Selective Electrochemical Reduction of Carbon Dioxide to Ethanol on a Boron‐ and Nitrogen‐Co‐doped Nanodiamond

Electrochemical reduction of CO2 to ethanol, a clean and renewable liquid fuel with high heating value, is an attractive strategy for global warming mitigation and resource utilization. However, converting CO2 to ethanol remains great challenge due to the low activity, poor product selectivity and s...

Full description

Saved in:
Bibliographic Details
Published inAngewandte Chemie International Edition Vol. 56; no. 49; pp. 15607 - 15611
Main Authors Liu, Yanming, Zhang, Yujing, Cheng, Kai, Quan, Xie, Fan, Xinfei, Su, Yan, Chen, Shuo, Zhao, Huimin, Zhang, Yaobin, Yu, Hongtao, Hoffmann, Michael R.
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 04.12.2017
EditionInternational ed. in English
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Electrochemical reduction of CO2 to ethanol, a clean and renewable liquid fuel with high heating value, is an attractive strategy for global warming mitigation and resource utilization. However, converting CO2 to ethanol remains great challenge due to the low activity, poor product selectivity and stability of electrocatalysts. Here, the B‐ and N‐co‐doped nanodiamond (BND) was reported as an efficient and stable electrode for selective reduction of CO2 to ethanol. Good ethanol selectivity was achieved on the BND with high Faradaic efficiency of 93.2 % (−1.0 V vs. RHE), which overcame the limitation of low selectivity for multicarbon or high heating value fuels. Its superior performance was mainly originated from the synergistic effect of B and N co‐doping, high N content and overpotential for hydrogen evolution. The possible pathway for CO2 reduction revealed by DFT computation was CO2→*COOH→*CO→*COCO→*COCH2OH→*CH2OCH2OH→CH3CH2OH. Efficient and selective electrochemical reduction of CO2 to ethanol was achieved on a nonmetallic B‐ and N‐co‐doped nanodiamond used as an electrocatalyst. The synergistic effect of co‐doping, N content, and H2 evolution potential were used as key factors for tailoring ethanol selectivity.
AbstractList Electrochemical reduction of CO to ethanol, a clean and renewable liquid fuel with high heating value, is an attractive strategy for global warming mitigation and resource utilization. However, converting CO to ethanol remains great challenge due to the low activity, poor product selectivity and stability of electrocatalysts. Here, the B- and N-co-doped nanodiamond (BND) was reported as an efficient and stable electrode for selective reduction of CO to ethanol. Good ethanol selectivity was achieved on the BND with high Faradaic efficiency of 93.2 % (-1.0 V vs. RHE), which overcame the limitation of low selectivity for multicarbon or high heating value fuels. Its superior performance was mainly originated from the synergistic effect of B and N co-doping, high N content and overpotential for hydrogen evolution. The possible pathway for CO reduction revealed by DFT computation was CO →*COOH→*CO→*COCO→*COCH OH→*CH OCH OH→CH CH OH.
Electrochemical reduction of CO2 to ethanol, a clean and renewable liquid fuel with high heating value, is an attractive strategy for global warming mitigation and resource utilization. However, converting CO2 to ethanol remains great challenge due to the low activity, poor product selectivity and stability of electrocatalysts. Here, the B- and N-co-doped nanodiamond (BND) was reported as an efficient and stable electrode for selective reduction of CO2 to ethanol. Good ethanol selectivity was achieved on the BND with high Faradaic efficiency of 93.2 % (-1.0 V vs. RHE), which overcame the limitation of low selectivity for multicarbon or high heating value fuels. Its superior performance was mainly originated from the synergistic effect of B and N co-doping, high N content and overpotential for hydrogen evolution. The possible pathway for CO2 reduction revealed by DFT computation was CO2 →*COOH→*CO→*COCO→*COCH2 OH→*CH2 OCH2 OH→CH3 CH2 OH.Electrochemical reduction of CO2 to ethanol, a clean and renewable liquid fuel with high heating value, is an attractive strategy for global warming mitigation and resource utilization. However, converting CO2 to ethanol remains great challenge due to the low activity, poor product selectivity and stability of electrocatalysts. Here, the B- and N-co-doped nanodiamond (BND) was reported as an efficient and stable electrode for selective reduction of CO2 to ethanol. Good ethanol selectivity was achieved on the BND with high Faradaic efficiency of 93.2 % (-1.0 V vs. RHE), which overcame the limitation of low selectivity for multicarbon or high heating value fuels. Its superior performance was mainly originated from the synergistic effect of B and N co-doping, high N content and overpotential for hydrogen evolution. The possible pathway for CO2 reduction revealed by DFT computation was CO2 →*COOH→*CO→*COCO→*COCH2 OH→*CH2 OCH2 OH→CH3 CH2 OH.
Electrochemical reduction of CO 2 to ethanol, a clean and renewable liquid fuel with high heating value, is an attractive strategy for global warming mitigation and resource utilization. However, converting CO 2 to ethanol remains great challenge due to the low activity, poor product selectivity and stability of electrocatalysts. Here, the B‐ and N‐co‐doped nanodiamond (BND) was reported as an efficient and stable electrode for selective reduction of CO 2 to ethanol. Good ethanol selectivity was achieved on the BND with high Faradaic efficiency of 93.2 % (−1.0 V vs. RHE), which overcame the limitation of low selectivity for multicarbon or high heating value fuels. Its superior performance was mainly originated from the synergistic effect of B and N co‐doping, high N content and overpotential for hydrogen evolution. The possible pathway for CO 2 reduction revealed by DFT computation was CO 2 →*COOH→*CO→*COCO→*COCH 2 OH→*CH 2 OCH 2 OH→CH 3 CH 2 OH.
Electrochemical reduction of CO2 to ethanol, a clean and renewable liquid fuel with high heating value, is an attractive strategy for global warming mitigation and resource utilization. However, converting CO2 to ethanol remains great challenge due to the low activity, poor product selectivity and stability of electrocatalysts. Here, the B‐ and N‐co‐doped nanodiamond (BND) was reported as an efficient and stable electrode for selective reduction of CO2 to ethanol. Good ethanol selectivity was achieved on the BND with high Faradaic efficiency of 93.2 % (−1.0 V vs. RHE), which overcame the limitation of low selectivity for multicarbon or high heating value fuels. Its superior performance was mainly originated from the synergistic effect of B and N co‐doping, high N content and overpotential for hydrogen evolution. The possible pathway for CO2 reduction revealed by DFT computation was CO2→*COOH→*CO→*COCO→*COCH2OH→*CH2OCH2OH→CH3CH2OH. Efficient and selective electrochemical reduction of CO2 to ethanol was achieved on a nonmetallic B‐ and N‐co‐doped nanodiamond used as an electrocatalyst. The synergistic effect of co‐doping, N content, and H2 evolution potential were used as key factors for tailoring ethanol selectivity.
Electrochemical reduction of CO2 to ethanol, a clean and renewable liquid fuel with high heating value, is an attractive strategy for global warming mitigation and resource utilization. However, converting CO2 to ethanol remains great challenge due to the low activity, poor product selectivity and stability of electrocatalysts. Here, the B‐ and N‐co‐doped nanodiamond (BND) was reported as an efficient and stable electrode for selective reduction of CO2 to ethanol. Good ethanol selectivity was achieved on the BND with high Faradaic efficiency of 93.2 % (−1.0 V vs. RHE), which overcame the limitation of low selectivity for multicarbon or high heating value fuels. Its superior performance was mainly originated from the synergistic effect of B and N co‐doping, high N content and overpotential for hydrogen evolution. The possible pathway for CO2 reduction revealed by DFT computation was CO2→*COOH→*CO→*COCO→*COCH2OH→*CH2OCH2OH→CH3CH2OH.
Author Zhao, Huimin
Quan, Xie
Fan, Xinfei
Hoffmann, Michael R.
Zhang, Yujing
Yu, Hongtao
Su, Yan
Chen, Shuo
Liu, Yanming
Cheng, Kai
Zhang, Yaobin
Author_xml – sequence: 1
  givenname: Yanming
  surname: Liu
  fullname: Liu, Yanming
  organization: Dalian University of Technology
– sequence: 2
  givenname: Yujing
  surname: Zhang
  fullname: Zhang, Yujing
  organization: Dalian University of Technology
– sequence: 3
  givenname: Kai
  surname: Cheng
  fullname: Cheng, Kai
  organization: Dalian University of Technology
– sequence: 4
  givenname: Xie
  orcidid: 0000-0003-3085-0789
  surname: Quan
  fullname: Quan, Xie
  email: quanxie@dlut.edu.cn
  organization: Dalian University of Technology
– sequence: 5
  givenname: Xinfei
  surname: Fan
  fullname: Fan, Xinfei
  organization: Dalian University of Technology
– sequence: 6
  givenname: Yan
  surname: Su
  fullname: Su, Yan
  organization: Dalian University of Technology
– sequence: 7
  givenname: Shuo
  surname: Chen
  fullname: Chen, Shuo
  organization: Dalian University of Technology
– sequence: 8
  givenname: Huimin
  surname: Zhao
  fullname: Zhao, Huimin
  organization: Dalian University of Technology
– sequence: 9
  givenname: Yaobin
  surname: Zhang
  fullname: Zhang, Yaobin
  organization: Dalian University of Technology
– sequence: 10
  givenname: Hongtao
  surname: Yu
  fullname: Yu, Hongtao
  organization: Dalian University of Technology
– sequence: 11
  givenname: Michael R.
  surname: Hoffmann
  fullname: Hoffmann, Michael R.
  organization: California Institute of Technology
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28914470$$D View this record in MEDLINE/PubMed
BookMark eNqFkc1u1TAQha2qqH-w7RJZYsMmF_9dO1m2lwtUqorUwtqaxBPqKrFvnaTQHY_AM_IkOLptkSohNvaZ8XeOrJlDshtiQEKOOVtwxsQ7CB4XgnHDtOR8hxzwpeCFNEbuZq2kLEy55PvkcBhuMl-WTO-RfVFWXCnDDsh4hR02o79Dup5Fis019r6Bjl6im_JLDDS2dAWpzuq9jz-8QzpGuh6vIcSO5i7Q05hi-P3zF4Xg6IXPMd9wrlcxHy5uMHcz7Tz0MbiX5EUL3YCvHu4j8vXD-svqU3H--ePZ6uS8aJTRvHB1BSil0ax0SsgWaw2mNrIypq0FtgC6blGjEFyqVtfGaQ3KuMotFWgu5BF5u83dpHg74TDa3g8Ndh0EjNNgeaUYW1ZGzOibZ-hNnFLIv8uULhWTirNMvX6gprpHZzfJ95Du7eM8M6C2QJPiMCRsbeNHmIc4JvCd5czOa7Pz2uzT2rJt8cz2mPxPQ7U1fPcd3v-HticXZ-u_3j-rZa0Q
CitedBy_id crossref_primary_10_1038_s41467_021_25640_1
crossref_primary_10_3390_catal10050473
crossref_primary_10_1016_j_jclepro_2024_141896
crossref_primary_10_1021_acs_jpcc_3c00946
crossref_primary_10_1016_j_joule_2018_09_021
crossref_primary_10_1039_D4EE01301H
crossref_primary_10_1002_anie_202410802
crossref_primary_10_1039_D2GC03343G
crossref_primary_10_1016_j_apcata_2023_119406
crossref_primary_10_1002_cssc_202401173
crossref_primary_10_1002_smll_202001896
crossref_primary_10_1021_acs_inorgchem_4c04970
crossref_primary_10_1002_ange_202207252
crossref_primary_10_1016_j_carbon_2019_10_022
crossref_primary_10_1002_advs_202416597
crossref_primary_10_1002_ange_201802055
crossref_primary_10_1016_j_pecs_2023_101074
crossref_primary_10_1039_D2EE00472K
crossref_primary_10_1007_s10853_021_06061_3
crossref_primary_10_3390_catal11050578
crossref_primary_10_1016_j_nantod_2019_100833
crossref_primary_10_1021_acscatal_9b01565
crossref_primary_10_1016_j_colsurfa_2021_126559
crossref_primary_10_1016_j_cclet_2021_12_063
crossref_primary_10_1002_aenm_202201461
crossref_primary_10_1002_adfm_202008146
crossref_primary_10_3390_molecules28073169
crossref_primary_10_1016_j_jechem_2024_11_032
crossref_primary_10_1039_C8TA07430E
crossref_primary_10_1002_anie_202415273
crossref_primary_10_1080_26941112_2021_1939170
crossref_primary_10_1002_cctc_201901267
crossref_primary_10_1016_j_apsusc_2022_154199
crossref_primary_10_1016_j_xinn_2025_100807
crossref_primary_10_1039_C9SE00527G
crossref_primary_10_1039_D0CS00071J
crossref_primary_10_1002_ese3_1036
crossref_primary_10_1016_j_carbon_2022_09_044
crossref_primary_10_1016_j_matlet_2020_128092
crossref_primary_10_1002_anie_202302789
crossref_primary_10_1021_acs_inorgchem_5c00480
crossref_primary_10_1021_acssuschemeng_1c02805
crossref_primary_10_1002_adsu_202000134
crossref_primary_10_1016_j_apcatb_2021_120543
crossref_primary_10_1021_acssuschemeng_9b00515
crossref_primary_10_1002_adfm_201906194
crossref_primary_10_1016_j_cej_2023_143060
crossref_primary_10_1007_s12648_024_03213_4
crossref_primary_10_1016_j_jechem_2020_07_049
crossref_primary_10_1002_ange_201806432
crossref_primary_10_1007_s12210_019_00830_8
crossref_primary_10_1007_s12274_023_5653_7
crossref_primary_10_1002_smll_202311163
crossref_primary_10_1002_aenm_202200586
crossref_primary_10_1002_ange_202302789
crossref_primary_10_1126_science_aav3506
crossref_primary_10_1021_acscatal_0c04862
crossref_primary_10_1002_cnma_202100110
crossref_primary_10_1016_j_ccr_2023_215409
crossref_primary_10_1021_acs_iecr_9b01454
crossref_primary_10_1002_cey2_87
crossref_primary_10_3390_catal10111287
crossref_primary_10_1016_j_electacta_2018_06_107
crossref_primary_10_1039_D3TA01920A
crossref_primary_10_1002_ange_202209629
crossref_primary_10_1246_bcsj_20180268
crossref_primary_10_1016_j_checat_2023_100808
crossref_primary_10_1016_j_cossms_2021_100921
crossref_primary_10_1021_acs_chemmater_2c01591
crossref_primary_10_1016_j_jechem_2020_05_006
crossref_primary_10_1021_jacs_8b02798
crossref_primary_10_1016_j_cherd_2024_07_014
crossref_primary_10_1016_j_surfin_2023_103608
crossref_primary_10_1088_1361_6463_aba6b6
crossref_primary_10_1002_adts_202200782
crossref_primary_10_1021_acs_est_8b02740
crossref_primary_10_1039_C9SE00056A
crossref_primary_10_1002_adma_202417567
crossref_primary_10_1002_adfm_202408013
crossref_primary_10_1002_open_202100084
crossref_primary_10_1016_j_isci_2024_109470
crossref_primary_10_1039_D2SE01423H
crossref_primary_10_1021_acssuschemeng_2c00201
crossref_primary_10_1039_D2EY00071G
crossref_primary_10_1016_j_apcatb_2019_117917
crossref_primary_10_1021_acscentsci_8b00714
crossref_primary_10_1002_aenm_201902106
crossref_primary_10_1039_D3EE02946H
crossref_primary_10_1016_j_enchem_2020_100040
crossref_primary_10_1039_D0TA03991H
crossref_primary_10_1016_j_jcat_2020_01_002
crossref_primary_10_1021_acsami_3c03083
crossref_primary_10_1016_j_cej_2025_160633
crossref_primary_10_1002_anie_201806432
crossref_primary_10_1002_advs_202410280
crossref_primary_10_1016_j_carbon_2023_01_059
crossref_primary_10_1021_acsaem_2c01201
crossref_primary_10_1115_1_4056556
crossref_primary_10_1016_j_mtener_2024_101634
crossref_primary_10_1016_j_jcis_2019_10_030
crossref_primary_10_1016_j_mtchem_2023_101398
crossref_primary_10_1007_s41918_022_00140_y
crossref_primary_10_1016_j_joule_2018_10_015
crossref_primary_10_1039_D1TA01115D
crossref_primary_10_5796_electrochemistry_22_00060
crossref_primary_10_1002_celc_201901667
crossref_primary_10_1002_slct_202102829
crossref_primary_10_1021_acscatal_0c04714
crossref_primary_10_3390_catal10101179
crossref_primary_10_1002_cssc_202401557
crossref_primary_10_1038_s41598_024_62367_7
crossref_primary_10_1016_j_cogsc_2020_03_009
crossref_primary_10_1002_tcr_201800100
crossref_primary_10_1016_j_nantod_2024_102152
crossref_primary_10_1002_smll_201901981
crossref_primary_10_1002_smtd_201800369
crossref_primary_10_1002_adfm_201907658
crossref_primary_10_1002_cssc_202402755
crossref_primary_10_1021_acs_energyfuels_3c02152
crossref_primary_10_1039_C7CS00757D
crossref_primary_10_1088_1361_6528_ac302b
crossref_primary_10_1039_D0SC01133A
crossref_primary_10_1039_D2TA02086F
crossref_primary_10_1002_cssc_202301719
crossref_primary_10_1038_s41467_021_21901_1
crossref_primary_10_1002_aenm_202402278
crossref_primary_10_1038_s41929_019_0235_5
crossref_primary_10_1134_S1023193522050068
crossref_primary_10_1016_j_fuel_2023_129760
crossref_primary_10_1021_acsengineeringau_3c00030
crossref_primary_10_1039_C8CC02055H
crossref_primary_10_1021_acsami_2c13154
crossref_primary_10_1016_j_jece_2020_104798
crossref_primary_10_1016_j_materresbull_2021_111294
crossref_primary_10_1002_chem_202402477
crossref_primary_10_1002_cssc_202401333
crossref_primary_10_1016_j_electacta_2021_138843
crossref_primary_10_2139_ssrn_4130119
crossref_primary_10_1016_j_apsusc_2022_155332
crossref_primary_10_1039_C8CS00684A
crossref_primary_10_1007_s10800_020_01428_x
crossref_primary_10_1039_C9NR07824J
crossref_primary_10_1016_j_enchem_2023_100099
crossref_primary_10_1039_D1EN00977J
crossref_primary_10_1016_j_isci_2022_104010
crossref_primary_10_1002_adma_201804257
crossref_primary_10_1002_celc_202000431
crossref_primary_10_1016_j_apcata_2018_12_016
crossref_primary_10_26599_NRE_2022_9120009
crossref_primary_10_1002_smll_202205765
crossref_primary_10_1002_adfm_202208212
crossref_primary_10_1016_j_checat_2023_100506
crossref_primary_10_1021_jacs_9b02945
crossref_primary_10_1007_s12274_021_3335_x
crossref_primary_10_1088_1361_6463_ac18ee
crossref_primary_10_1002_anie_201802055
crossref_primary_10_1016_j_jcat_2020_11_012
crossref_primary_10_1016_j_jechem_2024_12_022
crossref_primary_10_1002_smm2_1090
crossref_primary_10_1038_s41467_019_11868_5
crossref_primary_10_3390_en11020392
crossref_primary_10_1039_D4SE00405A
crossref_primary_10_3390_catal13020393
crossref_primary_10_1002_ange_202410802
crossref_primary_10_1021_acssuschemeng_4c06710
crossref_primary_10_1002_ange_202108902
crossref_primary_10_1016_j_chempr_2018_08_019
crossref_primary_10_1016_j_apcatb_2021_120267
crossref_primary_10_1002_ange_202415273
crossref_primary_10_1021_acsanm_2c05098
crossref_primary_10_1021_acs_accounts_2c00644
crossref_primary_10_1016_j_apenergy_2020_115557
crossref_primary_10_1039_D0CS00030B
crossref_primary_10_1002_anie_202209629
crossref_primary_10_3390_catal11030351
crossref_primary_10_1002_adma_201805121
crossref_primary_10_1021_acs_chemrev_2c00514
crossref_primary_10_3390_en16020616
crossref_primary_10_1039_D1MA00814E
crossref_primary_10_1002_asia_201800637
crossref_primary_10_1021_acs_jpcc_4c02608
crossref_primary_10_1039_D0TA08402F
crossref_primary_10_1002_cey2_9
crossref_primary_10_1016_j_carbon_2021_01_116
crossref_primary_10_1016_j_jechem_2022_02_033
crossref_primary_10_1007_s41918_018_0003_2
crossref_primary_10_1016_j_mtener_2019_100352
crossref_primary_10_1021_acsmaterialslett_3c01316
crossref_primary_10_1039_C9QI00484J
crossref_primary_10_1016_j_enchem_2019_100024
crossref_primary_10_30919_es_1804232
crossref_primary_10_1016_j_jpowsour_2022_232430
crossref_primary_10_1016_j_nantod_2020_100891
crossref_primary_10_1016_j_cattod_2023_114284
crossref_primary_10_1115_1_4046490
crossref_primary_10_1016_j_carbon_2019_04_112
crossref_primary_10_1002_adma_202103266
crossref_primary_10_1016_j_apcatb_2020_118908
crossref_primary_10_1002_celc_201801716
crossref_primary_10_1039_D0SE00228C
crossref_primary_10_1002_adma_201903499
crossref_primary_10_1021_acssuschemeng_3c00835
crossref_primary_10_1039_D0TA02471F
crossref_primary_10_1002_smll_202400798
crossref_primary_10_1021_acs_est_8b06130
crossref_primary_10_1016_j_coelec_2021_100865
crossref_primary_10_1016_j_carbon_2022_04_015
crossref_primary_10_1039_D0TA11457J
crossref_primary_10_3390_ma17030600
crossref_primary_10_1021_acssuschemeng_8b05217
crossref_primary_10_1002_anie_202108902
crossref_primary_10_1002_adma_201807166
crossref_primary_10_5796_denkikagaku_19_FE0007
crossref_primary_10_1039_D0EE01860K
crossref_primary_10_1126_sciadv_aay3111
crossref_primary_10_1002_asia_202001189
crossref_primary_10_1002_adts_201800004
crossref_primary_10_1007_s41918_022_00139_5
crossref_primary_10_1080_1536383X_2020_1743979
crossref_primary_10_1007_s12598_023_02513_8
crossref_primary_10_1021_acs_jpcc_0c09661
crossref_primary_10_1039_D1CS00219H
crossref_primary_10_1039_D4TA04797D
crossref_primary_10_1016_j_mtchem_2020_100264
crossref_primary_10_1016_j_ces_2020_115947
crossref_primary_10_1039_D0CS00835D
crossref_primary_10_1002_adma_202105690
crossref_primary_10_1002_cctc_201902326
crossref_primary_10_1039_D1SE00861G
crossref_primary_10_1016_j_mtadv_2020_100074
crossref_primary_10_1016_j_mtadv_2020_100071
crossref_primary_10_1002_adma_201801526
crossref_primary_10_1039_D1CY01063H
crossref_primary_10_1039_D1TA00298H
crossref_primary_10_1021_acssuschemeng_0c00739
crossref_primary_10_1016_j_diamond_2021_108608
crossref_primary_10_1002_anie_202207252
crossref_primary_10_1039_C9NR07559C
crossref_primary_10_1016_j_enconman_2022_115213
crossref_primary_10_1002_tcr_201900048
crossref_primary_10_1016_j_apcatb_2020_119591
crossref_primary_10_1016_j_ccr_2022_214737
crossref_primary_10_1002_adma_201808276
crossref_primary_10_1016_j_carbon_2022_05_038
crossref_primary_10_1038_s41560_023_01389_3
crossref_primary_10_1016_j_eng_2022_12_005
Cites_doi 10.1021/jacs.6b02878
10.1002/anie.201602888
10.1002/anie.201208320
10.1021/ja500328k
10.1039/C5EE02879E
10.1002/adma.201504766
10.1021/ja511890h
10.1021/jacs.5b02975
10.1021/jacs.6b06846
10.1021/acs.nanolett.5b03298
10.1039/c3ta13243a
10.1038/nature16455
10.1038/nature04278
10.1002/ange.201209548
10.1038/nmat2317
10.1002/ange.201601282
10.1002/anie.201308657
10.1002/ange.201509800
10.1002/anie.201601582
10.1002/ange.201602888
10.1021/ja5121088
10.1002/anie.201601282
10.1039/c2ee21234j
10.1021/ja5031529
10.1021/acs.nanolett.5b04123
10.1002/ange.201208320
10.1039/C3CS60323G
10.1002/anie.201209548
10.1038/ncomms13869
10.1073/pnas.1522496112
10.1021/jacs.5b00046
10.1002/ange.201601582
10.1002/ange.201308657
10.1021/acs.nanolett.6b05287
10.1002/anie.201509800
10.1038/nature19060
10.1021/ja505791r
ContentType Journal Article
Copyright 2017 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim
2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Copyright_xml – notice: 2017 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
DBID AAYXX
CITATION
NPM
7TM
K9.
7X8
DOI 10.1002/anie.201706311
DatabaseName CrossRef
PubMed
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
ProQuest Health & Medical Complete (Alumni)
Nucleic Acids Abstracts
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic
CrossRef

ProQuest Health & Medical Complete (Alumni)
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3773
Edition International ed. in English
EndPage 15611
ExternalDocumentID 28914470
10_1002_anie_201706311
ANIE201706311
Genre shortCommunication
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Programme of Introducing Talents of Discipline to Universities
  funderid: B13012
– fundername: National Natural Science Foundation of China
  funderid: 21590813; 21437001
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABLJU
ABPPZ
ABPVW
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BTSUX
BY8
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M53
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
VQA
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XSW
XV2
YZZ
ZZTAW
~IA
~KM
~WT
AAYXX
ABDBF
ABJNI
AETEA
AEYWJ
AGHNM
AGYGG
CITATION
NPM
7TM
K9.
7X8
ID FETCH-LOGICAL-c4761-db9ae337608d423feb6a7b73977fb2efaa6bfe6e22134f6b7d66a47d9d54a6123
IEDL.DBID DR2
ISSN 1433-7851
1521-3773
IngestDate Fri Jul 11 16:50:54 EDT 2025
Fri Jul 25 10:29:47 EDT 2025
Thu Apr 03 07:08:38 EDT 2025
Tue Jul 01 02:26:11 EDT 2025
Thu Apr 24 22:57:41 EDT 2025
Wed Jan 22 17:06:49 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 49
Keywords doped nanodiamond
heterogeneous catalysis
CO2 reduction
electrocatalysis
ethanol
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4761-db9ae337608d423feb6a7b73977fb2efaa6bfe6e22134f6b7d66a47d9d54a6123
Notes These authors contributed equally to this work.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-3085-0789
PMID 28914470
PQID 1968403410
PQPubID 946352
PageCount 5
ParticipantIDs proquest_miscellaneous_1940059722
proquest_journals_1968403410
pubmed_primary_28914470
crossref_citationtrail_10_1002_anie_201706311
crossref_primary_10_1002_anie_201706311
wiley_primary_10_1002_anie_201706311_ANIE201706311
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 4, 2017
PublicationDateYYYYMMDD 2017-12-04
PublicationDate_xml – month: 12
  year: 2017
  text: December 4, 2017
  day: 04
PublicationDecade 2010
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Angewandte Chemie International Edition
PublicationTitleAlternate Angew Chem Int Ed Engl
PublicationYear 2017
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2014 2014; 53 126
2015; 15
2016; 7
2016 2016; 55 128
2013; 4
2013; 1
2015; 137
2016; 537
2017; 17
2015; 112
2016; 529
2005; 438
2009; 8
2016; 138
2016; 28
2016; 16
2012; 5
2014; 136
2016; 9
2014; 43
2013 2013; 52 125
2017; 139
e_1_2_2_3_2
e_1_2_2_24_2
e_1_2_2_4_2
e_1_2_2_5_2
e_1_2_2_6_1
e_1_2_2_23_1
e_1_2_2_5_3
e_1_2_2_21_2
e_1_2_2_22_1
e_1_2_2_20_2
e_1_2_2_21_1
e_1_2_2_1_1
e_1_2_2_2_2
e_1_2_2_28_3
e_1_2_2_29_2
e_1_2_2_7_2
e_1_2_2_8_2
e_1_2_2_28_2
e_1_2_2_25_3
e_1_2_2_8_3
e_1_2_2_9_2
e_1_2_2_25_2
e_1_2_2_26_1
e_1_2_2_14_1
e_1_2_2_36_2
e_1_2_2_37_1
e_1_2_2_12_2
e_1_2_2_13_1
e_1_2_2_11_2
e_1_2_2_38_2
e_1_2_2_10_2
e_1_2_2_39_2
e_1_2_2_18_3
e_1_2_2_19_2
e_1_2_2_30_2
e_1_2_2_18_2
e_1_2_2_31_2
e_1_2_2_32_1
e_1_2_2_16_2
e_1_2_2_17_1
e_1_2_2_33_2
e_1_2_2_15_2
e_1_2_2_34_2
e_1_2_2_35_1
e_1_2_2_36_1
Kumar B. (e_1_2_2_27_2) 2013; 4
References_xml – volume: 53 126
  start-page: 871 890
  year: 2014 2014
  end-page: 874 893
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 43
  start-page: 631
  year: 2014
  end-page: 675
  publication-title: Chem. Soc. Rev.
– volume: 137
  start-page: 4701
  year: 2015
  end-page: 4708
  publication-title: J. Am. Chem. Soc.
– volume: 55 128
  start-page: 6680 6792
  year: 2016 2016
  end-page: 6684 6796
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 8
  start-page: 76
  year: 2009
  end-page: 80
  publication-title: Nat. Mater.
– volume: 55 128
  start-page: 698 708
  year: 2016 2016
  end-page: 702 712
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 136
  start-page: 6978
  year: 2014
  end-page: 6986
  publication-title: J. Am. Chem. Soc.
– volume: 9
  start-page: 216
  year: 2016
  end-page: 223
  publication-title: Energy Environ. Sci.
– volume: 438
  start-page: 647
  year: 2005
  end-page: 650
  publication-title: Nature
– volume: 52 125
  start-page: 2459 2519
  year: 2013 2013
  end-page: 2462 2522
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 137
  start-page: 4288
  year: 2015
  end-page: 4291
  publication-title: J. Am. Chem. Soc.
– volume: 55 128
  start-page: 9297 9443
  year: 2016 2016
  end-page: 9300 9446
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 136
  start-page: 14107
  year: 2014
  end-page: 14113
  publication-title: J. Am. Chem. Soc.
– volume: 28
  start-page: 3423
  year: 2016
  end-page: 3452
  publication-title: Adv. Mater.
– volume: 7
  start-page: 13869
  year: 2016
  publication-title: Nat. Commun.
– volume: 529
  start-page: 68
  year: 2016
  end-page: 71
  publication-title: Nature
– volume: 55 128
  start-page: 5789 5883
  year: 2016 2016
  end-page: 5792 5886
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 136
  start-page: 7845
  year: 2014
  end-page: 7848
  publication-title: J. Am. Chem. Soc.
– volume: 16
  start-page: 466
  year: 2016
  end-page: 470
  publication-title: Nano Lett.
– volume: 537
  start-page: 382
  year: 2016
  end-page: 386
  publication-title: Nature
– volume: 17
  start-page: 1312
  year: 2017
  end-page: 1317
  publication-title: Nano Lett.
– volume: 4
  start-page: 3819
  year: 2013
  publication-title: Nat. Commun.
– volume: 15
  start-page: 6829
  year: 2015
  end-page: 6835
  publication-title: Nano Lett.
– volume: 112
  start-page: 15809
  year: 2015
  end-page: 15814
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 137
  start-page: 11631
  year: 2015
  end-page: 11636
  publication-title: J. Am. Chem. Soc.
– volume: 137
  start-page: 5021
  year: 2015
  end-page: 5027
  publication-title: J. Am. Chem. Soc.
– volume: 139
  start-page: 130
  year: 2017
  end-page: 136
  publication-title: J. Am. Chem. Soc.
– volume: 1
  start-page: 14706
  year: 2013
  end-page: 14712
  publication-title: J. Mater. Chem. A
– volume: 52 125
  start-page: 3110 3192
  year: 2013 2013
  end-page: 3116 3198
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 138
  start-page: 8120
  year: 2016
  end-page: 8125
  publication-title: J. Am. Chem. Soc.
– volume: 5
  start-page: 7050
  year: 2012
  end-page: 7059
  publication-title: Energy Environ. Sci.
– ident: e_1_2_2_22_1
  doi: 10.1021/jacs.6b02878
– ident: e_1_2_2_1_1
– ident: e_1_2_2_21_1
  doi: 10.1002/anie.201602888
– ident: e_1_2_2_32_1
– ident: e_1_2_2_5_2
  doi: 10.1002/anie.201208320
– ident: e_1_2_2_15_2
  doi: 10.1021/ja500328k
– ident: e_1_2_2_24_2
  doi: 10.1039/C5EE02879E
– ident: e_1_2_2_3_2
  doi: 10.1002/adma.201504766
– ident: e_1_2_2_10_2
  doi: 10.1021/ja511890h
– ident: e_1_2_2_35_1
  doi: 10.1021/jacs.5b02975
– ident: e_1_2_2_37_1
– ident: e_1_2_2_12_2
  doi: 10.1021/jacs.6b06846
– ident: e_1_2_2_39_2
  doi: 10.1021/acs.nanolett.5b03298
– ident: e_1_2_2_23_1
– ident: e_1_2_2_33_2
  doi: 10.1039/c3ta13243a
– ident: e_1_2_2_4_2
  doi: 10.1038/nature16455
– ident: e_1_2_2_34_2
  doi: 10.1038/nature04278
– ident: e_1_2_2_36_2
  doi: 10.1002/ange.201209548
– ident: e_1_2_2_31_2
  doi: 10.1038/nmat2317
– ident: e_1_2_2_18_3
  doi: 10.1002/ange.201601282
– ident: e_1_2_2_28_2
  doi: 10.1002/anie.201308657
– ident: e_1_2_2_25_3
  doi: 10.1002/ange.201509800
– ident: e_1_2_2_8_2
  doi: 10.1002/anie.201601582
– ident: e_1_2_2_26_1
– ident: e_1_2_2_21_2
  doi: 10.1002/ange.201602888
– ident: e_1_2_2_9_2
  doi: 10.1021/ja5121088
– ident: e_1_2_2_18_2
  doi: 10.1002/anie.201601282
– ident: e_1_2_2_11_2
  doi: 10.1039/c2ee21234j
– ident: e_1_2_2_30_2
  doi: 10.1021/ja5031529
– ident: e_1_2_2_17_1
– ident: e_1_2_2_29_2
  doi: 10.1021/acs.nanolett.5b04123
– ident: e_1_2_2_14_1
– ident: e_1_2_2_5_3
  doi: 10.1002/ange.201208320
– ident: e_1_2_2_2_2
  doi: 10.1039/C3CS60323G
– ident: e_1_2_2_36_1
  doi: 10.1002/anie.201209548
– ident: e_1_2_2_38_2
  doi: 10.1038/ncomms13869
– ident: e_1_2_2_13_1
  doi: 10.1073/pnas.1522496112
– volume: 4
  start-page: 3819
  year: 2013
  ident: e_1_2_2_27_2
  publication-title: Nat. Commun.
– ident: e_1_2_2_6_1
– ident: e_1_2_2_16_2
  doi: 10.1021/jacs.5b00046
– ident: e_1_2_2_8_3
  doi: 10.1002/ange.201601582
– ident: e_1_2_2_28_3
  doi: 10.1002/ange.201308657
– ident: e_1_2_2_20_2
  doi: 10.1021/acs.nanolett.6b05287
– ident: e_1_2_2_25_2
  doi: 10.1002/anie.201509800
– ident: e_1_2_2_19_2
  doi: 10.1038/nature19060
– ident: e_1_2_2_7_2
  doi: 10.1021/ja505791r
SSID ssj0028806
Score 2.6392617
Snippet Electrochemical reduction of CO2 to ethanol, a clean and renewable liquid fuel with high heating value, is an attractive strategy for global warming mitigation...
Electrochemical reduction of CO 2 to ethanol, a clean and renewable liquid fuel with high heating value, is an attractive strategy for global warming...
Electrochemical reduction of CO to ethanol, a clean and renewable liquid fuel with high heating value, is an attractive strategy for global warming mitigation...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 15607
SubjectTerms Boron
Calorific value
Carbon dioxide
Carbon monoxide
Chemical reduction
Climate change
CO2 reduction
Diamonds
doped nanodiamond
electrocatalysis
Electrocatalysts
Electrochemistry
Ethanol
Global warming
heterogeneous catalysis
Hydrogen evolution
Liquid fuels
Nanostructure
Nitrogen
Renewable fuels
Resource utilization
Selectivity
Synergistic effect
Title Selective Electrochemical Reduction of Carbon Dioxide to Ethanol on a Boron‐ and Nitrogen‐Co‐doped Nanodiamond
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.201706311
https://www.ncbi.nlm.nih.gov/pubmed/28914470
https://www.proquest.com/docview/1968403410
https://www.proquest.com/docview/1940059722
Volume 56
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA7iRS--H-uLCIKnajftJs1R113Uwx5WBW8lr8KitIt2QTz5E_yN_hJn-tJVRNBLSdOkSZOZzCSd-YaQg8gyrQ13njW-hg2K9D1lIunJIDEm8FXAdWEgO-DnN-Hlbef2kxd_iQ_RHLghZxTrNTK40o_HH6Ch6IGNplkChGzh3IsGW6gVDRv8KAbEWboXBYGHUehr1EafHU9Xn5ZK31TNac21ED39RaLqTpcWJ3dHk1wfmecveI7_-aolslDppfSkJKRlMuPSFTLXrcPBrZL8qoiYA4sj7ZWhc0yFNUCHCP-KE0yzhHbVg4bU2Sh7GllH84z28HQ-u6eQq-gpIia8vbxSlVo6GMFrgILhvpvBxWZjB7lQGqgW-MOukZt-77p77lUhGzwTCt72rJbKBWhoE1lQ1BKnuRJaoJaZaOYSpbhOHHcMgeQSroXlXIXCStsJFSLBrJPZNEvdJqEdxwXnTBrU2Sx3kWw702ZOySTqSOu3iFdPWWwqPHMMq3Efl0jMLMaxjJuxbJHDpvy4RPL4seROTQFxxdGPMaxUsBcGmQ8N7zePYQ7wB4tKXTbBMiE68wrGWmSjpJymKdjYwt5VQG1WzP8vfYhPBhe95m7rL5W2yTymC9ubcIfM5g8TtwsaVK73Ci55B7F9FPY
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT-MwELZQ99C97AP2UZ5eaSVOaVMnteMjtEUtCz0UKu0t8itStShBbCohTvwEfuP-kp3Ja1VWCAkuUezYsWPPeMbOzDeEfI8s09pw51nja9igSN9TJpKeDBJjAl8FXBcGsjM-WYSnPwe1NSH6wpT4EM2BG3JGsV4jg-OBdO8faii6YKNtlgApi969bzCsN8Lnj-YNghQD8iwdjILAwzj0NW6jz3rr9dfl0n_K5rruWgifk_dE190ubU5-dVe57pq7R4iOr_quD-RdpZrSo5KWPpINl26S9rCOCLdF8osiaA6sj3RcRs8xFdwAnSMCLM4xzRI6VDca7kbL7HZpHc0zOsYD-uyKQq6ixwia8Of-garU0tkSXgNEDOlhBhebXTvIhdJAuMAi9hNZnIwvhxOvitrgmVDwvme1VC5AW5vIgq6WOM2V0AIVzUQzlyjFdeK4Y4gll3AtLOcqFFbaQagQDOYzaaVZ6r4SOnBccM6kQbXNchfJvjN95pRMooG0fod49ZzFpoI0x8gaV3EJxsxiHMu4GcsOOWzKX5dgHk-W3K1JIK6Y-ncMixVsh0HsQ8PfmscwB_iPRaUuW2GZEP15BWMd8qUknaYp2NvC9lVAbVYQwDN9iI9m03GT2n5JpQPSnlyen8Vn09mPHfIW8wtTnHCXtPKbldsDhSrX-wXL_AX1mxkS
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTtwwELYQlaAXWqCFLZQaqVJPgayTteMjLLuCglYVFIlb5F9pxSpZQVZCnHiEPiNPwkz-2i1Cleglih07duwZz9iZ-YaQr4llWhvuAmtCDRsUGQbKJDKQkTcmClXEdWkgO-LHl_H3q97VH178FT5Ee-CGnFGu18jgU-v3f4OGogc2mmYJELLo3Psm5tASqkXnLYAUA-qs_IuiKMAw9A1sY8j25-vPi6Vnuua86lrKnuE7oppeVyYn13uzQu-Z-78AHf_ns96TlVoxpQcVJa2SBZetkeV-Ew9unRQXZcgcWB3poIqdY2qwAXqO-K84wzT3tK9uNNwdjfO7sXW0yOkAj-fzCYVcRQ8RMuHx4RdVmaWjMbwGSBjS_RwuNp86yIXSQLbAIPYDuRwOfvaPgzpmQ2BiwbuB1VK5CC1tEguamneaK6EFqpleM-eV4to77hgiyXmuheVcxcJK24sVQsF8JItZnrlNQnuOC86ZNKi0We4S2XWmy5ySPulJG3ZI0ExZampAc4yrMUkrKGaW4lim7Vh2yLe2_LSC8nix5HZDAWnN0rcpLFWwGQahDw3vto9hDvAPi8pcPsMyMXrzCsY6ZKOinLYp2NnC5lVAbVbO_z_6kB6MTgZt6tNrKn0hSz-OhunZyeh0i7zF7NIOJ94mi8XNzH0GbarQOyXDPAGWYRfB
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Selective+Electrochemical+Reduction+of+Carbon+Dioxide+to+Ethanol+on+a+Boron%E2%80%90+and+Nitrogen%E2%80%90Co%E2%80%90doped+Nanodiamond&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Liu%2C+Yanming&rft.au=Zhang%2C+Yujing&rft.au=Cheng%2C+Kai&rft.au=Quan%2C+Xie&rft.date=2017-12-04&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=56&rft.issue=49&rft.spage=15607&rft.epage=15611&rft_id=info:doi/10.1002%2Fanie.201706311&rft.externalDBID=10.1002%252Fanie.201706311&rft.externalDocID=ANIE201706311
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon