The GhMYB36 transcription factor confers resistance to biotic and abiotic stress by enhancing PR1 gene expression in plants
Summary Drought and Verticillium wilt disease are two main factors that limit cotton production, which necessitates the identification of key molecular switch to simultaneously improve cotton resistance to Verticillium dahliae and tolerance to drought stress. R2R3‐type MYB proteins could play such a...
Saved in:
Published in | Plant biotechnology journal Vol. 20; no. 4; pp. 722 - 735 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
John Wiley & Sons, Inc
01.04.2022
John Wiley and Sons Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Summary
Drought and Verticillium wilt disease are two main factors that limit cotton production, which necessitates the identification of key molecular switch to simultaneously improve cotton resistance to Verticillium dahliae and tolerance to drought stress. R2R3‐type MYB proteins could play such a role because of their conserved functions in plant development, growth, and metabolism regulation, however, till date a MYB gene conferring the desired resistance to both biotic and abiotic stresses has not been found in cotton. Here, we describe the identification of GhMYB36, a gene encoding a R2R3‐type MYB protein in Gossypium hirsutum, which confers drought tolerance and Verticilium wilt resistance in both Arabidopsis and cotton. GhMYB36 was highly induced by PEG‐simulated drought stress in G. hirsutum. GhMYB36‐silenced cotton plants were more sensitive to both drought stress and Verticillium wilt. GhMYB36 overexpression in transgenic Arabidopsis and cotton plants gave rise to improved drought tolerance and Verticillium wilt resistance. Transient expression of fused GhMYB36‐GFP in tobacco cells was able to localize GhMYB36 in the cell nucleus. In addition, RNA‐seq analysis together with qRT‐PCR validation in transgenic Arabidopsis overexpressing GhMYB36 revealed significantly enhanced PR1 expression. Luciferase interaction assays indicated that GhMYB36 are probably bound to the promoter of PR1 to activate its expression and the interaction, which was further verified by Yeast one hybrid assay. Taken together, our results suggest that GhMYB36 functions as a transcription factor that is involved in drought tolerance and Verticillium wilt resistance in Arabidopsis and cotton by enhancing PR1 expression. |
---|---|
AbstractList | Drought and
Verticillium
wilt disease are two main factors that limit cotton production, which necessitates the identification of key molecular switch to simultaneously improve cotton resistance to
Verticillium dahliae
and tolerance to drought stress. R2R3‐type MYB proteins could play such a role because of their conserved functions in plant development, growth, and metabolism regulation, however, till date a MYB gene conferring the desired resistance to both biotic and abiotic stresses has not been found in cotton. Here, we describe the identification of
GhMYB36
, a gene encoding a R2R3‐type MYB protein in
Gossypium hirsutum
, which confers drought tolerance and
Verticilium
wilt resistance in both Arabidopsis and cotton.
GhMYB36
was highly induced by PEG‐simulated drought stress in
G. hirsutum
.
GhMYB36
‐silenced cotton plants were more sensitive to both drought stress and
Verticillium
wilt.
GhMYB36
overexpression in transgenic Arabidopsis and cotton plants gave rise to improved drought tolerance and
Verticillium
wilt resistance. Transient expression of fused GhMYB36‐GFP in tobacco cells was able to localize GhMYB36 in the cell nucleus. In addition, RNA‐seq analysis together with qRT‐PCR validation in transgenic Arabidopsis overexpressing
GhMYB36
revealed significantly enhanced
PR1
expression. Luciferase interaction assays indicated that GhMYB36 are probably bound to the promoter of
PR1
to activate its expression and the interaction, which was further verified by Yeast one hybrid assay. Taken together, our results suggest that GhMYB36 functions as a transcription factor that is involved in drought tolerance and
Verticillium
wilt resistance in Arabidopsis and cotton by enhancing
PR1
expression. Drought and Verticillium wilt disease are two main factors that limit cotton production, which necessitates the identification of key molecular switch to simultaneously improve cotton resistance to Verticillium dahliae and tolerance to drought stress. R2R3-type MYB proteins could play such a role because of their conserved functions in plant development, growth, and metabolism regulation, however, till date a MYB gene conferring the desired resistance to both biotic and abiotic stresses has not been found in cotton. Here, we describe the identification of GhMYB36, a gene encoding a R2R3-type MYB protein in Gossypium hirsutum, which confers drought tolerance and Verticilium wilt resistance in both Arabidopsis and cotton. GhMYB36 was highly induced by PEG-simulated drought stress in G. hirsutum. GhMYB36-silenced cotton plants were more sensitive to both drought stress and Verticillium wilt. GhMYB36 overexpression in transgenic Arabidopsis and cotton plants gave rise to improved drought tolerance and Verticillium wilt resistance. Transient expression of fused GhMYB36-GFP in tobacco cells was able to localize GhMYB36 in the cell nucleus. In addition, RNA-seq analysis together with qRT-PCR validation in transgenic Arabidopsis overexpressing GhMYB36 revealed significantly enhanced PR1 expression. Luciferase interaction assays indicated that GhMYB36 are probably bound to the promoter of PR1 to activate its expression and the interaction, which was further verified by Yeast one hybrid assay. Taken together, our results suggest that GhMYB36 functions as a transcription factor that is involved in drought tolerance and Verticillium wilt resistance in Arabidopsis and cotton by enhancing PR1 expression. Drought and Verticillium wilt disease are two main factors that limit cotton production, which necessitates the identification of key molecular switch to simultaneously improve cotton resistance to Verticillium dahliae and tolerance to drought stress. R2R3-type MYB proteins could play such a role because of their conserved functions in plant development, growth, and metabolism regulation, however, till date a MYB gene conferring the desired resistance to both biotic and abiotic stresses has not been found in cotton. Here, we describe the identification of GhMYB36, a gene encoding a R2R3-type MYB protein in Gossypium hirsutum, which confers drought tolerance and Verticilium wilt resistance in both Arabidopsis and cotton. GhMYB36 was highly induced by PEG-simulated drought stress in G. hirsutum. GhMYB36-silenced cotton plants were more sensitive to both drought stress and Verticillium wilt. GhMYB36 overexpression in transgenic Arabidopsis and cotton plants gave rise to improved drought tolerance and Verticillium wilt resistance. Transient expression of fused GhMYB36-GFP in tobacco cells was able to localize GhMYB36 in the cell nucleus. In addition, RNA-seq analysis together with qRT-PCR validation in transgenic Arabidopsis overexpressing GhMYB36 revealed significantly enhanced PR1 expression. Luciferase interaction assays indicated that GhMYB36 are probably bound to the promoter of PR1 to activate its expression and the interaction, which was further verified by Yeast one hybrid assay. Taken together, our results suggest that GhMYB36 functions as a transcription factor that is involved in drought tolerance and Verticillium wilt resistance in Arabidopsis and cotton by enhancing PR1 expression.Drought and Verticillium wilt disease are two main factors that limit cotton production, which necessitates the identification of key molecular switch to simultaneously improve cotton resistance to Verticillium dahliae and tolerance to drought stress. R2R3-type MYB proteins could play such a role because of their conserved functions in plant development, growth, and metabolism regulation, however, till date a MYB gene conferring the desired resistance to both biotic and abiotic stresses has not been found in cotton. Here, we describe the identification of GhMYB36, a gene encoding a R2R3-type MYB protein in Gossypium hirsutum, which confers drought tolerance and Verticilium wilt resistance in both Arabidopsis and cotton. GhMYB36 was highly induced by PEG-simulated drought stress in G. hirsutum. GhMYB36-silenced cotton plants were more sensitive to both drought stress and Verticillium wilt. GhMYB36 overexpression in transgenic Arabidopsis and cotton plants gave rise to improved drought tolerance and Verticillium wilt resistance. Transient expression of fused GhMYB36-GFP in tobacco cells was able to localize GhMYB36 in the cell nucleus. In addition, RNA-seq analysis together with qRT-PCR validation in transgenic Arabidopsis overexpressing GhMYB36 revealed significantly enhanced PR1 expression. Luciferase interaction assays indicated that GhMYB36 are probably bound to the promoter of PR1 to activate its expression and the interaction, which was further verified by Yeast one hybrid assay. Taken together, our results suggest that GhMYB36 functions as a transcription factor that is involved in drought tolerance and Verticillium wilt resistance in Arabidopsis and cotton by enhancing PR1 expression. Summary Drought and Verticillium wilt disease are two main factors that limit cotton production, which necessitates the identification of key molecular switch to simultaneously improve cotton resistance to Verticillium dahliae and tolerance to drought stress. R2R3‐type MYB proteins could play such a role because of their conserved functions in plant development, growth, and metabolism regulation, however, till date a MYB gene conferring the desired resistance to both biotic and abiotic stresses has not been found in cotton. Here, we describe the identification of GhMYB36, a gene encoding a R2R3‐type MYB protein in Gossypium hirsutum, which confers drought tolerance and Verticilium wilt resistance in both Arabidopsis and cotton. GhMYB36 was highly induced by PEG‐simulated drought stress in G. hirsutum. GhMYB36‐silenced cotton plants were more sensitive to both drought stress and Verticillium wilt. GhMYB36 overexpression in transgenic Arabidopsis and cotton plants gave rise to improved drought tolerance and Verticillium wilt resistance. Transient expression of fused GhMYB36‐GFP in tobacco cells was able to localize GhMYB36 in the cell nucleus. In addition, RNA‐seq analysis together with qRT‐PCR validation in transgenic Arabidopsis overexpressing GhMYB36 revealed significantly enhanced PR1 expression. Luciferase interaction assays indicated that GhMYB36 are probably bound to the promoter of PR1 to activate its expression and the interaction, which was further verified by Yeast one hybrid assay. Taken together, our results suggest that GhMYB36 functions as a transcription factor that is involved in drought tolerance and Verticillium wilt resistance in Arabidopsis and cotton by enhancing PR1 expression. |
Author | Zhang, Baolong Kan, Jialiang Wang, Jinyan Yao, Yao Ling, Xitie Chen, Tianzi Guo, Dongshu Yang, Yuwen Liu, Tingli |
AuthorAffiliation | 1 Excellence and innovation center Jiangsu Academy of Agricultural Sciences Nanjing China |
AuthorAffiliation_xml | – name: 1 Excellence and innovation center Jiangsu Academy of Agricultural Sciences Nanjing China |
Author_xml | – sequence: 1 givenname: Tingli orcidid: 0000-0003-4804-2958 surname: Liu fullname: Liu, Tingli organization: Jiangsu Academy of Agricultural Sciences – sequence: 2 givenname: Tianzi surname: Chen fullname: Chen, Tianzi organization: Jiangsu Academy of Agricultural Sciences – sequence: 3 givenname: Jialiang surname: Kan fullname: Kan, Jialiang organization: Jiangsu Academy of Agricultural Sciences – sequence: 4 givenname: Yao surname: Yao fullname: Yao, Yao organization: Jiangsu Academy of Agricultural Sciences – sequence: 5 givenname: Dongshu surname: Guo fullname: Guo, Dongshu organization: Jiangsu Academy of Agricultural Sciences – sequence: 6 givenname: Yuwen surname: Yang fullname: Yang, Yuwen organization: Jiangsu Academy of Agricultural Sciences – sequence: 7 givenname: Xitie surname: Ling fullname: Ling, Xitie organization: Jiangsu Academy of Agricultural Sciences – sequence: 8 givenname: Jinyan orcidid: 0000-0003-0842-437X surname: Wang fullname: Wang, Jinyan organization: Jiangsu Academy of Agricultural Sciences – sequence: 9 givenname: Baolong surname: Zhang fullname: Zhang, Baolong email: zhbl2248@hotmail.com organization: Jiangsu Academy of Agricultural Sciences |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34812570$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkk1rVDEUhoNU7Icu_AMScKOLaZN78zUbwRathYpF6sJVyM09mUm5k1yTjDr45811pkWLgtnkwHnOy3s-DtFeiAEQekrJMa3vZOz8MW0lpw_QAWVCzqTgzd5dzNg-Osz5hpCGCi4eof2WKdpwSQ7Qj-sl4PPl-8-nrcAlmZBt8mPxMWBnbIkJ2xgcpIwTZJ-LCRZwibjzsXiLTeix2cW5VCTjboMhLCvnwwJffaR4AQEwfB-n7KTrAx4HE0p-jB46M2R4svuP0Ke3b67P3s0uP5xfnL2-nFkmBZ1JR_rq27G-48xCtc5kL1hjqGp61baO922vnFTWgplLToyqKOWOO9cLMm-P0Kut7rjuVtBbCLXRQY_Jr0za6Gi8_jMT_FIv4let5mrO5rIKvNgJpPhlDbnolc8WhtoFxHXWjRCUECJb8h8ooUwJqSb0-T30Jq5TqJOoFJNSqYZP1LPfzd-5vl1hBU62gE0x5wROW1_MtMHaix80JXo6El2PRP86klrx8l7Frejf2J36Nz_A5t-gvjq92Fb8BAqdzB0 |
CitedBy_id | crossref_primary_10_3390_agronomy13122903 crossref_primary_10_1007_s10142_023_01065_5 crossref_primary_10_3389_fpls_2022_953450 crossref_primary_10_1111_tpj_16200 crossref_primary_10_1007_s00709_022_01797_4 crossref_primary_10_1007_s00425_024_04458_3 crossref_primary_10_3389_fpls_2024_1463147 crossref_primary_10_1111_nph_20431 crossref_primary_10_1111_tpj_70007 crossref_primary_10_1016_j_jia_2024_07_040 crossref_primary_10_3389_fpls_2024_1446288 crossref_primary_10_29136_mediterranean_1556782 crossref_primary_10_1007_s00425_023_04180_6 crossref_primary_10_1016_j_stress_2025_100759 crossref_primary_10_1016_j_ijbiomac_2024_138624 crossref_primary_10_1016_j_ijbiomac_2024_130072 crossref_primary_10_1007_s11427_022_2278_0 crossref_primary_10_1016_j_rsci_2025_01_007 crossref_primary_10_1093_plphys_kiae446 crossref_primary_10_1016_j_indcrop_2024_118744 crossref_primary_10_3390_plants13040488 crossref_primary_10_1007_s11103_024_01533_x crossref_primary_10_1186_s12870_024_06004_5 crossref_primary_10_1016_j_ijbiomac_2023_127388 crossref_primary_10_1016_j_postharvbio_2023_112731 crossref_primary_10_1111_pbi_14008 crossref_primary_10_1016_j_plaphy_2023_107692 crossref_primary_10_1186_s12870_023_04138_6 crossref_primary_10_1016_j_celrep_2023_112938 crossref_primary_10_1016_j_ijbiomac_2024_133885 crossref_primary_10_1111_nph_19077 crossref_primary_10_48130_VR_2023_0019 crossref_primary_10_1186_s12864_024_11041_3 crossref_primary_10_1111_ppl_14259 crossref_primary_10_3390_agronomy13071950 crossref_primary_10_3390_ijms24065418 crossref_primary_10_3390_plants13162243 crossref_primary_10_1111_ppl_14615 crossref_primary_10_1016_j_plaphy_2023_107938 crossref_primary_10_3390_ijms24076185 crossref_primary_10_1186_s12864_024_10051_5 crossref_primary_10_1016_j_jia_2024_03_003 crossref_primary_10_1101_gr_279091_124 crossref_primary_10_1016_j_xplc_2024_100859 crossref_primary_10_3390_ijms232214370 crossref_primary_10_1007_s11105_025_01549_7 crossref_primary_10_1186_s40538_024_00718_2 crossref_primary_10_1016_j_plantsci_2023_111937 crossref_primary_10_3390_agronomy14051050 crossref_primary_10_1093_hr_uhac291 crossref_primary_10_3389_fpls_2022_1050216 crossref_primary_10_1016_j_ijbiomac_2024_135584 crossref_primary_10_1007_s12042_025_09398_0 crossref_primary_10_3390_horticulturae10111160 crossref_primary_10_1016_j_indcrop_2022_115812 crossref_primary_10_3390_ijms26062796 crossref_primary_10_3389_fpls_2022_979585 crossref_primary_10_3390_ijms252111449 crossref_primary_10_3389_fpls_2023_1144650 crossref_primary_10_1007_s00299_025_03462_5 crossref_primary_10_1016_j_biotechadv_2025_108520 crossref_primary_10_1016_j_jare_2024_08_037 crossref_primary_10_3390_genes14040920 crossref_primary_10_3390_ijms252211891 crossref_primary_10_1016_j_plantsci_2023_111608 crossref_primary_10_1186_s43897_024_00080_9 crossref_primary_10_3390_ijms25126795 crossref_primary_10_1007_s11295_024_01642_0 crossref_primary_10_3390_ijms25084247 crossref_primary_10_1016_j_phytochem_2023_113831 crossref_primary_10_1080_07388551_2024_2344583 crossref_primary_10_1111_pce_15199 crossref_primary_10_3390_ijms26030972 crossref_primary_10_1016_j_plaphy_2023_107995 crossref_primary_10_1016_j_jarmap_2024_100571 crossref_primary_10_1111_jipb_13388 crossref_primary_10_1007_s13237_024_00479_1 |
Cites_doi | 10.1105/tpc.15.00829 10.1038/nbt.3208 10.1016/j.bbrc.2016.08.010 10.1093/pcp/pcu200 10.1093/pcp/pcv019 10.1111/pbi.12688 10.1073/pnas.84.19.6750 10.1093/jxb/ers069 10.1093/pcp/pcn011 10.1016/j.jhazmat.2020.122811 10.1111/nph.13860 10.1007/s11103-005-2910-y 10.1007/s00425-005-0071-5 10.1111/j.1365-313X.2005.02593.x 10.1371/journal.pone.0051091 10.1007/s11033-012-1550-y 10.1111/j.1469-8137.2012.04241.x 10.3389/fpls.2017.02133 10.1016/j.molp.2014.11.022 10.1006/meth.2001.1262 10.1371/journal.pone.0170578 10.1046/j.1365-313x.1998.00343.x 10.1111/pbi.12169 10.1073/pnas.1119623109 10.1007/s11033-010-0076-4 10.1007/s11104-013-1992-6 10.1111/pce.12906 10.1016/j.ygeno.2020.07.004 10.1371/journal.pone.0143022 10.1016/j.ijbiomac.2020.11.191 10.1038/nature11798 10.1186/1471-2229-12-106 10.1111/pbi.13190 10.1038/ncomms4050 10.1093/jxb/err431 10.1104/pp.18.00598 10.1111/nph.14680 10.1038/srep35040 10.1007/s00438-008-0322-9 10.1104/pp.111.180067 10.1023/A:1006496308160 10.1073/pnas.1507691112 10.1093/mp/sst031 10.1007/s11105-014-0810-5 10.1016/j.tplants.2010.06.005 10.1073/pnas.1515576112 10.1046/j.1365-313x.1998.00278.x 10.1038/nbt.3207 10.1038/srep24978 10.1104/pp.108.1.17 10.1016/j.gene.2014.01.024 10.1038/srep16946 10.1534/genetics.108.093070 10.1111/ppl.12031 10.1016/j.gene.2013.09.007 10.1007/s11248-010-9463-9 10.1093/pcp/pcu133 10.1046/j.1365-313X.1995.07050751.x 10.1038/s41588-019-0371-5 10.1038/ncomms5686 10.1093/jxb/erw016 10.1105/tpc.19.00950 10.1105/tpc.104.024844 |
ContentType | Journal Article |
Copyright | 2021 The Authors. published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd. 2021 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd. 2022. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2021 The Authors. published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd. – notice: 2021 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd. – notice: 2022. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QO 8FD 8FE 8FG 8FH ABJCF ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO FR3 GNUQQ HCIFZ L6V LK8 M7P M7S P64 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS 7X8 7S9 L.6 5PM |
DOI | 10.1111/pbi.13751 |
DatabaseName | Wiley Online Library Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection ProQuest One Community College ProQuest Central Korea Engineering Research Database ProQuest Central Student SciTech Premium Collection ProQuest Engineering Collection Biological Sciences Biological Science Database ProQuest Engineering Database (NC LIVE) Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Engineering Collection Biotechnology Research Abstracts Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) Engineering Collection Engineering Database ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Technology Collection Biological Science Database ProQuest SciTech Collection Biotechnology and BioEngineering Abstracts ProQuest One Academic UKI Edition Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | CrossRef MEDLINE MEDLINE - Academic Publicly Available Content Database AGRICOLA |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture |
DocumentTitleAlternate | GhMYB36 confers biotic and abiotic stress resistance |
EISSN | 1467-7652 |
EndPage | 735 |
ExternalDocumentID | PMC8989497 34812570 10_1111_pbi_13751 PBI13751 |
Genre | article Journal Article |
GeographicLocations | China |
GeographicLocations_xml | – name: China |
GrantInformation_xml | – fundername: Jiangsu Science and Technology Development Program funderid: BK20191236 – fundername: Independent Innovation of National Key Research and Development Program of China funderid: 2016YFD0101418 – fundername: Agricultural Sciences in Jiangsu Province funderid: CX(19)3054 – fundername: Natural Science Foundation of Jiangsu Province funderid: BK20180308 – fundername: National Natural Science Foundation of China funderid: 31671980; 32172047 – fundername: Natural Science Foundation of Jiangsu Province grantid: BK20180308 – fundername: National Natural Science Foundation of China grantid: 32172047 – fundername: Agricultural Sciences in Jiangsu Province grantid: CX(19)3054 – fundername: Independent Innovation of National Key Research and Development Program of China grantid: 2016YFD0101418 – fundername: National Natural Science Foundation of China grantid: 31671980 – fundername: Jiangsu Science and Technology Development Program grantid: BK20191236 – fundername: ; grantid: 31671980; 32172047 – fundername: ; grantid: BK20180308 |
GroupedDBID | --- .3N .GA .Y3 05W 0R~ 10A 123 1OC 24P 29O 31~ 33P 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52W 52X 53G 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8FE 8FG 8FH 8UM 930 A03 A8Z AAEVG AAHBH AAHHS AANHP AAONW AAZKR ABCQN ABDBF ABEML ABIJN ABJCF ABPVW ACBWZ ACCFJ ACCMX ACIWK ACPRK ACRPL ACSCC ACUHS ACXQS ACYXJ ADBBV ADIZJ ADKYN ADNMO ADZMN AEEZP AEIMD AENEX AEQDE AEUQT AEUYN AFBPY AFEBI AFKRA AFRAH AFZJQ AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR ASPBG ATUGU AVUZU AVWKF AZBYB AZFZN BAFTC BBNVY BCNDV BDRZF BENPR BFHJK BGLVJ BHPHI BNHUX BROTX BRXPI BY8 CAG CCPQU COF CS3 D-E D-F DPXWK DR2 DU5 EAD EAP EBD EBS ECGQY EDH EJD EMK EMOBN EST ESX F00 F01 F04 F5P FEDTE G-S G.N GODZA GROUPED_DOAJ H.T H.X HCIFZ HF~ HOLLA HVGLF HZ~ IAO IEP IGS IHE ITC IX1 J0M KQ8 L6V LC2 LC3 LH4 LK8 LP6 LP7 LW6 M7P M7S MK4 ML0 N04 N05 N9A NF~ O66 O9- OIG OK1 P2P P2X P4D PIMPY PROAC PTHSS Q.N Q11 QB0 QM4 QO4 R.K ROL RPM RX1 SUPJJ SV3 TUS UB1 W8V W99 WIH WIN WQJ WRC XG1 ~IA ~KM ~WT AAYXX AGQPQ CITATION PHGZM PHGZT AAMMB AEFGJ AGXDD AIDQK AIDYY CGR CUY CVF ECM EIF NPM PQGLB 7QO 8FD ABUWG AZQEC DWQXO FR3 GNUQQ P64 PKEHL PQEST PQQKQ PQUKI PRINS 7X8 7S9 L.6 5PM |
ID | FETCH-LOGICAL-c4761-7f0d165f4db54ce48147d642a182d833f5d3d8f78ccea9750a84db15f5ffd6093 |
IEDL.DBID | DR2 |
ISSN | 1467-7644 1467-7652 |
IngestDate | Thu Aug 21 14:03:04 EDT 2025 Fri Jul 11 18:31:18 EDT 2025 Thu Jul 10 22:51:36 EDT 2025 Wed Aug 13 04:25:21 EDT 2025 Mon Jul 21 05:59:54 EDT 2025 Tue Jul 01 02:34:47 EDT 2025 Thu Apr 24 22:56:04 EDT 2025 Wed Jan 22 16:25:20 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | transgenic plants drought tolerance transient expression R2R3-type MYB proteins transcription factors |
Language | English |
License | Attribution-NonCommercial-NoDerivs 2021 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd. This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc-nd/4.0/ License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4761-7f0d165f4db54ce48147d642a182d833f5d3d8f78ccea9750a84db15f5ffd6093 |
Notes | These authors contributed equally to this work. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-4804-2958 0000-0003-0842-437X |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fpbi.13751 |
PMID | 34812570 |
PQID | 2647788250 |
PQPubID | 1096352 |
PageCount | 735 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_8989497 proquest_miscellaneous_2661000730 proquest_miscellaneous_2601486780 proquest_journals_2647788250 pubmed_primary_34812570 crossref_citationtrail_10_1111_pbi_13751 crossref_primary_10_1111_pbi_13751 wiley_primary_10_1111_pbi_13751_PBI13751 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | April 2022 |
PublicationDateYYYYMMDD | 2022-04-01 |
PublicationDate_xml | – month: 04 year: 2022 text: April 2022 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Southampton – name: Hoboken |
PublicationTitle | Plant biotechnology journal |
PublicationTitleAlternate | Plant Biotechnol J |
PublicationYear | 2022 |
Publisher | John Wiley & Sons, Inc John Wiley and Sons Inc |
Publisher_xml | – name: John Wiley & Sons, Inc – name: John Wiley and Sons Inc |
References | 2014b; 5 2017; 8 2017; 41 2010; 15 2019; 51 2014; 538 2021; 167 2013; 21 2015; 33 2000; 42 2014a; 56 2012; 12 2013; 6 2011; 156 2014; 376 1998; 16 2012; 492 2006; 60 2014; 5 1987; 84 2018; 178 2011; 20 2008; 279 2016; 478 2014; 12 2020b; 32 2014; 55 2010; 9 2012; 63 2015; 56 2015; 5 2013; 149 2015; 10 2012; 39 2011; 38 2015; 8 2001; 25 2017; 215 2012; 109 1995; 7 2008; 180 2016; 6 2012; 196 2015; 27 2017; 15 2006; 45 2004; 16 2015; 112 1995; 108 2008; 49 2017; 12 2016; 210 2013; 531 2020; 112 2020; 399 2020a; 18 2012; 7 2016; 67 2006; 223 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_3_1 e_1_2_8_5_1 e_1_2_8_7_1 e_1_2_8_9_1 e_1_2_8_20_1 e_1_2_8_66_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_64_1 e_1_2_8_62_1 e_1_2_8_41_1 e_1_2_8_60_1 e_1_2_8_17_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_59_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_57_1 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_51_1 e_1_2_8_30_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_48_1 Iqbal M. (e_1_2_8_23_1) 2013; 21 e_1_2_8_2_1 e_1_2_8_4_1 e_1_2_8_6_1 e_1_2_8_8_1 Sayfzadeh S. (e_1_2_8_43_1) 2010; 9 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_44_1 e_1_2_8_65_1 e_1_2_8_63_1 e_1_2_8_40_1 e_1_2_8_61_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_58_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_56_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_54_1 e_1_2_8_52_1 e_1_2_8_50_1 |
References_xml | – volume: 196 start-page: 247 year: 2012 end-page: 260 article-title: The RxLR effector Avh241 from requires plasma membrane localization to induce plant cell death publication-title: New Phytol. – volume: 5 start-page: 4686 year: 2014b article-title: Unconventionally secreted effectors of two filamentous pathogens target plant salicylate biosynthesis publication-title: Nat. Commun. – volume: 15 start-page: 573 year: 2010 end-page: 581 article-title: MYB transcription factors in publication-title: Trends Plant Sci. – volume: 531 start-page: 220 year: 2013 end-page: 234 article-title: Isolation and expression profiling of GhNAC transcription factor genes in cotton ( L.) during leaf senescence and in response to stresses publication-title: Gene – volume: 215 start-page: 1462 year: 2017 end-page: 1475 article-title: Regulation of cotton ( ) drought responses by mitogen‐activated protein (MAP) kinase cascade‐mediated phosphorylation of GhWRKY59 publication-title: New Phytol. – volume: 112 start-page: 10533 year: 2015 end-page: 10538 article-title: The MYB36 transcription factor orchestrates Casparian strip formation publication-title: Proc. Natl. Acad. Sci. USA – volume: 63 start-page: 3741 year: 2012 end-page: 3748 article-title: Overexpression of the AtLOS5 gene increased abscisic acid level and drought tolerance in transgenic cotton publication-title: J. Exp. Bot. – volume: 33 start-page: 531 year: 2015 end-page: 537 article-title: Sequencing of allotetraploid cotton ( L. acc. TM‐1) provides a resource for fiber improvement publication-title: Nat. Biotechnol. – volume: 12 year: 2017 article-title: Functional characterization of cotton GaMYB62L, a novel R2R3 TF in transgenic publication-title: PLoS One – volume: 112 start-page: 12099 year: 2015 end-page: 12104 article-title: MYB36 regulates the transition from proliferation to differentiation in the Arabidopsis root publication-title: Proc. Natl. Acad. Sci. USA – volume: 45 start-page: 523 year: 2006 end-page: 539 article-title: Methods and concepts in quantifying resistance to drought, salt and freezing, abiotic stresses that affect plant water status publication-title: Plant J. – volume: 38 start-page: 49 year: 2011 end-page: 58 article-title: GhWRKY3, a novel cotton ( L.) WRKY gene, is involved in diverse stress responses publication-title: Mol. Biol. Rep. – volume: 6 start-page: 35040 year: 2016 article-title: GhABF2, a bZIP transcription factor, confers drought and salinity tolerance in cotton ( L.) publication-title: Sci. Rep. – volume: 63 start-page: 2541 year: 2012 end-page: 2556 article-title: A R2R3‐type MYB gene, OsMYB2, is involved in salt, cold, and dehydration tolerance in rice publication-title: J. Exp. Bot. – volume: 20 start-page: 857 year: 2011 end-page: 866 article-title: Overexpression of ethylene response factor TERF2 confers cold tolerance in rice seedlings publication-title: Transgenic Res – volume: 18 start-page: 222 year: 2020a end-page: 238 article-title: GbCYP86A1‐1 from Gossypium barbadense positively regulates defence against by cell wall modification and activation of immune pathways publication-title: Plant Biotechnol. J. – volume: 112 start-page: 4089 year: 2020 end-page: 4099 article-title: Pathogenesis related protein‐1 (PR‐1) genes in tomato ( L.): Bioinformatics analyses and expression profiles in response to drought stress publication-title: Genomics – volume: 8 start-page: 378 year: 2015 end-page: 388 article-title: Regulation of MYB and bHLH transcription factors: a glance at the protein level publication-title: Mol. Plant – volume: 399 start-page: 122811 year: 2020 article-title: Auxin‐salicylic acid cross‐talk ameliorates OsMYB‐R1 mediated defense towards heavy metal, drought and fungal stress publication-title: J. Hazard. Mater. – volume: 12 start-page: 106 year: 2012 article-title: Genome‐wide analysis of the MYB transcription factor superfamily in soybean publication-title: BMC Plant Biol. – volume: 33 start-page: 524 year: 2015 end-page: 530 article-title: Genome sequence of cultivated Upland cotton ( TM‐1) provides insights into genome evolution publication-title: Nat. Biotechnol. – volume: 56 start-page: 917 year: 2015 end-page: 929 article-title: A cotton MYB transcription factor, GbMYB5, is positively involved in plant adaptive response to drought stress publication-title: Plant Cell Physiol. – volume: 5 start-page: 3050 year: 2014 article-title: miR828 and miR858 regulate homologous MYB2 gene functions in Arabidopsis trichome and cotton fibre development publication-title: Nat. Commun. – volume: 27 start-page: 3112 year: 2015 end-page: 3127 article-title: The WRKY transcription factor WRKY71/EXB1 controls shoot branching by transcriptionally regulating RAX genes in publication-title: Plant Cell – volume: 6 start-page: 1487 year: 2013 end-page: 1502 article-title: Arabidopsis Di19 functions as a transcription factor and modulates PR1, PR2, and PR5 expression in response to drought stress publication-title: Mol. Plant – volume: 5 start-page: 16946 year: 2015 article-title: Genome‐wide analysis of tomato long non‐coding RNAs and identification as endogenous target mimic for microRNA in response to TYLCV infection publication-title: Sci. Rep. – volume: 41 start-page: 898 year: 2017 end-page: 907 article-title: Ectopic expression of two AREB/ABF orthologs increases drought tolerance in cotton ( ) publication-title: Plant Cell Environ. – volume: 376 start-page: 433 year: 2014 end-page: 443 article-title: AtMYB20 is negatively involved in plant adaptive response to drought stress publication-title: Plant Soil – volume: 223 start-page: 329 year: 2006 end-page: 339 article-title: Isolation and characterization of drought‐related trehalose 6‐phosphate‐synthase gene from cultivated cotton ( L.) publication-title: Planta – volume: 60 start-page: 107 year: 2006 end-page: 124 article-title: The MYB transcription factor superfamily of Arabidopsis: expression analysis and phylogenetic comparison with the rice MYB family publication-title: Plant Mol. Biol. – volume: 538 start-page: 46 year: 2014 end-page: 55 article-title: A novel MYB transcription factor, GmMYBJ1, from soybean confers drought and cold tolerance in publication-title: Gene – volume: 149 start-page: 297 year: 2013 end-page: 309 article-title: NbPHAN, a MYB transcriptional factor, regulates leaf development and affects drought tolerance in publication-title: Physiol. Plant – volume: 25 start-page: 402 year: 2001 end-page: 408 article-title: Analysis of relative gene expression data using real‐time quantitative PCR and the 2(‐Delta Delta C(T)) method publication-title: Methods – volume: 49 start-page: 334 year: 2008 end-page: 344 article-title: Molecular and functional profiling of Arabidopsis pathogenesis‐related genes: insights into their roles in salt response of seed germination publication-title: Plant Cell Physiol. – volume: 15 start-page: 271 year: 2017 end-page: 284 article-title: Drought coping strategies in cotton: increased crop per drop publication-title: Plant Biotechnol J. – volume: 7 year: 2012 article-title: Island cotton gene encoding a receptor‐like protein confers resistance to both defoliating and non‐defoliating isolates publication-title: PLoS One – volume: 55 start-page: 2060 year: 2014 end-page: 2076 article-title: The cotton WRKY transcription factor GhWRKY17 functions in drought and salt stress in transgenic through ABA signaling and the modulation of reactive oxygen species production publication-title: Plant Cell Physiol. – volume: 279 start-page: 415 year: 2008 end-page: 427 article-title: Characteristic expression of twelve rice PR1 family genes in response to pathogen infection, wounding, and defense‐related signal compounds (121/180) publication-title: Mol. Genet. Genomics – volume: 16 start-page: 735 year: 1998 end-page: 743 article-title: Floral dip: a simplified method for Agrobacterium‐mediated transformation of publication-title: Plant J. – volume: 12 start-page: 638 year: 2014 end-page: 649 article-title: A versatile system for functional analysis of genes and microRNAs in cotton publication-title: Plant Biotechnol. J. – volume: 84 start-page: 6750 year: 1987 end-page: 6754 article-title: Biological function of pathogenesis‐related proteins: Four tobacco pathogenesis‐related proteins are chitinases publication-title: Proc. Natl. Acad. Sci. USA – volume: 56 start-page: 549 year: 2014a end-page: 557 article-title: A P4‐ATPase gene of cotton confers chilling tolerance in plants publication-title: Plant Cell Physiol. – volume: 167 start-page: 633 year: 2021 end-page: 643 article-title: A cotton WAKL protein interacted with a DnaJ protein and was involved in defense against publication-title: Int. J. Biol. Macromol. – volume: 478 start-page: 703 year: 2016 end-page: 709 article-title: Overexpression of OsEm1 encoding a group I LEA protein confers enhanced drought tolerance in rice publication-title: Biochem. Biophys. Res. Commun. – volume: 42 start-page: 819 year: 2000 end-page: 832 article-title: pGreen: a versatile and flexible binary Ti vector for Agrobacterium‐mediated plant transformation publication-title: Plant Mol. Biol. – volume: 8 start-page: 2133 year: 2017 article-title: Two Lysin‐motif receptor kinases, Gh‐LYK1 and Gh‐LYK2, contribute to resistance against wilt in upland cotton publication-title: Front. Plant Sci. – volume: 32 start-page: 3978 year: 2020b end-page: 4001 article-title: The cotton wall‐associated kinase GhWAK7A mediates responses to fungal wilt pathogens by complexing with the chitin sensory receptors publication-title: Plant Cell – volume: 10 year: 2015 article-title: The cotton WRKY gene GhWRKY41 positively regulates salt and drought stress tolerance in transgenic publication-title: PLoS One – volume: 16 start-page: 263 year: 1998 end-page: 276 article-title: Towards functional characterisation of the members of the R2R3‐MYB gene family from publication-title: Plant J – volume: 156 start-page: 2255 year: 2011 end-page: 2265 article-title: Interfamily transfer of tomato Ve1 mediates resistance in publication-title: Plant Physiol. – volume: 6 start-page: 24978 year: 2016 article-title: Expression of GhNAC2 from G. herbaceum, improves root growth and imparts tolerance to drought in transgenic cotton and Arabidopsis publication-title: Sci. Rep. – volume: 33 start-page: 987 year: 2015 end-page: 1001 article-title: A cotton Gbvdr5 gene encoding a Leucine‐Rich‐Repeat Receptor‐Like protein confers resistance to in transgenic Arabidopsis and upland cotton publication-title: Plant Mol. Biol. Rep. – volume: 9 start-page: 223 year: 2010 end-page: 230 article-title: Effect of rough stress on antioxidant enzyme activities and root yield of sugar beet ( ) publication-title: Am. Eurasian J. Agric. Environ. Sci. – volume: 16 start-page: 2323 year: 2004 end-page: 2334 article-title: Control of plant trichome development by a cotton fiber MYB gene publication-title: Plant Cell – volume: 492 start-page: 423 year: 2012 end-page: 427 article-title: Repeated polyploidization of genomes and the evolution of spinnable cotton fibres publication-title: Nature – volume: 7 start-page: 751 year: 1995 end-page: 760 article-title: Correlation between the induction of a gene for Δ1‐pyrroline‐5‐carboxylate synthetase and the accumulation of proline in under osmotic stress publication-title: Plant J. – volume: 178 start-page: 189 year: 2018 end-page: 201 article-title: An ETHYLENE RESPONSE FACTOR‐MYB transcription complex regulates furaneol biosynthesis by activating QUINONE OXIDOREDUCTASE expression in strawberry publication-title: Plant Physiol. – volume: 67 start-page: 1935 year: 2016 end-page: 1950 article-title: The cotton MYB108 forms a positive feedback regulation loop with CML11 and participates in the defense response against infection publication-title: J. Exp. Bot. – volume: 21 start-page: 1062 year: 2013 end-page: 1069 article-title: Inducing drought tolerance in upland cotton ( L.), accomplishments and future prospects publication-title: World Appl. Sci. J – volume: 108 start-page: 17 year: 1995 end-page: 27 article-title: Pathogenesis‐related PR‐1 proteins are antifungal. Isolation and characterization of three 14‐kilodalton proteins of tomato and of a basic PR‐1 of tobacco with inhibitory activity against publication-title: Plant Physiol. – volume: 39 start-page: 7183 year: 2012 end-page: 7192 article-title: Over‐expression of TaMYB33 encoding a novel wheat MYB transcription factor increases salt and drought tolerance in Arabidopsis publication-title: Mol. Biol. Rep. – volume: 51 start-page: 739 year: 2019 end-page: 748 article-title: and genomes provide insights into the origin and evolution of allotetraploid cotton publication-title: Nat. Genet. – volume: 180 start-page: 811 year: 2008 end-page: 820 article-title: The R2R3 MYB transcription factor GhMYB109 is required for cotton fiber development publication-title: Genetics – volume: 109 start-page: 5110 year: 2012 end-page: 5115 article-title: Tomato immune receptor Ve1 recognizes effector of multiple fungal pathogens uncovered by genome and RNA sequencing publication-title: Proc. Natl. Acad. Sci. USA – volume: 210 start-page: 1298 year: 2016 end-page: 1310 article-title: Small interfering RNAs from bidirectional transcripts of GhMML3_A12 regulate cotton fiber development publication-title: New Phytol. – ident: e_1_2_8_18_1 doi: 10.1105/tpc.15.00829 – ident: e_1_2_8_29_1 doi: 10.1038/nbt.3208 – ident: e_1_2_8_61_1 doi: 10.1016/j.bbrc.2016.08.010 – ident: e_1_2_8_33_1 doi: 10.1093/pcp/pcu200 – ident: e_1_2_8_4_1 doi: 10.1093/pcp/pcv019 – ident: e_1_2_8_49_1 doi: 10.1111/pbi.12688 – ident: e_1_2_8_28_1 doi: 10.1073/pnas.84.19.6750 – ident: e_1_2_8_63_1 doi: 10.1093/jxb/ers069 – ident: e_1_2_8_44_1 doi: 10.1093/pcp/pcn011 – ident: e_1_2_8_48_1 doi: 10.1016/j.jhazmat.2020.122811 – ident: e_1_2_8_51_1 doi: 10.1111/nph.13860 – ident: e_1_2_8_59_1 doi: 10.1007/s11103-005-2910-y – ident: e_1_2_8_26_1 doi: 10.1007/s00425-005-0071-5 – ident: e_1_2_8_50_1 doi: 10.1111/j.1365-313X.2005.02593.x – ident: e_1_2_8_64_1 doi: 10.1371/journal.pone.0051091 – ident: e_1_2_8_42_1 doi: 10.1007/s11033-012-1550-y – ident: e_1_2_8_62_1 doi: 10.1111/j.1469-8137.2012.04241.x – ident: e_1_2_8_15_1 doi: 10.3389/fpls.2017.02133 – ident: e_1_2_8_40_1 doi: 10.1016/j.molp.2014.11.022 – ident: e_1_2_8_36_1 doi: 10.1006/meth.2001.1262 – ident: e_1_2_8_3_1 doi: 10.1371/journal.pone.0170578 – ident: e_1_2_8_7_1 doi: 10.1046/j.1365-313x.1998.00343.x – ident: e_1_2_8_14_1 doi: 10.1111/pbi.12169 – ident: e_1_2_8_8_1 doi: 10.1073/pnas.1119623109 – ident: e_1_2_8_19_1 doi: 10.1007/s11033-010-0076-4 – ident: e_1_2_8_13_1 doi: 10.1007/s11104-013-1992-6 – ident: e_1_2_8_25_1 doi: 10.1111/pce.12906 – ident: e_1_2_8_2_1 doi: 10.1016/j.ygeno.2020.07.004 – ident: e_1_2_8_6_1 doi: 10.1371/journal.pone.0143022 – ident: e_1_2_8_11_1 doi: 10.1016/j.ijbiomac.2020.11.191 – ident: e_1_2_8_39_1 doi: 10.1038/nature11798 – ident: e_1_2_8_9_1 doi: 10.1186/1471-2229-12-106 – ident: e_1_2_8_52_1 doi: 10.1111/pbi.13190 – ident: e_1_2_8_16_1 doi: 10.1038/ncomms4050 – ident: e_1_2_8_57_1 doi: 10.1093/jxb/err431 – ident: e_1_2_8_66_1 doi: 10.1104/pp.18.00598 – ident: e_1_2_8_30_1 doi: 10.1111/nph.14680 – ident: e_1_2_8_31_1 doi: 10.1038/srep35040 – ident: e_1_2_8_37_1 doi: 10.1007/s00438-008-0322-9 – ident: e_1_2_8_12_1 doi: 10.1104/pp.111.180067 – ident: e_1_2_8_20_1 doi: 10.1023/A:1006496308160 – ident: e_1_2_8_24_1 doi: 10.1073/pnas.1507691112 – ident: e_1_2_8_35_1 doi: 10.1093/mp/sst031 – volume: 21 start-page: 1062 year: 2013 ident: e_1_2_8_23_1 article-title: Inducing drought tolerance in upland cotton (Gossypium hirsutum L.), accomplishments and future prospects publication-title: World Appl. Sci. J – ident: e_1_2_8_58_1 doi: 10.1007/s11105-014-0810-5 – ident: e_1_2_8_10_1 doi: 10.1016/j.tplants.2010.06.005 – ident: e_1_2_8_32_1 doi: 10.1073/pnas.1515576112 – ident: e_1_2_8_27_1 doi: 10.1046/j.1365-313x.1998.00278.x – ident: e_1_2_8_65_1 doi: 10.1038/nbt.3207 – ident: e_1_2_8_17_1 doi: 10.1038/srep24978 – ident: e_1_2_8_38_1 doi: 10.1104/pp.108.1.17 – ident: e_1_2_8_46_1 doi: 10.1016/j.gene.2014.01.024 – ident: e_1_2_8_53_1 doi: 10.1038/srep16946 – ident: e_1_2_8_41_1 doi: 10.1534/genetics.108.093070 – ident: e_1_2_8_22_1 doi: 10.1111/ppl.12031 – ident: e_1_2_8_45_1 doi: 10.1016/j.gene.2013.09.007 – ident: e_1_2_8_47_1 doi: 10.1007/s11248-010-9463-9 – ident: e_1_2_8_56_1 doi: 10.1093/pcp/pcu133 – ident: e_1_2_8_60_1 doi: 10.1046/j.1365-313X.1995.07050751.x – ident: e_1_2_8_21_1 doi: 10.1038/s41588-019-0371-5 – ident: e_1_2_8_34_1 doi: 10.1038/ncomms5686 – volume: 9 start-page: 223 year: 2010 ident: e_1_2_8_43_1 article-title: Effect of rough stress on antioxidant enzyme activities and root yield of sugar beet (Beta vulgaris) publication-title: Am. Eurasian J. Agric. Environ. Sci. – ident: e_1_2_8_5_1 doi: 10.1093/jxb/erw016 – ident: e_1_2_8_54_1 doi: 10.1105/tpc.19.00950 – ident: e_1_2_8_55_1 doi: 10.1105/tpc.104.024844 |
SSID | ssj0021656 |
Score | 2.5908673 |
Snippet | Summary
Drought and Verticillium wilt disease are two main factors that limit cotton production, which necessitates the identification of key molecular switch... Drought and Verticillium wilt disease are two main factors that limit cotton production, which necessitates the identification of key molecular switch to... Drought and Verticillium wilt disease are two main factors that limit cotton production, which necessitates the identification of key molecular switch to... |
SourceID | pubmedcentral proquest pubmed crossref wiley |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 722 |
SubjectTerms | Arabidopsis Arabidopsis - metabolism biotechnology cell nucleus Cotton Disease Resistance - genetics drought Drought resistance drought tolerance Gene Expression Gene Expression Regulation, Plant - genetics genes Gossypium - metabolism Gossypium hirsutum luciferase metabolism Molecular machines MYB gene MYB protein plant development Plant Diseases - genetics Plant Proteins - genetics Plant Proteins - metabolism Plants, Genetically Modified - metabolism Polyethylene glycol Proteins R2R3‐type MYB proteins Resistance factors Seeds sequence analysis Signal transduction Stress, Physiological - genetics Tobacco transcription factors Transcription Factors - genetics Transcription Factors - metabolism Transgenic plants transient expression Verticillium Verticillium dahliae Verticillium wilt water stress Yeast yeasts |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELZge4EDojwXSmUQBy6BeJ3Ezgl1q5aCRLWqqFROkZ_dlSpn6W4lEH-eGccJXRV6s-RRFHvGM9_Y8yDkba694NLrjMvcZ4XSLqtzrbK6NrVginurYrTFcXV0Wnw5K8_ShdsqhVX2OjEqatsavCP_MMGMSYCDZf5x-SPDrlH4uppaaNwlW6CCpRyRrenB8exkcLmwtkyXXyQyAaY_1RbCWJ6lXrxnXJRs0yLdgJk3oyWvo9hohg4fkgcJP9K9juHb5I4Lj8j9vfPLVEPDPSa_gfX00_zr9ymv6BptUa8ZaNddh5qY5rei4GojfAS-03VL9aKFj1IVLFVp3GWSUP2LujDHyhzhnM5OGAWpc9T9TEG0gS4CXV5gRM0Tcnp48G3_KEs9FjJTiIplwucWNskXVpeFcYVkhbDgkyjwO6zk3JeWW-mFNMapGuCFkkDKSl96b6u85k_JKLTBPSfUMiUtABhvNLhdE6VqZVRlBYCSqjQTMybv-n1uTCpAjn0wLpreEQGWNJElY_JmIF12VTf-RbTTM6tJB2_V_BWTMXk9TMORwXcQFVx7hTR4jQpW-laaisVnTKB51vF_-BPMXcbmf2MiNiRjIMCS3ZszYTGPpbuxWWdRC9iKKEP_X1wzm36Ogxe3r_IluTfBhIwYS7RDRuvLK_cKYNJa76az8AdAxhRT priority: 102 providerName: ProQuest |
Title | The GhMYB36 transcription factor confers resistance to biotic and abiotic stress by enhancing PR1 gene expression in plants |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fpbi.13751 https://www.ncbi.nlm.nih.gov/pubmed/34812570 https://www.proquest.com/docview/2647788250 https://www.proquest.com/docview/2601486780 https://www.proquest.com/docview/2661000730 https://pubmed.ncbi.nlm.nih.gov/PMC8989497 |
Volume | 20 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9RAEB9qfdEHv62n9VjFB19y5HsTfOpJr1WwHIeFCkLYz95h2Tt6OfDjn3dm80HPqogvIZBJyG5mMr_ZnfkNwKtQWp4UVgZJEdogFdIEZShFUJaq5JFIrBY-2-IkPz5N359lZzvwpquFafgh-gU3sgz_vyYDF3J9xchXcjGKEu7LpylXiwDRrKeOiolVpqks4gFHp9-yClEWT3_nti-6BjCv50lexa_eAU3uwufu1Zu8ky-jTS1H6vsvrI7_ObZ7cKcFpuyg0aT7sGPcA7h9cH7ZknOYh_ADdYodzT98Gic5q8nJdb8c1rTtYcrXD64ZxvCES1GhWL1kcrHEhzLhNBPteVOiwuQ3ZtycKD_cOZvOIobqbJj52mbnOrZwbHVBqTqP4HRy-PHtcdA2bwhUyvMo4DbU-A1sqmWWKpMWUco1BjsCAxpdJInNdKILywuljCgRt4gCRaPMZtbqPCyTx7Drls48AaYjUWhERlZJjOdiIUqhRK45op08U7EawOvuM1aqZTanBhsXVRfh4HxWfj4H8LIXXTV0Hr8T2u90oWotel3FVLGL4UgWDuBFfxltkTZYhDPLDcnQ-iy6_7_K5JHfH0WZvUa9-jehomjqKjgAvqV4vQBxgW9fcYu55wSnLqBpyXEqvF79eXDVdPzOnzz9d9FncCumqg-fsLQPu_XlxjxHLFbLIdyI0ykei8nREG6OD0-ms6Ff1xh6c_wJ0gI3Kg |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LaxRBEG5CPKgH8e1q1FIUvIzOu2cOIom62TUPgiQQT2M_swuhZ81u0OB_8jda1fPQJZpbbgNTDNNd1V1fdVd9xdiLUFqeFFYGSRHaIBXSBGUoRVCWquSRSKwWPttiNx8dpJ8Os8MV9qurhaG0ym5P9Bu1rhWdkb-JqWIS4WAWvpt9C6hrFN2udi00GrPYMmffMWSbvx1_QP2-jOPhx_33o6DtKhCoFGP2gNtQR3lmUy2zVJm0iFKuEYULRNq6SBKb6UQXlhdKGVGiQxUFikaZzazVuSdfwi3_SpqgJ6fK9OFmH-ARk01TzcQDjkCjZTKizKGZnL6OEp5Fy_7vHKg9n5v5N2b2Tm94k91o0SqsN-Z1i60Yd5tdXz86aRk7zB32Ew0NNic7XzaSHBbk-bp9CJpePqB8UeEcMLAnsIpWBosa5LTGj4JwGkT73NStgDwD4ybEA-KOYO9zBGjjBsyPNmXXwdTB7Jjyd-6yg0uZ-3ts1dXOPGCgI1FohEtWSQzyYiFKoUSuOUKgPFOxGrBX3TxXqqU7p64bx1UX9qBKKq-SAXvei84ajo9_Ca11yqraZT6v_hjlgD3rX-MCpVsX4Ux9SjJ0aIuY4EKZPPKXpihzv9F__ydUKU2tBgeML1lGL0AE4ctv3HTiicKpNWhacpwKb0P_H1y1tzH2Dw8vHuVTdnW0v7NdbY93tx6xazGVgvgspjW2ujg5NY8RoC3kE78qgH297GX4G_M2T6k |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqrYTggHizUMAgkLiE5u3kgFCXdulSWK0qKrWn4Gd3pcpZultBxT_j1zHjOIFVobfeImUUxZ4Z-xt75htCXobCsKQwIkiK0AQpFzooQ8GDspQli3hiFHfZFuN89yD9eJgdrpFfbS0MplW2a6JbqFUt8Yx8M8aKSYCDWbhpfFrEZHv4bv4twA5SeNPattNoTGRPn3-H8G3xdrQNun4Vx8OdL-93A99hIJApxO8BM6GK8sykSmSp1GkRpUwBIueAulWRJCZTiSoMK6TUvITNlRcgGmUmM0bljogJlv91hlFRj6wPdsaT_S7cQ16bpraJBQxgh-c1wjyiuZi9iRKWRau74QWIezFT828E7bbA4S1y02NXutUY222ypu0dcmPr-NTzd-i75CeYHf0w_Xw0SHK6xH2wXZVo09mHSldiuKAQ5iN0BZujy5qKWQ0fpdwqyv1zU8VCxTnVdoqsIPaYTvYjChavqf7hE3gtnVk6P8Fsnnvk4Epm_z7p2drqh4SqiBcKwJORAkK-mPOSS54rBoAoz2Qs--R1O8-V9OTn2IPjpGqDIFBJ5VTSJy860XnD-PEvoY1WWZV3-kX1x0T75Hn3GtwV72C41fUZyuARLiCES2XyyF2hgsyDRv_dn2DdNDYe7BO2YhmdANKFr76xs6mjDcdGoWnJYCqcDf1_cNVkMHIPjy4f5TNyDVyw-jQa7z0m12OsC3EpTRuktzw9008ArS3FU-8WlHy9ak_8DRDGVTs |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+GhMYB36+transcription+factor+confers+resistance+to+biotic+and+abiotic+stress+by+enhancing+PR1+gene+expression+in+plants&rft.jtitle=Plant+biotechnology+journal&rft.au=Liu%2C+Tingli&rft.au=Chen%2C+Tianzi&rft.au=Kan%2C+Jialiang&rft.au=Yao%2C+Yao&rft.date=2022-04-01&rft.issn=1467-7644&rft.eissn=1467-7652&rft.volume=20&rft.issue=4&rft.spage=722&rft.epage=735&rft_id=info:doi/10.1111%2Fpbi.13751&rft.externalDBID=10.1111%252Fpbi.13751&rft.externalDocID=PBI13751 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1467-7644&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1467-7644&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1467-7644&client=summon |