Halogen, Chalcogen, and Pnicogen Bonding Involving Hypervalent Atoms
The additional substituents arising from hypervalency present a number of complicating issues for the formation of noncovalent bonds. The XF5 molecule (X=Cl, Br, I) was allowed to form a halogen bond with NH3 as the base. Hypervalent chalcogen bonding is examined by way of YF4 and YF6 (Y=S, Se, Te),...
Saved in:
Published in | Chemistry : a European journal Vol. 24; no. 32; pp. 8167 - 8177 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
07.06.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The additional substituents arising from hypervalency present a number of complicating issues for the formation of noncovalent bonds. The XF5 molecule (X=Cl, Br, I) was allowed to form a halogen bond with NH3 as the base. Hypervalent chalcogen bonding is examined by way of YF4 and YF6 (Y=S, Se, Te), and ZF5 (Z=P, As, Sb) is used to model pnicogen bonding. Pnicogen bonds are particularly strong, with interaction energies approaching 50 kcal mol−1, and also involve wholesale rearrangement from trigonal bipyramidal in the monomer to square pyramidal in the complex, subject to a large deformation energy. YF4 chalcogen bonding is also strong, and like pnicogen bonding, is enhanced by a heavier central atom. XF5 halogen bond energies are roughly 9 kcal mol−1, and display a unique sensitivity to the identity of the X atom. The crowded octahedral structure of YF6 permits only very weak interactions. As the F atoms of SeF6 are replaced progressively by H, a chalcogen bond appears in combination with SeH⋅⋅⋅N and NH⋅⋅⋅F H‐bonds. The strongest such chalcogen bond appears in SeF3H3⋅⋅⋅NH3, with a binding energy of 7 kcal mol−1, wherein the base is located in the H3 face of the Lewis acid. Results are discussed in the context of the way in which the positions and intensities of σ‐holes are influenced by the locations of substituents and lone electron pairs.
Bonding theory: Hypervalent chalcogen bonding is examined by way of YF4 and YF6 (Y=S, Se, Te), and ZF5 (Z=P, As, Sb) and XF5 (X=Cl, Br, I) are used to model pnicogen and halogen bonding, respectively. is used to model pnicogen bonding. Pnicogen bonds are particularly strong and involve wholesale rearrangement from trigonal bipyramidal in the monomer to square pyramidal in the complex (see figure). |
---|---|
AbstractList | The additional substituents arising from hypervalency present a number of complicating issues for the formation of noncovalent bonds. The XF5 molecule (X=Cl, Br, I) was allowed to form a halogen bond with NH3 as the base. Hypervalent chalcogen bonding is examined by way of YF4 and YF6 (Y=S, Se, Te), and ZF5 (Z=P, As, Sb) is used to model pnicogen bonding. Pnicogen bonds are particularly strong, with interaction energies approaching 50 kcal mol−1, and also involve wholesale rearrangement from trigonal bipyramidal in the monomer to square pyramidal in the complex, subject to a large deformation energy. YF4 chalcogen bonding is also strong, and like pnicogen bonding, is enhanced by a heavier central atom. XF5 halogen bond energies are roughly 9 kcal mol−1, and display a unique sensitivity to the identity of the X atom. The crowded octahedral structure of YF6 permits only very weak interactions. As the F atoms of SeF6 are replaced progressively by H, a chalcogen bond appears in combination with SeH⋅⋅⋅N and NH⋅⋅⋅F H‐bonds. The strongest such chalcogen bond appears in SeF3H3⋅⋅⋅NH3, with a binding energy of 7 kcal mol−1, wherein the base is located in the H3 face of the Lewis acid. Results are discussed in the context of the way in which the positions and intensities of σ‐holes are influenced by the locations of substituents and lone electron pairs. The additional substituents arising from hypervalency present a number of complicating issues for the formation of noncovalent bonds. The XF5 molecule (X=Cl, Br, I) was allowed to form a halogen bond with NH3 as the base. Hypervalent chalcogen bonding is examined by way of YF4 and YF6 (Y=S, Se, Te), and ZF5 (Z=P, As, Sb) is used to model pnicogen bonding. Pnicogen bonds are particularly strong, with interaction energies approaching 50 kcal mol−1, and also involve wholesale rearrangement from trigonal bipyramidal in the monomer to square pyramidal in the complex, subject to a large deformation energy. YF4 chalcogen bonding is also strong, and like pnicogen bonding, is enhanced by a heavier central atom. XF5 halogen bond energies are roughly 9 kcal mol−1, and display a unique sensitivity to the identity of the X atom. The crowded octahedral structure of YF6 permits only very weak interactions. As the F atoms of SeF6 are replaced progressively by H, a chalcogen bond appears in combination with SeH⋅⋅⋅N and NH⋅⋅⋅F H‐bonds. The strongest such chalcogen bond appears in SeF3H3⋅⋅⋅NH3, with a binding energy of 7 kcal mol−1, wherein the base is located in the H3 face of the Lewis acid. Results are discussed in the context of the way in which the positions and intensities of σ‐holes are influenced by the locations of substituents and lone electron pairs. Bonding theory: Hypervalent chalcogen bonding is examined by way of YF4 and YF6 (Y=S, Se, Te), and ZF5 (Z=P, As, Sb) and XF5 (X=Cl, Br, I) are used to model pnicogen and halogen bonding, respectively. is used to model pnicogen bonding. Pnicogen bonds are particularly strong and involve wholesale rearrangement from trigonal bipyramidal in the monomer to square pyramidal in the complex (see figure). The additional substituents arising from hypervalency present a number of complicating issues for the formation of noncovalent bonds. The XF molecule (X=Cl, Br, I) was allowed to form a halogen bond with NH as the base. Hypervalent chalcogen bonding is examined by way of YF and YF (Y=S, Se, Te), and ZF (Z=P, As, Sb) is used to model pnicogen bonding. Pnicogen bonds are particularly strong, with interaction energies approaching 50 kcal mol , and also involve wholesale rearrangement from trigonal bipyramidal in the monomer to square pyramidal in the complex, subject to a large deformation energy. YF chalcogen bonding is also strong, and like pnicogen bonding, is enhanced by a heavier central atom. XF halogen bond energies are roughly 9 kcal mol , and display a unique sensitivity to the identity of the X atom. The crowded octahedral structure of YF permits only very weak interactions. As the F atoms of SeF are replaced progressively by H, a chalcogen bond appears in combination with SeH⋅⋅⋅N and NH⋅⋅⋅F H-bonds. The strongest such chalcogen bond appears in SeF H ⋅⋅⋅NH , with a binding energy of 7 kcal mol , wherein the base is located in the H face of the Lewis acid. Results are discussed in the context of the way in which the positions and intensities of σ-holes are influenced by the locations of substituents and lone electron pairs. The additional substituents arising from hypervalency present a number of complicating issues for the formation of noncovalent bonds. The XF5 molecule (X=Cl, Br, I) was allowed to form a halogen bond with NH3 as the base. Hypervalent chalcogen bonding is examined by way of YF4 and YF6 (Y=S, Se, Te), and ZF5 (Z=P, As, Sb) is used to model pnicogen bonding. Pnicogen bonds are particularly strong, with interaction energies approaching 50 kcal mol-1 , and also involve wholesale rearrangement from trigonal bipyramidal in the monomer to square pyramidal in the complex, subject to a large deformation energy. YF4 chalcogen bonding is also strong, and like pnicogen bonding, is enhanced by a heavier central atom. XF5 halogen bond energies are roughly 9 kcal mol-1 , and display a unique sensitivity to the identity of the X atom. The crowded octahedral structure of YF6 permits only very weak interactions. As the F atoms of SeF6 are replaced progressively by H, a chalcogen bond appears in combination with SeH⋅⋅⋅N and NH⋅⋅⋅F H-bonds. The strongest such chalcogen bond appears in SeF3 H3 ⋅⋅⋅NH3 , with a binding energy of 7 kcal mol-1 , wherein the base is located in the H3 face of the Lewis acid. Results are discussed in the context of the way in which the positions and intensities of σ-holes are influenced by the locations of substituents and lone electron pairs.The additional substituents arising from hypervalency present a number of complicating issues for the formation of noncovalent bonds. The XF5 molecule (X=Cl, Br, I) was allowed to form a halogen bond with NH3 as the base. Hypervalent chalcogen bonding is examined by way of YF4 and YF6 (Y=S, Se, Te), and ZF5 (Z=P, As, Sb) is used to model pnicogen bonding. Pnicogen bonds are particularly strong, with interaction energies approaching 50 kcal mol-1 , and also involve wholesale rearrangement from trigonal bipyramidal in the monomer to square pyramidal in the complex, subject to a large deformation energy. YF4 chalcogen bonding is also strong, and like pnicogen bonding, is enhanced by a heavier central atom. XF5 halogen bond energies are roughly 9 kcal mol-1 , and display a unique sensitivity to the identity of the X atom. The crowded octahedral structure of YF6 permits only very weak interactions. As the F atoms of SeF6 are replaced progressively by H, a chalcogen bond appears in combination with SeH⋅⋅⋅N and NH⋅⋅⋅F H-bonds. The strongest such chalcogen bond appears in SeF3 H3 ⋅⋅⋅NH3 , with a binding energy of 7 kcal mol-1 , wherein the base is located in the H3 face of the Lewis acid. Results are discussed in the context of the way in which the positions and intensities of σ-holes are influenced by the locations of substituents and lone electron pairs. The additional substituents arising from hypervalency present a number of complicating issues for the formation of noncovalent bonds. The XF 5 molecule (X=Cl, Br, I) was allowed to form a halogen bond with NH 3 as the base. Hypervalent chalcogen bonding is examined by way of YF 4 and YF 6 (Y=S, Se, Te), and ZF 5 (Z=P, As, Sb) is used to model pnicogen bonding. Pnicogen bonds are particularly strong, with interaction energies approaching 50 kcal mol −1 , and also involve wholesale rearrangement from trigonal bipyramidal in the monomer to square pyramidal in the complex, subject to a large deformation energy. YF 4 chalcogen bonding is also strong, and like pnicogen bonding, is enhanced by a heavier central atom. XF 5 halogen bond energies are roughly 9 kcal mol −1 , and display a unique sensitivity to the identity of the X atom. The crowded octahedral structure of YF 6 permits only very weak interactions. As the F atoms of SeF 6 are replaced progressively by H, a chalcogen bond appears in combination with SeH⋅⋅⋅N and NH⋅⋅⋅F H‐bonds. The strongest such chalcogen bond appears in SeF 3 H 3 ⋅⋅⋅NH 3 , with a binding energy of 7 kcal mol −1 , wherein the base is located in the H 3 face of the Lewis acid. Results are discussed in the context of the way in which the positions and intensities of σ‐holes are influenced by the locations of substituents and lone electron pairs. |
Author | Scheiner, Steve Lu, Jia |
Author_xml | – sequence: 1 givenname: Steve orcidid: 0000-0003-0793-0369 surname: Scheiner fullname: Scheiner, Steve email: steve.scheiner@usu.edu organization: Utah State University – sequence: 2 givenname: Jia orcidid: 0000-0002-4558-7517 surname: Lu fullname: Lu, Jia organization: Utah State University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29572983$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc1PwjAYxhujkQ-9ejRLvHhw2I913Y6IKCQYPeh5eek6GOlaXAeG_97BEBMS46lvk9_zvB9PB50aaxRCVwT3CMb0Xs5V0aOYRBhzQk5Qm3BKfCZCforaOA6EH3IWt1DHuQXGOA4ZO0ctGnNB44i10eMItJ0pc-cN5qBlU4JJvTeT737egzVpbmbe2KytXm-r0WapyjVoZSqvX9nCXaCzDLRTl_u3iz6ehu-DkT95fR4P-hNfBiIkPs9oCkIxClwAiQTmkClMZZjKaCqyKIKIhDJTQsgwSCkXEYRpxuu9QGGICeui28Z3WdrPlXJVUuROKq3BKLtyye4OVGDGavTmCF3YVWnq6WqqdgyoCLaG13tqNS1UmizLvIByk_zcpwZ6DSBL61ypsgNCcLININkGkBwCqAXBkUDmFVS5NVUJuf5bFjeyr1yrzT9NksFo-PKr_Qb2t5hQ |
CitedBy_id | crossref_primary_10_1002_cphc_202200936 crossref_primary_10_1002_hlca_202400015 crossref_primary_10_1021_acs_jpca_3c02049 crossref_primary_10_1007_s11224_019_01337_6 crossref_primary_10_1002_chem_202003426 crossref_primary_10_1016_j_molstruc_2020_129288 crossref_primary_10_1039_D1CP00242B crossref_primary_10_1002_cplu_202300523 crossref_primary_10_1016_j_comptc_2020_113090 crossref_primary_10_1016_j_molstruc_2021_130638 crossref_primary_10_1246_bcsj_20200157 crossref_primary_10_3390_cryst13050766 crossref_primary_10_1021_acs_jpca_3c06093 crossref_primary_10_1021_acs_inorgchem_0c01177 crossref_primary_10_1002_asia_202400081 crossref_primary_10_1007_s00894_019_4275_1 crossref_primary_10_1016_j_jms_2022_111672 crossref_primary_10_1021_acs_inorgchem_3c01837 crossref_primary_10_1039_C9CP01379B crossref_primary_10_1016_j_poly_2025_117421 crossref_primary_10_1039_C9CP01925A crossref_primary_10_1039_C9CP01759C crossref_primary_10_1002_cphc_201900340 crossref_primary_10_1021_acsomega_3c03981 crossref_primary_10_1039_C8CP03937B crossref_primary_10_1039_D1CE01046H crossref_primary_10_1021_acs_inorgchem_0c01086 crossref_primary_10_1039_D4CP03716B crossref_primary_10_1098_rsos_231362 crossref_primary_10_1021_acs_cgd_1c01023 crossref_primary_10_1016_j_jorganchem_2021_122092 crossref_primary_10_3390_molecules27196486 crossref_primary_10_1021_acs_jpca_0c06803 crossref_primary_10_1039_C9CP04006D crossref_primary_10_1021_acsomega_0c05795 crossref_primary_10_1002_slct_202103092 crossref_primary_10_1039_D0SC02551H crossref_primary_10_1021_acs_jpca_0c10814 crossref_primary_10_3390_molecules23071681 crossref_primary_10_1021_acs_jpca_2c02451 crossref_primary_10_1016_j_ccr_2020_213381 crossref_primary_10_1016_j_chemphys_2020_110978 crossref_primary_10_1002_cphc_202300326 crossref_primary_10_1016_j_ccr_2022_214556 crossref_primary_10_1063_5_0026168 crossref_primary_10_1007_s00894_021_04838_6 crossref_primary_10_1039_D3CP03479H crossref_primary_10_1002_cphc_201900072 crossref_primary_10_1039_C9CE00496C crossref_primary_10_1002_chem_202101425 crossref_primary_10_1039_C9CP02406A crossref_primary_10_1016_j_chemphys_2021_111112 crossref_primary_10_1063_5_0031162 crossref_primary_10_1080_00268976_2022_2026511 crossref_primary_10_1016_j_comptc_2022_113636 crossref_primary_10_1039_D0NJ01683G crossref_primary_10_3390_molecules24020376 crossref_primary_10_1021_acs_jpca_4c06483 crossref_primary_10_3390_cryst11040373 crossref_primary_10_1039_D0CP06273A crossref_primary_10_1002_cplu_202100285 crossref_primary_10_1002_cphc_202400482 crossref_primary_10_1021_acs_jpca_2c07611 crossref_primary_10_1515_pac_2020_1002 crossref_primary_10_1021_acs_jpca_1c10818 crossref_primary_10_3390_molecules26020350 crossref_primary_10_1021_acsomega_3c08178 crossref_primary_10_1039_C9CP01033E crossref_primary_10_3390_molecules28093776 crossref_primary_10_1039_D0CP05689H crossref_primary_10_1039_D0CP02880K crossref_primary_10_1007_s00894_019_4031_6 crossref_primary_10_1039_D4CP00057A crossref_primary_10_1021_acs_jpca_4c05481 |
Cites_doi | 10.1016/j.comptc.2014.02.003 10.1021/jp509212t 10.1080/00268976.2014.911984 10.1039/C3CP53369G 10.1093/oso/9780195090116.001.0001 10.1039/c2cc33304j 10.1039/c3nj01015e 10.1007/s11224-015-0594-8 10.1002/chem.201406359 10.1002/ange.201306501 10.1021/acs.jpca.7b09902 10.1016/j.cplett.2014.12.040 10.1039/C2CE26393A 10.1002/cphc.201500455 10.1039/C7CP06959F 10.1039/C6CP07531B 10.1021/jp4077323 10.1039/C7CP06393H 10.1007/s00214-017-2069-z 10.1021/jp000922o 10.1016/j.comptc.2015.07.024 10.1007/s00894-006-0130-2 10.1021/jp501449v 10.1002/(SICI)1096-987X(199610)17:13<1571::AID-JCC9>3.0.CO;2-P 10.1039/c0cp02085k 10.1016/j.saa.2012.09.043 10.1016/0009-2614(86)80221-4 10.1021/ja00260a006 10.1007/s11224-015-0677-6 10.1080/00268976.2015.1098742 10.1039/C6CP01703G 10.1021/acs.jpca.6b07894 10.1063/1.453299 10.1039/C4CP01072H 10.1093/oso/9780198551683.001.0001 10.1002/jcc.23266 10.1093/acprof:oso/9780199558964.001.0001 10.1021/ci600510j 10.1080/00268977000101561 10.1002/jcc.23860 10.1021/jp002808b 10.1007/978-1-4020-4853-1 10.1007/s11224-017-0966-3 10.1016/j.cplett.2014.05.029 10.1016/j.jfluchem.2017.10.002 10.1039/C6CP00227G 10.1039/C5CP03272E 10.1002/jcc.25085 10.1021/jp204744m 10.1002/cphc.201500757 10.1007/s11224-017-0911-5 10.1021/acs.jpca.5b12571 10.1063/1.470171 10.1021/acs.jpca.5b02283 10.1002/jcc.22885 10.1016/j.cplett.2016.09.037 10.1007/s00894-017-3502-x 10.1021/jp982251o 10.1016/j.chemphys.2011.06.040 10.1002/anie.201306501 |
ContentType | Journal Article |
Copyright | 2018 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. |
Copyright_xml | – notice: 2018 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. |
DBID | AAYXX CITATION NPM 7SR 8BQ 8FD JG9 K9. 7X8 |
DOI | 10.1002/chem.201800511 |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database ProQuest Health & Medical Complete (Alumni) Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | Materials Research Database PubMed MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3765 |
EndPage | 8177 |
ExternalDocumentID | 29572983 10_1002_chem_201800511 CHEM201800511 |
Genre | article Journal Article |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 29B 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6J9 702 77Q 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACNCT ACPOU ACUHS ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEGXH AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBD EBS EJD F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RGC RNS ROL RWI RX1 RYL SUPJJ TN5 TWZ UB1 UPT V2E V8K W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 YZZ ZZTAW ~IA ~WT AAYXX AEYWJ AGHNM AGYGG CITATION NPM 7SR 8BQ 8FD JG9 K9. 7X8 |
ID | FETCH-LOGICAL-c4761-5f2da7e32a57a18705afe02c6dc8b7f88a816cfe77c64d2578a6df5511ae0a913 |
IEDL.DBID | DR2 |
ISSN | 0947-6539 1521-3765 |
IngestDate | Fri Jul 11 01:46:05 EDT 2025 Fri Jul 25 10:35:56 EDT 2025 Wed Feb 19 02:42:53 EST 2025 Tue Jul 01 01:29:31 EDT 2025 Thu Apr 24 23:12:22 EDT 2025 Wed Jan 22 16:35:31 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 32 |
Keywords | lone pairs sigma hole NBO AIM hypervalency |
Language | English |
License | 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4761-5f2da7e32a57a18705afe02c6dc8b7f88a816cfe77c64d2578a6df5511ae0a913 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-4558-7517 0000-0003-0793-0369 |
PMID | 29572983 |
PQID | 2051142741 |
PQPubID | 986340 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_2018027033 proquest_journals_2051142741 pubmed_primary_29572983 crossref_primary_10_1002_chem_201800511 crossref_citationtrail_10_1002_chem_201800511 wiley_primary_10_1002_chem_201800511_CHEM201800511 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | June 7, 2018 |
PublicationDateYYYYMMDD | 2018-06-07 |
PublicationDate_xml | – month: 06 year: 2018 text: June 7, 2018 day: 07 |
PublicationDecade | 2010 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationSubtitle | A European Journal |
PublicationTitle | Chemistry : a European journal |
PublicationTitleAlternate | Chemistry |
PublicationYear | 2018 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2011; 115 2018; 122 2015; 36 2015; 621 1987; 109 2016; 662 2011; 13 2013 2013; 52 125 2001; 105 2018; 39 2013; 15 1987; 87 2014; 605–606 2015; 1070 1990 2013; 117 2014; 16 2014; 1034 2016; 114 2017; 203 2014; 118 2015; 17 2015; 16 1996; 17 2017; 28 2017; 23 2009 2013; 101 1997 2006 2016; 18 1970; 19 2017; 136 2012; 33 2018; 20 2007; 13 2016; 120 2014; 112 1999 1986; 129 2000; 104 2013; 34 2015; 21 2014; 38 2017; 19 2015; 119 2015 1995; 103 2012; 48 1998; 102 2016; 27 2011; 387 2007; 47 e_1_2_6_51_1 e_1_2_6_53_1 e_1_2_6_32_1 e_1_2_6_30_1 e_1_2_6_19_1 e_1_2_6_13_1 e_1_2_6_36_1 e_1_2_6_59_1 e_1_2_6_13_2 e_1_2_6_11_1 e_1_2_6_34_1 Del Bene J. E. (e_1_2_6_14_1) 2015 e_1_2_6_17_1 e_1_2_6_15_1 e_1_2_6_38_1 e_1_2_6_62_1 Politzer P. (e_1_2_6_9_1) 2015 e_1_2_6_64_1 e_1_2_6_43_1 e_1_2_6_20_1 e_1_2_6_41_1 e_1_2_6_60_1 Szalewicz K. (e_1_2_6_57_1) 1997 e_1_2_6_5_1 e_1_2_6_7_1 e_1_2_6_1_1 e_1_2_6_24_1 e_1_2_6_49_1 e_1_2_6_22_1 e_1_2_6_66_1 e_1_2_6_28_1 e_1_2_6_45_1 e_1_2_6_26_1 e_1_2_6_47_1 e_1_2_6_52_1 e_1_2_6_54_1 e_1_2_6_10_1 e_1_2_6_31_1 e_1_2_6_50_1 Bader R. F. W. (e_1_2_6_55_1) 1990 e_1_2_6_35_1 e_1_2_6_12_1 e_1_2_6_33_1 e_1_2_6_18_1 e_1_2_6_39_1 e_1_2_6_56_1 e_1_2_6_16_1 e_1_2_6_37_1 e_1_2_6_58_1 e_1_2_6_63_1 e_1_2_6_42_1 Scheiner S. (e_1_2_6_3_1) 1997 e_1_2_6_65_1 e_1_2_6_21_1 e_1_2_6_40_1 e_1_2_6_61_1 e_1_2_6_8_1 e_1_2_6_4_1 e_1_2_6_6_1 Desiraju G. R. (e_1_2_6_2_1) 1999 e_1_2_6_25_1 e_1_2_6_48_1 e_1_2_6_23_1 e_1_2_6_29_1 e_1_2_6_44_1 e_1_2_6_27_1 e_1_2_6_46_1 |
References_xml | – year: 2009 – volume: 621 start-page: 165 year: 2015 end-page: 170 publication-title: Chem. Phys. Lett. – volume: 605–606 start-page: 131 year: 2014 end-page: 136 publication-title: Chem. Phys. Lett. – volume: 19 start-page: 29742 year: 2017 end-page: 29759 publication-title: Phys. Chem. Chem. Phys. – volume: 21 start-page: 6247 year: 2015 end-page: 6256 publication-title: Chem. Eur. J. – volume: 17 start-page: 1571 year: 1996 end-page: 1586 publication-title: J. Comput. Chem. – volume: 105 start-page: 743 year: 2001 end-page: 749 publication-title: J. Phys. Chem. A – volume: 662 start-page: 80 year: 2016 end-page: 85 publication-title: Chem. Phys. Lett. – volume: 16 start-page: 2630 year: 2015 end-page: 2634 publication-title: ChemPhysChem – volume: 38 start-page: 1256 year: 2014 end-page: 1263 publication-title: New J. Chem. – volume: 34 start-page: 1429 year: 2013 end-page: 1437 publication-title: J. Comput. Chem. – volume: 16 start-page: 15900 year: 2014 end-page: 15909 publication-title: Phys. Chem. Chem. Phys. – year: 1990 – volume: 15 start-page: 3119 year: 2013 end-page: 3124 publication-title: CrystEngComm – volume: 109 start-page: 7968 year: 1987 end-page: 7979 publication-title: J. Am. Chem. Soc. – volume: 117 start-page: 11548 year: 2013 end-page: 11557 publication-title: J. Phys. Chem. A – volume: 13 start-page: 5105 year: 2011 end-page: 5113 publication-title: Phys. Chem. Chem. Phys. – volume: 87 start-page: 1194 year: 1987 end-page: 1204 publication-title: J. Chem. Phys. – volume: 19 start-page: 553 year: 1970 end-page: 566 publication-title: Mol. Phys. – volume: 114 start-page: 276 year: 2016 end-page: 282 publication-title: Mol. Phys. – volume: 17 start-page: 24748 year: 2015 end-page: 24753 publication-title: Phys. Chem. Chem. Phys. – volume: 1034 start-page: 1 year: 2014 end-page: 6 publication-title: Comput. Theor. Chem. – year: 1997 – volume: 387 start-page: 79 year: 2011 end-page: 84 publication-title: Chem. Phys. – volume: 103 start-page: 8058 year: 1995 end-page: 8074 publication-title: J. Chem. Phys. – start-page: 3 year: 1997 end-page: 43 – volume: 136 start-page: 41 year: 2017 publication-title: Theor. Chem. Acc. – volume: 122 start-page: 119 year: 2018 end-page: 129 publication-title: J. Phys. Chem. A – volume: 28 start-page: 1823 year: 2017 end-page: 1830 publication-title: Struct. Chem. – volume: 47 start-page: 1045 year: 2007 end-page: 1052 publication-title: J. Chem. Inf. Model. – volume: 119 start-page: 5597 year: 2015 end-page: 5606 publication-title: J. Phys. Chem. A – volume: 33 start-page: 580 year: 2012 end-page: 592 publication-title: J. Comput. Chem. – volume: 20 start-page: 905 year: 2018 end-page: 915 publication-title: Phys. Chem. Chem. Phys. – volume: 18 start-page: 13820 year: 2016 end-page: 13829 publication-title: Phys. Chem. Chem. Phys. – volume: 39 start-page: 500 year: 2018 end-page: 510 publication-title: J. Comput. Chem. – volume: 18 start-page: 9148 year: 2016 end-page: 9160 publication-title: Phys. Chem. Chem. Phys. – volume: 118 start-page: 10849 year: 2014 end-page: 10856 publication-title: J. Phys. Chem. A – volume: 16 start-page: 1824 year: 2014 end-page: 1834 publication-title: Phys. Chem. Chem. Phys. – volume: 104 start-page: 6871 year: 2000 end-page: 6879 publication-title: J. Phys. Chem. A – volume: 120 start-page: 9431 year: 2016 end-page: 9445 publication-title: J. Phys. Chem. A – volume: 102 start-page: 9278 year: 1998 end-page: 9285 publication-title: J. Phys. Chem. A – volume: 203 start-page: 62 year: 2017 end-page: 74 publication-title: J. Fluorine Chem. – volume: 118 start-page: 3183 year: 2014 end-page: 3192 publication-title: J. Phys. Chem. A – volume: 115 start-page: 9294 year: 2011 end-page: 9299 publication-title: J. Phys. Chem. A – volume: 52 125 start-page: 12317 12543 year: 2013 2013 end-page: 12321 12547 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 27 start-page: 617 year: 2016 end-page: 625 publication-title: Struct. Chem. – volume: 19 start-page: 5550 year: 2017 end-page: 5559 publication-title: Phys. Chem. Chem. Phys. – volume: 16 start-page: 3625 year: 2015 end-page: 3630 publication-title: ChemPhysChem – volume: 129 start-page: 325 year: 1986 end-page: 330 publication-title: Chem. Phys. Lett. – volume: 112 start-page: 2791 year: 2014 end-page: 2801 publication-title: Mol. Phys. – start-page: 191 year: 2015 end-page: 263 – volume: 23 start-page: 328 year: 2017 publication-title: J. Mol. Model. – volume: 48 start-page: 7708 year: 2012 end-page: 7710 publication-title: Chem. Commun. – year: 2006 – volume: 36 start-page: 821 year: 2015 end-page: 832 publication-title: J. Comput. Chem. – volume: 13 start-page: 291 year: 2007 end-page: 296 publication-title: J. Mol. Model. – volume: 27 start-page: 939 year: 2016 end-page: 946 publication-title: Struct. Chem. – volume: 1070 start-page: 21 year: 2015 end-page: 26 publication-title: Comput. Theor. Chem. – start-page: 357 year: 2015 end-page: 389 – volume: 101 start-page: 172 year: 2013 end-page: 177 publication-title: Spectrochim. Acta Part A – volume: 120 start-page: 4939 year: 2016 end-page: 4943 publication-title: J. Phys. Chem. A – year: 1999 – volume: 28 start-page: 1065 year: 2017 end-page: 1079 publication-title: Struct. Chem. – ident: e_1_2_6_47_1 doi: 10.1016/j.comptc.2014.02.003 – ident: e_1_2_6_28_1 doi: 10.1021/jp509212t – ident: e_1_2_6_45_1 doi: 10.1080/00268976.2014.911984 – ident: e_1_2_6_17_1 doi: 10.1039/C3CP53369G – volume-title: Hydrogen Bonding. A Theoretical Perspective year: 1997 ident: e_1_2_6_3_1 doi: 10.1093/oso/9780195090116.001.0001 – ident: e_1_2_6_61_1 doi: 10.1039/c2cc33304j – ident: e_1_2_6_63_1 doi: 10.1039/c3nj01015e – ident: e_1_2_6_29_1 doi: 10.1007/s11224-015-0594-8 – ident: e_1_2_6_65_1 doi: 10.1002/chem.201406359 – ident: e_1_2_6_13_2 doi: 10.1002/ange.201306501 – ident: e_1_2_6_35_1 doi: 10.1021/acs.jpca.7b09902 – ident: e_1_2_6_59_1 – ident: e_1_2_6_8_1 doi: 10.1016/j.cplett.2014.12.040 – ident: e_1_2_6_19_1 doi: 10.1039/C2CE26393A – ident: e_1_2_6_66_1 doi: 10.1002/cphc.201500455 – ident: e_1_2_6_62_1 doi: 10.1039/C7CP06959F – ident: e_1_2_6_21_1 doi: 10.1039/C6CP07531B – ident: e_1_2_6_48_1 doi: 10.1021/jp4077323 – ident: e_1_2_6_25_1 doi: 10.1039/C7CP06393H – ident: e_1_2_6_20_1 doi: 10.1007/s00214-017-2069-z – ident: e_1_2_6_6_1 doi: 10.1021/jp000922o – ident: e_1_2_6_43_1 doi: 10.1016/j.comptc.2015.07.024 – ident: e_1_2_6_22_1 doi: 10.1007/s00894-006-0130-2 – ident: e_1_2_6_12_1 doi: 10.1021/jp501449v – ident: e_1_2_6_39_1 doi: 10.1002/(SICI)1096-987X(199610)17:13<1571::AID-JCC9>3.0.CO;2-P – ident: e_1_2_6_7_1 doi: 10.1039/c0cp02085k – ident: e_1_2_6_49_1 doi: 10.1016/j.saa.2012.09.043 – ident: e_1_2_6_51_1 doi: 10.1016/0009-2614(86)80221-4 – ident: e_1_2_6_54_1 doi: 10.1021/ja00260a006 – ident: e_1_2_6_31_1 doi: 10.1007/s11224-015-0677-6 – ident: e_1_2_6_30_1 doi: 10.1080/00268976.2015.1098742 – ident: e_1_2_6_42_1 doi: 10.1039/C6CP01703G – ident: e_1_2_6_27_1 doi: 10.1021/acs.jpca.6b07894 – ident: e_1_2_6_15_1 doi: 10.1063/1.453299 – ident: e_1_2_6_46_1 doi: 10.1039/C4CP01072H – volume-title: Atoms in Molecules, A Quantum Theory year: 1990 ident: e_1_2_6_55_1 doi: 10.1093/oso/9780198551683.001.0001 – ident: e_1_2_6_53_1 doi: 10.1002/jcc.23266 – ident: e_1_2_6_1_1 doi: 10.1093/acprof:oso/9780199558964.001.0001 – ident: e_1_2_6_40_1 doi: 10.1021/ci600510j – start-page: 357 volume-title: A unified view of halogen bonding, hydrogen bonding and other σ-hole interactions, Vol. 19 year: 2015 ident: e_1_2_6_9_1 – ident: e_1_2_6_50_1 doi: 10.1080/00268977000101561 – start-page: 191 volume-title: The pnicogen bond in review: Structures, energies, bonding properties, and spin-spin coupling constants of complexes stabilized by pnicogen bonds, Vol. 19 year: 2015 ident: e_1_2_6_14_1 – ident: e_1_2_6_11_1 doi: 10.1002/jcc.23860 – ident: e_1_2_6_18_1 doi: 10.1021/jp002808b – ident: e_1_2_6_4_1 doi: 10.1007/978-1-4020-4853-1 – ident: e_1_2_6_26_1 doi: 10.1007/s11224-017-0966-3 – ident: e_1_2_6_56_1 – ident: e_1_2_6_24_1 doi: 10.1016/j.cplett.2014.05.029 – ident: e_1_2_6_33_1 doi: 10.1016/j.jfluchem.2017.10.002 – volume-title: The Weak Hydrogen Bond in Structural Chemistry and Biology year: 1999 ident: e_1_2_6_2_1 – ident: e_1_2_6_16_1 doi: 10.1039/C6CP00227G – ident: e_1_2_6_36_1 doi: 10.1039/C5CP03272E – ident: e_1_2_6_60_1 doi: 10.1002/jcc.25085 – ident: e_1_2_6_23_1 doi: 10.1021/jp204744m – start-page: 3 volume-title: Symmetry-adapted perturbation theory of intermolecular interactions year: 1997 ident: e_1_2_6_57_1 – ident: e_1_2_6_37_1 doi: 10.1002/cphc.201500757 – ident: e_1_2_6_32_1 doi: 10.1007/s11224-017-0911-5 – ident: e_1_2_6_41_1 doi: 10.1021/acs.jpca.5b12571 – ident: e_1_2_6_58_1 doi: 10.1063/1.470171 – ident: e_1_2_6_38_1 – ident: e_1_2_6_44_1 doi: 10.1021/acs.jpca.5b02283 – ident: e_1_2_6_52_1 doi: 10.1002/jcc.22885 – ident: e_1_2_6_34_1 doi: 10.1016/j.cplett.2016.09.037 – ident: e_1_2_6_64_1 doi: 10.1007/s00894-017-3502-x – ident: e_1_2_6_5_1 doi: 10.1021/jp982251o – ident: e_1_2_6_10_1 doi: 10.1016/j.chemphys.2011.06.040 – ident: e_1_2_6_13_1 doi: 10.1002/anie.201306501 |
SSID | ssj0009633 |
Score | 2.520792 |
Snippet | The additional substituents arising from hypervalency present a number of complicating issues for the formation of noncovalent bonds. The XF5 molecule (X=Cl,... The additional substituents arising from hypervalency present a number of complicating issues for the formation of noncovalent bonds. The XF 5 molecule (X=Cl,... The additional substituents arising from hypervalency present a number of complicating issues for the formation of noncovalent bonds. The XF molecule (X=Cl,... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 8167 |
SubjectTerms | AIM Ammonia Antimony Atomic properties Bonding strength Chalcogen bonds Chemical bonds Chemistry Deformation hypervalency Lewis acid lone pairs Molecular chains NBO sigma hole Staphylococcal enterotoxin H Tellurium |
Title | Halogen, Chalcogen, and Pnicogen Bonding Involving Hypervalent Atoms |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fchem.201800511 https://www.ncbi.nlm.nih.gov/pubmed/29572983 https://www.proquest.com/docview/2051142741 https://www.proquest.com/docview/2018027033 |
Volume | 24 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFA6yF33xfplOqSD4Yrc1bdP0cUxHFRQRB3sraZqgODvZuhd_vec0becUEfStIUmby7l8SZPvEHImfVdzxjCgSUJtL0xSmzMubKk51YDnAfHifefbOxYNvZuRP_p0i9_wQ9QbbqgZhb1GBRfJrLMgDYU-4U1yh6Nc4foHD2whKnpY8EeBdJlY8l5gIwdrxdrYpZ3l6ste6RvUXEauhesZbBBRNdqcOHlpz_OkLd-_8Dn-p1ebZL3EpVbPCNIWWVHZNlntV-HgdshlhNs8Kruw-k9iLM2jyFLrPnsuUhZGKAZHaF1nYPJwn8KKYJE7BVEGx2b18snrbJcMB1eP_cguQzDY0guYY_uapiJQLhV-IBzQbV9o1aWSpZIngeZccIdJrYJAMi9F9Rcs1YDCHKG6InTcPdLIJpk6IBYACTfkjob1H0pAInSY8sQVFEw1dZVuEruagliW_OQYJmMcG2ZlGuPYxPXYNMl5Xf7NMHP8WLJVzWhcaugMcn28RgyAqklO62wYU_xhIjI1mc_MGyjYRLdJ9o0k1J-ioQ_rEg45tJjPX9oQI8NFnTr8S6UjsobPxTm1oEUa-XSujgER5clJIfUfrPP-5g |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT4QwEJ4YPejF92N1VUxMvIguBUo5blYNq6sxRhNvpJQ2GpU17u7FX-8MXTCrMSZ6o7RAHzPTb0r7DcC-Cn0jOKeAJhlzgzjLXcGFdJURzCCeR8RL550vr3hyF5zfh9VuQjoLY_kh6gU30ozSXpOC04L08SdrKDaKjpJ7ggQLHaAZCutdelU3nwxSKF82mnwQucTCWvE2ttjx5POT89I3sDmJXcvJ52wBsqrads_J09FomB2p9y-Mjv9q1yLMj6Gp07aytARTuliG2U4VEW4FThJa6dHFodN5kM_KXsoid66LxzLlUJBinAudboFWj5YqnAT93DeUZpzbnPaw_zJYhbuz09tO4o6jMLgqiLjnhoblMtI-k2EkPVTvUBrdYornSmSREUIKjyujo0jxICcLIHluEIh5Urdk7PlrMF30C70BDmIJPxaeQReQhCCTJs5F5kuG1pr52jTArcYgVWOKcoqU8ZxacmWWUt-kdd804KAu_2rJOX4s2ayGNB0r6QBzQzpJjJiqAXt1NvYp_TORhe6PBvYNDM2i34B1Kwr1p1gcomsiMIeVA_pLHVIiuahTm395aBdmk9vLXtrrXl1swRzdL7etRU2YHr6N9DYCpGG2U6rAB6mRAxA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwED9EQX3x-2M6tYLgi9U1bdP0cWyO-YmIgm8lTRMUtRO3vfjXe9es1Ski6FvTpG0-7i6_pLnfAeyp0DeCcwpokjI3iNPMFVxIVxnBDOJ5RLzk73xxybu3weldePfJi9_yQ1QbbqQZhb0mBX_JzNEHaSi2iTzJPUFyheufqYA3BMl1-_qDQArFywaTDyKXSFhL2sYGOxp_fnxa-oY1x6FrMfd05kGWtbZHTh4Ph4P0UL19IXT8T7MWYG4ETJ2mlaRFmND5Esy0ynhwy9Du0j6Pzg-c1r18UvZS5plzlT8UKYdCFONM6JzkaPNoo8Lp4ir3FWUZZzanOeg991fgtnN80-q6oxgMrgoi7rmhYZmMtM9kGEkPlTuURjeY4pkSaWSEkMLjyugoUjzISP8lzwzCME_qhow9fxUm816u18FBJOHHwjO4ACQRSKWJM5H6kqGtZr42NXDLIUjUiKCc4mQ8JZZamSXUN0nVNzXYr8q_WGqOH0vWyxFNRirax9yQ_IgRUdVgt8rGPqU_JjLXvWHfvoGhUfRrsGYlofoUi0NcmAjMYcV4_lKHhCguqtTGXx7agemrdic5P7k824RZul2cWYvqMDl4HeotREeDdLtQgHerWgHI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Halogen%2C+Chalcogen%2C+and+Pnicogen+Bonding+Involving+Hypervalent+Atoms&rft.jtitle=Chemistry+%3A+a+European+journal&rft.au=Scheiner%2C+Steve&rft.au=Lu%2C+Jia&rft.date=2018-06-07&rft.issn=1521-3765&rft.eissn=1521-3765&rft.volume=24&rft.issue=32&rft.spage=8167&rft_id=info:doi/10.1002%2Fchem.201800511&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0947-6539&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0947-6539&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0947-6539&client=summon |