Ultrathin Amorphous/Crystalline Heterophase Rh and Rh Alloy Nanosheets as Tandem Catalysts for Direct Indole Synthesis
Heterogeneous noble‐metal‐based catalysis plays an essential role in the production of fine chemicals. Rh‐based catalysts are one of the most active candidates for indole synthesis. However, it is still highly desired to develop heterogeneous Rh‐based catalysts with high activity and selectivity. In...
Saved in:
Published in | Advanced materials (Weinheim) Vol. 33; no. 9; pp. e2006711 - n/a |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.03.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Heterogeneous noble‐metal‐based catalysis plays an essential role in the production of fine chemicals. Rh‐based catalysts are one of the most active candidates for indole synthesis. However, it is still highly desired to develop heterogeneous Rh‐based catalysts with high activity and selectivity. In this work, a general, facile wet‐chemical method is reported to synthesize ultrathin amorphous/crystalline heterophase Rh and Rh‐based bimetallic alloy nanosheets (NSs), including RhCu, RhZn, and RhRu. Impressively, the amorphous/crystalline heterophase Rh NSs exhibit enhanced catalytic activity toward the direct synthesis of indole compared to the crystalline counterpart. Importantly, the obtained amorphous/crystalline heterophase RhCu alloy NSs can further enhance the selectivity to indole of >99.9% and the conversion is 100%. This work demonstrates the importance of phase engineering and metal alloying in the rational design and synthesis of tandem heterogeneous catalysts toward fine chemical synthesis.
Ultrathin Rh and RhM (M = Cu, Zn, Ru) alloy nanosheets with amorphous/crystalline heterophases are successfully synthesized. In tandem catalysis to directly synthesize indole, the amorphous/crystalline heterophase Rh nanosheets (NSs) outperform their crystalline counterpart, demonstrating much higher catalytic activity. Impressively, the amorphous/crystalline heterophase RhCu NSs show dramatically enhanced indole selectivity of over 99.9% and excellent activity. |
---|---|
AbstractList | Heterogeneous noble‐metal‐based catalysis plays an essential role in the production of fine chemicals. Rh‐based catalysts are one of the most active candidates for indole synthesis. However, it is still highly desired to develop heterogeneous Rh‐based catalysts with high activity and selectivity. In this work, a general, facile wet‐chemical method is reported to synthesize ultrathin amorphous/crystalline heterophase Rh and Rh‐based bimetallic alloy nanosheets (NSs), including RhCu, RhZn, and RhRu. Impressively, the amorphous/crystalline heterophase Rh NSs exhibit enhanced catalytic activity toward the direct synthesis of indole compared to the crystalline counterpart. Importantly, the obtained amorphous/crystalline heterophase RhCu alloy NSs can further enhance the selectivity to indole of >99.9% and the conversion is 100%. This work demonstrates the importance of phase engineering and metal alloying in the rational design and synthesis of tandem heterogeneous catalysts toward fine chemical synthesis. Heterogeneous noble‐metal‐based catalysis plays an essential role in the production of fine chemicals. Rh‐based catalysts are one of the most active candidates for indole synthesis. However, it is still highly desired to develop heterogeneous Rh‐based catalysts with high activity and selectivity. In this work, a general, facile wet‐chemical method is reported to synthesize ultrathin amorphous/crystalline heterophase Rh and Rh‐based bimetallic alloy nanosheets (NSs), including RhCu, RhZn, and RhRu. Impressively, the amorphous/crystalline heterophase Rh NSs exhibit enhanced catalytic activity toward the direct synthesis of indole compared to the crystalline counterpart. Importantly, the obtained amorphous/crystalline heterophase RhCu alloy NSs can further enhance the selectivity to indole of >99.9% and the conversion is 100%. This work demonstrates the importance of phase engineering and metal alloying in the rational design and synthesis of tandem heterogeneous catalysts toward fine chemical synthesis. Ultrathin Rh and RhM (M = Cu, Zn, Ru) alloy nanosheets with amorphous/crystalline heterophases are successfully synthesized. In tandem catalysis to directly synthesize indole, the amorphous/crystalline heterophase Rh nanosheets (NSs) outperform their crystalline counterpart, demonstrating much higher catalytic activity. Impressively, the amorphous/crystalline heterophase RhCu NSs show dramatically enhanced indole selectivity of over 99.9% and excellent activity. Heterogeneous noble-metal-based catalysis plays an essential role in the production of fine chemicals. Rh-based catalysts are one of the most active candidates for indole synthesis. However, it is still highly desired to develop heterogeneous Rh-based catalysts with high activity and selectivity. In this work, a general, facile wet-chemical method is reported to synthesize ultrathin amorphous/crystalline heterophase Rh and Rh-based bimetallic alloy nanosheets (NSs), including RhCu, RhZn, and RhRu. Impressively, the amorphous/crystalline heterophase Rh NSs exhibit enhanced catalytic activity toward the direct synthesis of indole compared to the crystalline counterpart. Importantly, the obtained amorphous/crystalline heterophase RhCu alloy NSs can further enhance the selectivity to indole of >99.9% and the conversion is 100%. This work demonstrates the importance of phase engineering and metal alloying in the rational design and synthesis of tandem heterogeneous catalysts toward fine chemical synthesis.Heterogeneous noble-metal-based catalysis plays an essential role in the production of fine chemicals. Rh-based catalysts are one of the most active candidates for indole synthesis. However, it is still highly desired to develop heterogeneous Rh-based catalysts with high activity and selectivity. In this work, a general, facile wet-chemical method is reported to synthesize ultrathin amorphous/crystalline heterophase Rh and Rh-based bimetallic alloy nanosheets (NSs), including RhCu, RhZn, and RhRu. Impressively, the amorphous/crystalline heterophase Rh NSs exhibit enhanced catalytic activity toward the direct synthesis of indole compared to the crystalline counterpart. Importantly, the obtained amorphous/crystalline heterophase RhCu alloy NSs can further enhance the selectivity to indole of >99.9% and the conversion is 100%. This work demonstrates the importance of phase engineering and metal alloying in the rational design and synthesis of tandem heterogeneous catalysts toward fine chemical synthesis. |
Author | Yin, Peiqun Cheng, Hongfei Chen, Shuangming Wang, Xiaoqian Liu, Jiawei Li, Qiang‐Qiang Zhang, Hua Zheng, Hong‐Xing Xu, Wenjie Wu, Geng Hong, Xun Ge, Jingjie Sun, Rongbo Chen, Ye Chen, Bo Shan, Xiang‐Huan Yin, Peng‐Fei Tan, Chaoliang |
Author_xml | – sequence: 1 givenname: Jingjie surname: Ge fullname: Ge, Jingjie organization: Nanyang Technological University – sequence: 2 givenname: Peiqun surname: Yin fullname: Yin, Peiqun organization: Shenzhen University – sequence: 3 givenname: Ye surname: Chen fullname: Chen, Ye organization: The Chinese University of Hong Kong – sequence: 4 givenname: Hongfei surname: Cheng fullname: Cheng, Hongfei organization: Nanyang Technological University – sequence: 5 givenname: Jiawei surname: Liu fullname: Liu, Jiawei organization: Nanyang Technological University – sequence: 6 givenname: Bo surname: Chen fullname: Chen, Bo organization: City University of Hong Kong – sequence: 7 givenname: Chaoliang surname: Tan fullname: Tan, Chaoliang organization: City University of Hong Kong – sequence: 8 givenname: Peng‐Fei surname: Yin fullname: Yin, Peng‐Fei organization: City University of Hong Kong – sequence: 9 givenname: Hong‐Xing surname: Zheng fullname: Zheng, Hong‐Xing organization: Liaocheng University – sequence: 10 givenname: Qiang‐Qiang surname: Li fullname: Li, Qiang‐Qiang organization: Nanyang Technological University – sequence: 11 givenname: Shuangming surname: Chen fullname: Chen, Shuangming organization: University of Science and Technology of China – sequence: 12 givenname: Wenjie surname: Xu fullname: Xu, Wenjie organization: University of Science and Technology of China – sequence: 13 givenname: Xiaoqian surname: Wang fullname: Wang, Xiaoqian organization: University of Science and Technology of China – sequence: 14 givenname: Geng surname: Wu fullname: Wu, Geng organization: University of Science and Technology of China – sequence: 15 givenname: Rongbo surname: Sun fullname: Sun, Rongbo organization: University of Science and Technology of China – sequence: 16 givenname: Xiang‐Huan surname: Shan fullname: Shan, Xiang‐Huan organization: University of Science and Technology of China – sequence: 17 givenname: Xun surname: Hong fullname: Hong, Xun organization: University of Science and Technology of China – sequence: 18 givenname: Hua orcidid: 0000-0001-9518-740X surname: Zhang fullname: Zhang, Hua email: Hua.Zhang@cityu.edu.hk organization: City University of Hong Kong |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33491810$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkUFv1DAQRi1URLeFK0dkiQuXbO3YTuxjtAVaqYAE7dlynFnFlWMvtrco_56stgWpEuI0h3lvNDPfGToJMQBCbylZU0LqCzNMZl2TmpCmpfQFWlFR04oTJU7QiigmKtVweYrOcr4nhKiGNK_QKWNcUUnJCj3c-ZJMGV3A3RTTboz7fLFJcy7GexcAX0GBFHejyYC_j9iE4VA67-OMv5oQ8whQMjYZ3y49mPDGLOriZ7yNCV-6BLbg6zBED_jHHMoI2eXX6OXW-AxvHus5uvv08XZzVd18-3y96W4qy9uGVkBlawdBhLXK8KYHsLJvGRNbIXtmrCSCcSaH1vQWWMMbyaSqqSJCqVoAZ-fow3HuLsWfe8hFTy5b8N4EWC7VNZekZbVqD-j7Z-h93KewbLdQiktOeU0W6t0jte8nGPQuucmkWT99dAH4EbAp5pxgq60rprgYlj87rynRh-D0ITj9J7hFWz_Tnib_U1BH4ZfzMP-H1t3ll-6v-xt_TapX |
CitedBy_id | crossref_primary_10_1002_smll_202304181 crossref_primary_10_1039_D4NJ01331J crossref_primary_10_1021_acsenergylett_1c02132 crossref_primary_10_1016_j_mtphys_2024_101416 crossref_primary_10_1021_acs_analchem_1c03987 crossref_primary_10_1002_adfm_202201081 crossref_primary_10_1021_acs_accounts_2c00579 crossref_primary_10_1021_jacs_1c11313 crossref_primary_10_1002_adfm_202107651 crossref_primary_10_1002_cctc_202101760 crossref_primary_10_1021_acs_chemrev_3c00229 crossref_primary_10_1007_s12598_021_01882_2 crossref_primary_10_1021_jacs_4c01985 crossref_primary_10_3390_molecules29071617 crossref_primary_10_1021_acsanm_2c02358 crossref_primary_10_1007_s40843_022_2290_9 crossref_primary_10_1016_j_apcatb_2022_121338 crossref_primary_10_1039_D4TA02281E crossref_primary_10_1002_anie_202305158 crossref_primary_10_1016_j_est_2021_103765 crossref_primary_10_1002_agt2_145 crossref_primary_10_1002_smll_202304546 crossref_primary_10_1007_s12274_021_4007_6 crossref_primary_10_1039_D2TA03325A crossref_primary_10_1002_adma_202302233 crossref_primary_10_1002_cssc_202201385 crossref_primary_10_1016_j_scib_2023_07_036 crossref_primary_10_1021_acsnano_2c11094 crossref_primary_10_3390_ma16113980 crossref_primary_10_1016_j_ijhydene_2024_09_387 crossref_primary_10_1021_acs_nanolett_4c01036 crossref_primary_10_1002_smll_202311505 crossref_primary_10_1016_j_jcis_2023_12_045 crossref_primary_10_1002_anie_202318646 crossref_primary_10_1021_acsmaterialslett_4c01088 crossref_primary_10_1016_j_ccr_2022_214916 crossref_primary_10_1016_j_apmt_2022_101400 crossref_primary_10_1007_s40820_025_01678_4 crossref_primary_10_1016_j_micromeso_2022_111693 crossref_primary_10_1002_ange_202305158 crossref_primary_10_1021_acsami_4c20944 crossref_primary_10_1002_smtd_202101432 crossref_primary_10_1021_acs_langmuir_2c01917 crossref_primary_10_1016_j_ccr_2023_215569 crossref_primary_10_1016_j_ccr_2024_216418 crossref_primary_10_1007_s12274_022_5101_0 crossref_primary_10_1039_D2CY00924B crossref_primary_10_1002_aenm_202400112 crossref_primary_10_1016_j_fuel_2023_127445 crossref_primary_10_1002_ange_202407121 crossref_primary_10_1002_ange_202318646 crossref_primary_10_1016_j_cej_2024_157513 crossref_primary_10_1039_D3RA00672G crossref_primary_10_1039_D4QI01789G crossref_primary_10_1016_j_ceramint_2022_10_351 crossref_primary_10_1002_adma_202405128 crossref_primary_10_1016_j_cej_2022_135848 crossref_primary_10_1021_acs_chemrev_3c00252 crossref_primary_10_1039_D3QI01315D crossref_primary_10_1002_smll_202203020 crossref_primary_10_1021_acs_chemrev_2c00469 crossref_primary_10_1039_D1CE01582F crossref_primary_10_1039_D1CC04141J crossref_primary_10_1039_D4QI02182G crossref_primary_10_1016_j_apcatb_2025_125041 crossref_primary_10_1002_smll_202205511 crossref_primary_10_1021_acs_inorgchem_2c02055 crossref_primary_10_1016_j_jcis_2023_07_060 crossref_primary_10_1021_acs_chemrev_3c00459 crossref_primary_10_1039_D3CC01264F crossref_primary_10_1002_adfm_202300522 crossref_primary_10_1021_acscatal_3c02571 crossref_primary_10_1016_j_ijhydene_2022_06_049 crossref_primary_10_1002_adma_202201114 crossref_primary_10_1016_j_checat_2022_01_021 crossref_primary_10_1002_adfm_202409825 crossref_primary_10_1002_smtd_202400336 crossref_primary_10_1002_advs_202409048 crossref_primary_10_1002_anie_202407121 crossref_primary_10_1021_acsnano_2c07694 crossref_primary_10_1016_j_tetlet_2021_153458 crossref_primary_10_1021_acsnano_4c05966 crossref_primary_10_1021_acsomega_1c05844 crossref_primary_10_1093_nsr_nwab142 crossref_primary_10_1002_smll_202206081 crossref_primary_10_1021_acsami_4c14531 crossref_primary_10_1039_D3CC00225J crossref_primary_10_1021_acs_nanolett_2c04235 crossref_primary_10_1021_acsnano_3c01380 crossref_primary_10_1002_adfm_202405073 crossref_primary_10_1021_jacs_2c04820 crossref_primary_10_1088_1361_6528_ad2c5b |
Cites_doi | 10.1038/s41557-018-0012-0 10.1016/j.jcat.2019.04.018 10.1039/C6CS00727A 10.1093/nsr/nwz078 10.1021/acs.accounts.9b00246 10.1007/s12274-015-0964-y 10.1039/C9CC04529E 10.1002/anie.201607885 10.1038/s41929-019-0246-2 10.1039/C2SC21185H 10.1007/s12274-019-2312-y 10.1002/adma.202000482 10.1002/aenm.201903038 10.1021/jacs.5b12715 10.1021/acs.accounts.8b00490 10.1002/adma.201902964 10.3390/catal8100458 10.1038/s41467-018-07288-6 10.1021/ja806955s 10.1007/s12274-019-2411-y 10.1021/cs500082g 10.1038/s41467-019-12859-2 10.1021/jacs.9b03182 10.1038/s41929-018-0090-9 10.1038/nature19763 10.1126/science.aaw9545 10.1038/s41929-018-0190-6 10.1021/jacs.5b07257 10.1002/adma.201707189 10.1002/asia.201301543 10.1021/acscatal.9b03539 10.1038/s41570-020-0173-4 10.1021/ja4115192 10.1021/acs.chemrev.9b00220 10.1002/anie.202003651 10.1038/s41467-018-03810-y 10.1002/9781118695692 10.1002/adma.201803234 10.1021/jp046540q 10.1021/ol902061j 10.1039/C9NR02153A 10.1038/ncomms4093 10.1021/cs300689w 10.1021/jp012769j 10.1021/acs.chemrev.6b00211 10.1021/jacs.7b00452 10.1039/C9EE00950G 10.1002/anie.201706645 10.1021/acscatal.8b02589 10.1007/s12274-018-2204-8 |
ContentType | Journal Article |
Copyright | 2021 Wiley‐VCH GmbH 2021 Wiley-VCH GmbH. |
Copyright_xml | – notice: 2021 Wiley‐VCH GmbH – notice: 2021 Wiley-VCH GmbH. |
DBID | AAYXX CITATION NPM 7SR 8BQ 8FD JG9 7X8 |
DOI | 10.1002/adma.202006711 |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | Materials Research Database CrossRef PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1521-4095 |
EndPage | n/a |
ExternalDocumentID | 33491810 10_1002_adma_202006711 ADMA202006711 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: City University of Hong Kong funderid: 9380100; 9610478; 1886921 – fundername: Hong Kong Branch of National Precious Metals Material Engineering Research Center – fundername: City University of Hong Kong grantid: 9380100 – fundername: City University of Hong Kong grantid: 1886921 – fundername: City University of Hong Kong grantid: 9610478 |
GroupedDBID | --- .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RWM RX1 RYL SUPJJ TN5 UB1 UPT V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 YR2 ZZTAW ~02 ~IA ~WT .Y3 31~ 6TJ 8WZ A6W AANHP AASGY AAYOK AAYXX ABEML ACBWZ ACRPL ACSCC ACYXJ ADMLS ADNMO AETEA AEYWJ AFFNX AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION EJD FEDTE FOJGT HF~ HVGLF LW6 M6K NDZJH PALCI RIWAO RJQFR SAMSI WTY ZY4 ABTAH NPM 7SR 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 7X8 |
ID | FETCH-LOGICAL-c4761-e187cd505cc9a46beec8b7335f58b3ac8053438d7abce36468389219059925e43 |
IEDL.DBID | DR2 |
ISSN | 0935-9648 1521-4095 |
IngestDate | Thu Jul 10 21:59:53 EDT 2025 Sun Jul 13 04:38:02 EDT 2025 Wed Feb 19 02:29:31 EST 2025 Tue Jul 01 02:32:57 EDT 2025 Thu Apr 24 22:59:15 EDT 2025 Wed Jan 22 16:31:27 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Keywords | indole synthesis ultrathin nanosheets amorphous structures Rh and Rh alloys tandem catalysis heterophases |
Language | English |
License | 2021 Wiley-VCH GmbH. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4761-e187cd505cc9a46beec8b7335f58b3ac8053438d7abce36468389219059925e43 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-9518-740X |
PMID | 33491810 |
PQID | 2494841420 |
PQPubID | 2045203 |
PageCount | 7 |
ParticipantIDs | proquest_miscellaneous_2480732974 proquest_journals_2494841420 pubmed_primary_33491810 crossref_citationtrail_10_1002_adma_202006711 crossref_primary_10_1002_adma_202006711 wiley_primary_10_1002_adma_202006711_ADMA202006711 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-03-01 |
PublicationDateYYYYMMDD | 2021-03-01 |
PublicationDate_xml | – month: 03 year: 2021 text: 2021-03-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Advanced materials (Weinheim) |
PublicationTitleAlternate | Adv Mater |
PublicationYear | 2021 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2013; 3 2013; 4 2019; 6 2019; 52 2019; 55 2019; 2 2019; 11 2019; 10 2019; 12 2017; 46 2020; 59 2020; 32 2020; 10 2019; 141 2019; 364 2019; 120 2017; 139 2016; 55 2001; 105 2009; 11 2018; 9 2018; 8 2014; 5 2020; 4 2014; 4 2015; 137 2016; 539 2018; 1 2017; 56 2005; 109 2013; 135 2016 2018; 30 2016; 138 2016; 116 2014; 9 2018; 10 2008; 130 2016; 9 2019; 374 e_1_2_4_40_1 e_1_2_4_21_1 e_1_2_4_44_1 e_1_2_4_23_1 e_1_2_4_42_1 e_1_2_4_25_1 e_1_2_4_48_1 e_1_2_4_27_1 e_1_2_4_46_1 e_1_2_4_29_1 e_1_2_4_1_1 e_1_2_4_3_1 e_1_2_4_5_1 e_1_2_4_7_1 e_1_2_4_9_1 e_1_2_4_50_1 e_1_2_4_10_1 e_1_2_4_31_1 e_1_2_4_12_1 e_1_2_4_33_1 e_1_2_4_14_1 e_1_2_4_35_1 e_1_2_4_16_1 e_1_2_4_37_1 e_1_2_4_18_1 e_1_2_4_39_1 e_1_2_4_41_1 e_1_2_4_20_1 e_1_2_4_45_1 e_1_2_4_22_1 e_1_2_4_43_1 e_1_2_4_24_1 e_1_2_4_49_1 e_1_2_4_26_1 e_1_2_4_47_1 e_1_2_4_28_1 e_1_2_4_2_1 e_1_2_4_4_1 e_1_2_4_6_1 e_1_2_4_8_1 e_1_2_4_30_1 e_1_2_4_32_1 e_1_2_4_11_1 e_1_2_4_34_1 e_1_2_4_13_1 e_1_2_4_36_1 e_1_2_4_15_1 e_1_2_4_38_1 e_1_2_4_17_1 e_1_2_4_19_1 |
References_xml | – volume: 10 year: 2020 publication-title: Adv. Energy Mater. – volume: 4 start-page: 29 year: 2013 publication-title: Chem. Sci. – volume: 141 year: 2019 publication-title: J. Am. Chem. Soc. – volume: 5 start-page: 3093 year: 2014 publication-title: Nat. Commun. – volume: 9 start-page: 1362 year: 2018 publication-title: Nat. Commun. – volume: 2 start-page: 304 year: 2019 publication-title: Nat. Catal. – volume: 139 start-page: 4486 year: 2017 publication-title: J. Am. Chem. Soc. – volume: 3 start-page: 608 year: 2013 publication-title: ACS Catal. – volume: 9 start-page: 1388 year: 2014 publication-title: Chem. Asian J. – volume: 52 start-page: 1877 year: 2019 publication-title: Acc. Chem. Res. – volume: 10 start-page: 451 year: 2019 publication-title: ACS Catal. – volume: 46 start-page: 2799 year: 2017 publication-title: Chem. Soc. Rev. – volume: 56 year: 2017 publication-title: Angew. Chem., Int. Ed. – volume: 12 start-page: 1631 year: 2019 publication-title: Nano Res. – volume: 11 start-page: 5162 year: 2009 publication-title: Org. Lett. – volume: 12 start-page: 211 year: 2019 publication-title: Nano Res. – volume: 11 start-page: 9319 year: 2019 publication-title: Nanoscale – volume: 137 year: 2015 publication-title: J. Am. Chem. Soc. – volume: 4 start-page: 1441 year: 2014 publication-title: ACS Catal. – volume: 6 start-page: 955 year: 2019 publication-title: Natl. Sci. Rev. – volume: 539 start-page: 76 year: 2016 publication-title: Nature – volume: 10 start-page: 456 year: 2018 publication-title: Nat. Chem. – volume: 364 year: 2019 publication-title: Science – volume: 9 start-page: 4958 year: 2018 publication-title: Nat. Commun. – year: 2016 – volume: 138 start-page: 1414 year: 2016 publication-title: J. Am. Chem. Soc. – volume: 59 year: 2020 publication-title: Angew. Chem., Int. Ed. – volume: 109 start-page: 3460 year: 2005 publication-title: J. Phys. Chem. B – volume: 55 year: 2016 publication-title: Angew. Chem., Int. Ed. – volume: 135 year: 2013 publication-title: J. Am. Chem. Soc. – volume: 8 start-page: 8441 year: 2018 publication-title: ACS Catal. – volume: 55 start-page: 9547 year: 2019 publication-title: Chem. Commun. – volume: 116 year: 2016 publication-title: Chem. Rev. – volume: 9 start-page: 849 year: 2016 publication-title: Nano Res. – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 10 start-page: 4855 year: 2019 publication-title: Nat. Commun. – volume: 12 start-page: 2268 year: 2019 publication-title: Nano Res. – volume: 32 year: 2020 publication-title: Adv. Mater. – volume: 8 start-page: 458 year: 2018 publication-title: Catalysts – volume: 2 start-page: 78 year: 2019 publication-title: Nat. Catal. – volume: 120 start-page: 1184 year: 2019 publication-title: Chem. Rev. – volume: 1 start-page: 385 year: 2018 publication-title: Nat. Catal. – volume: 374 start-page: 12 year: 2019 publication-title: J. Catal. – volume: 130 year: 2008 publication-title: J. Am. Chem. Soc. – volume: 105 year: 2001 publication-title: J. Phys. Chem. B – volume: 52 start-page: 237 year: 2019 publication-title: Acc. Chem. Res. – volume: 12 start-page: 2443 year: 2019 publication-title: Energy Environ. Sci. – volume: 4 start-page: 243 year: 2020 publication-title: Nat. Rev. Chem. – ident: e_1_2_4_21_1 doi: 10.1038/s41557-018-0012-0 – ident: e_1_2_4_39_1 doi: 10.1016/j.jcat.2019.04.018 – ident: e_1_2_4_14_1 doi: 10.1039/C6CS00727A – ident: e_1_2_4_25_1 doi: 10.1093/nsr/nwz078 – ident: e_1_2_4_6_1 doi: 10.1021/acs.accounts.9b00246 – ident: e_1_2_4_31_1 doi: 10.1007/s12274-015-0964-y – ident: e_1_2_4_9_1 doi: 10.1039/C9CC04529E – ident: e_1_2_4_12_1 doi: 10.1002/anie.201607885 – ident: e_1_2_4_26_1 doi: 10.1038/s41929-019-0246-2 – ident: e_1_2_4_2_1 doi: 10.1039/C2SC21185H – ident: e_1_2_4_16_1 doi: 10.1007/s12274-019-2312-y – ident: e_1_2_4_22_1 doi: 10.1002/adma.202000482 – ident: e_1_2_4_44_1 doi: 10.1002/aenm.201903038 – ident: e_1_2_4_20_1 doi: 10.1021/jacs.5b12715 – ident: e_1_2_4_46_1 doi: 10.1021/acs.accounts.8b00490 – ident: e_1_2_4_33_1 doi: 10.1002/adma.201902964 – ident: e_1_2_4_7_1 doi: 10.3390/catal8100458 – ident: e_1_2_4_30_1 doi: 10.1038/s41467-018-07288-6 – ident: e_1_2_4_8_1 doi: 10.1021/ja806955s – ident: e_1_2_4_43_1 doi: 10.1007/s12274-019-2411-y – ident: e_1_2_4_48_1 doi: 10.1021/cs500082g – ident: e_1_2_4_34_1 doi: 10.1038/s41467-019-12859-2 – ident: e_1_2_4_5_1 doi: 10.1021/jacs.9b03182 – ident: e_1_2_4_15_1 doi: 10.1038/s41929-018-0090-9 – ident: e_1_2_4_47_1 doi: 10.1038/nature19763 – ident: e_1_2_4_18_1 doi: 10.1126/science.aaw9545 – ident: e_1_2_4_27_1 doi: 10.1038/s41929-018-0190-6 – ident: e_1_2_4_37_1 doi: 10.1021/jacs.5b07257 – ident: e_1_2_4_19_1 doi: 10.1002/adma.201707189 – ident: e_1_2_4_36_1 doi: 10.1002/asia.201301543 – ident: e_1_2_4_40_1 doi: 10.1021/acscatal.9b03539 – ident: e_1_2_4_17_1 doi: 10.1038/s41570-020-0173-4 – ident: e_1_2_4_4_1 doi: 10.1021/ja4115192 – ident: e_1_2_4_3_1 doi: 10.1021/acs.chemrev.9b00220 – ident: e_1_2_4_42_1 doi: 10.1002/anie.202003651 – ident: e_1_2_4_50_1 doi: 10.1038/s41467-018-03810-y – ident: e_1_2_4_1_1 doi: 10.1002/9781118695692 – ident: e_1_2_4_23_1 doi: 10.1002/adma.201803234 – ident: e_1_2_4_45_1 doi: 10.1021/jp046540q – ident: e_1_2_4_38_1 doi: 10.1021/ol902061j – ident: e_1_2_4_32_1 doi: 10.1039/C9NR02153A – ident: e_1_2_4_10_1 doi: 10.1038/ncomms4093 – ident: e_1_2_4_49_1 doi: 10.1021/cs300689w – ident: e_1_2_4_35_1 doi: 10.1021/jp012769j – ident: e_1_2_4_28_1 doi: 10.1021/acs.chemrev.6b00211 – ident: e_1_2_4_41_1 doi: 10.1021/jacs.7b00452 – ident: e_1_2_4_24_1 doi: 10.1039/C9EE00950G – ident: e_1_2_4_29_1 doi: 10.1002/anie.201706645 – ident: e_1_2_4_13_1 doi: 10.1021/acscatal.8b02589 – ident: e_1_2_4_11_1 doi: 10.1007/s12274-018-2204-8 |
SSID | ssj0009606 |
Score | 2.6189656 |
Snippet | Heterogeneous noble‐metal‐based catalysis plays an essential role in the production of fine chemicals. Rh‐based catalysts are one of the most active candidates... Heterogeneous noble-metal-based catalysis plays an essential role in the production of fine chemicals. Rh-based catalysts are one of the most active candidates... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e2006711 |
SubjectTerms | amorphous structures Bimetals Catalysis Catalysts Catalytic activity Chemical synthesis Crystal structure Crystallinity Fine chemicals heterophases indole synthesis Materials science Nanosheets Rh and Rh alloys Rhodium Rhodium base alloys Selectivity tandem catalysis ultrathin nanosheets |
Title | Ultrathin Amorphous/Crystalline Heterophase Rh and Rh Alloy Nanosheets as Tandem Catalysts for Direct Indole Synthesis |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202006711 https://www.ncbi.nlm.nih.gov/pubmed/33491810 https://www.proquest.com/docview/2494841420 https://www.proquest.com/docview/2480732974 |
Volume | 33 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3PT9swFMctxAkObPxcN4aMhLSTaWM7sXuMOlBBggOjErfIdlwVrSQIt0jlr997SRsoCCGxUxTFVhzb7_lr5_ljQo5cJI1NYstMxIdMymHOjJeecRsZbUGfKIcL-heXSX8gz2_imxe7-Gs-RLPghpZR-Ws0cGND-xkaavKKG4RTYlVt7sWALVRFV8_8KJTnFWxPxKybSL2gNnZ4ezn78qj0RmouK9dq6Dn9Qsyi0HXEyd_j6cQeu6dXPMf_-aqvZGOuS2lad6RNsuKLLbL-gla4TR4HY0TZjm4Lmt6V0D7lNLR7DzPQlwj29rSPoTXl_QgGRno1oqbI8ZKOx-WMghcvw8j7SaAm0Gtcur6jPVw7gvyBgnSmtfelZwVCpuifWQHaNNyGHTI4Pbnu9dn82AbmpEoi5iOtXA7KyrmukYn13mmrhIiHsbbCOA12L4XOlbHOi0QmGkQTOE4kxfDYS7FLVouy8N8IdcgThDmTEhHqvo6WRitleMKt7fqOaRG2aLbMzZnmeLTGOKtpzDzD-sya-myRX036-5rm8W7K_UUvyOZWHTKOLB0ZSd5pkcPmMdgj_mQxhYdqhzQavCaHaVqL7NW9p3mVELILigpy86oPfFCGLP19kTZ33z-T6QdZ4xiEUwXN7ZPVycPU_wQVNbEHlaX8Ay5XEfE |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3fb9MwEMdPaDwAD_xmFAYYCYknr43txO5j1DF1sO5htBJvke246kSXTEuLVP567pImoyCEBE9RFFtJHN_568v5Y4B3PlLWJbHjNhJzrtQ85zaowIWLrHGoT7SngP7kLBnP1McvcZtNSGthGj5EF3Ajy6j9NRk4BaT7N9RQm9fgIJoTa1rde5u29SZ8_tH5DUGKBHqN25MxHybKtNzGgejv1t8dl34Tm7vatR58jh-Aax-7yTn5erheuUP__Rei43-910O4v5WmLG360iO4FYrHcO8nYOET-DZbEs12cVGw9LLET1Suq_7oeoMSk9jegY0pu6a8WuDYyM4XzBY5HdLlstwwdORltQhhVTFbsSlFry_ZiMJHWL9iqJ5Z44DZSUGcKfZ5U6A8rS6qpzA7_jAdjfl25wbulU4iHiKjfY7iyvuhVYkLwRunpYznsXHSeoOmr6TJtXU-yEQlBnUT-k6CxYg4KPkM9oqyCM-BeUIK4rRJy4ik38Aoa7S2IhHODcPA9oC33y3zW6w57a6xzBogs8ioPbOuPXvwvit_1QA9_ljyoO0G2dawq0wQTkdFSgx68La7jCZJ_1lsEbDZsYxBxylwptaD_ab7dLeSUg1RVGFtUXeCvzxDlh5N0u7sxb9UegN3xtPJaXZ6cvbpJdwVlJNT59AdwN7qeh1eoahaude12fwAUvgWDQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3fb9MwEMctNCQED_xmFAYYCYknr4nt2M5j1FJ1wCY0Vmlvke246kSXVEuLVP567pI2W0EICZ6iKD7FsX3nrx37Y0Le-VhapxLHbMynTMppwWyQgXEXW-NAn2iPE_rHJ2o8kR_Pk_Mbu_hbPkQ34Yae0cRrdPBFMe1fQ0Nt0XCDcEiscXPvbamiFA9vGJ5eA6RQnze0PZGwVEmzxTZGvL9rv9st_aY1d6Vr0_eMHhC7zXW75OTb4WrpDv2PX4CO__NZD8n9jTClWduSHpFboXxM7t3AFT4h3ydzZNnOLkqaXVZQQdWq7g-u1iAwkewd6BjX1lSLGfSM9HRGbVngJZvPqzWFMF7VsxCWNbU1PcO560s6wMkjsK8paGfahl96VCJlin5dlyBO64v6KZmMPpwNxmxzbgPzUquYhdhoX4C08j61UrkQvHFaiGSaGCesN-D4UphCW-eDUFIZUE0QOREVw5MgxTOyV1ZleE6oR6AgDJq0iFH4RUZao7XlijuXhsj2CNtWW-43UHM8W2OetzhmnmN55l159sj7Lv2ixXn8MeXBthXkG7euc44wHRlLHvXI2-4xOCT-ZbFlgGKHNAbCJodxWo_st62ne5UQMgVJBda8aQN_yUOeDY-z7u7Fvxi9IXe-DEf556OTTy_JXY4LcpoFdAdkb3m1Cq9AUS3d68ZpfgLzGxS8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ultrathin+Amorphous%2FCrystalline+Heterophase+Rh+and+Rh+Alloy+Nanosheets+as+Tandem+Catalysts+for+Direct+Indole+Synthesis&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Ge%2C+Jingjie&rft.au=Yin%2C+Peiqun&rft.au=Chen%2C+Ye&rft.au=Cheng%2C+Hongfei&rft.date=2021-03-01&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=33&rft.issue=9&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadma.202006711&rft.externalDBID=10.1002%252Fadma.202006711&rft.externalDocID=ADMA202006711 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon |