Full‐Color and White Circularly Polarized Luminescence of Hydrogen‐Bonded Ionic Organic Microcrystals

A simple and general method is presented herein for the in situ preparations of circularly polarized luminescence (CPL)‐active microcrystals with a large luminescence dissymmetry factor glum, high fluorescence quantum efficiency (ΦFL), wide emission color tenability, and well‐ordered morphology. The...

Full description

Saved in:
Bibliographic Details
Published inAngewandte Chemie International Edition Vol. 60; no. 26; pp. 14595 - 14600
Main Authors Li, Zhong‐Qiu, Gong, Zhong‐Liang, Shao, Jiang‐Yang, Yao, Jiannian, Zhong, Yu‐Wu
Format Journal Article
LanguageEnglish
Published WEINHEIM Wiley 21.06.2021
Wiley Subscription Services, Inc
EditionInternational ed. in English
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A simple and general method is presented herein for the in situ preparations of circularly polarized luminescence (CPL)‐active microcrystals with a large luminescence dissymmetry factor glum, high fluorescence quantum efficiency (ΦFL), wide emission color tenability, and well‐ordered morphology. The reactions of pyridine‐containing achiral molecules 1–7 with chiral camphor sulfonic acid ((±)‐CSA) gave crystalline microplates formed by hydrogen bonding interactions between the protonated pyridinium units and the sulfonic anions. The chiral information of CSA are effectively transferred to the microcrystals by hydrogen bonding to afford full‐color CPL from deep‐blue to red with glum in the order of 10−2 and ΦFL up to 80 %. Moreover, organic microcrystals with high‐performance white CPL (ΦFL=46 %; |glum|=0.025) are achieved via the light‐harvesting energy transfer between blue and yellow emitters. As a result of the efficient hydrogen‐bonding‐mediated chirality transfer and light‐harvesting energy transfer, well‐ordered ionic microcrystals formed between pyridine‐containing achiral molecules and chiral camphor sulfonic acid display full‐color and homogeneously white circularly polarized luminescence (CPL) with ΦFL of up to 80 % and glum in the order of 10−2.
AbstractList A simple and general method is presented herein for the in situ preparations of circularly polarized luminescence (CPL)‐active microcrystals with a large luminescence dissymmetry factor glum, high fluorescence quantum efficiency (ΦFL), wide emission color tenability, and well‐ordered morphology. The reactions of pyridine‐containing achiral molecules 1–7 with chiral camphor sulfonic acid ((±)‐CSA) gave crystalline microplates formed by hydrogen bonding interactions between the protonated pyridinium units and the sulfonic anions. The chiral information of CSA are effectively transferred to the microcrystals by hydrogen bonding to afford full‐color CPL from deep‐blue to red with glum in the order of 10−2 and ΦFL up to 80 %. Moreover, organic microcrystals with high‐performance white CPL (ΦFL=46 %; |glum|=0.025) are achieved via the light‐harvesting energy transfer between blue and yellow emitters. As a result of the efficient hydrogen‐bonding‐mediated chirality transfer and light‐harvesting energy transfer, well‐ordered ionic microcrystals formed between pyridine‐containing achiral molecules and chiral camphor sulfonic acid display full‐color and homogeneously white circularly polarized luminescence (CPL) with ΦFL of up to 80 % and glum in the order of 10−2.
A simple and general method is presented herein for the in situ preparations of circularly polarized luminescence (CPL)‐active microcrystals with a large luminescence dissymmetry factor glum, high fluorescence quantum efficiency (ΦFL), wide emission color tenability, and well‐ordered morphology. The reactions of pyridine‐containing achiral molecules 1–7 with chiral camphor sulfonic acid ((±)‐CSA) gave crystalline microplates formed by hydrogen bonding interactions between the protonated pyridinium units and the sulfonic anions. The chiral information of CSA are effectively transferred to the microcrystals by hydrogen bonding to afford full‐color CPL from deep‐blue to red with glum in the order of 10−2 and ΦFL up to 80 %. Moreover, organic microcrystals with high‐performance white CPL (ΦFL=46 %; |glum|=0.025) are achieved via the light‐harvesting energy transfer between blue and yellow emitters.
A simple and general method is presented herein for the in situ preparations of circularly polarized luminescence (CPL)-active microcrystals with a large luminescence dissymmetry factor glum , high fluorescence quantum efficiency (ΦFL ), wide emission color tenability, and well-ordered morphology. The reactions of pyridine-containing achiral molecules 1-7 with chiral camphor sulfonic acid ((±)-CSA) gave crystalline microplates formed by hydrogen bonding interactions between the protonated pyridinium units and the sulfonic anions. The chiral information of CSA are effectively transferred to the microcrystals by hydrogen bonding to afford full-color CPL from deep-blue to red with glum in the order of 10-2 and ΦFL up to 80 %. Moreover, organic microcrystals with high-performance white CPL (ΦFL =46 %; |glum |=0.025) are achieved via the light-harvesting energy transfer between blue and yellow emitters.A simple and general method is presented herein for the in situ preparations of circularly polarized luminescence (CPL)-active microcrystals with a large luminescence dissymmetry factor glum , high fluorescence quantum efficiency (ΦFL ), wide emission color tenability, and well-ordered morphology. The reactions of pyridine-containing achiral molecules 1-7 with chiral camphor sulfonic acid ((±)-CSA) gave crystalline microplates formed by hydrogen bonding interactions between the protonated pyridinium units and the sulfonic anions. The chiral information of CSA are effectively transferred to the microcrystals by hydrogen bonding to afford full-color CPL from deep-blue to red with glum in the order of 10-2 and ΦFL up to 80 %. Moreover, organic microcrystals with high-performance white CPL (ΦFL =46 %; |glum |=0.025) are achieved via the light-harvesting energy transfer between blue and yellow emitters.
A simple and general method is presented herein for the in situ preparations of circularly polarized luminescence (CPL)‐active microcrystals with a large luminescence dissymmetry factor g lum , high fluorescence quantum efficiency ( Φ FL ), wide emission color tenability, and well‐ordered morphology. The reactions of pyridine‐containing achiral molecules 1 – 7 with chiral camphor sulfonic acid ((±)‐CSA) gave crystalline microplates formed by hydrogen bonding interactions between the protonated pyridinium units and the sulfonic anions. The chiral information of CSA are effectively transferred to the microcrystals by hydrogen bonding to afford full‐color CPL from deep‐blue to red with g lum in the order of 10 −2 and Φ FL up to 80 %. Moreover, organic microcrystals with high‐performance white CPL ( Φ FL =46 %; | g lum |=0.025) are achieved via the light‐harvesting energy transfer between blue and yellow emitters.
A simple and general method is presented herein for the in situ preparations of circularly polarized luminescence (CPL)-active microcrystals with a large luminescence dissymmetry factor g , high fluorescence quantum efficiency (Φ ), wide emission color tenability, and well-ordered morphology. The reactions of pyridine-containing achiral molecules 1-7 with chiral camphor sulfonic acid ((±)-CSA) gave crystalline microplates formed by hydrogen bonding interactions between the protonated pyridinium units and the sulfonic anions. The chiral information of CSA are effectively transferred to the microcrystals by hydrogen bonding to afford full-color CPL from deep-blue to red with g in the order of 10 and Φ up to 80 %. Moreover, organic microcrystals with high-performance white CPL (Φ =46 %; |g |=0.025) are achieved via the light-harvesting energy transfer between blue and yellow emitters.
A simple and general method is presented herein for the in situ preparations of circularly polarized luminescence (CPL)-active microcrystals with a large luminescence dissymmetry factor g(lum), high fluorescence quantum efficiency (phi(FL)), wide emission color tenability, and well-ordered morphology. The reactions of pyridine-containing achiral molecules 1-7 with chiral camphor sulfonic acid ((+/-)-CSA) gave crystalline microplates formed by hydrogen bonding interactions between the protonated pyridinium units and the sulfonic anions. The chiral information of CSA are effectively transferred to the microcrystals by hydrogen bonding to afford full-color CPL from deep-blue to red with g(lum) in the order of 10(-2) and phi(FL) up to 80 %. Moreover, organic microcrystals with high-performance white CPL (phi(FL)=46 %; |g(lum)|=0.025) are achieved via the light-harvesting energy transfer between blue and yellow emitters.
Author Zhong, Yu‐Wu
Gong, Zhong‐Liang
Shao, Jiang‐Yang
Li, Zhong‐Qiu
Yao, Jiannian
Author_xml – sequence: 1
  givenname: Zhong‐Qiu
  surname: Li
  fullname: Li, Zhong‐Qiu
  organization: University of Chinese Academy of Sciences
– sequence: 2
  givenname: Zhong‐Liang
  surname: Gong
  fullname: Gong, Zhong‐Liang
  organization: Chinese Academy of Sciences
– sequence: 3
  givenname: Jiang‐Yang
  surname: Shao
  fullname: Shao, Jiang‐Yang
  organization: Chinese Academy of Sciences
– sequence: 4
  givenname: Jiannian
  surname: Yao
  fullname: Yao, Jiannian
  organization: University of Chinese Academy of Sciences
– sequence: 5
  givenname: Yu‐Wu
  orcidid: 0000-0003-0712-0374
  surname: Zhong
  fullname: Zhong, Yu‐Wu
  email: zhongyuwu@iccas.ac.cn
  organization: University of Chinese Academy of Sciences
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33822449$$D View this record in MEDLINE/PubMed
BookMark eNqNkstu1DAUhi1URC-wZYkisUFCGY4viZ1lG7V0pIGyALG0HNsprjx2sROhYcUj8Iw8CR7NtEiVEKx-L77v-Pj4HKODEINF6DmGBQYgb1RwdkGAYKDQ4UfoCDcE15RzelDOjNKaiwYfouOcbwovBLRP0CGlghDGuiPkLmbvf_342UcfU6WCqT5_cZOtepf07FXym-pDLOm-W1Ot5rULNmsbtK3iWF1uTIrXNhT_LAZTiGUMTldX6Vpt853TKeq0yZPy-Sl6PJawz_Z5gj5dnH_sL-vV1dtlf7qqNeMtrllrWKPBCMIGyqhuBqrFQEeOicbCdIYNFrQeeWeBjKw8jnd8BAVmGNTQNvQEvdrVvU3x62zzJNeutOy9CjbOWZIGOtIK4FDQlw_QmzinULorFMOkbbnghXqxp-ZhbY28TW6t0kbeDbEAYgd8s0Mcs3bb-dxjANA25YMwKSfAvZvU5GLo4xymor7-f7XQbEeXseac7Cj1vtqUlPMSg9wuhdwuhbxfiqItHmh3F_xV6PZdOW83_6Dl6fvl-R_3N2dayPg
CitedBy_id crossref_primary_10_1039_D2TC04818C
crossref_primary_10_1093_chemle_upae097
crossref_primary_10_1021_jacs_1c12767
crossref_primary_10_1002_smtd_202400824
crossref_primary_10_1002_ange_202417906
crossref_primary_10_1002_anie_202116603
crossref_primary_10_1002_anie_202113979
crossref_primary_10_1002_smll_202408874
crossref_primary_10_1002_ange_202409514
crossref_primary_10_1002_ange_202410988
crossref_primary_10_1002_anie_202212685
crossref_primary_10_1007_s11426_024_2100_x
crossref_primary_10_1021_acs_inorgchem_3c01080
crossref_primary_10_3390_ma15207247
crossref_primary_10_1002_ange_202301109
crossref_primary_10_1002_cptc_202100124
crossref_primary_10_1007_s42765_022_00196_x
crossref_primary_10_1007_s11426_021_1146_6
crossref_primary_10_1002_adom_202201229
crossref_primary_10_1002_ange_202112582
crossref_primary_10_1002_ange_202424918
crossref_primary_10_1021_acsmacrolett_2c00382
crossref_primary_10_1002_adma_202410094
crossref_primary_10_1038_s41467_024_45262_7
crossref_primary_10_1039_D4CC02966F
crossref_primary_10_1039_D4MH01760A
crossref_primary_10_1021_acsmaterialslett_4c02290
crossref_primary_10_1002_adma_202202309
crossref_primary_10_1016_j_ccr_2024_215859
crossref_primary_10_1016_j_molliq_2024_125544
crossref_primary_10_1016_j_dyepig_2023_111718
crossref_primary_10_1002_ange_202116603
crossref_primary_10_1021_acs_chemmater_2c03322
crossref_primary_10_1002_ange_202111805
crossref_primary_10_1021_acs_accounts_4c00044
crossref_primary_10_1002_anie_202204358
crossref_primary_10_1038_s41467_023_44643_8
crossref_primary_10_1360_SSC_2024_0045
crossref_primary_10_1002_adfm_202417308
crossref_primary_10_1002_chem_202400685
crossref_primary_10_1039_D4NR03598D
crossref_primary_10_1002_anie_202301109
crossref_primary_10_1002_anie_202409514
crossref_primary_10_1021_acs_cgd_4c01150
crossref_primary_10_1002_ange_202200290
crossref_primary_10_1021_jacs_2c00285
crossref_primary_10_1002_anie_202112582
crossref_primary_10_1002_ange_202204358
crossref_primary_10_1016_j_cej_2022_138390
crossref_primary_10_1016_j_mtchem_2023_101393
crossref_primary_10_1002_anie_202407135
crossref_primary_10_1002_ange_202409020
crossref_primary_10_1002_anie_202410988
crossref_primary_10_1002_chem_202303667
crossref_primary_10_1038_s41467_024_55181_2
crossref_primary_10_1002_ange_202113979
crossref_primary_10_1039_D4CC04345F
crossref_primary_10_1002_anie_202200290
crossref_primary_10_1002_adom_202201888
crossref_primary_10_1002_anie_202306821
crossref_primary_10_1002_anie_202409020
crossref_primary_10_1016_j_cclet_2022_01_059
crossref_primary_10_1007_s11426_023_1560_0
crossref_primary_10_1002_adom_202100961
crossref_primary_10_1021_acs_chemmater_2c01285
crossref_primary_10_1002_ange_202205033
crossref_primary_10_1002_anie_202417906
crossref_primary_10_1007_s11426_023_1723_7
crossref_primary_10_1016_j_cocis_2021_101526
crossref_primary_10_1002_ange_202407135
crossref_primary_10_1039_D4QM00336E
crossref_primary_10_1021_acs_biomac_4c00962
crossref_primary_10_1002_ange_202212685
crossref_primary_10_1002_anie_202111805
crossref_primary_10_1002_anie_202205033
crossref_primary_10_1039_D1GC04384F
crossref_primary_10_1002_ange_202306821
crossref_primary_10_1002_adom_202201996
crossref_primary_10_1360_SSC_2024_0062
crossref_primary_10_1038_s41467_024_47240_5
crossref_primary_10_1002_adom_202400215
crossref_primary_10_1002_agt2_177
crossref_primary_10_1002_anie_202424918
Cites_doi 10.1038/s41467-019-09942-z
10.1002/anie.202011740
10.1021/acs.chemrev.8b00770
10.1002/anie.201703439
10.1126/science.aan5348
10.1039/C9NR05033G
10.1021/acs.orglett.9b00450
10.1021/jacs.9b03231
10.1002/anie.201002552
10.1021/jacs.9b05973
10.1002/ange.202009714
10.1002/adma.200400470
10.1002/chem.202002791
10.1039/C9TC07022B
10.1038/nchem.1256
10.1002/chir.22382
10.1002/adma.201606859
10.1002/adfm.201807606
10.1002/anie.201709827
10.1002/ange.202011740
10.1021/acs.jpcc.8b01867
10.1002/ange.201911380
10.1002/anie.202011745
10.1021/acs.accounts.6b00209
10.1039/C9CS00680J
10.1039/C4CS00531G
10.1002/ange.202011745
10.1002/ange.201002552
10.1039/C6FD00161K
10.1039/c3nj00466j
10.1021/jacs.6b11057
10.1021/la011143h
10.1021/acsnano.9b04437
10.1021/acs.jpclett.5b01452
10.1021/jacs.9b13584
10.1002/ange.201709827
10.1021/jacs.9b03502
10.1002/anie.201911380
10.1021/acsami.8b00341
10.1021/jacs.9b08780
10.1002/adma.201900110
10.1002/ange.202001186
10.1002/adma.202002914
10.1007/s11426-020-9911-4
10.1002/anie.201908669
10.1039/C3CS60298B
10.1002/anie.202001186
10.1073/pnas.1902266116
10.1021/acsnano.9b00218
10.1021/acs.cgd.0c01737
10.1002/ange.201703439
10.1016/j.tet.2020.131695
10.1002/adma.201908021
10.1002/adma.201606503
10.1002/adma.200902148
10.1002/anie.202009714
10.1002/ange.201908669
10.1002/chir.20459
10.1002/chem.201904626
10.1039/c4cs00531g
10.1039/c9cs00680j
10.1039/c3cs60298b
10.1039/c9nr05033g
10.1039/c6fd00161k
10.1039/c9tc07022b
ContentType Journal Article
Copyright 2021 Wiley‐VCH GmbH
2021 Wiley-VCH GmbH.
Copyright_xml – notice: 2021 Wiley‐VCH GmbH
– notice: 2021 Wiley-VCH GmbH.
DBID AAYXX
CITATION
17B
1KM
BLEPL
DTL
EGQ
HGBXW
NPM
7TM
K9.
7X8
DOI 10.1002/anie.202103091
DatabaseName CrossRef
Web of Knowledge
Index Chemicus
Web of Science Core Collection
Science Citation Index Expanded
Web of Science Primary (SCIE, SSCI & AHCI)
Web of Science - Science Citation Index Expanded - 2021
PubMed
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
Web of Science
PubMed
ProQuest Health & Medical Complete (Alumni)
Nucleic Acids Abstracts
MEDLINE - Academic
DatabaseTitleList
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
CrossRef
PubMed
Web of Science
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 1KM
  name: Index Chemicus
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/woscc/search-with-editions?editions=WOS.IC
  sourceTypes:
    Enrichment Source
    Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3773
Edition International ed. in English
EndPage 14600
ExternalDocumentID 33822449
000650211200001
10_1002_anie_202103091
ANIE202103091
Genre article
Journal Article
GrantInformation_xml – fundername: Science and Technology Commission of Shanghai Municipality
  funderid: 16DZ1100300
– fundername: Natural Science Foundation of Beijing Municipality
  funderid: 2191003
– fundername: National Natural Science Foundation of China
  funderid: 21925112, 22090021, 21975264 and 21872154
– fundername: Beijing Natural Science Foundation
  grantid: 2191003
– fundername: Science and Technology Commission of Shanghai Municipality; Science & Technology Commission of Shanghai Municipality (STCSM)
  grantid: 16DZ1100300
– fundername: National Natural Science Foundation of China; National Natural Science Foundation of China (NSFC)
  grantid: 21925112; 22090021; 21975264; 21872154
– fundername: National Natural Science Foundation of China
  grantid: 21925112, 22090021, 21975264 and 21872154
– fundername: Science and Technology Commission of Shanghai Municipality
  grantid: 16DZ1100300
– fundername: Natural Science Foundation of Beijing Municipality
  grantid: 2191003
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABLJU
ABPPZ
ABPVW
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BTSUX
BY8
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
M53
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
TN5
UB1
UPT
UQL
V2E
VQA
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XSW
XV2
YZZ
ZZTAW
~IA
~KM
~WT
AAYXX
ABDBF
ABJNI
AEYWJ
AGHNM
AGYGG
CITATION
17B
1KM
BLEPL
DTL
GROUPED_WOS_SCIENCE_CITATION_INDEX_EXPANDED
GROUPED_WOS_WEB_OF_SCIENCE
NPM
7TM
K9.
7X8
ID FETCH-LOGICAL-c4761-46d45c0d824b343c5b3c8b3f712c18d9d4be0ccf79e02f4851797f0a0dbbab653
IEDL.DBID DR2
ISICitedReferencesCount 76
ISICitedReferencesURI https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestApp=WOS&DestLinkType=CitingArticles&UT=000650211200001
ISSN 1433-7851
1521-3773
IngestDate Fri Jul 11 16:25:11 EDT 2025
Fri Jul 25 11:52:18 EDT 2025
Thu Apr 03 06:53:23 EDT 2025
Fri Aug 29 16:25:22 EDT 2025
Wed Jul 09 20:16:18 EDT 2025
Thu Apr 24 23:03:06 EDT 2025
Tue Jul 01 01:17:59 EDT 2025
Wed Jan 22 16:28:47 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 26
Keywords hydrogen bonding
FILMS
ASSEMBLIES
white luminescence
LIGHT
circularly polarized luminescence
light-harvesting energy transfer
organic crystals
Language English
License 2021 Wiley-VCH GmbH.
LinkModel DirectLink
LogoURL https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg
MergedId FETCHMERGED-LOGICAL-c4761-46d45c0d824b343c5b3c8b3f712c18d9d4be0ccf79e02f4851797f0a0dbbab653
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-0712-0374
0000-0002-6618-2201
PMID 33822449
PQID 2541266787
PQPubID 946352
PageCount 6
ParticipantIDs webofscience_primary_000650211200001CitationCount
webofscience_primary_000650211200001
crossref_citationtrail_10_1002_anie_202103091
proquest_miscellaneous_2509268070
wiley_primary_10_1002_anie_202103091_ANIE202103091
proquest_journals_2541266787
crossref_primary_10_1002_anie_202103091
pubmed_primary_33822449
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate June 21, 2021
PublicationDateYYYYMMDD 2021-06-21
PublicationDate_xml – month: 06
  year: 2021
  text: June 21, 2021
  day: 21
PublicationDecade 2020
PublicationPlace WEINHEIM
PublicationPlace_xml – name: WEINHEIM
– name: Germany
– name: Weinheim
PublicationTitle Angewandte Chemie International Edition
PublicationTitleAbbrev ANGEW CHEM INT EDIT
PublicationTitleAlternate Angew Chem Int Ed Engl
PublicationYear 2021
Publisher Wiley
Wiley Subscription Services, Inc
Publisher_xml – name: Wiley
– name: Wiley Subscription Services, Inc
References 2021; 27
2018; 122
2021; 21
2015; 6
2021; 64
2002; 18
2019; 11
2020; 142
2019; 10
2019; 13
2020 2020; 59 132
2010 2010; 49 122
2017; 29
2017; 196
2020; 32
2017 2017; 56 129
2020; 76
2019; 141
2017; 357
2019 2019; 58 131
2014; 43
2017; 139
2020; 8
2010; 22
2013; 37
2015; 27
2004; 16
2019; 21
2015; 44
2020; 49
2021 2021; 60 133
2019; 116
2020; 26
2019; 29
2019; 119
2008; 20
2012; 4
2018; 10
2016; 49
e_1_2_6_51_2
e_1_2_6_53_2
e_1_2_6_30_2
e_1_2_6_19_2
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_59_1
e_1_2_6_13_2
e_1_2_6_11_1
e_1_2_6_32_3
e_1_2_6_34_1
e_1_2_6_32_2
e_1_2_6_17_1
e_1_2_6_55_2
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_57_2
e_1_2_6_62_1
e_1_2_6_20_1
e_1_2_6_41_2
e_1_2_6_60_2
e_1_2_6_7_2
e_1_2_6_9_3
e_1_2_6_9_2
e_1_2_6_3_2
e_1_2_6_5_2
e_1_2_6_1_1
e_1_2_6_24_2
e_1_2_6_47_2
e_1_2_6_22_3
e_1_2_6_49_1
e_1_2_6_22_2
e_1_2_6_43_2
e_1_2_6_28_1
e_1_2_6_26_2
e_1_2_6_45_2
e_1_2_6_24_3
e_1_2_6_50_2
e_1_2_6_52_1
e_1_2_6_31_2
e_1_2_6_18_2
e_1_2_6_58_2
e_1_2_6_14_1
e_1_2_6_33_3
e_1_2_6_35_1
e_1_2_6_10_2
e_1_2_6_33_2
e_1_2_6_12_1
e_1_2_6_16_2
e_1_2_6_54_2
e_1_2_6_39_1
e_1_2_6_56_1
e_1_2_6_16_1
e_1_2_6_37_1
e_1_2_6_61_2
e_1_2_6_42_2
e_1_2_6_40_1
e_1_2_6_8_2
e_1_2_6_8_3
e_1_2_6_29_2
e_1_2_6_4_2
e_1_2_6_6_2
e_1_2_6_23_3
e_1_2_6_25_1
e_1_2_6_23_2
e_1_2_6_48_2
e_1_2_6_2_2
e_1_2_6_21_2
e_1_2_6_44_1
e_1_2_6_27_2
e_1_2_6_46_2
Sato, S (WOS:000460911500069) 2019; 116
Kundu, S (WOS:000525743600001) 2020; 26
Kamtekar, KT (WOS:000274615600002) 2010; 22
He, YQ (WOS:000590766600010) 2020; 76
Lee, S. (000650211200001.15) 2019; 131
Yang, L (WOS:000484234700015) 2019; 11
Ikai, T (WOS:000514255300065) 2020; 142
Sun, XN (WOS:000407793600032) 2017; 357
Nitti, A (WOS:000395854100010) 2017; 196
Wang, J (WOS:000484077800097) 2019; 13
Han, JL (WOS:000401170600023) 2017; 29
Li, SZ (WOS:000575248700001) 2020; 59
Wuest, JD (WOS:000299430600004) 2012; 4
Pop, F (WOS:000477787600007) 2019; 119
Gong, ZL (WOS:000607980400001) 2021; 64
Yao, EP (WOS:000403280600015) 2017; 29
Lu, B. (000650211200001.37) 2020; 132
Zhang, W (WOS:000384038600011) 2016; 49
Arrico, L (WOS:000594387200001) 2021; 27
Bai, LY (WOS:000392036900062) 2017; 139
Gottarelli, G (WOS:000253555000029) 2008; 20
Gao, XQ (WOS:000484828900001) 2019; 141
Nitti, A (WOS:000563547700001) 2020; 32
Thomas, A (WOS:000437811500109) 2018; 122
Zhang, X. (000650211200001.35) 2017; 129
Kumar, J (WOS:000360953300020) 2015; 6
Zhang, C (WOS:000560598500001) 2020; 32
Sharma, S (WOS:000502886200043) 2019; 58
Li, ZQ (WOS:000626321500050) 2021; 21
Zhao, J (WOS:000490358900007) 2019; 141
Hou, K. (000650211200001.26) 2017; 129
Wade, J (WOS:000594432200001) 2021; 60
Chen, Z (WOS:000356610100009) 2015; 44
Zheng, D (WOS:000465644300014) 2019; 21
Wang, H (WOS:000469292300014) 2019; 141
Song, FY (WOS:000520979400001) 2020; 8
Tian, H. (000650211200001.28) 2021; 133
Yasukawa, T (WOS:000331188400007) 2014; 43
Gillgren, H (WOS:000173423700022) 2002; 18
Huang, ZZ (WOS:000596587700001) 2021; 60
Shi, L (WOS:000416126600037) 2017; 56
Caricato, M (WOS:000323110700027) 2013; 37
Chen, C (WOS:000465835500003) 2019; 10
Xing, PY (WOS:000473251500031) 2019; 141
Naito, M (WOS:000282477800012) 2010; 49
Naito, M. (000650211200001.24) 2010; 122
Ohira, A (WOS:000224816100014) 2004; 16
Ema, T. (000650211200001.8) 2020; 132
Maeda, C (WOS:000529988500030) 2020; 59
Sang, YT (WOS:000481024500001) 2020; 32
Zinna, F (WOS:000346790800001) 2015; 27
Lee, S (WOS:000494499000001) 2019; 58
Ding, R (WOS:000462624900015) 2019; 29
Sun, LJ (WOS:000403839000024) 2017; 56
Li, M (WOS:000427204100077) 2018; 10
Zhang, J (WOS:000462950500087) 2019; 13
Zhang, DW (WOS:000519913000001) 2020; 49
Bhalla, V. (000650211200001.19) 2019; 131
References_xml – volume: 59 132
  start-page: 22623 22812
  year: 2020 2020
  end-page: 22630 22819
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 10
  start-page: 8225
  year: 2018
  end-page: 8230
  publication-title: ACS Appl. Mater. Interfaces
– volume: 142
  start-page: 3254
  year: 2020
  end-page: 3261
  publication-title: J. Am. Chem. Soc.
– volume: 49
  start-page: 1691
  year: 2016
  end-page: 1700
  publication-title: Acc. Chem. Res.
– volume: 64
  start-page: 788
  year: 2021
  end-page: 799
  publication-title: Sci. China Chem.
– volume: 8
  start-page: 3284
  year: 2020
  end-page: 3301
  publication-title: J. Mater. Chem. C
– volume: 29
  year: 2017
  publication-title: Adv. Mater.
– volume: 37
  start-page: 2792
  year: 2013
  end-page: 2799
  publication-title: New J. Chem.
– volume: 18
  start-page: 462
  year: 2002
  end-page: 469
  publication-title: Langmuir
– volume: 13
  start-page: 9473
  year: 2019
  publication-title: ACS Nano
– volume: 16
  start-page: 1645
  year: 2004
  end-page: 1650
  publication-title: Adv. Mater.
– volume: 59 132
  start-page: 7813 7887
  year: 2020 2020
  end-page: 7817 7891
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 58 131
  start-page: 18878 19054
  year: 2019 2019
  end-page: 18882 19058
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 43
  start-page: 1450
  year: 2014
  end-page: 1461
  publication-title: Chem. Soc. Rev.
– volume: 58 131
  start-page: 16203 16349
  year: 2019 2019
  end-page: 16209 16355
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 13
  start-page: 3618
  year: 2019
  end-page: 3628
  publication-title: ACS Nano
– volume: 21
  start-page: 2555
  year: 2019
  end-page: 2559
  publication-title: Org. Lett.
– volume: 56 129
  start-page: 15397 15599
  year: 2017 2017
  end-page: 15401 15603
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 11
  start-page: 14210
  year: 2019
  end-page: 14215
  publication-title: Nanoscale
– volume: 60 133
  start-page: 222 224
  year: 2021 2021
  end-page: 227 229
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 141
  start-page: 13700
  year: 2019
  end-page: 13707
  publication-title: J. Am. Chem. Soc.
– volume: 6
  start-page: 3445
  year: 2015
  end-page: 3452
  publication-title: J. Phys. Chem. Lett.
– volume: 141
  start-page: 15755
  year: 2019
  end-page: 15760
  publication-title: J. Am. Chem. Soc.
– volume: 141
  start-page: 8078
  year: 2019
  end-page: 8082
  publication-title: J. Am. Chem. Soc.
– volume: 122
  start-page: 14205
  year: 2018
  end-page: 14212
  publication-title: J. Phys. Chem. C
– volume: 116
  start-page: 5194
  year: 2019
  end-page: 5195
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 196
  start-page: 143
  year: 2017
  end-page: 161
  publication-title: Faraday Discuss.
– volume: 29
  year: 2019
  publication-title: Adv. Funct. Mater.
– volume: 56 129
  start-page: 7831 7939
  year: 2017 2017
  end-page: 7835 7943
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 27
  start-page: 1
  year: 2015
  end-page: 13
  publication-title: Chirality
– volume: 76
  year: 2020
  publication-title: Tetrahedron
– volume: 21
  start-page: 1854
  year: 2021
  end-page: 1860
  publication-title: Cryst. Growth Des.
– volume: 119
  start-page: 8435
  year: 2019
  end-page: 8478
  publication-title: Chem. Rev.
– volume: 32
  year: 2020
  publication-title: Adv. Mater.
– volume: 141
  start-page: 9946
  year: 2019
  end-page: 9954
  publication-title: J. Am. Chem. Soc.
– volume: 44
  start-page: 4249
  year: 2015
  end-page: 4263
  publication-title: Chem. Soc. Rev.
– volume: 10
  start-page: 1927
  year: 2019
  publication-title: Nat. Commun.
– volume: 20
  start-page: 471
  year: 2008
  end-page: 485
  publication-title: Chirality
– volume: 139
  start-page: 436
  year: 2017
  end-page: 441
  publication-title: J. Am. Chem. Soc.
– volume: 26
  start-page: 5557
  year: 2020
  end-page: 5582
  publication-title: Chem. Eur. J.
– volume: 27
  start-page: 2920
  year: 2021
  end-page: 2934
  publication-title: Chem. Eur. J.
– volume: 49
  start-page: 1331
  year: 2020
  end-page: 1343
  publication-title: Chem. Soc. Rev.
– volume: 60 133
  start-page: 2855 2891
  year: 2021 2021
  end-page: 2860 2896
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 357
  start-page: 677
  year: 2017
  end-page: 680
  publication-title: Science
– volume: 49 122
  start-page: 7006 7160
  year: 2010 2010
  end-page: 7009 7163
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 22
  start-page: 572
  year: 2010
  end-page: 582
  publication-title: Adv. Mater.
– volume: 4
  start-page: 74
  year: 2012
  end-page: 75
  publication-title: Nat. Chem.
– ident: e_1_2_6_21_2
  doi: 10.1038/s41467-019-09942-z
– ident: e_1_2_6_62_1
– ident: e_1_2_6_24_2
  doi: 10.1002/anie.202011740
– ident: e_1_2_6_11_1
  doi: 10.1021/acs.chemrev.8b00770
– ident: e_1_2_6_32_2
  doi: 10.1002/anie.201703439
– ident: e_1_2_6_40_1
– ident: e_1_2_6_60_2
  doi: 10.1126/science.aan5348
– ident: e_1_2_6_50_2
  doi: 10.1039/C9NR05033G
– ident: e_1_2_6_43_2
  doi: 10.1021/acs.orglett.9b00450
– ident: e_1_2_6_15_1
  doi: 10.1021/jacs.9b03231
– ident: e_1_2_6_22_2
  doi: 10.1002/anie.201002552
– ident: e_1_2_6_28_1
– ident: e_1_2_6_18_2
  doi: 10.1021/jacs.9b05973
– ident: e_1_2_6_33_3
  doi: 10.1002/ange.202009714
– ident: e_1_2_6_47_2
  doi: 10.1002/adma.200400470
– ident: e_1_2_6_59_1
– ident: e_1_2_6_10_2
  doi: 10.1002/chem.202002791
– ident: e_1_2_6_26_2
  doi: 10.1039/C9TC07022B
– ident: e_1_2_6_31_2
  doi: 10.1038/nchem.1256
– ident: e_1_2_6_39_1
  doi: 10.1002/chir.22382
– ident: e_1_2_6_44_1
– ident: e_1_2_6_55_2
  doi: 10.1002/adma.201606859
– ident: e_1_2_6_54_2
  doi: 10.1002/adfm.201807606
– ident: e_1_2_6_23_2
  doi: 10.1002/anie.201709827
– ident: e_1_2_6_24_3
  doi: 10.1002/ange.202011740
– ident: e_1_2_6_45_2
  doi: 10.1021/acs.jpcc.8b01867
– ident: e_1_2_6_13_2
  doi: 10.1002/ange.201911380
– ident: e_1_2_6_9_2
  doi: 10.1002/anie.202011745
– ident: e_1_2_6_61_2
  doi: 10.1021/acs.accounts.6b00209
– ident: e_1_2_6_2_2
  doi: 10.1039/C9CS00680J
– ident: e_1_2_6_3_2
  doi: 10.1039/C4CS00531G
– ident: e_1_2_6_9_3
  doi: 10.1002/ange.202011745
– ident: e_1_2_6_22_3
  doi: 10.1002/ange.201002552
– ident: e_1_2_6_34_1
  doi: 10.1039/C6FD00161K
– ident: e_1_2_6_37_1
  doi: 10.1039/c3nj00466j
– ident: e_1_2_6_29_2
  doi: 10.1021/jacs.6b11057
– ident: e_1_2_6_46_2
  doi: 10.1021/la011143h
– ident: e_1_2_6_5_2
  doi: 10.1021/acsnano.9b04437
– ident: e_1_2_6_38_1
  doi: 10.1021/acs.jpclett.5b01452
– ident: e_1_2_6_20_1
– ident: e_1_2_6_1_1
– ident: e_1_2_6_51_2
  doi: 10.1021/jacs.9b13584
– ident: e_1_2_6_23_3
  doi: 10.1002/ange.201709827
– ident: e_1_2_6_30_2
  doi: 10.1021/jacs.9b03502
– ident: e_1_2_6_13_1
  doi: 10.1002/anie.201911380
– ident: e_1_2_6_41_2
  doi: 10.1021/acsami.8b00341
– ident: e_1_2_6_19_2
  doi: 10.1021/jacs.9b08780
– ident: e_1_2_6_56_1
– ident: e_1_2_6_6_2
  doi: 10.1002/adma.201900110
– ident: e_1_2_6_8_3
  doi: 10.1002/ange.202001186
– ident: e_1_2_6_52_1
– ident: e_1_2_6_17_1
– ident: e_1_2_6_25_1
– ident: e_1_2_6_58_2
  doi: 10.1002/adma.202002914
– ident: e_1_2_6_14_1
  doi: 10.1007/s11426-020-9911-4
– ident: e_1_2_6_16_1
  doi: 10.1002/anie.201908669
– ident: e_1_2_6_4_2
  doi: 10.1039/C3CS60298B
– ident: e_1_2_6_8_2
  doi: 10.1002/anie.202001186
– ident: e_1_2_6_42_2
  doi: 10.1073/pnas.1902266116
– ident: e_1_2_6_27_2
  doi: 10.1021/acsnano.9b00218
– ident: e_1_2_6_35_1
  doi: 10.1021/acs.cgd.0c01737
– ident: e_1_2_6_32_3
  doi: 10.1002/ange.201703439
– ident: e_1_2_6_36_1
  doi: 10.1016/j.tet.2020.131695
– ident: e_1_2_6_7_2
  doi: 10.1002/adma.201908021
– ident: e_1_2_6_12_1
  doi: 10.1002/adma.201606503
– ident: e_1_2_6_53_2
  doi: 10.1002/adma.200902148
– ident: e_1_2_6_33_2
  doi: 10.1002/anie.202009714
– ident: e_1_2_6_16_2
  doi: 10.1002/ange.201908669
– ident: e_1_2_6_48_2
  doi: 10.1002/chir.20459
– ident: e_1_2_6_57_2
  doi: 10.1002/chem.201904626
– ident: e_1_2_6_49_1
– volume: 131
  start-page: 16349
  year: 2019
  ident: 000650211200001.19
  publication-title: Angew. Chem
– volume: 142
  start-page: 3254
  year: 2020
  ident: WOS:000514255300065
  article-title: Helical Assemblies of One-Dimensional Supramolecular Polymers Composed of Helical Macromolecules: Generation of Circularly Polarized Light Using an Infinitesimal Chiral Source
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/jacs.9b13584
– volume: 27
  start-page: 1
  year: 2015
  ident: WOS:000346790800001
  article-title: Lanthanide Circularly Polarized Luminescence: Bases and Applications
  publication-title: CHIRALITY
  doi: 10.1002/chir.22382
– volume: 29
  start-page: ARTN 1807606
  year: 2019
  ident: WOS:000462624900015
  article-title: High-Color-Rendering and High-Efficiency White Organic Light-Emitting Devices Based on Double-Doped Organic Single Crystals
  publication-title: ADVANCED FUNCTIONAL MATERIALS
  doi: 10.1002/adfm.201807606
– volume: 6
  start-page: 3445
  year: 2015
  ident: WOS:000360953300020
  article-title: Circularly Polarized Luminescence in Chiral Molecules and Supramolecular Assemblies
  publication-title: JOURNAL OF PHYSICAL CHEMISTRY LETTERS
  doi: 10.1021/acs.jpclett.5b01452
– volume: 49
  start-page: 7006
  year: 2010
  ident: WOS:000282477800012
  article-title: Circularly Polarized Luminescent CdS Quantum Dots Prepared in a Protein Nanocage
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.201002552
– volume: 56
  start-page: 7831
  year: 2017
  ident: WOS:000403839000024
  article-title: Intermolecular Charge-Transfer Interactions Facilitate Two-Photon Absorption in Styrylpyridine-Tetracyanobenzene Cocrystals
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.201703439
– volume: 139
  start-page: 436
  year: 2017
  ident: WOS:000392036900062
  article-title: Halogen-Assisted Piezochromic Supramolecular Assemblies for Versatile Haptic Memory
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/jacs.6b11057
– volume: 26
  start-page: 5557
  year: 2020
  ident: WOS:000525743600001
  article-title: Molecular Engineering Approaches Towards All-Organic White Light Emitting Materials
  publication-title: CHEMISTRY-A EUROPEAN JOURNAL
  doi: 10.1002/chem.201904626
– volume: 13
  start-page: 9473
  year: 2019
  ident: WOS:000484077800097
  article-title: Aqueous Synthesis of Low-Dimensional Lead Halide Perovskites for Room-Temperature Circularly Polarized Light Emission and Detection
  publication-title: ACS NANO
  doi: 10.1021/acsnano.9b04437
– volume: 21
  start-page: 2555
  year: 2019
  ident: WOS:000465644300014
  article-title: Significant Enhancement of Circularly Polarized Luminescence Dissymmetry Factors in Quinoline Oligoamide Foldamers with Absolute Helicity
  publication-title: ORGANIC LETTERS
  doi: 10.1021/acs.orglett.9b00450
– volume: 13
  start-page: 3618
  year: 2019
  ident: WOS:000462950500087
  article-title: Real-Time Monitoring of Hierarchical Self-Assembly and Induction of Circularly Polarized Luminescence from Achiral Luminogens
  publication-title: ACS NANO
  doi: 10.1021/acsnano.9b00218
– volume: 122
  start-page: 7160
  year: 2010
  ident: 000650211200001.24
  publication-title: Angew. Chem
– volume: 132
  start-page: 7887
  year: 2020
  ident: 000650211200001.8
  publication-title: Angew. Chem
– volume: 10
  start-page: ARTN 1927
  year: 2019
  ident: WOS:000465835500003
  article-title: Circularly polarized light detection using chiral hybrid perovskite
  publication-title: NATURE COMMUNICATIONS
  doi: 10.1038/s41467-019-09942-z
– volume: 131
  start-page: 19054
  year: 2019
  ident: 000650211200001.15
  publication-title: Angew. Chem
– volume: 29
  start-page: ARTN 1606859
  year: 2017
  ident: WOS:000403280600015
  article-title: High-Brightness Blue and White LEDs based on Inorganic Perovskite Nanocrystals and their Composites
  publication-title: ADVANCED MATERIALS
  doi: 10.1002/adma.201606859
– volume: 20
  start-page: 471
  year: 2008
  ident: WOS:000253555000029
  article-title: The use of circular dichroism spectroscopy for studying the chiral molecular self-assembly: An overview
  publication-title: CHIRALITY
  doi: 10.1002/chir.20459
– volume: 32
  start-page: ARTN 2002914
  year: 2020
  ident: WOS:000560598500001
  article-title: Enantiomeric MOF Crystals Using Helical Channels as Palettes with Bright White Circularly Polarized Luminescence
  publication-title: ADVANCED MATERIALS
  doi: 10.1002/adma.202002914
– volume: 76
  start-page: ARTN 131695
  year: 2020
  ident: WOS:000590766600010
  article-title: Syntheses and pH-responsive emissions of pyrid-2-yl-appended para-phenylene oligomers
  publication-title: TETRAHEDRON
  doi: 10.1016/j.tet.2020.131695
– volume: 37
  start-page: 2792
  year: 2013
  ident: WOS:000323110700027
  article-title: From red to blue shift: switching the binding affinity from the acceptor to the donor end by increasing the pi-bridge in push-pull chromophores with coordinative ends
  publication-title: NEW JOURNAL OF CHEMISTRY
  doi: 10.1039/c3nj00466j
– volume: 64
  start-page: 788
  year: 2021
  ident: WOS:000607980400001
  article-title: Handedness-inverted polymorphic helical assembly and circularly polarized luminescence of chiral platinum complexes
  publication-title: SCIENCE CHINA-CHEMISTRY
  doi: 10.1007/s11426-020-9911-4
– volume: 58
  start-page: 18878
  year: 2019
  ident: WOS:000494499000001
  article-title: Finely Controlled Circularly Polarized Luminescence of a Mechano-Responsive Supramolecular Polymer
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.201911380
– volume: 122
  start-page: 14205
  year: 2018
  ident: WOS:000437811500109
  article-title: Mueller Polarimetry of Chiral Supramolecular Assembly
  publication-title: JOURNAL OF PHYSICAL CHEMISTRY C
  doi: 10.1021/acs.jpcc.8b01867
– volume: 141
  start-page: 8078
  year: 2019
  ident: WOS:000469292300014
  article-title: Reversible Circularly Polarized Reflection in a Self-Organized Helical Superstructure Enabled by a Visible-Light-Driven Axially Chiral Molecular Switch
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/jacs.9b03231
– volume: 44
  start-page: 4249
  year: 2015
  ident: WOS:000356610100009
  article-title: Optical chirality sensing using macrocycles, synthetic and supramolecular oligomers/polymers, and nanoparticle based sensors
  publication-title: CHEMICAL SOCIETY REVIEWS
  doi: 10.1039/c4cs00531g
– volume: 29
  start-page: ARTN 1606503
  year: 2017
  ident: WOS:000401170600023
  article-title: Full-Color Tunable Circularly Polarized Luminescent Nanoassemblies of Achiral AIEgens in Confined Chiral Nanotubes
  publication-title: ADVANCED MATERIALS
  doi: 10.1002/adma.201606503
– volume: 59
  start-page: 22623
  year: 2020
  ident: WOS:000575248700001
  article-title: Manipulating Light-Induced Dynamic Macro-Movement and Static Photonic Properties within 1D Isostructural Hydrogen-Bonded Molecular Cocrystals
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.202009714
– volume: 16
  start-page: 1645
  year: 2004
  ident: WOS:000224816100014
  article-title: Versatile helical polymer films: Chiroptical inversion switching and memory with re-writable (RW) and write-once read-many (WORM) modes
  publication-title: ADVANCED MATERIALS
  doi: 10.1002/adma.200400470
– volume: 21
  start-page: 1854
  year: 2021
  ident: WOS:000626321500050
  article-title: Ionic Organic Microcrystals with Bright Deep-Blue Luminescence and Acid/Base Vapor Response
  publication-title: CRYSTAL GROWTH & DESIGN
  doi: 10.1021/acs.cgd.0c01737
– volume: 49
  start-page: 1331
  year: 2020
  ident: WOS:000519913000001
  article-title: Recent advances in circularly polarized electroluminescence based on organic light-emitting diodes
  publication-title: CHEMICAL SOCIETY REVIEWS
  doi: 10.1039/c9cs00680j
– volume: 59
  start-page: 7813
  year: 2020
  ident: WOS:000529988500030
  article-title: Azahelicene-Fused BODIPY Analogues Showing Circularly Polarized Luminescence
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.202001186
– volume: 10
  start-page: 8225
  year: 2018
  ident: WOS:000427204100077
  article-title: Chiral Nanoparticles with Full-Color and White CPL Properties Based on Optically Stable Helical Aromatic Imide Enantiomers
  publication-title: ACS APPLIED MATERIALS & INTERFACES
  doi: 10.1021/acsami.8b00341
– volume: 18
  start-page: 462
  year: 2002
  ident: WOS:000173423700022
  article-title: Morphology and molecular conformation in thin films of poly-gamma-methyl-L-glutamate at the air-water interface
  publication-title: LANGMUIR
  doi: 10.1021/la011143h
– volume: 4
  start-page: 74
  year: 2012
  ident: WOS:000299430600004
  article-title: MOLECULAR SOLIDS Co-crystals give light a tune-up
  publication-title: NATURE CHEMISTRY
  doi: 10.1038/nchem.1256
– volume: 129
  start-page: 7939
  year: 2017
  ident: 000650211200001.35
  publication-title: Angew. Chem
– volume: 60
  start-page: 2855
  year: 2021
  ident: WOS:000596587700001
  article-title: Real-Time Visual Monitoring of Kinetically Controlled Self-Assembly
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.202011740
– volume: 141
  start-page: 9946
  year: 2019
  ident: WOS:000473251500031
  article-title: Occurrence of Chiral Nanostructures Induced by Multiple Hydrogen Bonds
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/jacs.9b03502
– volume: 116
  start-page: 5194
  year: 2019
  ident: WOS:000460911500069
  article-title: Chiral intertwined spirals and magnetic transition dipole moments dictated by cylinder helicity (vol 114, pg 13097, 2017)
  publication-title: PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA
  doi: 10.1073/pnas.1902266116
– volume: 32
  start-page: ARTN 1908021
  year: 2020
  ident: WOS:000563547700001
  article-title: Aggregation-Induced Circularly Polarized Luminescence: Chiral Organic Materials for Emerging Optical Technologies
  publication-title: ADVANCED MATERIALS
  doi: 10.1002/adma.201908021
– volume: 133
  start-page: 2891
  year: 2021
  ident: 000650211200001.28
  publication-title: Angew. Chem
– volume: 43
  start-page: 1450
  year: 2014
  ident: WOS:000331188400007
  article-title: Chiral metal nanoparticle-catalyzed asymmetric C-C bond formation reactions
  publication-title: CHEMICAL SOCIETY REVIEWS
  doi: 10.1039/c3cs60298b
– volume: 60
  start-page: 222
  year: 2021
  ident: WOS:000594432200001
  article-title: 500-Fold Amplification of Small Molecule Circularly Polarised Luminescence through Circularly Polarised FRET
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.202011745
– volume: 27
  start-page: 2920
  year: 2021
  ident: WOS:000594387200001
  article-title: Quantifying the Overall Efficiency of Circularly Polarized Emitters
  publication-title: CHEMISTRY-A EUROPEAN JOURNAL
  doi: 10.1002/chem.202002791
– volume: 357
  start-page: 677
  year: 2017
  ident: WOS:000407793600032
  article-title: A molecular spin-photovoltaic device
  publication-title: SCIENCE
  doi: 10.1126/science.aan5348
– volume: 141
  start-page: 15755
  year: 2019
  ident: WOS:000490358900007
  article-title: Circularly Polarized Luminescence from Achiral Single Crystals of Hybrid Manganese Halides
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/jacs.9b08780
– volume: 58
  start-page: 16203
  year: 2019
  ident: WOS:000502886200043
  article-title: Entropically Favoured Assembly of Pyrazine-Based Helical Fibers into Superstructures: Achiral/ Chiral Guest-Induced Chirality Transformation
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.201908669
– volume: 22
  start-page: 572
  year: 2010
  ident: WOS:000274615600002
  article-title: Recent Advances in White Organic Light-Emitting Materials and Devices (WOLEDs)
  publication-title: ADVANCED MATERIALS
  doi: 10.1002/adma.200902148
– volume: 49
  start-page: 1691
  year: 2016
  ident: WOS:000384038600011
  article-title: Organic Micro/Nanoscale Lasers
  publication-title: ACCOUNTS OF CHEMICAL RESEARCH
  doi: 10.1021/acs.accounts.6b00209
– volume: 11
  start-page: 14210
  year: 2019
  ident: WOS:000484234700015
  article-title: Achiral isomers controlled circularly polarized luminescence in supramolecular hydrogels
  publication-title: NANOSCALE
  doi: 10.1039/c9nr05033g
– volume: 141
  start-page: 13700
  year: 2019
  ident: WOS:000484828900001
  article-title: Perspective of Chiral Colloidal Semiconductor Nanocrystals: Opportunity and Challenge
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/jacs.9b05973
– volume: 132
  start-page: 22812
  year: 2020
  ident: 000650211200001.37
  publication-title: Angew. Chem
– volume: 119
  start-page: 8435
  year: 2019
  ident: WOS:000477787600007
  article-title: Main-Group-Based Electro- and Photoactive Chiral Materials
  publication-title: CHEMICAL REVIEWS
  doi: 10.1021/acs.chemrev.8b00770
– volume: 196
  start-page: 143
  year: 2017
  ident: WOS:000395854100010
  article-title: Structure-activity relationship for the solid state emission of a new family of "push-pull" pi-extended chromophores
  publication-title: FARADAY DISCUSSIONS
  doi: 10.1039/c6fd00161k
– volume: 56
  start-page: 15397
  year: 2017
  ident: WOS:000416126600037
  article-title: Self-Assembly of Chiral Gold Clusters into Crystalline Nanocubes of Exceptional Optical Activity
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.201709827
– volume: 129
  start-page: 15599
  year: 2017
  ident: 000650211200001.26
  publication-title: Angew. Chem
– volume: 32
  start-page: ARTN 1900110
  year: 2020
  ident: WOS:000481024500001
  article-title: Circularly Polarized Luminescence in Nanoassemblies: Generation, Amplification, and Application
  publication-title: ADVANCED MATERIALS
  doi: 10.1002/adma.201900110
– volume: 8
  start-page: 3284
  year: 2020
  ident: WOS:000520979400001
  article-title: Circularly polarized luminescence from AIEgens
  publication-title: JOURNAL OF MATERIALS CHEMISTRY C
  doi: 10.1039/c9tc07022b
SSID ssj0028806
Score 2.5981054
Snippet A simple and general method is presented herein for the in situ preparations of circularly polarized luminescence (CPL)‐active microcrystals with a large...
A simple and general method is presented herein for the in situ preparations of circularly polarized luminescence (CPL)-active microcrystals with a large...
Source Web of Science
SourceID proquest
pubmed
webofscience
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 14595
SubjectTerms Anions
Camphor
Chemical bonds
Chemistry
Chemistry, Multidisciplinary
Circular polarization
circularly polarized luminescence
Color
Emitters
Energy harvesting
Energy transfer
Fluorescence
Hydrogen
Hydrogen bonding
light-harvesting energy transfer
Luminescence
Microcrystals
Morphology
organic crystals
Physical Sciences
Pyridines
Pyridinium
Quantum efficiency
Science & Technology
Sulfonic acid
white luminescence
Title Full‐Color and White Circularly Polarized Luminescence of Hydrogen‐Bonded Ionic Organic Microcrystals
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202103091
http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestApp=WOS&DestLinkType=FullRecord&UT=000650211200001
https://www.ncbi.nlm.nih.gov/pubmed/33822449
https://www.proquest.com/docview/2541266787
https://www.proquest.com/docview/2509268070
Volume 60
WOS 000650211200001
WOSCitedRecordID wos000650211200001
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZQL3Dh_QgUZKRKnNImtpN1jlXUaotohRCVeov8lFYsWZTdPWxP_Qn9jfwSZuwkdIsQCG6JMk4yztj-Jp75hpA9gU6AEyYVhqtUlMKlspRFqqQHvGArnQVKodOzcnou3l8UFzey-CM_xPjDDUdGmK9xgCu9PPhJGooZ2ODfMayTFdLXMWALUdGnkT-KgXHG9CLOU6xCP7A2Zuxgu_n2qvQL1Ly1Km0D2bASHT8gatAhBqB82V-v9L65vEXv-D9KPiT3e5hKD6NdPSJ3XPuY3K2H6nBPyAx91-9X1zVMnh1VraWh1B6tZ12IbJ1v6Ef0mmeXztIP668YXW9QK7rwdLqx3QIsF9pjWWOQOEGGXhoTQw09xShB020Auc6XT8n58dHnepr2ZRtSIyYleKSlFYXJrGRCc8FNobmRmvtJzkwubWWFdpkxflK5jHkhkSRs4jOVWa2VLgv-jOy0i9a9ILSwla9yA6AP7mlYpb0CwFRIX-bOa1klJB0-W2N6TnMsrTFvIhsza7ADm7EDE_JulP8W2Tx-K7k7WEHTj-plA850DoAG5riEvB0vQ8fjJotq3WKNMlnFSgkzaUKeR-sZH8U5xuwKeO29m-Y0Xo-AGVxyFjZdEpL_jVjdK44kBquEsGBPf1CvOTw7ORrPXv5Lo1fkHh5j2BzLd8nOqlu71wDQVvpNGIQ_AAKuMas
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB6hcigX3g9DgUWqxMmtvbt21sfKapVAEiHUStws70uKCA5yk0N64ifwG_klzPgFKUIgONqetT3r2d1v1jPfABxKcgKcNKE0ogxlKl2oUpWEpfKIF2ymo4ZSaDZPxxfyzYekjyakXJiWH2LYcKOR0czXNMBpQ_r4B2sopWCjg8epUBblr9-kst6NV_V-YJDiaJ5tgpEQIdWh73kbI3682353XfoFbF5bl3ahbLMWnd0B3WvRhqB8PNqs9ZG5ukbw-F9q3oXbHVJlJ61p3YMbrroP-3lfIO4BLMh9_fbla47zZ83KyrKm2h7LF3UT3LrcsnfkOC-unGXTzScKsDekFlt5Nt7aeoXGi-2psjFKTIikl7W5oYbNKFDQ1FsEr8vLh3Bxdnqej8OuckNo5ChFpzS1MjGRVVxqIYVJtDBKCz-KuYmVzazULjLGjzIXcS8V8YSNfFRGVutSp4l4BHvVqnJPgCU281lsEPfhPQ3PtC8RMyXKp7HzWmUBhP13K0xHa07VNZZFS8jMC-rAYujAAF4P8p9bQo_fSh70ZlB0A_uyQH86RkyD01wAr4bL2PH0n6Ws3GpDMlHGU4WTaQCPW_MZHiUEhe1KfO3Dn-1puN5iZvTKefPfJYD4b8TyTnHiMVgHwBuD-oN6xcl8cjocPf2XRi9hf3w-mxbTyfztM7hF5ymKjscHsLeuN-454rW1ftGMyO8IEjXG
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB6hIgEX3g9DgUWqxMmtvbt21sfKbZRAG1WISr1Z3pcUNTiVmxzSEz-B38gvYcaOTVOEQHC0PWt71rO733hnvgHYkeQEOGlCaUQZylS6UKUqCUvlES_YTEcNpdDxJB2dyg9nydm1LP6WH6L_4UYjo5mvaYBfWL_3kzSUMrDRv-NUJ4vS12_LNFJk1wefegIpjtbZ5hcJEVIZ-o62MeJ7m-03l6VfsOaNZWkTyTZL0fABlJ0SbQTK-e5yoXfN1Q1-x__R8iHcX-NUtt8a1iO45arHcDfvysM9gSk5r9-_fstx9qxZWVnW1Npj-bRuQltnK3ZCbvP0yll2tPxC4fWGtGJzz0YrW8_RdLE91TVGiTFR9LI2M9SwYwoTNPUKoevs8imcDg8_56NwXbchNHKQokuaWpmYyCoutZDCJFoYpYUfxNzEymZWahcZ4weZi7iXiljCBj4qI6t1qdNEPIOtal65F8ASm_ksNoj68J6GZ9qXiJgS5dPYea2yAMLusxVmTWpOtTVmRUvHzAvqwKLvwADe9_IXLZ3HbyW3Oyso1sP6skBvOkZEg5NcAO_6y9jxtMtSVm6-JJko46nCqTSA56319I8SgoJ2Jb72znVz6q-3iBl9ct7sugQQ_41YvlacWAwWAfDGnv6gXrE_GR_2Ry__pdFbuHNyMCyOxpOPr-AenaYQOh5vw9aiXrrXCNYW-k0zHn8AVaI0fg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Full%E2%80%90Color+and+White+Circularly+Polarized+Luminescence+of+Hydrogen%E2%80%90Bonded+Ionic+Organic+Microcrystals&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Li%2C+Zhong%E2%80%90Qiu&rft.au=Gong%2C+Zhong%E2%80%90Liang&rft.au=Shao%2C+Jiang%E2%80%90Yang&rft.au=Yao%2C+Jiannian&rft.date=2021-06-21&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=60&rft.issue=26&rft.spage=14595&rft.epage=14600&rft_id=info:doi/10.1002%2Fanie.202103091&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_anie_202103091
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon