Spatiotemporally Coupled Photoactivity of Phthalocyanine–Peptide Conjugate Self‐Assemblies for Adaptive Tumor Theranostics
Spatiotemporally coupled tumor phototheranostic platforms offer a flexible and precise system that takes the biological interaction between tumors and photoactive agents into consideration for optimizing treatment, which is highly consistent with precision medicine. However, the fabrication of monoc...
Saved in:
Published in | Chemistry : a European journal Vol. 25; no. 58; pp. 13429 - 13435 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
17.10.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Spatiotemporally coupled tumor phototheranostic platforms offer a flexible and precise system that takes the biological interaction between tumors and photoactive agents into consideration for optimizing treatment, which is highly consistent with precision medicine. However, the fabrication of monocomponent‐based photoactive agents applicable to multifold imaging techniques and multiple therapies in a facile way remains challenging. In this study, we developed simple phthalocyanine–peptide (PF) conjugate‐based monocomponent nanoparticles with spatiotemporally coupled photoactivity for adaptive tumor theranostics. The self‐assembled PF nanoparticles possess well‐defined spherical nanostructures and excellent colloidal stability along with supramolecular photothermal effects. Importantly, the PF nanoparticles showed switchable photoactivity triggered by their interactions with the cell membrane, which enables an adaptive transformation from photothermal therapy (PTT) and photoacoustic imaging (PAI) to photodynamic therapy (PDT) and corresponding fluorescence imaging (FI). Theranostic modalities are integrated in a spatiotemporally coupled manner, providing a facile, biocompatible and effective route for localized tumor phototherapy. This study offers a flexible and versatile strategy to integrate multiple theranostic modalities into a single component so that it can realize its full potential and thereby amplify its therapeutic efficacy, creating promising opportunities for the design of theranostics and further highlighting their clinical prospects to the diagnosis and treatment of cancers.
Self‐assembled phthalocyanine–peptide conjugate‐based monocomponent nanoparticles possess spatiotemporally switchable photoactivities, enables multimodal theranostics including photothermal therapy, photoacoustic imaging, photodynamic therapy and fluorescence imaging in a pure conjugate, which provides a facile, biocompatible and effective route for localized adaptive tumor theranostics. |
---|---|
AbstractList | Spatiotemporally coupled tumor phototheranostic platforms offer a flexible and precise system that takes the biological interaction between tumors and photoactive agents into consideration for optimizing treatment, which is highly consistent with precision medicine. However, the fabrication of monocomponent‐based photoactive agents applicable to multifold imaging techniques and multiple therapies in a facile way remains challenging. In this study, we developed simple phthalocyanine–peptide (PF) conjugate‐based monocomponent nanoparticles with spatiotemporally coupled photoactivity for adaptive tumor theranostics. The self‐assembled PF nanoparticles possess well‐defined spherical nanostructures and excellent colloidal stability along with supramolecular photothermal effects. Importantly, the PF nanoparticles showed switchable photoactivity triggered by their interactions with the cell membrane, which enables an adaptive transformation from photothermal therapy (PTT) and photoacoustic imaging (PAI) to photodynamic therapy (PDT) and corresponding fluorescence imaging (FI). Theranostic modalities are integrated in a spatiotemporally coupled manner, providing a facile, biocompatible and effective route for localized tumor phototherapy. This study offers a flexible and versatile strategy to integrate multiple theranostic modalities into a single component so that it can realize its full potential and thereby amplify its therapeutic efficacy, creating promising opportunities for the design of theranostics and further highlighting their clinical prospects to the diagnosis and treatment of cancers. Spatiotemporally coupled tumor phototheranostic platforms offer a flexible and precise system that takes the biological interaction between tumors and photoactive agents into consideration for optimizing treatment, which is highly consistent with precision medicine. However, the fabrication of monocomponent‐based photoactive agents applicable to multifold imaging techniques and multiple therapies in a facile way remains challenging. In this study, we developed simple phthalocyanine–peptide (PF) conjugate‐based monocomponent nanoparticles with spatiotemporally coupled photoactivity for adaptive tumor theranostics. The self‐assembled PF nanoparticles possess well‐defined spherical nanostructures and excellent colloidal stability along with supramolecular photothermal effects. Importantly, the PF nanoparticles showed switchable photoactivity triggered by their interactions with the cell membrane, which enables an adaptive transformation from photothermal therapy (PTT) and photoacoustic imaging (PAI) to photodynamic therapy (PDT) and corresponding fluorescence imaging (FI). Theranostic modalities are integrated in a spatiotemporally coupled manner, providing a facile, biocompatible and effective route for localized tumor phototherapy. This study offers a flexible and versatile strategy to integrate multiple theranostic modalities into a single component so that it can realize its full potential and thereby amplify its therapeutic efficacy, creating promising opportunities for the design of theranostics and further highlighting their clinical prospects to the diagnosis and treatment of cancers. Self‐assembled phthalocyanine–peptide conjugate‐based monocomponent nanoparticles possess spatiotemporally switchable photoactivities, enables multimodal theranostics including photothermal therapy, photoacoustic imaging, photodynamic therapy and fluorescence imaging in a pure conjugate, which provides a facile, biocompatible and effective route for localized adaptive tumor theranostics. Spatiotemporally coupled tumor phototheranostic platforms offer a flexible and precise system that takes the biological interaction between tumors and photoactive agents into consideration for optimizing treatment, which is highly consistent with precision medicine. However, the fabrication of monocomponent-based photoactive agents applicable to multifold imaging techniques and multiple therapies in a facile way remains challenging. In this study, we developed simple phthalocyanine-peptide (PF) conjugate-based monocomponent nanoparticles with spatiotemporally coupled photoactivity for adaptive tumor theranostics. The self-assembled PF nanoparticles possess well-defined spherical nanostructures and excellent colloidal stability along with supramolecular photothermal effects. Importantly, the PF nanoparticles showed switchable photoactivity triggered by their interactions with the cell membrane, which enables an adaptive transformation from photothermal therapy (PTT) and photoacoustic imaging (PAI) to photodynamic therapy (PDT) and corresponding fluorescence imaging (FI). Theranostic modalities are integrated in a spatiotemporally coupled manner, providing a facile, biocompatible and effective route for localized tumor phototherapy. This study offers a flexible and versatile strategy to integrate multiple theranostic modalities into a single component so that it can realize its full potential and thereby amplify its therapeutic efficacy, creating promising opportunities for the design of theranostics and further highlighting their clinical prospects to the diagnosis and treatment of cancers.Spatiotemporally coupled tumor phototheranostic platforms offer a flexible and precise system that takes the biological interaction between tumors and photoactive agents into consideration for optimizing treatment, which is highly consistent with precision medicine. However, the fabrication of monocomponent-based photoactive agents applicable to multifold imaging techniques and multiple therapies in a facile way remains challenging. In this study, we developed simple phthalocyanine-peptide (PF) conjugate-based monocomponent nanoparticles with spatiotemporally coupled photoactivity for adaptive tumor theranostics. The self-assembled PF nanoparticles possess well-defined spherical nanostructures and excellent colloidal stability along with supramolecular photothermal effects. Importantly, the PF nanoparticles showed switchable photoactivity triggered by their interactions with the cell membrane, which enables an adaptive transformation from photothermal therapy (PTT) and photoacoustic imaging (PAI) to photodynamic therapy (PDT) and corresponding fluorescence imaging (FI). Theranostic modalities are integrated in a spatiotemporally coupled manner, providing a facile, biocompatible and effective route for localized tumor phototherapy. This study offers a flexible and versatile strategy to integrate multiple theranostic modalities into a single component so that it can realize its full potential and thereby amplify its therapeutic efficacy, creating promising opportunities for the design of theranostics and further highlighting their clinical prospects to the diagnosis and treatment of cancers. |
Author | Yan, Xuehai Li, Shukun Chang, Rui Zhao, Luyang Xing, Ruirui |
Author_xml | – sequence: 1 givenname: Shukun surname: Li fullname: Li, Shukun organization: University of Chinese Academy of Sciences – sequence: 2 givenname: Luyang surname: Zhao fullname: Zhao, Luyang organization: Chinese Academy of Sciences – sequence: 3 givenname: Rui surname: Chang fullname: Chang, Rui organization: University of Chinese Academy of Sciences – sequence: 4 givenname: Ruirui surname: Xing fullname: Xing, Ruirui organization: Chinese Academy of Sciences – sequence: 5 givenname: Xuehai orcidid: 0000-0002-0890-0340 surname: Yan fullname: Yan, Xuehai email: yanxh@ipe.ac.cn organization: Chinese Academy of Sciences |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31334894$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkcFq3DAQhkVJaTZprz0WQy-9eCtLsmwdlyVtCikNZHsWsjTuapEtV5ITfCl5hEDeME9SL5u0ECg9idF83zDMf4KOet8DQm8LvCwwJh_1FrolwYXAlBLyAi2KkhQ5rXh5hBZYsCrnJRXH6CTGHcZYcEpfoWNaUMpqwRbo19WgkvUJusEH5dyUrf04ODDZ5dYnr3Sy1zZNmW_nj7RVzutJ9baHh9v7SxiSNTAb_W78oRJkV-Dah9u7VYzQNc5CzFofspVRM3gN2Wbs5nKzhaB6H5PV8TV62SoX4c3je4q-fzrbrM_zi2-fv6xXF7lmFSe54tpwBkZQZYpak7JhzCggVPEKt0TM7Ypzo2peVbzBhjdFa0gFra5bwG1JT9GHw9wh-J8jxCQ7GzU4p3rwY5SECFxTwXg9o--foTs_hn7eThKKOWaEVNVMvXukxqYDI4dgOxUm-XTZGWAHQAcfY4BWapv2p-5TUNbJAst9gHIfoPwT4Kwtn2lPk_8piINwYx1M_6Hl-vzs61_3N6aSsnw |
CitedBy_id | crossref_primary_10_1016_j_ccr_2024_215866 crossref_primary_10_1002_anie_202012477 crossref_primary_10_1016_j_cej_2021_128844 crossref_primary_10_1039_D0SC04984K crossref_primary_10_1063_5_0047660 crossref_primary_10_1016_j_dyepig_2021_109270 crossref_primary_10_1039_D2CS00675H crossref_primary_10_1039_D0MD00229A crossref_primary_10_1002_cmdc_202100201 crossref_primary_10_1007_s12551_023_01129_7 crossref_primary_10_1039_D1BM01435H crossref_primary_10_3390_pharmaceutics16020218 crossref_primary_10_1021_acsinfecdis_1c00392 crossref_primary_10_3390_pharmaceutics12020122 crossref_primary_10_1021_acsami_0c00375 crossref_primary_10_1016_j_drudis_2023_103598 crossref_primary_10_1016_j_cis_2024_103356 crossref_primary_10_1002_smll_202005578 crossref_primary_10_1016_j_ejps_2020_105213 crossref_primary_10_1039_D0QM00274G crossref_primary_10_1021_acs_jmedchem_4c02451 crossref_primary_10_1002_ange_202012477 crossref_primary_10_3390_molecules28052250 crossref_primary_10_1016_j_gce_2022_06_006 crossref_primary_10_1021_acs_bioconjchem_0c00165 crossref_primary_10_1080_17425247_2022_2093855 crossref_primary_10_1039_D3CC05628G crossref_primary_10_1016_j_cej_2020_127008 crossref_primary_10_1002_cmdc_202000192 crossref_primary_10_1039_D1CC06355C crossref_primary_10_1016_j_actbio_2020_10_036 crossref_primary_10_1039_D0SC02937H crossref_primary_10_1039_D1RA00579K crossref_primary_10_1039_D4QM00602J crossref_primary_10_3390_nano12111855 crossref_primary_10_1016_j_pdpdt_2021_102301 crossref_primary_10_3390_molecules26030693 crossref_primary_10_1021_acsami_4c07503 crossref_primary_10_1038_s41427_020_00256_x crossref_primary_10_1021_acs_bioconjchem_3c00432 crossref_primary_10_1016_j_partic_2021_05_007 |
Cites_doi | 10.1002/adma.201104763 10.1039/C7CS00525C 10.1002/ange.201806565 10.1038/s41568-018-0083-7 10.1039/C4NR06050D 10.1002/anie.201803321 10.1038/nrd2591 10.1021/nn504210g 10.1016/j.drudis.2012.05.010 10.1002/chem.200305140 10.1039/cs9922100127 10.1002/anie.201806565 10.1021/jacs.8b04912 10.1039/C2SC21254D 10.1021/acsami.7b04360 10.1039/b915765b 10.1002/adfm.201806877 10.1002/ange.201710237 10.1038/nbt994 10.1021/jacs.8b12167 10.1039/C8CS00001H 10.1101/cshperspect.a033415 10.1002/ange.201802497 10.1002/adma.201602197 10.1158/0008-5472.CAN-08-3658 10.1002/ange.201810087 10.1038/nrc3751 10.1158/1078-0432.CCR-13-2116 10.1021/acsnano.5b00021 10.1016/j.clon.2007.03.015 10.1002/anie.201509810 10.1021/jacs.7b05916 10.1038/nrm2330 10.1351/pac196511030371 10.1002/adma.201405141 10.1002/anie.201710237 10.1002/adma.201605021 10.1039/C7CS00594F 10.1002/anie.201802497 10.31635/ccschem.019.20180017 10.1002/ange.201803321 10.1002/anie.201810087 10.1002/adma.201900822 10.1038/nmat2986 10.1039/C6CS00176A 10.1126/science.1216210 10.1038/nbt1220 10.1021/acsnano.7b03226 10.1002/adma.201502454 10.1016/j.biomaterials.2013.07.027 10.1002/ange.201509810 10.1021/acsnano.7b08103 10.1039/C4CS00011K 10.1039/C7SC05115H 10.1021/jacs.6b11382 10.1021/mz500497n |
ContentType | Journal Article |
Copyright | 2019 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. |
Copyright_xml | – notice: 2019 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. |
DBID | AAYXX CITATION NPM 7SR 8BQ 8FD JG9 K9. 7X8 |
DOI | 10.1002/chem.201903322 |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database ProQuest Health & Medical Complete (Alumni) Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | CrossRef PubMed MEDLINE - Academic Materials Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3765 |
EndPage | 13435 |
ExternalDocumentID | 31334894 10_1002_chem_201903322 CHEM201903322 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 51861145304, 21703252 and 21802144 – fundername: Innovation Research Community Science Fund funderid: 21821005 – fundername: the CAS President's International Fellowship Initiative funderid: 2017VEA0023 – fundername: the Key Research Program of Frontier Sciences of the Chinese Academy of Sciences funderid: QYZDB-SSW-JSC034 – fundername: the Key Research Program of Frontier Sciences of the Chinese Academy of Sciences grantid: QYZDB-SSW-JSC034 – fundername: the CAS President's International Fellowship Initiative grantid: 2017VEA0023 – fundername: National Natural Science Foundation of China grantid: 51861145304, 21703252 and 21802144 – fundername: Innovation Research Community Science Fund grantid: 21821005 – fundername: National Natural Science Foundation of China grantid: 21802144, 21522307, 21773248, and 21802143 |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 29B 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6J9 702 77Q 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACNCT ACPOU ACUHS ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEGXH AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBD EBS EJD F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RGC RNS ROL RWI RX1 RYL SUPJJ TN5 TWZ UB1 UPT V2E V8K W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 YZZ ZZTAW ~IA ~WT AAYXX AEYWJ AGHNM AGYGG CITATION NPM 7SR 8BQ 8FD JG9 K9. 7X8 |
ID | FETCH-LOGICAL-c4762-a6cd64ed93ad18c25b44dae23a670f296cd766da86776b0d6b1fd27efc8fe0f53 |
IEDL.DBID | DR2 |
ISSN | 0947-6539 1521-3765 |
IngestDate | Fri Jul 11 16:19:16 EDT 2025 Fri Jul 25 10:05:20 EDT 2025 Wed Feb 19 02:31:27 EST 2025 Tue Jul 01 01:29:56 EDT 2025 Thu Apr 24 22:55:46 EDT 2025 Wed Jan 22 16:38:27 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 58 |
Keywords | phthalocyanines self-assembly peptides tumor theranostics spatiotemporal photoactivity |
Language | English |
License | 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4762-a6cd64ed93ad18c25b44dae23a670f296cd766da86776b0d6b1fd27efc8fe0f53 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-0890-0340 |
PMID | 31334894 |
PQID | 2306042277 |
PQPubID | 986340 |
PageCount | 7 |
ParticipantIDs | proquest_miscellaneous_2290839468 proquest_journals_2306042277 pubmed_primary_31334894 crossref_citationtrail_10_1002_chem_201903322 crossref_primary_10_1002_chem_201903322 wiley_primary_10_1002_chem_201903322_CHEM201903322 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | October 17, 2019 |
PublicationDateYYYYMMDD | 2019-10-17 |
PublicationDate_xml | – month: 10 year: 2019 text: October 17, 2019 day: 17 |
PublicationDecade | 2010 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationSubtitle | A European Journal |
PublicationTitle | Chemistry : a European journal |
PublicationTitleAlternate | Chemistry |
PublicationYear | 2019 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2004; 22 2009; 69 2007; 19 1965; 11 2013; 4 2018; 140 2019; 31 2010; 39 2019; 1 2017; 46 2008; 9 2019; 19 2011; 10 2016; 2016 2017; 29 2012; 17 2015; 9 2019; 141 2015; 7 2017; 9 2017; 139 2014; 43 2014; 20 2018; 9 2018; 8 2016 2016; 55 128 2015; 27 2014; 3 2006; 24 2013; 34 2018 2018; 57 130 2017; 11 2019; 48 2003; 9 2014; 14 2019; 29 2018; 12 2012; 24 2012; 335 2016; 28 1992; 21 2014; 8 2016; 45 2010; 9 e_1_2_7_5_2 e_1_2_7_3_2 e_1_2_7_9_2 e_1_2_7_5_3 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_17_2 e_1_2_7_62_1 e_1_2_7_60_2 e_1_2_7_13_3 e_1_2_7_15_1 e_1_2_7_1_1 e_1_2_7_13_2 e_1_2_7_41_2 e_1_2_7_11_2 e_1_2_7_43_2 e_1_2_7_45_2 e_1_2_7_47_1 e_1_2_7_26_2 e_1_2_7_49_2 e_1_2_7_28_2 e_1_2_7_49_3 e_1_2_7_50_1 e_1_2_7_25_2 e_1_2_7_23_3 e_1_2_7_52_1 e_1_2_7_23_2 e_1_2_7_31_2 e_1_2_7_54_1 e_1_2_7_21_2 e_1_2_7_33_2 e_1_2_7_56_2 e_1_2_7_35_1 e_1_2_7_58_2 e_1_2_7_37_2 e_1_2_7_39_1 e_1_2_7_4_2 e_1_2_7_2_2 e_1_2_7_8_3 e_1_2_7_8_2 e_1_2_7_6_3 e_1_2_7_6_2 e_1_2_7_18_1 e_1_2_7_16_2 e_1_2_7_61_1 e_1_2_7_40_2 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_63_1 e_1_2_7_12_2 e_1_2_7_10_2 e_1_2_7_46_2 e_1_2_7_48_2 e_1_2_7_27_2 e_1_2_7_29_2 Wang S. (e_1_2_7_44_2) 2016; 2016 e_1_2_7_51_1 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_24_1 e_1_2_7_22_2 e_1_2_7_32_2 e_1_2_7_57_1 e_1_2_7_20_2 e_1_2_7_34_2 e_1_2_7_55_2 e_1_2_7_36_2 e_1_2_7_38_2 e_1_2_7_59_2 |
References_xml | – volume: 19 start-page: 418 year: 2007 end-page: 426 publication-title: Clin. Oncol. – volume: 21 start-page: 127 year: 1992 end-page: 136 publication-title: Chem. Soc. Rev. – volume: 24 start-page: 1504 year: 2012 end-page: 1534 publication-title: Adv. Mater. – volume: 335 start-page: 1458 year: 2012 end-page: 1462 publication-title: Science – volume: 140 start-page: 10794 year: 2018 end-page: 10802 publication-title: J. Am. Chem. Soc. – volume: 45 start-page: 5589 year: 2016 end-page: 5604 publication-title: Chem. Soc. Rev. – volume: 140 start-page: 1174 year: 2018 end-page: 1188 publication-title: Chem. Soc. Rev. – volume: 9 start-page: 21124 year: 2017 end-page: 21132 publication-title: ACS Appl. Mater. Interfaces – volume: 34 start-page: 7905 year: 2013 end-page: 7912 publication-title: Biomaterials – volume: 43 start-page: 6254 year: 2014 end-page: 6287 publication-title: Chem. Soc. Rev. – volume: 29 start-page: 1605021 year: 2017 publication-title: Adv. Mater. – volume: 20 start-page: 1747 year: 2014 end-page: 1756 publication-title: Clin. Cancer Res. – volume: 7 start-page: 3888 year: 2015 end-page: 3902 publication-title: Nanoscale – volume: 12 start-page: 1580 year: 2018 end-page: 1591 publication-title: ACS Nano – volume: 24 start-page: 848 year: 2006 end-page: 851 publication-title: Nat. Biotechnol. – volume: 9 start-page: 112 year: 2008 end-page: 124 publication-title: Nat. Rev. Mol. Cell Biol. – volume: 19 start-page: 110 year: 2019 end-page: 117 publication-title: Nat. Rev. Cancer – volume: 29 start-page: 1806877 year: 2019 publication-title: Adv. Funct. Mater. – volume: 57 130 start-page: 12444 12624 year: 2018 2018 end-page: 12447 12627 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 4 start-page: 339 year: 2013 end-page: 344 publication-title: Chem. Sci. – volume: 57 130 start-page: 7759 7885 year: 2018 2018 end-page: 7763 7889 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 8 start-page: 10655 year: 2014 end-page: 10664 publication-title: ACS Nano – volume: 3 start-page: 1126 year: 2014 end-page: 1129 publication-title: ACS Macro Lett. – volume: 48 start-page: 38 year: 2019 end-page: 71 publication-title: Chem. Soc. Rev. – volume: 1 start-page: 173 year: 2019 end-page: 180 publication-title: CCS Chem. – volume: 141 start-page: 1366 year: 2019 end-page: 1372 publication-title: J. Am. Chem. Soc. – volume: 28 start-page: 8379 year: 2016 end-page: 8387 publication-title: Adv. Mater. – volume: 9 start-page: 2098 year: 2018 end-page: 2104 publication-title: Chem. Sci. – volume: 55 128 start-page: 3036 3088 year: 2016 2016 end-page: 3039 3091 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 46 start-page: 6433 year: 2017 end-page: 6469 publication-title: Chem. Soc. Rev. – volume: 31 start-page: 1900822 year: 2019 publication-title: Adv. Mater. – volume: 10 start-page: 324 year: 2011 end-page: 332 publication-title: Nat. Mater. – volume: 8 start-page: 033415 year: 2018 publication-title: Cold Spring Harbor Perspect. Med. – volume: 9 start-page: 6 year: 2015 end-page: 11 publication-title: ACS Nano – volume: 139 start-page: 10880 year: 2017 end-page: 10886 publication-title: J. Am. Chem. Soc. – volume: 22 start-page: 969 year: 2004 end-page: 976 publication-title: Nat. Biotechnol. – volume: 9 start-page: 615 year: 2010 end-page: 627 publication-title: Nat. Rev. Drug Discovery – volume: 11 start-page: 371 year: 1965 end-page: 392 publication-title: Pure. Appl. Chem. – volume: 11 start-page: 8930 year: 2017 end-page: 8943 publication-title: ACS Nano – volume: 39 start-page: 1877 year: 2010 end-page: 1890 publication-title: Chem. Soc. Rev. – volume: 139 start-page: 1921 year: 2017 end-page: 1927 publication-title: J. Am. Chem. Soc. – volume: 57 130 start-page: 1813 1831 year: 2018 2018 end-page: 1816 1834 publication-title: Angew. Chem. Int. Ed. Angew. Chem. Angew.Chem. – volume: 2016 start-page: 5810952 year: 2016 publication-title: J. Nanomater. – volume: 9 start-page: 5757 year: 2003 end-page: 5761 publication-title: Chem. Eur. J. – volume: 57 130 start-page: 7804 7930 year: 2018 2018 end-page: 7808 7934 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 57 130 start-page: 17084 17330 year: 2018 2018 end-page: 17088 17334 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 14 start-page: 481 year: 2014 end-page: 493 publication-title: Nat. Rev. Cancer – volume: 27 start-page: 4155 year: 2015 end-page: 4161 publication-title: Adv. Mater. – volume: 17 start-page: 1044 year: 2012 end-page: 1052 publication-title: Drug Discovery Today – volume: 28 start-page: 1031 year: 2016 end-page: 1043 publication-title: Adv. Mater. – volume: 69 start-page: 4894 year: 2009 end-page: 4903 publication-title: Cancer Res. – ident: e_1_2_7_16_2 doi: 10.1002/adma.201104763 – ident: e_1_2_7_33_2 doi: 10.1039/C7CS00525C – ident: e_1_2_7_6_3 doi: 10.1002/ange.201806565 – ident: e_1_2_7_4_2 doi: 10.1038/s41568-018-0083-7 – ident: e_1_2_7_26_2 doi: 10.1039/C4NR06050D – ident: e_1_2_7_5_2 doi: 10.1002/anie.201803321 – volume: 2016 start-page: 5810952 year: 2016 ident: e_1_2_7_44_2 publication-title: J. Nanomater. – ident: e_1_2_7_62_1 doi: 10.1038/nrd2591 – ident: e_1_2_7_59_2 doi: 10.1021/nn504210g – ident: e_1_2_7_47_1 – ident: e_1_2_7_14_1 doi: 10.1016/j.drudis.2012.05.010 – ident: e_1_2_7_39_1 – ident: e_1_2_7_29_2 doi: 10.1002/chem.200305140 – ident: e_1_2_7_55_2 doi: 10.1039/cs9922100127 – ident: e_1_2_7_6_2 doi: 10.1002/anie.201806565 – ident: e_1_2_7_22_2 doi: 10.1021/jacs.8b04912 – ident: e_1_2_7_28_2 doi: 10.1039/C2SC21254D – ident: e_1_2_7_30_1 – ident: e_1_2_7_24_1 – ident: e_1_2_7_36_2 doi: 10.1021/acsami.7b04360 – ident: e_1_2_7_48_2 doi: 10.1039/b915765b – ident: e_1_2_7_35_1 – ident: e_1_2_7_19_1 – ident: e_1_2_7_34_2 doi: 10.1002/adfm.201806877 – ident: e_1_2_7_54_1 – ident: e_1_2_7_13_3 doi: 10.1002/ange.201710237 – ident: e_1_2_7_17_2 doi: 10.1038/nbt994 – ident: e_1_2_7_53_1 doi: 10.1021/jacs.8b12167 – ident: e_1_2_7_57_1 – ident: e_1_2_7_43_2 doi: 10.1039/C8CS00001H – ident: e_1_2_7_3_2 doi: 10.1101/cshperspect.a033415 – ident: e_1_2_7_23_3 doi: 10.1002/ange.201802497 – ident: e_1_2_7_61_1 doi: 10.1002/adma.201602197 – ident: e_1_2_7_2_2 doi: 10.1158/0008-5472.CAN-08-3658 – ident: e_1_2_7_8_3 doi: 10.1002/ange.201810087 – ident: e_1_2_7_18_1 doi: 10.1038/nrc3751 – ident: e_1_2_7_58_2 doi: 10.1158/1078-0432.CCR-13-2116 – ident: e_1_2_7_20_2 doi: 10.1021/acsnano.5b00021 – ident: e_1_2_7_11_2 doi: 10.1016/j.clon.2007.03.015 – ident: e_1_2_7_49_2 doi: 10.1002/anie.201509810 – ident: e_1_2_7_38_2 doi: 10.1021/jacs.7b05916 – ident: e_1_2_7_56_2 doi: 10.1038/nrm2330 – ident: e_1_2_7_51_1 doi: 10.1351/pac196511030371 – ident: e_1_2_7_63_1 doi: 10.1002/adma.201405141 – ident: e_1_2_7_1_1 – ident: e_1_2_7_13_2 doi: 10.1002/anie.201710237 – ident: e_1_2_7_7_1 – ident: e_1_2_7_9_2 doi: 10.1002/adma.201605021 – ident: e_1_2_7_21_2 doi: 10.1039/C7CS00594F – ident: e_1_2_7_23_2 doi: 10.1002/anie.201802497 – ident: e_1_2_7_50_1 doi: 10.31635/ccschem.019.20180017 – ident: e_1_2_7_5_3 doi: 10.1002/ange.201803321 – ident: e_1_2_7_8_2 doi: 10.1002/anie.201810087 – ident: e_1_2_7_12_2 doi: 10.1002/adma.201900822 – ident: e_1_2_7_31_2 doi: 10.1038/nmat2986 – ident: e_1_2_7_45_2 doi: 10.1039/C6CS00176A – ident: e_1_2_7_40_2 doi: 10.1126/science.1216210 – ident: e_1_2_7_41_2 doi: 10.1038/nbt1220 – ident: e_1_2_7_37_2 doi: 10.1021/acsnano.7b03226 – ident: e_1_2_7_46_2 doi: 10.1002/adma.201502454 – ident: e_1_2_7_25_2 doi: 10.1016/j.biomaterials.2013.07.027 – ident: e_1_2_7_49_3 doi: 10.1002/ange.201509810 – ident: e_1_2_7_10_2 doi: 10.1021/acsnano.7b08103 – ident: e_1_2_7_42_1 – ident: e_1_2_7_52_1 doi: 10.1039/C4CS00011K – ident: e_1_2_7_27_2 doi: 10.1039/C7SC05115H – ident: e_1_2_7_32_2 doi: 10.1021/jacs.6b11382 – ident: e_1_2_7_60_2 doi: 10.1021/mz500497n – ident: e_1_2_7_15_1 |
SSID | ssj0009633 |
Score | 2.4892335 |
Snippet | Spatiotemporally coupled tumor phototheranostic platforms offer a flexible and precise system that takes the biological interaction between tumors and... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 13429 |
SubjectTerms | Biocompatibility Cell membranes Chemistry Conjugates Fabrication Fluorescence Imaging Imaging techniques Nanoparticles Peptides Photodynamic therapy Phototherapy phthalocyanines self-assembly spatiotemporal photoactivity tumor theranostics Tumors |
Title | Spatiotemporally Coupled Photoactivity of Phthalocyanine–Peptide Conjugate Self‐Assemblies for Adaptive Tumor Theranostics |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fchem.201903322 https://www.ncbi.nlm.nih.gov/pubmed/31334894 https://www.proquest.com/docview/2306042277 https://www.proquest.com/docview/2290839468 |
Volume | 25 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZQL3Dh_VgoyEhInNImjmNvjtWKqkICVXQr9RaNX6ogTVZscigH1J9Qqf-wv4SZvMqCEBLc4thWxva8Ynu-YewNakMbB1yBVGQmkhBMlDuUR22Cs5nXYIH2Oz58VAfH8v1JdvJTFH-PDzFtuJFkdPqaBBzMevcGNBTHRJHkaNBSZEpUwnRhi7yiTzf4UchdfS55qSPCYB1RG2Oxu9l90yr95mpueq6d6dm_x2Akur9x8mWnbcyO_fYLnuP_jOo-uzv4pXyvZ6QH7JavHrLbizEd3CP2_ai7ez1AWZXlOV_U7ar0jh-e1k1N8RGUhoLXAV80p4BG8hwqpOf64uqQrs44jz2qzy3t2_EjX4bri0s6cj4z6AavOTrPfM_BitQvX7ZnWFxSbFhVd0jSj9nx_rvl4iAakjdEVqKCjUBZp6R3eQoumVvkBCkdeJGC0nEQOVZrpRwQnp4ysVMmCU5oH-w8-Dhk6RO2VdWVf8a4lXEwaRK0BSdDBmAysNqILAjhtJzPWDQuXmEHZHNKsFEWPSazKGhWi2lWZ-zt1H7VY3r8seX2yAvFINvrgn7aCDlN6xl7PVXjatBRC1S-brGNyNG3zaVC4p72PDR9Kk0o-jmXMyY6TvgLDQVhY0yl5__S6QW7Q89kchO9zbaar61_ib5UY1518vID8vMbaw |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1JbtRAFC1FYRE2zJCGAIUEYuXELpdd7QWLqEPUIYMi0pGyMzUqAsdu0bZQs0A5AhIn4SocISfhf09RgxASUhYsXYNcVX-s4b9PyHPQhtp3QIGQRcrj0ikvMSCPQjmjIyuklnjesX8Qj4_5m5PoZIl872JhGnyI_sANJaPW1yjgeCC9cYkaCpPCUHKwaCFwZfuuctfOP8GubfZqZwtI_IKx7deT0dhrEwt4moPwezLWJubWJKE0wVDDKDk30rJQxsJ3LIFqEcdGItZbrHwTq8AZJqzTQ2d9h4kiQOtfwzTiCNe_9fYSsQr4uclez4WHqK8dTqTPNhbHu2gHf3NuF33l2tht3yQ_umVq3rh8WK9Kta4__4Ig-V-t4y1yo3W96WYjK7fJks3vkJVRl_HuLvlyVD8vb9G6smxOR0U1zayhh6dFWWAICGbaoIWDgvJUgh8wlzkswMX5t0N8HWQs9MjfV3g0SY9s5i7Ov-Kt-pkCT39GYX9AN42cooWhk-oMPicY_pYXNVj2PXJ8JdO_T5bzIrerhGruOxUGTmhpuIukVJHUQrHIMWYEHw6I13FLqlvwdswhkqUN7DRLkYppT8UBedm3nzawJX9sudYxX9qqr1mK-1IEhxNiQJ711UANvE2SuS0qaMMScN8THsPgHjRM2_8qDDDAO-EDwmrW-8sYUoT_6L8e_kunp2RlPNnfS_d2DnYfketYjh5GINbIcvmxso_BdSzVk1pYKXl31Vz9E7UCe6g |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELaqIgEX3pQtBYIE4pQ2cRx7c-BQ7bJqKVQrupV6C36qgm2y6iZCywH1JyDxR_gr_IX-EmbyqhaEkJB64Bg_FNvz8Nie-YaQZ6ANdeCAAhGNlc-kU35iQB6FckbHVkgt8b7j7T7fOWSvj-KjFfK9jYWp8SG6CzeUjEpfo4DPjNu6AA2FOWEkOWxoETBl41a5Zxef4NA2f7k7BAo_p3T0ajLY8Zu8Ar5mIPu-5NpwZk0SSRP2NQySMSMtjSQXgaMJVAvOjUSoN64Cw1XoDBXW6b6zgcM8EaD0rzAeJJgsYvjuArAK2LlOXs-Ej6CvLUxkQLeWx7u8Df5m2y6bytVeN7pJfrSrVLu4fNwsC7WpP_8CIPk_LeMtcqMxvL3tWlJukxWb3SHXBm2-u7vky0HlXN5gdU2nC2-Ql7OpNd74OC9yDADBPBte7qCgOJZgBSxkBvM_P_s2Rt8gY6FH9qHEi0nvwE7d-dlXfFM_UWDnzz04HXjbRs5wf_Em5Ql8TjD4LcsrqOx75PBSpn-frGZ5Zh8QT7PAqSh0QkvDXCyliqUWisaOUiNYv0f8lllS3UC3YwaRaVqDTtMUqZh2VOyRF137WQ1a8seWGy3vpY3ymqd4KkVoOCF65GlXDdTAtySZ2byENjQB4z1hHAa3VvNs96soxPDuhPUIrTjvL2NIEfyj-1r_l05PyNXxcJS-2d3fe0iuYzGaF6HYIKvFaWkfgd1YqMeVqHrk_WUz9U-_bXpX |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spatiotemporally+Coupled+Photoactivity+of+Phthalocyanine-Peptide+Conjugate+Self-Assemblies+for+Adaptive+Tumor+Theranostics&rft.jtitle=Chemistry+%3A+a+European+journal&rft.au=Li%2C+Shukun&rft.au=Zhao%2C+Luyang&rft.au=Chang%2C+Rui&rft.au=Xing%2C+Ruirui&rft.date=2019-10-17&rft.issn=1521-3765&rft.eissn=1521-3765&rft.volume=25&rft.issue=58&rft.spage=13429&rft_id=info:doi/10.1002%2Fchem.201903322&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0947-6539&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0947-6539&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0947-6539&client=summon |