Towards Unveiling the Exact Molecular Structure of Amorphous Red Phosphorus by Single‐Molecule Studies
Since the discovery of amorphous red phosphorus (a‐red P) in 1847, many possible structures have been proposed. However, the exact molecular structure has not yet been determined because of its amorphous nature. Herein several methods are used to investigate basic properties of a‐red P. Data from sc...
Saved in:
Published in | Angewandte Chemie International Edition Vol. 58; no. 6; pp. 1659 - 1663 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
04.02.2019
|
Edition | International ed. in English |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Since the discovery of amorphous red phosphorus (a‐red P) in 1847, many possible structures have been proposed. However, the exact molecular structure has not yet been determined because of its amorphous nature. Herein several methods are used to investigate basic properties of a‐red P. Data from scanning tunneling microscopy (STM) and gel permeation chromatography (GPC) confirm that a‐red P is a linear inorganic polymer with a broad molecular weight distribution. The theoretical single‐molecule elasticities of the possible a‐red P structures are obtained by quantum mechanical (QM) calculations. The experimental single‐molecule elasticity of a‐red P measured by single‐molecule AFM matches with the theoretical result of the zig‐zag ladder structure, indicating that a‐red P may adopt this structure. Although this conclusion needs further validation, this fundamental study represents progress towards solving the structure of a‐red P. It is expected that the strategy utilized in this work can be applied to study other inorganic polymers.
Zig‐zag: Although amorphous red phosphorus (a‐red P) was discovered for more than 170 years, its exact molecular structure is unknown because of its amorphous nature. Results from single‐molecule AFM, quantum mechanical calculations, and scanning tunneling microscopy suggest that a‐red P may adopt a zig‐zag ladder structure (2 in Scheme). |
---|---|
AbstractList | Since the discovery of amorphous red phosphorus (a-red P) in 1847, many possible structures have been proposed. However, the exact molecular structure has not yet been determined because of its amorphous nature. Herein several methods are used to investigate basic properties of a-red P. Data from scanning tunneling microscopy (STM) and gel permeation chromatography (GPC) confirm that a-red P is a linear inorganic polymer with a broad molecular weight distribution. The theoretical single-molecule elasticities of the possible a-red P structures are obtained by quantum mechanical (QM) calculations. The experimental single-molecule elasticity of a-red P measured by single-molecule AFM matches with the theoretical result of the zig-zag ladder structure, indicating that a-red P may adopt this structure. Although this conclusion needs further validation, this fundamental study represents progress towards solving the structure of a-red P. It is expected that the strategy utilized in this work can be applied to study other inorganic polymers.Since the discovery of amorphous red phosphorus (a-red P) in 1847, many possible structures have been proposed. However, the exact molecular structure has not yet been determined because of its amorphous nature. Herein several methods are used to investigate basic properties of a-red P. Data from scanning tunneling microscopy (STM) and gel permeation chromatography (GPC) confirm that a-red P is a linear inorganic polymer with a broad molecular weight distribution. The theoretical single-molecule elasticities of the possible a-red P structures are obtained by quantum mechanical (QM) calculations. The experimental single-molecule elasticity of a-red P measured by single-molecule AFM matches with the theoretical result of the zig-zag ladder structure, indicating that a-red P may adopt this structure. Although this conclusion needs further validation, this fundamental study represents progress towards solving the structure of a-red P. It is expected that the strategy utilized in this work can be applied to study other inorganic polymers. Since the discovery of amorphous red phosphorus (a‐red P) in 1847, many possible structures have been proposed. However, the exact molecular structure has not yet been determined because of its amorphous nature. Herein several methods are used to investigate basic properties of a‐red P. Data from scanning tunneling microscopy (STM) and gel permeation chromatography (GPC) confirm that a‐red P is a linear inorganic polymer with a broad molecular weight distribution. The theoretical single‐molecule elasticities of the possible a‐red P structures are obtained by quantum mechanical (QM) calculations. The experimental single‐molecule elasticity of a‐red P measured by single‐molecule AFM matches with the theoretical result of the zig‐zag ladder structure, indicating that a‐red P may adopt this structure. Although this conclusion needs further validation, this fundamental study represents progress towards solving the structure of a‐red P. It is expected that the strategy utilized in this work can be applied to study other inorganic polymers. Since the discovery of amorphous red phosphorus (a‐red P) in 1847, many possible structures have been proposed. However, the exact molecular structure has not yet been determined because of its amorphous nature. Herein several methods are used to investigate basic properties of a‐red P. Data from scanning tunneling microscopy (STM) and gel permeation chromatography (GPC) confirm that a‐red P is a linear inorganic polymer with a broad molecular weight distribution. The theoretical single‐molecule elasticities of the possible a‐red P structures are obtained by quantum mechanical (QM) calculations. The experimental single‐molecule elasticity of a‐red P measured by single‐molecule AFM matches with the theoretical result of the zig‐zag ladder structure, indicating that a‐red P may adopt this structure. Although this conclusion needs further validation, this fundamental study represents progress towards solving the structure of a‐red P. It is expected that the strategy utilized in this work can be applied to study other inorganic polymers. Zig‐zag: Although amorphous red phosphorus (a‐red P) was discovered for more than 170 years, its exact molecular structure is unknown because of its amorphous nature. Results from single‐molecule AFM, quantum mechanical calculations, and scanning tunneling microscopy suggest that a‐red P may adopt a zig‐zag ladder structure (2 in Scheme). |
Author | Qian, Hu‐jun Ju, Hongyu Liu, Zhonghua Cui, Shuxun Zhang, Song Lu, Zhong‐yuan Chi, Lifeng Zhang, Haiming |
Author_xml | – sequence: 1 givenname: Song surname: Zhang fullname: Zhang, Song organization: Southwest Jiaotong University – sequence: 2 givenname: Hu‐jun surname: Qian fullname: Qian, Hu‐jun organization: Jilin University – sequence: 3 givenname: Zhonghua surname: Liu fullname: Liu, Zhonghua organization: Soochow University – sequence: 4 givenname: Hongyu surname: Ju fullname: Ju, Hongyu organization: Southwest Jiaotong University – sequence: 5 givenname: Zhong‐yuan surname: Lu fullname: Lu, Zhong‐yuan organization: Jilin University – sequence: 6 givenname: Haiming surname: Zhang fullname: Zhang, Haiming organization: Soochow University – sequence: 7 givenname: Lifeng surname: Chi fullname: Chi, Lifeng email: chilf@suda.edu.cn organization: Soochow University – sequence: 8 givenname: Shuxun orcidid: 0000-0002-7713-7377 surname: Cui fullname: Cui, Shuxun email: cuishuxun@swjtu.edu.cn organization: Southwest Jiaotong University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30506965$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkU1rFDEYx4NU7ItePUrASy-z5m2SzHEpqy1UK7Y9h0zmGTclO1mTGdu9-RH6Gf0kpuxWoVC8JHng9_vzkP8h2hviAAi9pWRGCWEf7OBhxgjVlNKavUAH5aQVV4rvlbfgvFK6pvvoMOebwmtN5Cu0z0lNZCPrA7S8irc2dRlfDz_BBz98x-MS8OLOuhF_jgHcFGzCl2Oa3DglwLHH81VM62WcMv4GHf66jLlMqYztBl-WhAC_f93vXCjq1HnIr9HL3oYMb3b3Ebr-uLg6Oa3OLz6dnczPKyeUZJVumG54T51uJeucq0FCLRuqhLKdddB2VnJdt7ztVc9ULYFKanvQgmhRd5QfoeNt7jrFHxPk0ax8dhCCHaCsbBgVDWFCa1XQ90_QmziloWxXKMWIFIo0hXq3o6Z2BZ1ZJ7-yaWMe_7AAYgu4FHNO0BvnRzv6OIzJ-mAoMQ9VmYeqzN-qijZ7oj0mPys0W-HWB9j8hzbzL2eLf-4fdkKnYA |
CitedBy_id | crossref_primary_10_1007_s11467_023_1265_7 crossref_primary_10_1002_smll_202207840 crossref_primary_10_1039_C9CS00855A crossref_primary_10_1021_acsnano_1c11349 crossref_primary_10_1039_D3CE00205E crossref_primary_10_1039_D2QI01019D crossref_primary_10_34133_energymatadv_0086 crossref_primary_10_1021_acs_macromol_2c00014 crossref_primary_10_1002_aelm_202300869 crossref_primary_10_1021_acs_jpclett_0c00746 crossref_primary_10_1039_D2GC00727D crossref_primary_10_1142_S0218625X22500184 crossref_primary_10_1002_open_202200056 crossref_primary_10_6023_A21110514 crossref_primary_10_1039_D4TB01787K crossref_primary_10_1080_10426507_2021_2011885 crossref_primary_10_1039_D2CS01018F crossref_primary_10_1002_smll_202301750 crossref_primary_10_1038_s41598_019_47004_y crossref_primary_10_1021_acsmacrolett_2c00585 crossref_primary_10_1039_D2CP02907C crossref_primary_10_1021_acs_iecr_4c04377 crossref_primary_10_21769_BioProtoc_3596 crossref_primary_10_1039_D0TA09177D crossref_primary_10_1002_marc_202000453 crossref_primary_10_1016_j_apmt_2021_101345 crossref_primary_10_1039_C9TA12169B crossref_primary_10_1021_acs_macromol_2c02524 crossref_primary_10_3390_nano11112932 crossref_primary_10_1039_D2RA07303J crossref_primary_10_1002_app_49045 crossref_primary_10_1007_s12274_023_6275_9 crossref_primary_10_1021_acs_analchem_0c03536 crossref_primary_10_1515_nanoph_2019_0476 crossref_primary_10_1016_j_jechem_2021_02_019 crossref_primary_10_1021_acs_chemrev_1c00068 crossref_primary_10_1039_D1NR01907D crossref_primary_10_1002_anie_202016257 crossref_primary_10_1016_j_mtphys_2024_101396 crossref_primary_10_1016_j_seppur_2021_118968 crossref_primary_10_1016_j_chemosphere_2021_129793 crossref_primary_10_1016_j_jpowsour_2024_234713 crossref_primary_10_1021_acsnano_3c03055 crossref_primary_10_3390_molecules29102215 crossref_primary_10_1016_j_apcatb_2019_117980 crossref_primary_10_6023_A20110529 crossref_primary_10_1021_acs_macromol_8b02702 crossref_primary_10_1002_app_53546 crossref_primary_10_1016_j_watres_2020_116529 crossref_primary_10_1021_acsmaterialslett_1c00655 crossref_primary_10_1039_D1GC03768D crossref_primary_10_3390_molecules28196769 crossref_primary_10_1016_j_polymer_2022_124996 crossref_primary_10_7554_eLife_69091 crossref_primary_10_1002_pro_4583 crossref_primary_10_1246_cl_210307 crossref_primary_10_1002_ange_202016257 crossref_primary_10_1016_j_foodhyd_2024_110545 crossref_primary_10_1039_D1CP02636D crossref_primary_10_1021_acs_langmuir_2c03234 crossref_primary_10_1002_adfm_202006066 crossref_primary_10_1039_D0NR01748E crossref_primary_10_1039_C9NA00582J crossref_primary_10_3390_polym16070995 crossref_primary_10_1039_D2CB00135G crossref_primary_10_1002_ente_202401320 crossref_primary_10_1021_acs_jpcb_3c06126 crossref_primary_10_1007_s10118_025_3277_y crossref_primary_10_1038_s41467_021_25262_7 crossref_primary_10_1002_adfm_202414738 |
Cites_doi | 10.1002/anie.201704113 10.1093/nar/26.20.4785 10.1002/anie.200460963 10.1002/anie.201301255 10.1002/ange.201611740 10.1126/science.275.5304.1295 10.1002/ange.201407211 10.1002/zaac.19956210215 10.1002/anie.200460244 10.1002/anie.196610473 10.1021/acs.macromol.6b00247 10.1103/PhysRevLett.94.048301 10.1002/anie.201407494 10.1002/adma.19910030603 10.1021/ja0582298 10.1021/la904237d 10.1002/ange.201301255 10.1021/la400626x 10.1039/C4NR07140A 10.1002/anie.200805222 10.1002/anie.201611740 10.1002/ange.201703585 10.1021/ja101155h 10.1002/ange.201704113 10.1002/anie.201407211 10.1002/1521-3773(20020503)41:9<1546::AID-ANIE1546>3.0.CO;2-U 10.1002/9780470442876 10.1002/1521-3757(20020503)114:9<1616::AID-ANGE1616>3.0.CO;2-E 10.1021/ed021p522 10.1002/anie.201006496 10.1002/ange.201407494 10.1126/science.1211836 10.1002/1521-3773(20000915)39:18<3212::AID-ANIE3212>3.0.CO;2-X 10.1107/S0567740869001853 10.1002/anie.201703585 10.1002/1521-3757(20000915)112:18<3346::AID-ANGE3346>3.0.CO;2-S 10.1002/ange.200805222 10.1038/s41467-018-05719-y 10.1016/j.polymer.2008.12.012 10.1126/science.8079175 10.1038/nmat2290 10.1016/S0079-6700(03)00046-7 10.1002/anie.201610648 10.1021/ma060054e 10.1021/acs.nanolett.6b04128 10.1002/ange.200503017 10.1002/ange.201006496 10.1063/1.1700191 10.1002/ange.200460963 10.1021/ja108022h 10.1002/ange.200460244 10.1021/ja00050a039 10.1002/ange.201610648 10.1002/anie.200503017 10.1021/ja01203a072 10.1021/cr100010e |
ContentType | Journal Article |
Copyright | 2019 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. |
Copyright_xml | – notice: 2019 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. |
DBID | AAYXX CITATION NPM 7TM K9. 7X8 |
DOI | 10.1002/anie.201811152 |
DatabaseName | CrossRef PubMed Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed ProQuest Health & Medical Complete (Alumni) Nucleic Acids Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic ProQuest Health & Medical Complete (Alumni) CrossRef PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3773 |
Edition | International ed. in English |
EndPage | 1663 |
ExternalDocumentID | 30506965 10_1002_anie_201811152 ANIE201811152 |
Genre | shortCommunication Journal Article |
GrantInformation_xml | – fundername: Sichuan Youth Science and Technology Foundation funderid: 2017JQ0009 – fundername: National Natural Science Foundation of China funderid: 21574106; 21774102; 21522401 – fundername: National Natural Science Foundation of China grantid: 21522401 – fundername: National Natural Science Foundation of China grantid: 21774102 – fundername: National Natural Science Foundation of China grantid: 21574106 – fundername: Sichuan Youth Science and Technology Foundation grantid: 2017JQ0009 |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABLJU ABPPZ ABPVW ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BTSUX BY8 CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS EJD F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES M53 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ TN5 UB1 UPT UQL V2E VQA W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XSW XV2 YZZ ZZTAW ~IA ~KM ~WT AAYXX ABDBF ABJNI AEYWJ AGHNM AGYGG CITATION NPM 7TM K9. 7X8 |
ID | FETCH-LOGICAL-c4762-892893f1c8b62dcc5e6e5691747adacebda6385b3bf7f2756e161afe840845d13 |
IEDL.DBID | DR2 |
ISSN | 1433-7851 1521-3773 |
IngestDate | Fri Jul 11 11:37:30 EDT 2025 Fri Jul 25 10:36:36 EDT 2025 Mon Jul 21 05:58:18 EDT 2025 Thu Apr 24 23:09:15 EDT 2025 Tue Jul 01 02:26:38 EDT 2025 Wed Jan 22 17:03:09 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | scanning probe microscopy polymers single molecules structure elucidation phosphorus |
Language | English |
License | 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4762-892893f1c8b62dcc5e6e5691747adacebda6385b3bf7f2756e161afe840845d13 |
Notes | These authors contributed equally to this work. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-7713-7377 |
PMID | 30506965 |
PQID | 2172064709 |
PQPubID | 946352 |
PageCount | 5 |
ParticipantIDs | proquest_miscellaneous_2149024887 proquest_journals_2172064709 pubmed_primary_30506965 crossref_citationtrail_10_1002_anie_201811152 crossref_primary_10_1002_anie_201811152 wiley_primary_10_1002_anie_201811152_ANIE201811152 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | February 4, 2019 |
PublicationDateYYYYMMDD | 2019-02-04 |
PublicationDate_xml | – month: 02 year: 2019 text: February 4, 2019 day: 04 |
PublicationDecade | 2010 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Angewandte Chemie International Edition |
PublicationTitleAlternate | Angew Chem Int Ed Engl |
PublicationYear | 2019 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2014 2014; 53 126 1998; 26 2013; 29 1991; 3 2011; 334 2004 2004; 43 116 1947; 69 2000 2000; 39 112 2009 2009; 48 121 1997; 275 2006; 39 2009 2008; 7 2017 2017; 56 129 2016; 16 2015; 7 2011; 133 2013 2013; 52 125 1952; 20 2018; 9 1994; 265 2010; 26 2002 2002; 41 114 1966 1966; 5 78 2009; 50 1992; 114 2010; 110 2010; 132 1969; 25 1995; 621 2005 2005; 44 117 2003; 28 2011 2011; 50 123 2005; 94 2016; 49 2006; 128 1944; 21 e_1_2_2_24_2 e_1_2_2_47_2 e_1_2_2_4_2 e_1_2_2_22_3 e_1_2_2_49_1 e_1_2_2_4_3 e_1_2_2_22_2 e_1_2_2_6_2 e_1_2_2_20_1 e_1_2_2_2_1 e_1_2_2_41_1 e_1_2_2_28_3 e_1_2_2_43_1 e_1_2_2_28_2 e_1_2_2_8_1 e_1_2_2_26_3 e_1_2_2_26_2 e_1_2_2_45_2 e_1_2_2_24_3 e_1_2_2_13_2 e_1_2_2_36_2 e_1_2_2_38_1 e_1_2_2_11_2 e_1_2_2_30_2 e_1_2_2_17_3 e_1_2_2_19_1 e_1_2_2_30_3 e_1_2_2_17_2 e_1_2_2_32_2 e_1_2_2_34_2 e_1_2_2_15_1 (e_1_2_2_13_3) 1966; 78 e_1_2_2_3_2 e_1_2_2_23_3 e_1_2_2_23_2 e_1_2_2_48_2 e_1_2_2_5_2 e_1_2_2_5_3 e_1_2_2_21_2 e_1_2_2_1_1 e_1_2_2_40_1 e_1_2_2_29_3 e_1_2_2_42_1 e_1_2_2_29_2 e_1_2_2_7_2 e_1_2_2_9_1 e_1_2_2_27_3 e_1_2_2_7_3 e_1_2_2_27_2 e_1_2_2_44_2 e_1_2_2_25_3 e_1_2_2_46_1 e_1_2_2_25_2 e_1_2_2_37_2 e_1_2_2_12_1 e_1_2_2_39_1 e_1_2_2_10_2 e_1_2_2_31_2 e_1_2_2_16_3 e_1_2_2_18_1 e_1_2_2_16_2 e_1_2_2_33_2 e_1_2_2_35_1 e_1_2_2_14_2 e_1_2_2_50_1 |
References_xml | – volume: 43 116 start-page: 4228 4324 year: 2004 2004 end-page: 4231 4327 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 39 start-page: 3480 year: 2006 end-page: 3483 publication-title: Macromolecules – year: 2009 – volume: 28 start-page: 1271 year: 2003 end-page: 1295 publication-title: Prog. Polym. Sci. – volume: 5 78 start-page: 1047 1101 year: 1966 1966 end-page: 1048 1102 publication-title: Angew. Chem. Int. Ed. Engl. Angew. Chem. – volume: 56 129 start-page: 6117 6213 year: 2017 2017 end-page: 6121 6217 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 621 start-page: 258 year: 1995 end-page: 286 publication-title: Z. Anorg. Allg. Chem. – volume: 25 start-page: 125 year: 1969 end-page: 135 publication-title: Acta Crystallogr. Sect. B – volume: 44 117 start-page: 7616 7788 year: 2005 2005 end-page: 7619 7792 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 49 start-page: 3559 year: 2016 end-page: 3565 publication-title: Macromolecules – volume: 21 start-page: 522 year: 1944 publication-title: J. Chem. Educ. – volume: 7 start-page: 2970 year: 2015 end-page: 2977 publication-title: Nanoscale – volume: 50 start-page: 930 year: 2009 end-page: 935 publication-title: Polymer – volume: 7 start-page: 890 year: 2008 end-page: 899 publication-title: Nat. Mater. – volume: 20 start-page: 29 year: 1952 end-page: 34 publication-title: J. Chem. Phys. – volume: 39 112 start-page: 3212 3346 year: 2000 2000 end-page: 3237 3374 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 44 117 start-page: 956 978 year: 2005 2005 end-page: 959 981 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 50 123 start-page: 9026 9190 year: 2011 2011 end-page: 9057 9223 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 94 start-page: 048301 year: 2005 publication-title: Phys. Rev. Lett. – volume: 114 start-page: 9551 year: 1992 end-page: 9559 publication-title: J. Am. Chem. Soc. – volume: 275 start-page: 1295 year: 1997 end-page: 1297 publication-title: Science – volume: 110 start-page: 4236 year: 2010 end-page: 4256 publication-title: Chem. Rev. – volume: 26 start-page: 7343 year: 2010 end-page: 7348 publication-title: Langmuir – volume: 52 125 start-page: 6541 6670 year: 2013 2013 end-page: 6544 6674 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 56 129 start-page: 1850 1876 year: 2017 2017 end-page: 1854 1880 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 132 start-page: 6530 year: 2010 end-page: 6540 publication-title: J. Am. Chem. Soc. – volume: 41 114 start-page: 1546 1616 year: 2002 2002 end-page: 1548 1618 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 53 126 start-page: 13429 13647 year: 2014 2014 end-page: 13433 13651 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 9 start-page: 3277 year: 2018 publication-title: Nat. Commun. – volume: 128 start-page: 6636 year: 2006 end-page: 6639 publication-title: J. Am. Chem. Soc. – volume: 56 129 start-page: 8144 8256 year: 2017 2017 end-page: 8148 8260 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 265 start-page: 1599 year: 1994 end-page: 1600 publication-title: Science – volume: 26 start-page: 4785 year: 1998 end-page: 4786 publication-title: Nucleic Acids Res. – volume: 48 121 start-page: 3616 3670 year: 2009 2009 end-page: 3621 3675 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 334 start-page: 213 year: 2011 end-page: 216 publication-title: Science – volume: 3 start-page: 282 year: 1991 end-page: 291 publication-title: Adv. Mater. – volume: 69 start-page: 2881 year: 1947 end-page: 2885 publication-title: J. Am. Chem. Soc. – volume: 56 129 start-page: 9376 9504 year: 2017 2017 end-page: 9380 9508 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 16 start-page: 7865 year: 2016 end-page: 7869 publication-title: Nano Lett. – volume: 53 126 start-page: 14508 14736 year: 2014 2014 end-page: 14511 14739 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 133 start-page: 3226 year: 2011 end-page: 3229 publication-title: J. Am. Chem. Soc. – volume: 29 start-page: 4315 year: 2013 end-page: 4319 publication-title: Langmuir – ident: e_1_2_2_29_2 doi: 10.1002/anie.201704113 – ident: e_1_2_2_40_1 doi: 10.1093/nar/26.20.4785 – ident: e_1_2_2_46_1 – ident: e_1_2_2_30_2 doi: 10.1002/anie.200460963 – ident: e_1_2_2_23_2 doi: 10.1002/anie.201301255 – ident: e_1_2_2_7_3 doi: 10.1002/ange.201611740 – ident: e_1_2_2_21_2 doi: 10.1126/science.275.5304.1295 – ident: e_1_2_2_28_3 doi: 10.1002/ange.201407211 – ident: e_1_2_2_3_2 doi: 10.1002/zaac.19956210215 – ident: e_1_2_2_4_2 doi: 10.1002/anie.200460244 – ident: e_1_2_2_13_2 doi: 10.1002/anie.196610473 – volume: 78 start-page: 1101 year: 1966 ident: e_1_2_2_13_3 publication-title: Angew. Chem. – ident: e_1_2_2_45_2 doi: 10.1021/acs.macromol.6b00247 – ident: e_1_2_2_15_1 – ident: e_1_2_2_38_1 doi: 10.1103/PhysRevLett.94.048301 – ident: e_1_2_2_25_2 doi: 10.1002/anie.201407494 – ident: e_1_2_2_50_1 doi: 10.1002/adma.19910030603 – ident: e_1_2_2_42_1 doi: 10.1021/ja0582298 – ident: e_1_2_2_39_1 doi: 10.1021/la904237d – ident: e_1_2_2_23_3 doi: 10.1002/ange.201301255 – ident: e_1_2_2_44_2 doi: 10.1021/la400626x – ident: e_1_2_2_48_2 doi: 10.1039/C4NR07140A – ident: e_1_2_2_16_2 doi: 10.1002/anie.200805222 – ident: e_1_2_2_7_2 doi: 10.1002/anie.201611740 – ident: e_1_2_2_17_3 doi: 10.1002/ange.201703585 – ident: e_1_2_2_31_2 doi: 10.1021/ja101155h – ident: e_1_2_2_29_3 doi: 10.1002/ange.201704113 – ident: e_1_2_2_28_2 doi: 10.1002/anie.201407211 – ident: e_1_2_2_24_2 doi: 10.1002/1521-3773(20020503)41:9<1546::AID-ANIE1546>3.0.CO;2-U – ident: e_1_2_2_41_1 doi: 10.1002/9780470442876 – ident: e_1_2_2_24_3 doi: 10.1002/1521-3757(20020503)114:9<1616::AID-ANGE1616>3.0.CO;2-E – ident: e_1_2_2_1_1 doi: 10.1021/ed021p522 – ident: e_1_2_2_26_2 doi: 10.1002/anie.201006496 – ident: e_1_2_2_9_1 – ident: e_1_2_2_25_3 doi: 10.1002/ange.201407494 – ident: e_1_2_2_36_2 doi: 10.1126/science.1211836 – ident: e_1_2_2_22_2 doi: 10.1002/1521-3773(20000915)39:18<3212::AID-ANIE3212>3.0.CO;2-X – ident: e_1_2_2_14_2 doi: 10.1107/S0567740869001853 – ident: e_1_2_2_17_2 doi: 10.1002/anie.201703585 – ident: e_1_2_2_43_1 – ident: e_1_2_2_22_3 doi: 10.1002/1521-3757(20000915)112:18<3346::AID-ANGE3346>3.0.CO;2-S – ident: e_1_2_2_12_1 – ident: e_1_2_2_16_3 doi: 10.1002/ange.200805222 – ident: e_1_2_2_37_2 doi: 10.1038/s41467-018-05719-y – ident: e_1_2_2_35_1 – ident: e_1_2_2_49_1 doi: 10.1016/j.polymer.2008.12.012 – ident: e_1_2_2_47_2 doi: 10.1126/science.8079175 – ident: e_1_2_2_11_2 doi: 10.1038/nmat2290 – ident: e_1_2_2_34_2 doi: 10.1016/S0079-6700(03)00046-7 – ident: e_1_2_2_20_1 – ident: e_1_2_2_27_2 doi: 10.1002/anie.201610648 – ident: e_1_2_2_33_2 doi: 10.1021/ma060054e – ident: e_1_2_2_6_2 doi: 10.1021/acs.nanolett.6b04128 – ident: e_1_2_2_5_3 doi: 10.1002/ange.200503017 – ident: e_1_2_2_26_3 doi: 10.1002/ange.201006496 – ident: e_1_2_2_18_1 doi: 10.1063/1.1700191 – ident: e_1_2_2_30_3 doi: 10.1002/ange.200460963 – ident: e_1_2_2_32_2 doi: 10.1021/ja108022h – ident: e_1_2_2_4_3 doi: 10.1002/ange.200460244 – ident: e_1_2_2_19_1 doi: 10.1021/ja00050a039 – ident: e_1_2_2_2_1 – ident: e_1_2_2_27_3 doi: 10.1002/ange.201610648 – ident: e_1_2_2_5_2 doi: 10.1002/anie.200503017 – ident: e_1_2_2_8_1 doi: 10.1021/ja01203a072 – ident: e_1_2_2_10_2 doi: 10.1021/cr100010e |
SSID | ssj0028806 |
Score | 2.548808 |
Snippet | Since the discovery of amorphous red phosphorus (a‐red P) in 1847, many possible structures have been proposed. However, the exact molecular structure has not... Since the discovery of amorphous red phosphorus (a-red P) in 1847, many possible structures have been proposed. However, the exact molecular structure has not... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1659 |
SubjectTerms | Atomic force microscopy Elasticity Liquid chromatography Molecular structure Molecular weight Molecular weight distribution Phosphorus Polymers Quantum mechanics scanning probe microscopy Scanning tunneling microscopy Short term memory single molecules structure elucidation |
Title | Towards Unveiling the Exact Molecular Structure of Amorphous Red Phosphorus by Single‐Molecule Studies |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.201811152 https://www.ncbi.nlm.nih.gov/pubmed/30506965 https://www.proquest.com/docview/2172064709 https://www.proquest.com/docview/2149024887 |
Volume | 58 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bT9RAFD4hvMiLN0CraIaEhKeB7nR6e9xsdoMmEAJswlsz12CE1tBdoz75E_yN_hLP6Q1WYkz0rZPOtNNz6zntOd8B2MtQUFIhMp4qk3BpfMiVsIKjcoTaZcZoQbXDxyfJ0Vy-v4wv71Xxt_gQwwc30ozGXpOCK10f3oGGUgU2pWZlqK0xGWFK2CKv6GzAjxIonG15URRx6kLfozaG4nB1-epb6YGrueq5Nq-e2RNQ_abbjJOPB8uFPjDffsNz_J-negqPO7-UjVtBegZrrnwOjyZ9O7hNuLpoEmxrNi8_uw9UxM7Qd2TTL8os2HHfZJedN3i0y1vHKs_GNxWysVrW7MxZdnpV1Ti6xaH-ys7xCtfu5_cf3VrHupTGLZjPpheTI961aeBGoinlWY5BW-RHJtOJsMbELnFxgmGgTJVVxmmrUMljHWmfekKbd-hlKu8wtMxkbEfRNqyXVeleArMutjrXRo5UIr3NlceAJ1JaeoyqvFYB8J5NhekwzKmVxnXRoi-LguhXDPQLYH-Y_6lF7_jjzJ2e60WnxXVBzbuoGDfMA9gdTiPd6aeKKh3SD-fInHDhsjSAF620DLdCWxomeRIHIBqe_2UPxfjk3XQYvfqXRa9hA4_zJq1c7sA68ty9Qa9pod82mvELPtUP5A |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VcigX3pRAASOBOLnNOs7rwGHVbrVLuyvU7kq9BT9VRJtUzS5QTvwE_gp_hZ_AL2GcF1oQQkLqgaMT23HmEc84M98APEtQUGLGEhoLFVGurE8F04yicvjSJEpJ5nKHx5NoOOOvjsKjFfja5sLU-BDdgZvTjOp77RTcHUhv_UQNdSnYLjYrQXUNWRNXuWcuPqDXVr4c7SCLnzO2O5huD2lTWIAqjspPkxTdjMD2VCIjppUKTWTCCB0XHgstlJFaoFiGMpA2tg4f3aBdJKxBZyjhoe4FOO8VuOrKiDu4_p2DDrGKoTrUCU1BQF3d-xYn0mdby-td3gd_M26XbeVqs9u9Ad9aMtUxLu82F3O5qT79giD5X9HxJlxvTG_Sr3XlFqyY_DasbbcV7-7A8bSKIS7JLH9v3ro8fYLmMRl8FGpOxm0dYXJYQe4uzg0pLOmfFiipxaIkB0aT18dFia1zbMoLcogznJjvn780Yw1pojbvwuxSXvQerOZFbu4D0SbUMpWK90TErU6FRZ8uEJJbdBytFB7QVi4y1cC0u2ohJ1kNMM0yx6-s45cHL7r-ZzVAyR97brRiljUfqjJz9clcvrGfevC0u410d_-NRG6QftiHpw76Lok9WK_Fs3sUbhd-lEahB6wSsr-sIetPRoOu9eBfBj2BteF0vJ_tjyZ7D-EaXk-rKHq-AavIf_MIjcS5fFypJYE3ly2_PwChEG4C |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VIkEv5V0CBYwE4uQ26zivA4dVd1ddSldV25V6C36qiJJUzW6hnPgJ_BT-Cn-BX8I4L7QghITUA0cntuPMw55JZr4BeJagoMSMJTQWKqJcWZ8KphlF5fClSZSSzOUO706i7Sl_dRQeLcHXNhemxofoPrg5zaj2a6fgp9pu_gQNdRnYLjQrQW0NWRNWuWMuPqDTVr4cD5DDzxkbDQ-3tmlTV4AqjrpPkxS9jMD2VCIjppUKTWTCCP0WHgstlJFaoFSGMpA2tg4e3aBZJKxBXyjhoe4FOO8VuMojP3XFIgb7HWAVQ22o85mCgLqy9y1MpM82F9e7eAz-ZtsumsrVWTe6Ad9aKtUhLu825jO5oT79AiD5P5HxJqw2hjfp15pyC5ZMfhuub7X17u7A8WEVQVySaX5u3rosfYLGMRl-FGpGdtsqwuSgAtydnxlSWNJ_X6CcFvOS7BtN9o6LEltn2JQX5ABnODHfP39pxhrSxGzehemlvOg9WM6L3NwHok2oZSoV74mIW50Kix5dICS36DZaKTygrVhkqgFpd7VCTrIaXppljl9Zxy8PXnT9T2t4kj_2XG-lLGu2qTJz1clctrGfevC0u410d3-NRG6QftiHpw74Lok9WKuls3sUHhZ-lEahB6ySsb-sIetPxsOu9eBfBj2Ba3uDUfZ6PNl5CCt4Oa1C6Pk6LCP7zSO0EGfycaWUBN5ctvj-AM-GbLE |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Towards+Unveiling+the+Exact+Molecular+Structure+of+Amorphous+Red+Phosphorus+by+Single%E2%80%90Molecule+Studies&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Zhang%2C+Song&rft.au=Hu%E2%80%90jun+Qian&rft.au=Liu%2C+Zhonghua&rft.au=Ju%2C+Hongyu&rft.date=2019-02-04&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=58&rft.issue=6&rft.spage=1659&rft.epage=1663&rft_id=info:doi/10.1002%2Fanie.201811152&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon |