Activating Inert Metallic Compounds for High‐Rate Lithium–Sulfur Batteries Through In Situ Etching of Extrinsic Metal

Surface reactions constitute the foundation of various energy conversion/storage technologies, such as the lithium–sulfur (Li‐S) batteries. To expedite surface reactions for high‐rate battery applications demands in‐depth understanding of reaction kinetics and rational catalyst design. Now an in sit...

Full description

Saved in:
Bibliographic Details
Published inAngewandte Chemie International Edition Vol. 58; no. 12; pp. 3779 - 3783
Main Authors Zhao, Meng, Peng, Hong‐Jie, Zhang, Ze‐Wen, Li, Bo‐Quan, Chen, Xiao, Xie, Jin, Chen, Xiang, Wei, Jun‐Yu, Zhang, Qiang, Huang, Jia‐Qi
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 18.03.2019
EditionInternational ed. in English
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Surface reactions constitute the foundation of various energy conversion/storage technologies, such as the lithium–sulfur (Li‐S) batteries. To expedite surface reactions for high‐rate battery applications demands in‐depth understanding of reaction kinetics and rational catalyst design. Now an in situ extrinsic‐metal etching strategy is used to activate an inert monometal nitride of hexagonal Ni3N through iron‐incorporated cubic Ni3FeN. In situ etched Ni3FeN regulates polysulfide‐involving surface reactions at high rates. Electron microscopy was used to unveil the mechanism of in situ catalyst transformation. The Li‐S batteries modified with Ni3FeN exhibited superb rate capability, remarkable cycling stability at a high sulfur loading of 4.8 mg cm−2, and lean‐electrolyte operability. This work opens up the exploration of multimetallic alloys and compounds as kinetic regulators for high‐rate Li‐S batteries and also elucidates catalytic surface reactions and the role of defect chemistry. Inert hexagonal Ni3N can be activated by an extrinsic metal‐incorporating strategy with in situ etching that uses cubic Ni3FeN. Vacancy‐rich Ni3FeN catalysts kinetically regulate polysulfide‐involving reactions at high rates for use in advanced lithium–sulfur batteries.
AbstractList Surface reactions constitute the foundation of various energy conversion/storage technologies, such as the lithium–sulfur (Li‐S) batteries. To expedite surface reactions for high‐rate battery applications demands in‐depth understanding of reaction kinetics and rational catalyst design. Now an in situ extrinsic‐metal etching strategy is used to activate an inert monometal nitride of hexagonal Ni 3 N through iron‐incorporated cubic Ni 3 FeN. In situ etched Ni 3 FeN regulates polysulfide‐involving surface reactions at high rates. Electron microscopy was used to unveil the mechanism of in situ catalyst transformation. The Li‐S batteries modified with Ni 3 FeN exhibited superb rate capability, remarkable cycling stability at a high sulfur loading of 4.8 mg cm −2 , and lean‐electrolyte operability. This work opens up the exploration of multimetallic alloys and compounds as kinetic regulators for high‐rate Li‐S batteries and also elucidates catalytic surface reactions and the role of defect chemistry.
Surface reactions constitute the foundation of various energy conversion/storage technologies, such as the lithium–sulfur (Li‐S) batteries. To expedite surface reactions for high‐rate battery applications demands in‐depth understanding of reaction kinetics and rational catalyst design. Now an in situ extrinsic‐metal etching strategy is used to activate an inert monometal nitride of hexagonal Ni3N through iron‐incorporated cubic Ni3FeN. In situ etched Ni3FeN regulates polysulfide‐involving surface reactions at high rates. Electron microscopy was used to unveil the mechanism of in situ catalyst transformation. The Li‐S batteries modified with Ni3FeN exhibited superb rate capability, remarkable cycling stability at a high sulfur loading of 4.8 mg cm−2, and lean‐electrolyte operability. This work opens up the exploration of multimetallic alloys and compounds as kinetic regulators for high‐rate Li‐S batteries and also elucidates catalytic surface reactions and the role of defect chemistry.
Surface reactions constitute the foundation of various energy conversion/storage technologies, such as the lithium-sulfur (Li-S) batteries. To expedite surface reactions for high-rate battery applications demands in-depth understanding of reaction kinetics and rational catalyst design. Now an in situ extrinsic-metal etching strategy is used to activate an inert monometal nitride of hexagonal Ni N through iron-incorporated cubic Ni FeN. In situ etched Ni FeN regulates polysulfide-involving surface reactions at high rates. Electron microscopy was used to unveil the mechanism of in situ catalyst transformation. The Li-S batteries modified with Ni FeN exhibited superb rate capability, remarkable cycling stability at a high sulfur loading of 4.8 mg cm , and lean-electrolyte operability. This work opens up the exploration of multimetallic alloys and compounds as kinetic regulators for high-rate Li-S batteries and also elucidates catalytic surface reactions and the role of defect chemistry.
Surface reactions constitute the foundation of various energy conversion/storage technologies, such as the lithium–sulfur (Li‐S) batteries. To expedite surface reactions for high‐rate battery applications demands in‐depth understanding of reaction kinetics and rational catalyst design. Now an in situ extrinsic‐metal etching strategy is used to activate an inert monometal nitride of hexagonal Ni3N through iron‐incorporated cubic Ni3FeN. In situ etched Ni3FeN regulates polysulfide‐involving surface reactions at high rates. Electron microscopy was used to unveil the mechanism of in situ catalyst transformation. The Li‐S batteries modified with Ni3FeN exhibited superb rate capability, remarkable cycling stability at a high sulfur loading of 4.8 mg cm−2, and lean‐electrolyte operability. This work opens up the exploration of multimetallic alloys and compounds as kinetic regulators for high‐rate Li‐S batteries and also elucidates catalytic surface reactions and the role of defect chemistry. Inert hexagonal Ni3N can be activated by an extrinsic metal‐incorporating strategy with in situ etching that uses cubic Ni3FeN. Vacancy‐rich Ni3FeN catalysts kinetically regulate polysulfide‐involving reactions at high rates for use in advanced lithium–sulfur batteries.
Surface reactions constitute the foundation of various energy conversion/storage technologies, such as the lithium-sulfur (Li-S) batteries. To expedite surface reactions for high-rate battery applications demands in-depth understanding of reaction kinetics and rational catalyst design. Now an in situ extrinsic-metal etching strategy is used to activate an inert monometal nitride of hexagonal Ni3 N through iron-incorporated cubic Ni3 FeN. In situ etched Ni3 FeN regulates polysulfide-involving surface reactions at high rates. Electron microscopy was used to unveil the mechanism of in situ catalyst transformation. The Li-S batteries modified with Ni3 FeN exhibited superb rate capability, remarkable cycling stability at a high sulfur loading of 4.8 mg cm-2 , and lean-electrolyte operability. This work opens up the exploration of multimetallic alloys and compounds as kinetic regulators for high-rate Li-S batteries and also elucidates catalytic surface reactions and the role of defect chemistry.Surface reactions constitute the foundation of various energy conversion/storage technologies, such as the lithium-sulfur (Li-S) batteries. To expedite surface reactions for high-rate battery applications demands in-depth understanding of reaction kinetics and rational catalyst design. Now an in situ extrinsic-metal etching strategy is used to activate an inert monometal nitride of hexagonal Ni3 N through iron-incorporated cubic Ni3 FeN. In situ etched Ni3 FeN regulates polysulfide-involving surface reactions at high rates. Electron microscopy was used to unveil the mechanism of in situ catalyst transformation. The Li-S batteries modified with Ni3 FeN exhibited superb rate capability, remarkable cycling stability at a high sulfur loading of 4.8 mg cm-2 , and lean-electrolyte operability. This work opens up the exploration of multimetallic alloys and compounds as kinetic regulators for high-rate Li-S batteries and also elucidates catalytic surface reactions and the role of defect chemistry.
Author Zhao, Meng
Huang, Jia‐Qi
Zhang, Ze‐Wen
Zhang, Qiang
Wei, Jun‐Yu
Li, Bo‐Quan
Chen, Xiao
Peng, Hong‐Jie
Xie, Jin
Chen, Xiang
Author_xml – sequence: 1
  givenname: Meng
  orcidid: 0000-0001-8402-7697
  surname: Zhao
  fullname: Zhao, Meng
  organization: Beijing Institute of Technology
– sequence: 2
  givenname: Hong‐Jie
  orcidid: 0000-0002-4183-703X
  surname: Peng
  fullname: Peng, Hong‐Jie
  organization: Tsinghua University
– sequence: 3
  givenname: Ze‐Wen
  orcidid: 0000-0002-4909-4330
  surname: Zhang
  fullname: Zhang, Ze‐Wen
  organization: Tsinghua University
– sequence: 4
  givenname: Bo‐Quan
  orcidid: 0000-0002-9544-5795
  surname: Li
  fullname: Li, Bo‐Quan
  organization: Tsinghua University
– sequence: 5
  givenname: Xiao
  orcidid: 0000-0003-1104-6146
  surname: Chen
  fullname: Chen, Xiao
  organization: Tsinghua University
– sequence: 6
  givenname: Jin
  orcidid: 0000-0002-4235-7441
  surname: Xie
  fullname: Xie, Jin
  organization: Tsinghua University
– sequence: 7
  givenname: Xiang
  orcidid: 0000-0002-7686-6308
  surname: Chen
  fullname: Chen, Xiang
  organization: Tsinghua University
– sequence: 8
  givenname: Jun‐Yu
  orcidid: 0000-0001-5775-3589
  surname: Wei
  fullname: Wei, Jun‐Yu
  organization: Beijing Institute of Technology
– sequence: 9
  givenname: Qiang
  orcidid: 0000-0002-3929-1541
  surname: Zhang
  fullname: Zhang, Qiang
  organization: Tsinghua University
– sequence: 10
  givenname: Jia‐Qi
  orcidid: 0000-0001-7394-9186
  surname: Huang
  fullname: Huang, Jia‐Qi
  email: jqhuang@bit.edu.cn
  organization: Beijing Institute of Technology
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30548388$$D View this record in MEDLINE/PubMed
BookMark eNqFkctuEzEUhkeoiF5gyxJZYsNmgm9je5YhSttIASRa1pbjeDKuZuzgC5BdHwGJN-yT4JAWpEqIlc_i-_5jnf-0OnLemap6ieAEQYjfKmfNBEMkEIYMP6lOUINRTTgnR2WmhNRcNOi4Oo3xpvBCQPasOiawoYIIcVLtpjrZrypZtwELZ0IC701Sw2A1mPlx67NbR9D5AC7tpr-7_fFJJQOWNvU2j3e3P6_y0OUA3qmUTLAmgus--LzpSxa4simDedL9Ptt3YP49BetiSf694nn1tFNDNC_u37Pq8_n8enZZLz9eLGbTZa0pZ7huEBWaUaQhEVQxzsiKM0MUgVx0q0ZQhjk1TGNC2wYZQrWiEKE1hpwi3BpyVr055G6D_5JNTHK0UZthUM74HCVGDWcNQxAX9PUj9Mbn4MrvCtVCgkgraKFe3VN5NZq13AY7qrCTD0ctAD0AOvgYg-mktqmc2LsUlB0kgnLfndx3J_90V7TJI-0h-Z9CexC-2cHs_kPL6YfF_K_7C_7Aq_I
CitedBy_id crossref_primary_10_1002_adma_201905007
crossref_primary_10_1016_j_xcrp_2021_100531
crossref_primary_10_1002_smll_202300868
crossref_primary_10_1016_j_nanoen_2020_105602
crossref_primary_10_1039_D2TA06876A
crossref_primary_10_1007_s12274_020_3055_7
crossref_primary_10_1016_j_jechem_2020_03_040
crossref_primary_10_1002_aenm_202002893
crossref_primary_10_1002_ange_202306553
crossref_primary_10_3390_membranes12080790
crossref_primary_10_1016_j_jechem_2020_03_041
crossref_primary_10_1021_acsaem_2c02621
crossref_primary_10_1002_smll_202204005
crossref_primary_10_1016_j_jechem_2019_06_007
crossref_primary_10_1016_j_micromeso_2019_109822
crossref_primary_10_1016_j_cej_2023_146229
crossref_primary_10_1016_S1872_2067_21_63984_0
crossref_primary_10_1002_aesr_202200010
crossref_primary_10_1016_j_xcrp_2022_100826
crossref_primary_10_1016_j_cclet_2023_109200
crossref_primary_10_1016_j_cclet_2022_05_015
crossref_primary_10_1016_j_jechem_2023_08_015
crossref_primary_10_1016_j_apmt_2024_102490
crossref_primary_10_1007_s10008_020_04503_7
crossref_primary_10_1016_j_jechem_2019_06_003
crossref_primary_10_1039_D1CY00668A
crossref_primary_10_1002_smll_202208281
crossref_primary_10_1016_j_ensm_2020_06_043
crossref_primary_10_1002_aenm_202201585
crossref_primary_10_1016_j_cej_2023_146581
crossref_primary_10_1021_acsami_1c04872
crossref_primary_10_1002_adfm_202200893
crossref_primary_10_1002_adfm_201906661
crossref_primary_10_1016_j_jallcom_2021_159089
crossref_primary_10_1021_acsnano_2c04402
crossref_primary_10_1039_D1TA06249B
crossref_primary_10_1039_D2RA06741B
crossref_primary_10_1007_s40820_020_00449_7
crossref_primary_10_1002_anie_201909339
crossref_primary_10_1016_j_jechem_2023_01_053
crossref_primary_10_1016_j_elecom_2021_107010
crossref_primary_10_1002_ange_202207907
crossref_primary_10_1039_D0NR07878F
crossref_primary_10_1039_D1TA00772F
crossref_primary_10_1002_advs_202206558
crossref_primary_10_1016_j_jechem_2020_03_065
crossref_primary_10_1002_adma_202102034
crossref_primary_10_1016_j_cej_2024_152987
crossref_primary_10_1016_j_jallcom_2020_156443
crossref_primary_10_1021_acsnano_2c05745
crossref_primary_10_1021_acsaem_9b00343
crossref_primary_10_1002_aenm_202300611
crossref_primary_10_1016_j_electacta_2021_139317
crossref_primary_10_1016_j_ensm_2020_02_010
crossref_primary_10_1016_j_jechem_2019_11_009
crossref_primary_10_1016_j_nanoen_2020_104970
crossref_primary_10_1016_j_jelechem_2023_117818
crossref_primary_10_1002_anie_202114671
crossref_primary_10_1039_C9TA11124G
crossref_primary_10_1021_acsami_2c23021
crossref_primary_10_1039_D0TA10714J
crossref_primary_10_1016_j_cej_2024_151530
crossref_primary_10_1016_j_ensm_2019_10_022
crossref_primary_10_1016_j_jechem_2024_10_026
crossref_primary_10_1002_aenm_202002180
crossref_primary_10_1021_acsnano_2c08581
crossref_primary_10_1021_acs_iecr_0c04960
crossref_primary_10_1002_adfm_202003354
crossref_primary_10_1016_j_jcis_2021_12_063
crossref_primary_10_1016_j_cej_2021_131798
crossref_primary_10_1016_j_ensm_2021_04_013
crossref_primary_10_1039_D4NR03613A
crossref_primary_10_1002_aenm_202202094
crossref_primary_10_1016_j_jallcom_2023_171099
crossref_primary_10_1016_j_jechem_2020_07_054
crossref_primary_10_1002_tcr_202200124
crossref_primary_10_3390_catal11020273
crossref_primary_10_1021_acsami_2c02212
crossref_primary_10_1016_j_jechem_2020_05_007
crossref_primary_10_1039_D0DT01435D
crossref_primary_10_1002_admi_202200606
crossref_primary_10_1002_smll_202207047
crossref_primary_10_1016_j_cej_2024_151501
crossref_primary_10_1002_adma_202204636
crossref_primary_10_1016_j_cej_2020_124404
crossref_primary_10_1016_j_ensm_2022_11_037
crossref_primary_10_1016_j_jechem_2020_06_054
crossref_primary_10_1002_cssc_201902688
crossref_primary_10_1016_j_jpowsour_2021_230254
crossref_primary_10_1039_D2QM00351A
crossref_primary_10_1016_j_jechem_2020_05_014
crossref_primary_10_1039_D3EE01774E
crossref_primary_10_1016_j_jechem_2019_07_001
crossref_primary_10_1016_j_electacta_2020_135772
crossref_primary_10_1002_adma_202101006
crossref_primary_10_1016_j_nanoen_2021_105761
crossref_primary_10_1016_j_jechem_2020_09_032
crossref_primary_10_1021_acs_energyfuels_3c02049
crossref_primary_10_1002_advs_202104375
crossref_primary_10_1021_acsami_0c10047
crossref_primary_10_1002_adma_202202222
crossref_primary_10_1016_j_cej_2021_134163
crossref_primary_10_1016_j_ijhydene_2020_10_153
crossref_primary_10_1016_j_mtener_2023_101451
crossref_primary_10_1007_s40820_020_00484_4
crossref_primary_10_1016_j_ensm_2022_11_041
crossref_primary_10_1021_acs_chemrev_3c00919
crossref_primary_10_1002_aenm_202202232
crossref_primary_10_1002_cnma_202000120
crossref_primary_10_1002_inf2_12387
crossref_primary_10_1016_j_cej_2025_159406
crossref_primary_10_1002_adma_202211168
crossref_primary_10_1002_smll_202104469
crossref_primary_10_1016_j_gee_2021_03_001
crossref_primary_10_1021_acsami_0c04842
crossref_primary_10_1002_anie_202306553
crossref_primary_10_1021_jacs_2c04176
crossref_primary_10_1002_aenm_202003599
crossref_primary_10_1016_j_cej_2019_121977
crossref_primary_10_1016_j_compositesb_2020_108004
crossref_primary_10_1016_j_cej_2023_144238
crossref_primary_10_1039_D0TA05927G
crossref_primary_10_1021_acsnano_9b09371
crossref_primary_10_1002_smll_202100460
crossref_primary_10_1002_batt_202200196
crossref_primary_10_1007_s11581_022_04817_8
crossref_primary_10_1021_acsami_9b11419
crossref_primary_10_1016_j_eng_2021_02_025
crossref_primary_10_1016_j_jechem_2021_02_028
crossref_primary_10_1016_j_mattod_2025_02_022
crossref_primary_10_1016_j_chempr_2020_11_006
crossref_primary_10_1039_D2CC00535B
crossref_primary_10_1016_j_enchem_2022_100096
crossref_primary_10_1016_j_colsurfa_2024_135074
crossref_primary_10_1002_chem_201806231
crossref_primary_10_1002_aenm_202103204
crossref_primary_10_1021_acsnano_3c00377
crossref_primary_10_1016_j_jechem_2020_11_015
crossref_primary_10_1002_smtd_201900344
crossref_primary_10_1016_j_cej_2021_131911
crossref_primary_10_1002_smll_202004950
crossref_primary_10_1016_j_jallcom_2021_159543
crossref_primary_10_1016_j_carbon_2019_08_065
crossref_primary_10_1007_s12274_022_5227_0
crossref_primary_10_1016_j_ensm_2021_05_009
crossref_primary_10_1016_j_jechem_2020_04_002
crossref_primary_10_1016_j_cej_2023_141862
crossref_primary_10_1016_j_ensm_2024_103215
crossref_primary_10_2139_ssrn_4130124
crossref_primary_10_1002_adma_202105362
crossref_primary_10_1016_j_ensm_2024_103458
crossref_primary_10_1016_j_matlet_2020_127622
crossref_primary_10_1021_acsami_1c11793
crossref_primary_10_1021_acsami_9b02844
crossref_primary_10_34133_2021_1205324
crossref_primary_10_1016_j_jechem_2022_08_015
crossref_primary_10_1016_j_jallcom_2023_171820
crossref_primary_10_1007_s40820_023_01137_y
crossref_primary_10_1039_D1SE01368H
crossref_primary_10_1002_aenm_202201056
crossref_primary_10_1016_j_cej_2021_133205
crossref_primary_10_1016_j_nanoen_2021_106011
crossref_primary_10_1016_j_jechem_2020_05_059
crossref_primary_10_1039_D0TA02999H
crossref_primary_10_1039_C9EE03573G
crossref_primary_10_1039_D3TA01569F
crossref_primary_10_1007_s11426_020_9845_5
crossref_primary_10_1016_j_jechem_2021_03_041
crossref_primary_10_1002_adma_202103050
crossref_primary_10_1039_D1TA09422J
crossref_primary_10_1002_smll_202311343
crossref_primary_10_1002_anie_202207907
crossref_primary_10_1039_D1TA11011J
crossref_primary_10_1016_j_jechem_2021_06_025
crossref_primary_10_1016_j_cej_2024_157002
crossref_primary_10_1007_s12274_024_6789_9
crossref_primary_10_1016_j_jechem_2022_08_033
crossref_primary_10_1016_j_jechem_2020_01_028
crossref_primary_10_1007_s40820_024_01482_6
crossref_primary_10_1038_s41467_024_47565_1
crossref_primary_10_1016_j_jechem_2022_08_027
crossref_primary_10_1016_j_trechm_2019_06_007
crossref_primary_10_1002_ange_202003136
crossref_primary_10_1016_j_est_2023_108288
crossref_primary_10_1039_D0TA06695H
crossref_primary_10_1016_j_colsurfa_2024_133301
crossref_primary_10_1002_adma_202311019
crossref_primary_10_1016_j_jechem_2020_01_022
crossref_primary_10_1016_j_cej_2021_133439
crossref_primary_10_1021_acsaem_2c00033
crossref_primary_10_1039_D0QI00678E
crossref_primary_10_1039_D0TA00800A
crossref_primary_10_1039_D1RA09041K
crossref_primary_10_34133_2021_2712391
crossref_primary_10_1002_ange_202114671
crossref_primary_10_1039_D4TA03861D
crossref_primary_10_1016_j_jechem_2020_02_050
crossref_primary_10_1039_D1TA02741G
crossref_primary_10_1016_j_electacta_2022_140670
crossref_primary_10_1002_adfm_202214770
crossref_primary_10_1021_acsami_2c21903
crossref_primary_10_1002_cssc_202002731
crossref_primary_10_1016_j_cej_2022_140948
crossref_primary_10_1360_TB_2022_0680
crossref_primary_10_1002_adma_202100810
crossref_primary_10_1016_j_cej_2022_135125
crossref_primary_10_1016_j_jechem_2022_05_034
crossref_primary_10_1016_j_cej_2022_137428
crossref_primary_10_1016_j_mtener_2022_101001
crossref_primary_10_1002_sus2_42
crossref_primary_10_1002_adfm_202301743
crossref_primary_10_1016_j_mtchem_2024_102406
crossref_primary_10_1039_D1SE00515D
crossref_primary_10_1016_j_partic_2025_03_004
crossref_primary_10_1002_slct_202001729
crossref_primary_10_1002_adfm_202210987
crossref_primary_10_1002_aenm_202003429
crossref_primary_10_1002_smll_202103001
crossref_primary_10_1021_acssuschemeng_9b03751
crossref_primary_10_1016_j_jechem_2020_02_041
crossref_primary_10_2139_ssrn_4170471
crossref_primary_10_1016_j_electacta_2020_137344
crossref_primary_10_1016_j_electacta_2021_139268
crossref_primary_10_1016_j_electacta_2022_140549
crossref_primary_10_1016_j_ensm_2024_103657
crossref_primary_10_1016_j_jechem_2020_04_029
crossref_primary_10_1002_adfm_202111586
crossref_primary_10_1039_D0TA12361G
crossref_primary_10_1039_D1NR04506G
crossref_primary_10_1002_adfm_202207021
crossref_primary_10_1039_D4QM00180J
crossref_primary_10_1016_j_cej_2022_139062
crossref_primary_10_1016_j_ensm_2024_103257
crossref_primary_10_1016_j_jechem_2021_12_043
crossref_primary_10_1039_D2TA04095F
crossref_primary_10_1016_j_cej_2019_122208
crossref_primary_10_1002_adfm_202214353
crossref_primary_10_1016_j_energy_2020_117718
crossref_primary_10_1002_smll_202403258
crossref_primary_10_1039_D1TA01913A
crossref_primary_10_1016_j_ensm_2024_103491
crossref_primary_10_1002_ange_202103470
crossref_primary_10_1002_adfm_202010499
crossref_primary_10_1007_s12598_022_02140_9
crossref_primary_10_1002_adfm_202006798
crossref_primary_10_1021_acsnano_0c00799
crossref_primary_10_1016_j_cej_2022_135820
crossref_primary_10_1002_adma_202008784
crossref_primary_10_1016_j_jechem_2020_07_020
crossref_primary_10_1021_acsaem_9b00165
crossref_primary_10_1002_smtd_202000315
crossref_primary_10_1016_j_jechem_2022_07_021
crossref_primary_10_1002_ange_202415078
crossref_primary_10_1021_acsami_1c08113
crossref_primary_10_1360_TB_2022_0050
crossref_primary_10_1002_slct_202000366
crossref_primary_10_1002_adma_202008654
crossref_primary_10_1016_j_nanoen_2021_105928
crossref_primary_10_1002_ange_201909339
crossref_primary_10_1021_acsenergylett_1c02569
crossref_primary_10_1021_acsnano_1c03011
crossref_primary_10_1021_acs_accounts_3c00698
crossref_primary_10_1002_aenm_201901896
crossref_primary_10_1002_aesr_202000057
crossref_primary_10_1002_smll_202410226
crossref_primary_10_1002_adsu_202300308
crossref_primary_10_1016_j_jechem_2020_03_014
crossref_primary_10_1088_1361_6528_ac18a2
crossref_primary_10_1016_j_electacta_2020_136470
crossref_primary_10_1002_aenm_201903030
crossref_primary_10_1002_anie_202415078
crossref_primary_10_1016_j_jechem_2021_05_023
crossref_primary_10_1002_aenm_202102739
crossref_primary_10_1002_chem_201900884
crossref_primary_10_1016_j_cej_2020_126566
crossref_primary_10_1002_smtd_201900864
crossref_primary_10_1002_advs_202302518
crossref_primary_10_1039_D0QM01142H
crossref_primary_10_1002_anie_202103470
crossref_primary_10_1002_adma_202209233
crossref_primary_10_1002_adfm_202305991
crossref_primary_10_1016_j_ensm_2021_11_019
crossref_primary_10_1007_s11581_022_04461_2
crossref_primary_10_1016_j_nantod_2021_101246
crossref_primary_10_1002_aenm_202101654
crossref_primary_10_1016_j_jiec_2020_10_046
crossref_primary_10_1016_j_jmst_2023_11_016
crossref_primary_10_1002_anie_202003136
crossref_primary_10_1002_smll_202105604
crossref_primary_10_1007_s11426_024_2219_x
crossref_primary_10_1002_advs_202102217
crossref_primary_10_1016_j_electacta_2021_139597
crossref_primary_10_1016_j_jechem_2020_02_003
crossref_primary_10_1002_aenm_202200308
crossref_primary_10_1021_acsami_9b21853
crossref_primary_10_1002_aenm_201901075
crossref_primary_10_1016_j_carbon_2022_06_067
crossref_primary_10_1021_acsenergylett_3c00826
crossref_primary_10_1016_j_compositesb_2022_109644
crossref_primary_10_1039_D4CC05450D
crossref_primary_10_1021_acsami_0c13859
crossref_primary_10_1002_smll_202407196
crossref_primary_10_1021_acsnano_0c04933
crossref_primary_10_1021_jacs_1c05562
crossref_primary_10_1002_batt_202100156
crossref_primary_10_1016_j_cej_2022_138209
crossref_primary_10_1142_S1793292021500600
crossref_primary_10_1007_s40820_023_01319_8
crossref_primary_10_1002_aenm_202100332
crossref_primary_10_1039_C9TA08498C
crossref_primary_10_1039_D3QM00326D
crossref_primary_10_1002_adma_202107638
crossref_primary_10_1007_s40843_020_1425_2
crossref_primary_10_1016_j_carbon_2022_06_073
crossref_primary_10_1021_acs_energyfuels_1c00716
crossref_primary_10_1021_acsnano_2c01992
Cites_doi 10.1002/advs.201500268
10.1073/pnas.1615837114
10.1002/adfm.201801188
10.1002/anie.201605676
10.1021/acsnano.7b01945
10.1021/jacs.8b00411
10.1002/ange.201808311
10.1002/adfm.201707536
10.1002/adma.201501559
10.1002/aenm.201700260
10.1038/nmat4778
10.1002/anie.201304762
10.1002/ange.201505444
10.1039/C6TA07883D
10.1021/jacs.6b12358
10.1021/acsenergylett.7b00465
10.1021/acsnano.8b05466
10.1002/aenm.201502585
10.1021/ja5119495
10.1002/aenm.201500072
10.1002/anie.201805972
10.1021/acsami.7b01205
10.1021/acs.nanolett.5b04166
10.1063/1.5016326
10.1002/ange.201304762
10.1002/adma.201603401
10.1002/adma.201804149
10.1002/anie.201505444
10.1002/ange.201201429
10.1038/nmat1752
10.1002/adfm.201707593
10.1039/C7EE01047H
10.1039/C7EE01430A
10.1126/science.aad4998
10.1021/acsenergylett.6b00603
10.1021/jacs.7b11434
10.1002/adma.201606459
10.1002/ange.201805972
10.1038/nmat3191
10.1038/nmat4465
10.1002/ange.201605676
10.1002/adma.201606823
10.1002/adfm.201400845
10.1002/aenm.201501636
10.1002/adfm.201706391
10.1038/nenergy.2016.132
10.1002/anie.201201429
10.1021/jacs.5b04472
10.1038/ncomms14627
10.1002/anie.201808311
ContentType Journal Article
Copyright 2019 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim
2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Copyright_xml – notice: 2019 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
DBID AAYXX
CITATION
NPM
7TM
K9.
7X8
DOI 10.1002/anie.201812062
DatabaseName CrossRef
PubMed
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
ProQuest Health & Medical Complete (Alumni)
Nucleic Acids Abstracts
MEDLINE - Academic
DatabaseTitleList CrossRef
ProQuest Health & Medical Complete (Alumni)
PubMed

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3773
Edition International ed. in English
EndPage 3783
ExternalDocumentID 30548388
10_1002_anie_201812062
ANIE201812062
Genre shortCommunication
Journal Article
GrantInformation_xml – fundername: Beijing Key Research and Development Plan
  funderid: Z181100004518001
– fundername: Ministry of Science and Technology of the People's Republic of China
  funderid: 2016YFA0202500; 2016YFA0200102
– fundername: National Natural Science Foundation of China
  funderid: 21776019; 21676160
– fundername: National Natural Science Foundation of China
  grantid: 21776019
– fundername: Ministry of Science and Technology of the People's Republic of China
  grantid: 2016YFA0202500
– fundername: National Natural Science Foundation of China
  grantid: 21676160
– fundername: Beijing Key Research and Development Plan
  grantid: Z181100004518001
– fundername: Ministry of Science and Technology of the People's Republic of China
  grantid: 2016YFA0200102
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABLJU
ABPPZ
ABPVW
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BTSUX
BY8
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
M53
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
TN5
UB1
UPT
UQL
V2E
VQA
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XSW
XV2
YZZ
ZZTAW
~IA
~KM
~WT
AAYXX
ABDBF
ABJNI
AEYWJ
AGHNM
AGYGG
CITATION
NPM
7TM
K9.
7X8
ID FETCH-LOGICAL-c4762-5148c641c0384a6763b76e3a3078fb5846274e6c234951e34ca4011d2074129e3
IEDL.DBID DR2
ISSN 1433-7851
1521-3773
IngestDate Fri Jul 11 09:03:01 EDT 2025
Fri Jul 25 12:02:42 EDT 2025
Mon Jul 21 05:58:19 EDT 2025
Thu Apr 24 22:59:35 EDT 2025
Tue Jul 01 02:26:39 EDT 2025
Wed Jan 22 17:01:07 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords metal nitrides
polysulfide redox reaction
lithium-sulfur batteries
electrocatalysis
separators
Language English
License 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4762-5148c641c0384a6763b76e3a3078fb5846274e6c234951e34ca4011d2074129e3
Notes These authors contributed equally to this work.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-9544-5795
0000-0001-8402-7697
0000-0002-4909-4330
0000-0003-1104-6146
0000-0002-4235-7441
0000-0002-4183-703X
0000-0002-7686-6308
0000-0001-5775-3589
0000-0001-7394-9186
0000-0002-3929-1541
PMID 30548388
PQID 2190313984
PQPubID 946352
PageCount 5
ParticipantIDs proquest_miscellaneous_2157656102
proquest_journals_2190313984
pubmed_primary_30548388
crossref_citationtrail_10_1002_anie_201812062
crossref_primary_10_1002_anie_201812062
wiley_primary_10_1002_anie_201812062_ANIE201812062
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate March 18, 2019
PublicationDateYYYYMMDD 2019-03-18
PublicationDate_xml – month: 03
  year: 2019
  text: March 18, 2019
  day: 18
PublicationDecade 2010
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Angewandte Chemie International Edition
PublicationTitleAlternate Angew Chem Int Ed Engl
PublicationYear 2019
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2016; 4
2016; 6
2017 2012 2012; 16 51 124
2018; 28
2015; 27
2016 2016; 55 128
2017 2016; 29 15
2015; 137
2017 2017 2017 2017 2018 2018 2018 2018 2018 2017 2017 2018 2018 2017 2018; 8 114 2 2 140 140 57 130 30 9 11 28 12 10 28
2014 2016; 24 3
2018 2018; 57 130
2017; 10
2015 2015; 54 127
2006; 5
2013 2013 2016 2017 2018; 52 125 1 7
2017; 111
2017 2018; 29 28
2016; 28
2016; 16
2017; 355
2012; 11
2015 2017; 5 139
e_1_2_2_4_1
e_1_2_2_24_2
e_1_2_2_4_2
e_1_2_2_24_1
e_1_2_2_6_1
e_1_2_2_22_2
e_1_2_2_22_1
e_1_2_2_20_1
e_1_2_2_2_1
e_1_2_2_8_1
e_1_2_2_13_1
e_1_2_2_11_1
e_1_2_2_19_1
e_1_2_2_17_1
e_1_2_2_15_1
e_1_2_2_3_2
e_1_2_2_3_3
e_1_2_2_5_1
e_1_2_2_23_2
e_1_2_2_3_4
e_1_2_2_23_1
e_1_2_2_7_1
e_1_2_2_21_2
e_1_2_2_21_1
e_1_2_2_1_1
e_1_2_2_1_2
e_1_2_2_1_3
e_1_2_2_3_1
e_1_2_2_7_6
e_1_2_2_7_7
e_1_2_2_7_8
e_1_2_2_7_9
e_1_2_2_7_2
e_1_2_2_9_1
e_1_2_2_7_3
e_1_2_2_7_4
e_1_2_2_7_5
e_1_2_2_9_2
e_1_2_2_7_11
e_1_2_2_7_12
e_1_2_2_7_10
e_1_2_2_7_15
e_1_2_2_7_13
e_1_2_2_7_14
e_1_2_2_14_1
e_1_2_2_12_2
Xu S. M. (e_1_2_2_3_5) 2018
e_1_2_2_12_1
e_1_2_2_10_1
e_1_2_2_18_1
e_1_2_2_16_1
References_xml – volume: 6
  start-page: 1501636
  year: 2016
  publication-title: Adv. Energy Mater.
– volume: 11
  start-page: 19
  year: 2012
  end-page: 29
  publication-title: Nat. Mater.
– volume: 27
  start-page: 5203
  year: 2015
  end-page: 5209
  publication-title: Adv. Mater.
– volume: 355
  start-page: 4998
  year: 2017
  publication-title: Science
– volume: 54 127
  start-page: 11018 11170
  year: 2015 2015
  end-page: 11020 11172
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 111
  start-page: 232402
  year: 2017
  publication-title: Appl. Phys. Lett.
– volume: 57 130
  start-page: 15549 15775
  year: 2018 2018
  end-page: 15552 15778
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 29 28
  start-page: 1606823 1801188
  year: 2017 2018
  publication-title: Adv. Mater. Adv. Funct. Mater.
– volume: 16 51 124
  start-page: 70 9994 10134
  year: 2017 2012 2012
  end-page: 81 10024 10166
  publication-title: Nat. Mater. Angew. Chem. Int. Ed. Angew. Chem.
– volume: 5
  start-page: 909
  year: 2006
  end-page: 913
  publication-title: Nat. Mater.
– volume: 4
  start-page: 17363
  year: 2016
  end-page: 17369
  publication-title: J. Mater. Chem. A
– volume: 6
  start-page: 1502585
  year: 2016
  publication-title: Adv. Energy Mater.
– volume: 28
  start-page: 9551
  year: 2016
  end-page: 9558
  publication-title: Adv. Mater.
– volume: 137
  start-page: 11542
  year: 2015
  end-page: 11545
  publication-title: J. Am. Chem. Soc.
– volume: 52 125 1 7
  start-page: 13186 13426 16132 1700260
  year: 2013 2013 2016 2017 2018
  end-page: 13200 13441
  publication-title: Angew. Chem. Int. Ed. Angew. Chem. Nat. Energy Adv. Energy Mater. Energy Storage Mater.
– volume: 28
  start-page: 1707536
  year: 2018
  publication-title: Adv. Funct. Mater.
– volume: 16
  start-page: 519
  year: 2016
  end-page: 527
  publication-title: Nano Lett.
– volume: 8 114 2 2 140 140 57 130 30 9 11 28 12 10 28
  start-page: 14627 840 327 1711 1455 3134 10944 11110 1804149 14801 6031 1706391 9578 1694 1707593
  year: 2017 2017 2017 2017 2018 2018 2018 2018 2018 2017 2017 2018 2018 2017 2018
  end-page: 845 333 1719 1459 3138 10948 11114 14807 6039 9586 1703
  publication-title: Nat. Commun. Proc. Natl. Acad. Sci. USA ACS Energy Lett. ACS Energy Lett. J. Am. Chem. Soc. J. Am. Chem. Soc. Angew. Chem. Int. Ed. Angew. Chem. Adv. Mater. ACS Appl. Mater. Interfaces ACS Nano Adv. Funct. Mater. ACS Nano Energy Environ. Sci. Adv. Funct. Mater.
– volume: 5 139
  start-page: 1500072 8458
  year: 2015 2017
  end-page: 8466
  publication-title: Adv. Energy Mater. J. Am. Chem. Soc.
– volume: 55 128
  start-page: 12990 13184
  year: 2016 2016
  end-page: 12995 13189
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 24 3
  start-page: 5299 1500268
  year: 2014 2016
  end-page: 5306
  publication-title: Adv. Funct. Mater. Adv. Sci.
– volume: 137
  start-page: 4119
  year: 2015
  end-page: 4125
  publication-title: J. Am. Chem. Soc.
– volume: 29 15
  start-page: 1606459 48
  year: 2017 2016
  end-page: 54
  publication-title: Adv. Mater. Nat. Mater.
– volume: 10
  start-page: 1476
  year: 2017
  end-page: 1486
  publication-title: Energy Environ. Sci.
– ident: e_1_2_2_22_2
  doi: 10.1002/advs.201500268
– ident: e_1_2_2_7_2
  doi: 10.1073/pnas.1615837114
– ident: e_1_2_2_4_2
  doi: 10.1002/adfm.201801188
– ident: e_1_2_2_21_1
  doi: 10.1002/anie.201605676
– ident: e_1_2_2_7_11
  doi: 10.1021/acsnano.7b01945
– ident: e_1_2_2_7_6
  doi: 10.1021/jacs.8b00411
– ident: e_1_2_2_24_2
  doi: 10.1002/ange.201808311
– ident: e_1_2_2_10_1
  doi: 10.1002/adfm.201707536
– ident: e_1_2_2_20_1
  doi: 10.1002/adma.201501559
– ident: e_1_2_2_3_4
  doi: 10.1002/aenm.201700260
– ident: e_1_2_2_1_1
  doi: 10.1038/nmat4778
– ident: e_1_2_2_3_1
  doi: 10.1002/anie.201304762
– ident: e_1_2_2_9_2
  doi: 10.1002/ange.201505444
– ident: e_1_2_2_16_1
  doi: 10.1039/C6TA07883D
– ident: e_1_2_2_23_2
  doi: 10.1021/jacs.6b12358
– ident: e_1_2_2_7_4
  doi: 10.1021/acsenergylett.7b00465
– ident: e_1_2_2_7_13
  doi: 10.1021/acsnano.8b05466
– ident: e_1_2_2_15_1
  doi: 10.1002/aenm.201502585
– ident: e_1_2_2_14_1
  doi: 10.1021/ja5119495
– ident: e_1_2_2_23_1
  doi: 10.1002/aenm.201500072
– ident: e_1_2_2_7_7
  doi: 10.1002/anie.201805972
– ident: e_1_2_2_7_10
  doi: 10.1021/acsami.7b01205
– ident: e_1_2_2_6_1
  doi: 10.1021/acs.nanolett.5b04166
– ident: e_1_2_2_17_1
  doi: 10.1063/1.5016326
– ident: e_1_2_2_3_2
  doi: 10.1002/ange.201304762
– ident: e_1_2_2_18_1
  doi: 10.1002/adma.201603401
– ident: e_1_2_2_7_9
  doi: 10.1002/adma.201804149
– ident: e_1_2_2_9_1
  doi: 10.1002/anie.201505444
– ident: e_1_2_2_1_3
  doi: 10.1002/ange.201201429
– year: 2018
  ident: e_1_2_2_3_5
  publication-title: Energy Storage Mater.
– ident: e_1_2_2_13_1
  doi: 10.1038/nmat1752
– ident: e_1_2_2_7_15
  doi: 10.1002/adfm.201707593
– ident: e_1_2_2_8_1
  doi: 10.1039/C7EE01047H
– ident: e_1_2_2_7_14
  doi: 10.1039/C7EE01430A
– ident: e_1_2_2_11_1
  doi: 10.1126/science.aad4998
– ident: e_1_2_2_7_3
  doi: 10.1021/acsenergylett.6b00603
– ident: e_1_2_2_7_5
  doi: 10.1021/jacs.7b11434
– ident: e_1_2_2_12_1
  doi: 10.1002/adma.201606459
– ident: e_1_2_2_7_8
  doi: 10.1002/ange.201805972
– ident: e_1_2_2_2_1
  doi: 10.1038/nmat3191
– ident: e_1_2_2_12_2
  doi: 10.1038/nmat4465
– ident: e_1_2_2_21_2
  doi: 10.1002/ange.201605676
– ident: e_1_2_2_4_1
  doi: 10.1002/adma.201606823
– ident: e_1_2_2_22_1
  doi: 10.1002/adfm.201400845
– ident: e_1_2_2_19_1
  doi: 10.1002/aenm.201501636
– ident: e_1_2_2_7_12
  doi: 10.1002/adfm.201706391
– ident: e_1_2_2_3_3
  doi: 10.1038/nenergy.2016.132
– ident: e_1_2_2_1_2
  doi: 10.1002/anie.201201429
– ident: e_1_2_2_5_1
  doi: 10.1021/jacs.5b04472
– ident: e_1_2_2_7_1
  doi: 10.1038/ncomms14627
– ident: e_1_2_2_24_1
  doi: 10.1002/anie.201808311
SSID ssj0028806
Score 2.6740463
Snippet Surface reactions constitute the foundation of various energy conversion/storage technologies, such as the lithium–sulfur (Li‐S) batteries. To expedite surface...
Surface reactions constitute the foundation of various energy conversion/storage technologies, such as the lithium-sulfur (Li-S) batteries. To expedite surface...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3779
SubjectTerms Catalysis
Catalysts
electrocatalysis
Electron microscopy
Energy conversion
Energy storage
Etching
Lithium
Lithium sulfur batteries
Metal compounds
metal nitrides
Metal surfaces
Organic chemistry
polysulfide redox reaction
Reaction kinetics
Regulators
separators
Storage batteries
Sulfur
Surface reactions
Title Activating Inert Metallic Compounds for High‐Rate Lithium–Sulfur Batteries Through In Situ Etching of Extrinsic Metal
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.201812062
https://www.ncbi.nlm.nih.gov/pubmed/30548388
https://www.proquest.com/docview/2190313984
https://www.proquest.com/docview/2157656102
Volume 58
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA7iRS--H-uLCIKn6jbJdtPjIisq6sEHeCtpktXi2pXdFtSTP0HwH_pLnGm21VVE0FtL82oyM_mmnXxDyJbBbVQb63HFtScaDOxgRzGPmbBhVMxlwxRsn6fBwaU4umpcfTrF7_ghqg9uqBmFvUYFV_Fg94M0FE9gY2gW7FD1wghjwBaiorOKP4qBcLrjRZx7mIW-ZG2ss93R6qO70jeoOYpci61nf5qoctAu4uR2J8_iHf30hc_xP281Q6aGuJS2nCDNkjGbzpGJvTId3Dx5bGmXCS29poep7Wf0xAJw7yaaok3B7EwDCgiYYuTI2_PLGYBYepxkN0l-9_b8ep53O3mfOjpP8M7phUsQBG3R8yTLaTsrojppr0PbD1k_SUF8XBcL5HK_fbF34A3zNnhagG31AINJHQhf17kUKgALFjcDC8IAcKQTI-IBV9gGmnHwznzLhVbg5fmGIbxhoeWLZDztpXaZUKk0kzHAUqt8pMmJBdembpoaUAgPQlMjXrlukR6SmmNujW7k6JhZhBMaVRNaI9tV-XtH5_FjybVSDKKhWg8iMO_IdRlKUSOb1WNYCPzLolLby7EMuHCISqGJJSc-VVdgXIXkUtYIK4TglzFErdPDdnW38pdKq2QSrkOMmvPlGhnP-rldBxiVxRuFqrwDDUsTkw
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fT9swED9N8AAv_NkGKzDmSZP2FGhsNziPFStqR-kDFIm3KLFdFlFSVBIJeOIjIO0b8kl2FzeZumlCYo9JbMex786_c86_A_hiaBnVxnoiFtqTLY52cBRzj5uwZeJEqJYp2T4HQfdcfr9oVdGEdBbG8UPUG26kGaW9JgWnDen936yhdASbYrNwiWqSFV6ktN5En__ttGaQ4iie7oCREB7loa94G5t8f77-_Lr0F9icx67l4nO0CknVbRdzcrVX5MmefviD0fG_vmsNVmbQlLWdLK3DG5u9haXDKiPcO7hva5cMLbtkvcxOc3ZiEbuPU83IrFCCpluGIJhR8Mjz49Mp4ljWT_MfaXH9_PjzrBiPiilzjJ7ooLOhyxGEbbGzNC9YJy8DO9lkxDp3-TTNUILcK97D-VFneNj1ZqkbPC3RvHo4EUoH0tdNoWQcoBFLDgKL8oCIZJQQ6EFv2AaaC3TQfCukjtHR8w0nhMNDKzZgIZtk9gMwFWuuEkSmNvaJKSeRQpumOdAIREQQmgZ41cRFesZrTuk1xpFjZOYRDWhUD2gDvtblbxyjxz9L7lRyEM00-zZCC090l6GSDfhcP8aJoB8tcWYnBZVBL46AKTax6eSnfhXaV6mEUg3gpRS80IeoPeh16qut11T6BEvd4Uk_6vcGx9uwjPdDCqLz1Q4s5NPCfkRUlSe7pd78AkVaF68
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6hIgGX8oaFAkZC4pQ2sb2pc1y1u-pCWaE-pN4ix3ZKxDZbbROJ9tSfgNR_2F_SmXgTWBBCgmMSv2LPjL9Jxt8AvLO0jRrrAqGFCWSfox3MNQ-4TfpWZ0L1bcP2OYl3DuWHo_7RT6f4PT9E98GNNKOx16Tgpzbf-EEaSiewKTQLd6iQjPBtGYcJJW_Y3usIpDhKpz9fJERAaehb2saQbyzXX96WfsOay9C12XtG90G3o_YhJ1_X6ypbNxe_EDr-z2s9gNUFMGUDL0kP4ZYrH8HdrTYf3GM4HxifCq08ZuPSzSv2ySFynxaGkVGh9ExnDCEwo9CR68vve4hi2W5RfSnqk-vLq_16mtdz5vk80T1nBz5DELbF9ouqZsOqCetks5wNv1XzokT58V08gcPR8GBrJ1gkbgiMROMaIAhTJpaRCYWSOkYTlm3GDqUB8UieEeRBX9jFhgt0zyInpNHo5kWWE77hiRNPYaWcle45MKUNVxniUqcj4snJpDA2tJsGYYiIE9uDoF231CxYzSm5xjT1fMw8pQlNuwntwfuu_Knn8_hjybVWDNKFXp-laN-J7DJRsgdvu8e4EPSbRZduVlMZ9OEIlmITz7z4dF2hdZVKKNUD3gjBX8aQDibjYXf14l8qvYE7n7dH6e548vEl3MPbCUXQRWoNVqp57V4hpKqy143W3ADjaBZe
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Activating+Inert+Metallic+Compounds+for+High-Rate+Lithium-Sulfur+Batteries+Through+In+Situ+Etching+of+Extrinsic+Metal&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Zhao%2C+Meng&rft.au=Peng%2C+Hong-Jie&rft.au=Zhang%2C+Ze-Wen&rft.au=Li%2C+Bo-Quan&rft.date=2019-03-18&rft.issn=1521-3773&rft.eissn=1521-3773&rft.volume=58&rft.issue=12&rft.spage=3779&rft_id=info:doi/10.1002%2Fanie.201812062&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon