Ensemble learning of inverse probability weights for marginal structural modeling in large observational datasets

Inverse probability weights used to fit marginal structural models are typically estimated using logistic regression. However, a data‐adaptive procedure may be able to better exploit information available in measured covariates. By combining predictions from multiple algorithms, ensemble learning of...

Full description

Saved in:
Bibliographic Details
Published inStatistics in medicine Vol. 34; no. 1; pp. 106 - 117
Main Authors Gruber, Susan, Logan, Roger W., Jarrín, Inmaculada, Monge, Susana, Hernán, Miguel A.
Format Journal Article
LanguageEnglish
Published England Blackwell Publishing Ltd 15.01.2015
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Inverse probability weights used to fit marginal structural models are typically estimated using logistic regression. However, a data‐adaptive procedure may be able to better exploit information available in measured covariates. By combining predictions from multiple algorithms, ensemble learning offers an alternative to logistic regression modeling to further reduce bias in estimated marginal structural model parameters. We describe the application of two ensemble learning approaches to estimating stabilized weights: super learning (SL), an ensemble machine learning approach that relies on V‐fold cross validation, and an ensemble learner (EL) that creates a single partition of the data into training and validation sets. Longitudinal data from two multicenter cohort studies in Spain (CoRIS and CoRIS‐MD) were analyzed to estimate the mortality hazard ratio for initiation versus no initiation of combined antiretroviral therapy among HIV positive subjects. Both ensemble approaches produced hazard ratio estimates further away from the null, and with tighter confidence intervals, than logistic regression modeling. Computation time for EL was less than half that of SL. We conclude that ensemble learning using a library of diverse candidate algorithms offers an alternative to parametric modeling of inverse probability weights when fitting marginal structural models. With large datasets, EL provides a rich search over the solution space in less time than SL with comparable results. Copyright © 2014 John Wiley & Sons, Ltd.
AbstractList Inverse probability weights used to fit marginal structural models are typically estimated using logistic regression. However, a data‐adaptive procedure may be able to better exploit information available in measured covariates. By combining predictions from multiple algorithms, ensemble learning offers an alternative to logistic regression modeling to further reduce bias in estimated marginal structural model parameters. We describe the application of two ensemble learning approaches to estimating stabilized weights: super learning (SL), an ensemble machine learning approach that relies on V‐fold cross validation, and an ensemble learner (EL) that creates a single partition of the data into training and validation sets. Longitudinal data from two multicenter cohort studies in Spain (CoRIS and CoRIS‐MD) were analyzed to estimate the mortality hazard ratio for initiation versus no initiation of combined antiretroviral therapy among HIV positive subjects. Both ensemble approaches produced hazard ratio estimates further away from the null, and with tighter confidence intervals, than logistic regression modeling. Computation time for EL was less than half that of SL. We conclude that ensemble learning using a library of diverse candidate algorithms offers an alternative to parametric modeling of inverse probability weights when fitting marginal structural models. With large datasets, EL provides a rich search over the solution space in less time than SL with comparable results. Copyright © 2014 John Wiley & Sons, Ltd.
Inverse probability weights used to fit marginal structural models are typically estimated using logistic regression. However, a data-adaptive procedure may be able to better exploit information available in measured covariates. By combining predictions from multiple algorithms, ensemble learning offers an alternative to logistic regression modeling to further reduce bias in estimated marginal structural model parameters. We describe the application of two ensemble learning approaches to estimating stabilized weights: super learning (SL), an ensemble machine learning approach that relies on V-fold cross validation, and an ensemble learner (EL) that creates a single partition of the data into training and validation sets. Longitudinal data from two multicenter cohort studies in Spain (CoRIS and CoRIS-MD) were analyzed to estimate the mortality hazard ratio for initiation versus no initiation of combined antiretroviral therapy among HIV positive subjects. Both ensemble approaches produced hazard ratio estimates further away from the null, and with tighter confidence intervals, than logistic regression modeling. Computation time for EL was less than half that of SL. We conclude that ensemble learning using a library of diverse candidate algorithms offers an alternative to parametric modeling of inverse probability weights when fitting marginal structural models. With large datasets, EL provides a rich search over the solution space in less time than SL with comparable results.Inverse probability weights used to fit marginal structural models are typically estimated using logistic regression. However, a data-adaptive procedure may be able to better exploit information available in measured covariates. By combining predictions from multiple algorithms, ensemble learning offers an alternative to logistic regression modeling to further reduce bias in estimated marginal structural model parameters. We describe the application of two ensemble learning approaches to estimating stabilized weights: super learning (SL), an ensemble machine learning approach that relies on V-fold cross validation, and an ensemble learner (EL) that creates a single partition of the data into training and validation sets. Longitudinal data from two multicenter cohort studies in Spain (CoRIS and CoRIS-MD) were analyzed to estimate the mortality hazard ratio for initiation versus no initiation of combined antiretroviral therapy among HIV positive subjects. Both ensemble approaches produced hazard ratio estimates further away from the null, and with tighter confidence intervals, than logistic regression modeling. Computation time for EL was less than half that of SL. We conclude that ensemble learning using a library of diverse candidate algorithms offers an alternative to parametric modeling of inverse probability weights when fitting marginal structural models. With large datasets, EL provides a rich search over the solution space in less time than SL with comparable results.
Inverse probability weights used to fit marginal structural models are typically estimated using logistic regression. However a data-adaptive procedure may be able to better exploit information available in measured covariates. By combining predictions from multiple algorithms, ensemble learning offers an alternative to logistic regression modeling to further reduce bias in estimated marginal structural model parameters. We describe the application of two ensemble learning approaches to estimating stabilized weights: super learning (SL), an ensemble machine learning approach that relies on V -fold cross validation, and an ensemble learner (EL) that creates a single partition of the data into training and validation sets. Longitudinal data from two multicenter cohort studies in Spain (CoRIS and CoRIS-MD) were analyzed to estimate the mortality hazard ratio for initiation versus no initiation of combined antiretroviral therapy among HIV positive subjects. Both ensemble approaches produced hazard ratio estimates further away from the null, and with tighter confidence intervals, than logistic regression modeling. Computation time for EL was less than half that of SL. We conclude that ensemble learning using a library of diverse candidate algorithms offers an alternative to parametric modeling of inverse probability weights when fitting marginal structural models. With large datasets, EL provides a rich search over the solution space in less time than SL with comparable results.
Inverse probability weights used to fit marginal structural models are typically estimated using logistic regression. However, a data-adaptive procedure may be able to better exploit information available in measured covariates. By combining predictions from multiple algorithms, ensemble learning offers an alternative to logistic regression modeling to further reduce bias in estimated marginal structural model parameters. We describe the application of two ensemble learning approaches to estimating stabilized weights: super learning (SL), an ensemble machine learning approach that relies on V-fold cross validation, and an ensemble learner (EL) that creates a single partition of the data into training and validation sets. Longitudinal data from two multicenter cohort studies in Spain (CoRIS and CoRIS-MD) were analyzed to estimate the mortality hazard ratio for initiation versus no initiation of combined antiretroviral therapy among HIV positive subjects. Both ensemble approaches produced hazard ratio estimates further away from the null, and with tighter confidence intervals, than logistic regression modeling. Computation time for EL was less than half that of SL. We conclude that ensemble learning using a library of diverse candidate algorithms offers an alternative to parametric modeling of inverse probability weights when fitting marginal structural models. With large datasets, EL provides a rich search over the solution space in less time than SL with comparable results.
Author Hernán, Miguel A.
Jarrín, Inmaculada
Gruber, Susan
Monge, Susana
Logan, Roger W.
AuthorAffiliation a Department of Epidemiology, Harvard School of Public Health, Boston, MA
d Harvard-MIT Division of Health Sciences and Technology, Boston, MA
b National Center of Epidemiology, Instituto de Salud Carlos III, Madrid, Spain
c Department of Biostatistics, Harvard School of Public Health, Boston, MA
AuthorAffiliation_xml – name: b National Center of Epidemiology, Instituto de Salud Carlos III, Madrid, Spain
– name: a Department of Epidemiology, Harvard School of Public Health, Boston, MA
– name: d Harvard-MIT Division of Health Sciences and Technology, Boston, MA
– name: c Department of Biostatistics, Harvard School of Public Health, Boston, MA
Author_xml – sequence: 1
  givenname: Susan
  surname: Gruber
  fullname: Gruber, Susan
  email: Correspondence to: Susan Gruber, Department of Epidemiology, Harvard School of Public Health, Boston, MA 02115, U.S.A., sgruber@hsph.harvard.edu
  organization: Department of Epidemiology, Harvard School of Public Health, MA, Boston, U.S.A
– sequence: 2
  givenname: Roger W.
  surname: Logan
  fullname: Logan, Roger W.
  organization: Department of Epidemiology, Harvard School of Public Health, MA, Boston, U.S.A
– sequence: 3
  givenname: Inmaculada
  surname: Jarrín
  fullname: Jarrín, Inmaculada
  organization: National Center of Epidemiology, Instituto de Salud Carlos III, Madrid, Spain
– sequence: 4
  givenname: Susana
  surname: Monge
  fullname: Monge, Susana
  organization: National Center of Epidemiology, Instituto de Salud Carlos III, Madrid, Spain
– sequence: 5
  givenname: Miguel A.
  surname: Hernán
  fullname: Hernán, Miguel A.
  organization: Department of Epidemiology, Harvard School of Public Health, Boston, MA, U.S.A
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25316152$$D View this record in MEDLINE/PubMed
BookMark eNp1kU1v1DAQhi1URLcFiV-AInHhksUfsb17QUKllEoFDnyUm-U4k62LY29tZ8v-exxaFlrBySPNM6_fmfcA7fngAaGnBM8JxvRlssNcMEofoBnBS1ljyhd7aIaplLWQhO-jg5QuMSaEU_kI7VPOiCj1DF0d-wRD66ByoKO3flWFvrJ-AzFBtY6h1a11Nm-ra7Cri5yqPsRq0HFlvXZVynE0eYylHEIHbpq3vnKlD1VoE8SNzjZMaKezTpDTY_Sw1y7Bk9v3EH15e_z56F199vHk9Oj1WW0aKWgNCwJCN62m1OCe94uGdVJ00BEjCJW4BWqYNHrZdL2AbklavjBc8IYK2mjo2CF6daO7HtsBOgM-F5tqHW1xv1VBW3W34-2FWoWNmhRkw4vAi1uBGK5GSFkNNhlwTnsIY1JEMI4JpmxZ0Of30MswxrL1RDVkuRANloV69rejnZXfafz50cSQUoR-hxCspqBVCVpNQRd0fg81Nv86ddnFun8N1DcD19bB9r_C6tPp-7u8TRl-7HgdvyshmeTq_MOJYl_P30j5DSvGfgIsssrf
CODEN SMEDDA
CitedBy_id crossref_primary_10_1515_ijb_2015_0028
crossref_primary_10_1097_EDE_0000000000000787
crossref_primary_10_1080_10543406_2022_2162067
crossref_primary_10_1093_infdis_jiaa717
crossref_primary_10_1016_j_bbih_2024_100793
crossref_primary_10_1093_aje_kwad089
crossref_primary_10_3390_ijerph13030311
crossref_primary_10_1016_j_socscimed_2016_07_045
crossref_primary_10_1080_00031305_2020_1867638
crossref_primary_10_1080_00273171_2016_1200454
crossref_primary_10_1002_sim_10336
crossref_primary_10_1007_s11553_023_01033_8
crossref_primary_10_1186_s13071_020_04016_2
crossref_primary_10_1002_sim_7266
crossref_primary_10_1002_pds_4059
crossref_primary_10_1016_j_brat_2019_103412
crossref_primary_10_1089_end_2017_0742
crossref_primary_10_1097_EDE_0000000000000409
crossref_primary_10_1093_aje_kwv339
crossref_primary_10_1002_pds_4258
crossref_primary_10_1093_ije_dyz132
crossref_primary_10_1098_rspb_2020_2815
crossref_primary_10_1002_sim_8591
crossref_primary_10_1109_ACCESS_2017_2696365
crossref_primary_10_1093_aje_kwv254
crossref_primary_10_3390_ijerph14121546
crossref_primary_10_1155_2019_7290285
crossref_primary_10_1017_S0033291723000211
crossref_primary_10_1161_CIRCHEARTFAILURE_122_010426
crossref_primary_10_1016_j_joca_2022_08_010
crossref_primary_10_1093_ije_dyy218
crossref_primary_10_1080_02664763_2019_1582614
crossref_primary_10_1214_24_STS945
crossref_primary_10_1097_MOU_0000000000000820
crossref_primary_10_1002_sim_6842
crossref_primary_10_1177_0272989X20986545
crossref_primary_10_1177_0193841X21992199
crossref_primary_10_1515_jci_2020_0033
crossref_primary_10_1002_sim_8164
crossref_primary_10_1038_s41598_021_81110_0
crossref_primary_10_1177_0962280218774817
Cites_doi 10.1002/sim.4780091214
10.2202/1557-4679.1182
10.1613/jair.594
10.1007/BF00117832
10.1214/09-SS054
10.1016/S0140-6736(03)13802-0
10.1524/stnd.2006.24.3.351
10.1037/1082-989X.9.4.403
10.1002/sim.3782
10.1007/978-0-387-21706-2
10.32614/CRAN.package.SuperLearner
10.1016/j.jclinepi.2013.01.016
10.1016/S0893-6080(05)80023-1
10.1515/jci-2012-0003
10.1097/QAD.0b013e3283324283
10.1111/j.1541-0420.2012.01830.x
10.1080/01621459.2014.958155
10.4249/scholarpedia.2776
10.1097/00001648-200009000-00012
10.1016/S0140-6736(03)14570-9
ContentType Journal Article
Copyright Copyright © 2014 John Wiley & Sons, Ltd.
Copyright Wiley Subscription Services, Inc. Jan 15, 2015
Copyright © 2014 John Wiley & Sons, Ltd. 2014
Copyright_xml – notice: Copyright © 2014 John Wiley & Sons, Ltd.
– notice: Copyright Wiley Subscription Services, Inc. Jan 15, 2015
– notice: Copyright © 2014 John Wiley & Sons, Ltd. 2014
DBID BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
K9.
7X8
5PM
DOI 10.1002/sim.6322
DatabaseName Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic

CrossRef
MEDLINE
ProQuest Health & Medical Complete (Alumni)
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Statistics
Public Health
EISSN 1097-0258
EndPage 117
ExternalDocumentID PMC4262745
3545279691
25316152
10_1002_sim_6322
SIM6322
ark_67375_WNG_3VWD77X0_3
Genre article
Journal Article
Research Support, N.I.H., Extramural
Feature
GeographicLocations Spain
GeographicLocations_xml – name: Spain
GrantInformation_xml – fundername: NIAID NIH HHS
  grantid: R01 AI073127
– fundername: NIAID NIH HHS
  grantid: R01-AI073127
– fundername: NIAID NIH HHS
  grantid: R01 AI102634
GroupedDBID ---
.3N
.GA
05W
0R~
10A
123
1L6
1OB
1OC
1ZS
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5RE
5VS
66C
6PF
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAWTL
AAXRX
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABOCM
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
ROL
RWI
RX1
RYL
SUPJJ
SV3
TN5
UB1
V2E
W8V
W99
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WUP
WWH
WXSBR
WYISQ
XBAML
XG1
XV2
ZZTAW
~IA
~WT
AAHQN
AAMNL
AANHP
AAYCA
ACRPL
ACYXJ
ADNMO
AFWVQ
ALVPJ
AAMMB
AAYXX
AEFGJ
AEYWJ
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
AMVHM
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
K9.
7X8
.Y3
5PM
BDRZF
ID FETCH-LOGICAL-c4762-e81e6a4ba22c0f5f843d76ded1c61270be2c37ca94df6ed91b58c56542624aed3
IEDL.DBID DR2
ISSN 0277-6715
1097-0258
IngestDate Thu Aug 21 13:58:47 EDT 2025
Fri Jul 11 11:32:17 EDT 2025
Sun Jul 13 03:47:45 EDT 2025
Thu Apr 03 07:08:23 EDT 2025
Wed Aug 20 07:47:51 EDT 2025
Thu Apr 24 22:54:19 EDT 2025
Wed Jan 22 16:59:50 EST 2025
Wed Oct 30 09:51:22 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords ensemble learning
data-adaptive
inverse probability weighting
marginal structural model
super learning
longitudinal data
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
Copyright © 2014 John Wiley & Sons, Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4762-e81e6a4ba22c0f5f843d76ded1c61270be2c37ca94df6ed91b58c56542624aed3
Notes ArticleID:SIM6322
istex:7A0C99876A785994C06D85242671F1CF71FD942F
Supporting Info Item
ark:/67375/WNG-3VWD77X0-3
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-0127-0099
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/4262745
PMID 25316152
PQID 1641986407
PQPubID 48361
PageCount 12
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4262745
proquest_miscellaneous_1635010239
proquest_journals_1641986407
pubmed_primary_25316152
crossref_primary_10_1002_sim_6322
crossref_citationtrail_10_1002_sim_6322
wiley_primary_10_1002_sim_6322_SIM6322
istex_primary_ark_67375_WNG_3VWD77X0_3
PublicationCentury 2000
PublicationDate 15 January 2015
PublicationDateYYYYMMDD 2015-01-15
PublicationDate_xml – month: 01
  year: 2015
  text: 15 January 2015
  day: 15
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: New York
PublicationTitle Statistics in medicine
PublicationTitleAlternate Statist. Med
PublicationYear 2015
Publisher Blackwell Publishing Ltd
Wiley Subscription Services, Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley Subscription Services, Inc
References Vermeulen K, Vansteelandt S. Bias-reduced doubly robust estimation. Journal of the American Statistical Association 2014. (under revision).
Zigler CM, Watts K, Yeh RW, Wang Y, Coulli BA, Dominici F. Model feedback in bayesian propensity score estimation. Biometrics 2013.
Hastie T, Tibshirani R, Friedman J. The Elements of Statistical Learning, Springer Series in Statistics. Springer: New York 2002.
van der Vaart A, Dudoit S, van der Laan M. Oracle inequalities for multi-fold cross-validation. Statistics and Decisions 2006; 24(3):351-371.
Hernan MA, Brumback B, Robins JM. Marginal structural models to estimate the causal effect of zidovudine on the survival of HIV-positive men. Epidemiology 2000; 11(5):561-570.
Breiman L, Friedman JH, Olshen R, Stone CJ. Classification and Regression Trees, The Wadsworth statistics/probability series. Wadsworth International Group: Chapman and Hall, New York, 1984.
Polikar R. Ensemble learning. Scholarpedia 2009; 4(1):2776.
Wolpert D. Stacked generalization. Neural Networks 1992; 5:241-259.
Mocroft A, Ledergerber B, Katlama C, Kirk O, Reiss P, d'Arminio Monforte A, Knysz B, M Dietrich, Phillips AN, Lundgren JD, EuroSIDA study group. Decline in the AIDS and death rates in the EuroSIDA study: an observational study. Lancet 2003; 362:22-29.
van der Laan M, Polley E, Hubbard A. Super learner. Statistical Applications in Genetics and Molecular Biology 2007; 6(25):1-25.
The HIV-CAUSAL Collaboration. The effect of combined antiretroviral therapy on the overall mortality of HIV-infected individuals. AIDS 2010; 24(1):123-137.
Venables WN, Ripley BD. Modern Applied Statistics with S 4th edn. Springer: New York, 2002. http://www.stats.ox.ac.uk/pub/MASS4 [Accessed on 15 October 2013].
Ridgeway G, McCaffrey D, Morral A, Burgette L, Griffin B. Toolkit for Weighting and Analysis of Nonequivalent Groups: A Tutorial for the Twang Package. 2013. URL http://CRAN.R-project.org/package=gbm, R package. [Accessed on 15 October 2013].
D'Agostino R, Lee M, Belanger A, Cupples L, Anderson K, Kannel W. Relation of pooled logistic regression to time dependent Cox regression analysis: the Framingham Heart Study. Statistics in Medicine 1990; 12:1501-1515.
Arlot S, Celisse A. A survey of cross-validation procedures for model selection. Statistic Surveys 2010; 4:40-79.
Neugebauer R, Fireman B, Roy J, Raebel M, Nichols G, O'Connor P. Super learning to hedge against incorrect inference from arbitrary parametric assumptions in marginal structural modeling. Journal of Clinical Epidemiology 2013; 66:S99-S109.
McCaffrey D, Ridgeway G, Morral A. Propensity score estimation with boosted regression for evaluating causal effects in observational studies. Psychological Methods 2004; 9(4):403-425.
Neugebauer R, Chandra M, Paredes A, Graham D, McCloskey C, Go A. A marginal structural modeling approach with super learning for a study on oral bisphosphonate therapy and atrial fibrillation. Journal of Causal Inference 2013; 1:21-50.
Caro-Murillo AM, Castilla J, Pérez-Hoyos S, Miró JM, Podzamczer D, Rubio R, Riera M, Viciana P, López Aldeguer J, Iribarren JA, de los Santos-Gil I, Gómez-Sirvent JL, Berenguer J, F Gutiérrez, Saumoy M, Segura F, Soriano V, Peña A, Pulido F, Oteo JA, Leal M, Casabona J, del Amo J, Moreno S, Grupo de trabajo de la Cohorte de la Red de Investigación en Sida (CoRIS). Spanish cohort of naive HIV-infected patients (CoRIS): rationale, organization and initial results. Enfermedades Infecciosas Y Microbiologia Clinica 2007; 25:23:31.
Gruber S, van der Laan M. An application of collaborative targeted maximum likelihood estimation in causal inference and genomics. The International Journal of Biostatistics 2010; 6(1):1-30.
Ting K, Witten IH. Issues in stacked generalization. Journal of Artificial Intelligence Research 1999; 10:271-289.
Development Core Team, R. R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing: Vienna, Austria, 2012. URL http://www.R-project.org [Accessed on 15 October 2013].
Babiker A, Bhaskaran K, Darbyshire J, Pezzotti P, Porter K, Walker A. Determinants of survival following HIV-1 seroconversion after the introduction of HAART. Lancet 2003; 362:1267-1274.
van der Laan M, Gruber S. Collaborative double robust penalized targeted maximum likelihood estimation. The International Journal of Biostatistics 2010; 6(1):1-70.
Breiman L. Stacked regression. Machine Learning 1996; 24:49-64.
Lee B, Lessler J, Stuart E. Improved propensity score weighting using machine learning. Statistics in Medicine 2009; 29:337-346.
McCaffrey D, Burgette L, Griffin B, Martin C. Toolkit for Weighting and Analysis of Nonequivalent Groups: A Tutorial for the Twang SAS Macro, 2014. URL http://www.rand.org/pubs/tools/TL136.html [Accessed on 6 October 2014].
1990; 12
2013; 1
2013; 66
2012
2010
2004; 9
2009
2003
2002
2009; 29
2010; 24
2006; 24
2000; 11
2007; 6
1999; 10
1984
2014
2009; 4
2013
1996; 24
2010; 4
2007; 25
2010; 6
2003; 362
1992; 5
e_1_2_8_28_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_26_1
e_1_2_8_27_1
Robins JM (e_1_2_8_10_1) 2009
McCaffrey D (e_1_2_8_21_1) 2014
e_1_2_8_3_1
e_1_2_8_2_1
Caro‐Murillo AM (e_1_2_8_7_1) 2007; 25
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_9_1
e_1_2_8_8_1
e_1_2_8_23_1
Breiman L (e_1_2_8_19_1) 1984
Ridgeway G (e_1_2_8_20_1) 2013
e_1_2_8_17_1
e_1_2_8_18_1
Lee B (e_1_2_8_11_1) 2009; 29
e_1_2_8_13_1
e_1_2_8_14_1
e_1_2_8_15_1
e_1_2_8_16_1
Development Core Team, R (e_1_2_8_24_1) 2012
Hastie T (e_1_2_8_22_1) 2002
Laan M (e_1_2_8_33_1) 2010; 6
e_1_2_8_32_1
e_1_2_8_31_1
e_1_2_8_34_1
e_1_2_8_12_1
e_1_2_8_30_1
Laan M (e_1_2_8_5_1) 2007; 6
17261243 - Enferm Infecc Microbiol Clin. 2007 Jan;25(1):23-31
17910531 - Stat Appl Genet Mol Biol. 2007;6:Article25
23379793 - Biometrics. 2013 Mar;69(1):263-73
10955409 - Epidemiology. 2000 Sep;11(5):561-70
23849160 - J Clin Epidemiol. 2013 Aug;66(8 Suppl):S99-109
2281238 - Stat Med. 1990 Dec;9(12):1501-15
19960510 - Stat Med. 2010 Feb 10;29(3):337-46
14575971 - Lancet. 2003 Oct 18;362(9392):1267-74
12853195 - Lancet. 2003 Jul 5;362(9377):22-9
20628637 - Int J Biostat. 2010;6(1):Article 17
19770621 - AIDS. 2010 Jan 2;24(1):123-37
15598095 - Psychol Methods. 2004 Dec;9(4):403-25
21731530 - Int J Biostat. 2010;6(1):Article 18
References_xml – reference: Hernan MA, Brumback B, Robins JM. Marginal structural models to estimate the causal effect of zidovudine on the survival of HIV-positive men. Epidemiology 2000; 11(5):561-570.
– reference: Hastie T, Tibshirani R, Friedman J. The Elements of Statistical Learning, Springer Series in Statistics. Springer: New York 2002.
– reference: van der Vaart A, Dudoit S, van der Laan M. Oracle inequalities for multi-fold cross-validation. Statistics and Decisions 2006; 24(3):351-371.
– reference: van der Laan M, Gruber S. Collaborative double robust penalized targeted maximum likelihood estimation. The International Journal of Biostatistics 2010; 6(1):1-70.
– reference: D'Agostino R, Lee M, Belanger A, Cupples L, Anderson K, Kannel W. Relation of pooled logistic regression to time dependent Cox regression analysis: the Framingham Heart Study. Statistics in Medicine 1990; 12:1501-1515.
– reference: Breiman L, Friedman JH, Olshen R, Stone CJ. Classification and Regression Trees, The Wadsworth statistics/probability series. Wadsworth International Group: Chapman and Hall, New York, 1984.
– reference: Breiman L. Stacked regression. Machine Learning 1996; 24:49-64.
– reference: Venables WN, Ripley BD. Modern Applied Statistics with S 4th edn. Springer: New York, 2002. http://www.stats.ox.ac.uk/pub/MASS4 [Accessed on 15 October 2013].
– reference: The HIV-CAUSAL Collaboration. The effect of combined antiretroviral therapy on the overall mortality of HIV-infected individuals. AIDS 2010; 24(1):123-137.
– reference: Caro-Murillo AM, Castilla J, Pérez-Hoyos S, Miró JM, Podzamczer D, Rubio R, Riera M, Viciana P, López Aldeguer J, Iribarren JA, de los Santos-Gil I, Gómez-Sirvent JL, Berenguer J, F Gutiérrez, Saumoy M, Segura F, Soriano V, Peña A, Pulido F, Oteo JA, Leal M, Casabona J, del Amo J, Moreno S, Grupo de trabajo de la Cohorte de la Red de Investigación en Sida (CoRIS). Spanish cohort of naive HIV-infected patients (CoRIS): rationale, organization and initial results. Enfermedades Infecciosas Y Microbiologia Clinica 2007; 25:23:31.
– reference: Arlot S, Celisse A. A survey of cross-validation procedures for model selection. Statistic Surveys 2010; 4:40-79.
– reference: Development Core Team, R. R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing: Vienna, Austria, 2012. URL http://www.R-project.org [Accessed on 15 October 2013].
– reference: McCaffrey D, Ridgeway G, Morral A. Propensity score estimation with boosted regression for evaluating causal effects in observational studies. Psychological Methods 2004; 9(4):403-425.
– reference: Polikar R. Ensemble learning. Scholarpedia 2009; 4(1):2776.
– reference: Mocroft A, Ledergerber B, Katlama C, Kirk O, Reiss P, d'Arminio Monforte A, Knysz B, M Dietrich, Phillips AN, Lundgren JD, EuroSIDA study group. Decline in the AIDS and death rates in the EuroSIDA study: an observational study. Lancet 2003; 362:22-29.
– reference: Lee B, Lessler J, Stuart E. Improved propensity score weighting using machine learning. Statistics in Medicine 2009; 29:337-346.
– reference: van der Laan M, Polley E, Hubbard A. Super learner. Statistical Applications in Genetics and Molecular Biology 2007; 6(25):1-25.
– reference: Neugebauer R, Chandra M, Paredes A, Graham D, McCloskey C, Go A. A marginal structural modeling approach with super learning for a study on oral bisphosphonate therapy and atrial fibrillation. Journal of Causal Inference 2013; 1:21-50.
– reference: Zigler CM, Watts K, Yeh RW, Wang Y, Coulli BA, Dominici F. Model feedback in bayesian propensity score estimation. Biometrics 2013.
– reference: McCaffrey D, Burgette L, Griffin B, Martin C. Toolkit for Weighting and Analysis of Nonequivalent Groups: A Tutorial for the Twang SAS Macro, 2014. URL http://www.rand.org/pubs/tools/TL136.html [Accessed on 6 October 2014].
– reference: Neugebauer R, Fireman B, Roy J, Raebel M, Nichols G, O'Connor P. Super learning to hedge against incorrect inference from arbitrary parametric assumptions in marginal structural modeling. Journal of Clinical Epidemiology 2013; 66:S99-S109.
– reference: Gruber S, van der Laan M. An application of collaborative targeted maximum likelihood estimation in causal inference and genomics. The International Journal of Biostatistics 2010; 6(1):1-30.
– reference: Babiker A, Bhaskaran K, Darbyshire J, Pezzotti P, Porter K, Walker A. Determinants of survival following HIV-1 seroconversion after the introduction of HAART. Lancet 2003; 362:1267-1274.
– reference: Ridgeway G, McCaffrey D, Morral A, Burgette L, Griffin B. Toolkit for Weighting and Analysis of Nonequivalent Groups: A Tutorial for the Twang Package. 2013. URL http://CRAN.R-project.org/package=gbm, R package. [Accessed on 15 October 2013].
– reference: Ting K, Witten IH. Issues in stacked generalization. Journal of Artificial Intelligence Research 1999; 10:271-289.
– reference: Wolpert D. Stacked generalization. Neural Networks 1992; 5:241-259.
– reference: Vermeulen K, Vansteelandt S. Bias-reduced doubly robust estimation. Journal of the American Statistical Association 2014. (under revision).
– volume: 5
  start-page: 241
  year: 1992
  end-page: 259
  article-title: Stacked generalization
  publication-title: Neural Networks
– volume: 9
  start-page: 403
  issue: 4
  year: 2004
  end-page: 425
  article-title: Propensity score estimation with boosted regression for evaluating causal effects in observational studies
  publication-title: Psychological Methods
– volume: 6
  start-page: 1
  issue: 1
  year: 2010
  end-page: 70
  article-title: Collaborative double robust penalized targeted maximum likelihood estimation
  publication-title: The International Journal of Biostatistics
– year: 2013
  article-title: Model feedback in bayesian propensity score estimation
  publication-title: Biometrics
– year: 2003
– year: 2014
  article-title: Bias‐reduced doubly robust estimation
  publication-title: Journal of the American Statistical Association
– volume: 362
  start-page: 1267
  year: 2003
  end-page: 1274
  article-title: Determinants of survival following HIV‐1 seroconversion after the introduction of HAART
  publication-title: Lancet
– volume: 24
  start-page: 123
  issue: 1
  year: 2010
  end-page: 137
  article-title: The effect of combined antiretroviral therapy on the overall mortality of HIV‐infected individuals
  publication-title: AIDS
– volume: 25
  start-page: 23:31
  year: 2007
  article-title: Spanish cohort of naive HIV‐infected patients (CoRIS): rationale, organization and initial results
  publication-title: Enfermedades Infecciosas Y Microbiologia Clinica
– volume: 11
  start-page: 561
  issue: 5
  year: 2000
  end-page: 570
  article-title: Marginal structural models to estimate the causal effect of zidovudine on the survival of HIV‐positive men
  publication-title: Epidemiology
– year: 2014
– volume: 6
  start-page: 1
  issue: 25
  year: 2007
  end-page: 25
  article-title: Super learner
  publication-title: Statistical Applications in Genetics and Molecular Biology
– year: 2010
– volume: 4
  start-page: 2776
  issue: 1
  year: 2009
  article-title: Ensemble learning
  publication-title: Scholarpedia
– volume: 29
  start-page: 337
  year: 2009
  end-page: 346
  article-title: Improved propensity score weighting using machine learning
  publication-title: Statistics in Medicine
– year: 2012
– volume: 1
  start-page: 21
  year: 2013
  end-page: 50
  article-title: A marginal structural modeling approach with super learning for a study on oral bisphosphonate therapy and atrial fibrillation
  publication-title: Journal of Causal Inference
– year: 1984
– volume: 6
  start-page: 1
  issue: 1
  year: 2010
  end-page: 30
  article-title: An application of collaborative targeted maximum likelihood estimation in causal inference and genomics
  publication-title: The International Journal of Biostatistics
– volume: 362
  start-page: 22
  year: 2003
  end-page: 29
  article-title: Decline in the AIDS and death rates in the EuroSIDA study: an observational study
  publication-title: Lancet
– year: 2002
– volume: 66
  start-page: S99
  year: 2013
  end-page: S109
  article-title: Super learning to hedge against incorrect inference from arbitrary parametric assumptions in marginal structural modeling
  publication-title: Journal of Clinical Epidemiology
– volume: 12
  start-page: 1501
  year: 1990
  end-page: 1515
  article-title: Relation of pooled logistic regression to time dependent Cox regression analysis: the Framingham Heart Study
  publication-title: Statistics in Medicine
– volume: 4
  start-page: 40
  year: 2010
  end-page: 79
  article-title: A survey of cross‐validation procedures for model selection
  publication-title: Statistic Surveys
– volume: 10
  start-page: 271
  year: 1999
  end-page: 289
  article-title: Issues in stacked generalization
  publication-title: Journal of Artificial Intelligence Research
– year: 2012
  article-title: SuperLearner: super learner prediction
– start-page: 553
  year: 2009
  end-page: 599
– volume: 24
  start-page: 49
  year: 1996
  end-page: 64
  article-title: Stacked regression
  publication-title: Machine Learning
– volume: 24
  start-page: 351
  issue: 3
  year: 2006
  end-page: 371
  article-title: Oracle inequalities for multi‐fold cross‐validation
  publication-title: Statistics and Decisions
– year: 2012
  article-title: V‐fold cross‐validation and V‐fold penalization in least‐squares density estimation
– year: 2013
– volume: 6
  start-page: 1
  issue: 25
  year: 2007
  ident: e_1_2_8_5_1
  article-title: Super learner
  publication-title: Statistical Applications in Genetics and Molecular Biology
– ident: e_1_2_8_9_1
  doi: 10.1002/sim.4780091214
– ident: e_1_2_8_34_1
  doi: 10.2202/1557-4679.1182
– ident: e_1_2_8_15_1
  doi: 10.1613/jair.594
– ident: e_1_2_8_17_1
  doi: 10.1007/BF00117832
– ident: e_1_2_8_6_1
– ident: e_1_2_8_14_1
  doi: 10.1214/09-SS054
– volume-title: Classification and Regression Trees
  year: 1984
  ident: e_1_2_8_19_1
– ident: e_1_2_8_27_1
  doi: 10.1016/S0140-6736(03)13802-0
– ident: e_1_2_8_23_1
  doi: 10.1524/stnd.2006.24.3.351
– ident: e_1_2_8_12_1
  doi: 10.1037/1082-989X.9.4.403
– start-page: 553
  volume-title: Advances in Longitudinal Data Analysis
  year: 2009
  ident: e_1_2_8_10_1
– volume: 29
  start-page: 337
  year: 2009
  ident: e_1_2_8_11_1
  article-title: Improved propensity score weighting using machine learning
  publication-title: Statistics in Medicine
  doi: 10.1002/sim.3782
– ident: e_1_2_8_18_1
  doi: 10.1007/978-0-387-21706-2
– volume-title: R: A Language and Environment for Statistical Computing
  year: 2012
  ident: e_1_2_8_24_1
– volume: 25
  start-page: 23:31
  year: 2007
  ident: e_1_2_8_7_1
  article-title: Spanish cohort of naive HIV‐infected patients (CoRIS): rationale, organization and initial results
  publication-title: Enfermedades Infecciosas Y Microbiologia Clinica
– ident: e_1_2_8_25_1
  doi: 10.32614/CRAN.package.SuperLearner
– volume-title: Toolkit for Weighting and Analysis of Nonequivalent Groups: A Tutorial for the Twang SAS Macro
  year: 2014
  ident: e_1_2_8_21_1
– ident: e_1_2_8_3_1
  doi: 10.1016/j.jclinepi.2013.01.016
– volume: 6
  start-page: 1
  issue: 1
  year: 2010
  ident: e_1_2_8_33_1
  article-title: Collaborative double robust penalized targeted maximum likelihood estimation
  publication-title: The International Journal of Biostatistics
– ident: e_1_2_8_30_1
– ident: e_1_2_8_16_1
  doi: 10.1016/S0893-6080(05)80023-1
– ident: e_1_2_8_4_1
  doi: 10.1515/jci-2012-0003
– ident: e_1_2_8_8_1
  doi: 10.1097/QAD.0b013e3283324283
– volume-title: The Elements of Statistical Learning
  year: 2002
  ident: e_1_2_8_22_1
– ident: e_1_2_8_32_1
  doi: 10.1111/j.1541-0420.2012.01830.x
– ident: e_1_2_8_31_1
  doi: 10.1080/01621459.2014.958155
– volume-title: Toolkit for Weighting and Analysis of Nonequivalent Groups: A Tutorial for the Twang Package
  year: 2013
  ident: e_1_2_8_20_1
– ident: e_1_2_8_13_1
  doi: 10.4249/scholarpedia.2776
– ident: e_1_2_8_2_1
  doi: 10.1097/00001648-200009000-00012
– ident: e_1_2_8_29_1
– ident: e_1_2_8_28_1
  doi: 10.1016/S0140-6736(03)14570-9
– ident: e_1_2_8_26_1
– reference: 2281238 - Stat Med. 1990 Dec;9(12):1501-15
– reference: 19770621 - AIDS. 2010 Jan 2;24(1):123-37
– reference: 10955409 - Epidemiology. 2000 Sep;11(5):561-70
– reference: 12853195 - Lancet. 2003 Jul 5;362(9377):22-9
– reference: 23379793 - Biometrics. 2013 Mar;69(1):263-73
– reference: 17261243 - Enferm Infecc Microbiol Clin. 2007 Jan;25(1):23-31
– reference: 20628637 - Int J Biostat. 2010;6(1):Article 17
– reference: 23849160 - J Clin Epidemiol. 2013 Aug;66(8 Suppl):S99-109
– reference: 19960510 - Stat Med. 2010 Feb 10;29(3):337-46
– reference: 15598095 - Psychol Methods. 2004 Dec;9(4):403-25
– reference: 17910531 - Stat Appl Genet Mol Biol. 2007;6:Article25
– reference: 14575971 - Lancet. 2003 Oct 18;362(9392):1267-74
– reference: 21731530 - Int J Biostat. 2010;6(1):Article 18
SSID ssj0011527
Score 2.3711739
Snippet Inverse probability weights used to fit marginal structural models are typically estimated using logistic regression. However, a data‐adaptive procedure may be...
Inverse probability weights used to fit marginal structural models are typically estimated using logistic regression. However, a data-adaptive procedure may be...
Inverse probability weights used to fit marginal structural models are typically estimated using logistic regression. However a data-adaptive procedure may be...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
istex
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 106
SubjectTerms Algorithms
Antiretroviral Therapy, Highly Active - statistics & numerical data
Artificial intelligence
Bias
Computer Simulation
Confidence Intervals
Confounding Factors (Epidemiology)
Data Interpretation, Statistical
data-adaptive
ensemble learning
HIV
HIV Infections - drug therapy
HIV Infections - mortality
HIV Infections - prevention & control
Human immunodeficiency virus
Humans
inverse probability weighting
Logistic Models
longitudinal data
Machine Learning
marginal structural model
Medical statistics
Models, Statistical
Mortality
Mortality - trends
Probability
Regression analysis
Spain
super learning
Title Ensemble learning of inverse probability weights for marginal structural modeling in large observational datasets
URI https://api.istex.fr/ark:/67375/WNG-3VWD77X0-3/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsim.6322
https://www.ncbi.nlm.nih.gov/pubmed/25316152
https://www.proquest.com/docview/1641986407
https://www.proquest.com/docview/1635010239
https://pubmed.ncbi.nlm.nih.gov/PMC4262745
Volume 34
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZQkVAlxGN5LRRkJASnbJP4lRwRtBSk7QEoXYmDZTsOrLqbhWYrHr-eGTsJLBQJccrBE8V2xuPPM-NvCHlkU2EKVRaJcAwOKKxkSeFMnnhW1GAL64rX6BqYHsqDI_5qJmZdViXehYn8EIPDDVdGsNe4wI1td3-Shrbz5USCOoL5xVQtxEOvB-aorK_WihFKqTLR886m-W7_4sZOdBEn9et5MPPPbMlfUWzYhvavkvf9AGL2ycnkbG0n7vtv3I7_N8Jr5EqHTunTqE7XyQXfjMilaRd_H5HL0ctH4-WlEdlGrBqpnm-Qz3tN65d24WlXiuIDXdV03mDih6dYuSZygn-jX4I_tqUAmOnSnIbKXDQy2SILCA3lefD9eUMXmKpOV3bwHkM7prW2ft3eJEf7e2-fHSRdRYfEcbC6iS8yLw23Js9dWou64KxSsvJV5iSGwK3PHVPOlLyqpa_KzIrCCaypJXNufMVuka1m1fg7hIIWAZKrRQn4hsO5B5CjkIYhl46QSpkxedL_Xe06unOsurHQkag51zC9Gqd3TB4Okp8ixcc5Mo-DggwC5vQEU-KU0MeHLzR7d_xcqVmq2Zjs9BqkO2vQajiSZkiDnyr41tAM6xiDM6bxqzOUwRAvXjUek9tR4YaP5WAoAXlCL9SGKg4CyBG-2dLMPwaucJw5xQX0P2jaXweo37yc4vPuvwreI9uAHTHxM8nEDtkCHfH3AZ-t7YOwEn8AtA84ng
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED-NTYJJiI_yVRhgJARP6ZI4thPxhGCjg7UPsLE-TLKcxIFqbQpLJz7-eu7iJFAYEuIpD74otnM-_3x3_h3A49QXJlZJ7ImM4wGFJ9yLMxN6lscF2sIijwpyDYzGcngYvZ6IyRo8a-_COH6IzuFGK6O217TAySG9_ZM1tJrOBxL18QJsUEHv-jz1tuOOCtp6rRSjlCoQLfOsH263b67sRRs0rV_PA5p_5kv-imPrjWj3Khy3Q3D5JyeDs2U6yL7_xu74n2O8BlcagMqeO426Dmu27MHFUROC78Fl5-hj7v5SDzYJrjq25xvweaes7DydWdZUo_jAFgWblpT7YRkVr3G04N_Yl9olWzHEzGxuTuviXMyR2RIRCKsr9ND705LNKFudLdLOgYztlNla2WV1Ew53dw5eDL2mqIOXRWh4PRsHVpooNWGY-YUo4ojnSuY2DzJJUfDUhhlXmUmivJA2T4JUxJmgsloyjIzN-S1YLxelvQMMFQnBXCEShDgRHn0QPAppONHpCKmU6cPT9vfqrGE8p8IbM-24mkON06tpevvwqJP85Fg-zpF5UmtIJ2BOTygrTgl9NH6l-fujl0pNfM37sNWqkG4MQqXxVBoQE76v8FtdMy5lis-Y0i7OSIaivHTbuA-3ncZ1HwvRViL4xF6oFV3sBIgmfLWlnH6s6cJp5lQksP-1qv11gPrd3oied_9V8CFcGh6M9vX-3vjNPdhEKEl5oF4gtmAd9cXeR7i2TB_Uy_IHDYk8uQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLZgk6ZJiEu5FQYYCcFTuiS-JY-IrmxAKwSMVeLBchwHqrXpWDpx-fWcEyeBwpAQT3nwiRI7n53P5xx_h5BHWShMotIkEJbBBoWlLEisiQPHkgLWwiLnBboGxhO5f8hfTMW0yarEszBeH6JzuOHMqNdrnOAnebH7UzS0mi0GEuB4kWxyGSaI6OGbTjoqasu1YohSqki0wrNhvNveufYr2sRR_Xoez_wzXfJXGlv_h0ZXyIe2Bz795HhwtsoG9vtv4o7_18Wr5HJDT-lTj6dr5IIre2Rr3ATge-SSd_NRf3qpR7aRrHqt5-vk815ZuUU2d7SpRfGRLgs6KzHzw1EsXeNFwb_RL7VDtqLAmOnCnNaluaiXskUZEFrX58H7ZyWdY646XWad-xjaMa-1cqvqBjkc7b17th80JR0Cy2HZDVwSOWl4ZuLYhoUoEs5yJXOXR1ZiDDxzsWXKmpTnhXR5GmUisQKLasmYG5ezm2SjXJbuNqEAI6ByhUiB4HDY-AB1FNIwFNMRUinTJ0_ar6tto3eOZTfm2is1xxqGV-Pw9snDzvLEa3ycY_O4BkhnYE6PMSdOCX00ea7Z-6OhUtNQsz7ZaRGkm-Wg0rAnjVAHP1TwrK4ZJjJGZ0zplmdogzFePGvcJ7c84LqHxbBSAvWEt1BrUOwMUCR8vaWcfarFwnHkFBfw_jXS_tpB_fZgjNc7_2r4gGy9Ho70q4PJy7tkG3gkJoEGkdghGwAXdw-42iq7X0_KH1ODO3E
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ensemble+learning+of+inverse+probability+weights+for+marginal+structural+modeling+in+large+observational+datasets&rft.jtitle=Statistics+in+medicine&rft.au=Gruber%2C+Susan&rft.au=Logan%2C+Roger+W.&rft.au=Jarr%C3%ADn%2C+Inmaculada&rft.au=Monge%2C+Susana&rft.date=2015-01-15&rft.issn=0277-6715&rft.eissn=1097-0258&rft.volume=34&rft.issue=1&rft.spage=106&rft.epage=117&rft_id=info:doi/10.1002%2Fsim.6322&rft.externalDBID=10.1002%252Fsim.6322&rft.externalDocID=SIM6322
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0277-6715&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0277-6715&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0277-6715&client=summon