.aaf5050
– ident: e_1_2_7_204_1
  doi: 10.1038/nchem.2886
– ident: e_1_2_7_62_1
  doi: 10.1038/ncomms9253
– ident: e_1_2_7_134_1
  doi: 10.1021/ja403656w
– ident: e_1_2_7_42_1
  doi: 10.1002/celc.201700883
– ident: e_1_2_7_136_1
  doi: 10.1016/j.electacta.2018.06.167
– ident: e_1_2_7_3_1
  doi: 10.1039/C6TA08075H
– ident: e_1_2_7_183_1
  doi: 10.1002/celc.201600518
– ident: e_1_2_7_56_1
  doi: 10.1039/B802885K
– volume: 5
  start-page: 556
  year: 2010
  ident: e_1_2_7_191_1
  publication-title: Int. J. Electrochem. Sci.
  doi: 10.1016/S1452-3981(23)15306-5
– ident: e_1_2_7_200_1
  doi: 10.1021/am4007897
– ident: e_1_2_7_113_1
  doi: 10.1016/j.electacta.2008.01.081
– ident: e_1_2_7_8_1
  doi: 10.1002/advs.201600380
– ident: e_1_2_7_75_1
  doi: 10.1039/C7CY00703E
– ident: e_1_2_7_164_1
  doi: 10.1002/anie.201412389
– ident: e_1_2_7_50_1
  doi: 10.1002/adfm.201200920
– ident: e_1_2_7_155_1
  doi: 10.1021/cr0307143
– ident: e_1_2_7_93_1
  doi: 10.1002/chem.201801412
– ident: e_1_2_7_168_1
  doi: 10.1039/C6TA00313C
– ident: e_1_2_7_193_1
  doi: 10.1002/advs.201700226
– ident: e_1_2_7_80_1
  doi: 10.1039/C6TA03436E
– ident: e_1_2_7_81_1
  doi: 10.1002/anie.201406848
– ident: e_1_2_7_166_1
  doi: 10.1039/C6CC00766J
– ident: e_1_2_7_235_1
  doi: 10.1002/anie.201801538
– ident: e_1_2_7_188_1
  doi: 10.1021/jacs.5b00281
– ident: e_1_2_7_231_1
  doi: 10.1038/natrevmats.2017.30
– ident: e_1_2_7_13_1
  doi: 10.1021/ja511559d
– ident: e_1_2_7_177_1
  doi: 10.1021/ja3097515
– ident: e_1_2_7_190_1
  doi: 10.1038/nchem.931
– ident: e_1_2_7_236_1
  doi: 10.1038/s41467-018-05758-5
– ident: e_1_2_7_156_1
  doi: 10.1021/acscatal.6b01837
– ident: e_1_2_7_149_1
  doi: 10.1039/C7CY01949A
– ident: e_1_2_7_137_1
  doi: 10.1002/aenm.201301929
– ident: e_1_2_7_212_1
  doi: 10.1021/ja5096733
– ident: e_1_2_7_132_1
  doi: 10.1021/ja3126432
– ident: e_1_2_7_187_1
  doi: 10.1002/smll.201700394
– ident: e_1_2_7_28_1
  doi: 10.1021/ja0625632
– ident: e_1_2_7_179_1
  doi: 10.1039/C7CC08301G
– ident: e_1_2_7_14_1
  doi: 10.1021/cs3003098
– ident: e_1_2_7_122_1
  doi: 10.1021/acscatal.5b01269
– ident: e_1_2_7_20_1
  doi: 10.1021/acs.chemrev.5b00073
– ident: e_1_2_7_2_1
  doi: 10.1039/C4CS00470A
– ident: e_1_2_7_223_1
  doi: 10.1039/C6RA22499G
– ident: e_1_2_7_85_1
  doi: 10.1002/celc.201700392
– ident: e_1_2_7_6_1
  doi: 10.1039/C6TA02334G
– ident: e_1_2_7_181_1
  doi: 10.1002/anie.201407131
– ident: e_1_2_7_206_1
  doi: 10.1039/C7TA03198J
– ident: e_1_2_7_214_1
  doi: 10.1021/acssuschemeng.7b03780
– ident: e_1_2_7_178_1
  doi: 10.1002/anie.201411625
– ident: e_1_2_7_32_1
  doi: 10.1039/C5CP06890H
– ident: e_1_2_7_87_1
  doi: 10.1007/s12274-012-0237-y
– ident: e_1_2_7_57_1
  doi: 10.1021/ja807769r
– ident: e_1_2_7_158_1
  doi: 10.1021/cr020628n
– ident: e_1_2_7_139_1
  doi: 10.1039/C6QI00594B
– ident: e_1_2_7_202_1
  doi: 10.1002/chem.201501452
– ident: e_1_2_7_174_1
  doi: 10.1021/ja015721s
– ident: e_1_2_7_73_1
  doi: 10.1007/s12678-015-0263-0
– ident: e_1_2_7_199_1
  doi: 10.1002/aenm.201402031
– ident: e_1_2_7_216_1
  doi: 10.1039/C8TA01902A
– ident: e_1_2_7_95_1
  doi: 10.1016/j.elspec.2017.09.012
– ident: e_1_2_7_24_1
  doi: 10.1021/ja054791m
– ident: e_1_2_7_84_1
  doi: 10.1039/C7TA00982H
– ident: e_1_2_7_234_1
  doi: 10.1002/anie.201808818
– ident: e_1_2_7_25_1
  doi: 10.1021/acscatal.5b00132
– ident: e_1_2_7_40_1
  doi: 10.1002/slct.201702876
– ident: e_1_2_7_180_1
  doi: 10.1002/ange.201207215
– ident: e_1_2_7_208_1
  doi: 10.1039/C7CC03146G
– ident: e_1_2_7_88_1
  doi: 10.1039/C4TA03962A
– ident: e_1_2_7_37_1
  doi: 10.1039/C8TA01288A
– ident: e_1_2_7_138_1
  doi: 10.1039/C6CC09893B
– ident: e_1_2_7_63_1
  doi: 10.1021/acsenergylett.8b00621
– ident: e_1_2_7_146_1
  doi: 10.1039/C6CC04400J
– ident: e_1_2_7_78_1
  doi: 10.1039/C5TA03430B
– ident: e_1_2_7_171_1
  doi: 10.1002/adfm.201801397
– ident: e_1_2_7_222_1
  doi: 10.1002/cssc.201700693
– ident: e_1_2_7_35_1
  doi: 10.1021/acsami.5b02601
– ident: e_1_2_7_64_1
  doi: 10.1021/ja307507a
– ident: e_1_2_7_220_1
  doi: 10.1039/C5RA26748J
– ident: e_1_2_7_105_1
  doi: 10.1073/pnas.1315383110
– ident: e_1_2_7_111_1
  doi: 10.1016/0013-4686(77)85081-0
– ident: e_1_2_7_114_1
  doi: 10.1021/ja206511w
– ident: e_1_2_7_65_1
  doi: 10.1002/anie.201107625
– ident: e_1_2_7_173_1
  doi: 10.1021/ic101515g
– ident: e_1_2_7_207_1
  doi: 10.1039/C7NR02929B
– ident: e_1_2_7_5_1
  doi: 10.1039/C6CS00306K
– ident: e_1_2_7_74_1
  doi: 10.1021/cs501724v
– ident: e_1_2_7_98_1
  doi: 10.1002/adma.201707522
– ident: e_1_2_7_125_1
  doi: 10.1002/cctc.201100434
– ident: e_1_2_7_145_1
  doi: 10.1002/cctc.201800312
– ident: e_1_2_7_38_1
  doi: 10.1016/j.ijhydene.2011.03.096
– ident: e_1_2_7_51_1
  doi: 10.1002/aenm.201400252
– ident: e_1_2_7_151_1
  doi: 10.1021/ja5110393
– ident: e_1_2_7_1_1
  doi: 10.1002/advs.201600371
– ident: e_1_2_7_218_1
  doi: 10.1039/C5CP04248H
– ident: e_1_2_7_53_1
  doi: 10.1002/cssc.201700113
– ident: e_1_2_7_165_1
  doi: 10.1021/acsami.5b06195
– ident: e_1_2_7_97_1
  doi: 10.1002/cssc.201300975
– ident: e_1_2_7_70_1
  doi: 10.1002/slct.201800943
– ident: e_1_2_7_163_1
  doi: 10.1021/ja412822u
– ident: e_1_2_7_141_1
  doi: 10.1002/chem.201700408
– ident: e_1_2_7_237_1
  doi: 10.1021/jacs.6b13287
– ident: e_1_2_7_90_1
  doi: 10.1021/acscatal.6b03132
– ident: e_1_2_7_157_1
  doi: 10.1021/cr9500500
– ident: e_1_2_7_127_1
  doi: 10.1039/C6RA01217E
– ident: e_1_2_7_92_1
  doi: 10.1039/C5NH00002E
– ident: e_1_2_7_159_1
  doi: 10.1021/ja104766z
– ident: e_1_2_7_108_1
  doi: 10.1021/ja104587v
– ident: e_1_2_7_96_1
  doi: 10.1039/c3nr01735d
– ident: e_1_2_7_147_1
  doi: 10.1021/acsenergylett.8b00982
– ident: e_1_2_7_229_1
  doi: 10.1021/ja406242y
– ident: e_1_2_7_23_1
  doi: 10.1021/ja502637s
– ident: e_1_2_7_144_1
  doi: 10.1021/am503938c
– ident: e_1_2_7_217_1
  doi: 10.1016/j.jcis.2018.08.040
– ident: e_1_2_7_130_1
  doi: 10.1016/0013-4686(94)85135-2
– ident: e_1_2_7_104_1
  doi: 10.1021/acscatal.6b00798
– ident: e_1_2_7_121_1
  doi: 10.1021/jacs.5b06382
– ident: e_1_2_7_198_1
  doi: 10.1021/jacs.5b07756
– ident: e_1_2_7_21_1
  doi: 10.1007/s10800-008-9651-y
– ident: e_1_2_7_232_1
  doi: 10.1039/C8TA05985C
– ident: e_1_2_7_72_1
  doi: 10.1021/acs.iecr.7b04812
– ident: e_1_2_7_194_1
  doi: 10.1016/j.electacta.2018.04.079
– ident: e_1_2_7_233_1
  doi: 10.1021/acs.jpcc.8b01012
– ident: e_1_2_7_7_1
  doi: 10.1038/s41570-016-0003
– ident: e_1_2_7_224_1
  doi: 10.1039/C5DT02046H
– ident: e_1_2_7_119_1
  doi: 10.1039/c3dt52304g
– ident: e_1_2_7_117_1
  doi: 10.1016/j.ijhydene.2013.06.038
– ident: e_1_2_7_34_1
  doi: 10.1039/c2dt32326e
– ident: e_1_2_7_15_1
  doi: 10.1021/ja407115p
– ident: e_1_2_7_82_1
  doi: 10.1021/ja503372r
SSID ssj0031247
Score 2.6565738
SecondaryResourceType review_article
Snippet Developing anodic oxygen evolution reaction (OER) electrocatalysts with high catalytic activities is of great importance for effective water splitting....
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e1805103
SubjectTerms Anodizing
Catalysis
earth‐abundant metals
Electrocatalysts
mild pH
Nanotechnology
Organic chemistry
Oxidation
oxygen evolution reaction (OER)
Oxygen evolution reactions
water oxidation
Water splitting
Title Recent Advances in the Development of Water Oxidation Electrocatalysts at Mild pH
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.201805103
https://www.ncbi.nlm.nih.gov/pubmed/30773809
https://www.proquest.com/docview/2197269342
https://www.proquest.com/docview/2183191018
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB6kJz34fkSrrCB4Spt30mORliJW8VH0FvYJxZqKSUH99c5m29gqIugtIbsk2dmZ-WZ39huAEz_wKHNDgUGOCjFAQVlQrtetZCSow2KHlYfC-pdRbxCcP4QPc6f4DT9EteCmNaO011rBKcubn6Sh-dNIbx24SUkKh0ZYJ2xpVHRT8Uf56LzK6iros2xNvDVjbXS85mL3Ra_0DWouItfS9XTXgM4-2mScPDYmBWvw9y98jv_5q3VYneJS0jYTaQOWZLYJK3NshVtwjRATXRRpm7SBnAwzgvCRzOUdkbEi94heX8jV69BUayIdU2inXCd6y4uc0IL0hyNBnnvbMOh27s569rQig80DNES2y1QSS-7pPV-BQo4kjRXjMVdBIjDMjgTiAT-SLS8Uirm-q1TMhC8THnGqEEvuQC0bZ3IPCGNJqASNHeH7AVMBo24iMJbSh3UjBGkW2DOJpHxKV66rZoxSQ7TspXqo0mqoLDit2j8boo4fW9ZnAk6nCpunni6_FrVw6lpwXD1GVdP7JzST44luk6DB0hRnFuyaiVG9Ck1l7CdOywKvFO8v35De9i8uqrv9v3Q6gGW8bpl8uDrUipeJPESAVLCjUgk-AB_lBpc
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3JbtRAEC1F4QAc2BdDgEYCcXJit_cDh4gkmpCZICARuTm9SiMGTxR7BOGv-BW-iCq3bTIghISUA0fbbbndtVdXvwJ4FsVcyDDRGOTYBAMUpIVQlLcyqRaBzALZHgqb7Kejw_j1UXK0At_6szAOH2JIuJFktPqaBJwS0hs_UUPrTzPaOwjzFhWuq6vcM2efMWqrX-5uIYmfc76zffBq5HeNBXwVozz5obR5ZhSnrUuNc02NyKxUmbJxrjFaTDWatSg1BU-0lWEUWptJHZlcpUrYgrAOUOtfojbiBNe_9W5ArIrQXLb9XNBK-gT11eNEBnxjeb7LdvA353bZV26N3c51-N4vk6tx-bi-aOS6-voLguR_tY434FrnerNNJys3YcVUt-DqOUDG2_AWvWi0wmzTVUbUbFox9JDZudIqNrfsAzrop-zNl6lrSMW2XS-hNhV2Vjc1Ew2bTGeanYzuwOGF_NNdWK3mlbkPTMo8sVpkgY6iWNpYijDXGC7SeeQU_VAP_J4FStUhslNjkFnpsKR5SaQpB9J48GIYf-KwSP44cq3nqLLTSXXJqcNcWqB0evB0eIzahLaIRGXmCxqTo04mFDcP7jlOHD6F1iCL8qDwgLf89Jc5lO8n4_Fw9eBfXnoCl0cHk3E53t3fewhX8H7hyv_WYLU5XZhH6A828nErgQyOL5pVfwBNo2bv
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB5VRUJwKG8IFDASiFPaxEmc5MChYrva0t3yrOgt9VNadcmumqyg_Cr-Cv-IcZyELgghIfXAMYmjOPY8vrHH3wA8jWLKRZgoDHJMggEKzgWXdt1KM8UDkQaiORQ2OWCjw_jVUXK0Bt-6szCOH6JfcLOa0dhrq-ALZbZ_koZWn2Z26yDMGlK4Nq1yX599xqCterE3wBl-Rulw98PLkd_WFfBljOrkh8JkqZbU7lwq7CrTPDVCptLEmcJgkSn0ahHTOU2UEWEUGpMKFelMMslNbqkO0OhfilmQ22IRg3c9YVWE3rIp54JO0rdMXx1NZEC3V_u76gZ_w7arULnxdcNr8L0bJZficrK1rMWW_PoLgeT_NIzXYaMF3mTHacoNWNPlTbh6jo7xFrxFDI0-mOy4vIiKTEuC-JicS6wic0M-Ijw_Ja-_TF05KrLrKgk1C2FnVV0RXpPJdKbIYnQbDi_kn-7Aejkv9T0gQmSJUTwNVBTFwsSCh5nCYNGeRmaIQj3wOwkoZMvHbsuCzArHJE0LOzVFPzUePO_bLxwTyR9bbnYCVbQWqSqorS_HctRND570j9GW2A0iXur50rbJ0CJbDjcP7jpB7D-FviCNsiD3gDbi9Jc-FO8n43F_df9fXnoMl98MhsV472D_AVzB27nL_duE9fp0qR8iGKzFo0b_CBxftKT-AJdqZZ4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recent+Advances+in+the+Development+of+Water+Oxidation+Electrocatalysts+at+Mild+pH&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Li%2C+Peipei&rft.au=Zhao%2C+Runbo&rft.au=Chen%2C+Hongyu&rft.au=Wang%2C+Huanbo&rft.date=2019-03-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1613-6810&rft.eissn=1613-6829&rft.volume=15&rft.issue=13&rft_id=info:doi/10.1002%2Fsmll.201805103&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon