A conceptual map of invasion biology: Integrating hypotheses into a consensus network
Background and aims Since its emergence in the mid‐20th century, invasion biology has matured into a productive research field addressing questions of fundamental and applied importance. Not only has the number of empirical studies increased through time, but also has the number of competing, overla...
Saved in:
Published in | Global ecology and biogeography Vol. 29; no. 6; pp. 978 - 991 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Wiley Subscription Services, Inc
01.06.2020
John Wiley and Sons Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Background and aims
Since its emergence in the mid‐20th century, invasion biology has matured into a productive research field addressing questions of fundamental and applied importance. Not only has the number of empirical studies increased through time, but also has the number of competing, overlapping and, in some cases, contradictory hypotheses about biological invasions. To make these contradictions and redundancies explicit, and to gain insight into the field’s current theoretical structure, we developed and applied a Delphi approach to create a consensus network of 39 existing invasion hypotheses.
Results
The resulting network was analysed with a link‐clustering algorithm that revealed five concept clusters (resource availability, biotic interaction, propagule, trait and Darwin’s clusters) representing complementary areas in the theory of invasion biology. The network also displays hypotheses that link two or more clusters, called connecting hypotheses, which are important in determining network structure. The network indicates hypotheses that are logically linked either positively (77 connections of support) or negatively (that is, they contradict each other; 6 connections).
Significance
The network visually synthesizes how invasion biology’s predominant hypotheses are conceptually related to each other, and thus, reveals an emergent structure – a conceptual map – that can serve as a navigation tool for scholars, practitioners and students, both inside and outside of the field of invasion biology, and guide the development of a more coherent foundation of theory. Additionally, the outlined approach can be more widely applied to create a conceptual map for the larger fields of ecology and biogeography. |
---|---|
AbstractList | Since its emergence in the mid-20th century, invasion biology has matured into a productive research field addressing questions of fundamental and applied importance. Not only has the number of empirical studies increased through time, but also has the number of competing, overlapping and, in some cases, contradictory hypotheses about biological invasions. To make these contradictions and redundancies explicit, and to gain insight into the field's current theoretical structure, we developed and applied a Delphi approach to create a consensus network of 39 existing invasion hypotheses.
The resulting network was analysed with a link-clustering algorithm that revealed five
(resource availability, biotic interaction, propagule, trait and Darwin's clusters) representing complementary areas in the theory of invasion biology. The network also displays hypotheses that link two or more clusters, called
, which are important in determining network structure. The network indicates hypotheses that are logically linked either positively (77 connections of support) or negatively (that is, they contradict each other; 6 connections).
The network visually synthesizes how invasion biology's predominant hypotheses are conceptually related to each other, and thus, reveals an emergent structure - a
- that can serve as a navigation tool for scholars, practitioners and students, both inside and outside of the field of invasion biology, and guide the development of a more coherent foundation of theory. Additionally, the outlined approach can be more widely applied to create a conceptual map for the larger fields of ecology and biogeography. BACKGROUND AND AIMS: Since its emergence in the mid‐20th century, invasion biology has matured into a productive research field addressing questions of fundamental and applied importance. Not only has the number of empirical studies increased through time, but also has the number of competing, overlapping and, in some cases, contradictory hypotheses about biological invasions. To make these contradictions and redundancies explicit, and to gain insight into the field’s current theoretical structure, we developed and applied a Delphi approach to create a consensus network of 39 existing invasion hypotheses. RESULTS: The resulting network was analysed with a link‐clustering algorithm that revealed five concept clusters (resource availability, biotic interaction, propagule, trait and Darwin’s clusters) representing complementary areas in the theory of invasion biology. The network also displays hypotheses that link two or more clusters, called connecting hypotheses, which are important in determining network structure. The network indicates hypotheses that are logically linked either positively (77 connections of support) or negatively (that is, they contradict each other; 6 connections). SIGNIFICANCE: The network visually synthesizes how invasion biology’s predominant hypotheses are conceptually related to each other, and thus, reveals an emergent structure – a conceptual map – that can serve as a navigation tool for scholars, practitioners and students, both inside and outside of the field of invasion biology, and guide the development of a more coherent foundation of theory. Additionally, the outlined approach can be more widely applied to create a conceptual map for the larger fields of ecology and biogeography. Background and aims Since its emergence in the mid‐20th century, invasion biology has matured into a productive research field addressing questions of fundamental and applied importance. Not only has the number of empirical studies increased through time, but also has the number of competing, overlapping and, in some cases, contradictory hypotheses about biological invasions. To make these contradictions and redundancies explicit, and to gain insight into the field’s current theoretical structure, we developed and applied a Delphi approach to create a consensus network of 39 existing invasion hypotheses. Results The resulting network was analysed with a link‐clustering algorithm that revealed five concept clusters (resource availability, biotic interaction, propagule, trait and Darwin’s clusters) representing complementary areas in the theory of invasion biology. The network also displays hypotheses that link two or more clusters, called connecting hypotheses, which are important in determining network structure. The network indicates hypotheses that are logically linked either positively (77 connections of support) or negatively (that is, they contradict each other; 6 connections). Significance The network visually synthesizes how invasion biology’s predominant hypotheses are conceptually related to each other, and thus, reveals an emergent structure – a conceptual map – that can serve as a navigation tool for scholars, practitioners and students, both inside and outside of the field of invasion biology, and guide the development of a more coherent foundation of theory. Additionally, the outlined approach can be more widely applied to create a conceptual map for the larger fields of ecology and biogeography. Since its emergence in the mid-20th century, invasion biology has matured into a productive research field addressing questions of fundamental and applied importance. Not only has the number of empirical studies increased through time, but also has the number of competing, overlapping and, in some cases, contradictory hypotheses about biological invasions. To make these contradictions and redundancies explicit, and to gain insight into the field's current theoretical structure, we developed and applied a Delphi approach to create a consensus network of 39 existing invasion hypotheses.BACKGROUND AND AIMSSince its emergence in the mid-20th century, invasion biology has matured into a productive research field addressing questions of fundamental and applied importance. Not only has the number of empirical studies increased through time, but also has the number of competing, overlapping and, in some cases, contradictory hypotheses about biological invasions. To make these contradictions and redundancies explicit, and to gain insight into the field's current theoretical structure, we developed and applied a Delphi approach to create a consensus network of 39 existing invasion hypotheses.The resulting network was analysed with a link-clustering algorithm that revealed five concept clusters (resource availability, biotic interaction, propagule, trait and Darwin's clusters) representing complementary areas in the theory of invasion biology. The network also displays hypotheses that link two or more clusters, called connecting hypotheses, which are important in determining network structure. The network indicates hypotheses that are logically linked either positively (77 connections of support) or negatively (that is, they contradict each other; 6 connections).RESULTSThe resulting network was analysed with a link-clustering algorithm that revealed five concept clusters (resource availability, biotic interaction, propagule, trait and Darwin's clusters) representing complementary areas in the theory of invasion biology. The network also displays hypotheses that link two or more clusters, called connecting hypotheses, which are important in determining network structure. The network indicates hypotheses that are logically linked either positively (77 connections of support) or negatively (that is, they contradict each other; 6 connections).The network visually synthesizes how invasion biology's predominant hypotheses are conceptually related to each other, and thus, reveals an emergent structure - a conceptual map - that can serve as a navigation tool for scholars, practitioners and students, both inside and outside of the field of invasion biology, and guide the development of a more coherent foundation of theory. Additionally, the outlined approach can be more widely applied to create a conceptual map for the larger fields of ecology and biogeography.SIGNIFICANCEThe network visually synthesizes how invasion biology's predominant hypotheses are conceptually related to each other, and thus, reveals an emergent structure - a conceptual map - that can serve as a navigation tool for scholars, practitioners and students, both inside and outside of the field of invasion biology, and guide the development of a more coherent foundation of theory. Additionally, the outlined approach can be more widely applied to create a conceptual map for the larger fields of ecology and biogeography. Background and aimsSince its emergence in the mid‐20th century, invasion biology has matured into a productive research field addressing questions of fundamental and applied importance. Not only has the number of empirical studies increased through time, but also has the number of competing, overlapping and, in some cases, contradictory hypotheses about biological invasions. To make these contradictions and redundancies explicit, and to gain insight into the field’s current theoretical structure, we developed and applied a Delphi approach to create a consensus network of 39 existing invasion hypotheses.ResultsThe resulting network was analysed with a link‐clustering algorithm that revealed five concept clusters (resource availability, biotic interaction, propagule, trait and Darwin’s clusters) representing complementary areas in the theory of invasion biology. The network also displays hypotheses that link two or more clusters, called connecting hypotheses, which are important in determining network structure. The network indicates hypotheses that are logically linked either positively (77 connections of support) or negatively (that is, they contradict each other; 6 connections).SignificanceThe network visually synthesizes how invasion biology’s predominant hypotheses are conceptually related to each other, and thus, reveals an emergent structure – a conceptual map – that can serve as a navigation tool for scholars, practitioners and students, both inside and outside of the field of invasion biology, and guide the development of a more coherent foundation of theory. Additionally, the outlined approach can be more widely applied to create a conceptual map for the larger fields of ecology and biogeography. |
Author | Ruland, Florian Belmaker, Jonathan Kühn, Ingolf Meyerson, Laura A. Enders, Martin Strayer, David L. Lockwood, Julie L. Bernard‐Verdier, Maud Kueffer, Christoph Saul, Wolf‐Christian Mabey, Abigail L. Jeschke, Jonathan M. Catford, Jane A. Musseau, Camille Haider, Sylvia Essl, Franz Pyšek, Petr Ricciardi, Anthony Heger, Tina McGeoch, Melodie A. Schittko, Conrad Vilà, Montserrat Sagouis, Alban Kleunen, Mark Hulme, Philip E. Kumschick, Sabrina Novoa, Ana Havemann, Frank Gómez‐Aparicio, Lorena Yannelli, Florencia A. Palma, Estíbaliz |
AuthorAffiliation | 16 The University of Rhode Island Department of Natural Resources Science Kingston Rhode Island 25 Ecology, Department of Biology University of Konstanz Konstanz Germany 11 Biodiversity Research/Systematic Botany University of Potsdam Potsdam Germany 28 Ecology, Evolution and Natural Resources Rutgers University New Brunswick New Jersey 4 Philosophische Fakultät Institut für Bibliotheks‐ und Informationswissenschaft Humboldt‐Universität zu Berlin Berlin Germany 6 School of BioSciences The University of Melbourne Parkville Victoria Australia 3 Berlin‐Brandenburg Institute of Advanced Biodiversity Research (BBIB) Berlin Germany 27 South African National Biodiversity Institute Kirstenbosch National Botanical Gardens Claremont South Africa 20 Graham Sustainability Institute University of Michigan Ann Arbor Michigan United States 21 Estación Biológica de Doñana (EBD‐CSIC) Seville Spain 17 Czech Academy of Sciences Institute of Botany Department of Invasion Ecology Průhonice Czech Republic 18 Redpath M |
AuthorAffiliation_xml | – name: 9 Martin Luther University Halle‐Wittenberg Institute of Biology/Geobotany and Botanical Garden Halle (Saale) Germany – name: 24 Bio‐Protection Research Centre Lincoln University Lincoln, Canterbury New Zealand – name: 19 Cary Institute of Ecosystem Studies Millbrook New York United States – name: 3 Berlin‐Brandenburg Institute of Advanced Biodiversity Research (BBIB) Berlin Germany – name: 13 Institute of Integrative Biology, Department of Environmental Systems Science ETH Zurich Zurich Switzerland – name: 15 Helmholtz Centre for Environmental Research – UFZ Department Community Ecology Halle (Saale) Germany – name: 25 Ecology, Department of Biology University of Konstanz Konstanz Germany – name: 16 The University of Rhode Island Department of Natural Resources Science Kingston Rhode Island – name: 20 Graham Sustainability Institute University of Michigan Ann Arbor Michigan United States – name: 7 Biological Sciences University of Southampton Southampton United Kingdom – name: 26 Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation Taizhou University Taizhou China – name: 29 Ocean and Earth Science National Oceanography Centre University of Southampton Southampton United Kingdom – name: 31 Department of Ecology Faculty of Science Charles University Prague Czech Republic – name: 6 School of BioSciences The University of Melbourne Parkville Victoria Australia – name: 11 Biodiversity Research/Systematic Botany University of Potsdam Potsdam Germany – name: 27 South African National Biodiversity Institute Kirstenbosch National Botanical Gardens Claremont South Africa – name: 30 School of Biological Sciences Monash University Clayton Victoria Australia – name: 14 Centre for Invasion Biology Department of Botany and Zoology Stellenbosch University Matieland South Africa – name: 2 Leibniz‐Institute of Freshwater Ecology and Inland Fisheries (IGB) Berlin Germany – name: 22 Department of Plant Biology and Ecology University of Seville Seville Spain – name: 17 Czech Academy of Sciences Institute of Botany Department of Invasion Ecology Průhonice Czech Republic – name: 12 Technical University of Munich Freising Germany – name: 1 Department of Biology, Chemistry, Pharmacy Institute of Biology Freie Universität Berlin Berlin Germany – name: 5 Department of Geography King’s College London London United Kingdom – name: 10 German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐Leipzig Leipzig Germany – name: 28 Ecology, Evolution and Natural Resources Rutgers University New Brunswick New Jersey – name: 23 Department of Botany and Biodiversity Research University of Vienna Vienna Austria – name: 21 Estación Biológica de Doñana (EBD‐CSIC) Seville Spain – name: 8 Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), CSIC Seville Spain – name: 4 Philosophische Fakultät Institut für Bibliotheks‐ und Informationswissenschaft Humboldt‐Universität zu Berlin Berlin Germany – name: 18 Redpath Museum McGill University Montreal Quebec Canada – name: 32 Centre for Invasion Biology Department of Mathematical Sciences Stellenbosch University Matieland South Africa |
Author_xml | – sequence: 1 givenname: Martin orcidid: 0000-0002-0681-852X surname: Enders fullname: Enders, Martin email: enders.martin@gmx.net organization: Berlin‐Brandenburg Institute of Advanced Biodiversity Research (BBIB) – sequence: 2 givenname: Frank orcidid: 0000-0002-0485-2580 surname: Havemann fullname: Havemann, Frank organization: Humboldt‐Universität zu Berlin – sequence: 3 givenname: Florian orcidid: 0000-0002-5785-1733 surname: Ruland fullname: Ruland, Florian organization: Berlin‐Brandenburg Institute of Advanced Biodiversity Research (BBIB) – sequence: 4 givenname: Maud surname: Bernard‐Verdier fullname: Bernard‐Verdier, Maud organization: Berlin‐Brandenburg Institute of Advanced Biodiversity Research (BBIB) – sequence: 5 givenname: Jane A. orcidid: 0000-0003-0582-5960 surname: Catford fullname: Catford, Jane A. organization: University of Southampton – sequence: 6 givenname: Lorena surname: Gómez‐Aparicio fullname: Gómez‐Aparicio, Lorena organization: Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), CSIC – sequence: 7 givenname: Sylvia orcidid: 0000-0002-2966-0534 surname: Haider fullname: Haider, Sylvia organization: German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐Leipzig – sequence: 8 givenname: Tina orcidid: 0000-0002-5522-5632 surname: Heger fullname: Heger, Tina organization: Technical University of Munich – sequence: 9 givenname: Christoph orcidid: 0000-0001-6701-0703 surname: Kueffer fullname: Kueffer, Christoph organization: Stellenbosch University – sequence: 10 givenname: Ingolf orcidid: 0000-0003-1691-8249 surname: Kühn fullname: Kühn, Ingolf organization: Helmholtz Centre for Environmental Research – UFZ – sequence: 11 givenname: Laura A. orcidid: 0000-0002-1283-3865 surname: Meyerson fullname: Meyerson, Laura A. organization: The University of Rhode Island – sequence: 12 givenname: Camille orcidid: 0000-0002-5633-2384 surname: Musseau fullname: Musseau, Camille organization: Berlin‐Brandenburg Institute of Advanced Biodiversity Research (BBIB) – sequence: 13 givenname: Ana orcidid: 0000-0001-7092-3917 surname: Novoa fullname: Novoa, Ana organization: Czech Academy of Sciences – sequence: 14 givenname: Anthony surname: Ricciardi fullname: Ricciardi, Anthony organization: McGill University – sequence: 15 givenname: Alban surname: Sagouis fullname: Sagouis, Alban organization: Berlin‐Brandenburg Institute of Advanced Biodiversity Research (BBIB) – sequence: 16 givenname: Conrad orcidid: 0000-0002-2200-8762 surname: Schittko fullname: Schittko, Conrad organization: University of Potsdam – sequence: 17 givenname: David L. surname: Strayer fullname: Strayer, David L. organization: University of Michigan – sequence: 18 givenname: Montserrat orcidid: 0000-0003-3171-8261 surname: Vilà fullname: Vilà, Montserrat organization: University of Seville – sequence: 19 givenname: Franz surname: Essl fullname: Essl, Franz organization: University of Vienna – sequence: 20 givenname: Philip E. surname: Hulme fullname: Hulme, Philip E. organization: Lincoln University – sequence: 21 givenname: Mark orcidid: 0000-0002-2861-3701 surname: Kleunen fullname: Kleunen, Mark organization: Taizhou University – sequence: 22 givenname: Sabrina surname: Kumschick fullname: Kumschick, Sabrina organization: Kirstenbosch National Botanical Gardens – sequence: 23 givenname: Julie L. orcidid: 0000-0003-0177-449X surname: Lockwood fullname: Lockwood, Julie L. organization: Rutgers University – sequence: 24 givenname: Abigail L. orcidid: 0000-0003-0156-1881 surname: Mabey fullname: Mabey, Abigail L. organization: University of Southampton – sequence: 25 givenname: Melodie A. orcidid: 0000-0003-3388-2241 surname: McGeoch fullname: McGeoch, Melodie A. organization: Monash University – sequence: 26 givenname: Estíbaliz orcidid: 0000-0002-4500-254X surname: Palma fullname: Palma, Estíbaliz organization: The University of Melbourne – sequence: 27 givenname: Petr orcidid: 0000-0001-8500-442X surname: Pyšek fullname: Pyšek, Petr organization: Charles University – sequence: 28 givenname: Wolf‐Christian orcidid: 0000-0002-3584-6159 surname: Saul fullname: Saul, Wolf‐Christian organization: Stellenbosch University – sequence: 29 givenname: Florencia A. orcidid: 0000-0003-1544-5312 surname: Yannelli fullname: Yannelli, Florencia A. organization: Stellenbosch University – sequence: 30 givenname: Jonathan M. orcidid: 0000-0003-3328-4217 surname: Jeschke fullname: Jeschke, Jonathan M. organization: Berlin‐Brandenburg Institute of Advanced Biodiversity Research (BBIB) – sequence: 31 givenname: Jonathan surname: Belmaker fullname: Belmaker, Jonathan |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34938151$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkU1rFTEUhoNU7Icu_AMScKOL2-Z7Mi4KtdRaKLix4C5kMmfmps5NxmSm5f57c723RYuC2SRwnvNwTt5DtBdiAIReU3JMyznpoTmmnGj2DB1QodRCM673Ht_s2z46zPmWECKFVC_QPhc111TSA3Rzhl0MDsZptgNe2RHHDvtwZ7OPATc-DrFff8BXYYI-2cmHHi_XY5yWkCEXcIrYbgwZQp4zDjDdx_T9JXre2SHDq919hG4-XXw9_7y4_nJ5dX52vXCiUmxROUuskKA6ynQnQbuWM2gU0a1swVqpQLSNaKmjpUAUdDWntGIVE51UjeJH6HTrHedmBa2DMCU7mDH5lU1rE603f1aCX5o-3hmtRFUzWQTvdoIUf8yQJ7Py2cEw2ABxzoYpylnN6uo_UMFrQZnUdUHfPkFv45xC-YlCESI44ZwW6s3vwz9O_RBOAU62gEsx5wSdcX4qGcTNLn4wlJhN_KbEb37FXzreP-l4kP6N3dnv_QDrf4Pm8uLjtuMnm86-5A |
CitedBy_id | crossref_primary_10_3897_neobiota_74_81671 crossref_primary_10_1016_j_marenvres_2020_105231 crossref_primary_10_1007_s11104_023_06454_0 crossref_primary_10_3389_fevo_2021_655313 crossref_primary_10_1093_biosci_biaa130 crossref_primary_10_1111_1365_2664_14607 crossref_primary_10_1007_s10530_023_03134_z crossref_primary_10_1098_rspb_2020_1070 crossref_primary_10_1111_cobi_14290 crossref_primary_10_1007_s10530_022_02982_5 crossref_primary_10_3389_fmicb_2023_1160631 crossref_primary_10_1002_ajb2_16224 crossref_primary_10_1016_j_anbehav_2021_10_013 crossref_primary_10_1016_j_ppees_2020_125575 crossref_primary_10_1146_annurev_ecolsys_102622_031210 crossref_primary_10_1111_brv_12964 crossref_primary_10_1007_s00442_023_05329_6 crossref_primary_10_1111_eva_13548 crossref_primary_10_3389_fevo_2020_584701 crossref_primary_10_1016_j_baae_2024_02_008 crossref_primary_10_1002_ece3_10853 crossref_primary_10_1016_j_marenvres_2022_105802 crossref_primary_10_3389_fpls_2023_1174844 crossref_primary_10_1002_ece3_10856 crossref_primary_10_1016_j_flora_2020_151603 crossref_primary_10_1111_jfb_15950 crossref_primary_10_1111_geb_13948 crossref_primary_10_3897_neobiota_93_108923 crossref_primary_10_1111_1365_2745_13575 crossref_primary_10_1007_s10530_022_02968_3 crossref_primary_10_3390_life12111785 crossref_primary_10_1093_aesa_saaa054 crossref_primary_10_1002_ecm_1420 crossref_primary_10_1007_s10530_023_03002_w crossref_primary_10_1007_s11258_023_01367_5 crossref_primary_10_1093_biosci_biab047 crossref_primary_10_1002_ecs2_4966 crossref_primary_10_1007_s11258_024_01407_8 crossref_primary_10_1111_geb_13258 crossref_primary_10_1038_s41559_023_02235_1 crossref_primary_10_1146_annurev_ecolsys_102220_013423 crossref_primary_10_3897_neobiota_62_52787 crossref_primary_10_3390_d17010020 crossref_primary_10_1016_j_tim_2023_09_001 crossref_primary_10_1111_mec_17195 crossref_primary_10_1111_mec_16385 crossref_primary_10_1186_s12870_024_05498_3 crossref_primary_10_1111_gcb_17137 crossref_primary_10_1007_s10530_023_03093_5 crossref_primary_10_1073_pnas_2021173118 crossref_primary_10_1002_ecy_4070 crossref_primary_10_3897_neobiota_85_98902 crossref_primary_10_1016_j_envexpbot_2022_104851 crossref_primary_10_1007_s10530_021_02484_w crossref_primary_10_1016_j_ecss_2023_108549 crossref_primary_10_1002_ece3_8348 crossref_primary_10_1111_mec_17464 crossref_primary_10_1002_ecy_3719 crossref_primary_10_1051_kmae_2022001 crossref_primary_10_1007_s10530_022_02976_3 crossref_primary_10_1007_s10539_022_09838_1 crossref_primary_10_1111_ddi_13968 crossref_primary_10_3897_neobiota_77_91402 crossref_primary_10_1002_2688_8319_12374 crossref_primary_10_1007_s10530_023_03067_7 crossref_primary_10_1080_11956860_2023_2165283 crossref_primary_10_1038_s41598_020_72754_5 crossref_primary_10_3897_rio_9_e115395 crossref_primary_10_3389_fpls_2022_996498 crossref_primary_10_14720_abs_65_1_16030 crossref_primary_10_3897_neobiota_77_87307 crossref_primary_10_3390_d15050651 crossref_primary_10_1111_1365_2435_14019 crossref_primary_10_3897_neobiota_68_66685 crossref_primary_10_1007_s10530_020_02413_3 crossref_primary_10_1016_j_soilbio_2022_108579 crossref_primary_10_1007_s11258_024_01420_x crossref_primary_10_1093_biosci_biae093 crossref_primary_10_3390_plants12051180 crossref_primary_10_1016_j_envsci_2023_103614 crossref_primary_10_1002_aqc_70026 crossref_primary_10_1016_j_jenvman_2024_121461 crossref_primary_10_1038_s41467_024_48876_z crossref_primary_10_1017_S0954102022000037 crossref_primary_10_1111_brv_13179 crossref_primary_10_3897_neobiota_68_68997 crossref_primary_10_1007_s11104_023_06296_w crossref_primary_10_7717_peerj_14858 crossref_primary_10_1016_j_baae_2021_03_012 crossref_primary_10_1016_j_tree_2021_09_007 crossref_primary_10_1098_rstb_2023_0014 crossref_primary_10_1016_j_cub_2023_03_053 crossref_primary_10_1093_cz_zoae028 crossref_primary_10_1093_biosci_biac080 crossref_primary_10_1038_s44185_023_00019_1 crossref_primary_10_3897_neobiota_94_126714 crossref_primary_10_1002_eap_2819 crossref_primary_10_1111_oik_09645 crossref_primary_10_1007_s10530_023_03046_y crossref_primary_10_1093_aob_mcab053 crossref_primary_10_1111_nph_20261 crossref_primary_10_1007_s10530_022_02814_6 crossref_primary_10_1038_s41467_024_45025_4 crossref_primary_10_1093_conphys_coaa049 crossref_primary_10_1111_faf_12624 crossref_primary_10_1002_ece3_7284 crossref_primary_10_1007_s10750_024_05663_7 crossref_primary_10_1080_20964129_2022_2052763 crossref_primary_10_1016_j_scitotenv_2024_173520 crossref_primary_10_1111_oik_10266 crossref_primary_10_1016_j_cris_2022_100051 crossref_primary_10_1016_j_tree_2025_01_006 crossref_primary_10_1007_s10530_020_02431_1 crossref_primary_10_1016_j_scitotenv_2023_168218 crossref_primary_10_1002_ajb2_1852 crossref_primary_10_1016_j_scitotenv_2023_165747 crossref_primary_10_1016_j_cris_2021_100011 crossref_primary_10_1093_jee_toad058 crossref_primary_10_1111_gcb_16360 crossref_primary_10_1016_j_fmre_2024_05_001 crossref_primary_10_1111_1365_2435_14393 crossref_primary_10_1007_s10750_023_05295_3 crossref_primary_10_1016_j_ecolind_2020_107034 crossref_primary_10_1038_s42003_023_05485_8 crossref_primary_10_1139_er_2020_0088 crossref_primary_10_1002_advs_202305353 crossref_primary_10_1016_j_gecco_2022_e02318 crossref_primary_10_1007_s10750_024_05655_7 crossref_primary_10_7717_peerj_15489 crossref_primary_10_1086_730539 crossref_primary_10_3390_d15101067 crossref_primary_10_1007_s10530_022_02902_7 crossref_primary_10_1146_annurev_ecolsys_032522_015551 crossref_primary_10_1007_s10530_020_02367_6 crossref_primary_10_1007_s10750_024_05632_0 crossref_primary_10_3897_neobiota_70_68202 crossref_primary_10_1016_j_gecco_2025_e03481 crossref_primary_10_3897_neobiota_62_58738 crossref_primary_10_1146_annurev_arplant_070522_071021 crossref_primary_10_1002_aqc_3874 crossref_primary_10_1111_rec_13676 crossref_primary_10_1007_s00425_023_04220_1 crossref_primary_10_1111_ecog_05541 crossref_primary_10_1017_inp_2023_27 crossref_primary_10_3389_fpls_2023_1243849 crossref_primary_10_1016_j_cris_2023_100065 crossref_primary_10_1111_2041_210X_13940 crossref_primary_10_1162_qss_a_00108 crossref_primary_10_3897_rio_10_e107393 crossref_primary_10_3897_rio_10_e119805 crossref_primary_10_1093_biosci_biac108 crossref_primary_10_1093_conphys_coab038 crossref_primary_10_1016_j_ecolind_2022_109082 |
Cites_doi | 10.1002/ecs2.2146 10.1002/ece3.3253 10.1038/417608a 10.1111/j.1469-185X.1986.tb00659.x 10.1086/601720 10.3897/neobiota.47.32608 10.1111/j.1461-0248.2006.00908.x 10.1111/j.1461-0248.2006.00987.x 10.2307/3545686 10.1007/s11192-017-2302-5 10.1126/science.aao6371 10.1016/0040-5809(70)90039-0 10.1126/science.287.5459.1770 10.1111/j.1461-0248.2006.00950.x 10.1086/282505 10.1098/rspb.2001.1801 10.1111/j.1461-0248.2011.01594.x 10.1098/rstb.1986.0070 10.1111/ddi.12258 10.1093/aob/mcr277 10.1016/j.tree.2011.03.023 10.1111/j.1472-4642.2009.00594.x 10.1103/PhysRevE.80.016105 10.18637/jss.v021.i12 10.1111/ele.12493 10.1111/j.1461-0248.2006.00934.x 10.1111/j.2006.0030-1299.14625.x 10.1111/ddi.12240 10.1111/geb.12221 10.1111/j.1472-4642.2008.00521.x 10.1186/1742-9994-2-16 10.1126/sciadv.1701130 10.1046/j.1461-0248.2000.00143.x 10.1111/j.1461-0248.2004.00616.x 10.1023/A:1010050420466 10.1111/j.1469-185X.1999.tb00041.x 10.1038/nature09182 10.1007/s10530-005-3735-y 10.1007/s13280-017-0897-7 10.1146/annurev.es.05.110174.000245 10.1093/biosci/biz075 10.1086/283366 10.1111/j.1472-4642.2008.00488.x 10.1111/j.1365-2664.2007.01398.x 10.1023/B:BINV.0000022133.49752.46 10.1016/j.physrep.2009.11.002 10.1086/652430 10.5962/bhl.title.82303 10.2307/2265768 10.1111/j.1442-9993.1992.tb00812.x 10.1007/978-3-030-05411-3_18 10.1890/1540-9295(2004)002[0436:NWISAT]2.0.CO;2 10.1079/9781780647647.0000 10.1046/j.1461-0248.1999.00056.x 10.1007/978-3-540-36920-2_7 10.1111/j.1461-0248.2004.00642.x 10.1111/j.1472-4642.2010.00645.x 10.2307/2261425 10.1038/s41467-018-06995-4 10.1111/j.1472-4642.2007.00464.x 10.1890/12.WB.016 10.1023/A:1010086329619 10.1016/S0169-5347(02)02499-0 10.1086/321316 10.1111/j.1365-2486.2006.01213.x 10.1093/biosci/biz095 10.1016/j.tree.2005.02.004 10.1111/j.1466-822X.2005.00166.x 10.1007/978-3-663-09682-5 10.1016/j.envexpbot.2018.05.011 10.1079/9781780647647.0049 10.1038/nature02322 10.14512/gaia.14.1.20 10.1007/s11101-010-9195-8 10.1111/j.1461-0248.2009.01418.x 10.1046/j.1365-2745.2000.00473.x 10.1046/j.1523-1739.1992.06030324.x |
ContentType | Journal Article |
Copyright | 2020 The Authors. Global Ecology and Biogeography published by John Wiley & Sons Ltd 2020 The Authors. Global Ecology and Biogeography published by John Wiley & Sons Ltd. 2020. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2020 The Authors. Global Ecology and Biogeography published by John Wiley & Sons Ltd – notice: 2020 The Authors. Global Ecology and Biogeography published by John Wiley & Sons Ltd. – notice: 2020. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P AAYXX CITATION NPM 7QG 7SN 7SS 7ST 7U6 C1K 7S9 L.6 7X8 5PM |
DOI | 10.1111/geb.13082 |
DatabaseName | Wiley Online Library Open Access CrossRef PubMed Animal Behavior Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Sustainability Science Abstracts Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed Entomology Abstracts Ecology Abstracts Environment Abstracts Sustainability Science Abstracts Animal Behavior Abstracts Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic MEDLINE - Academic |
DatabaseTitleList | PubMed AGRICOLA MEDLINE - Academic Entomology Abstracts |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Ecology Environmental Sciences Biology |
DocumentTitleAlternate | ENDERS et al |
EISSN | 1466-8238 |
EndPage | 991 |
ExternalDocumentID | PMC8647925 34938151 10_1111_geb_13082 GEB13082 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: Canadian Network for Research and Innovation in Machining Technology, Natural Sciences and Engineering Research Council of Canada – fundername: Ministerio de Ciencia e Innovación funderid: CGL‐2014‐ 56739‐R – fundername: Austrian Science Fund funderid: I 4011‐B32 – fundername: Akademie Věd České Republiky funderid: RVO 67985939 – fundername: South African National Department of Environment Affairs – fundername: Natural Environmental Research Council funderid: NE/L002531/1 – fundername: Spanish Ministerio de Ciencia, Innovación y Universidades funderid: PCI2018‐092939 – fundername: sdw funderid: Scholarship – fundername: Bundesministerium für Bildung und Forschung funderid: 01LC1501A‐H; 01LC1807B – fundername: Grantová Agentura České Republiky funderid: EXPRO grant no. 19‐28807X – fundername: sdw grantid: Scholarship – fundername: Grantová Agentura České Republiky grantid: EXPRO grant no. 19‐28807X – fundername: Spanish Ministerio de Ciencia, Innovación y Universidades grantid: PCI2018‐092939 – fundername: Bundesministerium für Bildung und Forschung grantid: 01LC1501A‐H; 01LC1807B – fundername: Akademie Věd České Republiky grantid: RVO 67985939 – fundername: South African Agency for Science and Technology Advancement grantid: Centre of Excellence for Invasion Biology – fundername: Natural Environmental Research Council grantid: NE/L002531/1 – fundername: Ministerio de Ciencia e Innovación grantid: CGL‐2014‐ 56739‐R |
GroupedDBID | -~X .3N .GA .Y3 0R~ 10A 1OC 24P 29I 31~ 33P 4.4 50Y 51W 51X 52M 52N 52O 52P 52S 52T 52W 52X 5GY 5HH 5LA 5VS 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAEVG AAHBH AAHHS AAHKG AAHQN AAISJ AAKGQ AAMNL AANHP AANLZ AASGY AAXRX AAYCA AAZKR ABBHK ABCQN ABCUV ABEML ABLJU ABPLY ABPPZ ABPVW ABTLG ABXSQ ACAHQ ACBWZ ACCFJ ACCZN ACHIC ACPOU ACPRK ACRPL ACSCC ACSTJ ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADULT ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUPB AEUQT AEUYR AFAZZ AFBPY AFEBI AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHXOZ AILXY AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ANHSF AQVQM ASPBG ATUGU AUFTA AVWKF AZFZN BDRZF BFHJK BMNLL BMXJE BRXPI BY8 CAG CBGCD COF CS3 CUYZI D-E D-F DCZOG DEVKO DOOOF DPXWK DR2 DRFUL DRSTM EBS ECGQY EJD EQZMY ESX F00 F01 F04 FEDTE G-S GODZA GTFYD HF~ HGD HGLYW HQ2 HTVGU HVGLF HZI IHE IPSME IX1 JAAYA JBMMH JBS JEB JENOY JHFFW JKQEH JLS JLXEF JPM JSODD JST LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N9A OIG P2W P4D Q11 QB0 ROL RX1 SA0 SUPJJ TN5 UB1 UPT VQP W99 WIH WIK WQJ WRC WXSBR XG1 ZZTAW ~KM AAYXX ABSQW AEYWJ AGHNM AGQPQ AGUYK AGYGG CITATION AAMMB AEFGJ AGXDD AIDQK AIDYY NPM 7QG 7SN 7SS 7ST 7U6 C1K 7S9 L.6 7X8 5PM |
ID | FETCH-LOGICAL-c4762-7ca0a45e6f128f5e8cd32eb608d5deaa56e4db4d1c1d3206ef931172724f56b63 |
IEDL.DBID | DR2 |
ISSN | 1466-822X |
IngestDate | Thu Aug 21 17:41:04 EDT 2025 Fri Jul 11 14:01:13 EDT 2025 Fri Jul 11 18:31:53 EDT 2025 Sun Jul 13 04:14:08 EDT 2025 Mon Jul 21 05:45:07 EDT 2025 Tue Jul 01 02:37:33 EDT 2025 Thu Apr 24 23:11:58 EDT 2025 Wed Jan 22 16:33:32 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | concepts invasion science navigation tools network analysis invasion theory Delphi method biological invasions consensus map |
Language | English |
License | Attribution 2020 The Authors. Global Ecology and Biogeography published by John Wiley & Sons Ltd. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4762-7ca0a45e6f128f5e8cd32eb608d5deaa56e4db4d1c1d3206ef931172724f56b63 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-6701-0703 0000-0002-5785-1733 0000-0001-8500-442X 0000-0003-0582-5960 0000-0001-7092-3917 0000-0002-0681-852X 0000-0002-2200-8762 0000-0002-5633-2384 0000-0003-1691-8249 0000-0003-0177-449X 0000-0002-4500-254X 0000-0002-2861-3701 0000-0003-3171-8261 0000-0002-0485-2580 0000-0003-3388-2241 0000-0003-3328-4217 0000-0003-0156-1881 0000-0003-1544-5312 0000-0002-2966-0534 0000-0002-1283-3865 0000-0002-5522-5632 0000-0002-3584-6159 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fgeb.13082 |
PMID | 34938151 |
PQID | 2400430331 |
PQPubID | 1066347 |
PageCount | 14 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_8647925 proquest_miscellaneous_2613292975 proquest_miscellaneous_2439412589 proquest_journals_2400430331 pubmed_primary_34938151 crossref_citationtrail_10_1111_geb_13082 crossref_primary_10_1111_geb_13082 wiley_primary_10_1111_geb_13082_GEB13082 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | June 2020 |
PublicationDateYYYYMMDD | 2020-06-01 |
PublicationDate_xml | – month: 06 year: 2020 text: June 2020 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Oxford – name: Hoboken |
PublicationTitle | Global ecology and biogeography |
PublicationTitleAlternate | Glob Ecol Biogeogr |
PublicationYear | 2020 |
Publisher | Wiley Subscription Services, Inc John Wiley and Sons Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc – name: John Wiley and Sons Inc |
References | 2002; 17 1995; 74 2017; 7 2010; 16 2010; 13 2006; 78 2009; 80 2000; 3 2010; 466 2004; 7 2000; 88 2017; 46 2005; 20 2004; 6 2011; 10 1999; 87 2004; 2 2011; 14 2017; 111 1970; 1 1859 2014; 23 2012; 10 2017; 358 2001; 268 1974; 5 2014; 20 1996; 77 1992; 6 1979; 113 2018; 9 2018; 4 2000 2019; 69 1986 1967; 101 2011; 26 2000; 287 2007; 21 2009; 15 1986; 314 2015; 18 2006; 12 2010 1986; 56 2006; 9 2010; 486 2008; 14 2006; 8 2007 2006 1999; 2 2003 2002; 417 1999; 1 2004; 427 2007; 10 1958 2006; 114 2012; 109 2018; 153 1995; 83 1986; 61 2019; 47 2015; 21 2000; 75 1965 2019 2018 2010; 175 2015 2005; 2 2001; 158 2005; 14 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_47_1 Stohlgren T. J. (e_1_2_8_76_1) 2006; 78 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_68_1 e_1_2_8_81_1 e_1_2_8_5_1 e_1_2_8_7_1 Baker H. G. (e_1_2_8_3_1) 1965 Börner K. (e_1_2_8_8_1) 2010 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_66_1 Csardi G. (e_1_2_8_18_1) 2006 e_1_2_8_45_1 e_1_2_8_64_1 e_1_2_8_87_1 e_1_2_8_85_1 e_1_2_8_41_1 e_1_2_8_60_1 e_1_2_8_83_1 e_1_2_8_17_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_59_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_57_1 e_1_2_8_70_1 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_78_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_51_1 e_1_2_8_74_1 e_1_2_8_30_1 e_1_2_8_72_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_48_1 e_1_2_8_69_1 Chabrerie O. (e_1_2_8_14_1) 2019 e_1_2_8_2_1 e_1_2_8_80_1 e_1_2_8_4_1 R Development Core Team (e_1_2_8_62_1) 2018 e_1_2_8_6_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_67_1 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_65_1 e_1_2_8_86_1 Börner K. (e_1_2_8_9_1) 2015 e_1_2_8_63_1 e_1_2_8_84_1 e_1_2_8_40_1 e_1_2_8_61_1 e_1_2_8_82_1 e_1_2_8_39_1 e_1_2_8_35_1 Diamond J. (e_1_2_8_22_1) 1986 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_58_1 e_1_2_8_79_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_56_1 e_1_2_8_77_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_54_1 e_1_2_8_75_1 e_1_2_8_52_1 e_1_2_8_73_1 e_1_2_8_50_1 e_1_2_8_71_1 |
References_xml | – volume: 87 start-page: 15 year: 1999 end-page: 26 article-title: Elton revisited: A review of evidence linking diversity and invasibility publication-title: Oikos – volume: 46 start-page: 428 year: 2017 end-page: 442 article-title: The progress of interdisciplinarity in invasion science publication-title: Ambio – volume: 9 start-page: 726 year: 2006 end-page: 740 article-title: Biotic interactions and plant invasions publication-title: Ecology Letters – volume: 427 start-page: 731 year: 2004 end-page: 733 article-title: Soil biota and exotic plant invasion publication-title: Nature – volume: 21 start-page: 12 year: 2007 article-title: Reshaping data with the reshape package. publication-title: Journal of Statistical Software – volume: 8 start-page: 1023 year: 2006 end-page: 1037 article-title: Propagule pressure: A null model for biological invasions publication-title: Biological Invasions – volume: 20 start-page: 1229 year: 2014 end-page: 1234 article-title: General hypotheses in invasion ecology publication-title: Diversity and Distributions – volume: 158 start-page: 324 year: 2001 end-page: 330 article-title: Darwin's naturalization hypothesis revisited publication-title: The American Naturalist – volume: 88 start-page: 528 year: 2000 end-page: 534 article-title: Fluctuating resources in plant communities: A general theory of invasibility publication-title: Journal of Ecology – volume: 18 start-page: 1099 year: 2015 end-page: 1107 article-title: The role of life history traits in mammalian invasion success publication-title: Ecology Letters – volume: 23 start-page: 1157 year: 2014 end-page: 1166 article-title: The imbalance of nature: Revisiting a Darwinian framework for invasion biology publication-title: Global Ecology and Biogeography – volume: 7 start-page: 721 year: 2004 end-page: 733 article-title: Is invasion success explained by the enemy release hypothesis? publication-title: Ecology Letters – volume: 56 start-page: 103 year: 1986 end-page: 118 article-title: Undiscovered public knowledge publication-title: Library Quarterly – volume: 358 start-page: 724 year: 2017 end-page: 725 article-title: Plant invasions in the Anthropocene publication-title: Science – start-page: 147 year: 1965 end-page: 168 – year: 2018 – year: 2019 article-title: Biological invasion theories: Merging perspectives from population, community and ecosystem scales publication-title: Preprints – volume: 14 start-page: 69 year: 2005 end-page: 72 article-title: ALARM: Assessing LArge‐scale environmental Risks for biodiversity with tested Methods publication-title: Gaia – volume: 5 start-page: 1 year: 1974 end-page: 24 article-title: The evolution of weeds publication-title: Annual Review of Ecology and Systematics – volume: 109 start-page: 19 year: 2012 end-page: 45 article-title: The more the better? The role of polyploidy in facilitating plant invasions publication-title: Annals of Botany – volume: 83 start-page: 887 year: 1995 end-page: 889 article-title: Evolution of increased competitive ability in invasive nonindigenous plants—A hypothesis publication-title: Journal of Ecology – volume: 2 year: 2005 article-title: The importance of immune gene variability (MHC) in evolutionary ecology and conservation publication-title: Frontiers in Zoology – volume: 14 start-page: 913 year: 2008 end-page: 916 article-title: Across islands and continents, mammals are more successful invaders than birds publication-title: Diversity and Distributions – start-page: 97 year: 2007 end-page: 125 – volume: 17 start-page: 164 year: 2002 end-page: 170 article-title: Exotic plant invasions and the enemy release hypothesis publication-title: Trends in Ecology and Evolution – volume: 4 year: 2018 article-title: Document co‐citation analysis to enhance transdisciplinary research publication-title: Science Advances – volume: 61 start-page: 369 year: 1986 end-page: 394 article-title: Plant invasion windows—A time‐based classification of invasion potential publication-title: Biological Reviews of the Cambridge Philosophical Society – start-page: 219 year: 2019 end-page: 230 – volume: 268 start-page: 2383 year: 2001 end-page: 2389 article-title: The niche of higher plants: Evidence for phylogenetic conservatism publication-title: Proceedings of the Royal Society B: Biological Sciences – volume: 14 start-page: 407 year: 2011 end-page: 418 article-title: Emergent insights from the synthesis of conceptual frameworks for biological invasions publication-title: Ecology Letters – volume: 69 start-page: 888 year: 2019 end-page: 899 article-title: Towards an integrative, eco‐evolutionary understanding of ecological novelty: Studying and communicating interlinked effects of global change publication-title: BioScience – volume: 101 start-page: 377 year: 1967 end-page: 385 article-title: Limiting similarity convergence and divergence of coexisting species publication-title: The American Naturalist – volume: 74 start-page: 159 year: 1995 end-page: 164 article-title: Assembly rules, null models, and trait dispersion—New questions front old patterns publication-title: Oikos – volume: 2 start-page: 436 year: 2004 end-page: 443 article-title: Novel weapons: Invasive success and the evolution of increased competitive ability publication-title: Frontiers in Ecology and the Environment – volume: 15 start-page: 904 year: 2009 end-page: 910 article-title: The more you introduce the more you get: The role of colonization pressure and propagule pressure in invasion ecology publication-title: Diversity and Distributions – volume: 9 start-page: 981 year: 2006 end-page: 993 article-title: Jack of all trades, master of some? On the role of phenotypic plasticity in plant invasions publication-title: Ecology Letters – volume: 111 start-page: 1089 year: 2017 end-page: 1118 article-title: Memetic search for overlapping topics based on a local evaluation of link communities publication-title: Scientometrics – volume: 466 start-page: 761 year: 2010 end-page: 764 article-title: Link communities reveal multiscale complexity in networks publication-title: Nature – year: 2015 – volume: 7 start-page: 781 year: 2004 end-page: 784 article-title: Distinctiveness magnifies the impact of biological invaders in aquatic ecosystems publication-title: Ecology Letters – volume: 14 start-page: 161 year: 2008 end-page: 168 article-title: Fifty years of invasion ecology—The legacy of Charles Elton publication-title: Diversity and Distributions – year: 1958 – volume: 16 start-page: 461 year: 2010 end-page: 475 article-title: Resolving Darwin's naturalization conundrum: A quest for evidence publication-title: Diversity and Distributions – volume: 6 start-page: 161 year: 2004 end-page: 172 article-title: Now you see them, now you don't—Population crashes of established introduced species publication-title: Biological Invasions – volume: 486 start-page: 75 year: 2010 end-page: 174 article-title: Community detection in graphs publication-title: Physics Reports – volume: 10 start-page: 77 year: 2007 end-page: 94 article-title: Invasion in a heterogeneous world: Resistance, coexistence or hostile takeover? publication-title: Ecology Letters – volume: 77 start-page: 1655 year: 1996 end-page: 1661 article-title: What attributes make some plant species more invasive? publication-title: Ecology – volume: 26 start-page: 333 year: 2011 end-page: 339 article-title: A proposed unified framework for biological invasions publication-title: Trends in Ecology and Evolution – start-page: 65 year: 1986 end-page: 79 – volume: 6 start-page: 324 year: 1992 end-page: 337 article-title: Disturbance, diversity, and invasion—Implications for conservations publication-title: Conservation Biology – year: 1859 – year: 2003 – year: 2000 – volume: 69 start-page: 711 year: 2019 end-page: 724 article-title: Successful invasions and failed biocontrol: The role of antagonistic species Interactions publication-title: BioScience – volume: 12 start-page: 1608 year: 2006 end-page: 1619 article-title: Determinants of vertebrate invasion success in Europe and North America publication-title: Global Change Biology – volume: 153 start-page: 135 year: 2018 end-page: 142 article-title: Tolerance and resistance facilitate the invasion success of Alternanthera philoxeroides in disturbed habitats: A reconsideration of the disturbance hypothesis in the light of phenotypic variation publication-title: Environmental and Experimental Botany – volume: 17 start-page: 170 year: 2002 end-page: 176 article-title: Community ecology theory as a framework for biological invasions publication-title: Trends in Ecology and Evolution – volume: 80 start-page: 016105 year: 2009 article-title: Line graphs, link partitions, and overlapping communities publication-title: Physical Review E – volume: 114 start-page: 168 year: 2006 end-page: 176 article-title: Accumulation of local pathogens: A new hypothesis to explain exotic plant invasions publication-title: Oikos – volume: 314 start-page: 505 year: 1986 end-page: 522 article-title: The analysis and modelling of British invasions publication-title: Philosophical Transactions of the Royal Society of London Series B, Biological Sciences – year: 2010 – volume: 113 start-page: 81 year: 1979 end-page: 101 article-title: A general hypothesis of species diversity publication-title: The American Naturalist – volume: 7 start-page: 7609 year: 2017 end-page: 7619 article-title: Invasive cane toads are unique in shape but overlap in ecological niche compared to Australian native frogs publication-title: Ecology and Evolution – volume: 15 start-page: 22 year: 2009 end-page: 40 article-title: Reducing redundancy in invasion ecology by integrating hypotheses into a single theoretical framework publication-title: Diversity and Distributions – start-page: 49 year: 2018 end-page: 59 – volume: 1 start-page: 21 year: 1999 end-page: 32 article-title: Positive interactions of nonindigenous species: Invasional meltdown? publication-title: Biological Invasions – volume: 1 start-page: 1 year: 1970 end-page: 11 article-title: Species packing and competitive equilibrium for many species publication-title: Theoretical Population Biology – volume: 10 start-page: 99 year: 2011 end-page: 106 article-title: A review of the phytochemical support for the shifting defence hypothesis publication-title: Phytochemistry Reviews – volume: 10 start-page: 349 year: 2012 end-page: 350 article-title: Taxonomic bias and lack of cross‐taxonomic studies in invasion biology publication-title: Frontiers in Ecology and the Environment – volume: 287 start-page: 1770 year: 2000 end-page: 1774 article-title: Biodiversity—Global biodiversity scenarios for the year 2100 publication-title: Science – year: 2006 article-title: The igraph software package for complex network research publication-title: InterJournal, Complex Systems – volume: 75 start-page: 65 year: 2000 end-page: 93 article-title: Plant invasions—The role of mutualisms publication-title: Biological Reviews – volume: 1 start-page: 107 year: 1999 end-page: 114 article-title: The disturbed resource‐flux invasion matrix: A new framework for patterns of plant invasion publication-title: Biological Invasions – volume: 20 start-page: 223 year: 2005 end-page: 228 article-title: The role of propagule pressure in explaining species invasions publication-title: Trends in Ecology and Evolution – volume: 417 start-page: 608 year: 2002 end-page: 609 article-title: Ecology—Darwin's naturalization hypothesis challenged publication-title: Nature – volume: 9 start-page: 4631 year: 2018 article-title: Similarity of introduced plant species to native ones facilitates naturalization, but differences enhance invasion success publication-title: Nature Communications – volume: 175 start-page: E149 year: 2010 end-page: E152 article-title: The effect of host genetic diversity on disease spread publication-title: The American Naturalist – volume: 47 start-page: 23 year: 2019 end-page: 42 article-title: A citation‐based map of concepts in invasion biology publication-title: NeoBiota – volume: 9 start-page: 887 year: 2006 end-page: 895 article-title: Interactions between resource availability and enemy release in plant invasion publication-title: Ecology Letters – volume: 9 year: 2018 article-title: Drawing a map of invasion biology based on a network of hypotheses publication-title: Ecosphere – volume: 21 start-page: 64 year: 2015 end-page: 74 article-title: Introduction effort, climate matching and species traits as predictors of global establishment success in non‐native reptiles publication-title: Diversity and Distributions – volume: 78 start-page: 405 year: 2006 end-page: 426 article-title: Scale and plant invasions: A theory of biotic acceptance publication-title: Preslia – volume: 13 start-page: 235 year: 2010 end-page: 245 article-title: A meta‐analysis of trait differences between invasive and non‐invasive plant species publication-title: Ecology Letters – volume: 2 start-page: 140 year: 1999 end-page: 148 article-title: Invasion‐resistance in experimental grassland communities: Species richness or species identity? publication-title: Ecology Letters – volume: 3 start-page: 349 year: 2000 end-page: 361 article-title: On the relationship between niche and distribution publication-title: Ecology Letters – ident: e_1_2_8_28_1 doi: 10.1002/ecs2.2146 – ident: e_1_2_8_83_1 doi: 10.1002/ece3.3253 – ident: e_1_2_8_25_1 doi: 10.1038/417608a – ident: e_1_2_8_47_1 doi: 10.1111/j.1469-185X.1986.tb00659.x – ident: e_1_2_8_77_1 doi: 10.1086/601720 – ident: e_1_2_8_27_1 doi: 10.3897/neobiota.47.32608 – ident: e_1_2_8_58_1 doi: 10.1111/j.1461-0248.2006.00908.x – ident: e_1_2_8_57_1 doi: 10.1111/j.1461-0248.2006.00987.x – ident: e_1_2_8_85_1 doi: 10.2307/3545686 – ident: e_1_2_8_37_1 doi: 10.1007/s11192-017-2302-5 – ident: e_1_2_8_49_1 doi: 10.1126/science.aao6371 – ident: e_1_2_8_54_1 doi: 10.1016/0040-5809(70)90039-0 – year: 2019 ident: e_1_2_8_14_1 article-title: Biological invasion theories: Merging perspectives from population, community and ecosystem scales publication-title: Preprints – ident: e_1_2_8_68_1 doi: 10.1126/science.287.5459.1770 – ident: e_1_2_8_36_1 – ident: e_1_2_8_65_1 doi: 10.1111/j.1461-0248.2006.00950.x – ident: e_1_2_8_55_1 doi: 10.1086/282505 – ident: e_1_2_8_59_1 doi: 10.1098/rspb.2001.1801 – ident: e_1_2_8_34_1 doi: 10.1111/j.1461-0248.2011.01594.x – ident: e_1_2_8_87_1 doi: 10.1098/rstb.1986.0070 – ident: e_1_2_8_43_1 doi: 10.1111/ddi.12258 – ident: e_1_2_8_78_1 doi: 10.1093/aob/mcr277 – ident: e_1_2_8_5_1 doi: 10.1016/j.tree.2011.03.023 – ident: e_1_2_8_53_1 doi: 10.1111/j.1472-4642.2009.00594.x – ident: e_1_2_8_31_1 doi: 10.1103/PhysRevE.80.016105 – ident: e_1_2_8_86_1 doi: 10.18637/jss.v021.i12 – volume: 78 start-page: 405 year: 2006 ident: e_1_2_8_76_1 article-title: Scale and plant invasions: A theory of biotic acceptance publication-title: Preslia – ident: e_1_2_8_12_1 doi: 10.1111/ele.12493 – ident: e_1_2_8_7_1 doi: 10.1111/j.1461-0248.2006.00934.x – ident: e_1_2_8_30_1 doi: 10.1111/j.2006.0030-1299.14625.x – ident: e_1_2_8_56_1 doi: 10.1111/ddi.12240 – ident: e_1_2_8_33_1 doi: 10.1111/geb.12221 – volume-title: R: A language and environment for statistical computing year: 2018 ident: e_1_2_8_62_1 – ident: e_1_2_8_13_1 doi: 10.1111/j.1472-4642.2008.00521.x – ident: e_1_2_8_75_1 doi: 10.1186/1742-9994-2-16 – ident: e_1_2_8_80_1 doi: 10.1126/sciadv.1701130 – ident: e_1_2_8_60_1 doi: 10.1046/j.1461-0248.2000.00143.x – ident: e_1_2_8_16_1 doi: 10.1111/j.1461-0248.2004.00616.x – start-page: 65 volume-title: Community ecology year: 1986 ident: e_1_2_8_22_1 – ident: e_1_2_8_72_1 doi: 10.1023/A:1010050420466 – ident: e_1_2_8_66_1 doi: 10.1111/j.1469-185X.1999.tb00041.x – ident: e_1_2_8_2_1 doi: 10.1038/nature09182 – ident: e_1_2_8_15_1 doi: 10.1007/s10530-005-3735-y – ident: e_1_2_8_82_1 doi: 10.1007/s13280-017-0897-7 – ident: e_1_2_8_4_1 doi: 10.1146/annurev.es.05.110174.000245 – ident: e_1_2_8_69_1 doi: 10.1093/biosci/biz075 – ident: e_1_2_8_41_1 doi: 10.1086/283366 – ident: e_1_2_8_42_1 doi: 10.1111/j.1472-4642.2008.00488.x – ident: e_1_2_8_50_1 doi: 10.1111/j.1365-2664.2007.01398.x – ident: e_1_2_8_73_1 doi: 10.1023/B:BINV.0000022133.49752.46 – year: 2006 ident: e_1_2_8_18_1 article-title: The igraph software package for complex network research publication-title: InterJournal, Complex Systems – ident: e_1_2_8_32_1 doi: 10.1016/j.physrep.2009.11.002 – ident: e_1_2_8_51_1 doi: 10.1086/652430 – ident: e_1_2_8_20_1 doi: 10.5962/bhl.title.82303 – ident: e_1_2_8_63_1 doi: 10.2307/2265768 – ident: e_1_2_8_26_1 doi: 10.1111/j.1442-9993.1992.tb00812.x – ident: e_1_2_8_38_1 doi: 10.1007/978-3-030-05411-3_18 – ident: e_1_2_8_10_1 doi: 10.1890/1540-9295(2004)002[0436:NWISAT]2.0.CO;2 – ident: e_1_2_8_45_1 doi: 10.1079/9781780647647.0000 – ident: e_1_2_8_17_1 doi: 10.1046/j.1461-0248.1999.00056.x – ident: e_1_2_8_61_1 doi: 10.1007/978-3-540-36920-2_7 – ident: e_1_2_8_64_1 doi: 10.1111/j.1461-0248.2004.00642.x – volume-title: Atlas of knowledge: Anyone can map year: 2015 ident: e_1_2_8_9_1 – ident: e_1_2_8_79_1 doi: 10.1111/j.1472-4642.2010.00645.x – ident: e_1_2_8_6_1 doi: 10.2307/2261425 – ident: e_1_2_8_23_1 doi: 10.1038/s41467-018-06995-4 – ident: e_1_2_8_67_1 doi: 10.1111/j.1472-4642.2007.00464.x – start-page: 147 volume-title: The genetics of colonizing species; proceedings year: 1965 ident: e_1_2_8_3_1 – ident: e_1_2_8_44_1 doi: 10.1890/12.WB.016 – ident: e_1_2_8_74_1 doi: 10.1023/A:1010086329619 – ident: e_1_2_8_48_1 doi: 10.1016/S0169-5347(02)02499-0 – ident: e_1_2_8_19_1 doi: 10.1086/321316 – ident: e_1_2_8_46_1 doi: 10.1111/j.1365-2486.2006.01213.x – ident: e_1_2_8_39_1 doi: 10.1093/biosci/biz095 – ident: e_1_2_8_52_1 doi: 10.1016/j.tree.2005.02.004 – ident: e_1_2_8_71_1 doi: 10.1111/j.1466-822X.2005.00166.x – ident: e_1_2_8_35_1 doi: 10.1007/978-3-663-09682-5 – ident: e_1_2_8_84_1 doi: 10.1016/j.envexpbot.2018.05.011 – ident: e_1_2_8_29_1 doi: 10.1079/9781780647647.0049 – volume-title: Atlas of science: Visualizing what we know year: 2010 ident: e_1_2_8_8_1 – ident: e_1_2_8_11_1 doi: 10.1038/nature02322 – ident: e_1_2_8_70_1 doi: 10.14512/gaia.14.1.20 – ident: e_1_2_8_24_1 doi: 10.1007/s11101-010-9195-8 – ident: e_1_2_8_81_1 doi: 10.1111/j.1461-0248.2009.01418.x – ident: e_1_2_8_21_1 doi: 10.1046/j.1365-2745.2000.00473.x – ident: e_1_2_8_40_1 doi: 10.1046/j.1523-1739.1992.06030324.x |
SSID | ssj0005456 |
Score | 2.6306126 |
Snippet | Background and aims
Since its emergence in the mid‐20th century, invasion biology has matured into a productive research field addressing questions of... Since its emergence in the mid-20th century, invasion biology has matured into a productive research field addressing questions of fundamental and applied... Background and aimsSince its emergence in the mid‐20th century, invasion biology has matured into a productive research field addressing questions of... BACKGROUND AND AIMS: Since its emergence in the mid‐20th century, invasion biology has matured into a productive research field addressing questions of... |
SourceID | pubmedcentral proquest pubmed crossref wiley |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 978 |
SubjectTerms | Algorithms biocenosis Biogeography biological invasions Biology Clustering Concept Paper concepts consensus map Delphi method ecological invasion Empirical analysis empirical research Hypotheses invasion science invasion theory navigation tools network analysis Resource availability students |
Title | A conceptual map of invasion biology: Integrating hypotheses into a consensus network |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fgeb.13082 https://www.ncbi.nlm.nih.gov/pubmed/34938151 https://www.proquest.com/docview/2400430331 https://www.proquest.com/docview/2439412589 https://www.proquest.com/docview/2613292975 https://pubmed.ncbi.nlm.nih.gov/PMC8647925 |
Volume | 29 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VSkhcgBYKC21lEIdeUm0S27HhVNCWggRCiJX2gBTZsU0rILsiu0jl1zPjPNqlgBC3KJ48PY8vzsw3AE9wyn2wQSdBCWphpkSiJeqyECodOwS0OlbIvXkrT6b89UzMNuBZXwvT8kMMC25kGdFfk4Eb21wy8k_eUitjRf6XcrUIEL2_oI4iZNBWFskEg-CsYxWiLJ7hyPVYdAVgXs2TvIxfYwA6vgUf-1tv804-H66W9rD68Qur438-22242QFTdtRq0hZs-Hobrk8iqfX5NuxMLiriUKxzCc0dmB6xqi19XOH-r2bB5oGd1d8NLcOxjuPpKXvV0VJgpGSn5wuq-2p8g4LLOTN0hoZ6bjSsbtPS78L0ePLhxUnS9WpIKo7-NCkqMzZceBkw4AXhVeXyzFs5Vk44b4yQnjvLXVqlODCWPug8JfCU8SCklfkObNbz2t8Hhh9JQVSFQc8iuMudVi54y0XQ2ishixEc9LNWVh2ROfXT-FL2HzT4-sr4-kbweBBdtOwdvxPa7ae-7Ay4KSm1lmN4z9MRPBqG0fTof4qp_XxFMrnmCBCV_osMwqVMU_nyCO612jTcSc414iWBVyjW9GwQIOrv9ZH67DRSgCvJC53hOQ-iGv354cqXk-dx48G_iz6EGxmtKsS1pl3YXH5b-T2EXku7D9cy_m4_WtpPQxQrgQ |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEB5VRQguPAqFQIEFcejFVWzvrncRlwIpKbQ9oEbKBVlr7y6tACfCCVL59cysH20oIMQtyk4c2zuPz-OZbwCe45Y7X3gdeSVohJkSkZaoy0KoeGgR0OrQIXd4JMcT_m4qpmvwsuuFafgh-oQbWUbw12TglJC-YOWfXEGzjBU64Cs00ZuY8998OCePImzQ9BbJCMPgtOUVojqe_qer0egSxLxcKXkRwYYQtHcTPnYn31SefN5ZLoqd8scvvI7_e3W34EaLTdluo0y3Yc1VG3B1FHitzzZgc3TeFIdirVeo78Bkl5VN9-MSv_9q5mzm2Wn13VAmjrU0Ty_YfstMgcGSnZzNqfWrdjUKLmbM0BFqGrtRs6qpTL8Lk73R8etx1I5riEqOLjXKSjM0XDjpMeZ54VRp08QVcqissM4YIR23BbdxGePCUDqv05jwU8K9kIVMN2G9mlXuPjB8TvKizAw6F8FtarWy3hVceK2dEjIbwHa3bXnZcpnTSI0vefdMg7cvD7dvAM960XlD4PE7oa1u7_PWhuucqms5Rvg0HsDTfhmtj16pmMrNliSTao4YUem_yCBiSjR1MA_gXqNO_ZmkXCNkEvgP2Yqi9QLE_r26Up2eBBZwJXmmEzzmdtCjP19c_nb0Knx48O-iT-Da-PjwID_YP3r_EK4nlGQIqactWF98W7pHiMQWxeNgcD8Byi4uxg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB5VRSAuVSkUlhYwiEMvkTaJ7djtqcAuLY-qB1baW-TENq0E2VWzi9R_z4zjTbsqIG5RPHmOx_PZnvkG4C2q3PnK68QrQSXMlEi0xL4shEqHFgGtDhlyX8_kyYR_morpBhytcmE6foh-wY0sI4zXZOBz628Z-XdXUSljhePvPdrso3iujJ_fxHdwEVOLZIJecBpphSiMp7903RndQZh3AyVvA9jggcbbsBWhIzvudP0INlyzA_dHgXb6egd2Rzc5aygWjbZ9DJNjVnfJiUs8_9PM2cyzy-aXoYUyFlmYDtlpJI5AX8YurueUmdW6FgUXM2boDi1VxWhZ0wWOP4HJePTt_UkSqykkNccRLylqMzRcOOnRJXnhVG3zzFVyqKywzhghHbcVt2mdYsNQOq_zlOBNxr2Qlcx3YbOZNe4ZMJzGeFEXBm1fcJtbrax3FRdea6eELAZwsPqtZR2pxqnixY9yNeVADZRBAwN404vOO36NPwntr3RTRhNrSwp-5eiA83QAr_tmNA7a8TCNmy1JJtccIZzS_5BBQJNpSjAewNNO3f2b5FwjohH4hGKtI_QCRM693tJcXgSSbiV5oTO850HoMn__uPLj6F04eP7_oq_gwfmHcfnl9OzzHjzMaAkgLAztw-biauleIE5aVC-DPfwGb4MNVw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+conceptual+map+of+invasion+biology%3A+Integrating+hypotheses+into+a+consensus+network&rft.jtitle=Global+ecology+and+biogeography&rft.au=Enders%2C+Martin&rft.au=Havemann%2C+Frank&rft.au=Ruland%2C+Florian&rft.au=Bernard%E2%80%90Verdier%2C+Maud&rft.date=2020-06-01&rft.issn=1466-822X&rft.eissn=1466-8238&rft.volume=29&rft.issue=6&rft.spage=978&rft.epage=991&rft_id=info:doi/10.1111%2Fgeb.13082&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_geb_13082 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1466-822X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1466-822X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1466-822X&client=summon |