Supramolecular Reassembly of Self‐Exfoliated Ionic Covalent Organic Nanosheets for Label‐Free Detection of Double‐Stranded DNA
Ionic covalent organic nanosheets (iCONs), a member of the two‐dimensional (2D) nanomaterials family, offer a unique functional platform for a wide range of applications. Herein, we explore the potential of an ethidium bromide (EB)‐based covalent organic framework (EB‐TFP) that self‐exfoliates in wa...
Saved in:
Published in | Angewandte Chemie International Edition Vol. 57; no. 28; pp. 8443 - 8447 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
09.07.2018
|
Edition | International ed. in English |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Ionic covalent organic nanosheets (iCONs), a member of the two‐dimensional (2D) nanomaterials family, offer a unique functional platform for a wide range of applications. Herein, we explore the potential of an ethidium bromide (EB)‐based covalent organic framework (EB‐TFP) that self‐exfoliates in water resulting in 2D ionic covalent organic nanosheets (EB‐TFP‐iCONs) for the selective detection of double‐stranded DNA (dsDNA). In an aqueous medium, the self‐exfoliated EB‐TFP‐iCONs reassemble in the presence of dsDNA resulting in hybrid EB‐TFP‐iCONs‐DNA crystalline nanosheets with enhanced fluorescence at 600 nm. Detailed steady‐state and time‐resolved emission studies revealed that the reassembly phenomenon was highly selective for dsDNA when compared to single‐stranded DNA (ssDNA), which allowed us to use the EB‐TFP‐iCONs as a 2D fluorescent platform for the label‐free detection of complementary DNA strands.
Feelin' single, seein' double: Self‐exfoliated nanosheets of an ionic COF were used as a fluorescent platform for the selective detection of double‐stranded DNA (dsDNA). DNA induced the reassembly of the 2D nanosheets, and the associated fluorescence changes facilitated the discrimination of dsDNA from single‐stranded DNA (ssDNA) and other phosphates. |
---|---|
AbstractList | Ionic covalent organic nanosheets (iCONs), a member of the two-dimensional (2D) nanomaterials family, offer a unique functional platform for a wide range of applications. Herein, we explore the potential of an ethidium bromide (EB)-based covalent organic framework (EB-TFP) that self-exfoliates in water resulting in 2D ionic covalent organic nanosheets (EB-TFP-iCONs) for the selective detection of double-stranded DNA (dsDNA). In an aqueous medium, the self-exfoliated EB-TFP-iCONs reassemble in the presence of dsDNA resulting in hybrid EB-TFP-iCONs-DNA crystalline nanosheets with enhanced fluorescence at 600 nm. Detailed steady-state and time-resolved emission studies revealed that the reassembly phenomenon was highly selective for dsDNA when compared to single-stranded DNA (ssDNA), which allowed us to use the EB-TFP-iCONs as a 2D fluorescent platform for the label-free detection of complementary DNA strands.Ionic covalent organic nanosheets (iCONs), a member of the two-dimensional (2D) nanomaterials family, offer a unique functional platform for a wide range of applications. Herein, we explore the potential of an ethidium bromide (EB)-based covalent organic framework (EB-TFP) that self-exfoliates in water resulting in 2D ionic covalent organic nanosheets (EB-TFP-iCONs) for the selective detection of double-stranded DNA (dsDNA). In an aqueous medium, the self-exfoliated EB-TFP-iCONs reassemble in the presence of dsDNA resulting in hybrid EB-TFP-iCONs-DNA crystalline nanosheets with enhanced fluorescence at 600 nm. Detailed steady-state and time-resolved emission studies revealed that the reassembly phenomenon was highly selective for dsDNA when compared to single-stranded DNA (ssDNA), which allowed us to use the EB-TFP-iCONs as a 2D fluorescent platform for the label-free detection of complementary DNA strands. Ionic covalent organic nanosheets (iCONs), a member of the two‐dimensional (2D) nanomaterials family, offer a unique functional platform for a wide range of applications. Herein, we explore the potential of an ethidium bromide (EB)‐based covalent organic framework (EB‐TFP) that self‐exfoliates in water resulting in 2D ionic covalent organic nanosheets (EB‐TFP‐iCONs) for the selective detection of double‐stranded DNA (dsDNA). In an aqueous medium, the self‐exfoliated EB‐TFP‐iCONs reassemble in the presence of dsDNA resulting in hybrid EB‐TFP‐iCONs‐DNA crystalline nanosheets with enhanced fluorescence at 600 nm. Detailed steady‐state and time‐resolved emission studies revealed that the reassembly phenomenon was highly selective for dsDNA when compared to single‐stranded DNA (ssDNA), which allowed us to use the EB‐TFP‐iCONs as a 2D fluorescent platform for the label‐free detection of complementary DNA strands. Feelin' single, seein' double: Self‐exfoliated nanosheets of an ionic COF were used as a fluorescent platform for the selective detection of double‐stranded DNA (dsDNA). DNA induced the reassembly of the 2D nanosheets, and the associated fluorescence changes facilitated the discrimination of dsDNA from single‐stranded DNA (ssDNA) and other phosphates. Ionic covalent organic nanosheets (iCONs), a member of the two-dimensional (2D) nanomaterials family, offer a unique functional platform for a wide range of applications. Herein, we explore the potential of an ethidium bromide (EB)-based covalent organic framework (EB-TFP) that self-exfoliates in water resulting in 2D ionic covalent organic nanosheets (EB-TFP-iCONs) for the selective detection of double-stranded DNA (dsDNA). In an aqueous medium, the self-exfoliated EB-TFP-iCONs reassemble in the presence of dsDNA resulting in hybrid EB-TFP-iCONs-DNA crystalline nanosheets with enhanced fluorescence at 600 nm. Detailed steady-state and time-resolved emission studies revealed that the reassembly phenomenon was highly selective for dsDNA when compared to single-stranded DNA (ssDNA), which allowed us to use the EB-TFP-iCONs as a 2D fluorescent platform for the label-free detection of complementary DNA strands. Ionic covalent organic nanosheets (iCONs), a member of the two‐dimensional (2D) nanomaterials family, offer a unique functional platform for a wide range of applications. Herein, we explore the potential of an ethidium bromide (EB)‐based covalent organic framework ( EB‐TFP ) that self‐exfoliates in water resulting in 2D ionic covalent organic nanosheets ( EB‐TFP‐iCONs ) for the selective detection of double‐stranded DNA (dsDNA). In an aqueous medium, the self‐exfoliated EB‐TFP‐iCONs reassemble in the presence of dsDNA resulting in hybrid EB‐TFP‐iCONs‐DNA crystalline nanosheets with enhanced fluorescence at 600 nm. Detailed steady‐state and time‐resolved emission studies revealed that the reassembly phenomenon was highly selective for dsDNA when compared to single‐stranded DNA (ssDNA), which allowed us to use the EB‐TFP‐iCONs as a 2D fluorescent platform for the label‐free detection of complementary DNA strands. |
Author | Mishra, Rakesh K. Praveen, Vakayil K. Ajayaghosh, Ayyappanpillai Mal, Arindam Banerjee, Rahul Khayum, M. Abdul |
Author_xml | – sequence: 1 givenname: Arindam surname: Mal fullname: Mal, Arindam organization: CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST) – sequence: 2 givenname: Rakesh K. orcidid: 0000-0001-6967-2524 surname: Mishra fullname: Mishra, Rakesh K. organization: CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST) – sequence: 3 givenname: Vakayil K. orcidid: 0000-0002-5407-9901 surname: Praveen fullname: Praveen, Vakayil K. organization: CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST) – sequence: 4 givenname: M. Abdul surname: Khayum fullname: Khayum, M. Abdul organization: CSIR-National Chemical Laboratory (CSIR-NCL) – sequence: 5 givenname: Rahul orcidid: 0000-0002-3547-4746 surname: Banerjee fullname: Banerjee, Rahul organization: CSIR-National Chemical Laboratory (CSIR-NCL) – sequence: 6 givenname: Ayyappanpillai orcidid: 0000-0001-8574-5391 surname: Ajayaghosh fullname: Ajayaghosh, Ayyappanpillai email: ajayaghosh@niist.res.in organization: CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST) |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29714817$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc1u1DAUhS3Uiv7AliWKxIZNpv5L7CxHM1MYaTSVGFhHjnMNqRx7sBNgdix4AJ6RJ6mjaYtUCbGyZX_nXPucC3TivAOEXhE8IxjTK-U6mFFMJCasoM_QOSkoyZkQ7CTtOWO5kAU5Qxcx3iZeSlw-R2e0EoRLIs7Rr924D6r3FvRoVcg-gIoR-sYeMm-yHVjz5-fv1Q_jbacGaLO1d53OFv6bsuCG7CZ8VtPBVjkfvwAMMTM-ZBvVgE3C6wCQLWEAPXTeTY5LPzYW0tVuCMq1yXG5nb9Ap0bZCC_v10v06Xr1cfE-39y8Wy_mm1xzUdJctKBoqbBphda6KEvFK92mjxRaSgVaEwpaMGFYW7SNqbiWnDBpeMsNxQVhl-jt0Xcf_NcR4lD3XdRgrXLgx1hTzBhLk0SR0DdP0Fs_Bpdel6iSk1JUvErU63tqbHpo633oehUO9UO-CZgdAR18jAHMI0JwPRVYTwXWjwUmAX8i0N2gpvRSXp39t6w6yr53Fg7_GVLPt-vVX-0dSe6zaA |
CitedBy_id | crossref_primary_10_1002_adma_202002366 crossref_primary_10_1002_chem_202302474 crossref_primary_10_1016_j_jhazmat_2021_125302 crossref_primary_10_1021_acs_inorgchem_9b01106 crossref_primary_10_3390_nano12203615 crossref_primary_10_1007_s12274_024_6626_1 crossref_primary_10_3390_bios13060636 crossref_primary_10_1002_anie_202000802 crossref_primary_10_1002_anie_202406418 crossref_primary_10_1002_chem_201806025 crossref_primary_10_1039_D0CS00017E crossref_primary_10_1021_acs_chemmater_3c00043 crossref_primary_10_1016_j_jcat_2024_115908 crossref_primary_10_1007_s41918_022_00152_8 crossref_primary_10_1016_j_envres_2022_114027 crossref_primary_10_1002_anie_202208833 crossref_primary_10_1016_j_chroma_2025_465827 crossref_primary_10_1016_j_jssc_2024_124596 crossref_primary_10_1016_j_cej_2020_126979 crossref_primary_10_1002_anie_202107185 crossref_primary_10_1021_jacs_0c03941 crossref_primary_10_1021_acsnano_1c05194 crossref_primary_10_1039_C9NR07525A crossref_primary_10_1016_j_cclet_2019_12_039 crossref_primary_10_1021_acssuschemeng_8b05373 crossref_primary_10_1002_adfm_202002046 crossref_primary_10_1002_anie_201912363 crossref_primary_10_1021_acs_chemmater_9b00919 crossref_primary_10_1021_jacs_2c02301 crossref_primary_10_1039_D0NA00537A crossref_primary_10_1016_j_snb_2022_132203 crossref_primary_10_1039_D0SC05889K crossref_primary_10_1016_j_saa_2023_122615 crossref_primary_10_1039_D0CC06409B crossref_primary_10_1002_slct_202301145 crossref_primary_10_1016_j_snb_2024_136719 crossref_primary_10_1039_D2CS00059H crossref_primary_10_1002_ange_202208833 crossref_primary_10_1038_s41467_022_31524_9 crossref_primary_10_3390_molecules27082586 crossref_primary_10_1002_adma_202204894 crossref_primary_10_1016_j_ccr_2022_214431 crossref_primary_10_1016_j_cclet_2021_10_060 crossref_primary_10_1016_j_snb_2022_131988 crossref_primary_10_1021_acsnano_2c11339 crossref_primary_10_1039_D1CS00889G crossref_primary_10_1016_j_trac_2021_116182 crossref_primary_10_1007_s10904_023_02932_1 crossref_primary_10_1016_j_jes_2023_06_037 crossref_primary_10_1002_advs_201801410 crossref_primary_10_1002_anie_202112271 crossref_primary_10_1016_j_mtener_2020_100635 crossref_primary_10_1002_ange_201912363 crossref_primary_10_1002_smtd_201900779 crossref_primary_10_1038_s42004_019_0207_3 crossref_primary_10_1039_D1AY00679G crossref_primary_10_1002_ange_202000802 crossref_primary_10_1002_smll_202405701 crossref_primary_10_1186_s12951_023_02253_y crossref_primary_10_1016_j_mattod_2022_02_001 crossref_primary_10_1021_acsami_4c14803 crossref_primary_10_1021_acsnano_2c11346 crossref_primary_10_1002_ange_202104375 crossref_primary_10_1039_D0CS01138J crossref_primary_10_1039_D0NJ02410D crossref_primary_10_1002_ange_202112271 crossref_primary_10_1002_adma_202102290 crossref_primary_10_1016_j_jcis_2021_01_105 crossref_primary_10_1002_smll_202103516 crossref_primary_10_1016_j_seppur_2022_122243 crossref_primary_10_1016_j_jcis_2024_03_077 crossref_primary_10_1016_j_progpolymsci_2023_101691 crossref_primary_10_1021_acscatal_3c03034 crossref_primary_10_1039_D4NJ05111D crossref_primary_10_1007_s12200_022_00032_5 crossref_primary_10_1007_s40242_022_1448_8 crossref_primary_10_1016_j_mtchem_2024_102140 crossref_primary_10_1039_D1CS00871D crossref_primary_10_1002_chem_202301108 crossref_primary_10_1016_j_colsurfa_2020_125429 crossref_primary_10_1002_anie_202104375 crossref_primary_10_1016_j_giant_2023_100184 crossref_primary_10_1038_s41467_023_36291_9 crossref_primary_10_1016_j_snb_2021_130472 crossref_primary_10_1016_j_xcrp_2023_101273 crossref_primary_10_1021_acs_analchem_0c05309 crossref_primary_10_1021_jacs_1c13005 crossref_primary_10_1039_D2EN01049F crossref_primary_10_1002_smll_202100756 crossref_primary_10_1007_s11426_019_9477_y crossref_primary_10_1021_acsmaterialslett_0c00485 crossref_primary_10_1021_jacs_3c05403 crossref_primary_10_1016_j_aca_2024_343343 crossref_primary_10_1016_j_bios_2020_112802 crossref_primary_10_1016_j_jhazmat_2023_133420 crossref_primary_10_1016_j_microc_2019_104314 crossref_primary_10_1016_j_molstruc_2023_137170 crossref_primary_10_1021_acsmaterialslett_3c00082 crossref_primary_10_1021_acs_chemrev_9b00550 crossref_primary_10_1039_D1CS00600B crossref_primary_10_1002_ange_202100870 crossref_primary_10_1002_ange_202406418 crossref_primary_10_1002_smll_202105439 crossref_primary_10_1016_j_cej_2020_128034 crossref_primary_10_1007_s00604_019_4058_5 crossref_primary_10_1039_C9SC00172G crossref_primary_10_1039_D0TA12122C crossref_primary_10_1039_C8SC02842G crossref_primary_10_1016_j_biomaterials_2022_121583 crossref_primary_10_1007_s00604_024_06827_x crossref_primary_10_1002_ange_202107185 crossref_primary_10_1360_TB_2023_0175 crossref_primary_10_1002_anie_202100870 crossref_primary_10_1016_j_talanta_2023_125485 crossref_primary_10_1039_D3CS01163A crossref_primary_10_1016_j_seppur_2022_122704 crossref_primary_10_1039_D0QO01354D crossref_primary_10_1007_s12274_022_5307_1 crossref_primary_10_1002_advs_202300462 crossref_primary_10_1002_smll_202200388 crossref_primary_10_1039_D2TA08915G crossref_primary_10_1016_j_ccr_2021_213873 crossref_primary_10_1016_j_scib_2022_02_012 crossref_primary_10_1021_acsami_0c18105 crossref_primary_10_1021_jacs_1c08675 crossref_primary_10_1039_D0TA01037E crossref_primary_10_1039_D3RA01540H crossref_primary_10_1039_C9GC01993F crossref_primary_10_1016_j_ccr_2024_215873 crossref_primary_10_1039_C9SC05082E crossref_primary_10_1039_C9CC03137E crossref_primary_10_3390_cryst12111628 crossref_primary_10_1038_s41467_022_31393_2 crossref_primary_10_1039_D0CS00236D crossref_primary_10_1039_D1TC01938D crossref_primary_10_1007_s00604_021_04703_6 crossref_primary_10_1016_j_polymer_2020_122928 |
Cites_doi | 10.1021/nl052020a 10.1021/ja981823f 10.1021/jacs.5b10754 10.1021/bi00635a022 10.1021/ar500162a 10.1039/C3CC46767H 10.1039/C1CS15031F 10.1002/ange.201611542 10.1021/ja408243n 10.1002/ange.201600087 10.1002/ange.201402141 10.1002/ange.201708526 10.1002/ange.200901479 10.1002/adma.200300379 10.1021/jacs.7b11283 10.1038/nchem.1628 10.1002/adma.201305317 10.1021/acsami.7b02529 10.1039/c2cc32187d 10.1039/C2CS35072F 10.1021/acs.nanolett.5b00388 10.1002/adma.201603006 10.1002/ange.201001004 10.1002/(SICI)1099-0518(20000101)38:1<123::AID-POLA16>3.0.CO;2-N 10.1021/jacs.5b13533 10.1002/ange.201710190 10.1002/cnma.201700242 10.1021/acsami.6b16423 10.1021/acsami.6b16769 10.1002/anie.201600087 10.1002/adma.201401228 10.1002/anie.201708526 10.1002/anie.201402141 10.1002/aenm.201700571 10.1039/C6SC00629A 10.1002/ange.201710502 10.1002/anie.201710190 10.1002/1521-3757(20001117)112:22<4207::AID-ANGE4207>3.0.CO;2-H 10.1002/ange.201607812 10.1002/anie.201000167 10.1002/1521-3773(20001117)39:22<4041::AID-ANIE4041>3.0.CO;2-C 10.1021/jacs.5b13490 10.1038/nchem.2771 10.1002/chem.201103750 10.1246/cl.130987 10.1002/ange.201509014 10.1038/srep21993 10.1002/anie.201710502 10.1002/chem.201603043 10.1002/tcr.201402063 10.1002/adma.200803633 10.1039/C7AY01261F 10.1002/ange.201000167 10.1002/anie.201611542 10.1002/smll.201002264 10.1021/jacs.7b04096 10.1021/jacs.7b12292 10.1002/anie.201607812 10.1002/anie.200901479 10.1126/science.aal1585 10.1039/C7CC06244C 10.1038/natrevmats.2016.68 10.1002/anie.201509014 10.1002/chem.200400559 10.1039/b003898i 10.1002/anie.201001004 |
ContentType | Journal Article |
Copyright | 2018 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. |
Copyright_xml | – notice: 2018 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. |
DBID | AAYXX CITATION NPM 7TM K9. 7X8 |
DOI | 10.1002/anie.201801352 |
DatabaseName | CrossRef PubMed Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed ProQuest Health & Medical Complete (Alumni) Nucleic Acids Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed CrossRef ProQuest Health & Medical Complete (Alumni) |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3773 |
Edition | International ed. in English |
EndPage | 8447 |
ExternalDocumentID | 29714817 10_1002_anie_201801352 ANIE201801352 |
Genre | shortCommunication Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Science and Engineering Research Board funderid: SB/S2/JCB-11/2014 |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABLJU ABPPZ ABPVW ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BTSUX BY8 CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS EJD F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M53 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ TN5 UB1 UPT V2E VQA W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XSW XV2 YZZ ZZTAW ~IA ~KM ~WT AAYXX ABDBF ABJNI AEYWJ AGHNM AGYGG CITATION NPM 7TM K9. 7X8 |
ID | FETCH-LOGICAL-c4762-7dea26a0fd7ccc566a49cd1485c88aecc12ec737f3d5dbf94c84138f4d4f20513 |
IEDL.DBID | DR2 |
ISSN | 1433-7851 1521-3773 |
IngestDate | Fri Jul 11 04:51:41 EDT 2025 Fri Jul 25 10:29:39 EDT 2025 Thu Apr 03 07:00:48 EDT 2025 Thu Apr 24 23:10:46 EDT 2025 Tue Jul 01 02:26:25 EDT 2025 Wed Jan 22 16:45:17 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 28 |
Keywords | ionic assembly label-free detection ionic covalent organic nanosheets DNA covalent organic framework |
Language | English |
License | 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4762-7dea26a0fd7ccc566a49cd1485c88aecc12ec737f3d5dbf94c84138f4d4f20513 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-6967-2524 0000-0002-5407-9901 0000-0002-3547-4746 0000-0001-8574-5391 |
PMID | 29714817 |
PQID | 2064167949 |
PQPubID | 946352 |
PageCount | 5 |
ParticipantIDs | proquest_miscellaneous_2033376275 proquest_journals_2064167949 pubmed_primary_29714817 crossref_primary_10_1002_anie_201801352 crossref_citationtrail_10_1002_anie_201801352 wiley_primary_10_1002_anie_201801352_ANIE201801352 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | July 9, 2018 |
PublicationDateYYYYMMDD | 2018-07-09 |
PublicationDate_xml | – month: 07 year: 2018 text: July 9, 2018 day: 09 |
PublicationDecade | 2010 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Angewandte Chemie International Edition |
PublicationTitleAlternate | Angew Chem Int Ed Engl |
PublicationYear | 2018 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2014 2014; 53 126 2015; 15 2017; 7 2018; 140 2009; 21 2000 2000; 39 112 2009 2009; 48 121 2013; 42 2014; 26 1999; 121 2003; 15 2014; 47 2006; 6 2010 2010; 49 122 2012; 18 2000; 2 2017 2017; 56 129 2013; 5 2017; 355 2017; 9 2011; 7 2017; 139 2014; 43 2017; 53 2016; 6 2016; 7 2015; 27 2016; 1 2016 2016; 55 128 2000; 38 2018; 4 1977; 16 2018 2018; 57 130 2013; 135 2017 2016; 138 2012; 48 2016; 28 2014; 50 2005; 11 2012; 41 2016; 22 e_1_2_2_2_3 e_1_2_2_24_2 e_1_2_2_47_2 e_1_2_2_4_2 e_1_2_2_49_1 e_1_2_2_22_2 e_1_2_2_20_2 e_1_2_2_2_2 e_1_2_2_62_2 e_1_2_2_41_2 e_1_2_2_41_3 e_1_2_2_64_1 e_1_2_2_8_2 e_1_2_2_28_2 e_1_2_2_43_2 e_1_2_2_66_2 e_1_2_2_26_2 e_1_2_2_45_2 e_1_2_2_68_2 e_1_2_2_24_3 e_1_2_2_60_2 e_1_2_2_13_2 e_1_2_2_36_2 e_1_2_2_59_2 e_1_2_2_38_2 e_1_2_2_11_1 e_1_2_2_51_2 e_1_2_2_19_2 e_1_2_2_30_2 e_1_2_2_30_3 e_1_2_2_51_3 e_1_2_2_53_1 e_1_2_2_17_2 e_1_2_2_32_2 e_1_2_2_55_2 e_1_2_2_15_2 e_1_2_2_34_2 e_1_2_2_57_2 Anees P. (e_1_2_2_48_2) 2017 e_1_2_2_70_1 e_1_2_2_3_2 e_1_2_2_23_3 e_1_2_2_25_1 e_1_2_2_69_3 e_1_2_2_23_2 e_1_2_2_69_2 e_1_2_2_5_2 e_1_2_2_21_2 e_1_2_2_1_1 e_1_2_2_40_2 e_1_2_2_42_2 e_1_2_2_63_2 e_1_2_2_7_2 e_1_2_2_29_1 e_1_2_2_44_1 e_1_2_2_67_1 e_1_2_2_27_2 e_1_2_2_65_2 e_1_2_2_9_2 e_1_2_2_46_2 Parvez K. (e_1_2_2_6_2) 2015; 27 e_1_2_2_61_1 e_1_2_2_12_3 e_1_2_2_12_2 e_1_2_2_37_2 e_1_2_2_10_3 e_1_2_2_39_1 e_1_2_2_10_2 e_1_2_2_50_2 e_1_2_2_52_3 e_1_2_2_31_2 e_1_2_2_52_2 e_1_2_2_18_1 e_1_2_2_31_3 e_1_2_2_16_2 e_1_2_2_33_2 e_1_2_2_54_2 e_1_2_2_14_3 e_1_2_2_35_1 e_1_2_2_58_1 e_1_2_2_14_2 e_1_2_2_56_2 |
References_xml | – volume: 26 start-page: 4552 year: 2014 end-page: 4558 publication-title: Adv. Mater. – volume: 9 start-page: 13415 year: 2017 end-page: 13421 publication-title: ACS Appl. Mater. Interfaces – volume: 38 start-page: 123 year: 2000 end-page: 126 publication-title: J. Polym. Sci. Part A – volume: 139 start-page: 17771 year: 2017 end-page: 17774 publication-title: J. Am. Chem. Soc. – volume: 4 start-page: 61 year: 2018 end-page: 65 publication-title: ChemNanoMat – volume: 15 start-page: 2194 year: 2015 end-page: 2202 publication-title: Nano Lett. – volume: 42 start-page: 548 year: 2013 end-page: 568 publication-title: Chem. Soc. Rev. – volume: 55 128 start-page: 15604 15833 year: 2016 2016 end-page: 15608 15837 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 6 start-page: 21993 year: 2016 publication-title: Sci. Rep. – volume: 53 start-page: 11469 year: 2017 end-page: 11471 publication-title: Chem. Commun. – volume: 26 start-page: 6912 year: 2014 end-page: 6920 publication-title: Adv. Mater. – volume: 22 start-page: 17784 year: 2016 end-page: 17789 publication-title: Chem. Eur. J. – volume: 355 start-page: 1585 year: 2017 publication-title: Science – volume: 18 start-page: 4505 year: 2012 end-page: 4509 publication-title: Chem. Eur. J. – volume: 7 start-page: 1207 year: 2011 end-page: 1211 publication-title: Small – volume: 6 start-page: 199 year: 2006 end-page: 204 publication-title: Nano Lett. – volume: 121 start-page: 1399 year: 1999 end-page: 1400 publication-title: J. Am. Chem. Soc. – volume: 27 start-page: 6083 year: 2015 end-page: 6091 publication-title: Adv. Mater. – volume: 9 start-page: 977 year: 2017 end-page: 982 publication-title: Nat. Chem. – volume: 57 130 start-page: 846 856 year: 2018 2018 end-page: 850 860 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 48 121 start-page: 4785 4879 year: 2009 2009 end-page: 4787 4881 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 47 start-page: 3428 year: 2014 end-page: 3438 publication-title: Acc. Chem. Res. – volume: 7 start-page: 1700571 year: 2017 publication-title: Adv. Energy Mater. – volume: 15 start-page: 252 year: 2015 end-page: 265 publication-title: Chem. Rec. – volume: 11 start-page: 495 year: 2005 end-page: 508 publication-title: Chem. Eur. J. – volume: 15 start-page: 673 year: 2003 end-page: 683 publication-title: Adv. Mater. – volume: 57 130 start-page: 1034 1046 year: 2018 2018 end-page: 1038 1050 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 1 start-page: 16068 year: 2016 publication-title: Nat. Rev. Mater. – volume: 39 112 start-page: 4041 4207 year: 2000 2000 end-page: 4045 4211 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 49 122 start-page: 8328 8506 year: 2010 2010 end-page: 8344 8523 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 41 start-page: 211 year: 2012 end-page: 241 publication-title: Chem. Soc. Rev. – volume: 5 start-page: 453 year: 2013 end-page: 465 publication-title: Nat. Chem. – volume: 140 start-page: 896 year: 2018 end-page: 899 publication-title: J. Am. Chem. Soc. – volume: 21 start-page: 3159 year: 2009 end-page: 3164 publication-title: Adv. Mater. – volume: 138 start-page: 3031 year: 2016 end-page: 3037 publication-title: J. Am. Chem. Soc. – volume: 56 129 start-page: 4982 5064 year: 2017 2017 end-page: 4986 5068 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 49 122 start-page: 6549 6699 year: 2010 2010 end-page: 6553 6703 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 139 start-page: 8698 year: 2017 end-page: 8704 publication-title: J. Am. Chem. Soc. – volume: 9 start-page: 3737 year: 2017 end-page: 3750 publication-title: Anal. Methods – volume: 57 130 start-page: 4850 4942 year: 2018 2018 end-page: 4878 4972 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 7 start-page: 4460 year: 2016 end-page: 4467 publication-title: Chem. Sci. – volume: 135 start-page: 14952 year: 2013 end-page: 14955 publication-title: J. Am. Chem. Soc. – volume: 138 start-page: 5897 year: 2016 end-page: 5903 publication-title: J. Am. Chem. Soc. – volume: 48 start-page: 7976 year: 2012 end-page: 7978 publication-title: Chem. Commun. – volume: 138 start-page: 2823 year: 2016 end-page: 2828 publication-title: J. Am. Chem. Soc. – volume: 9 start-page: 15286 year: 2017 end-page: 15296 publication-title: ACS Appl. Mater. Interfaces – volume: 2 start-page: 4642 year: 2000 end-page: 4650 publication-title: Phys. Chem. Chem. Phys. – volume: 16 start-page: 3647 year: 1977 end-page: 3654 publication-title: Biochemistry – volume: 28 start-page: 8749 year: 2016 end-page: 8754 publication-title: Adv. Mater. – year: 2017 – volume: 55 128 start-page: 1737 1769 year: 2016 2016 end-page: 1741 1773 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 43 start-page: 36 year: 2014 end-page: 68 publication-title: Chem. Lett. – volume: 50 start-page: 5531 year: 2014 end-page: 5546 publication-title: Chem. Commun. – volume: 55 128 start-page: 7806 7937 year: 2016 2016 end-page: 7810 7941 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 53 126 start-page: 4850 4950 year: 2014 2014 end-page: 4855 4955 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 9 start-page: 7209 year: 2017 end-page: 7216 publication-title: ACS Appl. Mater. Interfaces – ident: e_1_2_2_36_2 doi: 10.1021/nl052020a – ident: e_1_2_2_68_2 doi: 10.1021/ja981823f – ident: e_1_2_2_42_2 doi: 10.1021/jacs.5b10754 – ident: e_1_2_2_70_1 doi: 10.1021/bi00635a022 – ident: e_1_2_2_55_2 doi: 10.1021/ar500162a – ident: e_1_2_2_5_2 doi: 10.1039/C3CC46767H – ident: e_1_2_2_45_2 doi: 10.1039/C1CS15031F – ident: e_1_2_2_14_3 doi: 10.1002/ange.201611542 – ident: e_1_2_2_21_2 doi: 10.1021/ja408243n – ident: e_1_2_2_51_3 doi: 10.1002/ange.201600087 – ident: e_1_2_2_41_3 doi: 10.1002/ange.201402141 – ident: e_1_2_2_52_3 doi: 10.1002/ange.201708526 – ident: e_1_2_2_30_3 doi: 10.1002/ange.200901479 – ident: e_1_2_2_54_2 doi: 10.1002/adma.200300379 – ident: e_1_2_2_15_2 doi: 10.1021/jacs.7b11283 – ident: e_1_2_2_3_2 doi: 10.1038/nchem.1628 – ident: e_1_2_2_22_2 doi: 10.1002/adma.201305317 – ident: e_1_2_2_38_2 doi: 10.1021/acsami.7b02529 – ident: e_1_2_2_20_2 doi: 10.1039/c2cc32187d – ident: e_1_2_2_29_1 – ident: e_1_2_2_4_2 doi: 10.1039/C2CS35072F – ident: e_1_2_2_62_2 doi: 10.1021/acs.nanolett.5b00388 – ident: e_1_2_2_32_2 doi: 10.1002/adma.201603006 – ident: e_1_2_2_31_3 doi: 10.1002/ange.201001004 – ident: e_1_2_2_60_2 doi: 10.1002/(SICI)1099-0518(20000101)38:1<123::AID-POLA16>3.0.CO;2-N – ident: e_1_2_2_26_2 doi: 10.1021/jacs.5b13533 – ident: e_1_2_2_11_1 – ident: e_1_2_2_25_1 – ident: e_1_2_2_10_3 doi: 10.1002/ange.201710190 – ident: e_1_2_2_27_2 doi: 10.1002/cnma.201700242 – ident: e_1_2_2_43_2 doi: 10.1021/acsami.6b16423 – ident: e_1_2_2_17_2 doi: 10.1021/acsami.6b16769 – ident: e_1_2_2_51_2 doi: 10.1002/anie.201600087 – ident: e_1_2_2_56_2 doi: 10.1002/adma.201401228 – ident: e_1_2_2_52_2 doi: 10.1002/anie.201708526 – ident: e_1_2_2_58_1 – ident: e_1_2_2_41_2 doi: 10.1002/anie.201402141 – ident: e_1_2_2_44_1 – ident: e_1_2_2_63_2 doi: 10.1002/aenm.201700571 – volume-title: Comprehensive Supramolecular Chemistry II, Vol. 9 year: 2017 ident: e_1_2_2_48_2 – ident: e_1_2_2_39_1 – ident: e_1_2_2_47_2 doi: 10.1039/C6SC00629A – ident: e_1_2_2_49_1 – ident: e_1_2_2_24_3 doi: 10.1002/ange.201710502 – ident: e_1_2_2_1_1 – ident: e_1_2_2_10_2 doi: 10.1002/anie.201710190 – ident: e_1_2_2_69_3 doi: 10.1002/1521-3757(20001117)112:22<4207::AID-ANGE4207>3.0.CO;2-H – ident: e_1_2_2_23_3 doi: 10.1002/ange.201607812 – ident: e_1_2_2_2_2 doi: 10.1002/anie.201000167 – ident: e_1_2_2_35_1 – ident: e_1_2_2_69_2 doi: 10.1002/1521-3773(20001117)39:22<4041::AID-ANIE4041>3.0.CO;2-C – ident: e_1_2_2_13_2 doi: 10.1021/jacs.5b13490 – volume: 27 start-page: 6083 year: 2015 ident: e_1_2_2_6_2 publication-title: Adv. Mater. – ident: e_1_2_2_16_2 doi: 10.1038/nchem.2771 – ident: e_1_2_2_40_2 doi: 10.1002/chem.201103750 – ident: e_1_2_2_57_2 doi: 10.1246/cl.130987 – ident: e_1_2_2_12_3 doi: 10.1002/ange.201509014 – ident: e_1_2_2_66_2 doi: 10.1038/srep21993 – ident: e_1_2_2_18_1 – ident: e_1_2_2_24_2 doi: 10.1002/anie.201710502 – ident: e_1_2_2_64_1 – ident: e_1_2_2_50_2 doi: 10.1002/chem.201603043 – ident: e_1_2_2_61_1 – ident: e_1_2_2_46_2 doi: 10.1002/tcr.201402063 – ident: e_1_2_2_53_1 – ident: e_1_2_2_37_2 doi: 10.1002/adma.200803633 – ident: e_1_2_2_9_2 doi: 10.1039/C7AY01261F – ident: e_1_2_2_2_3 doi: 10.1002/ange.201000167 – ident: e_1_2_2_14_2 doi: 10.1002/anie.201611542 – ident: e_1_2_2_19_2 doi: 10.1002/smll.201002264 – ident: e_1_2_2_33_2 doi: 10.1021/jacs.7b04096 – ident: e_1_2_2_28_2 doi: 10.1021/jacs.7b12292 – ident: e_1_2_2_23_2 doi: 10.1002/anie.201607812 – ident: e_1_2_2_67_1 – ident: e_1_2_2_30_2 doi: 10.1002/anie.200901479 – ident: e_1_2_2_8_2 doi: 10.1126/science.aal1585 – ident: e_1_2_2_34_2 doi: 10.1039/C7CC06244C – ident: e_1_2_2_7_2 doi: 10.1038/natrevmats.2016.68 – ident: e_1_2_2_12_2 doi: 10.1002/anie.201509014 – ident: e_1_2_2_59_2 doi: 10.1002/chem.200400559 – ident: e_1_2_2_65_2 doi: 10.1039/b003898i – ident: e_1_2_2_31_2 doi: 10.1002/anie.201001004 |
SSID | ssj0028806 |
Score | 2.592557 |
Snippet | Ionic covalent organic nanosheets (iCONs), a member of the two‐dimensional (2D) nanomaterials family, offer a unique functional platform for a wide range of... Ionic covalent organic nanosheets (iCONs), a member of the two-dimensional (2D) nanomaterials family, offer a unique functional platform for a wide range of... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 8443 |
SubjectTerms | Complementary DNA Covalence covalent organic framework Deoxyribonucleic acid DNA Emission analysis Ethidium bromide Fluorescence Icons ionic assembly ionic covalent organic nanosheets label-free detection Nanomaterials Nanosheets Nanotechnology |
Title | Supramolecular Reassembly of Self‐Exfoliated Ionic Covalent Organic Nanosheets for Label‐Free Detection of Double‐Stranded DNA |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.201801352 https://www.ncbi.nlm.nih.gov/pubmed/29714817 https://www.proquest.com/docview/2064167949 https://www.proquest.com/docview/2033376275 |
Volume | 57 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwEB6hvcCF9yOwICMhccpuYzt1c6y6rXYR9LDLSnuLbGcsJLLJqk0l4MSBH8Bv5JcwkzSBghAS3BL5Eccejz_bM98AvHBeyTAKCQlv4mmDopPYyZGPs6DHlkGCbd2j3yzHx-f61UV68ZMXf8cPMRy48cxo9TVPcOvWhz9IQ9kDm02zSMUSiCAlzAZbjIpOB_4oScLZuRcpFXMU-p61cSQPd4vvrkq_Qc1d5NouPYtbYPtGdxYn7w82jTvwn37hc_yfv7oNN7e4VEw7QboD17C6C9dnfTi4e_DlbHO1spd9NF1xigS78dKVH0UdxBmW4dvnr_MPoS5psLEQJ8y5K2Y1STKta6Lz-fSCtHm9fofYrAXBZfHaOiyp4GKFKI6waQ3DKq6RkL0rkZKYP5eP6cXRcnofzhfzt7PjeBvCIfaa1GxsCrSSBj0UxntP0NHqzBe0BUv9ZGJJfBKJ3igTVJEWLmTaT2hVnQRd6CBJX6gHsFfVFT4Cgdo7TJPCjFymrQoO9Rgl1Wky6i-0EcT9EOZ-y2_OYTbKvGNmljn3bT70bQQvh_xXHbPHH3Pu9xKRb2f4mlLHmq-wdBbB8yGZxoQvXGyF9YbzKEUKXJo0goedJA2fkpmhbkhMBLKVh7-0IZ8uT-bD2-N_KfQEbvBza2uc7cNes9rgU0JUjXvWzprvqOga8A |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwEB7Bclgu7PLOsgtGQuKU3cZxmuZYdVu10O1hHxK3yHbGQiKbrNpUAk4c-AH8Rn4JM0kTVBBCgmPiRxx7PP5sz3wD8MrYULqeC0h4A0sbFBX4RvasnzjV1wwSdO0efbboT6_Um3dRa03IvjANP0R34MYzo9bXPMH5QPrkJ2sou2CzbRbpWEIRt-EOh_Wud1XnHYOUJPFsHIzC0Oc49C1vY0-ebJffXpd-A5vb2LVefCZ7YNpmNzYnH47XlTm2n39hdPyv_9qHextoKoaNLN2HW1g8gN1RGxHuIXy9WN8s9XUbUFecIyFvvDb5J1E6cYG5-_7l2_ijK3Mab8zEjGl3xagkYaalTTRun1aQQi9X7xGrlSDELObaYE4FJ0tEcYpVbRtWcI0E7k2OlMQUunxSL04Xw0dwNRlfjqb-JoqDbxVpWj_OUEsad5fF1lpCj1olNqNdWGQHA00SFEi0cRi7MIsy4xJlB7SwDpzKlJOkMsLHsFOUBT4FgcoajIIs7plE6dAZVH2UVGecUH-h9sBvxzC1G4pzjrSRpw05s0y5b9Oubz143eW_acg9_pjzsBWJdDPJV5TaV3yLpRIPXnbJNCZ856ILLNecJwxJh8s48uBJI0rdp2QSUzcEsQeyFoi_tCEdLmbj7ungXwq9gN3p5dk8nc8Wb5_BXX5fmx4nh7BTLdd4RACrMs_rKfQDQRYfCw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LbtQwFL2CIgGb8iwEChgJiVXaxHFey9E81IEyQi2Vuots51pIpMloJiPRrrrgA_qN_RKuk0lgQAgJlokfSezj6-PY91yAN0oH3HjGJ_D6mhYowncV97SbGhFJSxJk4x79YRYdnIh3p-HpT178rT5E_8PNjozGXtsBPs_N_g_RUOuBbY9mkYklEnETbonISyyuR0e9gBQndLb-RUHg2jD0nWyjx_c3y29OS79xzU3q2sw9k3sgu7duj5x82VvVak9f_CLo-D-fdR-218SUDVokPYAbWD6EO8MuHtwj-Ha8mi_kWRdOlx0h8W48U8U5qww7xsJcX16Nv5qqoN7GnE2t6C4bVgRlmthY6_SpGZnzavkZsV4y4svsUCosqOBkgchGWDcnw0pbI1F7VSAlWQFd-5-ejWaDx3AyGX8aHrjrGA6uFmRn3ThHyanXTR5rrYk7SpHqnNZgoU4SSfjxOeo4iE2Qh7kyqdAJTauJEbkwnAxGsANbZVXiU2AotMLQz2NPpUIGRqGIkFOdcUrthdIBt-vCTK8Fzm2cjSJrpZl5Zts269vWgbd9_nkr7fHHnLsdIrL1EF9SaiTsHpZIHXjdJ1Of2B0XWWK1snmCgCw4j0MHnrRI6h_F05iawY8d4A0e_vIO2WA2HfdXz_6l0Cu4_XE0yQ6ns_fP4a693Zw7Tndhq16s8AWxq1q9bAbQd-wkHcM |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Supramolecular+Reassembly+of+Self%E2%80%90Exfoliated+Ionic+Covalent+Organic+Nanosheets+for+Label%E2%80%90Free+Detection+of+Double%E2%80%90Stranded+DNA&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Mal%2C+Arindam&rft.au=Mishra%2C+Rakesh+K&rft.au=Praveen%2C+Vakayil+K&rft.au=M+Abdul+Khayum&rft.date=2018-07-09&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=57&rft.issue=28&rft.spage=8443&rft.epage=8447&rft_id=info:doi/10.1002%2Fanie.201801352&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon |