Towards Unveiling the Exact Molecular Structure of Amorphous Red Phosphorus by Single‐Molecule Studies

Since the discovery of amorphous red phosphorus (a‐red P) in 1847, many possible structures have been proposed. However, the exact molecular structure has not yet been determined because of its amorphous nature. Herein several methods are used to investigate basic properties of a‐red P. Data from sc...

Full description

Saved in:
Bibliographic Details
Published inAngewandte Chemie International Edition Vol. 58; no. 6; pp. 1659 - 1663
Main Authors Zhang, Song, Qian, Hu‐jun, Liu, Zhonghua, Ju, Hongyu, Lu, Zhong‐yuan, Zhang, Haiming, Chi, Lifeng, Cui, Shuxun
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 04.02.2019
EditionInternational ed. in English
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Since the discovery of amorphous red phosphorus (a‐red P) in 1847, many possible structures have been proposed. However, the exact molecular structure has not yet been determined because of its amorphous nature. Herein several methods are used to investigate basic properties of a‐red P. Data from scanning tunneling microscopy (STM) and gel permeation chromatography (GPC) confirm that a‐red P is a linear inorganic polymer with a broad molecular weight distribution. The theoretical single‐molecule elasticities of the possible a‐red P structures are obtained by quantum mechanical (QM) calculations. The experimental single‐molecule elasticity of a‐red P measured by single‐molecule AFM matches with the theoretical result of the zig‐zag ladder structure, indicating that a‐red P may adopt this structure. Although this conclusion needs further validation, this fundamental study represents progress towards solving the structure of a‐red P. It is expected that the strategy utilized in this work can be applied to study other inorganic polymers. Zig‐zag: Although amorphous red phosphorus (a‐red P) was discovered for more than 170 years, its exact molecular structure is unknown because of its amorphous nature. Results from single‐molecule AFM, quantum mechanical calculations, and scanning tunneling microscopy suggest that a‐red P may adopt a zig‐zag ladder structure (2 in Scheme).
AbstractList Since the discovery of amorphous red phosphorus (a-red P) in 1847, many possible structures have been proposed. However, the exact molecular structure has not yet been determined because of its amorphous nature. Herein several methods are used to investigate basic properties of a-red P. Data from scanning tunneling microscopy (STM) and gel permeation chromatography (GPC) confirm that a-red P is a linear inorganic polymer with a broad molecular weight distribution. The theoretical single-molecule elasticities of the possible a-red P structures are obtained by quantum mechanical (QM) calculations. The experimental single-molecule elasticity of a-red P measured by single-molecule AFM matches with the theoretical result of the zig-zag ladder structure, indicating that a-red P may adopt this structure. Although this conclusion needs further validation, this fundamental study represents progress towards solving the structure of a-red P. It is expected that the strategy utilized in this work can be applied to study other inorganic polymers.Since the discovery of amorphous red phosphorus (a-red P) in 1847, many possible structures have been proposed. However, the exact molecular structure has not yet been determined because of its amorphous nature. Herein several methods are used to investigate basic properties of a-red P. Data from scanning tunneling microscopy (STM) and gel permeation chromatography (GPC) confirm that a-red P is a linear inorganic polymer with a broad molecular weight distribution. The theoretical single-molecule elasticities of the possible a-red P structures are obtained by quantum mechanical (QM) calculations. The experimental single-molecule elasticity of a-red P measured by single-molecule AFM matches with the theoretical result of the zig-zag ladder structure, indicating that a-red P may adopt this structure. Although this conclusion needs further validation, this fundamental study represents progress towards solving the structure of a-red P. It is expected that the strategy utilized in this work can be applied to study other inorganic polymers.
Since the discovery of amorphous red phosphorus (a‐red P) in 1847, many possible structures have been proposed. However, the exact molecular structure has not yet been determined because of its amorphous nature. Herein several methods are used to investigate basic properties of a‐red P. Data from scanning tunneling microscopy (STM) and gel permeation chromatography (GPC) confirm that a‐red P is a linear inorganic polymer with a broad molecular weight distribution. The theoretical single‐molecule elasticities of the possible a‐red P structures are obtained by quantum mechanical (QM) calculations. The experimental single‐molecule elasticity of a‐red P measured by single‐molecule AFM matches with the theoretical result of the zig‐zag ladder structure, indicating that a‐red P may adopt this structure. Although this conclusion needs further validation, this fundamental study represents progress towards solving the structure of a‐red P. It is expected that the strategy utilized in this work can be applied to study other inorganic polymers.
Since the discovery of amorphous red phosphorus (a‐red P) in 1847, many possible structures have been proposed. However, the exact molecular structure has not yet been determined because of its amorphous nature. Herein several methods are used to investigate basic properties of a‐red P. Data from scanning tunneling microscopy (STM) and gel permeation chromatography (GPC) confirm that a‐red P is a linear inorganic polymer with a broad molecular weight distribution. The theoretical single‐molecule elasticities of the possible a‐red P structures are obtained by quantum mechanical (QM) calculations. The experimental single‐molecule elasticity of a‐red P measured by single‐molecule AFM matches with the theoretical result of the zig‐zag ladder structure, indicating that a‐red P may adopt this structure. Although this conclusion needs further validation, this fundamental study represents progress towards solving the structure of a‐red P. It is expected that the strategy utilized in this work can be applied to study other inorganic polymers. Zig‐zag: Although amorphous red phosphorus (a‐red P) was discovered for more than 170 years, its exact molecular structure is unknown because of its amorphous nature. Results from single‐molecule AFM, quantum mechanical calculations, and scanning tunneling microscopy suggest that a‐red P may adopt a zig‐zag ladder structure (2 in Scheme).
Author Qian, Hu‐jun
Ju, Hongyu
Liu, Zhonghua
Cui, Shuxun
Zhang, Song
Lu, Zhong‐yuan
Chi, Lifeng
Zhang, Haiming
Author_xml – sequence: 1
  givenname: Song
  surname: Zhang
  fullname: Zhang, Song
  organization: Southwest Jiaotong University
– sequence: 2
  givenname: Hu‐jun
  surname: Qian
  fullname: Qian, Hu‐jun
  organization: Jilin University
– sequence: 3
  givenname: Zhonghua
  surname: Liu
  fullname: Liu, Zhonghua
  organization: Soochow University
– sequence: 4
  givenname: Hongyu
  surname: Ju
  fullname: Ju, Hongyu
  organization: Southwest Jiaotong University
– sequence: 5
  givenname: Zhong‐yuan
  surname: Lu
  fullname: Lu, Zhong‐yuan
  organization: Jilin University
– sequence: 6
  givenname: Haiming
  surname: Zhang
  fullname: Zhang, Haiming
  organization: Soochow University
– sequence: 7
  givenname: Lifeng
  surname: Chi
  fullname: Chi, Lifeng
  email: chilf@suda.edu.cn
  organization: Soochow University
– sequence: 8
  givenname: Shuxun
  orcidid: 0000-0002-7713-7377
  surname: Cui
  fullname: Cui, Shuxun
  email: cuishuxun@swjtu.edu.cn
  organization: Southwest Jiaotong University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30506965$$D View this record in MEDLINE/PubMed
BookMark eNqFkU1rFDEYx4NU7ItePUrASy-z5m2SzHEpqy1UK7Y9h0zmGTclO1mTGdu9-RH6Gf0kpuxWoVC8JHng9_vzkP8h2hviAAi9pWRGCWEf7OBhxgjVlNKavUAH5aQVV4rvlbfgvFK6pvvoMOebwmtN5Cu0z0lNZCPrA7S8irc2dRlfDz_BBz98x-MS8OLOuhF_jgHcFGzCl2Oa3DglwLHH81VM62WcMv4GHf66jLlMqYztBl-WhAC_f93vXCjq1HnIr9HL3oYMb3b3Ebr-uLg6Oa3OLz6dnczPKyeUZJVumG54T51uJeucq0FCLRuqhLKdddB2VnJdt7ztVc9ULYFKanvQgmhRd5QfoeNt7jrFHxPk0ax8dhCCHaCsbBgVDWFCa1XQ90_QmziloWxXKMWIFIo0hXq3o6Z2BZ1ZJ7-yaWMe_7AAYgu4FHNO0BvnRzv6OIzJ-mAoMQ9VmYeqzN-qijZ7oj0mPys0W-HWB9j8hzbzL2eLf-4fdkKnYA
CitedBy_id crossref_primary_10_1007_s11467_023_1265_7
crossref_primary_10_1002_smll_202207840
crossref_primary_10_1039_C9CS00855A
crossref_primary_10_1021_acsnano_1c11349
crossref_primary_10_1039_D3CE00205E
crossref_primary_10_1039_D2QI01019D
crossref_primary_10_34133_energymatadv_0086
crossref_primary_10_1021_acs_macromol_2c00014
crossref_primary_10_1002_aelm_202300869
crossref_primary_10_1021_acs_jpclett_0c00746
crossref_primary_10_1039_D2GC00727D
crossref_primary_10_1142_S0218625X22500184
crossref_primary_10_1002_open_202200056
crossref_primary_10_6023_A21110514
crossref_primary_10_1039_D4TB01787K
crossref_primary_10_1080_10426507_2021_2011885
crossref_primary_10_1039_D2CS01018F
crossref_primary_10_1002_smll_202301750
crossref_primary_10_1038_s41598_019_47004_y
crossref_primary_10_1021_acsmacrolett_2c00585
crossref_primary_10_1039_D2CP02907C
crossref_primary_10_1021_acs_iecr_4c04377
crossref_primary_10_21769_BioProtoc_3596
crossref_primary_10_1039_D0TA09177D
crossref_primary_10_1002_marc_202000453
crossref_primary_10_1016_j_apmt_2021_101345
crossref_primary_10_1039_C9TA12169B
crossref_primary_10_1021_acs_macromol_2c02524
crossref_primary_10_3390_nano11112932
crossref_primary_10_1039_D2RA07303J
crossref_primary_10_1002_app_49045
crossref_primary_10_1007_s12274_023_6275_9
crossref_primary_10_1021_acs_analchem_0c03536
crossref_primary_10_1515_nanoph_2019_0476
crossref_primary_10_1016_j_jechem_2021_02_019
crossref_primary_10_1021_acs_chemrev_1c00068
crossref_primary_10_1039_D1NR01907D
crossref_primary_10_1002_anie_202016257
crossref_primary_10_1016_j_mtphys_2024_101396
crossref_primary_10_1016_j_seppur_2021_118968
crossref_primary_10_1016_j_chemosphere_2021_129793
crossref_primary_10_1016_j_jpowsour_2024_234713
crossref_primary_10_1021_acsnano_3c03055
crossref_primary_10_3390_molecules29102215
crossref_primary_10_1016_j_apcatb_2019_117980
crossref_primary_10_6023_A20110529
crossref_primary_10_1021_acs_macromol_8b02702
crossref_primary_10_1002_app_53546
crossref_primary_10_1016_j_watres_2020_116529
crossref_primary_10_1021_acsmaterialslett_1c00655
crossref_primary_10_1039_D1GC03768D
crossref_primary_10_3390_molecules28196769
crossref_primary_10_1016_j_polymer_2022_124996
crossref_primary_10_7554_eLife_69091
crossref_primary_10_1002_pro_4583
crossref_primary_10_1246_cl_210307
crossref_primary_10_1002_ange_202016257
crossref_primary_10_1016_j_foodhyd_2024_110545
crossref_primary_10_1039_D1CP02636D
crossref_primary_10_1021_acs_langmuir_2c03234
crossref_primary_10_1002_adfm_202006066
crossref_primary_10_1039_D0NR01748E
crossref_primary_10_1039_C9NA00582J
crossref_primary_10_3390_polym16070995
crossref_primary_10_1039_D2CB00135G
crossref_primary_10_1002_ente_202401320
crossref_primary_10_1021_acs_jpcb_3c06126
crossref_primary_10_1007_s10118_025_3277_y
crossref_primary_10_1038_s41467_021_25262_7
crossref_primary_10_1002_adfm_202414738
Cites_doi 10.1002/anie.201704113
10.1093/nar/26.20.4785
10.1002/anie.200460963
10.1002/anie.201301255
10.1002/ange.201611740
10.1126/science.275.5304.1295
10.1002/ange.201407211
10.1002/zaac.19956210215
10.1002/anie.200460244
10.1002/anie.196610473
10.1021/acs.macromol.6b00247
10.1103/PhysRevLett.94.048301
10.1002/anie.201407494
10.1002/adma.19910030603
10.1021/ja0582298
10.1021/la904237d
10.1002/ange.201301255
10.1021/la400626x
10.1039/C4NR07140A
10.1002/anie.200805222
10.1002/anie.201611740
10.1002/ange.201703585
10.1021/ja101155h
10.1002/ange.201704113
10.1002/anie.201407211
10.1002/1521-3773(20020503)41:9<1546::AID-ANIE1546>3.0.CO;2-U
10.1002/9780470442876
10.1002/1521-3757(20020503)114:9<1616::AID-ANGE1616>3.0.CO;2-E
10.1021/ed021p522
10.1002/anie.201006496
10.1002/ange.201407494
10.1126/science.1211836
10.1002/1521-3773(20000915)39:18<3212::AID-ANIE3212>3.0.CO;2-X
10.1107/S0567740869001853
10.1002/anie.201703585
10.1002/1521-3757(20000915)112:18<3346::AID-ANGE3346>3.0.CO;2-S
10.1002/ange.200805222
10.1038/s41467-018-05719-y
10.1016/j.polymer.2008.12.012
10.1126/science.8079175
10.1038/nmat2290
10.1016/S0079-6700(03)00046-7
10.1002/anie.201610648
10.1021/ma060054e
10.1021/acs.nanolett.6b04128
10.1002/ange.200503017
10.1002/ange.201006496
10.1063/1.1700191
10.1002/ange.200460963
10.1021/ja108022h
10.1002/ange.200460244
10.1021/ja00050a039
10.1002/ange.201610648
10.1002/anie.200503017
10.1021/ja01203a072
10.1021/cr100010e
ContentType Journal Article
Copyright 2019 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim
2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Copyright_xml – notice: 2019 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
DBID AAYXX
CITATION
NPM
7TM
K9.
7X8
DOI 10.1002/anie.201811152
DatabaseName CrossRef
PubMed
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
ProQuest Health & Medical Complete (Alumni)
Nucleic Acids Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
ProQuest Health & Medical Complete (Alumni)
CrossRef
PubMed

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3773
Edition International ed. in English
EndPage 1663
ExternalDocumentID 30506965
10_1002_anie_201811152
ANIE201811152
Genre shortCommunication
Journal Article
GrantInformation_xml – fundername: Sichuan Youth Science and Technology Foundation
  funderid: 2017JQ0009
– fundername: National Natural Science Foundation of China
  funderid: 21574106; 21774102; 21522401
– fundername: National Natural Science Foundation of China
  grantid: 21522401
– fundername: National Natural Science Foundation of China
  grantid: 21774102
– fundername: National Natural Science Foundation of China
  grantid: 21574106
– fundername: Sichuan Youth Science and Technology Foundation
  grantid: 2017JQ0009
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABLJU
ABPPZ
ABPVW
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BTSUX
BY8
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
M53
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
TN5
UB1
UPT
UQL
V2E
VQA
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XSW
XV2
YZZ
ZZTAW
~IA
~KM
~WT
AAYXX
ABDBF
ABJNI
AEYWJ
AGHNM
AGYGG
CITATION
NPM
7TM
K9.
7X8
ID FETCH-LOGICAL-c4762-892893f1c8b62dcc5e6e5691747adacebda6385b3bf7f2756e161afe840845d13
IEDL.DBID DR2
ISSN 1433-7851
1521-3773
IngestDate Fri Jul 11 11:37:30 EDT 2025
Fri Jul 25 10:36:36 EDT 2025
Mon Jul 21 05:58:18 EDT 2025
Thu Apr 24 23:09:15 EDT 2025
Tue Jul 01 02:26:38 EDT 2025
Wed Jan 22 17:03:09 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords scanning probe microscopy
polymers
single molecules
structure elucidation
phosphorus
Language English
License 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4762-892893f1c8b62dcc5e6e5691747adacebda6385b3bf7f2756e161afe840845d13
Notes These authors contributed equally to this work.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-7713-7377
PMID 30506965
PQID 2172064709
PQPubID 946352
PageCount 5
ParticipantIDs proquest_miscellaneous_2149024887
proquest_journals_2172064709
pubmed_primary_30506965
crossref_citationtrail_10_1002_anie_201811152
crossref_primary_10_1002_anie_201811152
wiley_primary_10_1002_anie_201811152_ANIE201811152
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate February 4, 2019
PublicationDateYYYYMMDD 2019-02-04
PublicationDate_xml – month: 02
  year: 2019
  text: February 4, 2019
  day: 04
PublicationDecade 2010
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Angewandte Chemie International Edition
PublicationTitleAlternate Angew Chem Int Ed Engl
PublicationYear 2019
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2014 2014; 53 126
1998; 26
2013; 29
1991; 3
2011; 334
2004 2004; 43 116
1947; 69
2000 2000; 39 112
2009 2009; 48 121
1997; 275
2006; 39
2009
2008; 7
2017 2017; 56 129
2016; 16
2015; 7
2011; 133
2013 2013; 52 125
1952; 20
2018; 9
1994; 265
2010; 26
2002 2002; 41 114
1966 1966; 5 78
2009; 50
1992; 114
2010; 110
2010; 132
1969; 25
1995; 621
2005 2005; 44 117
2003; 28
2011 2011; 50 123
2005; 94
2016; 49
2006; 128
1944; 21
e_1_2_2_24_2
e_1_2_2_47_2
e_1_2_2_4_2
e_1_2_2_22_3
e_1_2_2_49_1
e_1_2_2_4_3
e_1_2_2_22_2
e_1_2_2_6_2
e_1_2_2_20_1
e_1_2_2_2_1
e_1_2_2_41_1
e_1_2_2_28_3
e_1_2_2_43_1
e_1_2_2_28_2
e_1_2_2_8_1
e_1_2_2_26_3
e_1_2_2_26_2
e_1_2_2_45_2
e_1_2_2_24_3
e_1_2_2_13_2
e_1_2_2_36_2
e_1_2_2_38_1
e_1_2_2_11_2
e_1_2_2_30_2
e_1_2_2_17_3
e_1_2_2_19_1
e_1_2_2_30_3
e_1_2_2_17_2
e_1_2_2_32_2
e_1_2_2_34_2
e_1_2_2_15_1
(e_1_2_2_13_3) 1966; 78
e_1_2_2_3_2
e_1_2_2_23_3
e_1_2_2_23_2
e_1_2_2_48_2
e_1_2_2_5_2
e_1_2_2_5_3
e_1_2_2_21_2
e_1_2_2_1_1
e_1_2_2_40_1
e_1_2_2_29_3
e_1_2_2_42_1
e_1_2_2_29_2
e_1_2_2_7_2
e_1_2_2_9_1
e_1_2_2_27_3
e_1_2_2_7_3
e_1_2_2_27_2
e_1_2_2_44_2
e_1_2_2_25_3
e_1_2_2_46_1
e_1_2_2_25_2
e_1_2_2_37_2
e_1_2_2_12_1
e_1_2_2_39_1
e_1_2_2_10_2
e_1_2_2_31_2
e_1_2_2_16_3
e_1_2_2_18_1
e_1_2_2_16_2
e_1_2_2_33_2
e_1_2_2_35_1
e_1_2_2_14_2
e_1_2_2_50_1
References_xml – volume: 43 116
  start-page: 4228 4324
  year: 2004 2004
  end-page: 4231 4327
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 39
  start-page: 3480
  year: 2006
  end-page: 3483
  publication-title: Macromolecules
– year: 2009
– volume: 28
  start-page: 1271
  year: 2003
  end-page: 1295
  publication-title: Prog. Polym. Sci.
– volume: 5 78
  start-page: 1047 1101
  year: 1966 1966
  end-page: 1048 1102
  publication-title: Angew. Chem. Int. Ed. Engl. Angew. Chem.
– volume: 56 129
  start-page: 6117 6213
  year: 2017 2017
  end-page: 6121 6217
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 621
  start-page: 258
  year: 1995
  end-page: 286
  publication-title: Z. Anorg. Allg. Chem.
– volume: 25
  start-page: 125
  year: 1969
  end-page: 135
  publication-title: Acta Crystallogr. Sect. B
– volume: 44 117
  start-page: 7616 7788
  year: 2005 2005
  end-page: 7619 7792
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 49
  start-page: 3559
  year: 2016
  end-page: 3565
  publication-title: Macromolecules
– volume: 21
  start-page: 522
  year: 1944
  publication-title: J. Chem. Educ.
– volume: 7
  start-page: 2970
  year: 2015
  end-page: 2977
  publication-title: Nanoscale
– volume: 50
  start-page: 930
  year: 2009
  end-page: 935
  publication-title: Polymer
– volume: 7
  start-page: 890
  year: 2008
  end-page: 899
  publication-title: Nat. Mater.
– volume: 20
  start-page: 29
  year: 1952
  end-page: 34
  publication-title: J. Chem. Phys.
– volume: 39 112
  start-page: 3212 3346
  year: 2000 2000
  end-page: 3237 3374
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 44 117
  start-page: 956 978
  year: 2005 2005
  end-page: 959 981
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 50 123
  start-page: 9026 9190
  year: 2011 2011
  end-page: 9057 9223
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 94
  start-page: 048301
  year: 2005
  publication-title: Phys. Rev. Lett.
– volume: 114
  start-page: 9551
  year: 1992
  end-page: 9559
  publication-title: J. Am. Chem. Soc.
– volume: 275
  start-page: 1295
  year: 1997
  end-page: 1297
  publication-title: Science
– volume: 110
  start-page: 4236
  year: 2010
  end-page: 4256
  publication-title: Chem. Rev.
– volume: 26
  start-page: 7343
  year: 2010
  end-page: 7348
  publication-title: Langmuir
– volume: 52 125
  start-page: 6541 6670
  year: 2013 2013
  end-page: 6544 6674
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 56 129
  start-page: 1850 1876
  year: 2017 2017
  end-page: 1854 1880
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 132
  start-page: 6530
  year: 2010
  end-page: 6540
  publication-title: J. Am. Chem. Soc.
– volume: 41 114
  start-page: 1546 1616
  year: 2002 2002
  end-page: 1548 1618
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 53 126
  start-page: 13429 13647
  year: 2014 2014
  end-page: 13433 13651
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 9
  start-page: 3277
  year: 2018
  publication-title: Nat. Commun.
– volume: 128
  start-page: 6636
  year: 2006
  end-page: 6639
  publication-title: J. Am. Chem. Soc.
– volume: 56 129
  start-page: 8144 8256
  year: 2017 2017
  end-page: 8148 8260
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 265
  start-page: 1599
  year: 1994
  end-page: 1600
  publication-title: Science
– volume: 26
  start-page: 4785
  year: 1998
  end-page: 4786
  publication-title: Nucleic Acids Res.
– volume: 48 121
  start-page: 3616 3670
  year: 2009 2009
  end-page: 3621 3675
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 334
  start-page: 213
  year: 2011
  end-page: 216
  publication-title: Science
– volume: 3
  start-page: 282
  year: 1991
  end-page: 291
  publication-title: Adv. Mater.
– volume: 69
  start-page: 2881
  year: 1947
  end-page: 2885
  publication-title: J. Am. Chem. Soc.
– volume: 56 129
  start-page: 9376 9504
  year: 2017 2017
  end-page: 9380 9508
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 16
  start-page: 7865
  year: 2016
  end-page: 7869
  publication-title: Nano Lett.
– volume: 53 126
  start-page: 14508 14736
  year: 2014 2014
  end-page: 14511 14739
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 133
  start-page: 3226
  year: 2011
  end-page: 3229
  publication-title: J. Am. Chem. Soc.
– volume: 29
  start-page: 4315
  year: 2013
  end-page: 4319
  publication-title: Langmuir
– ident: e_1_2_2_29_2
  doi: 10.1002/anie.201704113
– ident: e_1_2_2_40_1
  doi: 10.1093/nar/26.20.4785
– ident: e_1_2_2_46_1
– ident: e_1_2_2_30_2
  doi: 10.1002/anie.200460963
– ident: e_1_2_2_23_2
  doi: 10.1002/anie.201301255
– ident: e_1_2_2_7_3
  doi: 10.1002/ange.201611740
– ident: e_1_2_2_21_2
  doi: 10.1126/science.275.5304.1295
– ident: e_1_2_2_28_3
  doi: 10.1002/ange.201407211
– ident: e_1_2_2_3_2
  doi: 10.1002/zaac.19956210215
– ident: e_1_2_2_4_2
  doi: 10.1002/anie.200460244
– ident: e_1_2_2_13_2
  doi: 10.1002/anie.196610473
– volume: 78
  start-page: 1101
  year: 1966
  ident: e_1_2_2_13_3
  publication-title: Angew. Chem.
– ident: e_1_2_2_45_2
  doi: 10.1021/acs.macromol.6b00247
– ident: e_1_2_2_15_1
– ident: e_1_2_2_38_1
  doi: 10.1103/PhysRevLett.94.048301
– ident: e_1_2_2_25_2
  doi: 10.1002/anie.201407494
– ident: e_1_2_2_50_1
  doi: 10.1002/adma.19910030603
– ident: e_1_2_2_42_1
  doi: 10.1021/ja0582298
– ident: e_1_2_2_39_1
  doi: 10.1021/la904237d
– ident: e_1_2_2_23_3
  doi: 10.1002/ange.201301255
– ident: e_1_2_2_44_2
  doi: 10.1021/la400626x
– ident: e_1_2_2_48_2
  doi: 10.1039/C4NR07140A
– ident: e_1_2_2_16_2
  doi: 10.1002/anie.200805222
– ident: e_1_2_2_7_2
  doi: 10.1002/anie.201611740
– ident: e_1_2_2_17_3
  doi: 10.1002/ange.201703585
– ident: e_1_2_2_31_2
  doi: 10.1021/ja101155h
– ident: e_1_2_2_29_3
  doi: 10.1002/ange.201704113
– ident: e_1_2_2_28_2
  doi: 10.1002/anie.201407211
– ident: e_1_2_2_24_2
  doi: 10.1002/1521-3773(20020503)41:9<1546::AID-ANIE1546>3.0.CO;2-U
– ident: e_1_2_2_41_1
  doi: 10.1002/9780470442876
– ident: e_1_2_2_24_3
  doi: 10.1002/1521-3757(20020503)114:9<1616::AID-ANGE1616>3.0.CO;2-E
– ident: e_1_2_2_1_1
  doi: 10.1021/ed021p522
– ident: e_1_2_2_26_2
  doi: 10.1002/anie.201006496
– ident: e_1_2_2_9_1
– ident: e_1_2_2_25_3
  doi: 10.1002/ange.201407494
– ident: e_1_2_2_36_2
  doi: 10.1126/science.1211836
– ident: e_1_2_2_22_2
  doi: 10.1002/1521-3773(20000915)39:18<3212::AID-ANIE3212>3.0.CO;2-X
– ident: e_1_2_2_14_2
  doi: 10.1107/S0567740869001853
– ident: e_1_2_2_17_2
  doi: 10.1002/anie.201703585
– ident: e_1_2_2_43_1
– ident: e_1_2_2_22_3
  doi: 10.1002/1521-3757(20000915)112:18<3346::AID-ANGE3346>3.0.CO;2-S
– ident: e_1_2_2_12_1
– ident: e_1_2_2_16_3
  doi: 10.1002/ange.200805222
– ident: e_1_2_2_37_2
  doi: 10.1038/s41467-018-05719-y
– ident: e_1_2_2_35_1
– ident: e_1_2_2_49_1
  doi: 10.1016/j.polymer.2008.12.012
– ident: e_1_2_2_47_2
  doi: 10.1126/science.8079175
– ident: e_1_2_2_11_2
  doi: 10.1038/nmat2290
– ident: e_1_2_2_34_2
  doi: 10.1016/S0079-6700(03)00046-7
– ident: e_1_2_2_20_1
– ident: e_1_2_2_27_2
  doi: 10.1002/anie.201610648
– ident: e_1_2_2_33_2
  doi: 10.1021/ma060054e
– ident: e_1_2_2_6_2
  doi: 10.1021/acs.nanolett.6b04128
– ident: e_1_2_2_5_3
  doi: 10.1002/ange.200503017
– ident: e_1_2_2_26_3
  doi: 10.1002/ange.201006496
– ident: e_1_2_2_18_1
  doi: 10.1063/1.1700191
– ident: e_1_2_2_30_3
  doi: 10.1002/ange.200460963
– ident: e_1_2_2_32_2
  doi: 10.1021/ja108022h
– ident: e_1_2_2_4_3
  doi: 10.1002/ange.200460244
– ident: e_1_2_2_19_1
  doi: 10.1021/ja00050a039
– ident: e_1_2_2_2_1
– ident: e_1_2_2_27_3
  doi: 10.1002/ange.201610648
– ident: e_1_2_2_5_2
  doi: 10.1002/anie.200503017
– ident: e_1_2_2_8_1
  doi: 10.1021/ja01203a072
– ident: e_1_2_2_10_2
  doi: 10.1021/cr100010e
SSID ssj0028806
Score 2.548808
Snippet Since the discovery of amorphous red phosphorus (a‐red P) in 1847, many possible structures have been proposed. However, the exact molecular structure has not...
Since the discovery of amorphous red phosphorus (a-red P) in 1847, many possible structures have been proposed. However, the exact molecular structure has not...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1659
SubjectTerms Atomic force microscopy
Elasticity
Liquid chromatography
Molecular structure
Molecular weight
Molecular weight distribution
Phosphorus
Polymers
Quantum mechanics
scanning probe microscopy
Scanning tunneling microscopy
Short term memory
single molecules
structure elucidation
Title Towards Unveiling the Exact Molecular Structure of Amorphous Red Phosphorus by Single‐Molecule Studies
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.201811152
https://www.ncbi.nlm.nih.gov/pubmed/30506965
https://www.proquest.com/docview/2172064709
https://www.proquest.com/docview/2149024887
Volume 58
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bT9RAFD4hvMiLN0CraIaEhKeB7nR6e9xsdoMmEAJswlsz12CE1tBdoz75E_yN_hLP6Q1WYkz0rZPOtNNz6zntOd8B2MtQUFIhMp4qk3BpfMiVsIKjcoTaZcZoQbXDxyfJ0Vy-v4wv71Xxt_gQwwc30ozGXpOCK10f3oGGUgU2pWZlqK0xGWFK2CKv6GzAjxIonG15URRx6kLfozaG4nB1-epb6YGrueq5Nq-e2RNQ_abbjJOPB8uFPjDffsNz_J-negqPO7-UjVtBegZrrnwOjyZ9O7hNuLpoEmxrNi8_uw9UxM7Qd2TTL8os2HHfZJedN3i0y1vHKs_GNxWysVrW7MxZdnpV1Ti6xaH-ys7xCtfu5_cf3VrHupTGLZjPpheTI961aeBGoinlWY5BW-RHJtOJsMbELnFxgmGgTJVVxmmrUMljHWmfekKbd-hlKu8wtMxkbEfRNqyXVeleArMutjrXRo5UIr3NlceAJ1JaeoyqvFYB8J5NhekwzKmVxnXRoi-LguhXDPQLYH-Y_6lF7_jjzJ2e60WnxXVBzbuoGDfMA9gdTiPd6aeKKh3SD-fInHDhsjSAF620DLdCWxomeRIHIBqe_2UPxfjk3XQYvfqXRa9hA4_zJq1c7sA68ty9Qa9pod82mvELPtUP5A
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VcigX3pRAASOBOLnNOs7rwGHVbrVLuyvU7kq9BT9VRJtUzS5QTvwE_gp_hZ_AL2GcF1oQQkLqgaMT23HmEc84M98APEtQUGLGEhoLFVGurE8F04yicvjSJEpJ5nKHx5NoOOOvjsKjFfja5sLU-BDdgZvTjOp77RTcHUhv_UQNdSnYLjYrQXUNWRNXuWcuPqDXVr4c7SCLnzO2O5huD2lTWIAqjspPkxTdjMD2VCIjppUKTWTCCB0XHgstlJFaoFiGMpA2tg4f3aBdJKxBZyjhoe4FOO8VuOrKiDu4_p2DDrGKoTrUCU1BQF3d-xYn0mdby-td3gd_M26XbeVqs9u9Ad9aMtUxLu82F3O5qT79giD5X9HxJlxvTG_Sr3XlFqyY_DasbbcV7-7A8bSKIS7JLH9v3ro8fYLmMRl8FGpOxm0dYXJYQe4uzg0pLOmfFiipxaIkB0aT18dFia1zbMoLcogznJjvn780Yw1pojbvwuxSXvQerOZFbu4D0SbUMpWK90TErU6FRZ8uEJJbdBytFB7QVi4y1cC0u2ohJ1kNMM0yx6-s45cHL7r-ZzVAyR97brRiljUfqjJz9clcvrGfevC0u410d_-NRG6QftiHpw76Lok9WK_Fs3sUbhd-lEahB6wSsr-sIetPRoOu9eBfBj2BteF0vJ_tjyZ7D-EaXk-rKHq-AavIf_MIjcS5fFypJYE3ly2_PwChEG4C
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VIkEv5V0CBYwE4uQ26zivA4dVd1ddSldV25V6C36qiJJUzW6hnPgJ_BT-Cn-BX8I4L7QghITUA0cntuPMw55JZr4BeJagoMSMJTQWKqJcWZ8KphlF5fClSZSSzOUO706i7Sl_dRQeLcHXNhemxofoPrg5zaj2a6fgp9pu_gQNdRnYLjQrQW0NWRNWuWMuPqDTVr4cD5DDzxkbDQ-3tmlTV4AqjrpPkxS9jMD2VCIjppUKTWTCCP0WHgstlJFaoFSGMpA2tg4e3aBZJKxBXyjhoe4FOO8VuMojP3XFIgb7HWAVQ22o85mCgLqy9y1MpM82F9e7eAz-ZtsumsrVWTe6Ad9aKtUhLu825jO5oT79AiD5P5HxJqw2hjfp15pyC5ZMfhuub7X17u7A8WEVQVySaX5u3rosfYLGMRl-FGpGdtsqwuSgAtydnxlSWNJ_X6CcFvOS7BtN9o6LEltn2JQX5ABnODHfP39pxhrSxGzehemlvOg9WM6L3NwHok2oZSoV74mIW50Kix5dICS36DZaKTygrVhkqgFpd7VCTrIaXppljl9Zxy8PXnT9T2t4kj_2XG-lLGu2qTJz1clctrGfevC0u410d3-NRG6QftiHpw74Lok9WKuls3sUHhZ-lEahB6ySsb-sIetPxsOu9eBfBj2Ba3uDUfZ6PNl5CCt4Oa1C6Pk6LCP7zSO0EGfycaWUBN5ctvj-AM-GbLE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Towards+Unveiling+the+Exact+Molecular+Structure+of+Amorphous+Red+Phosphorus+by+Single%E2%80%90Molecule+Studies&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Zhang%2C+Song&rft.au=Hu%E2%80%90jun+Qian&rft.au=Liu%2C+Zhonghua&rft.au=Ju%2C+Hongyu&rft.date=2019-02-04&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=58&rft.issue=6&rft.spage=1659&rft.epage=1663&rft_id=info:doi/10.1002%2Fanie.201811152&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon