Full‐Color and White Circularly Polarized Luminescence of Hydrogen‐Bonded Ionic Organic Microcrystals
A simple and general method is presented herein for the in situ preparations of circularly polarized luminescence (CPL)‐active microcrystals with a large luminescence dissymmetry factor glum, high fluorescence quantum efficiency (ΦFL), wide emission color tenability, and well‐ordered morphology. The...
Saved in:
Published in | Angewandte Chemie International Edition Vol. 60; no. 26; pp. 14595 - 14600 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
WEINHEIM
Wiley
21.06.2021
Wiley Subscription Services, Inc |
Edition | International ed. in English |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A simple and general method is presented herein for the in situ preparations of circularly polarized luminescence (CPL)‐active microcrystals with a large luminescence dissymmetry factor glum, high fluorescence quantum efficiency (ΦFL), wide emission color tenability, and well‐ordered morphology. The reactions of pyridine‐containing achiral molecules 1–7 with chiral camphor sulfonic acid ((±)‐CSA) gave crystalline microplates formed by hydrogen bonding interactions between the protonated pyridinium units and the sulfonic anions. The chiral information of CSA are effectively transferred to the microcrystals by hydrogen bonding to afford full‐color CPL from deep‐blue to red with glum in the order of 10−2 and ΦFL up to 80 %. Moreover, organic microcrystals with high‐performance white CPL (ΦFL=46 %; |glum|=0.025) are achieved via the light‐harvesting energy transfer between blue and yellow emitters.
As a result of the efficient hydrogen‐bonding‐mediated chirality transfer and light‐harvesting energy transfer, well‐ordered ionic microcrystals formed between pyridine‐containing achiral molecules and chiral camphor sulfonic acid display full‐color and homogeneously white circularly polarized luminescence (CPL) with ΦFL of up to 80 % and glum in the order of 10−2. |
---|---|
AbstractList | A simple and general method is presented herein for the in situ preparations of circularly polarized luminescence (CPL)‐active microcrystals with a large luminescence dissymmetry factor glum, high fluorescence quantum efficiency (ΦFL), wide emission color tenability, and well‐ordered morphology. The reactions of pyridine‐containing achiral molecules 1–7 with chiral camphor sulfonic acid ((±)‐CSA) gave crystalline microplates formed by hydrogen bonding interactions between the protonated pyridinium units and the sulfonic anions. The chiral information of CSA are effectively transferred to the microcrystals by hydrogen bonding to afford full‐color CPL from deep‐blue to red with glum in the order of 10−2 and ΦFL up to 80 %. Moreover, organic microcrystals with high‐performance white CPL (ΦFL=46 %; |glum|=0.025) are achieved via the light‐harvesting energy transfer between blue and yellow emitters.
As a result of the efficient hydrogen‐bonding‐mediated chirality transfer and light‐harvesting energy transfer, well‐ordered ionic microcrystals formed between pyridine‐containing achiral molecules and chiral camphor sulfonic acid display full‐color and homogeneously white circularly polarized luminescence (CPL) with ΦFL of up to 80 % and glum in the order of 10−2. A simple and general method is presented herein for the in situ preparations of circularly polarized luminescence (CPL)‐active microcrystals with a large luminescence dissymmetry factor glum, high fluorescence quantum efficiency (ΦFL), wide emission color tenability, and well‐ordered morphology. The reactions of pyridine‐containing achiral molecules 1–7 with chiral camphor sulfonic acid ((±)‐CSA) gave crystalline microplates formed by hydrogen bonding interactions between the protonated pyridinium units and the sulfonic anions. The chiral information of CSA are effectively transferred to the microcrystals by hydrogen bonding to afford full‐color CPL from deep‐blue to red with glum in the order of 10−2 and ΦFL up to 80 %. Moreover, organic microcrystals with high‐performance white CPL (ΦFL=46 %; |glum|=0.025) are achieved via the light‐harvesting energy transfer between blue and yellow emitters. A simple and general method is presented herein for the in situ preparations of circularly polarized luminescence (CPL)-active microcrystals with a large luminescence dissymmetry factor glum , high fluorescence quantum efficiency (ΦFL ), wide emission color tenability, and well-ordered morphology. The reactions of pyridine-containing achiral molecules 1-7 with chiral camphor sulfonic acid ((±)-CSA) gave crystalline microplates formed by hydrogen bonding interactions between the protonated pyridinium units and the sulfonic anions. The chiral information of CSA are effectively transferred to the microcrystals by hydrogen bonding to afford full-color CPL from deep-blue to red with glum in the order of 10-2 and ΦFL up to 80 %. Moreover, organic microcrystals with high-performance white CPL (ΦFL =46 %; |glum |=0.025) are achieved via the light-harvesting energy transfer between blue and yellow emitters.A simple and general method is presented herein for the in situ preparations of circularly polarized luminescence (CPL)-active microcrystals with a large luminescence dissymmetry factor glum , high fluorescence quantum efficiency (ΦFL ), wide emission color tenability, and well-ordered morphology. The reactions of pyridine-containing achiral molecules 1-7 with chiral camphor sulfonic acid ((±)-CSA) gave crystalline microplates formed by hydrogen bonding interactions between the protonated pyridinium units and the sulfonic anions. The chiral information of CSA are effectively transferred to the microcrystals by hydrogen bonding to afford full-color CPL from deep-blue to red with glum in the order of 10-2 and ΦFL up to 80 %. Moreover, organic microcrystals with high-performance white CPL (ΦFL =46 %; |glum |=0.025) are achieved via the light-harvesting energy transfer between blue and yellow emitters. A simple and general method is presented herein for the in situ preparations of circularly polarized luminescence (CPL)‐active microcrystals with a large luminescence dissymmetry factor g lum , high fluorescence quantum efficiency ( Φ FL ), wide emission color tenability, and well‐ordered morphology. The reactions of pyridine‐containing achiral molecules 1 – 7 with chiral camphor sulfonic acid ((±)‐CSA) gave crystalline microplates formed by hydrogen bonding interactions between the protonated pyridinium units and the sulfonic anions. The chiral information of CSA are effectively transferred to the microcrystals by hydrogen bonding to afford full‐color CPL from deep‐blue to red with g lum in the order of 10 −2 and Φ FL up to 80 %. Moreover, organic microcrystals with high‐performance white CPL ( Φ FL =46 %; | g lum |=0.025) are achieved via the light‐harvesting energy transfer between blue and yellow emitters. A simple and general method is presented herein for the in situ preparations of circularly polarized luminescence (CPL)-active microcrystals with a large luminescence dissymmetry factor g , high fluorescence quantum efficiency (Φ ), wide emission color tenability, and well-ordered morphology. The reactions of pyridine-containing achiral molecules 1-7 with chiral camphor sulfonic acid ((±)-CSA) gave crystalline microplates formed by hydrogen bonding interactions between the protonated pyridinium units and the sulfonic anions. The chiral information of CSA are effectively transferred to the microcrystals by hydrogen bonding to afford full-color CPL from deep-blue to red with g in the order of 10 and Φ up to 80 %. Moreover, organic microcrystals with high-performance white CPL (Φ =46 %; |g |=0.025) are achieved via the light-harvesting energy transfer between blue and yellow emitters. A simple and general method is presented herein for the in situ preparations of circularly polarized luminescence (CPL)-active microcrystals with a large luminescence dissymmetry factor g(lum), high fluorescence quantum efficiency (phi(FL)), wide emission color tenability, and well-ordered morphology. The reactions of pyridine-containing achiral molecules 1-7 with chiral camphor sulfonic acid ((+/-)-CSA) gave crystalline microplates formed by hydrogen bonding interactions between the protonated pyridinium units and the sulfonic anions. The chiral information of CSA are effectively transferred to the microcrystals by hydrogen bonding to afford full-color CPL from deep-blue to red with g(lum) in the order of 10(-2) and phi(FL) up to 80 %. Moreover, organic microcrystals with high-performance white CPL (phi(FL)=46 %; |g(lum)|=0.025) are achieved via the light-harvesting energy transfer between blue and yellow emitters. |
Author | Zhong, Yu‐Wu Gong, Zhong‐Liang Shao, Jiang‐Yang Li, Zhong‐Qiu Yao, Jiannian |
Author_xml | – sequence: 1 givenname: Zhong‐Qiu surname: Li fullname: Li, Zhong‐Qiu organization: University of Chinese Academy of Sciences – sequence: 2 givenname: Zhong‐Liang surname: Gong fullname: Gong, Zhong‐Liang organization: Chinese Academy of Sciences – sequence: 3 givenname: Jiang‐Yang surname: Shao fullname: Shao, Jiang‐Yang organization: Chinese Academy of Sciences – sequence: 4 givenname: Jiannian surname: Yao fullname: Yao, Jiannian organization: University of Chinese Academy of Sciences – sequence: 5 givenname: Yu‐Wu orcidid: 0000-0003-0712-0374 surname: Zhong fullname: Zhong, Yu‐Wu email: zhongyuwu@iccas.ac.cn organization: University of Chinese Academy of Sciences |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33822449$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkstu1DAUhi1URC-wZYkisUFCGY4viZ1lG7V0pIGyALG0HNsprjx2sROhYcUj8Iw8CR7NtEiVEKx-L77v-Pj4HKODEINF6DmGBQYgb1RwdkGAYKDQ4UfoCDcE15RzelDOjNKaiwYfouOcbwovBLRP0CGlghDGuiPkLmbvf_342UcfU6WCqT5_cZOtepf07FXym-pDLOm-W1Ot5rULNmsbtK3iWF1uTIrXNhT_LAZTiGUMTldX6Vpt853TKeq0yZPy-Sl6PJawz_Z5gj5dnH_sL-vV1dtlf7qqNeMtrllrWKPBCMIGyqhuBqrFQEeOicbCdIYNFrQeeWeBjKw8jnd8BAVmGNTQNvQEvdrVvU3x62zzJNeutOy9CjbOWZIGOtIK4FDQlw_QmzinULorFMOkbbnghXqxp-ZhbY28TW6t0kbeDbEAYgd8s0Mcs3bb-dxjANA25YMwKSfAvZvU5GLo4xymor7-f7XQbEeXseac7Cj1vtqUlPMSg9wuhdwuhbxfiqItHmh3F_xV6PZdOW83_6Dl6fvl-R_3N2dayPg |
CitedBy_id | crossref_primary_10_1039_D2TC04818C crossref_primary_10_1093_chemle_upae097 crossref_primary_10_1021_jacs_1c12767 crossref_primary_10_1002_smtd_202400824 crossref_primary_10_1002_ange_202417906 crossref_primary_10_1002_anie_202116603 crossref_primary_10_1002_anie_202113979 crossref_primary_10_1002_smll_202408874 crossref_primary_10_1002_ange_202409514 crossref_primary_10_1002_ange_202410988 crossref_primary_10_1002_anie_202212685 crossref_primary_10_1007_s11426_024_2100_x crossref_primary_10_1021_acs_inorgchem_3c01080 crossref_primary_10_3390_ma15207247 crossref_primary_10_1002_ange_202301109 crossref_primary_10_1002_cptc_202100124 crossref_primary_10_1007_s42765_022_00196_x crossref_primary_10_1007_s11426_021_1146_6 crossref_primary_10_1002_adom_202201229 crossref_primary_10_1002_ange_202112582 crossref_primary_10_1002_ange_202424918 crossref_primary_10_1021_acsmacrolett_2c00382 crossref_primary_10_1002_adma_202410094 crossref_primary_10_1038_s41467_024_45262_7 crossref_primary_10_1039_D4CC02966F crossref_primary_10_1039_D4MH01760A crossref_primary_10_1021_acsmaterialslett_4c02290 crossref_primary_10_1002_adma_202202309 crossref_primary_10_1016_j_ccr_2024_215859 crossref_primary_10_1016_j_molliq_2024_125544 crossref_primary_10_1016_j_dyepig_2023_111718 crossref_primary_10_1002_ange_202116603 crossref_primary_10_1021_acs_chemmater_2c03322 crossref_primary_10_1002_ange_202111805 crossref_primary_10_1021_acs_accounts_4c00044 crossref_primary_10_1002_anie_202204358 crossref_primary_10_1038_s41467_023_44643_8 crossref_primary_10_1360_SSC_2024_0045 crossref_primary_10_1002_adfm_202417308 crossref_primary_10_1002_chem_202400685 crossref_primary_10_1039_D4NR03598D crossref_primary_10_1002_anie_202301109 crossref_primary_10_1002_anie_202409514 crossref_primary_10_1021_acs_cgd_4c01150 crossref_primary_10_1002_ange_202200290 crossref_primary_10_1021_jacs_2c00285 crossref_primary_10_1002_anie_202112582 crossref_primary_10_1002_ange_202204358 crossref_primary_10_1016_j_cej_2022_138390 crossref_primary_10_1016_j_mtchem_2023_101393 crossref_primary_10_1002_anie_202407135 crossref_primary_10_1002_ange_202409020 crossref_primary_10_1002_anie_202410988 crossref_primary_10_1002_chem_202303667 crossref_primary_10_1038_s41467_024_55181_2 crossref_primary_10_1002_ange_202113979 crossref_primary_10_1039_D4CC04345F crossref_primary_10_1002_anie_202200290 crossref_primary_10_1002_adom_202201888 crossref_primary_10_1002_anie_202306821 crossref_primary_10_1002_anie_202409020 crossref_primary_10_1016_j_cclet_2022_01_059 crossref_primary_10_1007_s11426_023_1560_0 crossref_primary_10_1002_adom_202100961 crossref_primary_10_1021_acs_chemmater_2c01285 crossref_primary_10_1002_ange_202205033 crossref_primary_10_1002_anie_202417906 crossref_primary_10_1007_s11426_023_1723_7 crossref_primary_10_1016_j_cocis_2021_101526 crossref_primary_10_1002_ange_202407135 crossref_primary_10_1039_D4QM00336E crossref_primary_10_1021_acs_biomac_4c00962 crossref_primary_10_1002_ange_202212685 crossref_primary_10_1002_anie_202111805 crossref_primary_10_1002_anie_202205033 crossref_primary_10_1039_D1GC04384F crossref_primary_10_1002_ange_202306821 crossref_primary_10_1002_adom_202201996 crossref_primary_10_1360_SSC_2024_0062 crossref_primary_10_1038_s41467_024_47240_5 crossref_primary_10_1002_adom_202400215 crossref_primary_10_1002_agt2_177 crossref_primary_10_1002_anie_202424918 |
Cites_doi | 10.1038/s41467-019-09942-z 10.1002/anie.202011740 10.1021/acs.chemrev.8b00770 10.1002/anie.201703439 10.1126/science.aan5348 10.1039/C9NR05033G 10.1021/acs.orglett.9b00450 10.1021/jacs.9b03231 10.1002/anie.201002552 10.1021/jacs.9b05973 10.1002/ange.202009714 10.1002/adma.200400470 10.1002/chem.202002791 10.1039/C9TC07022B 10.1038/nchem.1256 10.1002/chir.22382 10.1002/adma.201606859 10.1002/adfm.201807606 10.1002/anie.201709827 10.1002/ange.202011740 10.1021/acs.jpcc.8b01867 10.1002/ange.201911380 10.1002/anie.202011745 10.1021/acs.accounts.6b00209 10.1039/C9CS00680J 10.1039/C4CS00531G 10.1002/ange.202011745 10.1002/ange.201002552 10.1039/C6FD00161K 10.1039/c3nj00466j 10.1021/jacs.6b11057 10.1021/la011143h 10.1021/acsnano.9b04437 10.1021/acs.jpclett.5b01452 10.1021/jacs.9b13584 10.1002/ange.201709827 10.1021/jacs.9b03502 10.1002/anie.201911380 10.1021/acsami.8b00341 10.1021/jacs.9b08780 10.1002/adma.201900110 10.1002/ange.202001186 10.1002/adma.202002914 10.1007/s11426-020-9911-4 10.1002/anie.201908669 10.1039/C3CS60298B 10.1002/anie.202001186 10.1073/pnas.1902266116 10.1021/acsnano.9b00218 10.1021/acs.cgd.0c01737 10.1002/ange.201703439 10.1016/j.tet.2020.131695 10.1002/adma.201908021 10.1002/adma.201606503 10.1002/adma.200902148 10.1002/anie.202009714 10.1002/ange.201908669 10.1002/chir.20459 10.1002/chem.201904626 10.1039/c4cs00531g 10.1039/c9cs00680j 10.1039/c3cs60298b 10.1039/c9nr05033g 10.1039/c6fd00161k 10.1039/c9tc07022b |
ContentType | Journal Article |
Copyright | 2021 Wiley‐VCH GmbH 2021 Wiley-VCH GmbH. |
Copyright_xml | – notice: 2021 Wiley‐VCH GmbH – notice: 2021 Wiley-VCH GmbH. |
DBID | AAYXX CITATION 17B 1KM BLEPL DTL EGQ HGBXW NPM 7TM K9. 7X8 |
DOI | 10.1002/anie.202103091 |
DatabaseName | CrossRef Web of Knowledge Index Chemicus Web of Science Core Collection Science Citation Index Expanded Web of Science Primary (SCIE, SSCI & AHCI) Web of Science - Science Citation Index Expanded - 2021 PubMed Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef Web of Science PubMed ProQuest Health & Medical Complete (Alumni) Nucleic Acids Abstracts MEDLINE - Academic |
DatabaseTitleList | ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic CrossRef PubMed Web of Science |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 1KM name: Index Chemicus url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/woscc/search-with-editions?editions=WOS.IC sourceTypes: Enrichment Source Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3773 |
Edition | International ed. in English |
EndPage | 14600 |
ExternalDocumentID | 33822449 000650211200001 10_1002_anie_202103091 ANIE202103091 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: Science and Technology Commission of Shanghai Municipality funderid: 16DZ1100300 – fundername: Natural Science Foundation of Beijing Municipality funderid: 2191003 – fundername: National Natural Science Foundation of China funderid: 21925112, 22090021, 21975264 and 21872154 – fundername: Beijing Natural Science Foundation grantid: 2191003 – fundername: Science and Technology Commission of Shanghai Municipality; Science & Technology Commission of Shanghai Municipality (STCSM) grantid: 16DZ1100300 – fundername: National Natural Science Foundation of China; National Natural Science Foundation of China (NSFC) grantid: 21925112; 22090021; 21975264; 21872154 – fundername: National Natural Science Foundation of China grantid: 21925112, 22090021, 21975264 and 21872154 – fundername: Science and Technology Commission of Shanghai Municipality grantid: 16DZ1100300 – fundername: Natural Science Foundation of Beijing Municipality grantid: 2191003 |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABLJU ABPPZ ABPVW ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BTSUX BY8 CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES M53 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ TN5 UB1 UPT UQL V2E VQA W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XSW XV2 YZZ ZZTAW ~IA ~KM ~WT AAYXX ABDBF ABJNI AEYWJ AGHNM AGYGG CITATION 17B 1KM BLEPL DTL GROUPED_WOS_SCIENCE_CITATION_INDEX_EXPANDED GROUPED_WOS_WEB_OF_SCIENCE NPM 7TM K9. 7X8 |
ID | FETCH-LOGICAL-c4761-46d45c0d824b343c5b3c8b3f712c18d9d4be0ccf79e02f4851797f0a0dbbab653 |
IEDL.DBID | DR2 |
ISICitedReferencesCount | 76 |
ISICitedReferencesURI | https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestApp=WOS&DestLinkType=CitingArticles&UT=000650211200001 |
ISSN | 1433-7851 1521-3773 |
IngestDate | Fri Jul 11 16:25:11 EDT 2025 Fri Jul 25 11:52:18 EDT 2025 Thu Apr 03 06:53:23 EDT 2025 Fri Aug 29 16:25:22 EDT 2025 Wed Jul 09 20:16:18 EDT 2025 Thu Apr 24 23:03:06 EDT 2025 Tue Jul 01 01:17:59 EDT 2025 Wed Jan 22 16:28:47 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 26 |
Keywords | hydrogen bonding FILMS ASSEMBLIES white luminescence LIGHT circularly polarized luminescence light-harvesting energy transfer organic crystals |
Language | English |
License | 2021 Wiley-VCH GmbH. |
LinkModel | DirectLink |
LogoURL | https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg |
MergedId | FETCHMERGED-LOGICAL-c4761-46d45c0d824b343c5b3c8b3f712c18d9d4be0ccf79e02f4851797f0a0dbbab653 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-0712-0374 0000-0002-6618-2201 |
PMID | 33822449 |
PQID | 2541266787 |
PQPubID | 946352 |
PageCount | 6 |
ParticipantIDs | webofscience_primary_000650211200001CitationCount webofscience_primary_000650211200001 crossref_citationtrail_10_1002_anie_202103091 proquest_miscellaneous_2509268070 wiley_primary_10_1002_anie_202103091_ANIE202103091 proquest_journals_2541266787 crossref_primary_10_1002_anie_202103091 pubmed_primary_33822449 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | June 21, 2021 |
PublicationDateYYYYMMDD | 2021-06-21 |
PublicationDate_xml | – month: 06 year: 2021 text: June 21, 2021 day: 21 |
PublicationDecade | 2020 |
PublicationPlace | WEINHEIM |
PublicationPlace_xml | – name: WEINHEIM – name: Germany – name: Weinheim |
PublicationTitle | Angewandte Chemie International Edition |
PublicationTitleAbbrev | ANGEW CHEM INT EDIT |
PublicationTitleAlternate | Angew Chem Int Ed Engl |
PublicationYear | 2021 |
Publisher | Wiley Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley – name: Wiley Subscription Services, Inc |
References | 2021; 27 2018; 122 2021; 21 2015; 6 2021; 64 2002; 18 2019; 11 2020; 142 2019; 10 2019; 13 2020 2020; 59 132 2010 2010; 49 122 2017; 29 2017; 196 2020; 32 2017 2017; 56 129 2020; 76 2019; 141 2017; 357 2019 2019; 58 131 2014; 43 2017; 139 2020; 8 2010; 22 2013; 37 2015; 27 2004; 16 2019; 21 2015; 44 2020; 49 2021 2021; 60 133 2019; 116 2020; 26 2019; 29 2019; 119 2008; 20 2012; 4 2018; 10 2016; 49 e_1_2_6_51_2 e_1_2_6_53_2 e_1_2_6_30_2 e_1_2_6_19_2 e_1_2_6_13_1 e_1_2_6_36_1 e_1_2_6_59_1 e_1_2_6_13_2 e_1_2_6_11_1 e_1_2_6_32_3 e_1_2_6_34_1 e_1_2_6_32_2 e_1_2_6_17_1 e_1_2_6_55_2 e_1_2_6_15_1 e_1_2_6_38_1 e_1_2_6_57_2 e_1_2_6_62_1 e_1_2_6_20_1 e_1_2_6_41_2 e_1_2_6_60_2 e_1_2_6_7_2 e_1_2_6_9_3 e_1_2_6_9_2 e_1_2_6_3_2 e_1_2_6_5_2 e_1_2_6_1_1 e_1_2_6_24_2 e_1_2_6_47_2 e_1_2_6_22_3 e_1_2_6_49_1 e_1_2_6_22_2 e_1_2_6_43_2 e_1_2_6_28_1 e_1_2_6_26_2 e_1_2_6_45_2 e_1_2_6_24_3 e_1_2_6_50_2 e_1_2_6_52_1 e_1_2_6_31_2 e_1_2_6_18_2 e_1_2_6_58_2 e_1_2_6_14_1 e_1_2_6_33_3 e_1_2_6_35_1 e_1_2_6_10_2 e_1_2_6_33_2 e_1_2_6_12_1 e_1_2_6_16_2 e_1_2_6_54_2 e_1_2_6_39_1 e_1_2_6_56_1 e_1_2_6_16_1 e_1_2_6_37_1 e_1_2_6_61_2 e_1_2_6_42_2 e_1_2_6_40_1 e_1_2_6_8_2 e_1_2_6_8_3 e_1_2_6_29_2 e_1_2_6_4_2 e_1_2_6_6_2 e_1_2_6_23_3 e_1_2_6_25_1 e_1_2_6_23_2 e_1_2_6_48_2 e_1_2_6_2_2 e_1_2_6_21_2 e_1_2_6_44_1 e_1_2_6_27_2 e_1_2_6_46_2 Sato, S (WOS:000460911500069) 2019; 116 Kundu, S (WOS:000525743600001) 2020; 26 Kamtekar, KT (WOS:000274615600002) 2010; 22 He, YQ (WOS:000590766600010) 2020; 76 Lee, S. (000650211200001.15) 2019; 131 Yang, L (WOS:000484234700015) 2019; 11 Ikai, T (WOS:000514255300065) 2020; 142 Sun, XN (WOS:000407793600032) 2017; 357 Nitti, A (WOS:000395854100010) 2017; 196 Wang, J (WOS:000484077800097) 2019; 13 Han, JL (WOS:000401170600023) 2017; 29 Li, SZ (WOS:000575248700001) 2020; 59 Wuest, JD (WOS:000299430600004) 2012; 4 Pop, F (WOS:000477787600007) 2019; 119 Gong, ZL (WOS:000607980400001) 2021; 64 Yao, EP (WOS:000403280600015) 2017; 29 Lu, B. (000650211200001.37) 2020; 132 Zhang, W (WOS:000384038600011) 2016; 49 Arrico, L (WOS:000594387200001) 2021; 27 Bai, LY (WOS:000392036900062) 2017; 139 Gottarelli, G (WOS:000253555000029) 2008; 20 Gao, XQ (WOS:000484828900001) 2019; 141 Nitti, A (WOS:000563547700001) 2020; 32 Thomas, A (WOS:000437811500109) 2018; 122 Zhang, X. (000650211200001.35) 2017; 129 Kumar, J (WOS:000360953300020) 2015; 6 Zhang, C (WOS:000560598500001) 2020; 32 Sharma, S (WOS:000502886200043) 2019; 58 Li, ZQ (WOS:000626321500050) 2021; 21 Zhao, J (WOS:000490358900007) 2019; 141 Hou, K. (000650211200001.26) 2017; 129 Wade, J (WOS:000594432200001) 2021; 60 Chen, Z (WOS:000356610100009) 2015; 44 Zheng, D (WOS:000465644300014) 2019; 21 Wang, H (WOS:000469292300014) 2019; 141 Song, FY (WOS:000520979400001) 2020; 8 Tian, H. (000650211200001.28) 2021; 133 Yasukawa, T (WOS:000331188400007) 2014; 43 Gillgren, H (WOS:000173423700022) 2002; 18 Huang, ZZ (WOS:000596587700001) 2021; 60 Shi, L (WOS:000416126600037) 2017; 56 Caricato, M (WOS:000323110700027) 2013; 37 Chen, C (WOS:000465835500003) 2019; 10 Xing, PY (WOS:000473251500031) 2019; 141 Naito, M (WOS:000282477800012) 2010; 49 Naito, M. (000650211200001.24) 2010; 122 Ohira, A (WOS:000224816100014) 2004; 16 Ema, T. (000650211200001.8) 2020; 132 Maeda, C (WOS:000529988500030) 2020; 59 Sang, YT (WOS:000481024500001) 2020; 32 Zinna, F (WOS:000346790800001) 2015; 27 Lee, S (WOS:000494499000001) 2019; 58 Ding, R (WOS:000462624900015) 2019; 29 Sun, LJ (WOS:000403839000024) 2017; 56 Li, M (WOS:000427204100077) 2018; 10 Zhang, J (WOS:000462950500087) 2019; 13 Zhang, DW (WOS:000519913000001) 2020; 49 Bhalla, V. (000650211200001.19) 2019; 131 |
References_xml | – volume: 59 132 start-page: 22623 22812 year: 2020 2020 end-page: 22630 22819 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 10 start-page: 8225 year: 2018 end-page: 8230 publication-title: ACS Appl. Mater. Interfaces – volume: 142 start-page: 3254 year: 2020 end-page: 3261 publication-title: J. Am. Chem. Soc. – volume: 49 start-page: 1691 year: 2016 end-page: 1700 publication-title: Acc. Chem. Res. – volume: 64 start-page: 788 year: 2021 end-page: 799 publication-title: Sci. China Chem. – volume: 8 start-page: 3284 year: 2020 end-page: 3301 publication-title: J. Mater. Chem. C – volume: 29 year: 2017 publication-title: Adv. Mater. – volume: 37 start-page: 2792 year: 2013 end-page: 2799 publication-title: New J. Chem. – volume: 18 start-page: 462 year: 2002 end-page: 469 publication-title: Langmuir – volume: 13 start-page: 9473 year: 2019 publication-title: ACS Nano – volume: 16 start-page: 1645 year: 2004 end-page: 1650 publication-title: Adv. Mater. – volume: 59 132 start-page: 7813 7887 year: 2020 2020 end-page: 7817 7891 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 58 131 start-page: 18878 19054 year: 2019 2019 end-page: 18882 19058 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 43 start-page: 1450 year: 2014 end-page: 1461 publication-title: Chem. Soc. Rev. – volume: 58 131 start-page: 16203 16349 year: 2019 2019 end-page: 16209 16355 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 13 start-page: 3618 year: 2019 end-page: 3628 publication-title: ACS Nano – volume: 21 start-page: 2555 year: 2019 end-page: 2559 publication-title: Org. Lett. – volume: 56 129 start-page: 15397 15599 year: 2017 2017 end-page: 15401 15603 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 11 start-page: 14210 year: 2019 end-page: 14215 publication-title: Nanoscale – volume: 60 133 start-page: 222 224 year: 2021 2021 end-page: 227 229 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 141 start-page: 13700 year: 2019 end-page: 13707 publication-title: J. Am. Chem. Soc. – volume: 6 start-page: 3445 year: 2015 end-page: 3452 publication-title: J. Phys. Chem. Lett. – volume: 141 start-page: 15755 year: 2019 end-page: 15760 publication-title: J. Am. Chem. Soc. – volume: 141 start-page: 8078 year: 2019 end-page: 8082 publication-title: J. Am. Chem. Soc. – volume: 122 start-page: 14205 year: 2018 end-page: 14212 publication-title: J. Phys. Chem. C – volume: 116 start-page: 5194 year: 2019 end-page: 5195 publication-title: Proc. Natl. Acad. Sci. USA – volume: 196 start-page: 143 year: 2017 end-page: 161 publication-title: Faraday Discuss. – volume: 29 year: 2019 publication-title: Adv. Funct. Mater. – volume: 56 129 start-page: 7831 7939 year: 2017 2017 end-page: 7835 7943 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 27 start-page: 1 year: 2015 end-page: 13 publication-title: Chirality – volume: 76 year: 2020 publication-title: Tetrahedron – volume: 21 start-page: 1854 year: 2021 end-page: 1860 publication-title: Cryst. Growth Des. – volume: 119 start-page: 8435 year: 2019 end-page: 8478 publication-title: Chem. Rev. – volume: 32 year: 2020 publication-title: Adv. Mater. – volume: 141 start-page: 9946 year: 2019 end-page: 9954 publication-title: J. Am. Chem. Soc. – volume: 44 start-page: 4249 year: 2015 end-page: 4263 publication-title: Chem. Soc. Rev. – volume: 10 start-page: 1927 year: 2019 publication-title: Nat. Commun. – volume: 20 start-page: 471 year: 2008 end-page: 485 publication-title: Chirality – volume: 139 start-page: 436 year: 2017 end-page: 441 publication-title: J. Am. Chem. Soc. – volume: 26 start-page: 5557 year: 2020 end-page: 5582 publication-title: Chem. Eur. J. – volume: 27 start-page: 2920 year: 2021 end-page: 2934 publication-title: Chem. Eur. J. – volume: 49 start-page: 1331 year: 2020 end-page: 1343 publication-title: Chem. Soc. Rev. – volume: 60 133 start-page: 2855 2891 year: 2021 2021 end-page: 2860 2896 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 357 start-page: 677 year: 2017 end-page: 680 publication-title: Science – volume: 49 122 start-page: 7006 7160 year: 2010 2010 end-page: 7009 7163 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 22 start-page: 572 year: 2010 end-page: 582 publication-title: Adv. Mater. – volume: 4 start-page: 74 year: 2012 end-page: 75 publication-title: Nat. Chem. – ident: e_1_2_6_21_2 doi: 10.1038/s41467-019-09942-z – ident: e_1_2_6_62_1 – ident: e_1_2_6_24_2 doi: 10.1002/anie.202011740 – ident: e_1_2_6_11_1 doi: 10.1021/acs.chemrev.8b00770 – ident: e_1_2_6_32_2 doi: 10.1002/anie.201703439 – ident: e_1_2_6_40_1 – ident: e_1_2_6_60_2 doi: 10.1126/science.aan5348 – ident: e_1_2_6_50_2 doi: 10.1039/C9NR05033G – ident: e_1_2_6_43_2 doi: 10.1021/acs.orglett.9b00450 – ident: e_1_2_6_15_1 doi: 10.1021/jacs.9b03231 – ident: e_1_2_6_22_2 doi: 10.1002/anie.201002552 – ident: e_1_2_6_28_1 – ident: e_1_2_6_18_2 doi: 10.1021/jacs.9b05973 – ident: e_1_2_6_33_3 doi: 10.1002/ange.202009714 – ident: e_1_2_6_47_2 doi: 10.1002/adma.200400470 – ident: e_1_2_6_59_1 – ident: e_1_2_6_10_2 doi: 10.1002/chem.202002791 – ident: e_1_2_6_26_2 doi: 10.1039/C9TC07022B – ident: e_1_2_6_31_2 doi: 10.1038/nchem.1256 – ident: e_1_2_6_39_1 doi: 10.1002/chir.22382 – ident: e_1_2_6_44_1 – ident: e_1_2_6_55_2 doi: 10.1002/adma.201606859 – ident: e_1_2_6_54_2 doi: 10.1002/adfm.201807606 – ident: e_1_2_6_23_2 doi: 10.1002/anie.201709827 – ident: e_1_2_6_24_3 doi: 10.1002/ange.202011740 – ident: e_1_2_6_45_2 doi: 10.1021/acs.jpcc.8b01867 – ident: e_1_2_6_13_2 doi: 10.1002/ange.201911380 – ident: e_1_2_6_9_2 doi: 10.1002/anie.202011745 – ident: e_1_2_6_61_2 doi: 10.1021/acs.accounts.6b00209 – ident: e_1_2_6_2_2 doi: 10.1039/C9CS00680J – ident: e_1_2_6_3_2 doi: 10.1039/C4CS00531G – ident: e_1_2_6_9_3 doi: 10.1002/ange.202011745 – ident: e_1_2_6_22_3 doi: 10.1002/ange.201002552 – ident: e_1_2_6_34_1 doi: 10.1039/C6FD00161K – ident: e_1_2_6_37_1 doi: 10.1039/c3nj00466j – ident: e_1_2_6_29_2 doi: 10.1021/jacs.6b11057 – ident: e_1_2_6_46_2 doi: 10.1021/la011143h – ident: e_1_2_6_5_2 doi: 10.1021/acsnano.9b04437 – ident: e_1_2_6_38_1 doi: 10.1021/acs.jpclett.5b01452 – ident: e_1_2_6_20_1 – ident: e_1_2_6_1_1 – ident: e_1_2_6_51_2 doi: 10.1021/jacs.9b13584 – ident: e_1_2_6_23_3 doi: 10.1002/ange.201709827 – ident: e_1_2_6_30_2 doi: 10.1021/jacs.9b03502 – ident: e_1_2_6_13_1 doi: 10.1002/anie.201911380 – ident: e_1_2_6_41_2 doi: 10.1021/acsami.8b00341 – ident: e_1_2_6_19_2 doi: 10.1021/jacs.9b08780 – ident: e_1_2_6_56_1 – ident: e_1_2_6_6_2 doi: 10.1002/adma.201900110 – ident: e_1_2_6_8_3 doi: 10.1002/ange.202001186 – ident: e_1_2_6_52_1 – ident: e_1_2_6_17_1 – ident: e_1_2_6_25_1 – ident: e_1_2_6_58_2 doi: 10.1002/adma.202002914 – ident: e_1_2_6_14_1 doi: 10.1007/s11426-020-9911-4 – ident: e_1_2_6_16_1 doi: 10.1002/anie.201908669 – ident: e_1_2_6_4_2 doi: 10.1039/C3CS60298B – ident: e_1_2_6_8_2 doi: 10.1002/anie.202001186 – ident: e_1_2_6_42_2 doi: 10.1073/pnas.1902266116 – ident: e_1_2_6_27_2 doi: 10.1021/acsnano.9b00218 – ident: e_1_2_6_35_1 doi: 10.1021/acs.cgd.0c01737 – ident: e_1_2_6_32_3 doi: 10.1002/ange.201703439 – ident: e_1_2_6_36_1 doi: 10.1016/j.tet.2020.131695 – ident: e_1_2_6_7_2 doi: 10.1002/adma.201908021 – ident: e_1_2_6_12_1 doi: 10.1002/adma.201606503 – ident: e_1_2_6_53_2 doi: 10.1002/adma.200902148 – ident: e_1_2_6_33_2 doi: 10.1002/anie.202009714 – ident: e_1_2_6_16_2 doi: 10.1002/ange.201908669 – ident: e_1_2_6_48_2 doi: 10.1002/chir.20459 – ident: e_1_2_6_57_2 doi: 10.1002/chem.201904626 – ident: e_1_2_6_49_1 – volume: 131 start-page: 16349 year: 2019 ident: 000650211200001.19 publication-title: Angew. Chem – volume: 142 start-page: 3254 year: 2020 ident: WOS:000514255300065 article-title: Helical Assemblies of One-Dimensional Supramolecular Polymers Composed of Helical Macromolecules: Generation of Circularly Polarized Light Using an Infinitesimal Chiral Source publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/jacs.9b13584 – volume: 27 start-page: 1 year: 2015 ident: WOS:000346790800001 article-title: Lanthanide Circularly Polarized Luminescence: Bases and Applications publication-title: CHIRALITY doi: 10.1002/chir.22382 – volume: 29 start-page: ARTN 1807606 year: 2019 ident: WOS:000462624900015 article-title: High-Color-Rendering and High-Efficiency White Organic Light-Emitting Devices Based on Double-Doped Organic Single Crystals publication-title: ADVANCED FUNCTIONAL MATERIALS doi: 10.1002/adfm.201807606 – volume: 6 start-page: 3445 year: 2015 ident: WOS:000360953300020 article-title: Circularly Polarized Luminescence in Chiral Molecules and Supramolecular Assemblies publication-title: JOURNAL OF PHYSICAL CHEMISTRY LETTERS doi: 10.1021/acs.jpclett.5b01452 – volume: 49 start-page: 7006 year: 2010 ident: WOS:000282477800012 article-title: Circularly Polarized Luminescent CdS Quantum Dots Prepared in a Protein Nanocage publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.201002552 – volume: 56 start-page: 7831 year: 2017 ident: WOS:000403839000024 article-title: Intermolecular Charge-Transfer Interactions Facilitate Two-Photon Absorption in Styrylpyridine-Tetracyanobenzene Cocrystals publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.201703439 – volume: 139 start-page: 436 year: 2017 ident: WOS:000392036900062 article-title: Halogen-Assisted Piezochromic Supramolecular Assemblies for Versatile Haptic Memory publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/jacs.6b11057 – volume: 26 start-page: 5557 year: 2020 ident: WOS:000525743600001 article-title: Molecular Engineering Approaches Towards All-Organic White Light Emitting Materials publication-title: CHEMISTRY-A EUROPEAN JOURNAL doi: 10.1002/chem.201904626 – volume: 13 start-page: 9473 year: 2019 ident: WOS:000484077800097 article-title: Aqueous Synthesis of Low-Dimensional Lead Halide Perovskites for Room-Temperature Circularly Polarized Light Emission and Detection publication-title: ACS NANO doi: 10.1021/acsnano.9b04437 – volume: 21 start-page: 2555 year: 2019 ident: WOS:000465644300014 article-title: Significant Enhancement of Circularly Polarized Luminescence Dissymmetry Factors in Quinoline Oligoamide Foldamers with Absolute Helicity publication-title: ORGANIC LETTERS doi: 10.1021/acs.orglett.9b00450 – volume: 13 start-page: 3618 year: 2019 ident: WOS:000462950500087 article-title: Real-Time Monitoring of Hierarchical Self-Assembly and Induction of Circularly Polarized Luminescence from Achiral Luminogens publication-title: ACS NANO doi: 10.1021/acsnano.9b00218 – volume: 122 start-page: 7160 year: 2010 ident: 000650211200001.24 publication-title: Angew. Chem – volume: 132 start-page: 7887 year: 2020 ident: 000650211200001.8 publication-title: Angew. Chem – volume: 10 start-page: ARTN 1927 year: 2019 ident: WOS:000465835500003 article-title: Circularly polarized light detection using chiral hybrid perovskite publication-title: NATURE COMMUNICATIONS doi: 10.1038/s41467-019-09942-z – volume: 131 start-page: 19054 year: 2019 ident: 000650211200001.15 publication-title: Angew. Chem – volume: 29 start-page: ARTN 1606859 year: 2017 ident: WOS:000403280600015 article-title: High-Brightness Blue and White LEDs based on Inorganic Perovskite Nanocrystals and their Composites publication-title: ADVANCED MATERIALS doi: 10.1002/adma.201606859 – volume: 20 start-page: 471 year: 2008 ident: WOS:000253555000029 article-title: The use of circular dichroism spectroscopy for studying the chiral molecular self-assembly: An overview publication-title: CHIRALITY doi: 10.1002/chir.20459 – volume: 32 start-page: ARTN 2002914 year: 2020 ident: WOS:000560598500001 article-title: Enantiomeric MOF Crystals Using Helical Channels as Palettes with Bright White Circularly Polarized Luminescence publication-title: ADVANCED MATERIALS doi: 10.1002/adma.202002914 – volume: 76 start-page: ARTN 131695 year: 2020 ident: WOS:000590766600010 article-title: Syntheses and pH-responsive emissions of pyrid-2-yl-appended para-phenylene oligomers publication-title: TETRAHEDRON doi: 10.1016/j.tet.2020.131695 – volume: 37 start-page: 2792 year: 2013 ident: WOS:000323110700027 article-title: From red to blue shift: switching the binding affinity from the acceptor to the donor end by increasing the pi-bridge in push-pull chromophores with coordinative ends publication-title: NEW JOURNAL OF CHEMISTRY doi: 10.1039/c3nj00466j – volume: 64 start-page: 788 year: 2021 ident: WOS:000607980400001 article-title: Handedness-inverted polymorphic helical assembly and circularly polarized luminescence of chiral platinum complexes publication-title: SCIENCE CHINA-CHEMISTRY doi: 10.1007/s11426-020-9911-4 – volume: 58 start-page: 18878 year: 2019 ident: WOS:000494499000001 article-title: Finely Controlled Circularly Polarized Luminescence of a Mechano-Responsive Supramolecular Polymer publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.201911380 – volume: 122 start-page: 14205 year: 2018 ident: WOS:000437811500109 article-title: Mueller Polarimetry of Chiral Supramolecular Assembly publication-title: JOURNAL OF PHYSICAL CHEMISTRY C doi: 10.1021/acs.jpcc.8b01867 – volume: 141 start-page: 8078 year: 2019 ident: WOS:000469292300014 article-title: Reversible Circularly Polarized Reflection in a Self-Organized Helical Superstructure Enabled by a Visible-Light-Driven Axially Chiral Molecular Switch publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/jacs.9b03231 – volume: 44 start-page: 4249 year: 2015 ident: WOS:000356610100009 article-title: Optical chirality sensing using macrocycles, synthetic and supramolecular oligomers/polymers, and nanoparticle based sensors publication-title: CHEMICAL SOCIETY REVIEWS doi: 10.1039/c4cs00531g – volume: 29 start-page: ARTN 1606503 year: 2017 ident: WOS:000401170600023 article-title: Full-Color Tunable Circularly Polarized Luminescent Nanoassemblies of Achiral AIEgens in Confined Chiral Nanotubes publication-title: ADVANCED MATERIALS doi: 10.1002/adma.201606503 – volume: 59 start-page: 22623 year: 2020 ident: WOS:000575248700001 article-title: Manipulating Light-Induced Dynamic Macro-Movement and Static Photonic Properties within 1D Isostructural Hydrogen-Bonded Molecular Cocrystals publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.202009714 – volume: 16 start-page: 1645 year: 2004 ident: WOS:000224816100014 article-title: Versatile helical polymer films: Chiroptical inversion switching and memory with re-writable (RW) and write-once read-many (WORM) modes publication-title: ADVANCED MATERIALS doi: 10.1002/adma.200400470 – volume: 21 start-page: 1854 year: 2021 ident: WOS:000626321500050 article-title: Ionic Organic Microcrystals with Bright Deep-Blue Luminescence and Acid/Base Vapor Response publication-title: CRYSTAL GROWTH & DESIGN doi: 10.1021/acs.cgd.0c01737 – volume: 49 start-page: 1331 year: 2020 ident: WOS:000519913000001 article-title: Recent advances in circularly polarized electroluminescence based on organic light-emitting diodes publication-title: CHEMICAL SOCIETY REVIEWS doi: 10.1039/c9cs00680j – volume: 59 start-page: 7813 year: 2020 ident: WOS:000529988500030 article-title: Azahelicene-Fused BODIPY Analogues Showing Circularly Polarized Luminescence publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.202001186 – volume: 10 start-page: 8225 year: 2018 ident: WOS:000427204100077 article-title: Chiral Nanoparticles with Full-Color and White CPL Properties Based on Optically Stable Helical Aromatic Imide Enantiomers publication-title: ACS APPLIED MATERIALS & INTERFACES doi: 10.1021/acsami.8b00341 – volume: 18 start-page: 462 year: 2002 ident: WOS:000173423700022 article-title: Morphology and molecular conformation in thin films of poly-gamma-methyl-L-glutamate at the air-water interface publication-title: LANGMUIR doi: 10.1021/la011143h – volume: 4 start-page: 74 year: 2012 ident: WOS:000299430600004 article-title: MOLECULAR SOLIDS Co-crystals give light a tune-up publication-title: NATURE CHEMISTRY doi: 10.1038/nchem.1256 – volume: 129 start-page: 7939 year: 2017 ident: 000650211200001.35 publication-title: Angew. Chem – volume: 60 start-page: 2855 year: 2021 ident: WOS:000596587700001 article-title: Real-Time Visual Monitoring of Kinetically Controlled Self-Assembly publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.202011740 – volume: 141 start-page: 9946 year: 2019 ident: WOS:000473251500031 article-title: Occurrence of Chiral Nanostructures Induced by Multiple Hydrogen Bonds publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/jacs.9b03502 – volume: 116 start-page: 5194 year: 2019 ident: WOS:000460911500069 article-title: Chiral intertwined spirals and magnetic transition dipole moments dictated by cylinder helicity (vol 114, pg 13097, 2017) publication-title: PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA doi: 10.1073/pnas.1902266116 – volume: 32 start-page: ARTN 1908021 year: 2020 ident: WOS:000563547700001 article-title: Aggregation-Induced Circularly Polarized Luminescence: Chiral Organic Materials for Emerging Optical Technologies publication-title: ADVANCED MATERIALS doi: 10.1002/adma.201908021 – volume: 133 start-page: 2891 year: 2021 ident: 000650211200001.28 publication-title: Angew. Chem – volume: 43 start-page: 1450 year: 2014 ident: WOS:000331188400007 article-title: Chiral metal nanoparticle-catalyzed asymmetric C-C bond formation reactions publication-title: CHEMICAL SOCIETY REVIEWS doi: 10.1039/c3cs60298b – volume: 60 start-page: 222 year: 2021 ident: WOS:000594432200001 article-title: 500-Fold Amplification of Small Molecule Circularly Polarised Luminescence through Circularly Polarised FRET publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.202011745 – volume: 27 start-page: 2920 year: 2021 ident: WOS:000594387200001 article-title: Quantifying the Overall Efficiency of Circularly Polarized Emitters publication-title: CHEMISTRY-A EUROPEAN JOURNAL doi: 10.1002/chem.202002791 – volume: 357 start-page: 677 year: 2017 ident: WOS:000407793600032 article-title: A molecular spin-photovoltaic device publication-title: SCIENCE doi: 10.1126/science.aan5348 – volume: 141 start-page: 15755 year: 2019 ident: WOS:000490358900007 article-title: Circularly Polarized Luminescence from Achiral Single Crystals of Hybrid Manganese Halides publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/jacs.9b08780 – volume: 58 start-page: 16203 year: 2019 ident: WOS:000502886200043 article-title: Entropically Favoured Assembly of Pyrazine-Based Helical Fibers into Superstructures: Achiral/ Chiral Guest-Induced Chirality Transformation publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.201908669 – volume: 22 start-page: 572 year: 2010 ident: WOS:000274615600002 article-title: Recent Advances in White Organic Light-Emitting Materials and Devices (WOLEDs) publication-title: ADVANCED MATERIALS doi: 10.1002/adma.200902148 – volume: 49 start-page: 1691 year: 2016 ident: WOS:000384038600011 article-title: Organic Micro/Nanoscale Lasers publication-title: ACCOUNTS OF CHEMICAL RESEARCH doi: 10.1021/acs.accounts.6b00209 – volume: 11 start-page: 14210 year: 2019 ident: WOS:000484234700015 article-title: Achiral isomers controlled circularly polarized luminescence in supramolecular hydrogels publication-title: NANOSCALE doi: 10.1039/c9nr05033g – volume: 141 start-page: 13700 year: 2019 ident: WOS:000484828900001 article-title: Perspective of Chiral Colloidal Semiconductor Nanocrystals: Opportunity and Challenge publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/jacs.9b05973 – volume: 132 start-page: 22812 year: 2020 ident: 000650211200001.37 publication-title: Angew. Chem – volume: 119 start-page: 8435 year: 2019 ident: WOS:000477787600007 article-title: Main-Group-Based Electro- and Photoactive Chiral Materials publication-title: CHEMICAL REVIEWS doi: 10.1021/acs.chemrev.8b00770 – volume: 196 start-page: 143 year: 2017 ident: WOS:000395854100010 article-title: Structure-activity relationship for the solid state emission of a new family of "push-pull" pi-extended chromophores publication-title: FARADAY DISCUSSIONS doi: 10.1039/c6fd00161k – volume: 56 start-page: 15397 year: 2017 ident: WOS:000416126600037 article-title: Self-Assembly of Chiral Gold Clusters into Crystalline Nanocubes of Exceptional Optical Activity publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.201709827 – volume: 129 start-page: 15599 year: 2017 ident: 000650211200001.26 publication-title: Angew. Chem – volume: 32 start-page: ARTN 1900110 year: 2020 ident: WOS:000481024500001 article-title: Circularly Polarized Luminescence in Nanoassemblies: Generation, Amplification, and Application publication-title: ADVANCED MATERIALS doi: 10.1002/adma.201900110 – volume: 8 start-page: 3284 year: 2020 ident: WOS:000520979400001 article-title: Circularly polarized luminescence from AIEgens publication-title: JOURNAL OF MATERIALS CHEMISTRY C doi: 10.1039/c9tc07022b |
SSID | ssj0028806 |
Score | 2.5981054 |
Snippet | A simple and general method is presented herein for the in situ preparations of circularly polarized luminescence (CPL)‐active microcrystals with a large... A simple and general method is presented herein for the in situ preparations of circularly polarized luminescence (CPL)-active microcrystals with a large... |
Source | Web of Science |
SourceID | proquest pubmed webofscience crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 14595 |
SubjectTerms | Anions Camphor Chemical bonds Chemistry Chemistry, Multidisciplinary Circular polarization circularly polarized luminescence Color Emitters Energy harvesting Energy transfer Fluorescence Hydrogen Hydrogen bonding light-harvesting energy transfer Luminescence Microcrystals Morphology organic crystals Physical Sciences Pyridines Pyridinium Quantum efficiency Science & Technology Sulfonic acid white luminescence |
Title | Full‐Color and White Circularly Polarized Luminescence of Hydrogen‐Bonded Ionic Organic Microcrystals |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202103091 http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestApp=WOS&DestLinkType=FullRecord&UT=000650211200001 https://www.ncbi.nlm.nih.gov/pubmed/33822449 https://www.proquest.com/docview/2541266787 https://www.proquest.com/docview/2509268070 |
Volume | 60 |
WOS | 000650211200001 |
WOSCitedRecordID | wos000650211200001 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZQL3Dh_QgUZKRKnNImtpN1jlXUaotohRCVeov8lFYsWZTdPWxP_Qn9jfwSZuwkdIsQCG6JMk4yztj-Jp75hpA9gU6AEyYVhqtUlMKlspRFqqQHvGArnQVKodOzcnou3l8UFzey-CM_xPjDDUdGmK9xgCu9PPhJGooZ2ODfMayTFdLXMWALUdGnkT-KgXHG9CLOU6xCP7A2Zuxgu_n2qvQL1Ly1Km0D2bASHT8gatAhBqB82V-v9L65vEXv-D9KPiT3e5hKD6NdPSJ3XPuY3K2H6nBPyAx91-9X1zVMnh1VraWh1B6tZ12IbJ1v6Ef0mmeXztIP668YXW9QK7rwdLqx3QIsF9pjWWOQOEGGXhoTQw09xShB020Auc6XT8n58dHnepr2ZRtSIyYleKSlFYXJrGRCc8FNobmRmvtJzkwubWWFdpkxflK5jHkhkSRs4jOVWa2VLgv-jOy0i9a9ILSwla9yA6AP7mlYpb0CwFRIX-bOa1klJB0-W2N6TnMsrTFvIhsza7ADm7EDE_JulP8W2Tx-K7k7WEHTj-plA850DoAG5riEvB0vQ8fjJotq3WKNMlnFSgkzaUKeR-sZH8U5xuwKeO29m-Y0Xo-AGVxyFjZdEpL_jVjdK44kBquEsGBPf1CvOTw7ORrPXv5Lo1fkHh5j2BzLd8nOqlu71wDQVvpNGIQ_AAKuMas |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB6hcigX3g9DgUWqxMmtvbt21sfKapVAEiHUStws70uKCA5yk0N64ifwG_klzPgFKUIgONqetT3r2d1v1jPfABxKcgKcNKE0ogxlKl2oUpWEpfKIF2ymo4ZSaDZPxxfyzYekjyakXJiWH2LYcKOR0czXNMBpQ_r4B2sopWCjg8epUBblr9-kst6NV_V-YJDiaJ5tgpEQIdWh73kbI3682353XfoFbF5bl3ahbLMWnd0B3WvRhqB8PNqs9ZG5ukbw-F9q3oXbHVJlJ61p3YMbrroP-3lfIO4BLMh9_fbla47zZ83KyrKm2h7LF3UT3LrcsnfkOC-unGXTzScKsDekFlt5Nt7aeoXGi-2psjFKTIikl7W5oYbNKFDQ1FsEr8vLh3Bxdnqej8OuckNo5ChFpzS1MjGRVVxqIYVJtDBKCz-KuYmVzazULjLGjzIXcS8V8YSNfFRGVutSp4l4BHvVqnJPgCU281lsEPfhPQ3PtC8RMyXKp7HzWmUBhP13K0xHa07VNZZFS8jMC-rAYujAAF4P8p9bQo_fSh70ZlB0A_uyQH86RkyD01wAr4bL2PH0n6Ws3GpDMlHGU4WTaQCPW_MZHiUEhe1KfO3Dn-1puN5iZvTKefPfJYD4b8TyTnHiMVgHwBuD-oN6xcl8cjocPf2XRi9hf3w-mxbTyfztM7hF5ymKjscHsLeuN-454rW1ftGMyO8IEjXG |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB6hIgEX3g9DgUWqxMmtvbt21sfKbZRAG1WISr1Z3pcUNTiVmxzSEz-B38gvYcaOTVOEQHC0PWt71rO733hnvgHYkeQEOGlCaUQZylS6UKUqCUvlES_YTEcNpdDxJB2dyg9nydm1LP6WH6L_4UYjo5mvaYBfWL_3kzSUMrDRv-NUJ4vS12_LNFJk1wefegIpjtbZ5hcJEVIZ-o62MeJ7m-03l6VfsOaNZWkTyTZL0fABlJ0SbQTK-e5yoXfN1Q1-x__R8iHcX-NUtt8a1iO45arHcDfvysM9gSk5r9-_fstx9qxZWVnW1Npj-bRuQltnK3ZCbvP0yll2tPxC4fWGtGJzz0YrW8_RdLE91TVGiTFR9LI2M9SwYwoTNPUKoevs8imcDg8_56NwXbchNHKQokuaWpmYyCoutZDCJFoYpYUfxNzEymZWahcZ4weZi7iXiljCBj4qI6t1qdNEPIOtal65F8ASm_ksNoj68J6GZ9qXiJgS5dPYea2yAMLusxVmTWpOtTVmRUvHzAvqwKLvwADe9_IXLZ3HbyW3Oyso1sP6skBvOkZEg5NcAO_6y9jxtMtSVm6-JJko46nCqTSA56319I8SgoJ2Jb72znVz6q-3iBl9ct7sugQQ_41YvlacWAwWAfDGnv6gXrE_GR_2Ry__pdFbuHNyMCyOxpOPr-AenaYQOh5vw9aiXrrXCNYW-k0zHn8AVaI0fg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Full%E2%80%90Color+and+White+Circularly+Polarized+Luminescence+of+Hydrogen%E2%80%90Bonded+Ionic+Organic+Microcrystals&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Li%2C+Zhong%E2%80%90Qiu&rft.au=Gong%2C+Zhong%E2%80%90Liang&rft.au=Shao%2C+Jiang%E2%80%90Yang&rft.au=Yao%2C+Jiannian&rft.date=2021-06-21&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=60&rft.issue=26&rft.spage=14595&rft.epage=14600&rft_id=info:doi/10.1002%2Fanie.202103091&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_anie_202103091 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon |