The GhMYB36 transcription factor confers resistance to biotic and abiotic stress by enhancing PR1 gene expression in plants

Summary Drought and Verticillium wilt disease are two main factors that limit cotton production, which necessitates the identification of key molecular switch to simultaneously improve cotton resistance to Verticillium dahliae and tolerance to drought stress. R2R3‐type MYB proteins could play such a...

Full description

Saved in:
Bibliographic Details
Published inPlant biotechnology journal Vol. 20; no. 4; pp. 722 - 735
Main Authors Liu, Tingli, Chen, Tianzi, Kan, Jialiang, Yao, Yao, Guo, Dongshu, Yang, Yuwen, Ling, Xitie, Wang, Jinyan, Zhang, Baolong
Format Journal Article
LanguageEnglish
Published England John Wiley & Sons, Inc 01.04.2022
John Wiley and Sons Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Summary Drought and Verticillium wilt disease are two main factors that limit cotton production, which necessitates the identification of key molecular switch to simultaneously improve cotton resistance to Verticillium dahliae and tolerance to drought stress. R2R3‐type MYB proteins could play such a role because of their conserved functions in plant development, growth, and metabolism regulation, however, till date a MYB gene conferring the desired resistance to both biotic and abiotic stresses has not been found in cotton. Here, we describe the identification of GhMYB36, a gene encoding a R2R3‐type MYB protein in Gossypium hirsutum, which confers drought tolerance and Verticilium wilt resistance in both Arabidopsis and cotton. GhMYB36 was highly induced by PEG‐simulated drought stress in G. hirsutum. GhMYB36‐silenced cotton plants were more sensitive to both drought stress and Verticillium wilt. GhMYB36 overexpression in transgenic Arabidopsis and cotton plants gave rise to improved drought tolerance and Verticillium wilt resistance. Transient expression of fused GhMYB36‐GFP in tobacco cells was able to localize GhMYB36 in the cell nucleus. In addition, RNA‐seq analysis together with qRT‐PCR validation in transgenic Arabidopsis overexpressing GhMYB36 revealed significantly enhanced PR1 expression. Luciferase interaction assays indicated that GhMYB36 are probably bound to the promoter of PR1 to activate its expression and the interaction, which was further verified by Yeast one hybrid assay. Taken together, our results suggest that GhMYB36 functions as a transcription factor that is involved in drought tolerance and Verticillium wilt resistance in Arabidopsis and cotton by enhancing PR1 expression.
AbstractList Drought and Verticillium wilt disease are two main factors that limit cotton production, which necessitates the identification of key molecular switch to simultaneously improve cotton resistance to Verticillium dahliae and tolerance to drought stress. R2R3‐type MYB proteins could play such a role because of their conserved functions in plant development, growth, and metabolism regulation, however, till date a MYB gene conferring the desired resistance to both biotic and abiotic stresses has not been found in cotton. Here, we describe the identification of GhMYB36 , a gene encoding a R2R3‐type MYB protein in Gossypium hirsutum , which confers drought tolerance and Verticilium wilt resistance in both Arabidopsis and cotton. GhMYB36 was highly induced by PEG‐simulated drought stress in G. hirsutum . GhMYB36 ‐silenced cotton plants were more sensitive to both drought stress and Verticillium wilt. GhMYB36 overexpression in transgenic Arabidopsis and cotton plants gave rise to improved drought tolerance and Verticillium wilt resistance. Transient expression of fused GhMYB36‐GFP in tobacco cells was able to localize GhMYB36 in the cell nucleus. In addition, RNA‐seq analysis together with qRT‐PCR validation in transgenic Arabidopsis overexpressing GhMYB36 revealed significantly enhanced PR1 expression. Luciferase interaction assays indicated that GhMYB36 are probably bound to the promoter of PR1 to activate its expression and the interaction, which was further verified by Yeast one hybrid assay. Taken together, our results suggest that GhMYB36 functions as a transcription factor that is involved in drought tolerance and Verticillium wilt resistance in Arabidopsis and cotton by enhancing PR1 expression.
Drought and Verticillium wilt disease are two main factors that limit cotton production, which necessitates the identification of key molecular switch to simultaneously improve cotton resistance to Verticillium dahliae and tolerance to drought stress. R2R3-type MYB proteins could play such a role because of their conserved functions in plant development, growth, and metabolism regulation, however, till date a MYB gene conferring the desired resistance to both biotic and abiotic stresses has not been found in cotton. Here, we describe the identification of GhMYB36, a gene encoding a R2R3-type MYB protein in Gossypium hirsutum, which confers drought tolerance and Verticilium wilt resistance in both Arabidopsis and cotton. GhMYB36 was highly induced by PEG-simulated drought stress in G. hirsutum. GhMYB36-silenced cotton plants were more sensitive to both drought stress and Verticillium wilt. GhMYB36 overexpression in transgenic Arabidopsis and cotton plants gave rise to improved drought tolerance and Verticillium wilt resistance. Transient expression of fused GhMYB36-GFP in tobacco cells was able to localize GhMYB36 in the cell nucleus. In addition, RNA-seq analysis together with qRT-PCR validation in transgenic Arabidopsis overexpressing GhMYB36 revealed significantly enhanced PR1 expression. Luciferase interaction assays indicated that GhMYB36 are probably bound to the promoter of PR1 to activate its expression and the interaction, which was further verified by Yeast one hybrid assay. Taken together, our results suggest that GhMYB36 functions as a transcription factor that is involved in drought tolerance and Verticillium wilt resistance in Arabidopsis and cotton by enhancing PR1 expression.
Drought and Verticillium wilt disease are two main factors that limit cotton production, which necessitates the identification of key molecular switch to simultaneously improve cotton resistance to Verticillium dahliae and tolerance to drought stress. R2R3-type MYB proteins could play such a role because of their conserved functions in plant development, growth, and metabolism regulation, however, till date a MYB gene conferring the desired resistance to both biotic and abiotic stresses has not been found in cotton. Here, we describe the identification of GhMYB36, a gene encoding a R2R3-type MYB protein in Gossypium hirsutum, which confers drought tolerance and Verticilium wilt resistance in both Arabidopsis and cotton. GhMYB36 was highly induced by PEG-simulated drought stress in G. hirsutum. GhMYB36-silenced cotton plants were more sensitive to both drought stress and Verticillium wilt. GhMYB36 overexpression in transgenic Arabidopsis and cotton plants gave rise to improved drought tolerance and Verticillium wilt resistance. Transient expression of fused GhMYB36-GFP in tobacco cells was able to localize GhMYB36 in the cell nucleus. In addition, RNA-seq analysis together with qRT-PCR validation in transgenic Arabidopsis overexpressing GhMYB36 revealed significantly enhanced PR1 expression. Luciferase interaction assays indicated that GhMYB36 are probably bound to the promoter of PR1 to activate its expression and the interaction, which was further verified by Yeast one hybrid assay. Taken together, our results suggest that GhMYB36 functions as a transcription factor that is involved in drought tolerance and Verticillium wilt resistance in Arabidopsis and cotton by enhancing PR1 expression.Drought and Verticillium wilt disease are two main factors that limit cotton production, which necessitates the identification of key molecular switch to simultaneously improve cotton resistance to Verticillium dahliae and tolerance to drought stress. R2R3-type MYB proteins could play such a role because of their conserved functions in plant development, growth, and metabolism regulation, however, till date a MYB gene conferring the desired resistance to both biotic and abiotic stresses has not been found in cotton. Here, we describe the identification of GhMYB36, a gene encoding a R2R3-type MYB protein in Gossypium hirsutum, which confers drought tolerance and Verticilium wilt resistance in both Arabidopsis and cotton. GhMYB36 was highly induced by PEG-simulated drought stress in G. hirsutum. GhMYB36-silenced cotton plants were more sensitive to both drought stress and Verticillium wilt. GhMYB36 overexpression in transgenic Arabidopsis and cotton plants gave rise to improved drought tolerance and Verticillium wilt resistance. Transient expression of fused GhMYB36-GFP in tobacco cells was able to localize GhMYB36 in the cell nucleus. In addition, RNA-seq analysis together with qRT-PCR validation in transgenic Arabidopsis overexpressing GhMYB36 revealed significantly enhanced PR1 expression. Luciferase interaction assays indicated that GhMYB36 are probably bound to the promoter of PR1 to activate its expression and the interaction, which was further verified by Yeast one hybrid assay. Taken together, our results suggest that GhMYB36 functions as a transcription factor that is involved in drought tolerance and Verticillium wilt resistance in Arabidopsis and cotton by enhancing PR1 expression.
Summary Drought and Verticillium wilt disease are two main factors that limit cotton production, which necessitates the identification of key molecular switch to simultaneously improve cotton resistance to Verticillium dahliae and tolerance to drought stress. R2R3‐type MYB proteins could play such a role because of their conserved functions in plant development, growth, and metabolism regulation, however, till date a MYB gene conferring the desired resistance to both biotic and abiotic stresses has not been found in cotton. Here, we describe the identification of GhMYB36, a gene encoding a R2R3‐type MYB protein in Gossypium hirsutum, which confers drought tolerance and Verticilium wilt resistance in both Arabidopsis and cotton. GhMYB36 was highly induced by PEG‐simulated drought stress in G. hirsutum. GhMYB36‐silenced cotton plants were more sensitive to both drought stress and Verticillium wilt. GhMYB36 overexpression in transgenic Arabidopsis and cotton plants gave rise to improved drought tolerance and Verticillium wilt resistance. Transient expression of fused GhMYB36‐GFP in tobacco cells was able to localize GhMYB36 in the cell nucleus. In addition, RNA‐seq analysis together with qRT‐PCR validation in transgenic Arabidopsis overexpressing GhMYB36 revealed significantly enhanced PR1 expression. Luciferase interaction assays indicated that GhMYB36 are probably bound to the promoter of PR1 to activate its expression and the interaction, which was further verified by Yeast one hybrid assay. Taken together, our results suggest that GhMYB36 functions as a transcription factor that is involved in drought tolerance and Verticillium wilt resistance in Arabidopsis and cotton by enhancing PR1 expression.
Author Zhang, Baolong
Kan, Jialiang
Wang, Jinyan
Yao, Yao
Ling, Xitie
Chen, Tianzi
Guo, Dongshu
Yang, Yuwen
Liu, Tingli
AuthorAffiliation 1 Excellence and innovation center Jiangsu Academy of Agricultural Sciences Nanjing China
AuthorAffiliation_xml – name: 1 Excellence and innovation center Jiangsu Academy of Agricultural Sciences Nanjing China
Author_xml – sequence: 1
  givenname: Tingli
  orcidid: 0000-0003-4804-2958
  surname: Liu
  fullname: Liu, Tingli
  organization: Jiangsu Academy of Agricultural Sciences
– sequence: 2
  givenname: Tianzi
  surname: Chen
  fullname: Chen, Tianzi
  organization: Jiangsu Academy of Agricultural Sciences
– sequence: 3
  givenname: Jialiang
  surname: Kan
  fullname: Kan, Jialiang
  organization: Jiangsu Academy of Agricultural Sciences
– sequence: 4
  givenname: Yao
  surname: Yao
  fullname: Yao, Yao
  organization: Jiangsu Academy of Agricultural Sciences
– sequence: 5
  givenname: Dongshu
  surname: Guo
  fullname: Guo, Dongshu
  organization: Jiangsu Academy of Agricultural Sciences
– sequence: 6
  givenname: Yuwen
  surname: Yang
  fullname: Yang, Yuwen
  organization: Jiangsu Academy of Agricultural Sciences
– sequence: 7
  givenname: Xitie
  surname: Ling
  fullname: Ling, Xitie
  organization: Jiangsu Academy of Agricultural Sciences
– sequence: 8
  givenname: Jinyan
  orcidid: 0000-0003-0842-437X
  surname: Wang
  fullname: Wang, Jinyan
  organization: Jiangsu Academy of Agricultural Sciences
– sequence: 9
  givenname: Baolong
  surname: Zhang
  fullname: Zhang, Baolong
  email: zhbl2248@hotmail.com
  organization: Jiangsu Academy of Agricultural Sciences
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34812570$$D View this record in MEDLINE/PubMed
BookMark eNqNkk1rVDEUhoNU7Icu_AMScKOLaZN78zUbwRathYpF6sJVyM09mUm5k1yTjDr45811pkWLgtnkwHnOy3s-DtFeiAEQekrJMa3vZOz8MW0lpw_QAWVCzqTgzd5dzNg-Osz5hpCGCi4eof2WKdpwSQ7Qj-sl4PPl-8-nrcAlmZBt8mPxMWBnbIkJ2xgcpIwTZJ-LCRZwibjzsXiLTeix2cW5VCTjboMhLCvnwwJffaR4AQEwfB-n7KTrAx4HE0p-jB46M2R4svuP0Ke3b67P3s0uP5xfnL2-nFkmBZ1JR_rq27G-48xCtc5kL1hjqGp61baO922vnFTWgplLToyqKOWOO9cLMm-P0Kut7rjuVtBbCLXRQY_Jr0za6Gi8_jMT_FIv4let5mrO5rIKvNgJpPhlDbnolc8WhtoFxHXWjRCUECJb8h8ooUwJqSb0-T30Jq5TqJOoFJNSqYZP1LPfzd-5vl1hBU62gE0x5wROW1_MtMHaix80JXo6El2PRP86klrx8l7Frejf2J36Nz_A5t-gvjq92Fb8BAqdzB0
CitedBy_id crossref_primary_10_3390_agronomy13122903
crossref_primary_10_1007_s10142_023_01065_5
crossref_primary_10_3389_fpls_2022_953450
crossref_primary_10_1111_tpj_16200
crossref_primary_10_1007_s00709_022_01797_4
crossref_primary_10_1007_s00425_024_04458_3
crossref_primary_10_3389_fpls_2024_1463147
crossref_primary_10_1111_nph_20431
crossref_primary_10_1111_tpj_70007
crossref_primary_10_1016_j_jia_2024_07_040
crossref_primary_10_3389_fpls_2024_1446288
crossref_primary_10_29136_mediterranean_1556782
crossref_primary_10_1007_s00425_023_04180_6
crossref_primary_10_1016_j_stress_2025_100759
crossref_primary_10_1016_j_ijbiomac_2024_138624
crossref_primary_10_1016_j_ijbiomac_2024_130072
crossref_primary_10_1007_s11427_022_2278_0
crossref_primary_10_1016_j_rsci_2025_01_007
crossref_primary_10_1093_plphys_kiae446
crossref_primary_10_1016_j_indcrop_2024_118744
crossref_primary_10_3390_plants13040488
crossref_primary_10_1007_s11103_024_01533_x
crossref_primary_10_1186_s12870_024_06004_5
crossref_primary_10_1016_j_ijbiomac_2023_127388
crossref_primary_10_1016_j_postharvbio_2023_112731
crossref_primary_10_1111_pbi_14008
crossref_primary_10_1016_j_plaphy_2023_107692
crossref_primary_10_1186_s12870_023_04138_6
crossref_primary_10_1016_j_celrep_2023_112938
crossref_primary_10_1016_j_ijbiomac_2024_133885
crossref_primary_10_1111_nph_19077
crossref_primary_10_48130_VR_2023_0019
crossref_primary_10_1186_s12864_024_11041_3
crossref_primary_10_1111_ppl_14259
crossref_primary_10_3390_agronomy13071950
crossref_primary_10_3390_ijms24065418
crossref_primary_10_3390_plants13162243
crossref_primary_10_1111_ppl_14615
crossref_primary_10_1016_j_plaphy_2023_107938
crossref_primary_10_3390_ijms24076185
crossref_primary_10_1186_s12864_024_10051_5
crossref_primary_10_1016_j_jia_2024_03_003
crossref_primary_10_1101_gr_279091_124
crossref_primary_10_1016_j_xplc_2024_100859
crossref_primary_10_3390_ijms232214370
crossref_primary_10_1007_s11105_025_01549_7
crossref_primary_10_1186_s40538_024_00718_2
crossref_primary_10_1016_j_plantsci_2023_111937
crossref_primary_10_3390_agronomy14051050
crossref_primary_10_1093_hr_uhac291
crossref_primary_10_3389_fpls_2022_1050216
crossref_primary_10_1016_j_ijbiomac_2024_135584
crossref_primary_10_1007_s12042_025_09398_0
crossref_primary_10_3390_horticulturae10111160
crossref_primary_10_1016_j_indcrop_2022_115812
crossref_primary_10_3390_ijms26062796
crossref_primary_10_3389_fpls_2022_979585
crossref_primary_10_3390_ijms252111449
crossref_primary_10_3389_fpls_2023_1144650
crossref_primary_10_1007_s00299_025_03462_5
crossref_primary_10_1016_j_biotechadv_2025_108520
crossref_primary_10_1016_j_jare_2024_08_037
crossref_primary_10_3390_genes14040920
crossref_primary_10_3390_ijms252211891
crossref_primary_10_1016_j_plantsci_2023_111608
crossref_primary_10_1186_s43897_024_00080_9
crossref_primary_10_3390_ijms25126795
crossref_primary_10_1007_s11295_024_01642_0
crossref_primary_10_3390_ijms25084247
crossref_primary_10_1016_j_phytochem_2023_113831
crossref_primary_10_1080_07388551_2024_2344583
crossref_primary_10_1111_pce_15199
crossref_primary_10_3390_ijms26030972
crossref_primary_10_1016_j_plaphy_2023_107995
crossref_primary_10_1016_j_jarmap_2024_100571
crossref_primary_10_1111_jipb_13388
crossref_primary_10_1007_s13237_024_00479_1
Cites_doi 10.1105/tpc.15.00829
10.1038/nbt.3208
10.1016/j.bbrc.2016.08.010
10.1093/pcp/pcu200
10.1093/pcp/pcv019
10.1111/pbi.12688
10.1073/pnas.84.19.6750
10.1093/jxb/ers069
10.1093/pcp/pcn011
10.1016/j.jhazmat.2020.122811
10.1111/nph.13860
10.1007/s11103-005-2910-y
10.1007/s00425-005-0071-5
10.1111/j.1365-313X.2005.02593.x
10.1371/journal.pone.0051091
10.1007/s11033-012-1550-y
10.1111/j.1469-8137.2012.04241.x
10.3389/fpls.2017.02133
10.1016/j.molp.2014.11.022
10.1006/meth.2001.1262
10.1371/journal.pone.0170578
10.1046/j.1365-313x.1998.00343.x
10.1111/pbi.12169
10.1073/pnas.1119623109
10.1007/s11033-010-0076-4
10.1007/s11104-013-1992-6
10.1111/pce.12906
10.1016/j.ygeno.2020.07.004
10.1371/journal.pone.0143022
10.1016/j.ijbiomac.2020.11.191
10.1038/nature11798
10.1186/1471-2229-12-106
10.1111/pbi.13190
10.1038/ncomms4050
10.1093/jxb/err431
10.1104/pp.18.00598
10.1111/nph.14680
10.1038/srep35040
10.1007/s00438-008-0322-9
10.1104/pp.111.180067
10.1023/A:1006496308160
10.1073/pnas.1507691112
10.1093/mp/sst031
10.1007/s11105-014-0810-5
10.1016/j.tplants.2010.06.005
10.1073/pnas.1515576112
10.1046/j.1365-313x.1998.00278.x
10.1038/nbt.3207
10.1038/srep24978
10.1104/pp.108.1.17
10.1016/j.gene.2014.01.024
10.1038/srep16946
10.1534/genetics.108.093070
10.1111/ppl.12031
10.1016/j.gene.2013.09.007
10.1007/s11248-010-9463-9
10.1093/pcp/pcu133
10.1046/j.1365-313X.1995.07050751.x
10.1038/s41588-019-0371-5
10.1038/ncomms5686
10.1093/jxb/erw016
10.1105/tpc.19.00950
10.1105/tpc.104.024844
ContentType Journal Article
Copyright 2021 The Authors. published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.
2021 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.
2022. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2021 The Authors. published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.
– notice: 2021 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.
– notice: 2022. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
8FD
8FE
8FG
8FH
ABJCF
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
GNUQQ
HCIFZ
L6V
LK8
M7P
M7S
P64
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
7X8
7S9
L.6
5PM
DOI 10.1111/pbi.13751
DatabaseName Wiley Online Library Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
ProQuest Central Student
SciTech Premium Collection
ProQuest Engineering Collection
Biological Sciences
Biological Science Database
ProQuest Engineering Database (NC LIVE)
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Engineering Collection
Biotechnology Research Abstracts
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
Engineering Collection
Engineering Database
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
Biological Science Database
ProQuest SciTech Collection
Biotechnology and BioEngineering Abstracts
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList CrossRef
MEDLINE
MEDLINE - Academic

Publicly Available Content Database
AGRICOLA

Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
DocumentTitleAlternate GhMYB36 confers biotic and abiotic stress resistance
EISSN 1467-7652
EndPage 735
ExternalDocumentID PMC8989497
34812570
10_1111_pbi_13751
PBI13751
Genre article
Journal Article
GeographicLocations China
GeographicLocations_xml – name: China
GrantInformation_xml – fundername: Jiangsu Science and Technology Development Program
  funderid: BK20191236
– fundername: Independent Innovation of National Key Research and Development Program of China
  funderid: 2016YFD0101418
– fundername: Agricultural Sciences in Jiangsu Province
  funderid: CX(19)3054
– fundername: Natural Science Foundation of Jiangsu Province
  funderid: BK20180308
– fundername: National Natural Science Foundation of China
  funderid: 31671980; 32172047
– fundername: Natural Science Foundation of Jiangsu Province
  grantid: BK20180308
– fundername: National Natural Science Foundation of China
  grantid: 32172047
– fundername: Agricultural Sciences in Jiangsu Province
  grantid: CX(19)3054
– fundername: Independent Innovation of National Key Research and Development Program of China
  grantid: 2016YFD0101418
– fundername: National Natural Science Foundation of China
  grantid: 31671980
– fundername: Jiangsu Science and Technology Development Program
  grantid: BK20191236
– fundername: ;
  grantid: 31671980; 32172047
– fundername: ;
  grantid: BK20180308
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
123
1OC
24P
29O
31~
33P
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52W
52X
53G
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8FE
8FG
8FH
8UM
930
A03
A8Z
AAEVG
AAHBH
AAHHS
AANHP
AAONW
AAZKR
ABCQN
ABDBF
ABEML
ABIJN
ABJCF
ABPVW
ACBWZ
ACCFJ
ACCMX
ACIWK
ACPRK
ACRPL
ACSCC
ACUHS
ACXQS
ACYXJ
ADBBV
ADIZJ
ADKYN
ADNMO
ADZMN
AEEZP
AEIMD
AENEX
AEQDE
AEUQT
AEUYN
AFBPY
AFEBI
AFKRA
AFRAH
AFZJQ
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
ASPBG
ATUGU
AVUZU
AVWKF
AZBYB
AZFZN
BAFTC
BBNVY
BCNDV
BDRZF
BENPR
BFHJK
BGLVJ
BHPHI
BNHUX
BROTX
BRXPI
BY8
CAG
CCPQU
COF
CS3
D-E
D-F
DPXWK
DR2
DU5
EAD
EAP
EBD
EBS
ECGQY
EDH
EJD
EMK
EMOBN
EST
ESX
F00
F01
F04
F5P
FEDTE
G-S
G.N
GODZA
GROUPED_DOAJ
H.T
H.X
HCIFZ
HF~
HOLLA
HVGLF
HZ~
IAO
IEP
IGS
IHE
ITC
IX1
J0M
KQ8
L6V
LC2
LC3
LH4
LK8
LP6
LP7
LW6
M7P
M7S
MK4
ML0
N04
N05
N9A
NF~
O66
O9-
OIG
OK1
P2P
P2X
P4D
PIMPY
PROAC
PTHSS
Q.N
Q11
QB0
QM4
QO4
R.K
ROL
RPM
RX1
SUPJJ
SV3
TUS
UB1
W8V
W99
WIH
WIN
WQJ
WRC
XG1
~IA
~KM
~WT
AAYXX
AGQPQ
CITATION
PHGZM
PHGZT
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
CGR
CUY
CVF
ECM
EIF
NPM
PQGLB
7QO
8FD
ABUWG
AZQEC
DWQXO
FR3
GNUQQ
P64
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7X8
7S9
L.6
5PM
ID FETCH-LOGICAL-c4761-7f0d165f4db54ce48147d642a182d833f5d3d8f78ccea9750a84db15f5ffd6093
IEDL.DBID DR2
ISSN 1467-7644
1467-7652
IngestDate Thu Aug 21 14:03:04 EDT 2025
Fri Jul 11 18:31:18 EDT 2025
Thu Jul 10 22:51:36 EDT 2025
Wed Aug 13 04:25:21 EDT 2025
Mon Jul 21 05:59:54 EDT 2025
Tue Jul 01 02:34:47 EDT 2025
Thu Apr 24 22:56:04 EDT 2025
Wed Jan 22 16:25:20 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords transgenic plants
drought tolerance
transient expression
R2R3-type MYB proteins
transcription factors
Language English
License Attribution-NonCommercial-NoDerivs
2021 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.
This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc-nd/4.0/ License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4761-7f0d165f4db54ce48147d642a182d833f5d3d8f78ccea9750a84db15f5ffd6093
Notes These authors contributed equally to this work.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-4804-2958
0000-0003-0842-437X
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fpbi.13751
PMID 34812570
PQID 2647788250
PQPubID 1096352
PageCount 735
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8989497
proquest_miscellaneous_2661000730
proquest_miscellaneous_2601486780
proquest_journals_2647788250
pubmed_primary_34812570
crossref_citationtrail_10_1111_pbi_13751
crossref_primary_10_1111_pbi_13751
wiley_primary_10_1111_pbi_13751_PBI13751
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate April 2022
PublicationDateYYYYMMDD 2022-04-01
PublicationDate_xml – month: 04
  year: 2022
  text: April 2022
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Southampton
– name: Hoboken
PublicationTitle Plant biotechnology journal
PublicationTitleAlternate Plant Biotechnol J
PublicationYear 2022
Publisher John Wiley & Sons, Inc
John Wiley and Sons Inc
Publisher_xml – name: John Wiley & Sons, Inc
– name: John Wiley and Sons Inc
References 2014b; 5
2017; 8
2017; 41
2010; 15
2019; 51
2014; 538
2021; 167
2013; 21
2015; 33
2000; 42
2014a; 56
2012; 12
2013; 6
2011; 156
2014; 376
1998; 16
2012; 492
2006; 60
2014; 5
1987; 84
2018; 178
2011; 20
2008; 279
2016; 478
2014; 12
2020b; 32
2014; 55
2010; 9
2012; 63
2015; 56
2015; 5
2013; 149
2015; 10
2012; 39
2011; 38
2015; 8
2001; 25
2017; 215
2012; 109
1995; 7
2008; 180
2016; 6
2012; 196
2015; 27
2017; 15
2006; 45
2004; 16
2015; 112
1995; 108
2008; 49
2017; 12
2016; 210
2013; 531
2020; 112
2020; 399
2020a; 18
2012; 7
2016; 67
2006; 223
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_3_1
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_66_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_64_1
e_1_2_8_62_1
e_1_2_8_41_1
e_1_2_8_60_1
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_59_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_57_1
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_51_1
e_1_2_8_30_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_48_1
Iqbal M. (e_1_2_8_23_1) 2013; 21
e_1_2_8_2_1
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_8_1
Sayfzadeh S. (e_1_2_8_43_1) 2010; 9
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_44_1
e_1_2_8_65_1
e_1_2_8_63_1
e_1_2_8_40_1
e_1_2_8_61_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_58_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_56_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_54_1
e_1_2_8_52_1
e_1_2_8_50_1
References_xml – volume: 196
  start-page: 247
  year: 2012
  end-page: 260
  article-title: The RxLR effector Avh241 from requires plasma membrane localization to induce plant cell death
  publication-title: New Phytol.
– volume: 5
  start-page: 4686
  year: 2014b
  article-title: Unconventionally secreted effectors of two filamentous pathogens target plant salicylate biosynthesis
  publication-title: Nat. Commun.
– volume: 15
  start-page: 573
  year: 2010
  end-page: 581
  article-title: MYB transcription factors in
  publication-title: Trends Plant Sci.
– volume: 531
  start-page: 220
  year: 2013
  end-page: 234
  article-title: Isolation and expression profiling of GhNAC transcription factor genes in cotton ( L.) during leaf senescence and in response to stresses
  publication-title: Gene
– volume: 215
  start-page: 1462
  year: 2017
  end-page: 1475
  article-title: Regulation of cotton ( ) drought responses by mitogen‐activated protein (MAP) kinase cascade‐mediated phosphorylation of GhWRKY59
  publication-title: New Phytol.
– volume: 112
  start-page: 10533
  year: 2015
  end-page: 10538
  article-title: The MYB36 transcription factor orchestrates Casparian strip formation
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 63
  start-page: 3741
  year: 2012
  end-page: 3748
  article-title: Overexpression of the AtLOS5 gene increased abscisic acid level and drought tolerance in transgenic cotton
  publication-title: J. Exp. Bot.
– volume: 33
  start-page: 531
  year: 2015
  end-page: 537
  article-title: Sequencing of allotetraploid cotton ( L. acc. TM‐1) provides a resource for fiber improvement
  publication-title: Nat. Biotechnol.
– volume: 12
  year: 2017
  article-title: Functional characterization of cotton GaMYB62L, a novel R2R3 TF in transgenic
  publication-title: PLoS One
– volume: 112
  start-page: 12099
  year: 2015
  end-page: 12104
  article-title: MYB36 regulates the transition from proliferation to differentiation in the Arabidopsis root
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 45
  start-page: 523
  year: 2006
  end-page: 539
  article-title: Methods and concepts in quantifying resistance to drought, salt and freezing, abiotic stresses that affect plant water status
  publication-title: Plant J.
– volume: 38
  start-page: 49
  year: 2011
  end-page: 58
  article-title: GhWRKY3, a novel cotton ( L.) WRKY gene, is involved in diverse stress responses
  publication-title: Mol. Biol. Rep.
– volume: 6
  start-page: 35040
  year: 2016
  article-title: GhABF2, a bZIP transcription factor, confers drought and salinity tolerance in cotton ( L.)
  publication-title: Sci. Rep.
– volume: 63
  start-page: 2541
  year: 2012
  end-page: 2556
  article-title: A R2R3‐type MYB gene, OsMYB2, is involved in salt, cold, and dehydration tolerance in rice
  publication-title: J. Exp. Bot.
– volume: 20
  start-page: 857
  year: 2011
  end-page: 866
  article-title: Overexpression of ethylene response factor TERF2 confers cold tolerance in rice seedlings
  publication-title: Transgenic Res
– volume: 18
  start-page: 222
  year: 2020a
  end-page: 238
  article-title: GbCYP86A1‐1 from Gossypium barbadense positively regulates defence against by cell wall modification and activation of immune pathways
  publication-title: Plant Biotechnol. J.
– volume: 112
  start-page: 4089
  year: 2020
  end-page: 4099
  article-title: Pathogenesis related protein‐1 (PR‐1) genes in tomato ( L.): Bioinformatics analyses and expression profiles in response to drought stress
  publication-title: Genomics
– volume: 8
  start-page: 378
  year: 2015
  end-page: 388
  article-title: Regulation of MYB and bHLH transcription factors: a glance at the protein level
  publication-title: Mol. Plant
– volume: 399
  start-page: 122811
  year: 2020
  article-title: Auxin‐salicylic acid cross‐talk ameliorates OsMYB‐R1 mediated defense towards heavy metal, drought and fungal stress
  publication-title: J. Hazard. Mater.
– volume: 12
  start-page: 106
  year: 2012
  article-title: Genome‐wide analysis of the MYB transcription factor superfamily in soybean
  publication-title: BMC Plant Biol.
– volume: 33
  start-page: 524
  year: 2015
  end-page: 530
  article-title: Genome sequence of cultivated Upland cotton ( TM‐1) provides insights into genome evolution
  publication-title: Nat. Biotechnol.
– volume: 56
  start-page: 917
  year: 2015
  end-page: 929
  article-title: A cotton MYB transcription factor, GbMYB5, is positively involved in plant adaptive response to drought stress
  publication-title: Plant Cell Physiol.
– volume: 5
  start-page: 3050
  year: 2014
  article-title: miR828 and miR858 regulate homologous MYB2 gene functions in Arabidopsis trichome and cotton fibre development
  publication-title: Nat. Commun.
– volume: 27
  start-page: 3112
  year: 2015
  end-page: 3127
  article-title: The WRKY transcription factor WRKY71/EXB1 controls shoot branching by transcriptionally regulating RAX genes in
  publication-title: Plant Cell
– volume: 6
  start-page: 1487
  year: 2013
  end-page: 1502
  article-title: Arabidopsis Di19 functions as a transcription factor and modulates PR1, PR2, and PR5 expression in response to drought stress
  publication-title: Mol. Plant
– volume: 5
  start-page: 16946
  year: 2015
  article-title: Genome‐wide analysis of tomato long non‐coding RNAs and identification as endogenous target mimic for microRNA in response to TYLCV infection
  publication-title: Sci. Rep.
– volume: 41
  start-page: 898
  year: 2017
  end-page: 907
  article-title: Ectopic expression of two AREB/ABF orthologs increases drought tolerance in cotton ( )
  publication-title: Plant Cell Environ.
– volume: 376
  start-page: 433
  year: 2014
  end-page: 443
  article-title: AtMYB20 is negatively involved in plant adaptive response to drought stress
  publication-title: Plant Soil
– volume: 223
  start-page: 329
  year: 2006
  end-page: 339
  article-title: Isolation and characterization of drought‐related trehalose 6‐phosphate‐synthase gene from cultivated cotton ( L.)
  publication-title: Planta
– volume: 60
  start-page: 107
  year: 2006
  end-page: 124
  article-title: The MYB transcription factor superfamily of Arabidopsis: expression analysis and phylogenetic comparison with the rice MYB family
  publication-title: Plant Mol. Biol.
– volume: 538
  start-page: 46
  year: 2014
  end-page: 55
  article-title: A novel MYB transcription factor, GmMYBJ1, from soybean confers drought and cold tolerance in
  publication-title: Gene
– volume: 149
  start-page: 297
  year: 2013
  end-page: 309
  article-title: NbPHAN, a MYB transcriptional factor, regulates leaf development and affects drought tolerance in
  publication-title: Physiol. Plant
– volume: 25
  start-page: 402
  year: 2001
  end-page: 408
  article-title: Analysis of relative gene expression data using real‐time quantitative PCR and the 2(‐Delta Delta C(T)) method
  publication-title: Methods
– volume: 49
  start-page: 334
  year: 2008
  end-page: 344
  article-title: Molecular and functional profiling of Arabidopsis pathogenesis‐related genes: insights into their roles in salt response of seed germination
  publication-title: Plant Cell Physiol.
– volume: 15
  start-page: 271
  year: 2017
  end-page: 284
  article-title: Drought coping strategies in cotton: increased crop per drop
  publication-title: Plant Biotechnol J.
– volume: 7
  year: 2012
  article-title: Island cotton gene encoding a receptor‐like protein confers resistance to both defoliating and non‐defoliating isolates
  publication-title: PLoS One
– volume: 55
  start-page: 2060
  year: 2014
  end-page: 2076
  article-title: The cotton WRKY transcription factor GhWRKY17 functions in drought and salt stress in transgenic through ABA signaling and the modulation of reactive oxygen species production
  publication-title: Plant Cell Physiol.
– volume: 279
  start-page: 415
  year: 2008
  end-page: 427
  article-title: Characteristic expression of twelve rice PR1 family genes in response to pathogen infection, wounding, and defense‐related signal compounds (121/180)
  publication-title: Mol. Genet. Genomics
– volume: 16
  start-page: 735
  year: 1998
  end-page: 743
  article-title: Floral dip: a simplified method for Agrobacterium‐mediated transformation of
  publication-title: Plant J.
– volume: 12
  start-page: 638
  year: 2014
  end-page: 649
  article-title: A versatile system for functional analysis of genes and microRNAs in cotton
  publication-title: Plant Biotechnol. J.
– volume: 84
  start-page: 6750
  year: 1987
  end-page: 6754
  article-title: Biological function of pathogenesis‐related proteins: Four tobacco pathogenesis‐related proteins are chitinases
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 56
  start-page: 549
  year: 2014a
  end-page: 557
  article-title: A P4‐ATPase gene of cotton confers chilling tolerance in plants
  publication-title: Plant Cell Physiol.
– volume: 167
  start-page: 633
  year: 2021
  end-page: 643
  article-title: A cotton WAKL protein interacted with a DnaJ protein and was involved in defense against
  publication-title: Int. J. Biol. Macromol.
– volume: 478
  start-page: 703
  year: 2016
  end-page: 709
  article-title: Overexpression of OsEm1 encoding a group I LEA protein confers enhanced drought tolerance in rice
  publication-title: Biochem. Biophys. Res. Commun.
– volume: 42
  start-page: 819
  year: 2000
  end-page: 832
  article-title: pGreen: a versatile and flexible binary Ti vector for Agrobacterium‐mediated plant transformation
  publication-title: Plant Mol. Biol.
– volume: 8
  start-page: 2133
  year: 2017
  article-title: Two Lysin‐motif receptor kinases, Gh‐LYK1 and Gh‐LYK2, contribute to resistance against wilt in upland cotton
  publication-title: Front. Plant Sci.
– volume: 32
  start-page: 3978
  year: 2020b
  end-page: 4001
  article-title: The cotton wall‐associated kinase GhWAK7A mediates responses to fungal wilt pathogens by complexing with the chitin sensory receptors
  publication-title: Plant Cell
– volume: 10
  year: 2015
  article-title: The cotton WRKY gene GhWRKY41 positively regulates salt and drought stress tolerance in transgenic
  publication-title: PLoS One
– volume: 16
  start-page: 263
  year: 1998
  end-page: 276
  article-title: Towards functional characterisation of the members of the R2R3‐MYB gene family from
  publication-title: Plant J
– volume: 156
  start-page: 2255
  year: 2011
  end-page: 2265
  article-title: Interfamily transfer of tomato Ve1 mediates resistance in
  publication-title: Plant Physiol.
– volume: 6
  start-page: 24978
  year: 2016
  article-title: Expression of GhNAC2 from G. herbaceum, improves root growth and imparts tolerance to drought in transgenic cotton and Arabidopsis
  publication-title: Sci. Rep.
– volume: 33
  start-page: 987
  year: 2015
  end-page: 1001
  article-title: A cotton Gbvdr5 gene encoding a Leucine‐Rich‐Repeat Receptor‐Like protein confers resistance to in transgenic Arabidopsis and upland cotton
  publication-title: Plant Mol. Biol. Rep.
– volume: 9
  start-page: 223
  year: 2010
  end-page: 230
  article-title: Effect of rough stress on antioxidant enzyme activities and root yield of sugar beet ( )
  publication-title: Am. Eurasian J. Agric. Environ. Sci.
– volume: 16
  start-page: 2323
  year: 2004
  end-page: 2334
  article-title: Control of plant trichome development by a cotton fiber MYB gene
  publication-title: Plant Cell
– volume: 492
  start-page: 423
  year: 2012
  end-page: 427
  article-title: Repeated polyploidization of genomes and the evolution of spinnable cotton fibres
  publication-title: Nature
– volume: 7
  start-page: 751
  year: 1995
  end-page: 760
  article-title: Correlation between the induction of a gene for Δ1‐pyrroline‐5‐carboxylate synthetase and the accumulation of proline in under osmotic stress
  publication-title: Plant J.
– volume: 178
  start-page: 189
  year: 2018
  end-page: 201
  article-title: An ETHYLENE RESPONSE FACTOR‐MYB transcription complex regulates furaneol biosynthesis by activating QUINONE OXIDOREDUCTASE expression in strawberry
  publication-title: Plant Physiol.
– volume: 67
  start-page: 1935
  year: 2016
  end-page: 1950
  article-title: The cotton MYB108 forms a positive feedback regulation loop with CML11 and participates in the defense response against infection
  publication-title: J. Exp. Bot.
– volume: 21
  start-page: 1062
  year: 2013
  end-page: 1069
  article-title: Inducing drought tolerance in upland cotton ( L.), accomplishments and future prospects
  publication-title: World Appl. Sci. J
– volume: 108
  start-page: 17
  year: 1995
  end-page: 27
  article-title: Pathogenesis‐related PR‐1 proteins are antifungal. Isolation and characterization of three 14‐kilodalton proteins of tomato and of a basic PR‐1 of tobacco with inhibitory activity against
  publication-title: Plant Physiol.
– volume: 39
  start-page: 7183
  year: 2012
  end-page: 7192
  article-title: Over‐expression of TaMYB33 encoding a novel wheat MYB transcription factor increases salt and drought tolerance in Arabidopsis
  publication-title: Mol. Biol. Rep.
– volume: 51
  start-page: 739
  year: 2019
  end-page: 748
  article-title: and genomes provide insights into the origin and evolution of allotetraploid cotton
  publication-title: Nat. Genet.
– volume: 180
  start-page: 811
  year: 2008
  end-page: 820
  article-title: The R2R3 MYB transcription factor GhMYB109 is required for cotton fiber development
  publication-title: Genetics
– volume: 109
  start-page: 5110
  year: 2012
  end-page: 5115
  article-title: Tomato immune receptor Ve1 recognizes effector of multiple fungal pathogens uncovered by genome and RNA sequencing
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 210
  start-page: 1298
  year: 2016
  end-page: 1310
  article-title: Small interfering RNAs from bidirectional transcripts of GhMML3_A12 regulate cotton fiber development
  publication-title: New Phytol.
– ident: e_1_2_8_18_1
  doi: 10.1105/tpc.15.00829
– ident: e_1_2_8_29_1
  doi: 10.1038/nbt.3208
– ident: e_1_2_8_61_1
  doi: 10.1016/j.bbrc.2016.08.010
– ident: e_1_2_8_33_1
  doi: 10.1093/pcp/pcu200
– ident: e_1_2_8_4_1
  doi: 10.1093/pcp/pcv019
– ident: e_1_2_8_49_1
  doi: 10.1111/pbi.12688
– ident: e_1_2_8_28_1
  doi: 10.1073/pnas.84.19.6750
– ident: e_1_2_8_63_1
  doi: 10.1093/jxb/ers069
– ident: e_1_2_8_44_1
  doi: 10.1093/pcp/pcn011
– ident: e_1_2_8_48_1
  doi: 10.1016/j.jhazmat.2020.122811
– ident: e_1_2_8_51_1
  doi: 10.1111/nph.13860
– ident: e_1_2_8_59_1
  doi: 10.1007/s11103-005-2910-y
– ident: e_1_2_8_26_1
  doi: 10.1007/s00425-005-0071-5
– ident: e_1_2_8_50_1
  doi: 10.1111/j.1365-313X.2005.02593.x
– ident: e_1_2_8_64_1
  doi: 10.1371/journal.pone.0051091
– ident: e_1_2_8_42_1
  doi: 10.1007/s11033-012-1550-y
– ident: e_1_2_8_62_1
  doi: 10.1111/j.1469-8137.2012.04241.x
– ident: e_1_2_8_15_1
  doi: 10.3389/fpls.2017.02133
– ident: e_1_2_8_40_1
  doi: 10.1016/j.molp.2014.11.022
– ident: e_1_2_8_36_1
  doi: 10.1006/meth.2001.1262
– ident: e_1_2_8_3_1
  doi: 10.1371/journal.pone.0170578
– ident: e_1_2_8_7_1
  doi: 10.1046/j.1365-313x.1998.00343.x
– ident: e_1_2_8_14_1
  doi: 10.1111/pbi.12169
– ident: e_1_2_8_8_1
  doi: 10.1073/pnas.1119623109
– ident: e_1_2_8_19_1
  doi: 10.1007/s11033-010-0076-4
– ident: e_1_2_8_13_1
  doi: 10.1007/s11104-013-1992-6
– ident: e_1_2_8_25_1
  doi: 10.1111/pce.12906
– ident: e_1_2_8_2_1
  doi: 10.1016/j.ygeno.2020.07.004
– ident: e_1_2_8_6_1
  doi: 10.1371/journal.pone.0143022
– ident: e_1_2_8_11_1
  doi: 10.1016/j.ijbiomac.2020.11.191
– ident: e_1_2_8_39_1
  doi: 10.1038/nature11798
– ident: e_1_2_8_9_1
  doi: 10.1186/1471-2229-12-106
– ident: e_1_2_8_52_1
  doi: 10.1111/pbi.13190
– ident: e_1_2_8_16_1
  doi: 10.1038/ncomms4050
– ident: e_1_2_8_57_1
  doi: 10.1093/jxb/err431
– ident: e_1_2_8_66_1
  doi: 10.1104/pp.18.00598
– ident: e_1_2_8_30_1
  doi: 10.1111/nph.14680
– ident: e_1_2_8_31_1
  doi: 10.1038/srep35040
– ident: e_1_2_8_37_1
  doi: 10.1007/s00438-008-0322-9
– ident: e_1_2_8_12_1
  doi: 10.1104/pp.111.180067
– ident: e_1_2_8_20_1
  doi: 10.1023/A:1006496308160
– ident: e_1_2_8_24_1
  doi: 10.1073/pnas.1507691112
– ident: e_1_2_8_35_1
  doi: 10.1093/mp/sst031
– volume: 21
  start-page: 1062
  year: 2013
  ident: e_1_2_8_23_1
  article-title: Inducing drought tolerance in upland cotton (Gossypium hirsutum L.), accomplishments and future prospects
  publication-title: World Appl. Sci. J
– ident: e_1_2_8_58_1
  doi: 10.1007/s11105-014-0810-5
– ident: e_1_2_8_10_1
  doi: 10.1016/j.tplants.2010.06.005
– ident: e_1_2_8_32_1
  doi: 10.1073/pnas.1515576112
– ident: e_1_2_8_27_1
  doi: 10.1046/j.1365-313x.1998.00278.x
– ident: e_1_2_8_65_1
  doi: 10.1038/nbt.3207
– ident: e_1_2_8_17_1
  doi: 10.1038/srep24978
– ident: e_1_2_8_38_1
  doi: 10.1104/pp.108.1.17
– ident: e_1_2_8_46_1
  doi: 10.1016/j.gene.2014.01.024
– ident: e_1_2_8_53_1
  doi: 10.1038/srep16946
– ident: e_1_2_8_41_1
  doi: 10.1534/genetics.108.093070
– ident: e_1_2_8_22_1
  doi: 10.1111/ppl.12031
– ident: e_1_2_8_45_1
  doi: 10.1016/j.gene.2013.09.007
– ident: e_1_2_8_47_1
  doi: 10.1007/s11248-010-9463-9
– ident: e_1_2_8_56_1
  doi: 10.1093/pcp/pcu133
– ident: e_1_2_8_60_1
  doi: 10.1046/j.1365-313X.1995.07050751.x
– ident: e_1_2_8_21_1
  doi: 10.1038/s41588-019-0371-5
– ident: e_1_2_8_34_1
  doi: 10.1038/ncomms5686
– volume: 9
  start-page: 223
  year: 2010
  ident: e_1_2_8_43_1
  article-title: Effect of rough stress on antioxidant enzyme activities and root yield of sugar beet (Beta vulgaris)
  publication-title: Am. Eurasian J. Agric. Environ. Sci.
– ident: e_1_2_8_5_1
  doi: 10.1093/jxb/erw016
– ident: e_1_2_8_54_1
  doi: 10.1105/tpc.19.00950
– ident: e_1_2_8_55_1
  doi: 10.1105/tpc.104.024844
SSID ssj0021656
Score 2.5908673
Snippet Summary Drought and Verticillium wilt disease are two main factors that limit cotton production, which necessitates the identification of key molecular switch...
Drought and Verticillium wilt disease are two main factors that limit cotton production, which necessitates the identification of key molecular switch to...
Drought and Verticillium wilt disease are two main factors that limit cotton production, which necessitates the identification of key molecular switch to...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 722
SubjectTerms Arabidopsis
Arabidopsis - metabolism
biotechnology
cell nucleus
Cotton
Disease Resistance - genetics
drought
Drought resistance
drought tolerance
Gene Expression
Gene Expression Regulation, Plant - genetics
genes
Gossypium - metabolism
Gossypium hirsutum
luciferase
metabolism
Molecular machines
MYB gene
MYB protein
plant development
Plant Diseases - genetics
Plant Proteins - genetics
Plant Proteins - metabolism
Plants, Genetically Modified - metabolism
Polyethylene glycol
Proteins
R2R3‐type MYB proteins
Resistance factors
Seeds
sequence analysis
Signal transduction
Stress, Physiological - genetics
Tobacco
transcription factors
Transcription Factors - genetics
Transcription Factors - metabolism
Transgenic plants
transient expression
Verticillium
Verticillium dahliae
Verticillium wilt
water stress
Yeast
yeasts
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELZge4EDojwXSmUQBy6BeJ3Ezgl1q5aCRLWqqFROkZ_dlSpn6W4lEH-eGccJXRV6s-RRFHvGM9_Y8yDkba694NLrjMvcZ4XSLqtzrbK6NrVginurYrTFcXV0Wnw5K8_ShdsqhVX2OjEqatsavCP_MMGMSYCDZf5x-SPDrlH4uppaaNwlW6CCpRyRrenB8exkcLmwtkyXXyQyAaY_1RbCWJ6lXrxnXJRs0yLdgJk3oyWvo9hohg4fkgcJP9K9juHb5I4Lj8j9vfPLVEPDPSa_gfX00_zr9ymv6BptUa8ZaNddh5qY5rei4GojfAS-03VL9aKFj1IVLFVp3GWSUP2LujDHyhzhnM5OGAWpc9T9TEG0gS4CXV5gRM0Tcnp48G3_KEs9FjJTiIplwucWNskXVpeFcYVkhbDgkyjwO6zk3JeWW-mFNMapGuCFkkDKSl96b6u85k_JKLTBPSfUMiUtABhvNLhdE6VqZVRlBYCSqjQTMybv-n1uTCpAjn0wLpreEQGWNJElY_JmIF12VTf-RbTTM6tJB2_V_BWTMXk9TMORwXcQFVx7hTR4jQpW-laaisVnTKB51vF_-BPMXcbmf2MiNiRjIMCS3ZszYTGPpbuxWWdRC9iKKEP_X1wzm36Ogxe3r_IluTfBhIwYS7RDRuvLK_cKYNJa76az8AdAxhRT
  priority: 102
  providerName: ProQuest
Title The GhMYB36 transcription factor confers resistance to biotic and abiotic stress by enhancing PR1 gene expression in plants
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fpbi.13751
https://www.ncbi.nlm.nih.gov/pubmed/34812570
https://www.proquest.com/docview/2647788250
https://www.proquest.com/docview/2601486780
https://www.proquest.com/docview/2661000730
https://pubmed.ncbi.nlm.nih.gov/PMC8989497
Volume 20
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9RAEB9qfdEHv62n9VjFB19y5HsTfOpJr1WwHIeFCkLYz95h2Tt6OfDjn3dm80HPqogvIZBJyG5mMr_ZnfkNwKtQWp4UVgZJEdogFdIEZShFUJaq5JFIrBY-2-IkPz5N359lZzvwpquFafgh-gU3sgz_vyYDF3J9xchXcjGKEu7LpylXiwDRrKeOiolVpqks4gFHp9-yClEWT3_nti-6BjCv50lexa_eAU3uwufu1Zu8ky-jTS1H6vsvrI7_ObZ7cKcFpuyg0aT7sGPcA7h9cH7ZknOYh_ADdYodzT98Gic5q8nJdb8c1rTtYcrXD64ZxvCES1GhWL1kcrHEhzLhNBPteVOiwuQ3ZtycKD_cOZvOIobqbJj52mbnOrZwbHVBqTqP4HRy-PHtcdA2bwhUyvMo4DbU-A1sqmWWKpMWUco1BjsCAxpdJInNdKILywuljCgRt4gCRaPMZtbqPCyTx7Drls48AaYjUWhERlZJjOdiIUqhRK45op08U7EawOvuM1aqZTanBhsXVRfh4HxWfj4H8LIXXTV0Hr8T2u90oWotel3FVLGL4UgWDuBFfxltkTZYhDPLDcnQ-iy6_7_K5JHfH0WZvUa9-jehomjqKjgAvqV4vQBxgW9fcYu55wSnLqBpyXEqvF79eXDVdPzOnzz9d9FncCumqg-fsLQPu_XlxjxHLFbLIdyI0ykei8nREG6OD0-ms6Ff1xh6c_wJ0gI3Kg
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LaxRBEG5CPKgH8e1q1FIUvIzOu2cOIom62TUPgiQQT2M_swuhZ81u0OB_8jda1fPQJZpbbgNTDNNd1V1fdVd9xdiLUFqeFFYGSRHaIBXSBGUoRVCWquSRSKwWPttiNx8dpJ8Os8MV9qurhaG0ym5P9Bu1rhWdkb-JqWIS4WAWvpt9C6hrFN2udi00GrPYMmffMWSbvx1_QP2-jOPhx_33o6DtKhCoFGP2gNtQR3lmUy2zVJm0iFKuEYULRNq6SBKb6UQXlhdKGVGiQxUFikaZzazVuSdfwi3_SpqgJ6fK9OFmH-ARk01TzcQDjkCjZTKizKGZnL6OEp5Fy_7vHKg9n5v5N2b2Tm94k91o0SqsN-Z1i60Yd5tdXz86aRk7zB32Ew0NNic7XzaSHBbk-bp9CJpePqB8UeEcMLAnsIpWBosa5LTGj4JwGkT73NStgDwD4ybEA-KOYO9zBGjjBsyPNmXXwdTB7Jjyd-6yg0uZ-3ts1dXOPGCgI1FohEtWSQzyYiFKoUSuOUKgPFOxGrBX3TxXqqU7p64bx1UX9qBKKq-SAXvei84ajo9_Ca11yqraZT6v_hjlgD3rX-MCpVsX4Ux9SjJ0aIuY4EKZPPKXpihzv9F__ydUKU2tBgeML1lGL0AE4ctv3HTiicKpNWhacpwKb0P_H1y1tzH2Dw8vHuVTdnW0v7NdbY93tx6xazGVgvgspjW2ujg5NY8RoC3kE78qgH297GX4G_M2T6k
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqrYTggHizUMAgkLiE5u3kgFCXdulSWK0qKrWn4Gd3pcpZultBxT_j1zHjOIFVobfeImUUxZ4Z-xt75htCXobCsKQwIkiK0AQpFzooQ8GDspQli3hiFHfZFuN89yD9eJgdrpFfbS0MplW2a6JbqFUt8Yx8M8aKSYCDWbhpfFrEZHv4bv4twA5SeNPattNoTGRPn3-H8G3xdrQNun4Vx8OdL-93A99hIJApxO8BM6GK8sykSmSp1GkRpUwBIueAulWRJCZTiSoMK6TUvITNlRcgGmUmM0bljogJlv91hlFRj6wPdsaT_S7cQ16bpraJBQxgh-c1wjyiuZi9iRKWRau74QWIezFT828E7bbA4S1y02NXutUY222ypu0dcmPr-NTzd-i75CeYHf0w_Xw0SHK6xH2wXZVo09mHSldiuKAQ5iN0BZujy5qKWQ0fpdwqyv1zU8VCxTnVdoqsIPaYTvYjChavqf7hE3gtnVk6P8Fsnnvk4Epm_z7p2drqh4SqiBcKwJORAkK-mPOSS54rBoAoz2Qs--R1O8-V9OTn2IPjpGqDIFBJ5VTSJy860XnD-PEvoY1WWZV3-kX1x0T75Hn3GtwV72C41fUZyuARLiCES2XyyF2hgsyDRv_dn2DdNDYe7BO2YhmdANKFr76xs6mjDcdGoWnJYCqcDf1_cNVkMHIPjy4f5TNyDVyw-jQa7z0m12OsC3EpTRuktzw9008ArS3FU-8WlHy9ak_8DRDGVTs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+GhMYB36+transcription+factor+confers+resistance+to+biotic+and+abiotic+stress+by+enhancing+PR1+gene+expression+in+plants&rft.jtitle=Plant+biotechnology+journal&rft.au=Liu%2C+Tingli&rft.au=Chen%2C+Tianzi&rft.au=Kan%2C+Jialiang&rft.au=Yao%2C+Yao&rft.date=2022-04-01&rft.issn=1467-7644&rft.eissn=1467-7652&rft.volume=20&rft.issue=4&rft.spage=722&rft.epage=735&rft_id=info:doi/10.1111%2Fpbi.13751&rft.externalDBID=10.1111%252Fpbi.13751&rft.externalDocID=PBI13751
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1467-7644&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1467-7644&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1467-7644&client=summon