Ultrathin Amorphous/Crystalline Heterophase Rh and Rh Alloy Nanosheets as Tandem Catalysts for Direct Indole Synthesis

Heterogeneous noble‐metal‐based catalysis plays an essential role in the production of fine chemicals. Rh‐based catalysts are one of the most active candidates for indole synthesis. However, it is still highly desired to develop heterogeneous Rh‐based catalysts with high activity and selectivity. In...

Full description

Saved in:
Bibliographic Details
Published inAdvanced materials (Weinheim) Vol. 33; no. 9; pp. e2006711 - n/a
Main Authors Ge, Jingjie, Yin, Peiqun, Chen, Ye, Cheng, Hongfei, Liu, Jiawei, Chen, Bo, Tan, Chaoliang, Yin, Peng‐Fei, Zheng, Hong‐Xing, Li, Qiang‐Qiang, Chen, Shuangming, Xu, Wenjie, Wang, Xiaoqian, Wu, Geng, Sun, Rongbo, Shan, Xiang‐Huan, Hong, Xun, Zhang, Hua
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.03.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Heterogeneous noble‐metal‐based catalysis plays an essential role in the production of fine chemicals. Rh‐based catalysts are one of the most active candidates for indole synthesis. However, it is still highly desired to develop heterogeneous Rh‐based catalysts with high activity and selectivity. In this work, a general, facile wet‐chemical method is reported to synthesize ultrathin amorphous/crystalline heterophase Rh and Rh‐based bimetallic alloy nanosheets (NSs), including RhCu, RhZn, and RhRu. Impressively, the amorphous/crystalline heterophase Rh NSs exhibit enhanced catalytic activity toward the direct synthesis of indole compared to the crystalline counterpart. Importantly, the obtained amorphous/crystalline heterophase RhCu alloy NSs can further enhance the selectivity to indole of >99.9% and the conversion is 100%. This work demonstrates the importance of phase engineering and metal alloying in the rational design and synthesis of tandem heterogeneous catalysts toward fine chemical synthesis. Ultrathin Rh and RhM (M = Cu, Zn, Ru) alloy nanosheets with amorphous/crystalline heterophases are successfully synthesized. In tandem catalysis to directly synthesize indole, the amorphous/crystalline heterophase Rh nanosheets (NSs) outperform their crystalline counterpart, demonstrating much higher catalytic activity. Impressively, the amorphous/crystalline heterophase RhCu NSs show dramatically enhanced indole selectivity of over 99.9% and excellent activity.
AbstractList Heterogeneous noble‐metal‐based catalysis plays an essential role in the production of fine chemicals. Rh‐based catalysts are one of the most active candidates for indole synthesis. However, it is still highly desired to develop heterogeneous Rh‐based catalysts with high activity and selectivity. In this work, a general, facile wet‐chemical method is reported to synthesize ultrathin amorphous/crystalline heterophase Rh and Rh‐based bimetallic alloy nanosheets (NSs), including RhCu, RhZn, and RhRu. Impressively, the amorphous/crystalline heterophase Rh NSs exhibit enhanced catalytic activity toward the direct synthesis of indole compared to the crystalline counterpart. Importantly, the obtained amorphous/crystalline heterophase RhCu alloy NSs can further enhance the selectivity to indole of >99.9% and the conversion is 100%. This work demonstrates the importance of phase engineering and metal alloying in the rational design and synthesis of tandem heterogeneous catalysts toward fine chemical synthesis.
Heterogeneous noble‐metal‐based catalysis plays an essential role in the production of fine chemicals. Rh‐based catalysts are one of the most active candidates for indole synthesis. However, it is still highly desired to develop heterogeneous Rh‐based catalysts with high activity and selectivity. In this work, a general, facile wet‐chemical method is reported to synthesize ultrathin amorphous/crystalline heterophase Rh and Rh‐based bimetallic alloy nanosheets (NSs), including RhCu, RhZn, and RhRu. Impressively, the amorphous/crystalline heterophase Rh NSs exhibit enhanced catalytic activity toward the direct synthesis of indole compared to the crystalline counterpart. Importantly, the obtained amorphous/crystalline heterophase RhCu alloy NSs can further enhance the selectivity to indole of >99.9% and the conversion is 100%. This work demonstrates the importance of phase engineering and metal alloying in the rational design and synthesis of tandem heterogeneous catalysts toward fine chemical synthesis. Ultrathin Rh and RhM (M = Cu, Zn, Ru) alloy nanosheets with amorphous/crystalline heterophases are successfully synthesized. In tandem catalysis to directly synthesize indole, the amorphous/crystalline heterophase Rh nanosheets (NSs) outperform their crystalline counterpart, demonstrating much higher catalytic activity. Impressively, the amorphous/crystalline heterophase RhCu NSs show dramatically enhanced indole selectivity of over 99.9% and excellent activity.
Heterogeneous noble-metal-based catalysis plays an essential role in the production of fine chemicals. Rh-based catalysts are one of the most active candidates for indole synthesis. However, it is still highly desired to develop heterogeneous Rh-based catalysts with high activity and selectivity. In this work, a general, facile wet-chemical method is reported to synthesize ultrathin amorphous/crystalline heterophase Rh and Rh-based bimetallic alloy nanosheets (NSs), including RhCu, RhZn, and RhRu. Impressively, the amorphous/crystalline heterophase Rh NSs exhibit enhanced catalytic activity toward the direct synthesis of indole compared to the crystalline counterpart. Importantly, the obtained amorphous/crystalline heterophase RhCu alloy NSs can further enhance the selectivity to indole of >99.9% and the conversion is 100%. This work demonstrates the importance of phase engineering and metal alloying in the rational design and synthesis of tandem heterogeneous catalysts toward fine chemical synthesis.Heterogeneous noble-metal-based catalysis plays an essential role in the production of fine chemicals. Rh-based catalysts are one of the most active candidates for indole synthesis. However, it is still highly desired to develop heterogeneous Rh-based catalysts with high activity and selectivity. In this work, a general, facile wet-chemical method is reported to synthesize ultrathin amorphous/crystalline heterophase Rh and Rh-based bimetallic alloy nanosheets (NSs), including RhCu, RhZn, and RhRu. Impressively, the amorphous/crystalline heterophase Rh NSs exhibit enhanced catalytic activity toward the direct synthesis of indole compared to the crystalline counterpart. Importantly, the obtained amorphous/crystalline heterophase RhCu alloy NSs can further enhance the selectivity to indole of >99.9% and the conversion is 100%. This work demonstrates the importance of phase engineering and metal alloying in the rational design and synthesis of tandem heterogeneous catalysts toward fine chemical synthesis.
Author Yin, Peiqun
Cheng, Hongfei
Chen, Shuangming
Wang, Xiaoqian
Liu, Jiawei
Li, Qiang‐Qiang
Zhang, Hua
Zheng, Hong‐Xing
Xu, Wenjie
Wu, Geng
Hong, Xun
Ge, Jingjie
Sun, Rongbo
Chen, Ye
Chen, Bo
Shan, Xiang‐Huan
Yin, Peng‐Fei
Tan, Chaoliang
Author_xml – sequence: 1
  givenname: Jingjie
  surname: Ge
  fullname: Ge, Jingjie
  organization: Nanyang Technological University
– sequence: 2
  givenname: Peiqun
  surname: Yin
  fullname: Yin, Peiqun
  organization: Shenzhen University
– sequence: 3
  givenname: Ye
  surname: Chen
  fullname: Chen, Ye
  organization: The Chinese University of Hong Kong
– sequence: 4
  givenname: Hongfei
  surname: Cheng
  fullname: Cheng, Hongfei
  organization: Nanyang Technological University
– sequence: 5
  givenname: Jiawei
  surname: Liu
  fullname: Liu, Jiawei
  organization: Nanyang Technological University
– sequence: 6
  givenname: Bo
  surname: Chen
  fullname: Chen, Bo
  organization: City University of Hong Kong
– sequence: 7
  givenname: Chaoliang
  surname: Tan
  fullname: Tan, Chaoliang
  organization: City University of Hong Kong
– sequence: 8
  givenname: Peng‐Fei
  surname: Yin
  fullname: Yin, Peng‐Fei
  organization: City University of Hong Kong
– sequence: 9
  givenname: Hong‐Xing
  surname: Zheng
  fullname: Zheng, Hong‐Xing
  organization: Liaocheng University
– sequence: 10
  givenname: Qiang‐Qiang
  surname: Li
  fullname: Li, Qiang‐Qiang
  organization: Nanyang Technological University
– sequence: 11
  givenname: Shuangming
  surname: Chen
  fullname: Chen, Shuangming
  organization: University of Science and Technology of China
– sequence: 12
  givenname: Wenjie
  surname: Xu
  fullname: Xu, Wenjie
  organization: University of Science and Technology of China
– sequence: 13
  givenname: Xiaoqian
  surname: Wang
  fullname: Wang, Xiaoqian
  organization: University of Science and Technology of China
– sequence: 14
  givenname: Geng
  surname: Wu
  fullname: Wu, Geng
  organization: University of Science and Technology of China
– sequence: 15
  givenname: Rongbo
  surname: Sun
  fullname: Sun, Rongbo
  organization: University of Science and Technology of China
– sequence: 16
  givenname: Xiang‐Huan
  surname: Shan
  fullname: Shan, Xiang‐Huan
  organization: University of Science and Technology of China
– sequence: 17
  givenname: Xun
  surname: Hong
  fullname: Hong, Xun
  organization: University of Science and Technology of China
– sequence: 18
  givenname: Hua
  orcidid: 0000-0001-9518-740X
  surname: Zhang
  fullname: Zhang, Hua
  email: Hua.Zhang@cityu.edu.hk
  organization: City University of Hong Kong
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33491810$$D View this record in MEDLINE/PubMed
BookMark eNqFkUFv1DAQRi1URLeFK0dkiQuXbO3YTuxjtAVaqYAE7dlynFnFlWMvtrco_56stgWpEuI0h3lvNDPfGToJMQBCbylZU0LqCzNMZl2TmpCmpfQFWlFR04oTJU7QiigmKtVweYrOcr4nhKiGNK_QKWNcUUnJCj3c-ZJMGV3A3RTTboz7fLFJcy7GexcAX0GBFHejyYC_j9iE4VA67-OMv5oQ8whQMjYZ3y49mPDGLOriZ7yNCV-6BLbg6zBED_jHHMoI2eXX6OXW-AxvHus5uvv08XZzVd18-3y96W4qy9uGVkBlawdBhLXK8KYHsLJvGRNbIXtmrCSCcSaH1vQWWMMbyaSqqSJCqVoAZ-fow3HuLsWfe8hFTy5b8N4EWC7VNZekZbVqD-j7Z-h93KewbLdQiktOeU0W6t0jte8nGPQuucmkWT99dAH4EbAp5pxgq60rprgYlj87rynRh-D0ITj9J7hFWz_Tnib_U1BH4ZfzMP-H1t3ll-6v-xt_TapX
CitedBy_id crossref_primary_10_1002_smll_202304181
crossref_primary_10_1039_D4NJ01331J
crossref_primary_10_1021_acsenergylett_1c02132
crossref_primary_10_1016_j_mtphys_2024_101416
crossref_primary_10_1021_acs_analchem_1c03987
crossref_primary_10_1002_adfm_202201081
crossref_primary_10_1021_acs_accounts_2c00579
crossref_primary_10_1021_jacs_1c11313
crossref_primary_10_1002_adfm_202107651
crossref_primary_10_1002_cctc_202101760
crossref_primary_10_1021_acs_chemrev_3c00229
crossref_primary_10_1007_s12598_021_01882_2
crossref_primary_10_1021_jacs_4c01985
crossref_primary_10_3390_molecules29071617
crossref_primary_10_1021_acsanm_2c02358
crossref_primary_10_1007_s40843_022_2290_9
crossref_primary_10_1016_j_apcatb_2022_121338
crossref_primary_10_1039_D4TA02281E
crossref_primary_10_1002_anie_202305158
crossref_primary_10_1016_j_est_2021_103765
crossref_primary_10_1002_agt2_145
crossref_primary_10_1002_smll_202304546
crossref_primary_10_1007_s12274_021_4007_6
crossref_primary_10_1039_D2TA03325A
crossref_primary_10_1002_adma_202302233
crossref_primary_10_1002_cssc_202201385
crossref_primary_10_1016_j_scib_2023_07_036
crossref_primary_10_1021_acsnano_2c11094
crossref_primary_10_3390_ma16113980
crossref_primary_10_1016_j_ijhydene_2024_09_387
crossref_primary_10_1021_acs_nanolett_4c01036
crossref_primary_10_1002_smll_202311505
crossref_primary_10_1016_j_jcis_2023_12_045
crossref_primary_10_1002_anie_202318646
crossref_primary_10_1021_acsmaterialslett_4c01088
crossref_primary_10_1016_j_ccr_2022_214916
crossref_primary_10_1016_j_apmt_2022_101400
crossref_primary_10_1007_s40820_025_01678_4
crossref_primary_10_1016_j_micromeso_2022_111693
crossref_primary_10_1002_ange_202305158
crossref_primary_10_1021_acsami_4c20944
crossref_primary_10_1002_smtd_202101432
crossref_primary_10_1021_acs_langmuir_2c01917
crossref_primary_10_1016_j_ccr_2023_215569
crossref_primary_10_1016_j_ccr_2024_216418
crossref_primary_10_1007_s12274_022_5101_0
crossref_primary_10_1039_D2CY00924B
crossref_primary_10_1002_aenm_202400112
crossref_primary_10_1016_j_fuel_2023_127445
crossref_primary_10_1002_ange_202407121
crossref_primary_10_1002_ange_202318646
crossref_primary_10_1016_j_cej_2024_157513
crossref_primary_10_1039_D3RA00672G
crossref_primary_10_1039_D4QI01789G
crossref_primary_10_1016_j_ceramint_2022_10_351
crossref_primary_10_1002_adma_202405128
crossref_primary_10_1016_j_cej_2022_135848
crossref_primary_10_1021_acs_chemrev_3c00252
crossref_primary_10_1039_D3QI01315D
crossref_primary_10_1002_smll_202203020
crossref_primary_10_1021_acs_chemrev_2c00469
crossref_primary_10_1039_D1CE01582F
crossref_primary_10_1039_D1CC04141J
crossref_primary_10_1039_D4QI02182G
crossref_primary_10_1016_j_apcatb_2025_125041
crossref_primary_10_1002_smll_202205511
crossref_primary_10_1021_acs_inorgchem_2c02055
crossref_primary_10_1016_j_jcis_2023_07_060
crossref_primary_10_1021_acs_chemrev_3c00459
crossref_primary_10_1039_D3CC01264F
crossref_primary_10_1002_adfm_202300522
crossref_primary_10_1021_acscatal_3c02571
crossref_primary_10_1016_j_ijhydene_2022_06_049
crossref_primary_10_1002_adma_202201114
crossref_primary_10_1016_j_checat_2022_01_021
crossref_primary_10_1002_adfm_202409825
crossref_primary_10_1002_smtd_202400336
crossref_primary_10_1002_advs_202409048
crossref_primary_10_1002_anie_202407121
crossref_primary_10_1021_acsnano_2c07694
crossref_primary_10_1016_j_tetlet_2021_153458
crossref_primary_10_1021_acsnano_4c05966
crossref_primary_10_1021_acsomega_1c05844
crossref_primary_10_1093_nsr_nwab142
crossref_primary_10_1002_smll_202206081
crossref_primary_10_1021_acsami_4c14531
crossref_primary_10_1039_D3CC00225J
crossref_primary_10_1021_acs_nanolett_2c04235
crossref_primary_10_1021_acsnano_3c01380
crossref_primary_10_1002_adfm_202405073
crossref_primary_10_1021_jacs_2c04820
crossref_primary_10_1088_1361_6528_ad2c5b
Cites_doi 10.1038/s41557-018-0012-0
10.1016/j.jcat.2019.04.018
10.1039/C6CS00727A
10.1093/nsr/nwz078
10.1021/acs.accounts.9b00246
10.1007/s12274-015-0964-y
10.1039/C9CC04529E
10.1002/anie.201607885
10.1038/s41929-019-0246-2
10.1039/C2SC21185H
10.1007/s12274-019-2312-y
10.1002/adma.202000482
10.1002/aenm.201903038
10.1021/jacs.5b12715
10.1021/acs.accounts.8b00490
10.1002/adma.201902964
10.3390/catal8100458
10.1038/s41467-018-07288-6
10.1021/ja806955s
10.1007/s12274-019-2411-y
10.1021/cs500082g
10.1038/s41467-019-12859-2
10.1021/jacs.9b03182
10.1038/s41929-018-0090-9
10.1038/nature19763
10.1126/science.aaw9545
10.1038/s41929-018-0190-6
10.1021/jacs.5b07257
10.1002/adma.201707189
10.1002/asia.201301543
10.1021/acscatal.9b03539
10.1038/s41570-020-0173-4
10.1021/ja4115192
10.1021/acs.chemrev.9b00220
10.1002/anie.202003651
10.1038/s41467-018-03810-y
10.1002/9781118695692
10.1002/adma.201803234
10.1021/jp046540q
10.1021/ol902061j
10.1039/C9NR02153A
10.1038/ncomms4093
10.1021/cs300689w
10.1021/jp012769j
10.1021/acs.chemrev.6b00211
10.1021/jacs.7b00452
10.1039/C9EE00950G
10.1002/anie.201706645
10.1021/acscatal.8b02589
10.1007/s12274-018-2204-8
ContentType Journal Article
Copyright 2021 Wiley‐VCH GmbH
2021 Wiley-VCH GmbH.
Copyright_xml – notice: 2021 Wiley‐VCH GmbH
– notice: 2021 Wiley-VCH GmbH.
DBID AAYXX
CITATION
NPM
7SR
8BQ
8FD
JG9
7X8
DOI 10.1002/adma.202006711
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList Materials Research Database
CrossRef
PubMed

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1521-4095
EndPage n/a
ExternalDocumentID 33491810
10_1002_adma_202006711
ADMA202006711
Genre article
Journal Article
GrantInformation_xml – fundername: City University of Hong Kong
  funderid: 9380100; 9610478; 1886921
– fundername: Hong Kong Branch of National Precious Metals Material Engineering Research Center
– fundername: City University of Hong Kong
  grantid: 9380100
– fundername: City University of Hong Kong
  grantid: 1886921
– fundername: City University of Hong Kong
  grantid: 9610478
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RWM
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YR2
ZZTAW
~02
~IA
~WT
.Y3
31~
6TJ
8WZ
A6W
AANHP
AASGY
AAYOK
AAYXX
ABEML
ACBWZ
ACRPL
ACSCC
ACYXJ
ADMLS
ADNMO
AETEA
AEYWJ
AFFNX
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
FOJGT
HF~
HVGLF
LW6
M6K
NDZJH
PALCI
RIWAO
RJQFR
SAMSI
WTY
ZY4
ABTAH
NPM
7SR
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
7X8
ID FETCH-LOGICAL-c4761-e187cd505cc9a46beec8b7335f58b3ac8053438d7abce36468389219059925e43
IEDL.DBID DR2
ISSN 0935-9648
1521-4095
IngestDate Thu Jul 10 21:59:53 EDT 2025
Sun Jul 13 04:38:02 EDT 2025
Wed Feb 19 02:29:31 EST 2025
Tue Jul 01 02:32:57 EDT 2025
Thu Apr 24 22:59:15 EDT 2025
Wed Jan 22 16:31:27 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords indole synthesis
ultrathin nanosheets
amorphous structures
Rh and Rh alloys
tandem catalysis
heterophases
Language English
License 2021 Wiley-VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4761-e187cd505cc9a46beec8b7335f58b3ac8053438d7abce36468389219059925e43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-9518-740X
PMID 33491810
PQID 2494841420
PQPubID 2045203
PageCount 7
ParticipantIDs proquest_miscellaneous_2480732974
proquest_journals_2494841420
pubmed_primary_33491810
crossref_citationtrail_10_1002_adma_202006711
crossref_primary_10_1002_adma_202006711
wiley_primary_10_1002_adma_202006711_ADMA202006711
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-03-01
PublicationDateYYYYMMDD 2021-03-01
PublicationDate_xml – month: 03
  year: 2021
  text: 2021-03-01
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Advanced materials (Weinheim)
PublicationTitleAlternate Adv Mater
PublicationYear 2021
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2013; 3
2013; 4
2019; 6
2019; 52
2019; 55
2019; 2
2019; 11
2019; 10
2019; 12
2017; 46
2020; 59
2020; 32
2020; 10
2019; 141
2019; 364
2019; 120
2017; 139
2016; 55
2001; 105
2009; 11
2018; 9
2018; 8
2014; 5
2020; 4
2014; 4
2015; 137
2016; 539
2018; 1
2017; 56
2005; 109
2013; 135
2016
2018; 30
2016; 138
2016; 116
2014; 9
2018; 10
2008; 130
2016; 9
2019; 374
e_1_2_4_40_1
e_1_2_4_21_1
e_1_2_4_44_1
e_1_2_4_23_1
e_1_2_4_42_1
e_1_2_4_25_1
e_1_2_4_48_1
e_1_2_4_27_1
e_1_2_4_46_1
e_1_2_4_29_1
e_1_2_4_1_1
e_1_2_4_3_1
e_1_2_4_5_1
e_1_2_4_7_1
e_1_2_4_9_1
e_1_2_4_50_1
e_1_2_4_10_1
e_1_2_4_31_1
e_1_2_4_12_1
e_1_2_4_33_1
e_1_2_4_14_1
e_1_2_4_35_1
e_1_2_4_16_1
e_1_2_4_37_1
e_1_2_4_18_1
e_1_2_4_39_1
e_1_2_4_41_1
e_1_2_4_20_1
e_1_2_4_45_1
e_1_2_4_22_1
e_1_2_4_43_1
e_1_2_4_24_1
e_1_2_4_49_1
e_1_2_4_26_1
e_1_2_4_47_1
e_1_2_4_28_1
e_1_2_4_2_1
e_1_2_4_4_1
e_1_2_4_6_1
e_1_2_4_8_1
e_1_2_4_30_1
e_1_2_4_32_1
e_1_2_4_11_1
e_1_2_4_34_1
e_1_2_4_13_1
e_1_2_4_36_1
e_1_2_4_15_1
e_1_2_4_38_1
e_1_2_4_17_1
e_1_2_4_19_1
References_xml – volume: 10
  year: 2020
  publication-title: Adv. Energy Mater.
– volume: 4
  start-page: 29
  year: 2013
  publication-title: Chem. Sci.
– volume: 141
  year: 2019
  publication-title: J. Am. Chem. Soc.
– volume: 5
  start-page: 3093
  year: 2014
  publication-title: Nat. Commun.
– volume: 9
  start-page: 1362
  year: 2018
  publication-title: Nat. Commun.
– volume: 2
  start-page: 304
  year: 2019
  publication-title: Nat. Catal.
– volume: 139
  start-page: 4486
  year: 2017
  publication-title: J. Am. Chem. Soc.
– volume: 3
  start-page: 608
  year: 2013
  publication-title: ACS Catal.
– volume: 9
  start-page: 1388
  year: 2014
  publication-title: Chem. Asian J.
– volume: 52
  start-page: 1877
  year: 2019
  publication-title: Acc. Chem. Res.
– volume: 10
  start-page: 451
  year: 2019
  publication-title: ACS Catal.
– volume: 46
  start-page: 2799
  year: 2017
  publication-title: Chem. Soc. Rev.
– volume: 56
  year: 2017
  publication-title: Angew. Chem., Int. Ed.
– volume: 12
  start-page: 1631
  year: 2019
  publication-title: Nano Res.
– volume: 11
  start-page: 5162
  year: 2009
  publication-title: Org. Lett.
– volume: 12
  start-page: 211
  year: 2019
  publication-title: Nano Res.
– volume: 11
  start-page: 9319
  year: 2019
  publication-title: Nanoscale
– volume: 137
  year: 2015
  publication-title: J. Am. Chem. Soc.
– volume: 4
  start-page: 1441
  year: 2014
  publication-title: ACS Catal.
– volume: 6
  start-page: 955
  year: 2019
  publication-title: Natl. Sci. Rev.
– volume: 539
  start-page: 76
  year: 2016
  publication-title: Nature
– volume: 10
  start-page: 456
  year: 2018
  publication-title: Nat. Chem.
– volume: 364
  year: 2019
  publication-title: Science
– volume: 9
  start-page: 4958
  year: 2018
  publication-title: Nat. Commun.
– year: 2016
– volume: 138
  start-page: 1414
  year: 2016
  publication-title: J. Am. Chem. Soc.
– volume: 59
  year: 2020
  publication-title: Angew. Chem., Int. Ed.
– volume: 109
  start-page: 3460
  year: 2005
  publication-title: J. Phys. Chem. B
– volume: 55
  year: 2016
  publication-title: Angew. Chem., Int. Ed.
– volume: 135
  year: 2013
  publication-title: J. Am. Chem. Soc.
– volume: 8
  start-page: 8441
  year: 2018
  publication-title: ACS Catal.
– volume: 55
  start-page: 9547
  year: 2019
  publication-title: Chem. Commun.
– volume: 116
  year: 2016
  publication-title: Chem. Rev.
– volume: 9
  start-page: 849
  year: 2016
  publication-title: Nano Res.
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 10
  start-page: 4855
  year: 2019
  publication-title: Nat. Commun.
– volume: 12
  start-page: 2268
  year: 2019
  publication-title: Nano Res.
– volume: 32
  year: 2020
  publication-title: Adv. Mater.
– volume: 8
  start-page: 458
  year: 2018
  publication-title: Catalysts
– volume: 2
  start-page: 78
  year: 2019
  publication-title: Nat. Catal.
– volume: 120
  start-page: 1184
  year: 2019
  publication-title: Chem. Rev.
– volume: 1
  start-page: 385
  year: 2018
  publication-title: Nat. Catal.
– volume: 374
  start-page: 12
  year: 2019
  publication-title: J. Catal.
– volume: 130
  year: 2008
  publication-title: J. Am. Chem. Soc.
– volume: 105
  year: 2001
  publication-title: J. Phys. Chem. B
– volume: 52
  start-page: 237
  year: 2019
  publication-title: Acc. Chem. Res.
– volume: 12
  start-page: 2443
  year: 2019
  publication-title: Energy Environ. Sci.
– volume: 4
  start-page: 243
  year: 2020
  publication-title: Nat. Rev. Chem.
– ident: e_1_2_4_21_1
  doi: 10.1038/s41557-018-0012-0
– ident: e_1_2_4_39_1
  doi: 10.1016/j.jcat.2019.04.018
– ident: e_1_2_4_14_1
  doi: 10.1039/C6CS00727A
– ident: e_1_2_4_25_1
  doi: 10.1093/nsr/nwz078
– ident: e_1_2_4_6_1
  doi: 10.1021/acs.accounts.9b00246
– ident: e_1_2_4_31_1
  doi: 10.1007/s12274-015-0964-y
– ident: e_1_2_4_9_1
  doi: 10.1039/C9CC04529E
– ident: e_1_2_4_12_1
  doi: 10.1002/anie.201607885
– ident: e_1_2_4_26_1
  doi: 10.1038/s41929-019-0246-2
– ident: e_1_2_4_2_1
  doi: 10.1039/C2SC21185H
– ident: e_1_2_4_16_1
  doi: 10.1007/s12274-019-2312-y
– ident: e_1_2_4_22_1
  doi: 10.1002/adma.202000482
– ident: e_1_2_4_44_1
  doi: 10.1002/aenm.201903038
– ident: e_1_2_4_20_1
  doi: 10.1021/jacs.5b12715
– ident: e_1_2_4_46_1
  doi: 10.1021/acs.accounts.8b00490
– ident: e_1_2_4_33_1
  doi: 10.1002/adma.201902964
– ident: e_1_2_4_7_1
  doi: 10.3390/catal8100458
– ident: e_1_2_4_30_1
  doi: 10.1038/s41467-018-07288-6
– ident: e_1_2_4_8_1
  doi: 10.1021/ja806955s
– ident: e_1_2_4_43_1
  doi: 10.1007/s12274-019-2411-y
– ident: e_1_2_4_48_1
  doi: 10.1021/cs500082g
– ident: e_1_2_4_34_1
  doi: 10.1038/s41467-019-12859-2
– ident: e_1_2_4_5_1
  doi: 10.1021/jacs.9b03182
– ident: e_1_2_4_15_1
  doi: 10.1038/s41929-018-0090-9
– ident: e_1_2_4_47_1
  doi: 10.1038/nature19763
– ident: e_1_2_4_18_1
  doi: 10.1126/science.aaw9545
– ident: e_1_2_4_27_1
  doi: 10.1038/s41929-018-0190-6
– ident: e_1_2_4_37_1
  doi: 10.1021/jacs.5b07257
– ident: e_1_2_4_19_1
  doi: 10.1002/adma.201707189
– ident: e_1_2_4_36_1
  doi: 10.1002/asia.201301543
– ident: e_1_2_4_40_1
  doi: 10.1021/acscatal.9b03539
– ident: e_1_2_4_17_1
  doi: 10.1038/s41570-020-0173-4
– ident: e_1_2_4_4_1
  doi: 10.1021/ja4115192
– ident: e_1_2_4_3_1
  doi: 10.1021/acs.chemrev.9b00220
– ident: e_1_2_4_42_1
  doi: 10.1002/anie.202003651
– ident: e_1_2_4_50_1
  doi: 10.1038/s41467-018-03810-y
– ident: e_1_2_4_1_1
  doi: 10.1002/9781118695692
– ident: e_1_2_4_23_1
  doi: 10.1002/adma.201803234
– ident: e_1_2_4_45_1
  doi: 10.1021/jp046540q
– ident: e_1_2_4_38_1
  doi: 10.1021/ol902061j
– ident: e_1_2_4_32_1
  doi: 10.1039/C9NR02153A
– ident: e_1_2_4_10_1
  doi: 10.1038/ncomms4093
– ident: e_1_2_4_49_1
  doi: 10.1021/cs300689w
– ident: e_1_2_4_35_1
  doi: 10.1021/jp012769j
– ident: e_1_2_4_28_1
  doi: 10.1021/acs.chemrev.6b00211
– ident: e_1_2_4_41_1
  doi: 10.1021/jacs.7b00452
– ident: e_1_2_4_24_1
  doi: 10.1039/C9EE00950G
– ident: e_1_2_4_29_1
  doi: 10.1002/anie.201706645
– ident: e_1_2_4_13_1
  doi: 10.1021/acscatal.8b02589
– ident: e_1_2_4_11_1
  doi: 10.1007/s12274-018-2204-8
SSID ssj0009606
Score 2.6189656
Snippet Heterogeneous noble‐metal‐based catalysis plays an essential role in the production of fine chemicals. Rh‐based catalysts are one of the most active candidates...
Heterogeneous noble-metal-based catalysis plays an essential role in the production of fine chemicals. Rh-based catalysts are one of the most active candidates...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e2006711
SubjectTerms amorphous structures
Bimetals
Catalysis
Catalysts
Catalytic activity
Chemical synthesis
Crystal structure
Crystallinity
Fine chemicals
heterophases
indole synthesis
Materials science
Nanosheets
Rh and Rh alloys
Rhodium
Rhodium base alloys
Selectivity
tandem catalysis
ultrathin nanosheets
Title Ultrathin Amorphous/Crystalline Heterophase Rh and Rh Alloy Nanosheets as Tandem Catalysts for Direct Indole Synthesis
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202006711
https://www.ncbi.nlm.nih.gov/pubmed/33491810
https://www.proquest.com/docview/2494841420
https://www.proquest.com/docview/2480732974
Volume 33
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3PT9swFMctxAkObPxcN4aMhLSTaWM7sXuMOlBBggOjErfIdlwVrSQIt0jlr997SRsoCCGxUxTFVhzb7_lr5_ljQo5cJI1NYstMxIdMymHOjJeecRsZbUGfKIcL-heXSX8gz2_imxe7-Gs-RLPghpZR-Ws0cGND-xkaavKKG4RTYlVt7sWALVRFV8_8KJTnFWxPxKybSL2gNnZ4ezn78qj0RmouK9dq6Dn9Qsyi0HXEyd_j6cQeu6dXPMf_-aqvZGOuS2lad6RNsuKLLbL-gla4TR4HY0TZjm4Lmt6V0D7lNLR7DzPQlwj29rSPoTXl_QgGRno1oqbI8ZKOx-WMghcvw8j7SaAm0Gtcur6jPVw7gvyBgnSmtfelZwVCpuifWQHaNNyGHTI4Pbnu9dn82AbmpEoi5iOtXA7KyrmukYn13mmrhIiHsbbCOA12L4XOlbHOi0QmGkQTOE4kxfDYS7FLVouy8N8IdcgThDmTEhHqvo6WRitleMKt7fqOaRG2aLbMzZnmeLTGOKtpzDzD-sya-myRX036-5rm8W7K_UUvyOZWHTKOLB0ZSd5pkcPmMdgj_mQxhYdqhzQavCaHaVqL7NW9p3mVELILigpy86oPfFCGLP19kTZ33z-T6QdZ4xiEUwXN7ZPVycPU_wQVNbEHlaX8Ay5XEfE
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3fb9MwEMdPaDwAD_xmFAYYCYknr43txO5j1DF1sO5htBJvke246kSXTEuLVP567pImoyCEBE9RFFtJHN_568v5Y4B3PlLWJbHjNhJzrtQ85zaowIWLrHGoT7SngP7kLBnP1McvcZtNSGthGj5EF3Ajy6j9NRk4BaT7N9RQm9fgIJoTa1rde5u29SZ8_tH5DUGKBHqN25MxHybKtNzGgejv1t8dl34Tm7vatR58jh-Aax-7yTn5erheuUP__Rei43-910O4v5WmLG360iO4FYrHcO8nYOET-DZbEs12cVGw9LLET1Suq_7oeoMSk9jegY0pu6a8WuDYyM4XzBY5HdLlstwwdORltQhhVTFbsSlFry_ZiMJHWL9iqJ5Z44DZSUGcKfZ5U6A8rS6qpzA7_jAdjfl25wbulU4iHiKjfY7iyvuhVYkLwRunpYznsXHSeoOmr6TJtXU-yEQlBnUT-k6CxYg4KPkM9oqyCM-BeUIK4rRJy4ik38Aoa7S2IhHODcPA9oC33y3zW6w57a6xzBogs8ioPbOuPXvwvit_1QA9_ljyoO0G2dawq0wQTkdFSgx68La7jCZJ_1lsEbDZsYxBxylwptaD_ab7dLeSUg1RVGFtUXeCvzxDlh5N0u7sxb9UegN3xtPJaXZ6cvbpJdwVlJNT59AdwN7qeh1eoahaude12fwAUvgWDQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3fb9MwEMctNCQED_xmFAYYCYknr4nt2M5j1FJ1wCY0Vmlvke246kSXVEuLVP567pI2W0EICZ6iKD7FsX3nrx37Y0Le-VhapxLHbMynTMppwWyQgXEXW-NAn2iPE_rHJ2o8kR_Pk_Mbu_hbPkQ34Yae0cRrdPBFMe1fQ0Nt0XCDcEiscXPvbamiFA9vGJ5eA6RQnze0PZGwVEmzxTZGvL9rv9st_aY1d6Vr0_eMHhC7zXW75OTb4WrpDv2PX4CO__NZD8n9jTClWduSHpFboXxM7t3AFT4h3ydzZNnOLkqaXVZQQdWq7g-u1iAwkewd6BjX1lSLGfSM9HRGbVngJZvPqzWFMF7VsxCWNbU1PcO560s6wMkjsK8paGfahl96VCJlin5dlyBO64v6KZmMPpwNxmxzbgPzUquYhdhoX4C08j61UrkQvHFaiGSaGCesN-D4UphCW-eDUFIZUE0QOREVw5MgxTOyV1ZleE6oR6AgDJq0iFH4RUZao7XlijuXhsj2CNtWW-43UHM8W2OetzhmnmN55l159sj7Lv2ixXn8MeXBthXkG7euc44wHRlLHvXI2-4xOCT-ZbFlgGKHNAbCJodxWo_st62ne5UQMgVJBda8aQN_yUOeDY-z7u7Fvxi9IXe-DEf556OTTy_JXY4LcpoFdAdkb3m1Cq9AUS3d68ZpfgLzGxS8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ultrathin+Amorphous%2FCrystalline+Heterophase+Rh+and+Rh+Alloy+Nanosheets+as+Tandem+Catalysts+for+Direct+Indole+Synthesis&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Ge%2C+Jingjie&rft.au=Yin%2C+Peiqun&rft.au=Chen%2C+Ye&rft.au=Cheng%2C+Hongfei&rft.date=2021-03-01&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=33&rft.issue=9&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadma.202006711&rft.externalDBID=10.1002%252Fadma.202006711&rft.externalDocID=ADMA202006711
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon