Ensemble learning of inverse probability weights for marginal structural modeling in large observational datasets
Inverse probability weights used to fit marginal structural models are typically estimated using logistic regression. However, a data‐adaptive procedure may be able to better exploit information available in measured covariates. By combining predictions from multiple algorithms, ensemble learning of...
Saved in:
Published in | Statistics in medicine Vol. 34; no. 1; pp. 106 - 117 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
England
Blackwell Publishing Ltd
15.01.2015
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Inverse probability weights used to fit marginal structural models are typically estimated using logistic regression. However, a data‐adaptive procedure may be able to better exploit information available in measured covariates. By combining predictions from multiple algorithms, ensemble learning offers an alternative to logistic regression modeling to further reduce bias in estimated marginal structural model parameters. We describe the application of two ensemble learning approaches to estimating stabilized weights: super learning (SL), an ensemble machine learning approach that relies on V‐fold cross validation, and an ensemble learner (EL) that creates a single partition of the data into training and validation sets. Longitudinal data from two multicenter cohort studies in Spain (CoRIS and CoRIS‐MD) were analyzed to estimate the mortality hazard ratio for initiation versus no initiation of combined antiretroviral therapy among HIV positive subjects. Both ensemble approaches produced hazard ratio estimates further away from the null, and with tighter confidence intervals, than logistic regression modeling. Computation time for EL was less than half that of SL. We conclude that ensemble learning using a library of diverse candidate algorithms offers an alternative to parametric modeling of inverse probability weights when fitting marginal structural models. With large datasets, EL provides a rich search over the solution space in less time than SL with comparable results. Copyright © 2014 John Wiley & Sons, Ltd. |
---|---|
AbstractList | Inverse probability weights used to fit marginal structural models are typically estimated using logistic regression. However, a data‐adaptive procedure may be able to better exploit information available in measured covariates. By combining predictions from multiple algorithms, ensemble learning offers an alternative to logistic regression modeling to further reduce bias in estimated marginal structural model parameters. We describe the application of two ensemble learning approaches to estimating stabilized weights: super learning (SL), an ensemble machine learning approach that relies on V‐fold cross validation, and an ensemble learner (EL) that creates a single partition of the data into training and validation sets. Longitudinal data from two multicenter cohort studies in Spain (CoRIS and CoRIS‐MD) were analyzed to estimate the mortality hazard ratio for initiation versus no initiation of combined antiretroviral therapy among HIV positive subjects. Both ensemble approaches produced hazard ratio estimates further away from the null, and with tighter confidence intervals, than logistic regression modeling. Computation time for EL was less than half that of SL. We conclude that ensemble learning using a library of diverse candidate algorithms offers an alternative to parametric modeling of inverse probability weights when fitting marginal structural models. With large datasets, EL provides a rich search over the solution space in less time than SL with comparable results. Copyright © 2014 John Wiley & Sons, Ltd. Inverse probability weights used to fit marginal structural models are typically estimated using logistic regression. However, a data-adaptive procedure may be able to better exploit information available in measured covariates. By combining predictions from multiple algorithms, ensemble learning offers an alternative to logistic regression modeling to further reduce bias in estimated marginal structural model parameters. We describe the application of two ensemble learning approaches to estimating stabilized weights: super learning (SL), an ensemble machine learning approach that relies on V-fold cross validation, and an ensemble learner (EL) that creates a single partition of the data into training and validation sets. Longitudinal data from two multicenter cohort studies in Spain (CoRIS and CoRIS-MD) were analyzed to estimate the mortality hazard ratio for initiation versus no initiation of combined antiretroviral therapy among HIV positive subjects. Both ensemble approaches produced hazard ratio estimates further away from the null, and with tighter confidence intervals, than logistic regression modeling. Computation time for EL was less than half that of SL. We conclude that ensemble learning using a library of diverse candidate algorithms offers an alternative to parametric modeling of inverse probability weights when fitting marginal structural models. With large datasets, EL provides a rich search over the solution space in less time than SL with comparable results.Inverse probability weights used to fit marginal structural models are typically estimated using logistic regression. However, a data-adaptive procedure may be able to better exploit information available in measured covariates. By combining predictions from multiple algorithms, ensemble learning offers an alternative to logistic regression modeling to further reduce bias in estimated marginal structural model parameters. We describe the application of two ensemble learning approaches to estimating stabilized weights: super learning (SL), an ensemble machine learning approach that relies on V-fold cross validation, and an ensemble learner (EL) that creates a single partition of the data into training and validation sets. Longitudinal data from two multicenter cohort studies in Spain (CoRIS and CoRIS-MD) were analyzed to estimate the mortality hazard ratio for initiation versus no initiation of combined antiretroviral therapy among HIV positive subjects. Both ensemble approaches produced hazard ratio estimates further away from the null, and with tighter confidence intervals, than logistic regression modeling. Computation time for EL was less than half that of SL. We conclude that ensemble learning using a library of diverse candidate algorithms offers an alternative to parametric modeling of inverse probability weights when fitting marginal structural models. With large datasets, EL provides a rich search over the solution space in less time than SL with comparable results. Inverse probability weights used to fit marginal structural models are typically estimated using logistic regression. However a data-adaptive procedure may be able to better exploit information available in measured covariates. By combining predictions from multiple algorithms, ensemble learning offers an alternative to logistic regression modeling to further reduce bias in estimated marginal structural model parameters. We describe the application of two ensemble learning approaches to estimating stabilized weights: super learning (SL), an ensemble machine learning approach that relies on V -fold cross validation, and an ensemble learner (EL) that creates a single partition of the data into training and validation sets. Longitudinal data from two multicenter cohort studies in Spain (CoRIS and CoRIS-MD) were analyzed to estimate the mortality hazard ratio for initiation versus no initiation of combined antiretroviral therapy among HIV positive subjects. Both ensemble approaches produced hazard ratio estimates further away from the null, and with tighter confidence intervals, than logistic regression modeling. Computation time for EL was less than half that of SL. We conclude that ensemble learning using a library of diverse candidate algorithms offers an alternative to parametric modeling of inverse probability weights when fitting marginal structural models. With large datasets, EL provides a rich search over the solution space in less time than SL with comparable results. Inverse probability weights used to fit marginal structural models are typically estimated using logistic regression. However, a data-adaptive procedure may be able to better exploit information available in measured covariates. By combining predictions from multiple algorithms, ensemble learning offers an alternative to logistic regression modeling to further reduce bias in estimated marginal structural model parameters. We describe the application of two ensemble learning approaches to estimating stabilized weights: super learning (SL), an ensemble machine learning approach that relies on V-fold cross validation, and an ensemble learner (EL) that creates a single partition of the data into training and validation sets. Longitudinal data from two multicenter cohort studies in Spain (CoRIS and CoRIS-MD) were analyzed to estimate the mortality hazard ratio for initiation versus no initiation of combined antiretroviral therapy among HIV positive subjects. Both ensemble approaches produced hazard ratio estimates further away from the null, and with tighter confidence intervals, than logistic regression modeling. Computation time for EL was less than half that of SL. We conclude that ensemble learning using a library of diverse candidate algorithms offers an alternative to parametric modeling of inverse probability weights when fitting marginal structural models. With large datasets, EL provides a rich search over the solution space in less time than SL with comparable results. |
Author | Hernán, Miguel A. Jarrín, Inmaculada Gruber, Susan Monge, Susana Logan, Roger W. |
AuthorAffiliation | a Department of Epidemiology, Harvard School of Public Health, Boston, MA d Harvard-MIT Division of Health Sciences and Technology, Boston, MA b National Center of Epidemiology, Instituto de Salud Carlos III, Madrid, Spain c Department of Biostatistics, Harvard School of Public Health, Boston, MA |
AuthorAffiliation_xml | – name: b National Center of Epidemiology, Instituto de Salud Carlos III, Madrid, Spain – name: a Department of Epidemiology, Harvard School of Public Health, Boston, MA – name: d Harvard-MIT Division of Health Sciences and Technology, Boston, MA – name: c Department of Biostatistics, Harvard School of Public Health, Boston, MA |
Author_xml | – sequence: 1 givenname: Susan surname: Gruber fullname: Gruber, Susan email: Correspondence to: Susan Gruber, Department of Epidemiology, Harvard School of Public Health, Boston, MA 02115, U.S.A., sgruber@hsph.harvard.edu organization: Department of Epidemiology, Harvard School of Public Health, MA, Boston, U.S.A – sequence: 2 givenname: Roger W. surname: Logan fullname: Logan, Roger W. organization: Department of Epidemiology, Harvard School of Public Health, MA, Boston, U.S.A – sequence: 3 givenname: Inmaculada surname: Jarrín fullname: Jarrín, Inmaculada organization: National Center of Epidemiology, Instituto de Salud Carlos III, Madrid, Spain – sequence: 4 givenname: Susana surname: Monge fullname: Monge, Susana organization: National Center of Epidemiology, Instituto de Salud Carlos III, Madrid, Spain – sequence: 5 givenname: Miguel A. surname: Hernán fullname: Hernán, Miguel A. organization: Department of Epidemiology, Harvard School of Public Health, Boston, MA, U.S.A |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25316152$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kU1v1DAQhi1URLcFiV-AInHhksUfsb17QUKllEoFDnyUm-U4k62LY29tZ8v-exxaFlrBySPNM6_fmfcA7fngAaGnBM8JxvRlssNcMEofoBnBS1ljyhd7aIaplLWQhO-jg5QuMSaEU_kI7VPOiCj1DF0d-wRD66ByoKO3flWFvrJ-AzFBtY6h1a11Nm-ra7Cri5yqPsRq0HFlvXZVynE0eYylHEIHbpq3vnKlD1VoE8SNzjZMaKezTpDTY_Sw1y7Bk9v3EH15e_z56F199vHk9Oj1WW0aKWgNCwJCN62m1OCe94uGdVJ00BEjCJW4BWqYNHrZdL2AbklavjBc8IYK2mjo2CF6daO7HtsBOgM-F5tqHW1xv1VBW3W34-2FWoWNmhRkw4vAi1uBGK5GSFkNNhlwTnsIY1JEMI4JpmxZ0Of30MswxrL1RDVkuRANloV69rejnZXfafz50cSQUoR-hxCspqBVCVpNQRd0fg81Nv86ddnFun8N1DcD19bB9r_C6tPp-7u8TRl-7HgdvyshmeTq_MOJYl_P30j5DSvGfgIsssrf |
CODEN | SMEDDA |
CitedBy_id | crossref_primary_10_1515_ijb_2015_0028 crossref_primary_10_1097_EDE_0000000000000787 crossref_primary_10_1080_10543406_2022_2162067 crossref_primary_10_1093_infdis_jiaa717 crossref_primary_10_1016_j_bbih_2024_100793 crossref_primary_10_1093_aje_kwad089 crossref_primary_10_3390_ijerph13030311 crossref_primary_10_1016_j_socscimed_2016_07_045 crossref_primary_10_1080_00031305_2020_1867638 crossref_primary_10_1080_00273171_2016_1200454 crossref_primary_10_1002_sim_10336 crossref_primary_10_1007_s11553_023_01033_8 crossref_primary_10_1186_s13071_020_04016_2 crossref_primary_10_1002_sim_7266 crossref_primary_10_1002_pds_4059 crossref_primary_10_1016_j_brat_2019_103412 crossref_primary_10_1089_end_2017_0742 crossref_primary_10_1097_EDE_0000000000000409 crossref_primary_10_1093_aje_kwv339 crossref_primary_10_1002_pds_4258 crossref_primary_10_1093_ije_dyz132 crossref_primary_10_1098_rspb_2020_2815 crossref_primary_10_1002_sim_8591 crossref_primary_10_1109_ACCESS_2017_2696365 crossref_primary_10_1093_aje_kwv254 crossref_primary_10_3390_ijerph14121546 crossref_primary_10_1155_2019_7290285 crossref_primary_10_1017_S0033291723000211 crossref_primary_10_1161_CIRCHEARTFAILURE_122_010426 crossref_primary_10_1016_j_joca_2022_08_010 crossref_primary_10_1093_ije_dyy218 crossref_primary_10_1080_02664763_2019_1582614 crossref_primary_10_1214_24_STS945 crossref_primary_10_1097_MOU_0000000000000820 crossref_primary_10_1002_sim_6842 crossref_primary_10_1177_0272989X20986545 crossref_primary_10_1177_0193841X21992199 crossref_primary_10_1515_jci_2020_0033 crossref_primary_10_1002_sim_8164 crossref_primary_10_1038_s41598_021_81110_0 crossref_primary_10_1177_0962280218774817 |
Cites_doi | 10.1002/sim.4780091214 10.2202/1557-4679.1182 10.1613/jair.594 10.1007/BF00117832 10.1214/09-SS054 10.1016/S0140-6736(03)13802-0 10.1524/stnd.2006.24.3.351 10.1037/1082-989X.9.4.403 10.1002/sim.3782 10.1007/978-0-387-21706-2 10.32614/CRAN.package.SuperLearner 10.1016/j.jclinepi.2013.01.016 10.1016/S0893-6080(05)80023-1 10.1515/jci-2012-0003 10.1097/QAD.0b013e3283324283 10.1111/j.1541-0420.2012.01830.x 10.1080/01621459.2014.958155 10.4249/scholarpedia.2776 10.1097/00001648-200009000-00012 10.1016/S0140-6736(03)14570-9 |
ContentType | Journal Article |
Copyright | Copyright © 2014 John Wiley & Sons, Ltd. Copyright Wiley Subscription Services, Inc. Jan 15, 2015 Copyright © 2014 John Wiley & Sons, Ltd. 2014 |
Copyright_xml | – notice: Copyright © 2014 John Wiley & Sons, Ltd. – notice: Copyright Wiley Subscription Services, Inc. Jan 15, 2015 – notice: Copyright © 2014 John Wiley & Sons, Ltd. 2014 |
DBID | BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM K9. 7X8 5PM |
DOI | 10.1002/sim.6322 |
DatabaseName | Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef MEDLINE ProQuest Health & Medical Complete (Alumni) |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Statistics Public Health |
EISSN | 1097-0258 |
EndPage | 117 |
ExternalDocumentID | PMC4262745 3545279691 25316152 10_1002_sim_6322 SIM6322 ark_67375_WNG_3VWD77X0_3 |
Genre | article Journal Article Research Support, N.I.H., Extramural Feature |
GeographicLocations | Spain |
GeographicLocations_xml | – name: Spain |
GrantInformation_xml | – fundername: NIAID NIH HHS grantid: R01 AI073127 – fundername: NIAID NIH HHS grantid: R01-AI073127 – fundername: NIAID NIH HHS grantid: R01 AI102634 |
GroupedDBID | --- .3N .GA 05W 0R~ 10A 123 1L6 1OB 1OC 1ZS 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5RE 5VS 66C 6PF 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAWTL AAXRX AAZKR ABCQN ABCUV ABIJN ABJNI ABOCM ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBD EBS EJD EMOBN F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K ROL RWI RX1 RYL SUPJJ SV3 TN5 UB1 V2E W8V W99 WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WUP WWH WXSBR WYISQ XBAML XG1 XV2 ZZTAW ~IA ~WT AAHQN AAMNL AANHP AAYCA ACRPL ACYXJ ADNMO AFWVQ ALVPJ AAMMB AAYXX AEFGJ AEYWJ AGQPQ AGXDD AGYGG AIDQK AIDYY AMVHM CITATION CGR CUY CVF ECM EIF NPM K9. 7X8 .Y3 5PM BDRZF |
ID | FETCH-LOGICAL-c4762-e81e6a4ba22c0f5f843d76ded1c61270be2c37ca94df6ed91b58c56542624aed3 |
IEDL.DBID | DR2 |
ISSN | 0277-6715 1097-0258 |
IngestDate | Thu Aug 21 13:58:47 EDT 2025 Fri Jul 11 11:32:17 EDT 2025 Sun Jul 13 03:47:45 EDT 2025 Thu Apr 03 07:08:23 EDT 2025 Wed Aug 20 07:47:51 EDT 2025 Thu Apr 24 22:54:19 EDT 2025 Wed Jan 22 16:59:50 EST 2025 Wed Oct 30 09:51:22 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | ensemble learning data-adaptive inverse probability weighting marginal structural model super learning longitudinal data |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor Copyright © 2014 John Wiley & Sons, Ltd. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4762-e81e6a4ba22c0f5f843d76ded1c61270be2c37ca94df6ed91b58c56542624aed3 |
Notes | ArticleID:SIM6322 istex:7A0C99876A785994C06D85242671F1CF71FD942F Supporting Info Item ark:/67375/WNG-3VWD77X0-3 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-0127-0099 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/4262745 |
PMID | 25316152 |
PQID | 1641986407 |
PQPubID | 48361 |
PageCount | 12 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4262745 proquest_miscellaneous_1635010239 proquest_journals_1641986407 pubmed_primary_25316152 crossref_primary_10_1002_sim_6322 crossref_citationtrail_10_1002_sim_6322 wiley_primary_10_1002_sim_6322_SIM6322 istex_primary_ark_67375_WNG_3VWD77X0_3 |
PublicationCentury | 2000 |
PublicationDate | 15 January 2015 |
PublicationDateYYYYMMDD | 2015-01-15 |
PublicationDate_xml | – month: 01 year: 2015 text: 15 January 2015 day: 15 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: New York |
PublicationTitle | Statistics in medicine |
PublicationTitleAlternate | Statist. Med |
PublicationYear | 2015 |
Publisher | Blackwell Publishing Ltd Wiley Subscription Services, Inc |
Publisher_xml | – name: Blackwell Publishing Ltd – name: Wiley Subscription Services, Inc |
References | Vermeulen K, Vansteelandt S. Bias-reduced doubly robust estimation. Journal of the American Statistical Association 2014. (under revision). Zigler CM, Watts K, Yeh RW, Wang Y, Coulli BA, Dominici F. Model feedback in bayesian propensity score estimation. Biometrics 2013. Hastie T, Tibshirani R, Friedman J. The Elements of Statistical Learning, Springer Series in Statistics. Springer: New York 2002. van der Vaart A, Dudoit S, van der Laan M. Oracle inequalities for multi-fold cross-validation. Statistics and Decisions 2006; 24(3):351-371. Hernan MA, Brumback B, Robins JM. Marginal structural models to estimate the causal effect of zidovudine on the survival of HIV-positive men. Epidemiology 2000; 11(5):561-570. Breiman L, Friedman JH, Olshen R, Stone CJ. Classification and Regression Trees, The Wadsworth statistics/probability series. Wadsworth International Group: Chapman and Hall, New York, 1984. Polikar R. Ensemble learning. Scholarpedia 2009; 4(1):2776. Wolpert D. Stacked generalization. Neural Networks 1992; 5:241-259. Mocroft A, Ledergerber B, Katlama C, Kirk O, Reiss P, d'Arminio Monforte A, Knysz B, M Dietrich, Phillips AN, Lundgren JD, EuroSIDA study group. Decline in the AIDS and death rates in the EuroSIDA study: an observational study. Lancet 2003; 362:22-29. van der Laan M, Polley E, Hubbard A. Super learner. Statistical Applications in Genetics and Molecular Biology 2007; 6(25):1-25. The HIV-CAUSAL Collaboration. The effect of combined antiretroviral therapy on the overall mortality of HIV-infected individuals. AIDS 2010; 24(1):123-137. Venables WN, Ripley BD. Modern Applied Statistics with S 4th edn. Springer: New York, 2002. http://www.stats.ox.ac.uk/pub/MASS4 [Accessed on 15 October 2013]. Ridgeway G, McCaffrey D, Morral A, Burgette L, Griffin B. Toolkit for Weighting and Analysis of Nonequivalent Groups: A Tutorial for the Twang Package. 2013. URL http://CRAN.R-project.org/package=gbm, R package. [Accessed on 15 October 2013]. D'Agostino R, Lee M, Belanger A, Cupples L, Anderson K, Kannel W. Relation of pooled logistic regression to time dependent Cox regression analysis: the Framingham Heart Study. Statistics in Medicine 1990; 12:1501-1515. Arlot S, Celisse A. A survey of cross-validation procedures for model selection. Statistic Surveys 2010; 4:40-79. Neugebauer R, Fireman B, Roy J, Raebel M, Nichols G, O'Connor P. Super learning to hedge against incorrect inference from arbitrary parametric assumptions in marginal structural modeling. Journal of Clinical Epidemiology 2013; 66:S99-S109. McCaffrey D, Ridgeway G, Morral A. Propensity score estimation with boosted regression for evaluating causal effects in observational studies. Psychological Methods 2004; 9(4):403-425. Neugebauer R, Chandra M, Paredes A, Graham D, McCloskey C, Go A. A marginal structural modeling approach with super learning for a study on oral bisphosphonate therapy and atrial fibrillation. Journal of Causal Inference 2013; 1:21-50. Caro-Murillo AM, Castilla J, Pérez-Hoyos S, Miró JM, Podzamczer D, Rubio R, Riera M, Viciana P, López Aldeguer J, Iribarren JA, de los Santos-Gil I, Gómez-Sirvent JL, Berenguer J, F Gutiérrez, Saumoy M, Segura F, Soriano V, Peña A, Pulido F, Oteo JA, Leal M, Casabona J, del Amo J, Moreno S, Grupo de trabajo de la Cohorte de la Red de Investigación en Sida (CoRIS). Spanish cohort of naive HIV-infected patients (CoRIS): rationale, organization and initial results. Enfermedades Infecciosas Y Microbiologia Clinica 2007; 25:23:31. Gruber S, van der Laan M. An application of collaborative targeted maximum likelihood estimation in causal inference and genomics. The International Journal of Biostatistics 2010; 6(1):1-30. Ting K, Witten IH. Issues in stacked generalization. Journal of Artificial Intelligence Research 1999; 10:271-289. Development Core Team, R. R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing: Vienna, Austria, 2012. URL http://www.R-project.org [Accessed on 15 October 2013]. Babiker A, Bhaskaran K, Darbyshire J, Pezzotti P, Porter K, Walker A. Determinants of survival following HIV-1 seroconversion after the introduction of HAART. Lancet 2003; 362:1267-1274. van der Laan M, Gruber S. Collaborative double robust penalized targeted maximum likelihood estimation. The International Journal of Biostatistics 2010; 6(1):1-70. Breiman L. Stacked regression. Machine Learning 1996; 24:49-64. Lee B, Lessler J, Stuart E. Improved propensity score weighting using machine learning. Statistics in Medicine 2009; 29:337-346. McCaffrey D, Burgette L, Griffin B, Martin C. Toolkit for Weighting and Analysis of Nonequivalent Groups: A Tutorial for the Twang SAS Macro, 2014. URL http://www.rand.org/pubs/tools/TL136.html [Accessed on 6 October 2014]. 1990; 12 2013; 1 2013; 66 2012 2010 2004; 9 2009 2003 2002 2009; 29 2010; 24 2006; 24 2000; 11 2007; 6 1999; 10 1984 2014 2009; 4 2013 1996; 24 2010; 4 2007; 25 2010; 6 2003; 362 1992; 5 e_1_2_8_28_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_26_1 e_1_2_8_27_1 Robins JM (e_1_2_8_10_1) 2009 McCaffrey D (e_1_2_8_21_1) 2014 e_1_2_8_3_1 e_1_2_8_2_1 Caro‐Murillo AM (e_1_2_8_7_1) 2007; 25 e_1_2_8_4_1 e_1_2_8_6_1 e_1_2_8_9_1 e_1_2_8_8_1 e_1_2_8_23_1 Breiman L (e_1_2_8_19_1) 1984 Ridgeway G (e_1_2_8_20_1) 2013 e_1_2_8_17_1 e_1_2_8_18_1 Lee B (e_1_2_8_11_1) 2009; 29 e_1_2_8_13_1 e_1_2_8_14_1 e_1_2_8_15_1 e_1_2_8_16_1 Development Core Team, R (e_1_2_8_24_1) 2012 Hastie T (e_1_2_8_22_1) 2002 Laan M (e_1_2_8_33_1) 2010; 6 e_1_2_8_32_1 e_1_2_8_31_1 e_1_2_8_34_1 e_1_2_8_12_1 e_1_2_8_30_1 Laan M (e_1_2_8_5_1) 2007; 6 17261243 - Enferm Infecc Microbiol Clin. 2007 Jan;25(1):23-31 17910531 - Stat Appl Genet Mol Biol. 2007;6:Article25 23379793 - Biometrics. 2013 Mar;69(1):263-73 10955409 - Epidemiology. 2000 Sep;11(5):561-70 23849160 - J Clin Epidemiol. 2013 Aug;66(8 Suppl):S99-109 2281238 - Stat Med. 1990 Dec;9(12):1501-15 19960510 - Stat Med. 2010 Feb 10;29(3):337-46 14575971 - Lancet. 2003 Oct 18;362(9392):1267-74 12853195 - Lancet. 2003 Jul 5;362(9377):22-9 20628637 - Int J Biostat. 2010;6(1):Article 17 19770621 - AIDS. 2010 Jan 2;24(1):123-37 15598095 - Psychol Methods. 2004 Dec;9(4):403-25 21731530 - Int J Biostat. 2010;6(1):Article 18 |
References_xml | – reference: Hernan MA, Brumback B, Robins JM. Marginal structural models to estimate the causal effect of zidovudine on the survival of HIV-positive men. Epidemiology 2000; 11(5):561-570. – reference: Hastie T, Tibshirani R, Friedman J. The Elements of Statistical Learning, Springer Series in Statistics. Springer: New York 2002. – reference: van der Vaart A, Dudoit S, van der Laan M. Oracle inequalities for multi-fold cross-validation. Statistics and Decisions 2006; 24(3):351-371. – reference: van der Laan M, Gruber S. Collaborative double robust penalized targeted maximum likelihood estimation. The International Journal of Biostatistics 2010; 6(1):1-70. – reference: D'Agostino R, Lee M, Belanger A, Cupples L, Anderson K, Kannel W. Relation of pooled logistic regression to time dependent Cox regression analysis: the Framingham Heart Study. Statistics in Medicine 1990; 12:1501-1515. – reference: Breiman L, Friedman JH, Olshen R, Stone CJ. Classification and Regression Trees, The Wadsworth statistics/probability series. Wadsworth International Group: Chapman and Hall, New York, 1984. – reference: Breiman L. Stacked regression. Machine Learning 1996; 24:49-64. – reference: Venables WN, Ripley BD. Modern Applied Statistics with S 4th edn. Springer: New York, 2002. http://www.stats.ox.ac.uk/pub/MASS4 [Accessed on 15 October 2013]. – reference: The HIV-CAUSAL Collaboration. The effect of combined antiretroviral therapy on the overall mortality of HIV-infected individuals. AIDS 2010; 24(1):123-137. – reference: Caro-Murillo AM, Castilla J, Pérez-Hoyos S, Miró JM, Podzamczer D, Rubio R, Riera M, Viciana P, López Aldeguer J, Iribarren JA, de los Santos-Gil I, Gómez-Sirvent JL, Berenguer J, F Gutiérrez, Saumoy M, Segura F, Soriano V, Peña A, Pulido F, Oteo JA, Leal M, Casabona J, del Amo J, Moreno S, Grupo de trabajo de la Cohorte de la Red de Investigación en Sida (CoRIS). Spanish cohort of naive HIV-infected patients (CoRIS): rationale, organization and initial results. Enfermedades Infecciosas Y Microbiologia Clinica 2007; 25:23:31. – reference: Arlot S, Celisse A. A survey of cross-validation procedures for model selection. Statistic Surveys 2010; 4:40-79. – reference: Development Core Team, R. R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing: Vienna, Austria, 2012. URL http://www.R-project.org [Accessed on 15 October 2013]. – reference: McCaffrey D, Ridgeway G, Morral A. Propensity score estimation with boosted regression for evaluating causal effects in observational studies. Psychological Methods 2004; 9(4):403-425. – reference: Polikar R. Ensemble learning. Scholarpedia 2009; 4(1):2776. – reference: Mocroft A, Ledergerber B, Katlama C, Kirk O, Reiss P, d'Arminio Monforte A, Knysz B, M Dietrich, Phillips AN, Lundgren JD, EuroSIDA study group. Decline in the AIDS and death rates in the EuroSIDA study: an observational study. Lancet 2003; 362:22-29. – reference: Lee B, Lessler J, Stuart E. Improved propensity score weighting using machine learning. Statistics in Medicine 2009; 29:337-346. – reference: van der Laan M, Polley E, Hubbard A. Super learner. Statistical Applications in Genetics and Molecular Biology 2007; 6(25):1-25. – reference: Neugebauer R, Chandra M, Paredes A, Graham D, McCloskey C, Go A. A marginal structural modeling approach with super learning for a study on oral bisphosphonate therapy and atrial fibrillation. Journal of Causal Inference 2013; 1:21-50. – reference: Zigler CM, Watts K, Yeh RW, Wang Y, Coulli BA, Dominici F. Model feedback in bayesian propensity score estimation. Biometrics 2013. – reference: McCaffrey D, Burgette L, Griffin B, Martin C. Toolkit for Weighting and Analysis of Nonequivalent Groups: A Tutorial for the Twang SAS Macro, 2014. URL http://www.rand.org/pubs/tools/TL136.html [Accessed on 6 October 2014]. – reference: Neugebauer R, Fireman B, Roy J, Raebel M, Nichols G, O'Connor P. Super learning to hedge against incorrect inference from arbitrary parametric assumptions in marginal structural modeling. Journal of Clinical Epidemiology 2013; 66:S99-S109. – reference: Gruber S, van der Laan M. An application of collaborative targeted maximum likelihood estimation in causal inference and genomics. The International Journal of Biostatistics 2010; 6(1):1-30. – reference: Babiker A, Bhaskaran K, Darbyshire J, Pezzotti P, Porter K, Walker A. Determinants of survival following HIV-1 seroconversion after the introduction of HAART. Lancet 2003; 362:1267-1274. – reference: Ridgeway G, McCaffrey D, Morral A, Burgette L, Griffin B. Toolkit for Weighting and Analysis of Nonequivalent Groups: A Tutorial for the Twang Package. 2013. URL http://CRAN.R-project.org/package=gbm, R package. [Accessed on 15 October 2013]. – reference: Ting K, Witten IH. Issues in stacked generalization. Journal of Artificial Intelligence Research 1999; 10:271-289. – reference: Wolpert D. Stacked generalization. Neural Networks 1992; 5:241-259. – reference: Vermeulen K, Vansteelandt S. Bias-reduced doubly robust estimation. Journal of the American Statistical Association 2014. (under revision). – volume: 5 start-page: 241 year: 1992 end-page: 259 article-title: Stacked generalization publication-title: Neural Networks – volume: 9 start-page: 403 issue: 4 year: 2004 end-page: 425 article-title: Propensity score estimation with boosted regression for evaluating causal effects in observational studies publication-title: Psychological Methods – volume: 6 start-page: 1 issue: 1 year: 2010 end-page: 70 article-title: Collaborative double robust penalized targeted maximum likelihood estimation publication-title: The International Journal of Biostatistics – year: 2013 article-title: Model feedback in bayesian propensity score estimation publication-title: Biometrics – year: 2003 – year: 2014 article-title: Bias‐reduced doubly robust estimation publication-title: Journal of the American Statistical Association – volume: 362 start-page: 1267 year: 2003 end-page: 1274 article-title: Determinants of survival following HIV‐1 seroconversion after the introduction of HAART publication-title: Lancet – volume: 24 start-page: 123 issue: 1 year: 2010 end-page: 137 article-title: The effect of combined antiretroviral therapy on the overall mortality of HIV‐infected individuals publication-title: AIDS – volume: 25 start-page: 23:31 year: 2007 article-title: Spanish cohort of naive HIV‐infected patients (CoRIS): rationale, organization and initial results publication-title: Enfermedades Infecciosas Y Microbiologia Clinica – volume: 11 start-page: 561 issue: 5 year: 2000 end-page: 570 article-title: Marginal structural models to estimate the causal effect of zidovudine on the survival of HIV‐positive men publication-title: Epidemiology – year: 2014 – volume: 6 start-page: 1 issue: 25 year: 2007 end-page: 25 article-title: Super learner publication-title: Statistical Applications in Genetics and Molecular Biology – year: 2010 – volume: 4 start-page: 2776 issue: 1 year: 2009 article-title: Ensemble learning publication-title: Scholarpedia – volume: 29 start-page: 337 year: 2009 end-page: 346 article-title: Improved propensity score weighting using machine learning publication-title: Statistics in Medicine – year: 2012 – volume: 1 start-page: 21 year: 2013 end-page: 50 article-title: A marginal structural modeling approach with super learning for a study on oral bisphosphonate therapy and atrial fibrillation publication-title: Journal of Causal Inference – year: 1984 – volume: 6 start-page: 1 issue: 1 year: 2010 end-page: 30 article-title: An application of collaborative targeted maximum likelihood estimation in causal inference and genomics publication-title: The International Journal of Biostatistics – volume: 362 start-page: 22 year: 2003 end-page: 29 article-title: Decline in the AIDS and death rates in the EuroSIDA study: an observational study publication-title: Lancet – year: 2002 – volume: 66 start-page: S99 year: 2013 end-page: S109 article-title: Super learning to hedge against incorrect inference from arbitrary parametric assumptions in marginal structural modeling publication-title: Journal of Clinical Epidemiology – volume: 12 start-page: 1501 year: 1990 end-page: 1515 article-title: Relation of pooled logistic regression to time dependent Cox regression analysis: the Framingham Heart Study publication-title: Statistics in Medicine – volume: 4 start-page: 40 year: 2010 end-page: 79 article-title: A survey of cross‐validation procedures for model selection publication-title: Statistic Surveys – volume: 10 start-page: 271 year: 1999 end-page: 289 article-title: Issues in stacked generalization publication-title: Journal of Artificial Intelligence Research – year: 2012 article-title: SuperLearner: super learner prediction – start-page: 553 year: 2009 end-page: 599 – volume: 24 start-page: 49 year: 1996 end-page: 64 article-title: Stacked regression publication-title: Machine Learning – volume: 24 start-page: 351 issue: 3 year: 2006 end-page: 371 article-title: Oracle inequalities for multi‐fold cross‐validation publication-title: Statistics and Decisions – year: 2012 article-title: V‐fold cross‐validation and V‐fold penalization in least‐squares density estimation – year: 2013 – volume: 6 start-page: 1 issue: 25 year: 2007 ident: e_1_2_8_5_1 article-title: Super learner publication-title: Statistical Applications in Genetics and Molecular Biology – ident: e_1_2_8_9_1 doi: 10.1002/sim.4780091214 – ident: e_1_2_8_34_1 doi: 10.2202/1557-4679.1182 – ident: e_1_2_8_15_1 doi: 10.1613/jair.594 – ident: e_1_2_8_17_1 doi: 10.1007/BF00117832 – ident: e_1_2_8_6_1 – ident: e_1_2_8_14_1 doi: 10.1214/09-SS054 – volume-title: Classification and Regression Trees year: 1984 ident: e_1_2_8_19_1 – ident: e_1_2_8_27_1 doi: 10.1016/S0140-6736(03)13802-0 – ident: e_1_2_8_23_1 doi: 10.1524/stnd.2006.24.3.351 – ident: e_1_2_8_12_1 doi: 10.1037/1082-989X.9.4.403 – start-page: 553 volume-title: Advances in Longitudinal Data Analysis year: 2009 ident: e_1_2_8_10_1 – volume: 29 start-page: 337 year: 2009 ident: e_1_2_8_11_1 article-title: Improved propensity score weighting using machine learning publication-title: Statistics in Medicine doi: 10.1002/sim.3782 – ident: e_1_2_8_18_1 doi: 10.1007/978-0-387-21706-2 – volume-title: R: A Language and Environment for Statistical Computing year: 2012 ident: e_1_2_8_24_1 – volume: 25 start-page: 23:31 year: 2007 ident: e_1_2_8_7_1 article-title: Spanish cohort of naive HIV‐infected patients (CoRIS): rationale, organization and initial results publication-title: Enfermedades Infecciosas Y Microbiologia Clinica – ident: e_1_2_8_25_1 doi: 10.32614/CRAN.package.SuperLearner – volume-title: Toolkit for Weighting and Analysis of Nonequivalent Groups: A Tutorial for the Twang SAS Macro year: 2014 ident: e_1_2_8_21_1 – ident: e_1_2_8_3_1 doi: 10.1016/j.jclinepi.2013.01.016 – volume: 6 start-page: 1 issue: 1 year: 2010 ident: e_1_2_8_33_1 article-title: Collaborative double robust penalized targeted maximum likelihood estimation publication-title: The International Journal of Biostatistics – ident: e_1_2_8_30_1 – ident: e_1_2_8_16_1 doi: 10.1016/S0893-6080(05)80023-1 – ident: e_1_2_8_4_1 doi: 10.1515/jci-2012-0003 – ident: e_1_2_8_8_1 doi: 10.1097/QAD.0b013e3283324283 – volume-title: The Elements of Statistical Learning year: 2002 ident: e_1_2_8_22_1 – ident: e_1_2_8_32_1 doi: 10.1111/j.1541-0420.2012.01830.x – ident: e_1_2_8_31_1 doi: 10.1080/01621459.2014.958155 – volume-title: Toolkit for Weighting and Analysis of Nonequivalent Groups: A Tutorial for the Twang Package year: 2013 ident: e_1_2_8_20_1 – ident: e_1_2_8_13_1 doi: 10.4249/scholarpedia.2776 – ident: e_1_2_8_2_1 doi: 10.1097/00001648-200009000-00012 – ident: e_1_2_8_29_1 – ident: e_1_2_8_28_1 doi: 10.1016/S0140-6736(03)14570-9 – ident: e_1_2_8_26_1 – reference: 2281238 - Stat Med. 1990 Dec;9(12):1501-15 – reference: 19770621 - AIDS. 2010 Jan 2;24(1):123-37 – reference: 10955409 - Epidemiology. 2000 Sep;11(5):561-70 – reference: 12853195 - Lancet. 2003 Jul 5;362(9377):22-9 – reference: 23379793 - Biometrics. 2013 Mar;69(1):263-73 – reference: 17261243 - Enferm Infecc Microbiol Clin. 2007 Jan;25(1):23-31 – reference: 20628637 - Int J Biostat. 2010;6(1):Article 17 – reference: 23849160 - J Clin Epidemiol. 2013 Aug;66(8 Suppl):S99-109 – reference: 19960510 - Stat Med. 2010 Feb 10;29(3):337-46 – reference: 15598095 - Psychol Methods. 2004 Dec;9(4):403-25 – reference: 17910531 - Stat Appl Genet Mol Biol. 2007;6:Article25 – reference: 14575971 - Lancet. 2003 Oct 18;362(9392):1267-74 – reference: 21731530 - Int J Biostat. 2010;6(1):Article 18 |
SSID | ssj0011527 |
Score | 2.3711739 |
Snippet | Inverse probability weights used to fit marginal structural models are typically estimated using logistic regression. However, a data‐adaptive procedure may be... Inverse probability weights used to fit marginal structural models are typically estimated using logistic regression. However, a data-adaptive procedure may be... Inverse probability weights used to fit marginal structural models are typically estimated using logistic regression. However a data-adaptive procedure may be... |
SourceID | pubmedcentral proquest pubmed crossref wiley istex |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 106 |
SubjectTerms | Algorithms Antiretroviral Therapy, Highly Active - statistics & numerical data Artificial intelligence Bias Computer Simulation Confidence Intervals Confounding Factors (Epidemiology) Data Interpretation, Statistical data-adaptive ensemble learning HIV HIV Infections - drug therapy HIV Infections - mortality HIV Infections - prevention & control Human immunodeficiency virus Humans inverse probability weighting Logistic Models longitudinal data Machine Learning marginal structural model Medical statistics Models, Statistical Mortality Mortality - trends Probability Regression analysis Spain super learning |
Title | Ensemble learning of inverse probability weights for marginal structural modeling in large observational datasets |
URI | https://api.istex.fr/ark:/67375/WNG-3VWD77X0-3/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsim.6322 https://www.ncbi.nlm.nih.gov/pubmed/25316152 https://www.proquest.com/docview/1641986407 https://www.proquest.com/docview/1635010239 https://pubmed.ncbi.nlm.nih.gov/PMC4262745 |
Volume | 34 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZQkVAlxGN5LRRkJASnbJP4lRwRtBSk7QEoXYmDZTsOrLqbhWYrHr-eGTsJLBQJccrBE8V2xuPPM-NvCHlkU2EKVRaJcAwOKKxkSeFMnnhW1GAL64rX6BqYHsqDI_5qJmZdViXehYn8EIPDDVdGsNe4wI1td3-Shrbz5USCOoL5xVQtxEOvB-aorK_WihFKqTLR886m-W7_4sZOdBEn9et5MPPPbMlfUWzYhvavkvf9AGL2ycnkbG0n7vtv3I7_N8Jr5EqHTunTqE7XyQXfjMilaRd_H5HL0ctH4-WlEdlGrBqpnm-Qz3tN65d24WlXiuIDXdV03mDih6dYuSZygn-jX4I_tqUAmOnSnIbKXDQy2SILCA3lefD9eUMXmKpOV3bwHkM7prW2ft3eJEf7e2-fHSRdRYfEcbC6iS8yLw23Js9dWou64KxSsvJV5iSGwK3PHVPOlLyqpa_KzIrCCaypJXNufMVuka1m1fg7hIIWAZKrRQn4hsO5B5CjkIYhl46QSpkxedL_Xe06unOsurHQkag51zC9Gqd3TB4Okp8ixcc5Mo-DggwC5vQEU-KU0MeHLzR7d_xcqVmq2Zjs9BqkO2vQajiSZkiDnyr41tAM6xiDM6bxqzOUwRAvXjUek9tR4YaP5WAoAXlCL9SGKg4CyBG-2dLMPwaucJw5xQX0P2jaXweo37yc4vPuvwreI9uAHTHxM8nEDtkCHfH3AZ-t7YOwEn8AtA84ng |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED-NTYJJiI_yVRhgJARP6ZI4thPxhGCjg7UPsLE-TLKcxIFqbQpLJz7-eu7iJFAYEuIpD74otnM-_3x3_h3A49QXJlZJ7ImM4wGFJ9yLMxN6lscF2sIijwpyDYzGcngYvZ6IyRo8a-_COH6IzuFGK6O217TAySG9_ZM1tJrOBxL18QJsUEHv-jz1tuOOCtp6rRSjlCoQLfOsH263b67sRRs0rV_PA5p_5kv-imPrjWj3Khy3Q3D5JyeDs2U6yL7_xu74n2O8BlcagMqeO426Dmu27MHFUROC78Fl5-hj7v5SDzYJrjq25xvweaes7DydWdZUo_jAFgWblpT7YRkVr3G04N_Yl9olWzHEzGxuTuviXMyR2RIRCKsr9ND705LNKFudLdLOgYztlNla2WV1Ew53dw5eDL2mqIOXRWh4PRsHVpooNWGY-YUo4ojnSuY2DzJJUfDUhhlXmUmivJA2T4JUxJmgsloyjIzN-S1YLxelvQMMFQnBXCEShDgRHn0QPAppONHpCKmU6cPT9vfqrGE8p8IbM-24mkON06tpevvwqJP85Fg-zpF5UmtIJ2BOTygrTgl9NH6l-fujl0pNfM37sNWqkG4MQqXxVBoQE76v8FtdMy5lis-Y0i7OSIaivHTbuA-3ncZ1HwvRViL4xF6oFV3sBIgmfLWlnH6s6cJp5lQksP-1qv11gPrd3oied_9V8CFcGh6M9vX-3vjNPdhEKEl5oF4gtmAd9cXeR7i2TB_Uy_IHDYk8uQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLZgk6ZJiEu5FQYYCcFTuiS-JY-IrmxAKwSMVeLBchwHqrXpWDpx-fWcEyeBwpAQT3nwiRI7n53P5xx_h5BHWShMotIkEJbBBoWlLEisiQPHkgLWwiLnBboGxhO5f8hfTMW0yarEszBeH6JzuOHMqNdrnOAnebH7UzS0mi0GEuB4kWxyGSaI6OGbTjoqasu1YohSqki0wrNhvNveufYr2sRR_Xoez_wzXfJXGlv_h0ZXyIe2Bz795HhwtsoG9vtv4o7_18Wr5HJDT-lTj6dr5IIre2Rr3ATge-SSd_NRf3qpR7aRrHqt5-vk815ZuUU2d7SpRfGRLgs6KzHzw1EsXeNFwb_RL7VDtqLAmOnCnNaluaiXskUZEFrX58H7ZyWdY646XWad-xjaMa-1cqvqBjkc7b17th80JR0Cy2HZDVwSOWl4ZuLYhoUoEs5yJXOXR1ZiDDxzsWXKmpTnhXR5GmUisQKLasmYG5ezm2SjXJbuNqEAI6ByhUiB4HDY-AB1FNIwFNMRUinTJ0_ar6tto3eOZTfm2is1xxqGV-Pw9snDzvLEa3ycY_O4BkhnYE6PMSdOCX00ea7Z-6OhUtNQsz7ZaRGkm-Wg0rAnjVAHP1TwrK4ZJjJGZ0zplmdogzFePGvcJ7c84LqHxbBSAvWEt1BrUOwMUCR8vaWcfarFwnHkFBfw_jXS_tpB_fZgjNc7_2r4gGy9Ho70q4PJy7tkG3gkJoEGkdghGwAXdw-42iq7X0_KH1ODO3E |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ensemble+learning+of+inverse+probability+weights+for+marginal+structural+modeling+in+large+observational+datasets&rft.jtitle=Statistics+in+medicine&rft.au=Gruber%2C+Susan&rft.au=Logan%2C+Roger+W.&rft.au=Jarr%C3%ADn%2C+Inmaculada&rft.au=Monge%2C+Susana&rft.date=2015-01-15&rft.issn=0277-6715&rft.eissn=1097-0258&rft.volume=34&rft.issue=1&rft.spage=106&rft.epage=117&rft_id=info:doi/10.1002%2Fsim.6322&rft.externalDBID=10.1002%252Fsim.6322&rft.externalDocID=SIM6322 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0277-6715&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0277-6715&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0277-6715&client=summon |