Selective Electrochemical Reduction of Carbon Dioxide to Ethanol on a Boron‐ and Nitrogen‐Co‐doped Nanodiamond
Electrochemical reduction of CO2 to ethanol, a clean and renewable liquid fuel with high heating value, is an attractive strategy for global warming mitigation and resource utilization. However, converting CO2 to ethanol remains great challenge due to the low activity, poor product selectivity and s...
Saved in:
Published in | Angewandte Chemie International Edition Vol. 56; no. 49; pp. 15607 - 15611 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
04.12.2017
|
Edition | International ed. in English |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Electrochemical reduction of CO2 to ethanol, a clean and renewable liquid fuel with high heating value, is an attractive strategy for global warming mitigation and resource utilization. However, converting CO2 to ethanol remains great challenge due to the low activity, poor product selectivity and stability of electrocatalysts. Here, the B‐ and N‐co‐doped nanodiamond (BND) was reported as an efficient and stable electrode for selective reduction of CO2 to ethanol. Good ethanol selectivity was achieved on the BND with high Faradaic efficiency of 93.2 % (−1.0 V vs. RHE), which overcame the limitation of low selectivity for multicarbon or high heating value fuels. Its superior performance was mainly originated from the synergistic effect of B and N co‐doping, high N content and overpotential for hydrogen evolution. The possible pathway for CO2 reduction revealed by DFT computation was CO2→*COOH→*CO→*COCO→*COCH2OH→*CH2OCH2OH→CH3CH2OH.
Efficient and selective electrochemical reduction of CO2 to ethanol was achieved on a nonmetallic B‐ and N‐co‐doped nanodiamond used as an electrocatalyst. The synergistic effect of co‐doping, N content, and H2 evolution potential were used as key factors for tailoring ethanol selectivity. |
---|---|
AbstractList | Electrochemical reduction of CO
to ethanol, a clean and renewable liquid fuel with high heating value, is an attractive strategy for global warming mitigation and resource utilization. However, converting CO
to ethanol remains great challenge due to the low activity, poor product selectivity and stability of electrocatalysts. Here, the B- and N-co-doped nanodiamond (BND) was reported as an efficient and stable electrode for selective reduction of CO
to ethanol. Good ethanol selectivity was achieved on the BND with high Faradaic efficiency of 93.2 % (-1.0 V vs. RHE), which overcame the limitation of low selectivity for multicarbon or high heating value fuels. Its superior performance was mainly originated from the synergistic effect of B and N co-doping, high N content and overpotential for hydrogen evolution. The possible pathway for CO
reduction revealed by DFT computation was CO
→*COOH→*CO→*COCO→*COCH
OH→*CH
OCH
OH→CH
CH
OH. Electrochemical reduction of CO2 to ethanol, a clean and renewable liquid fuel with high heating value, is an attractive strategy for global warming mitigation and resource utilization. However, converting CO2 to ethanol remains great challenge due to the low activity, poor product selectivity and stability of electrocatalysts. Here, the B- and N-co-doped nanodiamond (BND) was reported as an efficient and stable electrode for selective reduction of CO2 to ethanol. Good ethanol selectivity was achieved on the BND with high Faradaic efficiency of 93.2 % (-1.0 V vs. RHE), which overcame the limitation of low selectivity for multicarbon or high heating value fuels. Its superior performance was mainly originated from the synergistic effect of B and N co-doping, high N content and overpotential for hydrogen evolution. The possible pathway for CO2 reduction revealed by DFT computation was CO2 →*COOH→*CO→*COCO→*COCH2 OH→*CH2 OCH2 OH→CH3 CH2 OH.Electrochemical reduction of CO2 to ethanol, a clean and renewable liquid fuel with high heating value, is an attractive strategy for global warming mitigation and resource utilization. However, converting CO2 to ethanol remains great challenge due to the low activity, poor product selectivity and stability of electrocatalysts. Here, the B- and N-co-doped nanodiamond (BND) was reported as an efficient and stable electrode for selective reduction of CO2 to ethanol. Good ethanol selectivity was achieved on the BND with high Faradaic efficiency of 93.2 % (-1.0 V vs. RHE), which overcame the limitation of low selectivity for multicarbon or high heating value fuels. Its superior performance was mainly originated from the synergistic effect of B and N co-doping, high N content and overpotential for hydrogen evolution. The possible pathway for CO2 reduction revealed by DFT computation was CO2 →*COOH→*CO→*COCO→*COCH2 OH→*CH2 OCH2 OH→CH3 CH2 OH. Electrochemical reduction of CO 2 to ethanol, a clean and renewable liquid fuel with high heating value, is an attractive strategy for global warming mitigation and resource utilization. However, converting CO 2 to ethanol remains great challenge due to the low activity, poor product selectivity and stability of electrocatalysts. Here, the B‐ and N‐co‐doped nanodiamond (BND) was reported as an efficient and stable electrode for selective reduction of CO 2 to ethanol. Good ethanol selectivity was achieved on the BND with high Faradaic efficiency of 93.2 % (−1.0 V vs. RHE), which overcame the limitation of low selectivity for multicarbon or high heating value fuels. Its superior performance was mainly originated from the synergistic effect of B and N co‐doping, high N content and overpotential for hydrogen evolution. The possible pathway for CO 2 reduction revealed by DFT computation was CO 2 →*COOH→*CO→*COCO→*COCH 2 OH→*CH 2 OCH 2 OH→CH 3 CH 2 OH. Electrochemical reduction of CO2 to ethanol, a clean and renewable liquid fuel with high heating value, is an attractive strategy for global warming mitigation and resource utilization. However, converting CO2 to ethanol remains great challenge due to the low activity, poor product selectivity and stability of electrocatalysts. Here, the B‐ and N‐co‐doped nanodiamond (BND) was reported as an efficient and stable electrode for selective reduction of CO2 to ethanol. Good ethanol selectivity was achieved on the BND with high Faradaic efficiency of 93.2 % (−1.0 V vs. RHE), which overcame the limitation of low selectivity for multicarbon or high heating value fuels. Its superior performance was mainly originated from the synergistic effect of B and N co‐doping, high N content and overpotential for hydrogen evolution. The possible pathway for CO2 reduction revealed by DFT computation was CO2→*COOH→*CO→*COCO→*COCH2OH→*CH2OCH2OH→CH3CH2OH. Efficient and selective electrochemical reduction of CO2 to ethanol was achieved on a nonmetallic B‐ and N‐co‐doped nanodiamond used as an electrocatalyst. The synergistic effect of co‐doping, N content, and H2 evolution potential were used as key factors for tailoring ethanol selectivity. Electrochemical reduction of CO2 to ethanol, a clean and renewable liquid fuel with high heating value, is an attractive strategy for global warming mitigation and resource utilization. However, converting CO2 to ethanol remains great challenge due to the low activity, poor product selectivity and stability of electrocatalysts. Here, the B‐ and N‐co‐doped nanodiamond (BND) was reported as an efficient and stable electrode for selective reduction of CO2 to ethanol. Good ethanol selectivity was achieved on the BND with high Faradaic efficiency of 93.2 % (−1.0 V vs. RHE), which overcame the limitation of low selectivity for multicarbon or high heating value fuels. Its superior performance was mainly originated from the synergistic effect of B and N co‐doping, high N content and overpotential for hydrogen evolution. The possible pathway for CO2 reduction revealed by DFT computation was CO2→*COOH→*CO→*COCO→*COCH2OH→*CH2OCH2OH→CH3CH2OH. |
Author | Zhao, Huimin Quan, Xie Fan, Xinfei Hoffmann, Michael R. Zhang, Yujing Yu, Hongtao Su, Yan Chen, Shuo Liu, Yanming Cheng, Kai Zhang, Yaobin |
Author_xml | – sequence: 1 givenname: Yanming surname: Liu fullname: Liu, Yanming organization: Dalian University of Technology – sequence: 2 givenname: Yujing surname: Zhang fullname: Zhang, Yujing organization: Dalian University of Technology – sequence: 3 givenname: Kai surname: Cheng fullname: Cheng, Kai organization: Dalian University of Technology – sequence: 4 givenname: Xie orcidid: 0000-0003-3085-0789 surname: Quan fullname: Quan, Xie email: quanxie@dlut.edu.cn organization: Dalian University of Technology – sequence: 5 givenname: Xinfei surname: Fan fullname: Fan, Xinfei organization: Dalian University of Technology – sequence: 6 givenname: Yan surname: Su fullname: Su, Yan organization: Dalian University of Technology – sequence: 7 givenname: Shuo surname: Chen fullname: Chen, Shuo organization: Dalian University of Technology – sequence: 8 givenname: Huimin surname: Zhao fullname: Zhao, Huimin organization: Dalian University of Technology – sequence: 9 givenname: Yaobin surname: Zhang fullname: Zhang, Yaobin organization: Dalian University of Technology – sequence: 10 givenname: Hongtao surname: Yu fullname: Yu, Hongtao organization: Dalian University of Technology – sequence: 11 givenname: Michael R. surname: Hoffmann fullname: Hoffmann, Michael R. organization: California Institute of Technology |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28914470$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc1u1TAQha2qqH-w7RJZYsMmF_9dO1m2lwtUqorUwtqaxBPqKrFvnaTQHY_AM_IkOLptkSohNvaZ8XeOrJlDshtiQEKOOVtwxsQ7CB4XgnHDtOR8hxzwpeCFNEbuZq2kLEy55PvkcBhuMl-WTO-RfVFWXCnDDsh4hR02o79Dup5Fis019r6Bjl6im_JLDDS2dAWpzuq9jz-8QzpGuh6vIcSO5i7Q05hi-P3zF4Xg6IXPMd9wrlcxHy5uMHcz7Tz0MbiX5EUL3YCvHu4j8vXD-svqU3H--ePZ6uS8aJTRvHB1BSil0ax0SsgWaw2mNrIypq0FtgC6blGjEFyqVtfGaQ3KuMotFWgu5BF5u83dpHg74TDa3g8Ndh0EjNNgeaUYW1ZGzOibZ-hNnFLIv8uULhWTirNMvX6gprpHZzfJ95Du7eM8M6C2QJPiMCRsbeNHmIc4JvCd5czOa7Pz2uzT2rJt8cz2mPxPQ7U1fPcd3v-HticXZ-u_3j-rZa0Q |
CitedBy_id | crossref_primary_10_1038_s41467_021_25640_1 crossref_primary_10_3390_catal10050473 crossref_primary_10_1016_j_jclepro_2024_141896 crossref_primary_10_1021_acs_jpcc_3c00946 crossref_primary_10_1016_j_joule_2018_09_021 crossref_primary_10_1039_D4EE01301H crossref_primary_10_1002_anie_202410802 crossref_primary_10_1039_D2GC03343G crossref_primary_10_1016_j_apcata_2023_119406 crossref_primary_10_1002_cssc_202401173 crossref_primary_10_1002_smll_202001896 crossref_primary_10_1021_acs_inorgchem_4c04970 crossref_primary_10_1002_ange_202207252 crossref_primary_10_1016_j_carbon_2019_10_022 crossref_primary_10_1002_advs_202416597 crossref_primary_10_1002_ange_201802055 crossref_primary_10_1016_j_pecs_2023_101074 crossref_primary_10_1039_D2EE00472K crossref_primary_10_1007_s10853_021_06061_3 crossref_primary_10_3390_catal11050578 crossref_primary_10_1016_j_nantod_2019_100833 crossref_primary_10_1021_acscatal_9b01565 crossref_primary_10_1016_j_colsurfa_2021_126559 crossref_primary_10_1016_j_cclet_2021_12_063 crossref_primary_10_1002_aenm_202201461 crossref_primary_10_1002_adfm_202008146 crossref_primary_10_3390_molecules28073169 crossref_primary_10_1016_j_jechem_2024_11_032 crossref_primary_10_1039_C8TA07430E crossref_primary_10_1002_anie_202415273 crossref_primary_10_1080_26941112_2021_1939170 crossref_primary_10_1002_cctc_201901267 crossref_primary_10_1016_j_apsusc_2022_154199 crossref_primary_10_1016_j_xinn_2025_100807 crossref_primary_10_1039_C9SE00527G crossref_primary_10_1039_D0CS00071J crossref_primary_10_1002_ese3_1036 crossref_primary_10_1016_j_carbon_2022_09_044 crossref_primary_10_1016_j_matlet_2020_128092 crossref_primary_10_1002_anie_202302789 crossref_primary_10_1021_acs_inorgchem_5c00480 crossref_primary_10_1021_acssuschemeng_1c02805 crossref_primary_10_1002_adsu_202000134 crossref_primary_10_1016_j_apcatb_2021_120543 crossref_primary_10_1021_acssuschemeng_9b00515 crossref_primary_10_1002_adfm_201906194 crossref_primary_10_1016_j_cej_2023_143060 crossref_primary_10_1007_s12648_024_03213_4 crossref_primary_10_1016_j_jechem_2020_07_049 crossref_primary_10_1002_ange_201806432 crossref_primary_10_1007_s12210_019_00830_8 crossref_primary_10_1007_s12274_023_5653_7 crossref_primary_10_1002_smll_202311163 crossref_primary_10_1002_aenm_202200586 crossref_primary_10_1002_ange_202302789 crossref_primary_10_1126_science_aav3506 crossref_primary_10_1021_acscatal_0c04862 crossref_primary_10_1002_cnma_202100110 crossref_primary_10_1016_j_ccr_2023_215409 crossref_primary_10_1021_acs_iecr_9b01454 crossref_primary_10_1002_cey2_87 crossref_primary_10_3390_catal10111287 crossref_primary_10_1016_j_electacta_2018_06_107 crossref_primary_10_1039_D3TA01920A crossref_primary_10_1002_ange_202209629 crossref_primary_10_1246_bcsj_20180268 crossref_primary_10_1016_j_checat_2023_100808 crossref_primary_10_1016_j_cossms_2021_100921 crossref_primary_10_1021_acs_chemmater_2c01591 crossref_primary_10_1016_j_jechem_2020_05_006 crossref_primary_10_1021_jacs_8b02798 crossref_primary_10_1016_j_cherd_2024_07_014 crossref_primary_10_1016_j_surfin_2023_103608 crossref_primary_10_1088_1361_6463_aba6b6 crossref_primary_10_1002_adts_202200782 crossref_primary_10_1021_acs_est_8b02740 crossref_primary_10_1039_C9SE00056A crossref_primary_10_1002_adma_202417567 crossref_primary_10_1002_adfm_202408013 crossref_primary_10_1002_open_202100084 crossref_primary_10_1016_j_isci_2024_109470 crossref_primary_10_1039_D2SE01423H crossref_primary_10_1021_acssuschemeng_2c00201 crossref_primary_10_1039_D2EY00071G crossref_primary_10_1016_j_apcatb_2019_117917 crossref_primary_10_1021_acscentsci_8b00714 crossref_primary_10_1002_aenm_201902106 crossref_primary_10_1039_D3EE02946H crossref_primary_10_1016_j_enchem_2020_100040 crossref_primary_10_1039_D0TA03991H crossref_primary_10_1016_j_jcat_2020_01_002 crossref_primary_10_1021_acsami_3c03083 crossref_primary_10_1016_j_cej_2025_160633 crossref_primary_10_1002_anie_201806432 crossref_primary_10_1002_advs_202410280 crossref_primary_10_1016_j_carbon_2023_01_059 crossref_primary_10_1021_acsaem_2c01201 crossref_primary_10_1115_1_4056556 crossref_primary_10_1016_j_mtener_2024_101634 crossref_primary_10_1016_j_jcis_2019_10_030 crossref_primary_10_1016_j_mtchem_2023_101398 crossref_primary_10_1007_s41918_022_00140_y crossref_primary_10_1016_j_joule_2018_10_015 crossref_primary_10_1039_D1TA01115D crossref_primary_10_5796_electrochemistry_22_00060 crossref_primary_10_1002_celc_201901667 crossref_primary_10_1002_slct_202102829 crossref_primary_10_1021_acscatal_0c04714 crossref_primary_10_3390_catal10101179 crossref_primary_10_1002_cssc_202401557 crossref_primary_10_1038_s41598_024_62367_7 crossref_primary_10_1016_j_cogsc_2020_03_009 crossref_primary_10_1002_tcr_201800100 crossref_primary_10_1016_j_nantod_2024_102152 crossref_primary_10_1002_smll_201901981 crossref_primary_10_1002_smtd_201800369 crossref_primary_10_1002_adfm_201907658 crossref_primary_10_1002_cssc_202402755 crossref_primary_10_1021_acs_energyfuels_3c02152 crossref_primary_10_1039_C7CS00757D crossref_primary_10_1088_1361_6528_ac302b crossref_primary_10_1039_D0SC01133A crossref_primary_10_1039_D2TA02086F crossref_primary_10_1002_cssc_202301719 crossref_primary_10_1038_s41467_021_21901_1 crossref_primary_10_1002_aenm_202402278 crossref_primary_10_1038_s41929_019_0235_5 crossref_primary_10_1134_S1023193522050068 crossref_primary_10_1016_j_fuel_2023_129760 crossref_primary_10_1021_acsengineeringau_3c00030 crossref_primary_10_1039_C8CC02055H crossref_primary_10_1021_acsami_2c13154 crossref_primary_10_1016_j_jece_2020_104798 crossref_primary_10_1016_j_materresbull_2021_111294 crossref_primary_10_1002_chem_202402477 crossref_primary_10_1002_cssc_202401333 crossref_primary_10_1016_j_electacta_2021_138843 crossref_primary_10_2139_ssrn_4130119 crossref_primary_10_1016_j_apsusc_2022_155332 crossref_primary_10_1039_C8CS00684A crossref_primary_10_1007_s10800_020_01428_x crossref_primary_10_1039_C9NR07824J crossref_primary_10_1016_j_enchem_2023_100099 crossref_primary_10_1039_D1EN00977J crossref_primary_10_1016_j_isci_2022_104010 crossref_primary_10_1002_adma_201804257 crossref_primary_10_1002_celc_202000431 crossref_primary_10_1016_j_apcata_2018_12_016 crossref_primary_10_26599_NRE_2022_9120009 crossref_primary_10_1002_smll_202205765 crossref_primary_10_1002_adfm_202208212 crossref_primary_10_1016_j_checat_2023_100506 crossref_primary_10_1021_jacs_9b02945 crossref_primary_10_1007_s12274_021_3335_x crossref_primary_10_1088_1361_6463_ac18ee crossref_primary_10_1002_anie_201802055 crossref_primary_10_1016_j_jcat_2020_11_012 crossref_primary_10_1016_j_jechem_2024_12_022 crossref_primary_10_1002_smm2_1090 crossref_primary_10_1038_s41467_019_11868_5 crossref_primary_10_3390_en11020392 crossref_primary_10_1039_D4SE00405A crossref_primary_10_3390_catal13020393 crossref_primary_10_1002_ange_202410802 crossref_primary_10_1021_acssuschemeng_4c06710 crossref_primary_10_1002_ange_202108902 crossref_primary_10_1016_j_chempr_2018_08_019 crossref_primary_10_1016_j_apcatb_2021_120267 crossref_primary_10_1002_ange_202415273 crossref_primary_10_1021_acsanm_2c05098 crossref_primary_10_1021_acs_accounts_2c00644 crossref_primary_10_1016_j_apenergy_2020_115557 crossref_primary_10_1039_D0CS00030B crossref_primary_10_1002_anie_202209629 crossref_primary_10_3390_catal11030351 crossref_primary_10_1002_adma_201805121 crossref_primary_10_1021_acs_chemrev_2c00514 crossref_primary_10_3390_en16020616 crossref_primary_10_1039_D1MA00814E crossref_primary_10_1002_asia_201800637 crossref_primary_10_1021_acs_jpcc_4c02608 crossref_primary_10_1039_D0TA08402F crossref_primary_10_1002_cey2_9 crossref_primary_10_1016_j_carbon_2021_01_116 crossref_primary_10_1016_j_jechem_2022_02_033 crossref_primary_10_1007_s41918_018_0003_2 crossref_primary_10_1016_j_mtener_2019_100352 crossref_primary_10_1021_acsmaterialslett_3c01316 crossref_primary_10_1039_C9QI00484J crossref_primary_10_1016_j_enchem_2019_100024 crossref_primary_10_30919_es_1804232 crossref_primary_10_1016_j_jpowsour_2022_232430 crossref_primary_10_1016_j_nantod_2020_100891 crossref_primary_10_1016_j_cattod_2023_114284 crossref_primary_10_1115_1_4046490 crossref_primary_10_1016_j_carbon_2019_04_112 crossref_primary_10_1002_adma_202103266 crossref_primary_10_1016_j_apcatb_2020_118908 crossref_primary_10_1002_celc_201801716 crossref_primary_10_1039_D0SE00228C crossref_primary_10_1002_adma_201903499 crossref_primary_10_1021_acssuschemeng_3c00835 crossref_primary_10_1039_D0TA02471F crossref_primary_10_1002_smll_202400798 crossref_primary_10_1021_acs_est_8b06130 crossref_primary_10_1016_j_coelec_2021_100865 crossref_primary_10_1016_j_carbon_2022_04_015 crossref_primary_10_1039_D0TA11457J crossref_primary_10_3390_ma17030600 crossref_primary_10_1021_acssuschemeng_8b05217 crossref_primary_10_1002_anie_202108902 crossref_primary_10_1002_adma_201807166 crossref_primary_10_5796_denkikagaku_19_FE0007 crossref_primary_10_1039_D0EE01860K crossref_primary_10_1126_sciadv_aay3111 crossref_primary_10_1002_asia_202001189 crossref_primary_10_1002_adts_201800004 crossref_primary_10_1007_s41918_022_00139_5 crossref_primary_10_1080_1536383X_2020_1743979 crossref_primary_10_1007_s12598_023_02513_8 crossref_primary_10_1021_acs_jpcc_0c09661 crossref_primary_10_1039_D1CS00219H crossref_primary_10_1039_D4TA04797D crossref_primary_10_1016_j_mtchem_2020_100264 crossref_primary_10_1016_j_ces_2020_115947 crossref_primary_10_1039_D0CS00835D crossref_primary_10_1002_adma_202105690 crossref_primary_10_1002_cctc_201902326 crossref_primary_10_1039_D1SE00861G crossref_primary_10_1016_j_mtadv_2020_100074 crossref_primary_10_1016_j_mtadv_2020_100071 crossref_primary_10_1002_adma_201801526 crossref_primary_10_1039_D1CY01063H crossref_primary_10_1039_D1TA00298H crossref_primary_10_1021_acssuschemeng_0c00739 crossref_primary_10_1016_j_diamond_2021_108608 crossref_primary_10_1002_anie_202207252 crossref_primary_10_1039_C9NR07559C crossref_primary_10_1016_j_enconman_2022_115213 crossref_primary_10_1002_tcr_201900048 crossref_primary_10_1016_j_apcatb_2020_119591 crossref_primary_10_1016_j_ccr_2022_214737 crossref_primary_10_1002_adma_201808276 crossref_primary_10_1016_j_carbon_2022_05_038 crossref_primary_10_1038_s41560_023_01389_3 crossref_primary_10_1016_j_eng_2022_12_005 |
Cites_doi | 10.1021/jacs.6b02878 10.1002/anie.201602888 10.1002/anie.201208320 10.1021/ja500328k 10.1039/C5EE02879E 10.1002/adma.201504766 10.1021/ja511890h 10.1021/jacs.5b02975 10.1021/jacs.6b06846 10.1021/acs.nanolett.5b03298 10.1039/c3ta13243a 10.1038/nature16455 10.1038/nature04278 10.1002/ange.201209548 10.1038/nmat2317 10.1002/ange.201601282 10.1002/anie.201308657 10.1002/ange.201509800 10.1002/anie.201601582 10.1002/ange.201602888 10.1021/ja5121088 10.1002/anie.201601282 10.1039/c2ee21234j 10.1021/ja5031529 10.1021/acs.nanolett.5b04123 10.1002/ange.201208320 10.1039/C3CS60323G 10.1002/anie.201209548 10.1038/ncomms13869 10.1073/pnas.1522496112 10.1021/jacs.5b00046 10.1002/ange.201601582 10.1002/ange.201308657 10.1021/acs.nanolett.6b05287 10.1002/anie.201509800 10.1038/nature19060 10.1021/ja505791r |
ContentType | Journal Article |
Copyright | 2017 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. |
Copyright_xml | – notice: 2017 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. |
DBID | AAYXX CITATION NPM 7TM K9. 7X8 |
DOI | 10.1002/anie.201706311 |
DatabaseName | CrossRef PubMed Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed ProQuest Health & Medical Complete (Alumni) Nucleic Acids Abstracts MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic CrossRef ProQuest Health & Medical Complete (Alumni) |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3773 |
Edition | International ed. in English |
EndPage | 15611 |
ExternalDocumentID | 28914470 10_1002_anie_201706311 ANIE201706311 |
Genre | shortCommunication Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Programme of Introducing Talents of Discipline to Universities funderid: B13012 – fundername: National Natural Science Foundation of China funderid: 21590813; 21437001 |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABLJU ABPPZ ABPVW ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BTSUX BY8 CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS EJD F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M53 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ TN5 UB1 UPT V2E VQA W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XSW XV2 YZZ ZZTAW ~IA ~KM ~WT AAYXX ABDBF ABJNI AETEA AEYWJ AGHNM AGYGG CITATION NPM 7TM K9. 7X8 |
ID | FETCH-LOGICAL-c4761-db9ae337608d423feb6a7b73977fb2efaa6bfe6e22134f6b7d66a47d9d54a6123 |
IEDL.DBID | DR2 |
ISSN | 1433-7851 1521-3773 |
IngestDate | Fri Jul 11 16:50:54 EDT 2025 Fri Jul 25 10:29:47 EDT 2025 Thu Apr 03 07:08:38 EDT 2025 Tue Jul 01 02:26:11 EDT 2025 Thu Apr 24 22:57:41 EDT 2025 Wed Jan 22 17:06:49 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 49 |
Keywords | doped nanodiamond heterogeneous catalysis CO2 reduction electrocatalysis ethanol |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4761-db9ae337608d423feb6a7b73977fb2efaa6bfe6e22134f6b7d66a47d9d54a6123 |
Notes | These authors contributed equally to this work. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-3085-0789 |
PMID | 28914470 |
PQID | 1968403410 |
PQPubID | 946352 |
PageCount | 5 |
ParticipantIDs | proquest_miscellaneous_1940059722 proquest_journals_1968403410 pubmed_primary_28914470 crossref_citationtrail_10_1002_anie_201706311 crossref_primary_10_1002_anie_201706311 wiley_primary_10_1002_anie_201706311_ANIE201706311 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | December 4, 2017 |
PublicationDateYYYYMMDD | 2017-12-04 |
PublicationDate_xml | – month: 12 year: 2017 text: December 4, 2017 day: 04 |
PublicationDecade | 2010 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Angewandte Chemie International Edition |
PublicationTitleAlternate | Angew Chem Int Ed Engl |
PublicationYear | 2017 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2014 2014; 53 126 2015; 15 2016; 7 2016 2016; 55 128 2013; 4 2013; 1 2015; 137 2016; 537 2017; 17 2015; 112 2016; 529 2005; 438 2009; 8 2016; 138 2016; 28 2016; 16 2012; 5 2014; 136 2016; 9 2014; 43 2013 2013; 52 125 2017; 139 e_1_2_2_3_2 e_1_2_2_24_2 e_1_2_2_4_2 e_1_2_2_5_2 e_1_2_2_6_1 e_1_2_2_23_1 e_1_2_2_5_3 e_1_2_2_21_2 e_1_2_2_22_1 e_1_2_2_20_2 e_1_2_2_21_1 e_1_2_2_1_1 e_1_2_2_2_2 e_1_2_2_28_3 e_1_2_2_29_2 e_1_2_2_7_2 e_1_2_2_8_2 e_1_2_2_28_2 e_1_2_2_25_3 e_1_2_2_8_3 e_1_2_2_9_2 e_1_2_2_25_2 e_1_2_2_26_1 e_1_2_2_14_1 e_1_2_2_36_2 e_1_2_2_37_1 e_1_2_2_12_2 e_1_2_2_13_1 e_1_2_2_11_2 e_1_2_2_38_2 e_1_2_2_10_2 e_1_2_2_39_2 e_1_2_2_18_3 e_1_2_2_19_2 e_1_2_2_30_2 e_1_2_2_18_2 e_1_2_2_31_2 e_1_2_2_32_1 e_1_2_2_16_2 e_1_2_2_17_1 e_1_2_2_33_2 e_1_2_2_15_2 e_1_2_2_34_2 e_1_2_2_35_1 e_1_2_2_36_1 Kumar B. (e_1_2_2_27_2) 2013; 4 |
References_xml | – volume: 53 126 start-page: 871 890 year: 2014 2014 end-page: 874 893 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 43 start-page: 631 year: 2014 end-page: 675 publication-title: Chem. Soc. Rev. – volume: 137 start-page: 4701 year: 2015 end-page: 4708 publication-title: J. Am. Chem. Soc. – volume: 55 128 start-page: 6680 6792 year: 2016 2016 end-page: 6684 6796 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 8 start-page: 76 year: 2009 end-page: 80 publication-title: Nat. Mater. – volume: 55 128 start-page: 698 708 year: 2016 2016 end-page: 702 712 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 136 start-page: 6978 year: 2014 end-page: 6986 publication-title: J. Am. Chem. Soc. – volume: 9 start-page: 216 year: 2016 end-page: 223 publication-title: Energy Environ. Sci. – volume: 438 start-page: 647 year: 2005 end-page: 650 publication-title: Nature – volume: 52 125 start-page: 2459 2519 year: 2013 2013 end-page: 2462 2522 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 137 start-page: 4288 year: 2015 end-page: 4291 publication-title: J. Am. Chem. Soc. – volume: 55 128 start-page: 9297 9443 year: 2016 2016 end-page: 9300 9446 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 136 start-page: 14107 year: 2014 end-page: 14113 publication-title: J. Am. Chem. Soc. – volume: 28 start-page: 3423 year: 2016 end-page: 3452 publication-title: Adv. Mater. – volume: 7 start-page: 13869 year: 2016 publication-title: Nat. Commun. – volume: 529 start-page: 68 year: 2016 end-page: 71 publication-title: Nature – volume: 55 128 start-page: 5789 5883 year: 2016 2016 end-page: 5792 5886 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 136 start-page: 7845 year: 2014 end-page: 7848 publication-title: J. Am. Chem. Soc. – volume: 16 start-page: 466 year: 2016 end-page: 470 publication-title: Nano Lett. – volume: 537 start-page: 382 year: 2016 end-page: 386 publication-title: Nature – volume: 17 start-page: 1312 year: 2017 end-page: 1317 publication-title: Nano Lett. – volume: 4 start-page: 3819 year: 2013 publication-title: Nat. Commun. – volume: 15 start-page: 6829 year: 2015 end-page: 6835 publication-title: Nano Lett. – volume: 112 start-page: 15809 year: 2015 end-page: 15814 publication-title: Proc. Natl. Acad. Sci. USA – volume: 137 start-page: 11631 year: 2015 end-page: 11636 publication-title: J. Am. Chem. Soc. – volume: 137 start-page: 5021 year: 2015 end-page: 5027 publication-title: J. Am. Chem. Soc. – volume: 139 start-page: 130 year: 2017 end-page: 136 publication-title: J. Am. Chem. Soc. – volume: 1 start-page: 14706 year: 2013 end-page: 14712 publication-title: J. Mater. Chem. A – volume: 52 125 start-page: 3110 3192 year: 2013 2013 end-page: 3116 3198 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 138 start-page: 8120 year: 2016 end-page: 8125 publication-title: J. Am. Chem. Soc. – volume: 5 start-page: 7050 year: 2012 end-page: 7059 publication-title: Energy Environ. Sci. – ident: e_1_2_2_22_1 doi: 10.1021/jacs.6b02878 – ident: e_1_2_2_1_1 – ident: e_1_2_2_21_1 doi: 10.1002/anie.201602888 – ident: e_1_2_2_32_1 – ident: e_1_2_2_5_2 doi: 10.1002/anie.201208320 – ident: e_1_2_2_15_2 doi: 10.1021/ja500328k – ident: e_1_2_2_24_2 doi: 10.1039/C5EE02879E – ident: e_1_2_2_3_2 doi: 10.1002/adma.201504766 – ident: e_1_2_2_10_2 doi: 10.1021/ja511890h – ident: e_1_2_2_35_1 doi: 10.1021/jacs.5b02975 – ident: e_1_2_2_37_1 – ident: e_1_2_2_12_2 doi: 10.1021/jacs.6b06846 – ident: e_1_2_2_39_2 doi: 10.1021/acs.nanolett.5b03298 – ident: e_1_2_2_23_1 – ident: e_1_2_2_33_2 doi: 10.1039/c3ta13243a – ident: e_1_2_2_4_2 doi: 10.1038/nature16455 – ident: e_1_2_2_34_2 doi: 10.1038/nature04278 – ident: e_1_2_2_36_2 doi: 10.1002/ange.201209548 – ident: e_1_2_2_31_2 doi: 10.1038/nmat2317 – ident: e_1_2_2_18_3 doi: 10.1002/ange.201601282 – ident: e_1_2_2_28_2 doi: 10.1002/anie.201308657 – ident: e_1_2_2_25_3 doi: 10.1002/ange.201509800 – ident: e_1_2_2_8_2 doi: 10.1002/anie.201601582 – ident: e_1_2_2_26_1 – ident: e_1_2_2_21_2 doi: 10.1002/ange.201602888 – ident: e_1_2_2_9_2 doi: 10.1021/ja5121088 – ident: e_1_2_2_18_2 doi: 10.1002/anie.201601282 – ident: e_1_2_2_11_2 doi: 10.1039/c2ee21234j – ident: e_1_2_2_30_2 doi: 10.1021/ja5031529 – ident: e_1_2_2_17_1 – ident: e_1_2_2_29_2 doi: 10.1021/acs.nanolett.5b04123 – ident: e_1_2_2_14_1 – ident: e_1_2_2_5_3 doi: 10.1002/ange.201208320 – ident: e_1_2_2_2_2 doi: 10.1039/C3CS60323G – ident: e_1_2_2_36_1 doi: 10.1002/anie.201209548 – ident: e_1_2_2_38_2 doi: 10.1038/ncomms13869 – ident: e_1_2_2_13_1 doi: 10.1073/pnas.1522496112 – volume: 4 start-page: 3819 year: 2013 ident: e_1_2_2_27_2 publication-title: Nat. Commun. – ident: e_1_2_2_6_1 – ident: e_1_2_2_16_2 doi: 10.1021/jacs.5b00046 – ident: e_1_2_2_8_3 doi: 10.1002/ange.201601582 – ident: e_1_2_2_28_3 doi: 10.1002/ange.201308657 – ident: e_1_2_2_20_2 doi: 10.1021/acs.nanolett.6b05287 – ident: e_1_2_2_25_2 doi: 10.1002/anie.201509800 – ident: e_1_2_2_19_2 doi: 10.1038/nature19060 – ident: e_1_2_2_7_2 doi: 10.1021/ja505791r |
SSID | ssj0028806 |
Score | 2.6392617 |
Snippet | Electrochemical reduction of CO2 to ethanol, a clean and renewable liquid fuel with high heating value, is an attractive strategy for global warming mitigation... Electrochemical reduction of CO 2 to ethanol, a clean and renewable liquid fuel with high heating value, is an attractive strategy for global warming... Electrochemical reduction of CO to ethanol, a clean and renewable liquid fuel with high heating value, is an attractive strategy for global warming mitigation... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 15607 |
SubjectTerms | Boron Calorific value Carbon dioxide Carbon monoxide Chemical reduction Climate change CO2 reduction Diamonds doped nanodiamond electrocatalysis Electrocatalysts Electrochemistry Ethanol Global warming heterogeneous catalysis Hydrogen evolution Liquid fuels Nanostructure Nitrogen Renewable fuels Resource utilization Selectivity Synergistic effect |
Title | Selective Electrochemical Reduction of Carbon Dioxide to Ethanol on a Boron‐ and Nitrogen‐Co‐doped Nanodiamond |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.201706311 https://www.ncbi.nlm.nih.gov/pubmed/28914470 https://www.proquest.com/docview/1968403410 https://www.proquest.com/docview/1940059722 |
Volume | 56 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA7iRS--H-uLCIKnajftJs1R113Uwx5WBW8lr8KitIt2QTz5E_yN_hJn-tJVRNBLSdOkSZOZzCSd-YaQg8gyrQ13njW-hg2K9D1lIunJIDEm8FXAdWEgO-DnN-Hlbef2kxd_iQ_RHLghZxTrNTK40o_HH6Ch6IGNplkChGzh3IsGW6gVDRv8KAbEWboXBYGHUehr1EafHU9Xn5ZK31TNac21ED39RaLqTpcWJ3dHk1wfmecveI7_-aolslDppfSkJKRlMuPSFTLXrcPBrZL8qoiYA4sj7ZWhc0yFNUCHCP-KE0yzhHbVg4bU2Sh7GllH84z28HQ-u6eQq-gpIia8vbxSlVo6GMFrgILhvpvBxWZjB7lQGqgW-MOukZt-77p77lUhGzwTCt72rJbKBWhoE1lQ1BKnuRJaoJaZaOYSpbhOHHcMgeQSroXlXIXCStsJFSLBrJPZNEvdJqEdxwXnTBrU2Sx3kWw702ZOySTqSOu3iFdPWWwqPHMMq3Efl0jMLMaxjJuxbJHDpvy4RPL4seROTQFxxdGPMaxUsBcGmQ8N7zePYQ7wB4tKXTbBMiE68wrGWmSjpJymKdjYwt5VQG1WzP8vfYhPBhe95m7rL5W2yTymC9ubcIfM5g8TtwsaVK73Ci55B7F9FPY |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT-MwELZQ99C97AP2UZ5eaSVOaVMnteMjtEUtCz0UKu0t8itStShBbCohTvwEfuP-kp3Ja1VWCAkuUezYsWPPeMbOzDeEfI8s09pw51nja9igSN9TJpKeDBJjAl8FXBcGsjM-WYSnPwe1NSH6wpT4EM2BG3JGsV4jg-OBdO8faii6YKNtlgApi969bzCsN8Lnj-YNghQD8iwdjILAwzj0NW6jz3rr9dfl0n_K5rruWgifk_dE190ubU5-dVe57pq7R4iOr_quD-RdpZrSo5KWPpINl26S9rCOCLdF8osiaA6sj3RcRs8xFdwAnSMCLM4xzRI6VDca7kbL7HZpHc0zOsYD-uyKQq6ixwia8Of-garU0tkSXgNEDOlhBhebXTvIhdJAuMAi9hNZnIwvhxOvitrgmVDwvme1VC5AW5vIgq6WOM2V0AIVzUQzlyjFdeK4Y4gll3AtLOcqFFbaQagQDOYzaaVZ6r4SOnBccM6kQbXNchfJvjN95pRMooG0fod49ZzFpoI0x8gaV3EJxsxiHMu4GcsOOWzKX5dgHk-W3K1JIK6Y-ncMixVsh0HsQ8PfmscwB_iPRaUuW2GZEP15BWMd8qUknaYp2NvC9lVAbVYQwDN9iI9m03GT2n5JpQPSnlyen8Vn09mPHfIW8wtTnHCXtPKbldsDhSrX-wXL_AX1mxkS |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTtwwELYQlaAXWqCFLZQaqVJPgayTteMjLLuCglYVFIlb5F9pxSpZQVZCnHiEPiNPwkz-2i1Cleglih07duwZz9iZ-YaQr4llWhvuAmtCDRsUGQbKJDKQkTcmClXEdWkgO-LHl_H3q97VH178FT5Ee-CGnFGu18jgU-v3f4OGogc2mmYJELLo3Psm5tASqkXnLYAUA-qs_IuiKMAw9A1sY8j25-vPi6Vnuua86lrKnuE7oppeVyYn13uzQu-Z-78AHf_ns96TlVoxpQcVJa2SBZetkeV-Ew9unRQXZcgcWB3poIqdY2qwAXqO-K84wzT3tK9uNNwdjfO7sXW0yOkAj-fzCYVcRQ8RMuHx4RdVmaWjMbwGSBjS_RwuNp86yIXSQLbAIPYDuRwOfvaPgzpmQ2BiwbuB1VK5CC1tEguamneaK6EFqpleM-eV4to77hgiyXmuheVcxcJK24sVQsF8JItZnrlNQnuOC86ZNKi0We4S2XWmy5ySPulJG3ZI0ExZampAc4yrMUkrKGaW4lim7Vh2yLe2_LSC8nix5HZDAWnN0rcpLFWwGQahDw3vto9hDvAPi8pcPsMyMXrzCsY6ZKOinLYp2NnC5lVAbVbO_z_6kB6MTgZt6tNrKn0hSz-OhunZyeh0i7zF7NIOJ94mi8XNzH0GbarQOyXDPAGWYRfB |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Selective+Electrochemical+Reduction+of+Carbon+Dioxide+to+Ethanol+on+a+Boron%E2%80%90+and+Nitrogen%E2%80%90Co%E2%80%90doped+Nanodiamond&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Liu%2C+Yanming&rft.au=Zhang%2C+Yujing&rft.au=Cheng%2C+Kai&rft.au=Quan%2C+Xie&rft.date=2017-12-04&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=56&rft.issue=49&rft.spage=15607&rft.epage=15611&rft_id=info:doi/10.1002%2Fanie.201706311&rft.externalDBID=10.1002%252Fanie.201706311&rft.externalDocID=ANIE201706311 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon |