Halogen, Chalcogen, and Pnicogen Bonding Involving Hypervalent Atoms

The additional substituents arising from hypervalency present a number of complicating issues for the formation of noncovalent bonds. The XF5 molecule (X=Cl, Br, I) was allowed to form a halogen bond with NH3 as the base. Hypervalent chalcogen bonding is examined by way of YF4 and YF6 (Y=S, Se, Te),...

Full description

Saved in:
Bibliographic Details
Published inChemistry : a European journal Vol. 24; no. 32; pp. 8167 - 8177
Main Authors Scheiner, Steve, Lu, Jia
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 07.06.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The additional substituents arising from hypervalency present a number of complicating issues for the formation of noncovalent bonds. The XF5 molecule (X=Cl, Br, I) was allowed to form a halogen bond with NH3 as the base. Hypervalent chalcogen bonding is examined by way of YF4 and YF6 (Y=S, Se, Te), and ZF5 (Z=P, As, Sb) is used to model pnicogen bonding. Pnicogen bonds are particularly strong, with interaction energies approaching 50 kcal mol−1, and also involve wholesale rearrangement from trigonal bipyramidal in the monomer to square pyramidal in the complex, subject to a large deformation energy. YF4 chalcogen bonding is also strong, and like pnicogen bonding, is enhanced by a heavier central atom. XF5 halogen bond energies are roughly 9 kcal mol−1, and display a unique sensitivity to the identity of the X atom. The crowded octahedral structure of YF6 permits only very weak interactions. As the F atoms of SeF6 are replaced progressively by H, a chalcogen bond appears in combination with SeH⋅⋅⋅N and NH⋅⋅⋅F H‐bonds. The strongest such chalcogen bond appears in SeF3H3⋅⋅⋅NH3, with a binding energy of 7 kcal mol−1, wherein the base is located in the H3 face of the Lewis acid. Results are discussed in the context of the way in which the positions and intensities of σ‐holes are influenced by the locations of substituents and lone electron pairs. Bonding theory: Hypervalent chalcogen bonding is examined by way of YF4 and YF6 (Y=S, Se, Te), and ZF5 (Z=P, As, Sb) and XF5 (X=Cl, Br, I) are used to model pnicogen and halogen bonding, respectively. is used to model pnicogen bonding. Pnicogen bonds are particularly strong and involve wholesale rearrangement from trigonal bipyramidal in the monomer to square pyramidal in the complex (see figure).
AbstractList The additional substituents arising from hypervalency present a number of complicating issues for the formation of noncovalent bonds. The XF5 molecule (X=Cl, Br, I) was allowed to form a halogen bond with NH3 as the base. Hypervalent chalcogen bonding is examined by way of YF4 and YF6 (Y=S, Se, Te), and ZF5 (Z=P, As, Sb) is used to model pnicogen bonding. Pnicogen bonds are particularly strong, with interaction energies approaching 50 kcal mol−1, and also involve wholesale rearrangement from trigonal bipyramidal in the monomer to square pyramidal in the complex, subject to a large deformation energy. YF4 chalcogen bonding is also strong, and like pnicogen bonding, is enhanced by a heavier central atom. XF5 halogen bond energies are roughly 9 kcal mol−1, and display a unique sensitivity to the identity of the X atom. The crowded octahedral structure of YF6 permits only very weak interactions. As the F atoms of SeF6 are replaced progressively by H, a chalcogen bond appears in combination with SeH⋅⋅⋅N and NH⋅⋅⋅F H‐bonds. The strongest such chalcogen bond appears in SeF3H3⋅⋅⋅NH3, with a binding energy of 7 kcal mol−1, wherein the base is located in the H3 face of the Lewis acid. Results are discussed in the context of the way in which the positions and intensities of σ‐holes are influenced by the locations of substituents and lone electron pairs.
The additional substituents arising from hypervalency present a number of complicating issues for the formation of noncovalent bonds. The XF5 molecule (X=Cl, Br, I) was allowed to form a halogen bond with NH3 as the base. Hypervalent chalcogen bonding is examined by way of YF4 and YF6 (Y=S, Se, Te), and ZF5 (Z=P, As, Sb) is used to model pnicogen bonding. Pnicogen bonds are particularly strong, with interaction energies approaching 50 kcal mol−1, and also involve wholesale rearrangement from trigonal bipyramidal in the monomer to square pyramidal in the complex, subject to a large deformation energy. YF4 chalcogen bonding is also strong, and like pnicogen bonding, is enhanced by a heavier central atom. XF5 halogen bond energies are roughly 9 kcal mol−1, and display a unique sensitivity to the identity of the X atom. The crowded octahedral structure of YF6 permits only very weak interactions. As the F atoms of SeF6 are replaced progressively by H, a chalcogen bond appears in combination with SeH⋅⋅⋅N and NH⋅⋅⋅F H‐bonds. The strongest such chalcogen bond appears in SeF3H3⋅⋅⋅NH3, with a binding energy of 7 kcal mol−1, wherein the base is located in the H3 face of the Lewis acid. Results are discussed in the context of the way in which the positions and intensities of σ‐holes are influenced by the locations of substituents and lone electron pairs. Bonding theory: Hypervalent chalcogen bonding is examined by way of YF4 and YF6 (Y=S, Se, Te), and ZF5 (Z=P, As, Sb) and XF5 (X=Cl, Br, I) are used to model pnicogen and halogen bonding, respectively. is used to model pnicogen bonding. Pnicogen bonds are particularly strong and involve wholesale rearrangement from trigonal bipyramidal in the monomer to square pyramidal in the complex (see figure).
The additional substituents arising from hypervalency present a number of complicating issues for the formation of noncovalent bonds. The XF molecule (X=Cl, Br, I) was allowed to form a halogen bond with NH as the base. Hypervalent chalcogen bonding is examined by way of YF and YF (Y=S, Se, Te), and ZF (Z=P, As, Sb) is used to model pnicogen bonding. Pnicogen bonds are particularly strong, with interaction energies approaching 50 kcal mol , and also involve wholesale rearrangement from trigonal bipyramidal in the monomer to square pyramidal in the complex, subject to a large deformation energy. YF chalcogen bonding is also strong, and like pnicogen bonding, is enhanced by a heavier central atom. XF halogen bond energies are roughly 9 kcal mol , and display a unique sensitivity to the identity of the X atom. The crowded octahedral structure of YF permits only very weak interactions. As the F atoms of SeF are replaced progressively by H, a chalcogen bond appears in combination with SeH⋅⋅⋅N and NH⋅⋅⋅F H-bonds. The strongest such chalcogen bond appears in SeF H ⋅⋅⋅NH , with a binding energy of 7 kcal mol , wherein the base is located in the H face of the Lewis acid. Results are discussed in the context of the way in which the positions and intensities of σ-holes are influenced by the locations of substituents and lone electron pairs.
The additional substituents arising from hypervalency present a number of complicating issues for the formation of noncovalent bonds. The XF5 molecule (X=Cl, Br, I) was allowed to form a halogen bond with NH3 as the base. Hypervalent chalcogen bonding is examined by way of YF4 and YF6 (Y=S, Se, Te), and ZF5 (Z=P, As, Sb) is used to model pnicogen bonding. Pnicogen bonds are particularly strong, with interaction energies approaching 50 kcal mol-1 , and also involve wholesale rearrangement from trigonal bipyramidal in the monomer to square pyramidal in the complex, subject to a large deformation energy. YF4 chalcogen bonding is also strong, and like pnicogen bonding, is enhanced by a heavier central atom. XF5 halogen bond energies are roughly 9 kcal mol-1 , and display a unique sensitivity to the identity of the X atom. The crowded octahedral structure of YF6 permits only very weak interactions. As the F atoms of SeF6 are replaced progressively by H, a chalcogen bond appears in combination with SeH⋅⋅⋅N and NH⋅⋅⋅F H-bonds. The strongest such chalcogen bond appears in SeF3 H3 ⋅⋅⋅NH3 , with a binding energy of 7 kcal mol-1 , wherein the base is located in the H3 face of the Lewis acid. Results are discussed in the context of the way in which the positions and intensities of σ-holes are influenced by the locations of substituents and lone electron pairs.The additional substituents arising from hypervalency present a number of complicating issues for the formation of noncovalent bonds. The XF5 molecule (X=Cl, Br, I) was allowed to form a halogen bond with NH3 as the base. Hypervalent chalcogen bonding is examined by way of YF4 and YF6 (Y=S, Se, Te), and ZF5 (Z=P, As, Sb) is used to model pnicogen bonding. Pnicogen bonds are particularly strong, with interaction energies approaching 50 kcal mol-1 , and also involve wholesale rearrangement from trigonal bipyramidal in the monomer to square pyramidal in the complex, subject to a large deformation energy. YF4 chalcogen bonding is also strong, and like pnicogen bonding, is enhanced by a heavier central atom. XF5 halogen bond energies are roughly 9 kcal mol-1 , and display a unique sensitivity to the identity of the X atom. The crowded octahedral structure of YF6 permits only very weak interactions. As the F atoms of SeF6 are replaced progressively by H, a chalcogen bond appears in combination with SeH⋅⋅⋅N and NH⋅⋅⋅F H-bonds. The strongest such chalcogen bond appears in SeF3 H3 ⋅⋅⋅NH3 , with a binding energy of 7 kcal mol-1 , wherein the base is located in the H3 face of the Lewis acid. Results are discussed in the context of the way in which the positions and intensities of σ-holes are influenced by the locations of substituents and lone electron pairs.
The additional substituents arising from hypervalency present a number of complicating issues for the formation of noncovalent bonds. The XF 5 molecule (X=Cl, Br, I) was allowed to form a halogen bond with NH 3 as the base. Hypervalent chalcogen bonding is examined by way of YF 4 and YF 6 (Y=S, Se, Te), and ZF 5 (Z=P, As, Sb) is used to model pnicogen bonding. Pnicogen bonds are particularly strong, with interaction energies approaching 50 kcal mol −1 , and also involve wholesale rearrangement from trigonal bipyramidal in the monomer to square pyramidal in the complex, subject to a large deformation energy. YF 4 chalcogen bonding is also strong, and like pnicogen bonding, is enhanced by a heavier central atom. XF 5 halogen bond energies are roughly 9 kcal mol −1 , and display a unique sensitivity to the identity of the X atom. The crowded octahedral structure of YF 6 permits only very weak interactions. As the F atoms of SeF 6 are replaced progressively by H, a chalcogen bond appears in combination with SeH⋅⋅⋅N and NH⋅⋅⋅F H‐bonds. The strongest such chalcogen bond appears in SeF 3 H 3 ⋅⋅⋅NH 3 , with a binding energy of 7 kcal mol −1 , wherein the base is located in the H 3 face of the Lewis acid. Results are discussed in the context of the way in which the positions and intensities of σ‐holes are influenced by the locations of substituents and lone electron pairs.
Author Scheiner, Steve
Lu, Jia
Author_xml – sequence: 1
  givenname: Steve
  orcidid: 0000-0003-0793-0369
  surname: Scheiner
  fullname: Scheiner, Steve
  email: steve.scheiner@usu.edu
  organization: Utah State University
– sequence: 2
  givenname: Jia
  orcidid: 0000-0002-4558-7517
  surname: Lu
  fullname: Lu, Jia
  organization: Utah State University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29572983$$D View this record in MEDLINE/PubMed
BookMark eNqFkc1PwjAYxhujkQ-9ejRLvHhw2I913Y6IKCQYPeh5eek6GOlaXAeG_97BEBMS46lvk9_zvB9PB50aaxRCVwT3CMb0Xs5V0aOYRBhzQk5Qm3BKfCZCforaOA6EH3IWt1DHuQXGOA4ZO0ctGnNB44i10eMItJ0pc-cN5qBlU4JJvTeT737egzVpbmbe2KytXm-r0WapyjVoZSqvX9nCXaCzDLRTl_u3iz6ehu-DkT95fR4P-hNfBiIkPs9oCkIxClwAiQTmkClMZZjKaCqyKIKIhDJTQsgwSCkXEYRpxuu9QGGICeui28Z3WdrPlXJVUuROKq3BKLtyye4OVGDGavTmCF3YVWnq6WqqdgyoCLaG13tqNS1UmizLvIByk_zcpwZ6DSBL61ypsgNCcLININkGkBwCqAXBkUDmFVS5NVUJuf5bFjeyr1yrzT9NksFo-PKr_Qb2t5hQ
CitedBy_id crossref_primary_10_1002_cphc_202200936
crossref_primary_10_1002_hlca_202400015
crossref_primary_10_1021_acs_jpca_3c02049
crossref_primary_10_1007_s11224_019_01337_6
crossref_primary_10_1002_chem_202003426
crossref_primary_10_1016_j_molstruc_2020_129288
crossref_primary_10_1039_D1CP00242B
crossref_primary_10_1002_cplu_202300523
crossref_primary_10_1016_j_comptc_2020_113090
crossref_primary_10_1016_j_molstruc_2021_130638
crossref_primary_10_1246_bcsj_20200157
crossref_primary_10_3390_cryst13050766
crossref_primary_10_1021_acs_jpca_3c06093
crossref_primary_10_1021_acs_inorgchem_0c01177
crossref_primary_10_1002_asia_202400081
crossref_primary_10_1007_s00894_019_4275_1
crossref_primary_10_1016_j_jms_2022_111672
crossref_primary_10_1021_acs_inorgchem_3c01837
crossref_primary_10_1039_C9CP01379B
crossref_primary_10_1016_j_poly_2025_117421
crossref_primary_10_1039_C9CP01925A
crossref_primary_10_1039_C9CP01759C
crossref_primary_10_1002_cphc_201900340
crossref_primary_10_1021_acsomega_3c03981
crossref_primary_10_1039_C8CP03937B
crossref_primary_10_1039_D1CE01046H
crossref_primary_10_1021_acs_inorgchem_0c01086
crossref_primary_10_1039_D4CP03716B
crossref_primary_10_1098_rsos_231362
crossref_primary_10_1021_acs_cgd_1c01023
crossref_primary_10_1016_j_jorganchem_2021_122092
crossref_primary_10_3390_molecules27196486
crossref_primary_10_1021_acs_jpca_0c06803
crossref_primary_10_1039_C9CP04006D
crossref_primary_10_1021_acsomega_0c05795
crossref_primary_10_1002_slct_202103092
crossref_primary_10_1039_D0SC02551H
crossref_primary_10_1021_acs_jpca_0c10814
crossref_primary_10_3390_molecules23071681
crossref_primary_10_1021_acs_jpca_2c02451
crossref_primary_10_1016_j_ccr_2020_213381
crossref_primary_10_1016_j_chemphys_2020_110978
crossref_primary_10_1002_cphc_202300326
crossref_primary_10_1016_j_ccr_2022_214556
crossref_primary_10_1063_5_0026168
crossref_primary_10_1007_s00894_021_04838_6
crossref_primary_10_1039_D3CP03479H
crossref_primary_10_1002_cphc_201900072
crossref_primary_10_1039_C9CE00496C
crossref_primary_10_1002_chem_202101425
crossref_primary_10_1039_C9CP02406A
crossref_primary_10_1016_j_chemphys_2021_111112
crossref_primary_10_1063_5_0031162
crossref_primary_10_1080_00268976_2022_2026511
crossref_primary_10_1016_j_comptc_2022_113636
crossref_primary_10_1039_D0NJ01683G
crossref_primary_10_3390_molecules24020376
crossref_primary_10_1021_acs_jpca_4c06483
crossref_primary_10_3390_cryst11040373
crossref_primary_10_1039_D0CP06273A
crossref_primary_10_1002_cplu_202100285
crossref_primary_10_1002_cphc_202400482
crossref_primary_10_1021_acs_jpca_2c07611
crossref_primary_10_1515_pac_2020_1002
crossref_primary_10_1021_acs_jpca_1c10818
crossref_primary_10_3390_molecules26020350
crossref_primary_10_1021_acsomega_3c08178
crossref_primary_10_1039_C9CP01033E
crossref_primary_10_3390_molecules28093776
crossref_primary_10_1039_D0CP05689H
crossref_primary_10_1039_D0CP02880K
crossref_primary_10_1007_s00894_019_4031_6
crossref_primary_10_1039_D4CP00057A
crossref_primary_10_1021_acs_jpca_4c05481
Cites_doi 10.1016/j.comptc.2014.02.003
10.1021/jp509212t
10.1080/00268976.2014.911984
10.1039/C3CP53369G
10.1093/oso/9780195090116.001.0001
10.1039/c2cc33304j
10.1039/c3nj01015e
10.1007/s11224-015-0594-8
10.1002/chem.201406359
10.1002/ange.201306501
10.1021/acs.jpca.7b09902
10.1016/j.cplett.2014.12.040
10.1039/C2CE26393A
10.1002/cphc.201500455
10.1039/C7CP06959F
10.1039/C6CP07531B
10.1021/jp4077323
10.1039/C7CP06393H
10.1007/s00214-017-2069-z
10.1021/jp000922o
10.1016/j.comptc.2015.07.024
10.1007/s00894-006-0130-2
10.1021/jp501449v
10.1002/(SICI)1096-987X(199610)17:13<1571::AID-JCC9>3.0.CO;2-P
10.1039/c0cp02085k
10.1016/j.saa.2012.09.043
10.1016/0009-2614(86)80221-4
10.1021/ja00260a006
10.1007/s11224-015-0677-6
10.1080/00268976.2015.1098742
10.1039/C6CP01703G
10.1021/acs.jpca.6b07894
10.1063/1.453299
10.1039/C4CP01072H
10.1093/oso/9780198551683.001.0001
10.1002/jcc.23266
10.1093/acprof:oso/9780199558964.001.0001
10.1021/ci600510j
10.1080/00268977000101561
10.1002/jcc.23860
10.1021/jp002808b
10.1007/978-1-4020-4853-1
10.1007/s11224-017-0966-3
10.1016/j.cplett.2014.05.029
10.1016/j.jfluchem.2017.10.002
10.1039/C6CP00227G
10.1039/C5CP03272E
10.1002/jcc.25085
10.1021/jp204744m
10.1002/cphc.201500757
10.1007/s11224-017-0911-5
10.1021/acs.jpca.5b12571
10.1063/1.470171
10.1021/acs.jpca.5b02283
10.1002/jcc.22885
10.1016/j.cplett.2016.09.037
10.1007/s00894-017-3502-x
10.1021/jp982251o
10.1016/j.chemphys.2011.06.040
10.1002/anie.201306501
ContentType Journal Article
Copyright 2018 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim
2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Copyright_xml – notice: 2018 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
DBID AAYXX
CITATION
NPM
7SR
8BQ
8FD
JG9
K9.
7X8
DOI 10.1002/chem.201800511
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
ProQuest Health & Medical Complete (Alumni)
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList Materials Research Database

PubMed
MEDLINE - Academic
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3765
EndPage 8177
ExternalDocumentID 29572983
10_1002_chem_201800511
CHEM201800511
Genre article
Journal Article
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
29B
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6J9
702
77Q
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACNCT
ACPOU
ACUHS
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBD
EBS
EJD
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RGC
RNS
ROL
RWI
RX1
RYL
SUPJJ
TN5
TWZ
UB1
UPT
V2E
V8K
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YZZ
ZZTAW
~IA
~WT
AAYXX
AEYWJ
AGHNM
AGYGG
CITATION
NPM
7SR
8BQ
8FD
JG9
K9.
7X8
ID FETCH-LOGICAL-c4761-5f2da7e32a57a18705afe02c6dc8b7f88a816cfe77c64d2578a6df5511ae0a913
IEDL.DBID DR2
ISSN 0947-6539
1521-3765
IngestDate Fri Jul 11 01:46:05 EDT 2025
Fri Jul 25 10:35:56 EDT 2025
Wed Feb 19 02:42:53 EST 2025
Tue Jul 01 01:29:31 EDT 2025
Thu Apr 24 23:12:22 EDT 2025
Wed Jan 22 16:35:31 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 32
Keywords lone pairs
sigma hole
NBO
AIM
hypervalency
Language English
License 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4761-5f2da7e32a57a18705afe02c6dc8b7f88a816cfe77c64d2578a6df5511ae0a913
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-4558-7517
0000-0003-0793-0369
PMID 29572983
PQID 2051142741
PQPubID 986340
PageCount 11
ParticipantIDs proquest_miscellaneous_2018027033
proquest_journals_2051142741
pubmed_primary_29572983
crossref_primary_10_1002_chem_201800511
crossref_citationtrail_10_1002_chem_201800511
wiley_primary_10_1002_chem_201800511_CHEM201800511
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate June 7, 2018
PublicationDateYYYYMMDD 2018-06-07
PublicationDate_xml – month: 06
  year: 2018
  text: June 7, 2018
  day: 07
PublicationDecade 2010
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationSubtitle A European Journal
PublicationTitle Chemistry : a European journal
PublicationTitleAlternate Chemistry
PublicationYear 2018
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2011; 115
2018; 122
2015; 36
2015; 621
1987; 109
2016; 662
2011; 13
2013 2013; 52 125
2001; 105
2018; 39
2013; 15
1987; 87
2014; 605–606
2015; 1070
1990
2013; 117
2014; 16
2014; 1034
2016; 114
2017; 203
2014; 118
2015; 17
2015; 16
1996; 17
2017; 28
2017; 23
2009
2013; 101
1997
2006
2016; 18
1970; 19
2017; 136
2012; 33
2018; 20
2007; 13
2016; 120
2014; 112
1999
1986; 129
2000; 104
2013; 34
2015; 21
2014; 38
2017; 19
2015; 119
2015
1995; 103
2012; 48
1998; 102
2016; 27
2011; 387
2007; 47
e_1_2_6_51_1
e_1_2_6_53_1
e_1_2_6_32_1
e_1_2_6_30_1
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_59_1
e_1_2_6_13_2
e_1_2_6_11_1
e_1_2_6_34_1
Del Bene J. E. (e_1_2_6_14_1) 2015
e_1_2_6_17_1
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_62_1
Politzer P. (e_1_2_6_9_1) 2015
e_1_2_6_64_1
e_1_2_6_43_1
e_1_2_6_20_1
e_1_2_6_41_1
e_1_2_6_60_1
Szalewicz K. (e_1_2_6_57_1) 1997
e_1_2_6_5_1
e_1_2_6_7_1
e_1_2_6_1_1
e_1_2_6_24_1
e_1_2_6_49_1
e_1_2_6_22_1
e_1_2_6_66_1
e_1_2_6_28_1
e_1_2_6_45_1
e_1_2_6_26_1
e_1_2_6_47_1
e_1_2_6_52_1
e_1_2_6_54_1
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_50_1
Bader R. F. W. (e_1_2_6_55_1) 1990
e_1_2_6_35_1
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_18_1
e_1_2_6_39_1
e_1_2_6_56_1
e_1_2_6_16_1
e_1_2_6_37_1
e_1_2_6_58_1
e_1_2_6_63_1
e_1_2_6_42_1
Scheiner S. (e_1_2_6_3_1) 1997
e_1_2_6_65_1
e_1_2_6_21_1
e_1_2_6_40_1
e_1_2_6_61_1
e_1_2_6_8_1
e_1_2_6_4_1
e_1_2_6_6_1
Desiraju G. R. (e_1_2_6_2_1) 1999
e_1_2_6_25_1
e_1_2_6_48_1
e_1_2_6_23_1
e_1_2_6_29_1
e_1_2_6_44_1
e_1_2_6_27_1
e_1_2_6_46_1
References_xml – year: 2009
– volume: 621
  start-page: 165
  year: 2015
  end-page: 170
  publication-title: Chem. Phys. Lett.
– volume: 605–606
  start-page: 131
  year: 2014
  end-page: 136
  publication-title: Chem. Phys. Lett.
– volume: 19
  start-page: 29742
  year: 2017
  end-page: 29759
  publication-title: Phys. Chem. Chem. Phys.
– volume: 21
  start-page: 6247
  year: 2015
  end-page: 6256
  publication-title: Chem. Eur. J.
– volume: 17
  start-page: 1571
  year: 1996
  end-page: 1586
  publication-title: J. Comput. Chem.
– volume: 105
  start-page: 743
  year: 2001
  end-page: 749
  publication-title: J. Phys. Chem. A
– volume: 662
  start-page: 80
  year: 2016
  end-page: 85
  publication-title: Chem. Phys. Lett.
– volume: 16
  start-page: 2630
  year: 2015
  end-page: 2634
  publication-title: ChemPhysChem
– volume: 38
  start-page: 1256
  year: 2014
  end-page: 1263
  publication-title: New J. Chem.
– volume: 34
  start-page: 1429
  year: 2013
  end-page: 1437
  publication-title: J. Comput. Chem.
– volume: 16
  start-page: 15900
  year: 2014
  end-page: 15909
  publication-title: Phys. Chem. Chem. Phys.
– year: 1990
– volume: 15
  start-page: 3119
  year: 2013
  end-page: 3124
  publication-title: CrystEngComm
– volume: 109
  start-page: 7968
  year: 1987
  end-page: 7979
  publication-title: J. Am. Chem. Soc.
– volume: 117
  start-page: 11548
  year: 2013
  end-page: 11557
  publication-title: J. Phys. Chem. A
– volume: 13
  start-page: 5105
  year: 2011
  end-page: 5113
  publication-title: Phys. Chem. Chem. Phys.
– volume: 87
  start-page: 1194
  year: 1987
  end-page: 1204
  publication-title: J. Chem. Phys.
– volume: 19
  start-page: 553
  year: 1970
  end-page: 566
  publication-title: Mol. Phys.
– volume: 114
  start-page: 276
  year: 2016
  end-page: 282
  publication-title: Mol. Phys.
– volume: 17
  start-page: 24748
  year: 2015
  end-page: 24753
  publication-title: Phys. Chem. Chem. Phys.
– volume: 1034
  start-page: 1
  year: 2014
  end-page: 6
  publication-title: Comput. Theor. Chem.
– year: 1997
– volume: 387
  start-page: 79
  year: 2011
  end-page: 84
  publication-title: Chem. Phys.
– volume: 103
  start-page: 8058
  year: 1995
  end-page: 8074
  publication-title: J. Chem. Phys.
– start-page: 3
  year: 1997
  end-page: 43
– volume: 136
  start-page: 41
  year: 2017
  publication-title: Theor. Chem. Acc.
– volume: 122
  start-page: 119
  year: 2018
  end-page: 129
  publication-title: J. Phys. Chem. A
– volume: 28
  start-page: 1823
  year: 2017
  end-page: 1830
  publication-title: Struct. Chem.
– volume: 47
  start-page: 1045
  year: 2007
  end-page: 1052
  publication-title: J. Chem. Inf. Model.
– volume: 119
  start-page: 5597
  year: 2015
  end-page: 5606
  publication-title: J. Phys. Chem. A
– volume: 33
  start-page: 580
  year: 2012
  end-page: 592
  publication-title: J. Comput. Chem.
– volume: 20
  start-page: 905
  year: 2018
  end-page: 915
  publication-title: Phys. Chem. Chem. Phys.
– volume: 18
  start-page: 13820
  year: 2016
  end-page: 13829
  publication-title: Phys. Chem. Chem. Phys.
– volume: 39
  start-page: 500
  year: 2018
  end-page: 510
  publication-title: J. Comput. Chem.
– volume: 18
  start-page: 9148
  year: 2016
  end-page: 9160
  publication-title: Phys. Chem. Chem. Phys.
– volume: 118
  start-page: 10849
  year: 2014
  end-page: 10856
  publication-title: J. Phys. Chem. A
– volume: 16
  start-page: 1824
  year: 2014
  end-page: 1834
  publication-title: Phys. Chem. Chem. Phys.
– volume: 104
  start-page: 6871
  year: 2000
  end-page: 6879
  publication-title: J. Phys. Chem. A
– volume: 120
  start-page: 9431
  year: 2016
  end-page: 9445
  publication-title: J. Phys. Chem. A
– volume: 102
  start-page: 9278
  year: 1998
  end-page: 9285
  publication-title: J. Phys. Chem. A
– volume: 203
  start-page: 62
  year: 2017
  end-page: 74
  publication-title: J. Fluorine Chem.
– volume: 118
  start-page: 3183
  year: 2014
  end-page: 3192
  publication-title: J. Phys. Chem. A
– volume: 115
  start-page: 9294
  year: 2011
  end-page: 9299
  publication-title: J. Phys. Chem. A
– volume: 52 125
  start-page: 12317 12543
  year: 2013 2013
  end-page: 12321 12547
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 27
  start-page: 617
  year: 2016
  end-page: 625
  publication-title: Struct. Chem.
– volume: 19
  start-page: 5550
  year: 2017
  end-page: 5559
  publication-title: Phys. Chem. Chem. Phys.
– volume: 16
  start-page: 3625
  year: 2015
  end-page: 3630
  publication-title: ChemPhysChem
– volume: 129
  start-page: 325
  year: 1986
  end-page: 330
  publication-title: Chem. Phys. Lett.
– volume: 112
  start-page: 2791
  year: 2014
  end-page: 2801
  publication-title: Mol. Phys.
– start-page: 191
  year: 2015
  end-page: 263
– volume: 23
  start-page: 328
  year: 2017
  publication-title: J. Mol. Model.
– volume: 48
  start-page: 7708
  year: 2012
  end-page: 7710
  publication-title: Chem. Commun.
– year: 2006
– volume: 36
  start-page: 821
  year: 2015
  end-page: 832
  publication-title: J. Comput. Chem.
– volume: 13
  start-page: 291
  year: 2007
  end-page: 296
  publication-title: J. Mol. Model.
– volume: 27
  start-page: 939
  year: 2016
  end-page: 946
  publication-title: Struct. Chem.
– volume: 1070
  start-page: 21
  year: 2015
  end-page: 26
  publication-title: Comput. Theor. Chem.
– start-page: 357
  year: 2015
  end-page: 389
– volume: 101
  start-page: 172
  year: 2013
  end-page: 177
  publication-title: Spectrochim. Acta Part A
– volume: 120
  start-page: 4939
  year: 2016
  end-page: 4943
  publication-title: J. Phys. Chem. A
– year: 1999
– volume: 28
  start-page: 1065
  year: 2017
  end-page: 1079
  publication-title: Struct. Chem.
– ident: e_1_2_6_47_1
  doi: 10.1016/j.comptc.2014.02.003
– ident: e_1_2_6_28_1
  doi: 10.1021/jp509212t
– ident: e_1_2_6_45_1
  doi: 10.1080/00268976.2014.911984
– ident: e_1_2_6_17_1
  doi: 10.1039/C3CP53369G
– volume-title: Hydrogen Bonding. A Theoretical Perspective
  year: 1997
  ident: e_1_2_6_3_1
  doi: 10.1093/oso/9780195090116.001.0001
– ident: e_1_2_6_61_1
  doi: 10.1039/c2cc33304j
– ident: e_1_2_6_63_1
  doi: 10.1039/c3nj01015e
– ident: e_1_2_6_29_1
  doi: 10.1007/s11224-015-0594-8
– ident: e_1_2_6_65_1
  doi: 10.1002/chem.201406359
– ident: e_1_2_6_13_2
  doi: 10.1002/ange.201306501
– ident: e_1_2_6_35_1
  doi: 10.1021/acs.jpca.7b09902
– ident: e_1_2_6_59_1
– ident: e_1_2_6_8_1
  doi: 10.1016/j.cplett.2014.12.040
– ident: e_1_2_6_19_1
  doi: 10.1039/C2CE26393A
– ident: e_1_2_6_66_1
  doi: 10.1002/cphc.201500455
– ident: e_1_2_6_62_1
  doi: 10.1039/C7CP06959F
– ident: e_1_2_6_21_1
  doi: 10.1039/C6CP07531B
– ident: e_1_2_6_48_1
  doi: 10.1021/jp4077323
– ident: e_1_2_6_25_1
  doi: 10.1039/C7CP06393H
– ident: e_1_2_6_20_1
  doi: 10.1007/s00214-017-2069-z
– ident: e_1_2_6_6_1
  doi: 10.1021/jp000922o
– ident: e_1_2_6_43_1
  doi: 10.1016/j.comptc.2015.07.024
– ident: e_1_2_6_22_1
  doi: 10.1007/s00894-006-0130-2
– ident: e_1_2_6_12_1
  doi: 10.1021/jp501449v
– ident: e_1_2_6_39_1
  doi: 10.1002/(SICI)1096-987X(199610)17:13<1571::AID-JCC9>3.0.CO;2-P
– ident: e_1_2_6_7_1
  doi: 10.1039/c0cp02085k
– ident: e_1_2_6_49_1
  doi: 10.1016/j.saa.2012.09.043
– ident: e_1_2_6_51_1
  doi: 10.1016/0009-2614(86)80221-4
– ident: e_1_2_6_54_1
  doi: 10.1021/ja00260a006
– ident: e_1_2_6_31_1
  doi: 10.1007/s11224-015-0677-6
– ident: e_1_2_6_30_1
  doi: 10.1080/00268976.2015.1098742
– ident: e_1_2_6_42_1
  doi: 10.1039/C6CP01703G
– ident: e_1_2_6_27_1
  doi: 10.1021/acs.jpca.6b07894
– ident: e_1_2_6_15_1
  doi: 10.1063/1.453299
– ident: e_1_2_6_46_1
  doi: 10.1039/C4CP01072H
– volume-title: Atoms in Molecules, A Quantum Theory
  year: 1990
  ident: e_1_2_6_55_1
  doi: 10.1093/oso/9780198551683.001.0001
– ident: e_1_2_6_53_1
  doi: 10.1002/jcc.23266
– ident: e_1_2_6_1_1
  doi: 10.1093/acprof:oso/9780199558964.001.0001
– ident: e_1_2_6_40_1
  doi: 10.1021/ci600510j
– start-page: 357
  volume-title: A unified view of halogen bonding, hydrogen bonding and other σ-hole interactions, Vol. 19
  year: 2015
  ident: e_1_2_6_9_1
– ident: e_1_2_6_50_1
  doi: 10.1080/00268977000101561
– start-page: 191
  volume-title: The pnicogen bond in review: Structures, energies, bonding properties, and spin-spin coupling constants of complexes stabilized by pnicogen bonds, Vol. 19
  year: 2015
  ident: e_1_2_6_14_1
– ident: e_1_2_6_11_1
  doi: 10.1002/jcc.23860
– ident: e_1_2_6_18_1
  doi: 10.1021/jp002808b
– ident: e_1_2_6_4_1
  doi: 10.1007/978-1-4020-4853-1
– ident: e_1_2_6_26_1
  doi: 10.1007/s11224-017-0966-3
– ident: e_1_2_6_56_1
– ident: e_1_2_6_24_1
  doi: 10.1016/j.cplett.2014.05.029
– ident: e_1_2_6_33_1
  doi: 10.1016/j.jfluchem.2017.10.002
– volume-title: The Weak Hydrogen Bond in Structural Chemistry and Biology
  year: 1999
  ident: e_1_2_6_2_1
– ident: e_1_2_6_16_1
  doi: 10.1039/C6CP00227G
– ident: e_1_2_6_36_1
  doi: 10.1039/C5CP03272E
– ident: e_1_2_6_60_1
  doi: 10.1002/jcc.25085
– ident: e_1_2_6_23_1
  doi: 10.1021/jp204744m
– start-page: 3
  volume-title: Symmetry-adapted perturbation theory of intermolecular interactions
  year: 1997
  ident: e_1_2_6_57_1
– ident: e_1_2_6_37_1
  doi: 10.1002/cphc.201500757
– ident: e_1_2_6_32_1
  doi: 10.1007/s11224-017-0911-5
– ident: e_1_2_6_41_1
  doi: 10.1021/acs.jpca.5b12571
– ident: e_1_2_6_58_1
  doi: 10.1063/1.470171
– ident: e_1_2_6_38_1
– ident: e_1_2_6_44_1
  doi: 10.1021/acs.jpca.5b02283
– ident: e_1_2_6_52_1
  doi: 10.1002/jcc.22885
– ident: e_1_2_6_34_1
  doi: 10.1016/j.cplett.2016.09.037
– ident: e_1_2_6_64_1
  doi: 10.1007/s00894-017-3502-x
– ident: e_1_2_6_5_1
  doi: 10.1021/jp982251o
– ident: e_1_2_6_10_1
  doi: 10.1016/j.chemphys.2011.06.040
– ident: e_1_2_6_13_1
  doi: 10.1002/anie.201306501
SSID ssj0009633
Score 2.520792
Snippet The additional substituents arising from hypervalency present a number of complicating issues for the formation of noncovalent bonds. The XF5 molecule (X=Cl,...
The additional substituents arising from hypervalency present a number of complicating issues for the formation of noncovalent bonds. The XF 5 molecule (X=Cl,...
The additional substituents arising from hypervalency present a number of complicating issues for the formation of noncovalent bonds. The XF molecule (X=Cl,...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 8167
SubjectTerms AIM
Ammonia
Antimony
Atomic properties
Bonding strength
Chalcogen bonds
Chemical bonds
Chemistry
Deformation
hypervalency
Lewis acid
lone pairs
Molecular chains
NBO
sigma hole
Staphylococcal enterotoxin H
Tellurium
Title Halogen, Chalcogen, and Pnicogen Bonding Involving Hypervalent Atoms
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fchem.201800511
https://www.ncbi.nlm.nih.gov/pubmed/29572983
https://www.proquest.com/docview/2051142741
https://www.proquest.com/docview/2018027033
Volume 24
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFA6yF33xfplOqSD4Yrc1bdP0cUxHFRQRB3sraZqgODvZuhd_vec0becUEfStIUmby7l8SZPvEHImfVdzxjCgSUJtL0xSmzMubKk51YDnAfHifefbOxYNvZuRP_p0i9_wQ9QbbqgZhb1GBRfJrLMgDYU-4U1yh6Nc4foHD2whKnpY8EeBdJlY8l5gIwdrxdrYpZ3l6ste6RvUXEauhesZbBBRNdqcOHlpz_OkLd-_8Dn-p1ebZL3EpVbPCNIWWVHZNlntV-HgdshlhNs8Kruw-k9iLM2jyFLrPnsuUhZGKAZHaF1nYPJwn8KKYJE7BVEGx2b18snrbJcMB1eP_cguQzDY0guYY_uapiJQLhV-IBzQbV9o1aWSpZIngeZccIdJrYJAMi9F9Rcs1YDCHKG6InTcPdLIJpk6IBYACTfkjob1H0pAInSY8sQVFEw1dZVuEruagliW_OQYJmMcG2ZlGuPYxPXYNMl5Xf7NMHP8WLJVzWhcaugMcn28RgyAqklO62wYU_xhIjI1mc_MGyjYRLdJ9o0k1J-ioQ_rEg45tJjPX9oQI8NFnTr8S6UjsobPxTm1oEUa-XSujgER5clJIfUfrPP-5g
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT4QwEJ4YPejF92N1VUxMvIguBUo5blYNq6sxRhNvpJQ2GpU17u7FX-8MXTCrMSZ6o7RAHzPTb0r7DcC-Cn0jOKeAJhlzgzjLXcGFdJURzCCeR8RL550vr3hyF5zfh9VuQjoLY_kh6gU30ozSXpOC04L08SdrKDaKjpJ7ggQLHaAZCutdelU3nwxSKF82mnwQucTCWvE2ttjx5POT89I3sDmJXcvJ52wBsqrads_J09FomB2p9y-Mjv9q1yLMj6Gp07aytARTuliG2U4VEW4FThJa6dHFodN5kM_KXsoid66LxzLlUJBinAudboFWj5YqnAT93DeUZpzbnPaw_zJYhbuz09tO4o6jMLgqiLjnhoblMtI-k2EkPVTvUBrdYornSmSREUIKjyujo0jxICcLIHluEIh5Urdk7PlrMF30C70BDmIJPxaeQReQhCCTJs5F5kuG1pr52jTArcYgVWOKcoqU8ZxacmWWUt-kdd804KAu_2rJOX4s2ayGNB0r6QBzQzpJjJiqAXt1NvYp_TORhe6PBvYNDM2i34B1Kwr1p1gcomsiMIeVA_pLHVIiuahTm395aBdmk9vLXtrrXl1swRzdL7etRU2YHr6N9DYCpGG2U6rAB6mRAxA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwED9EQX3x-2M6tYLgi9U1bdP0cWyO-YmIgm8lTRMUtRO3vfjXe9es1Ski6FvTpG0-7i6_pLnfAeyp0DeCcwpokjI3iNPMFVxIVxnBDOJ5RLzk73xxybu3weldePfJi9_yQ1QbbqQZhb0mBX_JzNEHaSi2iTzJPUFyheufqYA3BMl1-_qDQArFywaTDyKXSFhL2sYGOxp_fnxa-oY1x6FrMfd05kGWtbZHTh4Ph4P0UL19IXT8T7MWYG4ETJ2mlaRFmND5Esy0ynhwy9Du0j6Pzg-c1r18UvZS5plzlT8UKYdCFONM6JzkaPNoo8Lp4ir3FWUZZzanOeg991fgtnN80-q6oxgMrgoi7rmhYZmMtM9kGEkPlTuURjeY4pkSaWSEkMLjyugoUjzISP8lzwzCME_qhow9fxUm816u18FBJOHHwjO4ACQRSKWJM5H6kqGtZr42NXDLIUjUiKCc4mQ8JZZamSXUN0nVNzXYr8q_WGqOH0vWyxFNRirax9yQ_IgRUdVgt8rGPqU_JjLXvWHfvoGhUfRrsGYlofoUi0NcmAjMYcV4_lKHhCguqtTGXx7agemrdic5P7k824RZul2cWYvqMDl4HeotREeDdLtQgHerWgHI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Halogen%2C+Chalcogen%2C+and+Pnicogen+Bonding+Involving+Hypervalent+Atoms&rft.jtitle=Chemistry+%3A+a+European+journal&rft.au=Scheiner%2C+Steve&rft.au=Lu%2C+Jia&rft.date=2018-06-07&rft.issn=1521-3765&rft.eissn=1521-3765&rft.volume=24&rft.issue=32&rft.spage=8167&rft_id=info:doi/10.1002%2Fchem.201800511&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0947-6539&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0947-6539&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0947-6539&client=summon