Activating Inert Metallic Compounds for High‐Rate Lithium–Sulfur Batteries Through In Situ Etching of Extrinsic Metal
Surface reactions constitute the foundation of various energy conversion/storage technologies, such as the lithium–sulfur (Li‐S) batteries. To expedite surface reactions for high‐rate battery applications demands in‐depth understanding of reaction kinetics and rational catalyst design. Now an in sit...
Saved in:
Published in | Angewandte Chemie International Edition Vol. 58; no. 12; pp. 3779 - 3783 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
18.03.2019
|
Edition | International ed. in English |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Surface reactions constitute the foundation of various energy conversion/storage technologies, such as the lithium–sulfur (Li‐S) batteries. To expedite surface reactions for high‐rate battery applications demands in‐depth understanding of reaction kinetics and rational catalyst design. Now an in situ extrinsic‐metal etching strategy is used to activate an inert monometal nitride of hexagonal Ni3N through iron‐incorporated cubic Ni3FeN. In situ etched Ni3FeN regulates polysulfide‐involving surface reactions at high rates. Electron microscopy was used to unveil the mechanism of in situ catalyst transformation. The Li‐S batteries modified with Ni3FeN exhibited superb rate capability, remarkable cycling stability at a high sulfur loading of 4.8 mg cm−2, and lean‐electrolyte operability. This work opens up the exploration of multimetallic alloys and compounds as kinetic regulators for high‐rate Li‐S batteries and also elucidates catalytic surface reactions and the role of defect chemistry.
Inert hexagonal Ni3N can be activated by an extrinsic metal‐incorporating strategy with in situ etching that uses cubic Ni3FeN. Vacancy‐rich Ni3FeN catalysts kinetically regulate polysulfide‐involving reactions at high rates for use in advanced lithium–sulfur batteries. |
---|---|
AbstractList | Surface reactions constitute the foundation of various energy conversion/storage technologies, such as the lithium–sulfur (Li‐S) batteries. To expedite surface reactions for high‐rate battery applications demands in‐depth understanding of reaction kinetics and rational catalyst design. Now an in situ extrinsic‐metal etching strategy is used to activate an inert monometal nitride of hexagonal Ni
3
N through iron‐incorporated cubic Ni
3
FeN. In situ etched Ni
3
FeN regulates polysulfide‐involving surface reactions at high rates. Electron microscopy was used to unveil the mechanism of in situ catalyst transformation. The Li‐S batteries modified with Ni
3
FeN exhibited superb rate capability, remarkable cycling stability at a high sulfur loading of 4.8 mg cm
−2
, and lean‐electrolyte operability. This work opens up the exploration of multimetallic alloys and compounds as kinetic regulators for high‐rate Li‐S batteries and also elucidates catalytic surface reactions and the role of defect chemistry. Surface reactions constitute the foundation of various energy conversion/storage technologies, such as the lithium–sulfur (Li‐S) batteries. To expedite surface reactions for high‐rate battery applications demands in‐depth understanding of reaction kinetics and rational catalyst design. Now an in situ extrinsic‐metal etching strategy is used to activate an inert monometal nitride of hexagonal Ni3N through iron‐incorporated cubic Ni3FeN. In situ etched Ni3FeN regulates polysulfide‐involving surface reactions at high rates. Electron microscopy was used to unveil the mechanism of in situ catalyst transformation. The Li‐S batteries modified with Ni3FeN exhibited superb rate capability, remarkable cycling stability at a high sulfur loading of 4.8 mg cm−2, and lean‐electrolyte operability. This work opens up the exploration of multimetallic alloys and compounds as kinetic regulators for high‐rate Li‐S batteries and also elucidates catalytic surface reactions and the role of defect chemistry. Surface reactions constitute the foundation of various energy conversion/storage technologies, such as the lithium-sulfur (Li-S) batteries. To expedite surface reactions for high-rate battery applications demands in-depth understanding of reaction kinetics and rational catalyst design. Now an in situ extrinsic-metal etching strategy is used to activate an inert monometal nitride of hexagonal Ni N through iron-incorporated cubic Ni FeN. In situ etched Ni FeN regulates polysulfide-involving surface reactions at high rates. Electron microscopy was used to unveil the mechanism of in situ catalyst transformation. The Li-S batteries modified with Ni FeN exhibited superb rate capability, remarkable cycling stability at a high sulfur loading of 4.8 mg cm , and lean-electrolyte operability. This work opens up the exploration of multimetallic alloys and compounds as kinetic regulators for high-rate Li-S batteries and also elucidates catalytic surface reactions and the role of defect chemistry. Surface reactions constitute the foundation of various energy conversion/storage technologies, such as the lithium–sulfur (Li‐S) batteries. To expedite surface reactions for high‐rate battery applications demands in‐depth understanding of reaction kinetics and rational catalyst design. Now an in situ extrinsic‐metal etching strategy is used to activate an inert monometal nitride of hexagonal Ni3N through iron‐incorporated cubic Ni3FeN. In situ etched Ni3FeN regulates polysulfide‐involving surface reactions at high rates. Electron microscopy was used to unveil the mechanism of in situ catalyst transformation. The Li‐S batteries modified with Ni3FeN exhibited superb rate capability, remarkable cycling stability at a high sulfur loading of 4.8 mg cm−2, and lean‐electrolyte operability. This work opens up the exploration of multimetallic alloys and compounds as kinetic regulators for high‐rate Li‐S batteries and also elucidates catalytic surface reactions and the role of defect chemistry. Inert hexagonal Ni3N can be activated by an extrinsic metal‐incorporating strategy with in situ etching that uses cubic Ni3FeN. Vacancy‐rich Ni3FeN catalysts kinetically regulate polysulfide‐involving reactions at high rates for use in advanced lithium–sulfur batteries. Surface reactions constitute the foundation of various energy conversion/storage technologies, such as the lithium-sulfur (Li-S) batteries. To expedite surface reactions for high-rate battery applications demands in-depth understanding of reaction kinetics and rational catalyst design. Now an in situ extrinsic-metal etching strategy is used to activate an inert monometal nitride of hexagonal Ni3 N through iron-incorporated cubic Ni3 FeN. In situ etched Ni3 FeN regulates polysulfide-involving surface reactions at high rates. Electron microscopy was used to unveil the mechanism of in situ catalyst transformation. The Li-S batteries modified with Ni3 FeN exhibited superb rate capability, remarkable cycling stability at a high sulfur loading of 4.8 mg cm-2 , and lean-electrolyte operability. This work opens up the exploration of multimetallic alloys and compounds as kinetic regulators for high-rate Li-S batteries and also elucidates catalytic surface reactions and the role of defect chemistry.Surface reactions constitute the foundation of various energy conversion/storage technologies, such as the lithium-sulfur (Li-S) batteries. To expedite surface reactions for high-rate battery applications demands in-depth understanding of reaction kinetics and rational catalyst design. Now an in situ extrinsic-metal etching strategy is used to activate an inert monometal nitride of hexagonal Ni3 N through iron-incorporated cubic Ni3 FeN. In situ etched Ni3 FeN regulates polysulfide-involving surface reactions at high rates. Electron microscopy was used to unveil the mechanism of in situ catalyst transformation. The Li-S batteries modified with Ni3 FeN exhibited superb rate capability, remarkable cycling stability at a high sulfur loading of 4.8 mg cm-2 , and lean-electrolyte operability. This work opens up the exploration of multimetallic alloys and compounds as kinetic regulators for high-rate Li-S batteries and also elucidates catalytic surface reactions and the role of defect chemistry. |
Author | Zhao, Meng Huang, Jia‐Qi Zhang, Ze‐Wen Zhang, Qiang Wei, Jun‐Yu Li, Bo‐Quan Chen, Xiao Peng, Hong‐Jie Xie, Jin Chen, Xiang |
Author_xml | – sequence: 1 givenname: Meng orcidid: 0000-0001-8402-7697 surname: Zhao fullname: Zhao, Meng organization: Beijing Institute of Technology – sequence: 2 givenname: Hong‐Jie orcidid: 0000-0002-4183-703X surname: Peng fullname: Peng, Hong‐Jie organization: Tsinghua University – sequence: 3 givenname: Ze‐Wen orcidid: 0000-0002-4909-4330 surname: Zhang fullname: Zhang, Ze‐Wen organization: Tsinghua University – sequence: 4 givenname: Bo‐Quan orcidid: 0000-0002-9544-5795 surname: Li fullname: Li, Bo‐Quan organization: Tsinghua University – sequence: 5 givenname: Xiao orcidid: 0000-0003-1104-6146 surname: Chen fullname: Chen, Xiao organization: Tsinghua University – sequence: 6 givenname: Jin orcidid: 0000-0002-4235-7441 surname: Xie fullname: Xie, Jin organization: Tsinghua University – sequence: 7 givenname: Xiang orcidid: 0000-0002-7686-6308 surname: Chen fullname: Chen, Xiang organization: Tsinghua University – sequence: 8 givenname: Jun‐Yu orcidid: 0000-0001-5775-3589 surname: Wei fullname: Wei, Jun‐Yu organization: Beijing Institute of Technology – sequence: 9 givenname: Qiang orcidid: 0000-0002-3929-1541 surname: Zhang fullname: Zhang, Qiang organization: Tsinghua University – sequence: 10 givenname: Jia‐Qi orcidid: 0000-0001-7394-9186 surname: Huang fullname: Huang, Jia‐Qi email: jqhuang@bit.edu.cn organization: Beijing Institute of Technology |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30548388$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkctuEzEUhkeoiF5gyxJZYsNmgm9je5YhSttIASRa1pbjeDKuZuzgC5BdHwGJN-yT4JAWpEqIlc_i-_5jnf-0OnLemap6ieAEQYjfKmfNBEMkEIYMP6lOUINRTTgnR2WmhNRcNOi4Oo3xpvBCQPasOiawoYIIcVLtpjrZrypZtwELZ0IC701Sw2A1mPlx67NbR9D5AC7tpr-7_fFJJQOWNvU2j3e3P6_y0OUA3qmUTLAmgus--LzpSxa4simDedL9Ptt3YP49BetiSf694nn1tFNDNC_u37Pq8_n8enZZLz9eLGbTZa0pZ7huEBWaUaQhEVQxzsiKM0MUgVx0q0ZQhjk1TGNC2wYZQrWiEKE1hpwi3BpyVr055G6D_5JNTHK0UZthUM74HCVGDWcNQxAX9PUj9Mbn4MrvCtVCgkgraKFe3VN5NZq13AY7qrCTD0ctAD0AOvgYg-mktqmc2LsUlB0kgnLfndx3J_90V7TJI-0h-Z9CexC-2cHs_kPL6YfF_K_7C_7Aq_I |
CitedBy_id | crossref_primary_10_1002_adma_201905007 crossref_primary_10_1016_j_xcrp_2021_100531 crossref_primary_10_1002_smll_202300868 crossref_primary_10_1016_j_nanoen_2020_105602 crossref_primary_10_1039_D2TA06876A crossref_primary_10_1007_s12274_020_3055_7 crossref_primary_10_1016_j_jechem_2020_03_040 crossref_primary_10_1002_aenm_202002893 crossref_primary_10_1002_ange_202306553 crossref_primary_10_3390_membranes12080790 crossref_primary_10_1016_j_jechem_2020_03_041 crossref_primary_10_1021_acsaem_2c02621 crossref_primary_10_1002_smll_202204005 crossref_primary_10_1016_j_jechem_2019_06_007 crossref_primary_10_1016_j_micromeso_2019_109822 crossref_primary_10_1016_j_cej_2023_146229 crossref_primary_10_1016_S1872_2067_21_63984_0 crossref_primary_10_1002_aesr_202200010 crossref_primary_10_1016_j_xcrp_2022_100826 crossref_primary_10_1016_j_cclet_2023_109200 crossref_primary_10_1016_j_cclet_2022_05_015 crossref_primary_10_1016_j_jechem_2023_08_015 crossref_primary_10_1016_j_apmt_2024_102490 crossref_primary_10_1007_s10008_020_04503_7 crossref_primary_10_1016_j_jechem_2019_06_003 crossref_primary_10_1039_D1CY00668A crossref_primary_10_1002_smll_202208281 crossref_primary_10_1016_j_ensm_2020_06_043 crossref_primary_10_1002_aenm_202201585 crossref_primary_10_1016_j_cej_2023_146581 crossref_primary_10_1021_acsami_1c04872 crossref_primary_10_1002_adfm_202200893 crossref_primary_10_1002_adfm_201906661 crossref_primary_10_1016_j_jallcom_2021_159089 crossref_primary_10_1021_acsnano_2c04402 crossref_primary_10_1039_D1TA06249B crossref_primary_10_1039_D2RA06741B crossref_primary_10_1007_s40820_020_00449_7 crossref_primary_10_1002_anie_201909339 crossref_primary_10_1016_j_jechem_2023_01_053 crossref_primary_10_1016_j_elecom_2021_107010 crossref_primary_10_1002_ange_202207907 crossref_primary_10_1039_D0NR07878F crossref_primary_10_1039_D1TA00772F crossref_primary_10_1002_advs_202206558 crossref_primary_10_1016_j_jechem_2020_03_065 crossref_primary_10_1002_adma_202102034 crossref_primary_10_1016_j_cej_2024_152987 crossref_primary_10_1016_j_jallcom_2020_156443 crossref_primary_10_1021_acsnano_2c05745 crossref_primary_10_1021_acsaem_9b00343 crossref_primary_10_1002_aenm_202300611 crossref_primary_10_1016_j_electacta_2021_139317 crossref_primary_10_1016_j_ensm_2020_02_010 crossref_primary_10_1016_j_jechem_2019_11_009 crossref_primary_10_1016_j_nanoen_2020_104970 crossref_primary_10_1016_j_jelechem_2023_117818 crossref_primary_10_1002_anie_202114671 crossref_primary_10_1039_C9TA11124G crossref_primary_10_1021_acsami_2c23021 crossref_primary_10_1039_D0TA10714J crossref_primary_10_1016_j_cej_2024_151530 crossref_primary_10_1016_j_ensm_2019_10_022 crossref_primary_10_1016_j_jechem_2024_10_026 crossref_primary_10_1002_aenm_202002180 crossref_primary_10_1021_acsnano_2c08581 crossref_primary_10_1021_acs_iecr_0c04960 crossref_primary_10_1002_adfm_202003354 crossref_primary_10_1016_j_jcis_2021_12_063 crossref_primary_10_1016_j_cej_2021_131798 crossref_primary_10_1016_j_ensm_2021_04_013 crossref_primary_10_1039_D4NR03613A crossref_primary_10_1002_aenm_202202094 crossref_primary_10_1016_j_jallcom_2023_171099 crossref_primary_10_1016_j_jechem_2020_07_054 crossref_primary_10_1002_tcr_202200124 crossref_primary_10_3390_catal11020273 crossref_primary_10_1021_acsami_2c02212 crossref_primary_10_1016_j_jechem_2020_05_007 crossref_primary_10_1039_D0DT01435D crossref_primary_10_1002_admi_202200606 crossref_primary_10_1002_smll_202207047 crossref_primary_10_1016_j_cej_2024_151501 crossref_primary_10_1002_adma_202204636 crossref_primary_10_1016_j_cej_2020_124404 crossref_primary_10_1016_j_ensm_2022_11_037 crossref_primary_10_1016_j_jechem_2020_06_054 crossref_primary_10_1002_cssc_201902688 crossref_primary_10_1016_j_jpowsour_2021_230254 crossref_primary_10_1039_D2QM00351A crossref_primary_10_1016_j_jechem_2020_05_014 crossref_primary_10_1039_D3EE01774E crossref_primary_10_1016_j_jechem_2019_07_001 crossref_primary_10_1016_j_electacta_2020_135772 crossref_primary_10_1002_adma_202101006 crossref_primary_10_1016_j_nanoen_2021_105761 crossref_primary_10_1016_j_jechem_2020_09_032 crossref_primary_10_1021_acs_energyfuels_3c02049 crossref_primary_10_1002_advs_202104375 crossref_primary_10_1021_acsami_0c10047 crossref_primary_10_1002_adma_202202222 crossref_primary_10_1016_j_cej_2021_134163 crossref_primary_10_1016_j_ijhydene_2020_10_153 crossref_primary_10_1016_j_mtener_2023_101451 crossref_primary_10_1007_s40820_020_00484_4 crossref_primary_10_1016_j_ensm_2022_11_041 crossref_primary_10_1021_acs_chemrev_3c00919 crossref_primary_10_1002_aenm_202202232 crossref_primary_10_1002_cnma_202000120 crossref_primary_10_1002_inf2_12387 crossref_primary_10_1016_j_cej_2025_159406 crossref_primary_10_1002_adma_202211168 crossref_primary_10_1002_smll_202104469 crossref_primary_10_1016_j_gee_2021_03_001 crossref_primary_10_1021_acsami_0c04842 crossref_primary_10_1002_anie_202306553 crossref_primary_10_1021_jacs_2c04176 crossref_primary_10_1002_aenm_202003599 crossref_primary_10_1016_j_cej_2019_121977 crossref_primary_10_1016_j_compositesb_2020_108004 crossref_primary_10_1016_j_cej_2023_144238 crossref_primary_10_1039_D0TA05927G crossref_primary_10_1021_acsnano_9b09371 crossref_primary_10_1002_smll_202100460 crossref_primary_10_1002_batt_202200196 crossref_primary_10_1007_s11581_022_04817_8 crossref_primary_10_1021_acsami_9b11419 crossref_primary_10_1016_j_eng_2021_02_025 crossref_primary_10_1016_j_jechem_2021_02_028 crossref_primary_10_1016_j_mattod_2025_02_022 crossref_primary_10_1016_j_chempr_2020_11_006 crossref_primary_10_1039_D2CC00535B crossref_primary_10_1016_j_enchem_2022_100096 crossref_primary_10_1016_j_colsurfa_2024_135074 crossref_primary_10_1002_chem_201806231 crossref_primary_10_1002_aenm_202103204 crossref_primary_10_1021_acsnano_3c00377 crossref_primary_10_1016_j_jechem_2020_11_015 crossref_primary_10_1002_smtd_201900344 crossref_primary_10_1016_j_cej_2021_131911 crossref_primary_10_1002_smll_202004950 crossref_primary_10_1016_j_jallcom_2021_159543 crossref_primary_10_1016_j_carbon_2019_08_065 crossref_primary_10_1007_s12274_022_5227_0 crossref_primary_10_1016_j_ensm_2021_05_009 crossref_primary_10_1016_j_jechem_2020_04_002 crossref_primary_10_1016_j_cej_2023_141862 crossref_primary_10_1016_j_ensm_2024_103215 crossref_primary_10_2139_ssrn_4130124 crossref_primary_10_1002_adma_202105362 crossref_primary_10_1016_j_ensm_2024_103458 crossref_primary_10_1016_j_matlet_2020_127622 crossref_primary_10_1021_acsami_1c11793 crossref_primary_10_1021_acsami_9b02844 crossref_primary_10_34133_2021_1205324 crossref_primary_10_1016_j_jechem_2022_08_015 crossref_primary_10_1016_j_jallcom_2023_171820 crossref_primary_10_1007_s40820_023_01137_y crossref_primary_10_1039_D1SE01368H crossref_primary_10_1002_aenm_202201056 crossref_primary_10_1016_j_cej_2021_133205 crossref_primary_10_1016_j_nanoen_2021_106011 crossref_primary_10_1016_j_jechem_2020_05_059 crossref_primary_10_1039_D0TA02999H crossref_primary_10_1039_C9EE03573G crossref_primary_10_1039_D3TA01569F crossref_primary_10_1007_s11426_020_9845_5 crossref_primary_10_1016_j_jechem_2021_03_041 crossref_primary_10_1002_adma_202103050 crossref_primary_10_1039_D1TA09422J crossref_primary_10_1002_smll_202311343 crossref_primary_10_1002_anie_202207907 crossref_primary_10_1039_D1TA11011J crossref_primary_10_1016_j_jechem_2021_06_025 crossref_primary_10_1016_j_cej_2024_157002 crossref_primary_10_1007_s12274_024_6789_9 crossref_primary_10_1016_j_jechem_2022_08_033 crossref_primary_10_1016_j_jechem_2020_01_028 crossref_primary_10_1007_s40820_024_01482_6 crossref_primary_10_1038_s41467_024_47565_1 crossref_primary_10_1016_j_jechem_2022_08_027 crossref_primary_10_1016_j_trechm_2019_06_007 crossref_primary_10_1002_ange_202003136 crossref_primary_10_1016_j_est_2023_108288 crossref_primary_10_1039_D0TA06695H crossref_primary_10_1016_j_colsurfa_2024_133301 crossref_primary_10_1002_adma_202311019 crossref_primary_10_1016_j_jechem_2020_01_022 crossref_primary_10_1016_j_cej_2021_133439 crossref_primary_10_1021_acsaem_2c00033 crossref_primary_10_1039_D0QI00678E crossref_primary_10_1039_D0TA00800A crossref_primary_10_1039_D1RA09041K crossref_primary_10_34133_2021_2712391 crossref_primary_10_1002_ange_202114671 crossref_primary_10_1039_D4TA03861D crossref_primary_10_1016_j_jechem_2020_02_050 crossref_primary_10_1039_D1TA02741G crossref_primary_10_1016_j_electacta_2022_140670 crossref_primary_10_1002_adfm_202214770 crossref_primary_10_1021_acsami_2c21903 crossref_primary_10_1002_cssc_202002731 crossref_primary_10_1016_j_cej_2022_140948 crossref_primary_10_1360_TB_2022_0680 crossref_primary_10_1002_adma_202100810 crossref_primary_10_1016_j_cej_2022_135125 crossref_primary_10_1016_j_jechem_2022_05_034 crossref_primary_10_1016_j_cej_2022_137428 crossref_primary_10_1016_j_mtener_2022_101001 crossref_primary_10_1002_sus2_42 crossref_primary_10_1002_adfm_202301743 crossref_primary_10_1016_j_mtchem_2024_102406 crossref_primary_10_1039_D1SE00515D crossref_primary_10_1016_j_partic_2025_03_004 crossref_primary_10_1002_slct_202001729 crossref_primary_10_1002_adfm_202210987 crossref_primary_10_1002_aenm_202003429 crossref_primary_10_1002_smll_202103001 crossref_primary_10_1021_acssuschemeng_9b03751 crossref_primary_10_1016_j_jechem_2020_02_041 crossref_primary_10_2139_ssrn_4170471 crossref_primary_10_1016_j_electacta_2020_137344 crossref_primary_10_1016_j_electacta_2021_139268 crossref_primary_10_1016_j_electacta_2022_140549 crossref_primary_10_1016_j_ensm_2024_103657 crossref_primary_10_1016_j_jechem_2020_04_029 crossref_primary_10_1002_adfm_202111586 crossref_primary_10_1039_D0TA12361G crossref_primary_10_1039_D1NR04506G crossref_primary_10_1002_adfm_202207021 crossref_primary_10_1039_D4QM00180J crossref_primary_10_1016_j_cej_2022_139062 crossref_primary_10_1016_j_ensm_2024_103257 crossref_primary_10_1016_j_jechem_2021_12_043 crossref_primary_10_1039_D2TA04095F crossref_primary_10_1016_j_cej_2019_122208 crossref_primary_10_1002_adfm_202214353 crossref_primary_10_1016_j_energy_2020_117718 crossref_primary_10_1002_smll_202403258 crossref_primary_10_1039_D1TA01913A crossref_primary_10_1016_j_ensm_2024_103491 crossref_primary_10_1002_ange_202103470 crossref_primary_10_1002_adfm_202010499 crossref_primary_10_1007_s12598_022_02140_9 crossref_primary_10_1002_adfm_202006798 crossref_primary_10_1021_acsnano_0c00799 crossref_primary_10_1016_j_cej_2022_135820 crossref_primary_10_1002_adma_202008784 crossref_primary_10_1016_j_jechem_2020_07_020 crossref_primary_10_1021_acsaem_9b00165 crossref_primary_10_1002_smtd_202000315 crossref_primary_10_1016_j_jechem_2022_07_021 crossref_primary_10_1002_ange_202415078 crossref_primary_10_1021_acsami_1c08113 crossref_primary_10_1360_TB_2022_0050 crossref_primary_10_1002_slct_202000366 crossref_primary_10_1002_adma_202008654 crossref_primary_10_1016_j_nanoen_2021_105928 crossref_primary_10_1002_ange_201909339 crossref_primary_10_1021_acsenergylett_1c02569 crossref_primary_10_1021_acsnano_1c03011 crossref_primary_10_1021_acs_accounts_3c00698 crossref_primary_10_1002_aenm_201901896 crossref_primary_10_1002_aesr_202000057 crossref_primary_10_1002_smll_202410226 crossref_primary_10_1002_adsu_202300308 crossref_primary_10_1016_j_jechem_2020_03_014 crossref_primary_10_1088_1361_6528_ac18a2 crossref_primary_10_1016_j_electacta_2020_136470 crossref_primary_10_1002_aenm_201903030 crossref_primary_10_1002_anie_202415078 crossref_primary_10_1016_j_jechem_2021_05_023 crossref_primary_10_1002_aenm_202102739 crossref_primary_10_1002_chem_201900884 crossref_primary_10_1016_j_cej_2020_126566 crossref_primary_10_1002_smtd_201900864 crossref_primary_10_1002_advs_202302518 crossref_primary_10_1039_D0QM01142H crossref_primary_10_1002_anie_202103470 crossref_primary_10_1002_adma_202209233 crossref_primary_10_1002_adfm_202305991 crossref_primary_10_1016_j_ensm_2021_11_019 crossref_primary_10_1007_s11581_022_04461_2 crossref_primary_10_1016_j_nantod_2021_101246 crossref_primary_10_1002_aenm_202101654 crossref_primary_10_1016_j_jiec_2020_10_046 crossref_primary_10_1016_j_jmst_2023_11_016 crossref_primary_10_1002_anie_202003136 crossref_primary_10_1002_smll_202105604 crossref_primary_10_1007_s11426_024_2219_x crossref_primary_10_1002_advs_202102217 crossref_primary_10_1016_j_electacta_2021_139597 crossref_primary_10_1016_j_jechem_2020_02_003 crossref_primary_10_1002_aenm_202200308 crossref_primary_10_1021_acsami_9b21853 crossref_primary_10_1002_aenm_201901075 crossref_primary_10_1016_j_carbon_2022_06_067 crossref_primary_10_1021_acsenergylett_3c00826 crossref_primary_10_1016_j_compositesb_2022_109644 crossref_primary_10_1039_D4CC05450D crossref_primary_10_1021_acsami_0c13859 crossref_primary_10_1002_smll_202407196 crossref_primary_10_1021_acsnano_0c04933 crossref_primary_10_1021_jacs_1c05562 crossref_primary_10_1002_batt_202100156 crossref_primary_10_1016_j_cej_2022_138209 crossref_primary_10_1142_S1793292021500600 crossref_primary_10_1007_s40820_023_01319_8 crossref_primary_10_1002_aenm_202100332 crossref_primary_10_1039_C9TA08498C crossref_primary_10_1039_D3QM00326D crossref_primary_10_1002_adma_202107638 crossref_primary_10_1007_s40843_020_1425_2 crossref_primary_10_1016_j_carbon_2022_06_073 crossref_primary_10_1021_acs_energyfuels_1c00716 crossref_primary_10_1021_acsnano_2c01992 |
Cites_doi | 10.1002/advs.201500268 10.1073/pnas.1615837114 10.1002/adfm.201801188 10.1002/anie.201605676 10.1021/acsnano.7b01945 10.1021/jacs.8b00411 10.1002/ange.201808311 10.1002/adfm.201707536 10.1002/adma.201501559 10.1002/aenm.201700260 10.1038/nmat4778 10.1002/anie.201304762 10.1002/ange.201505444 10.1039/C6TA07883D 10.1021/jacs.6b12358 10.1021/acsenergylett.7b00465 10.1021/acsnano.8b05466 10.1002/aenm.201502585 10.1021/ja5119495 10.1002/aenm.201500072 10.1002/anie.201805972 10.1021/acsami.7b01205 10.1021/acs.nanolett.5b04166 10.1063/1.5016326 10.1002/ange.201304762 10.1002/adma.201603401 10.1002/adma.201804149 10.1002/anie.201505444 10.1002/ange.201201429 10.1038/nmat1752 10.1002/adfm.201707593 10.1039/C7EE01047H 10.1039/C7EE01430A 10.1126/science.aad4998 10.1021/acsenergylett.6b00603 10.1021/jacs.7b11434 10.1002/adma.201606459 10.1002/ange.201805972 10.1038/nmat3191 10.1038/nmat4465 10.1002/ange.201605676 10.1002/adma.201606823 10.1002/adfm.201400845 10.1002/aenm.201501636 10.1002/adfm.201706391 10.1038/nenergy.2016.132 10.1002/anie.201201429 10.1021/jacs.5b04472 10.1038/ncomms14627 10.1002/anie.201808311 |
ContentType | Journal Article |
Copyright | 2019 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. |
Copyright_xml | – notice: 2019 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. |
DBID | AAYXX CITATION NPM 7TM K9. 7X8 |
DOI | 10.1002/anie.201812062 |
DatabaseName | CrossRef PubMed Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed ProQuest Health & Medical Complete (Alumni) Nucleic Acids Abstracts MEDLINE - Academic |
DatabaseTitleList | CrossRef ProQuest Health & Medical Complete (Alumni) PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3773 |
Edition | International ed. in English |
EndPage | 3783 |
ExternalDocumentID | 30548388 10_1002_anie_201812062 ANIE201812062 |
Genre | shortCommunication Journal Article |
GrantInformation_xml | – fundername: Beijing Key Research and Development Plan funderid: Z181100004518001 – fundername: Ministry of Science and Technology of the People's Republic of China funderid: 2016YFA0202500; 2016YFA0200102 – fundername: National Natural Science Foundation of China funderid: 21776019; 21676160 – fundername: National Natural Science Foundation of China grantid: 21776019 – fundername: Ministry of Science and Technology of the People's Republic of China grantid: 2016YFA0202500 – fundername: National Natural Science Foundation of China grantid: 21676160 – fundername: Beijing Key Research and Development Plan grantid: Z181100004518001 – fundername: Ministry of Science and Technology of the People's Republic of China grantid: 2016YFA0200102 |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABLJU ABPPZ ABPVW ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BTSUX BY8 CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS EJD F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES M53 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ TN5 UB1 UPT UQL V2E VQA W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XSW XV2 YZZ ZZTAW ~IA ~KM ~WT AAYXX ABDBF ABJNI AEYWJ AGHNM AGYGG CITATION NPM 7TM K9. 7X8 |
ID | FETCH-LOGICAL-c4762-5148c641c0384a6763b76e3a3078fb5846274e6c234951e34ca4011d2074129e3 |
IEDL.DBID | DR2 |
ISSN | 1433-7851 1521-3773 |
IngestDate | Fri Jul 11 09:03:01 EDT 2025 Fri Jul 25 12:02:42 EDT 2025 Mon Jul 21 05:58:19 EDT 2025 Thu Apr 24 22:59:35 EDT 2025 Tue Jul 01 02:26:39 EDT 2025 Wed Jan 22 17:01:07 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Keywords | metal nitrides polysulfide redox reaction lithium-sulfur batteries electrocatalysis separators |
Language | English |
License | 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4762-5148c641c0384a6763b76e3a3078fb5846274e6c234951e34ca4011d2074129e3 |
Notes | These authors contributed equally to this work. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-9544-5795 0000-0001-8402-7697 0000-0002-4909-4330 0000-0003-1104-6146 0000-0002-4235-7441 0000-0002-4183-703X 0000-0002-7686-6308 0000-0001-5775-3589 0000-0001-7394-9186 0000-0002-3929-1541 |
PMID | 30548388 |
PQID | 2190313984 |
PQPubID | 946352 |
PageCount | 5 |
ParticipantIDs | proquest_miscellaneous_2157656102 proquest_journals_2190313984 pubmed_primary_30548388 crossref_citationtrail_10_1002_anie_201812062 crossref_primary_10_1002_anie_201812062 wiley_primary_10_1002_anie_201812062_ANIE201812062 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | March 18, 2019 |
PublicationDateYYYYMMDD | 2019-03-18 |
PublicationDate_xml | – month: 03 year: 2019 text: March 18, 2019 day: 18 |
PublicationDecade | 2010 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Angewandte Chemie International Edition |
PublicationTitleAlternate | Angew Chem Int Ed Engl |
PublicationYear | 2019 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2016; 4 2016; 6 2017 2012 2012; 16 51 124 2018; 28 2015; 27 2016 2016; 55 128 2017 2016; 29 15 2015; 137 2017 2017 2017 2017 2018 2018 2018 2018 2018 2017 2017 2018 2018 2017 2018; 8 114 2 2 140 140 57 130 30 9 11 28 12 10 28 2014 2016; 24 3 2018 2018; 57 130 2017; 10 2015 2015; 54 127 2006; 5 2013 2013 2016 2017 2018; 52 125 1 7 2017; 111 2017 2018; 29 28 2016; 28 2016; 16 2017; 355 2012; 11 2015 2017; 5 139 e_1_2_2_4_1 e_1_2_2_24_2 e_1_2_2_4_2 e_1_2_2_24_1 e_1_2_2_6_1 e_1_2_2_22_2 e_1_2_2_22_1 e_1_2_2_20_1 e_1_2_2_2_1 e_1_2_2_8_1 e_1_2_2_13_1 e_1_2_2_11_1 e_1_2_2_19_1 e_1_2_2_17_1 e_1_2_2_15_1 e_1_2_2_3_2 e_1_2_2_3_3 e_1_2_2_5_1 e_1_2_2_23_2 e_1_2_2_3_4 e_1_2_2_23_1 e_1_2_2_7_1 e_1_2_2_21_2 e_1_2_2_21_1 e_1_2_2_1_1 e_1_2_2_1_2 e_1_2_2_1_3 e_1_2_2_3_1 e_1_2_2_7_6 e_1_2_2_7_7 e_1_2_2_7_8 e_1_2_2_7_9 e_1_2_2_7_2 e_1_2_2_9_1 e_1_2_2_7_3 e_1_2_2_7_4 e_1_2_2_7_5 e_1_2_2_9_2 e_1_2_2_7_11 e_1_2_2_7_12 e_1_2_2_7_10 e_1_2_2_7_15 e_1_2_2_7_13 e_1_2_2_7_14 e_1_2_2_14_1 e_1_2_2_12_2 Xu S. M. (e_1_2_2_3_5) 2018 e_1_2_2_12_1 e_1_2_2_10_1 e_1_2_2_18_1 e_1_2_2_16_1 |
References_xml | – volume: 6 start-page: 1501636 year: 2016 publication-title: Adv. Energy Mater. – volume: 11 start-page: 19 year: 2012 end-page: 29 publication-title: Nat. Mater. – volume: 27 start-page: 5203 year: 2015 end-page: 5209 publication-title: Adv. Mater. – volume: 355 start-page: 4998 year: 2017 publication-title: Science – volume: 54 127 start-page: 11018 11170 year: 2015 2015 end-page: 11020 11172 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 111 start-page: 232402 year: 2017 publication-title: Appl. Phys. Lett. – volume: 57 130 start-page: 15549 15775 year: 2018 2018 end-page: 15552 15778 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 29 28 start-page: 1606823 1801188 year: 2017 2018 publication-title: Adv. Mater. Adv. Funct. Mater. – volume: 16 51 124 start-page: 70 9994 10134 year: 2017 2012 2012 end-page: 81 10024 10166 publication-title: Nat. Mater. Angew. Chem. Int. Ed. Angew. Chem. – volume: 5 start-page: 909 year: 2006 end-page: 913 publication-title: Nat. Mater. – volume: 4 start-page: 17363 year: 2016 end-page: 17369 publication-title: J. Mater. Chem. A – volume: 6 start-page: 1502585 year: 2016 publication-title: Adv. Energy Mater. – volume: 28 start-page: 9551 year: 2016 end-page: 9558 publication-title: Adv. Mater. – volume: 137 start-page: 11542 year: 2015 end-page: 11545 publication-title: J. Am. Chem. Soc. – volume: 52 125 1 7 start-page: 13186 13426 16132 1700260 year: 2013 2013 2016 2017 2018 end-page: 13200 13441 publication-title: Angew. Chem. Int. Ed. Angew. Chem. Nat. Energy Adv. Energy Mater. Energy Storage Mater. – volume: 28 start-page: 1707536 year: 2018 publication-title: Adv. Funct. Mater. – volume: 16 start-page: 519 year: 2016 end-page: 527 publication-title: Nano Lett. – volume: 8 114 2 2 140 140 57 130 30 9 11 28 12 10 28 start-page: 14627 840 327 1711 1455 3134 10944 11110 1804149 14801 6031 1706391 9578 1694 1707593 year: 2017 2017 2017 2017 2018 2018 2018 2018 2018 2017 2017 2018 2018 2017 2018 end-page: 845 333 1719 1459 3138 10948 11114 14807 6039 9586 1703 publication-title: Nat. Commun. Proc. Natl. Acad. Sci. USA ACS Energy Lett. ACS Energy Lett. J. Am. Chem. Soc. J. Am. Chem. Soc. Angew. Chem. Int. Ed. Angew. Chem. Adv. Mater. ACS Appl. Mater. Interfaces ACS Nano Adv. Funct. Mater. ACS Nano Energy Environ. Sci. Adv. Funct. Mater. – volume: 5 139 start-page: 1500072 8458 year: 2015 2017 end-page: 8466 publication-title: Adv. Energy Mater. J. Am. Chem. Soc. – volume: 55 128 start-page: 12990 13184 year: 2016 2016 end-page: 12995 13189 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 24 3 start-page: 5299 1500268 year: 2014 2016 end-page: 5306 publication-title: Adv. Funct. Mater. Adv. Sci. – volume: 137 start-page: 4119 year: 2015 end-page: 4125 publication-title: J. Am. Chem. Soc. – volume: 29 15 start-page: 1606459 48 year: 2017 2016 end-page: 54 publication-title: Adv. Mater. Nat. Mater. – volume: 10 start-page: 1476 year: 2017 end-page: 1486 publication-title: Energy Environ. Sci. – ident: e_1_2_2_22_2 doi: 10.1002/advs.201500268 – ident: e_1_2_2_7_2 doi: 10.1073/pnas.1615837114 – ident: e_1_2_2_4_2 doi: 10.1002/adfm.201801188 – ident: e_1_2_2_21_1 doi: 10.1002/anie.201605676 – ident: e_1_2_2_7_11 doi: 10.1021/acsnano.7b01945 – ident: e_1_2_2_7_6 doi: 10.1021/jacs.8b00411 – ident: e_1_2_2_24_2 doi: 10.1002/ange.201808311 – ident: e_1_2_2_10_1 doi: 10.1002/adfm.201707536 – ident: e_1_2_2_20_1 doi: 10.1002/adma.201501559 – ident: e_1_2_2_3_4 doi: 10.1002/aenm.201700260 – ident: e_1_2_2_1_1 doi: 10.1038/nmat4778 – ident: e_1_2_2_3_1 doi: 10.1002/anie.201304762 – ident: e_1_2_2_9_2 doi: 10.1002/ange.201505444 – ident: e_1_2_2_16_1 doi: 10.1039/C6TA07883D – ident: e_1_2_2_23_2 doi: 10.1021/jacs.6b12358 – ident: e_1_2_2_7_4 doi: 10.1021/acsenergylett.7b00465 – ident: e_1_2_2_7_13 doi: 10.1021/acsnano.8b05466 – ident: e_1_2_2_15_1 doi: 10.1002/aenm.201502585 – ident: e_1_2_2_14_1 doi: 10.1021/ja5119495 – ident: e_1_2_2_23_1 doi: 10.1002/aenm.201500072 – ident: e_1_2_2_7_7 doi: 10.1002/anie.201805972 – ident: e_1_2_2_7_10 doi: 10.1021/acsami.7b01205 – ident: e_1_2_2_6_1 doi: 10.1021/acs.nanolett.5b04166 – ident: e_1_2_2_17_1 doi: 10.1063/1.5016326 – ident: e_1_2_2_3_2 doi: 10.1002/ange.201304762 – ident: e_1_2_2_18_1 doi: 10.1002/adma.201603401 – ident: e_1_2_2_7_9 doi: 10.1002/adma.201804149 – ident: e_1_2_2_9_1 doi: 10.1002/anie.201505444 – ident: e_1_2_2_1_3 doi: 10.1002/ange.201201429 – year: 2018 ident: e_1_2_2_3_5 publication-title: Energy Storage Mater. – ident: e_1_2_2_13_1 doi: 10.1038/nmat1752 – ident: e_1_2_2_7_15 doi: 10.1002/adfm.201707593 – ident: e_1_2_2_8_1 doi: 10.1039/C7EE01047H – ident: e_1_2_2_7_14 doi: 10.1039/C7EE01430A – ident: e_1_2_2_11_1 doi: 10.1126/science.aad4998 – ident: e_1_2_2_7_3 doi: 10.1021/acsenergylett.6b00603 – ident: e_1_2_2_7_5 doi: 10.1021/jacs.7b11434 – ident: e_1_2_2_12_1 doi: 10.1002/adma.201606459 – ident: e_1_2_2_7_8 doi: 10.1002/ange.201805972 – ident: e_1_2_2_2_1 doi: 10.1038/nmat3191 – ident: e_1_2_2_12_2 doi: 10.1038/nmat4465 – ident: e_1_2_2_21_2 doi: 10.1002/ange.201605676 – ident: e_1_2_2_4_1 doi: 10.1002/adma.201606823 – ident: e_1_2_2_22_1 doi: 10.1002/adfm.201400845 – ident: e_1_2_2_19_1 doi: 10.1002/aenm.201501636 – ident: e_1_2_2_7_12 doi: 10.1002/adfm.201706391 – ident: e_1_2_2_3_3 doi: 10.1038/nenergy.2016.132 – ident: e_1_2_2_1_2 doi: 10.1002/anie.201201429 – ident: e_1_2_2_5_1 doi: 10.1021/jacs.5b04472 – ident: e_1_2_2_7_1 doi: 10.1038/ncomms14627 – ident: e_1_2_2_24_1 doi: 10.1002/anie.201808311 |
SSID | ssj0028806 |
Score | 2.6740463 |
Snippet | Surface reactions constitute the foundation of various energy conversion/storage technologies, such as the lithium–sulfur (Li‐S) batteries. To expedite surface... Surface reactions constitute the foundation of various energy conversion/storage technologies, such as the lithium-sulfur (Li-S) batteries. To expedite surface... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 3779 |
SubjectTerms | Catalysis Catalysts electrocatalysis Electron microscopy Energy conversion Energy storage Etching Lithium Lithium sulfur batteries Metal compounds metal nitrides Metal surfaces Organic chemistry polysulfide redox reaction Reaction kinetics Regulators separators Storage batteries Sulfur Surface reactions |
Title | Activating Inert Metallic Compounds for High‐Rate Lithium–Sulfur Batteries Through In Situ Etching of Extrinsic Metal |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.201812062 https://www.ncbi.nlm.nih.gov/pubmed/30548388 https://www.proquest.com/docview/2190313984 https://www.proquest.com/docview/2157656102 |
Volume | 58 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA7iRS--H-uLCIKn6jbJdtPjIisq6sEHeCtpktXi2pXdFtSTP0HwH_pLnGm21VVE0FtL82oyM_mmnXxDyJbBbVQb63HFtScaDOxgRzGPmbBhVMxlwxRsn6fBwaU4umpcfTrF7_ghqg9uqBmFvUYFV_Fg94M0FE9gY2gW7FD1wghjwBaiorOKP4qBcLrjRZx7mIW-ZG2ss93R6qO70jeoOYpci61nf5qoctAu4uR2J8_iHf30hc_xP281Q6aGuJS2nCDNkjGbzpGJvTId3Dx5bGmXCS29poep7Wf0xAJw7yaaok3B7EwDCgiYYuTI2_PLGYBYepxkN0l-9_b8ep53O3mfOjpP8M7phUsQBG3R8yTLaTsrojppr0PbD1k_SUF8XBcL5HK_fbF34A3zNnhagG31AINJHQhf17kUKgALFjcDC8IAcKQTI-IBV9gGmnHwznzLhVbg5fmGIbxhoeWLZDztpXaZUKk0kzHAUqt8pMmJBdembpoaUAgPQlMjXrlukR6SmmNujW7k6JhZhBMaVRNaI9tV-XtH5_FjybVSDKKhWg8iMO_IdRlKUSOb1WNYCPzLolLby7EMuHCISqGJJSc-VVdgXIXkUtYIK4TglzFErdPDdnW38pdKq2QSrkOMmvPlGhnP-rldBxiVxRuFqrwDDUsTkw |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fT9swED9N8AAv_NkGKzDmSZP2FGhsNziPFStqR-kDFIm3KLFdFlFSVBIJeOIjIO0b8kl2FzeZumlCYo9JbMex786_c86_A_hiaBnVxnoiFtqTLY52cBRzj5uwZeJEqJYp2T4HQfdcfr9oVdGEdBbG8UPUG26kGaW9JgWnDen936yhdASbYrNwiWqSFV6ktN5En__ttGaQ4iie7oCREB7loa94G5t8f77-_Lr0F9icx67l4nO0CknVbRdzcrVX5MmefviD0fG_vmsNVmbQlLWdLK3DG5u9haXDKiPcO7hva5cMLbtkvcxOc3ZiEbuPU83IrFCCpluGIJhR8Mjz49Mp4ljWT_MfaXH9_PjzrBiPiilzjJ7ooLOhyxGEbbGzNC9YJy8DO9lkxDp3-TTNUILcK97D-VFneNj1ZqkbPC3RvHo4EUoH0tdNoWQcoBFLDgKL8oCIZJQQ6EFv2AaaC3TQfCukjtHR8w0nhMNDKzZgIZtk9gMwFWuuEkSmNvaJKSeRQpumOdAIREQQmgZ41cRFesZrTuk1xpFjZOYRDWhUD2gDvtblbxyjxz9L7lRyEM00-zZCC090l6GSDfhcP8aJoB8tcWYnBZVBL46AKTax6eSnfhXaV6mEUg3gpRS80IeoPeh16qut11T6BEvd4Uk_6vcGx9uwjPdDCqLz1Q4s5NPCfkRUlSe7pd78AkVaF68 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6hIgGX8oaFAkZC4pQ2sb2pc1y1u-pCWaE-pN4ix3ZKxDZbbROJ9tSfgNR_2F_SmXgTWBBCgmMSv2LPjL9Jxt8AvLO0jRrrAqGFCWSfox3MNQ-4TfpWZ0L1bcP2OYl3DuWHo_7RT6f4PT9E98GNNKOx16Tgpzbf-EEaSiewKTQLd6iQjPBtGYcJJW_Y3usIpDhKpz9fJERAaehb2saQbyzXX96WfsOay9C12XtG90G3o_YhJ1_X6ypbNxe_EDr-z2s9gNUFMGUDL0kP4ZYrH8HdrTYf3GM4HxifCq08ZuPSzSv2ySFynxaGkVGh9ExnDCEwo9CR68vve4hi2W5RfSnqk-vLq_16mtdz5vk80T1nBz5DELbF9ouqZsOqCetks5wNv1XzokT58V08gcPR8GBrJ1gkbgiMROMaIAhTJpaRCYWSOkYTlm3GDqUB8UieEeRBX9jFhgt0zyInpNHo5kWWE77hiRNPYaWcle45MKUNVxniUqcj4snJpDA2tJsGYYiIE9uDoF231CxYzSm5xjT1fMw8pQlNuwntwfuu_Knn8_hjybVWDNKFXp-laN-J7DJRsgdvu8e4EPSbRZduVlMZ9OEIlmITz7z4dF2hdZVKKNUD3gjBX8aQDibjYXf14l8qvYE7n7dH6e548vEl3MPbCUXQRWoNVqp57V4hpKqy143W3ADjaBZe |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Activating+Inert+Metallic+Compounds+for+High-Rate+Lithium-Sulfur+Batteries+Through+In+Situ+Etching+of+Extrinsic+Metal&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Zhao%2C+Meng&rft.au=Peng%2C+Hong-Jie&rft.au=Zhang%2C+Ze-Wen&rft.au=Li%2C+Bo-Quan&rft.date=2019-03-18&rft.issn=1521-3773&rft.eissn=1521-3773&rft.volume=58&rft.issue=12&rft.spage=3779&rft_id=info:doi/10.1002%2Fanie.201812062&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon |