Supramolecular Reassembly of Self‐Exfoliated Ionic Covalent Organic Nanosheets for Label‐Free Detection of Double‐Stranded DNA

Ionic covalent organic nanosheets (iCONs), a member of the two‐dimensional (2D) nanomaterials family, offer a unique functional platform for a wide range of applications. Herein, we explore the potential of an ethidium bromide (EB)‐based covalent organic framework (EB‐TFP) that self‐exfoliates in wa...

Full description

Saved in:
Bibliographic Details
Published inAngewandte Chemie International Edition Vol. 57; no. 28; pp. 8443 - 8447
Main Authors Mal, Arindam, Mishra, Rakesh K., Praveen, Vakayil K., Khayum, M. Abdul, Banerjee, Rahul, Ajayaghosh, Ayyappanpillai
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 09.07.2018
EditionInternational ed. in English
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Ionic covalent organic nanosheets (iCONs), a member of the two‐dimensional (2D) nanomaterials family, offer a unique functional platform for a wide range of applications. Herein, we explore the potential of an ethidium bromide (EB)‐based covalent organic framework (EB‐TFP) that self‐exfoliates in water resulting in 2D ionic covalent organic nanosheets (EB‐TFP‐iCONs) for the selective detection of double‐stranded DNA (dsDNA). In an aqueous medium, the self‐exfoliated EB‐TFP‐iCONs reassemble in the presence of dsDNA resulting in hybrid EB‐TFP‐iCONs‐DNA crystalline nanosheets with enhanced fluorescence at 600 nm. Detailed steady‐state and time‐resolved emission studies revealed that the reassembly phenomenon was highly selective for dsDNA when compared to single‐stranded DNA (ssDNA), which allowed us to use the EB‐TFP‐iCONs as a 2D fluorescent platform for the label‐free detection of complementary DNA strands. Feelin' single, seein' double: Self‐exfoliated nanosheets of an ionic COF were used as a fluorescent platform for the selective detection of double‐stranded DNA (dsDNA). DNA induced the reassembly of the 2D nanosheets, and the associated fluorescence changes facilitated the discrimination of dsDNA from single‐stranded DNA (ssDNA) and other phosphates.
AbstractList Ionic covalent organic nanosheets (iCONs), a member of the two-dimensional (2D) nanomaterials family, offer a unique functional platform for a wide range of applications. Herein, we explore the potential of an ethidium bromide (EB)-based covalent organic framework (EB-TFP) that self-exfoliates in water resulting in 2D ionic covalent organic nanosheets (EB-TFP-iCONs) for the selective detection of double-stranded DNA (dsDNA). In an aqueous medium, the self-exfoliated EB-TFP-iCONs reassemble in the presence of dsDNA resulting in hybrid EB-TFP-iCONs-DNA crystalline nanosheets with enhanced fluorescence at 600 nm. Detailed steady-state and time-resolved emission studies revealed that the reassembly phenomenon was highly selective for dsDNA when compared to single-stranded DNA (ssDNA), which allowed us to use the EB-TFP-iCONs as a 2D fluorescent platform for the label-free detection of complementary DNA strands.Ionic covalent organic nanosheets (iCONs), a member of the two-dimensional (2D) nanomaterials family, offer a unique functional platform for a wide range of applications. Herein, we explore the potential of an ethidium bromide (EB)-based covalent organic framework (EB-TFP) that self-exfoliates in water resulting in 2D ionic covalent organic nanosheets (EB-TFP-iCONs) for the selective detection of double-stranded DNA (dsDNA). In an aqueous medium, the self-exfoliated EB-TFP-iCONs reassemble in the presence of dsDNA resulting in hybrid EB-TFP-iCONs-DNA crystalline nanosheets with enhanced fluorescence at 600 nm. Detailed steady-state and time-resolved emission studies revealed that the reassembly phenomenon was highly selective for dsDNA when compared to single-stranded DNA (ssDNA), which allowed us to use the EB-TFP-iCONs as a 2D fluorescent platform for the label-free detection of complementary DNA strands.
Ionic covalent organic nanosheets (iCONs), a member of the two‐dimensional (2D) nanomaterials family, offer a unique functional platform for a wide range of applications. Herein, we explore the potential of an ethidium bromide (EB)‐based covalent organic framework (EB‐TFP) that self‐exfoliates in water resulting in 2D ionic covalent organic nanosheets (EB‐TFP‐iCONs) for the selective detection of double‐stranded DNA (dsDNA). In an aqueous medium, the self‐exfoliated EB‐TFP‐iCONs reassemble in the presence of dsDNA resulting in hybrid EB‐TFP‐iCONs‐DNA crystalline nanosheets with enhanced fluorescence at 600 nm. Detailed steady‐state and time‐resolved emission studies revealed that the reassembly phenomenon was highly selective for dsDNA when compared to single‐stranded DNA (ssDNA), which allowed us to use the EB‐TFP‐iCONs as a 2D fluorescent platform for the label‐free detection of complementary DNA strands. Feelin' single, seein' double: Self‐exfoliated nanosheets of an ionic COF were used as a fluorescent platform for the selective detection of double‐stranded DNA (dsDNA). DNA induced the reassembly of the 2D nanosheets, and the associated fluorescence changes facilitated the discrimination of dsDNA from single‐stranded DNA (ssDNA) and other phosphates.
Ionic covalent organic nanosheets (iCONs), a member of the two-dimensional (2D) nanomaterials family, offer a unique functional platform for a wide range of applications. Herein, we explore the potential of an ethidium bromide (EB)-based covalent organic framework (EB-TFP) that self-exfoliates in water resulting in 2D ionic covalent organic nanosheets (EB-TFP-iCONs) for the selective detection of double-stranded DNA (dsDNA). In an aqueous medium, the self-exfoliated EB-TFP-iCONs reassemble in the presence of dsDNA resulting in hybrid EB-TFP-iCONs-DNA crystalline nanosheets with enhanced fluorescence at 600 nm. Detailed steady-state and time-resolved emission studies revealed that the reassembly phenomenon was highly selective for dsDNA when compared to single-stranded DNA (ssDNA), which allowed us to use the EB-TFP-iCONs as a 2D fluorescent platform for the label-free detection of complementary DNA strands.
Ionic covalent organic nanosheets (iCONs), a member of the two‐dimensional (2D) nanomaterials family, offer a unique functional platform for a wide range of applications. Herein, we explore the potential of an ethidium bromide (EB)‐based covalent organic framework ( EB‐TFP ) that self‐exfoliates in water resulting in 2D ionic covalent organic nanosheets ( EB‐TFP‐iCONs ) for the selective detection of double‐stranded DNA (dsDNA). In an aqueous medium, the self‐exfoliated EB‐TFP‐iCONs reassemble in the presence of dsDNA resulting in hybrid EB‐TFP‐iCONs‐DNA crystalline nanosheets with enhanced fluorescence at 600 nm. Detailed steady‐state and time‐resolved emission studies revealed that the reassembly phenomenon was highly selective for dsDNA when compared to single‐stranded DNA (ssDNA), which allowed us to use the EB‐TFP‐iCONs as a 2D fluorescent platform for the label‐free detection of complementary DNA strands.
Author Mishra, Rakesh K.
Praveen, Vakayil K.
Ajayaghosh, Ayyappanpillai
Mal, Arindam
Banerjee, Rahul
Khayum, M. Abdul
Author_xml – sequence: 1
  givenname: Arindam
  surname: Mal
  fullname: Mal, Arindam
  organization: CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST)
– sequence: 2
  givenname: Rakesh K.
  orcidid: 0000-0001-6967-2524
  surname: Mishra
  fullname: Mishra, Rakesh K.
  organization: CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST)
– sequence: 3
  givenname: Vakayil K.
  orcidid: 0000-0002-5407-9901
  surname: Praveen
  fullname: Praveen, Vakayil K.
  organization: CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST)
– sequence: 4
  givenname: M. Abdul
  surname: Khayum
  fullname: Khayum, M. Abdul
  organization: CSIR-National Chemical Laboratory (CSIR-NCL)
– sequence: 5
  givenname: Rahul
  orcidid: 0000-0002-3547-4746
  surname: Banerjee
  fullname: Banerjee, Rahul
  organization: CSIR-National Chemical Laboratory (CSIR-NCL)
– sequence: 6
  givenname: Ayyappanpillai
  orcidid: 0000-0001-8574-5391
  surname: Ajayaghosh
  fullname: Ajayaghosh, Ayyappanpillai
  email: ajayaghosh@niist.res.in
  organization: CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST)
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29714817$$D View this record in MEDLINE/PubMed
BookMark eNqFkc1u1DAUhS3Uiv7AliWKxIZNpv5L7CxHM1MYaTSVGFhHjnMNqRx7sBNgdix4AJ6RJ6mjaYtUCbGyZX_nXPucC3TivAOEXhE8IxjTK-U6mFFMJCasoM_QOSkoyZkQ7CTtOWO5kAU5Qxcx3iZeSlw-R2e0EoRLIs7Rr924D6r3FvRoVcg-gIoR-sYeMm-yHVjz5-fv1Q_jbacGaLO1d53OFv6bsuCG7CZ8VtPBVjkfvwAMMTM-ZBvVgE3C6wCQLWEAPXTeTY5LPzYW0tVuCMq1yXG5nb9Ap0bZCC_v10v06Xr1cfE-39y8Wy_mm1xzUdJctKBoqbBphda6KEvFK92mjxRaSgVaEwpaMGFYW7SNqbiWnDBpeMsNxQVhl-jt0Xcf_NcR4lD3XdRgrXLgx1hTzBhLk0SR0DdP0Fs_Bpdel6iSk1JUvErU63tqbHpo633oehUO9UO-CZgdAR18jAHMI0JwPRVYTwXWjwUmAX8i0N2gpvRSXp39t6w6yr53Fg7_GVLPt-vVX-0dSe6zaA
CitedBy_id crossref_primary_10_1002_adma_202002366
crossref_primary_10_1002_chem_202302474
crossref_primary_10_1016_j_jhazmat_2021_125302
crossref_primary_10_1021_acs_inorgchem_9b01106
crossref_primary_10_3390_nano12203615
crossref_primary_10_1007_s12274_024_6626_1
crossref_primary_10_3390_bios13060636
crossref_primary_10_1002_anie_202000802
crossref_primary_10_1002_anie_202406418
crossref_primary_10_1002_chem_201806025
crossref_primary_10_1039_D0CS00017E
crossref_primary_10_1021_acs_chemmater_3c00043
crossref_primary_10_1016_j_jcat_2024_115908
crossref_primary_10_1007_s41918_022_00152_8
crossref_primary_10_1016_j_envres_2022_114027
crossref_primary_10_1002_anie_202208833
crossref_primary_10_1016_j_chroma_2025_465827
crossref_primary_10_1016_j_jssc_2024_124596
crossref_primary_10_1016_j_cej_2020_126979
crossref_primary_10_1002_anie_202107185
crossref_primary_10_1021_jacs_0c03941
crossref_primary_10_1021_acsnano_1c05194
crossref_primary_10_1039_C9NR07525A
crossref_primary_10_1016_j_cclet_2019_12_039
crossref_primary_10_1021_acssuschemeng_8b05373
crossref_primary_10_1002_adfm_202002046
crossref_primary_10_1002_anie_201912363
crossref_primary_10_1021_acs_chemmater_9b00919
crossref_primary_10_1021_jacs_2c02301
crossref_primary_10_1039_D0NA00537A
crossref_primary_10_1016_j_snb_2022_132203
crossref_primary_10_1039_D0SC05889K
crossref_primary_10_1016_j_saa_2023_122615
crossref_primary_10_1039_D0CC06409B
crossref_primary_10_1002_slct_202301145
crossref_primary_10_1016_j_snb_2024_136719
crossref_primary_10_1039_D2CS00059H
crossref_primary_10_1002_ange_202208833
crossref_primary_10_1038_s41467_022_31524_9
crossref_primary_10_3390_molecules27082586
crossref_primary_10_1002_adma_202204894
crossref_primary_10_1016_j_ccr_2022_214431
crossref_primary_10_1016_j_cclet_2021_10_060
crossref_primary_10_1016_j_snb_2022_131988
crossref_primary_10_1021_acsnano_2c11339
crossref_primary_10_1039_D1CS00889G
crossref_primary_10_1016_j_trac_2021_116182
crossref_primary_10_1007_s10904_023_02932_1
crossref_primary_10_1016_j_jes_2023_06_037
crossref_primary_10_1002_advs_201801410
crossref_primary_10_1002_anie_202112271
crossref_primary_10_1016_j_mtener_2020_100635
crossref_primary_10_1002_ange_201912363
crossref_primary_10_1002_smtd_201900779
crossref_primary_10_1038_s42004_019_0207_3
crossref_primary_10_1039_D1AY00679G
crossref_primary_10_1002_ange_202000802
crossref_primary_10_1002_smll_202405701
crossref_primary_10_1186_s12951_023_02253_y
crossref_primary_10_1016_j_mattod_2022_02_001
crossref_primary_10_1021_acsami_4c14803
crossref_primary_10_1021_acsnano_2c11346
crossref_primary_10_1002_ange_202104375
crossref_primary_10_1039_D0CS01138J
crossref_primary_10_1039_D0NJ02410D
crossref_primary_10_1002_ange_202112271
crossref_primary_10_1002_adma_202102290
crossref_primary_10_1016_j_jcis_2021_01_105
crossref_primary_10_1002_smll_202103516
crossref_primary_10_1016_j_seppur_2022_122243
crossref_primary_10_1016_j_jcis_2024_03_077
crossref_primary_10_1016_j_progpolymsci_2023_101691
crossref_primary_10_1021_acscatal_3c03034
crossref_primary_10_1039_D4NJ05111D
crossref_primary_10_1007_s12200_022_00032_5
crossref_primary_10_1007_s40242_022_1448_8
crossref_primary_10_1016_j_mtchem_2024_102140
crossref_primary_10_1039_D1CS00871D
crossref_primary_10_1002_chem_202301108
crossref_primary_10_1016_j_colsurfa_2020_125429
crossref_primary_10_1002_anie_202104375
crossref_primary_10_1016_j_giant_2023_100184
crossref_primary_10_1038_s41467_023_36291_9
crossref_primary_10_1016_j_snb_2021_130472
crossref_primary_10_1016_j_xcrp_2023_101273
crossref_primary_10_1021_acs_analchem_0c05309
crossref_primary_10_1021_jacs_1c13005
crossref_primary_10_1039_D2EN01049F
crossref_primary_10_1002_smll_202100756
crossref_primary_10_1007_s11426_019_9477_y
crossref_primary_10_1021_acsmaterialslett_0c00485
crossref_primary_10_1021_jacs_3c05403
crossref_primary_10_1016_j_aca_2024_343343
crossref_primary_10_1016_j_bios_2020_112802
crossref_primary_10_1016_j_jhazmat_2023_133420
crossref_primary_10_1016_j_microc_2019_104314
crossref_primary_10_1016_j_molstruc_2023_137170
crossref_primary_10_1021_acsmaterialslett_3c00082
crossref_primary_10_1021_acs_chemrev_9b00550
crossref_primary_10_1039_D1CS00600B
crossref_primary_10_1002_ange_202100870
crossref_primary_10_1002_ange_202406418
crossref_primary_10_1002_smll_202105439
crossref_primary_10_1016_j_cej_2020_128034
crossref_primary_10_1007_s00604_019_4058_5
crossref_primary_10_1039_C9SC00172G
crossref_primary_10_1039_D0TA12122C
crossref_primary_10_1039_C8SC02842G
crossref_primary_10_1016_j_biomaterials_2022_121583
crossref_primary_10_1007_s00604_024_06827_x
crossref_primary_10_1002_ange_202107185
crossref_primary_10_1360_TB_2023_0175
crossref_primary_10_1002_anie_202100870
crossref_primary_10_1016_j_talanta_2023_125485
crossref_primary_10_1039_D3CS01163A
crossref_primary_10_1016_j_seppur_2022_122704
crossref_primary_10_1039_D0QO01354D
crossref_primary_10_1007_s12274_022_5307_1
crossref_primary_10_1002_advs_202300462
crossref_primary_10_1002_smll_202200388
crossref_primary_10_1039_D2TA08915G
crossref_primary_10_1016_j_ccr_2021_213873
crossref_primary_10_1016_j_scib_2022_02_012
crossref_primary_10_1021_acsami_0c18105
crossref_primary_10_1021_jacs_1c08675
crossref_primary_10_1039_D0TA01037E
crossref_primary_10_1039_D3RA01540H
crossref_primary_10_1039_C9GC01993F
crossref_primary_10_1016_j_ccr_2024_215873
crossref_primary_10_1039_C9SC05082E
crossref_primary_10_1039_C9CC03137E
crossref_primary_10_3390_cryst12111628
crossref_primary_10_1038_s41467_022_31393_2
crossref_primary_10_1039_D0CS00236D
crossref_primary_10_1039_D1TC01938D
crossref_primary_10_1007_s00604_021_04703_6
crossref_primary_10_1016_j_polymer_2020_122928
Cites_doi 10.1021/nl052020a
10.1021/ja981823f
10.1021/jacs.5b10754
10.1021/bi00635a022
10.1021/ar500162a
10.1039/C3CC46767H
10.1039/C1CS15031F
10.1002/ange.201611542
10.1021/ja408243n
10.1002/ange.201600087
10.1002/ange.201402141
10.1002/ange.201708526
10.1002/ange.200901479
10.1002/adma.200300379
10.1021/jacs.7b11283
10.1038/nchem.1628
10.1002/adma.201305317
10.1021/acsami.7b02529
10.1039/c2cc32187d
10.1039/C2CS35072F
10.1021/acs.nanolett.5b00388
10.1002/adma.201603006
10.1002/ange.201001004
10.1002/(SICI)1099-0518(20000101)38:1<123::AID-POLA16>3.0.CO;2-N
10.1021/jacs.5b13533
10.1002/ange.201710190
10.1002/cnma.201700242
10.1021/acsami.6b16423
10.1021/acsami.6b16769
10.1002/anie.201600087
10.1002/adma.201401228
10.1002/anie.201708526
10.1002/anie.201402141
10.1002/aenm.201700571
10.1039/C6SC00629A
10.1002/ange.201710502
10.1002/anie.201710190
10.1002/1521-3757(20001117)112:22<4207::AID-ANGE4207>3.0.CO;2-H
10.1002/ange.201607812
10.1002/anie.201000167
10.1002/1521-3773(20001117)39:22<4041::AID-ANIE4041>3.0.CO;2-C
10.1021/jacs.5b13490
10.1038/nchem.2771
10.1002/chem.201103750
10.1246/cl.130987
10.1002/ange.201509014
10.1038/srep21993
10.1002/anie.201710502
10.1002/chem.201603043
10.1002/tcr.201402063
10.1002/adma.200803633
10.1039/C7AY01261F
10.1002/ange.201000167
10.1002/anie.201611542
10.1002/smll.201002264
10.1021/jacs.7b04096
10.1021/jacs.7b12292
10.1002/anie.201607812
10.1002/anie.200901479
10.1126/science.aal1585
10.1039/C7CC06244C
10.1038/natrevmats.2016.68
10.1002/anie.201509014
10.1002/chem.200400559
10.1039/b003898i
10.1002/anie.201001004
ContentType Journal Article
Copyright 2018 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim
2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Copyright_xml – notice: 2018 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
DBID AAYXX
CITATION
NPM
7TM
K9.
7X8
DOI 10.1002/anie.201801352
DatabaseName CrossRef
PubMed
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
ProQuest Health & Medical Complete (Alumni)
Nucleic Acids Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

PubMed
CrossRef
ProQuest Health & Medical Complete (Alumni)
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3773
Edition International ed. in English
EndPage 8447
ExternalDocumentID 29714817
10_1002_anie_201801352
ANIE201801352
Genre shortCommunication
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Science and Engineering Research Board
  funderid: SB/S2/JCB-11/2014
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABLJU
ABPPZ
ABPVW
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BTSUX
BY8
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M53
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
VQA
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XSW
XV2
YZZ
ZZTAW
~IA
~KM
~WT
AAYXX
ABDBF
ABJNI
AEYWJ
AGHNM
AGYGG
CITATION
NPM
7TM
K9.
7X8
ID FETCH-LOGICAL-c4762-7dea26a0fd7ccc566a49cd1485c88aecc12ec737f3d5dbf94c84138f4d4f20513
IEDL.DBID DR2
ISSN 1433-7851
1521-3773
IngestDate Fri Jul 11 04:51:41 EDT 2025
Fri Jul 25 10:29:39 EDT 2025
Thu Apr 03 07:00:48 EDT 2025
Thu Apr 24 23:10:46 EDT 2025
Tue Jul 01 02:26:25 EDT 2025
Wed Jan 22 16:45:17 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 28
Keywords ionic assembly
label-free detection
ionic covalent organic nanosheets
DNA
covalent organic framework
Language English
License 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4762-7dea26a0fd7ccc566a49cd1485c88aecc12ec737f3d5dbf94c84138f4d4f20513
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-6967-2524
0000-0002-5407-9901
0000-0002-3547-4746
0000-0001-8574-5391
PMID 29714817
PQID 2064167949
PQPubID 946352
PageCount 5
ParticipantIDs proquest_miscellaneous_2033376275
proquest_journals_2064167949
pubmed_primary_29714817
crossref_primary_10_1002_anie_201801352
crossref_citationtrail_10_1002_anie_201801352
wiley_primary_10_1002_anie_201801352_ANIE201801352
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate July 9, 2018
PublicationDateYYYYMMDD 2018-07-09
PublicationDate_xml – month: 07
  year: 2018
  text: July 9, 2018
  day: 09
PublicationDecade 2010
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Angewandte Chemie International Edition
PublicationTitleAlternate Angew Chem Int Ed Engl
PublicationYear 2018
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2014 2014; 53 126
2015; 15
2017; 7
2018; 140
2009; 21
2000 2000; 39 112
2009 2009; 48 121
2013; 42
2014; 26
1999; 121
2003; 15
2014; 47
2006; 6
2010 2010; 49 122
2012; 18
2000; 2
2017 2017; 56 129
2013; 5
2017; 355
2017; 9
2011; 7
2017; 139
2014; 43
2017; 53
2016; 6
2016; 7
2015; 27
2016; 1
2016 2016; 55 128
2000; 38
2018; 4
1977; 16
2018 2018; 57 130
2013; 135
2017
2016; 138
2012; 48
2016; 28
2014; 50
2005; 11
2012; 41
2016; 22
e_1_2_2_2_3
e_1_2_2_24_2
e_1_2_2_47_2
e_1_2_2_4_2
e_1_2_2_49_1
e_1_2_2_22_2
e_1_2_2_20_2
e_1_2_2_2_2
e_1_2_2_62_2
e_1_2_2_41_2
e_1_2_2_41_3
e_1_2_2_64_1
e_1_2_2_8_2
e_1_2_2_28_2
e_1_2_2_43_2
e_1_2_2_66_2
e_1_2_2_26_2
e_1_2_2_45_2
e_1_2_2_68_2
e_1_2_2_24_3
e_1_2_2_60_2
e_1_2_2_13_2
e_1_2_2_36_2
e_1_2_2_59_2
e_1_2_2_38_2
e_1_2_2_11_1
e_1_2_2_51_2
e_1_2_2_19_2
e_1_2_2_30_2
e_1_2_2_30_3
e_1_2_2_51_3
e_1_2_2_53_1
e_1_2_2_17_2
e_1_2_2_32_2
e_1_2_2_55_2
e_1_2_2_15_2
e_1_2_2_34_2
e_1_2_2_57_2
Anees P. (e_1_2_2_48_2) 2017
e_1_2_2_70_1
e_1_2_2_3_2
e_1_2_2_23_3
e_1_2_2_25_1
e_1_2_2_69_3
e_1_2_2_23_2
e_1_2_2_69_2
e_1_2_2_5_2
e_1_2_2_21_2
e_1_2_2_1_1
e_1_2_2_40_2
e_1_2_2_42_2
e_1_2_2_63_2
e_1_2_2_7_2
e_1_2_2_29_1
e_1_2_2_44_1
e_1_2_2_67_1
e_1_2_2_27_2
e_1_2_2_65_2
e_1_2_2_9_2
e_1_2_2_46_2
Parvez K. (e_1_2_2_6_2) 2015; 27
e_1_2_2_61_1
e_1_2_2_12_3
e_1_2_2_12_2
e_1_2_2_37_2
e_1_2_2_10_3
e_1_2_2_39_1
e_1_2_2_10_2
e_1_2_2_50_2
e_1_2_2_52_3
e_1_2_2_31_2
e_1_2_2_52_2
e_1_2_2_18_1
e_1_2_2_31_3
e_1_2_2_16_2
e_1_2_2_33_2
e_1_2_2_54_2
e_1_2_2_14_3
e_1_2_2_35_1
e_1_2_2_58_1
e_1_2_2_14_2
e_1_2_2_56_2
References_xml – volume: 26
  start-page: 4552
  year: 2014
  end-page: 4558
  publication-title: Adv. Mater.
– volume: 9
  start-page: 13415
  year: 2017
  end-page: 13421
  publication-title: ACS Appl. Mater. Interfaces
– volume: 38
  start-page: 123
  year: 2000
  end-page: 126
  publication-title: J. Polym. Sci. Part A
– volume: 139
  start-page: 17771
  year: 2017
  end-page: 17774
  publication-title: J. Am. Chem. Soc.
– volume: 4
  start-page: 61
  year: 2018
  end-page: 65
  publication-title: ChemNanoMat
– volume: 15
  start-page: 2194
  year: 2015
  end-page: 2202
  publication-title: Nano Lett.
– volume: 42
  start-page: 548
  year: 2013
  end-page: 568
  publication-title: Chem. Soc. Rev.
– volume: 55 128
  start-page: 15604 15833
  year: 2016 2016
  end-page: 15608 15837
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 6
  start-page: 21993
  year: 2016
  publication-title: Sci. Rep.
– volume: 53
  start-page: 11469
  year: 2017
  end-page: 11471
  publication-title: Chem. Commun.
– volume: 26
  start-page: 6912
  year: 2014
  end-page: 6920
  publication-title: Adv. Mater.
– volume: 22
  start-page: 17784
  year: 2016
  end-page: 17789
  publication-title: Chem. Eur. J.
– volume: 355
  start-page: 1585
  year: 2017
  publication-title: Science
– volume: 18
  start-page: 4505
  year: 2012
  end-page: 4509
  publication-title: Chem. Eur. J.
– volume: 7
  start-page: 1207
  year: 2011
  end-page: 1211
  publication-title: Small
– volume: 6
  start-page: 199
  year: 2006
  end-page: 204
  publication-title: Nano Lett.
– volume: 121
  start-page: 1399
  year: 1999
  end-page: 1400
  publication-title: J. Am. Chem. Soc.
– volume: 27
  start-page: 6083
  year: 2015
  end-page: 6091
  publication-title: Adv. Mater.
– volume: 9
  start-page: 977
  year: 2017
  end-page: 982
  publication-title: Nat. Chem.
– volume: 57 130
  start-page: 846 856
  year: 2018 2018
  end-page: 850 860
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 48 121
  start-page: 4785 4879
  year: 2009 2009
  end-page: 4787 4881
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 47
  start-page: 3428
  year: 2014
  end-page: 3438
  publication-title: Acc. Chem. Res.
– volume: 7
  start-page: 1700571
  year: 2017
  publication-title: Adv. Energy Mater.
– volume: 15
  start-page: 252
  year: 2015
  end-page: 265
  publication-title: Chem. Rec.
– volume: 11
  start-page: 495
  year: 2005
  end-page: 508
  publication-title: Chem. Eur. J.
– volume: 15
  start-page: 673
  year: 2003
  end-page: 683
  publication-title: Adv. Mater.
– volume: 57 130
  start-page: 1034 1046
  year: 2018 2018
  end-page: 1038 1050
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 1
  start-page: 16068
  year: 2016
  publication-title: Nat. Rev. Mater.
– volume: 39 112
  start-page: 4041 4207
  year: 2000 2000
  end-page: 4045 4211
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 49 122
  start-page: 8328 8506
  year: 2010 2010
  end-page: 8344 8523
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 41
  start-page: 211
  year: 2012
  end-page: 241
  publication-title: Chem. Soc. Rev.
– volume: 5
  start-page: 453
  year: 2013
  end-page: 465
  publication-title: Nat. Chem.
– volume: 140
  start-page: 896
  year: 2018
  end-page: 899
  publication-title: J. Am. Chem. Soc.
– volume: 21
  start-page: 3159
  year: 2009
  end-page: 3164
  publication-title: Adv. Mater.
– volume: 138
  start-page: 3031
  year: 2016
  end-page: 3037
  publication-title: J. Am. Chem. Soc.
– volume: 56 129
  start-page: 4982 5064
  year: 2017 2017
  end-page: 4986 5068
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 49 122
  start-page: 6549 6699
  year: 2010 2010
  end-page: 6553 6703
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 139
  start-page: 8698
  year: 2017
  end-page: 8704
  publication-title: J. Am. Chem. Soc.
– volume: 9
  start-page: 3737
  year: 2017
  end-page: 3750
  publication-title: Anal. Methods
– volume: 57 130
  start-page: 4850 4942
  year: 2018 2018
  end-page: 4878 4972
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 7
  start-page: 4460
  year: 2016
  end-page: 4467
  publication-title: Chem. Sci.
– volume: 135
  start-page: 14952
  year: 2013
  end-page: 14955
  publication-title: J. Am. Chem. Soc.
– volume: 138
  start-page: 5897
  year: 2016
  end-page: 5903
  publication-title: J. Am. Chem. Soc.
– volume: 48
  start-page: 7976
  year: 2012
  end-page: 7978
  publication-title: Chem. Commun.
– volume: 138
  start-page: 2823
  year: 2016
  end-page: 2828
  publication-title: J. Am. Chem. Soc.
– volume: 9
  start-page: 15286
  year: 2017
  end-page: 15296
  publication-title: ACS Appl. Mater. Interfaces
– volume: 2
  start-page: 4642
  year: 2000
  end-page: 4650
  publication-title: Phys. Chem. Chem. Phys.
– volume: 16
  start-page: 3647
  year: 1977
  end-page: 3654
  publication-title: Biochemistry
– volume: 28
  start-page: 8749
  year: 2016
  end-page: 8754
  publication-title: Adv. Mater.
– year: 2017
– volume: 55 128
  start-page: 1737 1769
  year: 2016 2016
  end-page: 1741 1773
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 43
  start-page: 36
  year: 2014
  end-page: 68
  publication-title: Chem. Lett.
– volume: 50
  start-page: 5531
  year: 2014
  end-page: 5546
  publication-title: Chem. Commun.
– volume: 55 128
  start-page: 7806 7937
  year: 2016 2016
  end-page: 7810 7941
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 53 126
  start-page: 4850 4950
  year: 2014 2014
  end-page: 4855 4955
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 9
  start-page: 7209
  year: 2017
  end-page: 7216
  publication-title: ACS Appl. Mater. Interfaces
– ident: e_1_2_2_36_2
  doi: 10.1021/nl052020a
– ident: e_1_2_2_68_2
  doi: 10.1021/ja981823f
– ident: e_1_2_2_42_2
  doi: 10.1021/jacs.5b10754
– ident: e_1_2_2_70_1
  doi: 10.1021/bi00635a022
– ident: e_1_2_2_55_2
  doi: 10.1021/ar500162a
– ident: e_1_2_2_5_2
  doi: 10.1039/C3CC46767H
– ident: e_1_2_2_45_2
  doi: 10.1039/C1CS15031F
– ident: e_1_2_2_14_3
  doi: 10.1002/ange.201611542
– ident: e_1_2_2_21_2
  doi: 10.1021/ja408243n
– ident: e_1_2_2_51_3
  doi: 10.1002/ange.201600087
– ident: e_1_2_2_41_3
  doi: 10.1002/ange.201402141
– ident: e_1_2_2_52_3
  doi: 10.1002/ange.201708526
– ident: e_1_2_2_30_3
  doi: 10.1002/ange.200901479
– ident: e_1_2_2_54_2
  doi: 10.1002/adma.200300379
– ident: e_1_2_2_15_2
  doi: 10.1021/jacs.7b11283
– ident: e_1_2_2_3_2
  doi: 10.1038/nchem.1628
– ident: e_1_2_2_22_2
  doi: 10.1002/adma.201305317
– ident: e_1_2_2_38_2
  doi: 10.1021/acsami.7b02529
– ident: e_1_2_2_20_2
  doi: 10.1039/c2cc32187d
– ident: e_1_2_2_29_1
– ident: e_1_2_2_4_2
  doi: 10.1039/C2CS35072F
– ident: e_1_2_2_62_2
  doi: 10.1021/acs.nanolett.5b00388
– ident: e_1_2_2_32_2
  doi: 10.1002/adma.201603006
– ident: e_1_2_2_31_3
  doi: 10.1002/ange.201001004
– ident: e_1_2_2_60_2
  doi: 10.1002/(SICI)1099-0518(20000101)38:1<123::AID-POLA16>3.0.CO;2-N
– ident: e_1_2_2_26_2
  doi: 10.1021/jacs.5b13533
– ident: e_1_2_2_11_1
– ident: e_1_2_2_25_1
– ident: e_1_2_2_10_3
  doi: 10.1002/ange.201710190
– ident: e_1_2_2_27_2
  doi: 10.1002/cnma.201700242
– ident: e_1_2_2_43_2
  doi: 10.1021/acsami.6b16423
– ident: e_1_2_2_17_2
  doi: 10.1021/acsami.6b16769
– ident: e_1_2_2_51_2
  doi: 10.1002/anie.201600087
– ident: e_1_2_2_56_2
  doi: 10.1002/adma.201401228
– ident: e_1_2_2_52_2
  doi: 10.1002/anie.201708526
– ident: e_1_2_2_58_1
– ident: e_1_2_2_41_2
  doi: 10.1002/anie.201402141
– ident: e_1_2_2_44_1
– ident: e_1_2_2_63_2
  doi: 10.1002/aenm.201700571
– volume-title: Comprehensive Supramolecular Chemistry II, Vol. 9
  year: 2017
  ident: e_1_2_2_48_2
– ident: e_1_2_2_39_1
– ident: e_1_2_2_47_2
  doi: 10.1039/C6SC00629A
– ident: e_1_2_2_49_1
– ident: e_1_2_2_24_3
  doi: 10.1002/ange.201710502
– ident: e_1_2_2_1_1
– ident: e_1_2_2_10_2
  doi: 10.1002/anie.201710190
– ident: e_1_2_2_69_3
  doi: 10.1002/1521-3757(20001117)112:22<4207::AID-ANGE4207>3.0.CO;2-H
– ident: e_1_2_2_23_3
  doi: 10.1002/ange.201607812
– ident: e_1_2_2_2_2
  doi: 10.1002/anie.201000167
– ident: e_1_2_2_35_1
– ident: e_1_2_2_69_2
  doi: 10.1002/1521-3773(20001117)39:22<4041::AID-ANIE4041>3.0.CO;2-C
– ident: e_1_2_2_13_2
  doi: 10.1021/jacs.5b13490
– volume: 27
  start-page: 6083
  year: 2015
  ident: e_1_2_2_6_2
  publication-title: Adv. Mater.
– ident: e_1_2_2_16_2
  doi: 10.1038/nchem.2771
– ident: e_1_2_2_40_2
  doi: 10.1002/chem.201103750
– ident: e_1_2_2_57_2
  doi: 10.1246/cl.130987
– ident: e_1_2_2_12_3
  doi: 10.1002/ange.201509014
– ident: e_1_2_2_66_2
  doi: 10.1038/srep21993
– ident: e_1_2_2_18_1
– ident: e_1_2_2_24_2
  doi: 10.1002/anie.201710502
– ident: e_1_2_2_64_1
– ident: e_1_2_2_50_2
  doi: 10.1002/chem.201603043
– ident: e_1_2_2_61_1
– ident: e_1_2_2_46_2
  doi: 10.1002/tcr.201402063
– ident: e_1_2_2_53_1
– ident: e_1_2_2_37_2
  doi: 10.1002/adma.200803633
– ident: e_1_2_2_9_2
  doi: 10.1039/C7AY01261F
– ident: e_1_2_2_2_3
  doi: 10.1002/ange.201000167
– ident: e_1_2_2_14_2
  doi: 10.1002/anie.201611542
– ident: e_1_2_2_19_2
  doi: 10.1002/smll.201002264
– ident: e_1_2_2_33_2
  doi: 10.1021/jacs.7b04096
– ident: e_1_2_2_28_2
  doi: 10.1021/jacs.7b12292
– ident: e_1_2_2_23_2
  doi: 10.1002/anie.201607812
– ident: e_1_2_2_67_1
– ident: e_1_2_2_30_2
  doi: 10.1002/anie.200901479
– ident: e_1_2_2_8_2
  doi: 10.1126/science.aal1585
– ident: e_1_2_2_34_2
  doi: 10.1039/C7CC06244C
– ident: e_1_2_2_7_2
  doi: 10.1038/natrevmats.2016.68
– ident: e_1_2_2_12_2
  doi: 10.1002/anie.201509014
– ident: e_1_2_2_59_2
  doi: 10.1002/chem.200400559
– ident: e_1_2_2_65_2
  doi: 10.1039/b003898i
– ident: e_1_2_2_31_2
  doi: 10.1002/anie.201001004
SSID ssj0028806
Score 2.592557
Snippet Ionic covalent organic nanosheets (iCONs), a member of the two‐dimensional (2D) nanomaterials family, offer a unique functional platform for a wide range of...
Ionic covalent organic nanosheets (iCONs), a member of the two-dimensional (2D) nanomaterials family, offer a unique functional platform for a wide range of...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 8443
SubjectTerms Complementary DNA
Covalence
covalent organic framework
Deoxyribonucleic acid
DNA
Emission analysis
Ethidium bromide
Fluorescence
Icons
ionic assembly
ionic covalent organic nanosheets
label-free detection
Nanomaterials
Nanosheets
Nanotechnology
Title Supramolecular Reassembly of Self‐Exfoliated Ionic Covalent Organic Nanosheets for Label‐Free Detection of Double‐Stranded DNA
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.201801352
https://www.ncbi.nlm.nih.gov/pubmed/29714817
https://www.proquest.com/docview/2064167949
https://www.proquest.com/docview/2033376275
Volume 57
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwEB6hvcCF9yOwICMhccpuYzt1c6y6rXYR9LDLSnuLbGcsJLLJqk0l4MSBH8Bv5JcwkzSBghAS3BL5Eccejz_bM98AvHBeyTAKCQlv4mmDopPYyZGPs6DHlkGCbd2j3yzHx-f61UV68ZMXf8cPMRy48cxo9TVPcOvWhz9IQ9kDm02zSMUSiCAlzAZbjIpOB_4oScLZuRcpFXMU-p61cSQPd4vvrkq_Qc1d5NouPYtbYPtGdxYn7w82jTvwn37hc_yfv7oNN7e4VEw7QboD17C6C9dnfTi4e_DlbHO1spd9NF1xigS78dKVH0UdxBmW4dvnr_MPoS5psLEQJ8y5K2Y1STKta6Lz-fSCtHm9fofYrAXBZfHaOiyp4GKFKI6waQ3DKq6RkL0rkZKYP5eP6cXRcnofzhfzt7PjeBvCIfaa1GxsCrSSBj0UxntP0NHqzBe0BUv9ZGJJfBKJ3igTVJEWLmTaT2hVnQRd6CBJX6gHsFfVFT4Cgdo7TJPCjFymrQoO9Rgl1Wky6i-0EcT9EOZ-y2_OYTbKvGNmljn3bT70bQQvh_xXHbPHH3Pu9xKRb2f4mlLHmq-wdBbB8yGZxoQvXGyF9YbzKEUKXJo0goedJA2fkpmhbkhMBLKVh7-0IZ8uT-bD2-N_KfQEbvBza2uc7cNes9rgU0JUjXvWzprvqOga8A
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwEB7Bclgu7PLOsgtGQuKU3cZxmuZYdVu10O1hHxK3yHbGQiKbrNpUAk4c-AH8Rn4JM0kTVBBCgmPiRxx7PP5sz3wD8MrYULqeC0h4A0sbFBX4RvasnzjV1wwSdO0efbboT6_Um3dRa03IvjANP0R34MYzo9bXPMH5QPrkJ2sou2CzbRbpWEIRt-EOh_Wud1XnHYOUJPFsHIzC0Oc49C1vY0-ebJffXpd-A5vb2LVefCZ7YNpmNzYnH47XlTm2n39hdPyv_9qHextoKoaNLN2HW1g8gN1RGxHuIXy9WN8s9XUbUFecIyFvvDb5J1E6cYG5-_7l2_ijK3Mab8zEjGl3xagkYaalTTRun1aQQi9X7xGrlSDELObaYE4FJ0tEcYpVbRtWcI0E7k2OlMQUunxSL04Xw0dwNRlfjqb-JoqDbxVpWj_OUEsad5fF1lpCj1olNqNdWGQHA00SFEi0cRi7MIsy4xJlB7SwDpzKlJOkMsLHsFOUBT4FgcoajIIs7plE6dAZVH2UVGecUH-h9sBvxzC1G4pzjrSRpw05s0y5b9Oubz143eW_acg9_pjzsBWJdDPJV5TaV3yLpRIPXnbJNCZ856ILLNecJwxJh8s48uBJI0rdp2QSUzcEsQeyFoi_tCEdLmbj7ungXwq9gN3p5dk8nc8Wb5_BXX5fmx4nh7BTLdd4RACrMs_rKfQDQRYfCw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LbtQwFL2CIgGb8iwEChgJiVXaxHFey9E81IEyQi2Vuots51pIpMloJiPRrrrgA_qN_RKuk0lgQAgJlokfSezj6-PY91yAN0oH3HjGJ_D6mhYowncV97SbGhFJSxJk4x79YRYdnIh3p-HpT178rT5E_8PNjozGXtsBPs_N_g_RUOuBbY9mkYklEnETbonISyyuR0e9gBQndLb-RUHg2jD0nWyjx_c3y29OS79xzU3q2sw9k3sgu7duj5x82VvVak9f_CLo-D-fdR-218SUDVokPYAbWD6EO8MuHtwj-Ha8mi_kWRdOlx0h8W48U8U5qww7xsJcX16Nv5qqoN7GnE2t6C4bVgRlmthY6_SpGZnzavkZsV4y4svsUCosqOBkgchGWDcnw0pbI1F7VSAlWQFd-5-ejWaDx3AyGX8aHrjrGA6uFmRn3ThHyanXTR5rrYk7SpHqnNZgoU4SSfjxOeo4iE2Qh7kyqdAJTauJEbkwnAxGsANbZVXiU2AotMLQz2NPpUIGRqGIkFOdcUrthdIBt-vCTK8Fzm2cjSJrpZl5Zts269vWgbd9_nkr7fHHnLsdIrL1EF9SaiTsHpZIHXjdJ1Of2B0XWWK1snmCgCw4j0MHnrRI6h_F05iawY8d4A0e_vIO2WA2HfdXz_6l0Cu4_XE0yQ6ns_fP4a693Zw7Tndhq16s8AWxq1q9bAbQd-wkHcM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Supramolecular+Reassembly+of+Self%E2%80%90Exfoliated+Ionic+Covalent+Organic+Nanosheets+for+Label%E2%80%90Free+Detection+of+Double%E2%80%90Stranded+DNA&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Mal%2C+Arindam&rft.au=Mishra%2C+Rakesh+K&rft.au=Praveen%2C+Vakayil+K&rft.au=M+Abdul+Khayum&rft.date=2018-07-09&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=57&rft.issue=28&rft.spage=8443&rft.epage=8447&rft_id=info:doi/10.1002%2Fanie.201801352&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon