High‐Preservation Single‐Cell Operation through a Photo‐responsive Hydrogel‐Nanopipette System

Single‐cell and in situ cell‐based operation with nanopipette approach offers a possibility to elucidate the intracellular processes and may aid the improvement of therapy efficiency and precision. We present here a photo‐responsive hydrogel‐nanopipette hybrid system that can achieve single‐cell ope...

Full description

Saved in:
Bibliographic Details
Published inAngewandte Chemie International Edition Vol. 60; no. 10; pp. 5157 - 5161
Main Authors Li, Zi‐Yuan, Liu, Ying‐Ya, Li, Yuan‐Jie, Wang, Wenhui, Song, Yanyan, Zhang, Junji, Tian, He
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.03.2021
EditionInternational ed. in English
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Single‐cell and in situ cell‐based operation with nanopipette approach offers a possibility to elucidate the intracellular processes and may aid the improvement of therapy efficiency and precision. We present here a photo‐responsive hydrogel‐nanopipette hybrid system that can achieve single‐cell operation with high spatial/temporal resolution and negligible cell damage. This strategy overcomes long‐time obstacles in nanopipette single‐cell studies as high electric potential (ca. 1000 mV) or organic solvent is always used during operations, which would inevitably impose disturbance and damage to targeted cells. The light‐triggered system promotes a potential‐free, non‐invasive single‐cell injection, resulting in a well‐retained cell viability (90 % survival rate). Moreover, the photo‐driven injection enables a precisely dose‐controllable single‐cell drug delivery. Significantly reduced lethal doses of doxorubicin (163–217 fg cell−1) are demonstrated in corresponding cell lines. The fabrication of photo‐responsive hydrogel‐nanopipette system ensures both precision single‐cell operation and high cell preservation. Upon light‐controlled, non‐invasive operation, a high cell viability over 90 % as well as precise quantification of injection are obtained. Hence, a single‐cell precise‐dosing is achieved with a minimum lethal dose of 163–217 fg cell−1.
AbstractList Single-cell and in situ cell-based operation with nanopipette approach offers a possibility to elucidate the intracellular processes and may aid the improvement of therapy efficiency and precision. We present here a photo-responsive hydrogel-nanopipette hybrid system that can achieve single-cell operation with high spatial/temporal resolution and negligible cell damage. This strategy overcomes long-time obstacles in nanopipette single-cell studies as high electric potential (ca. 1000 mV) or organic solvent is always used during operations, which would inevitably impose disturbance and damage to targeted cells. The light-triggered system promotes a potential-free, non-invasive single-cell injection, resulting in a well-retained cell viability (90 % survival rate). Moreover, the photo-driven injection enables a precisely dose-controllable single-cell drug delivery. Significantly reduced lethal doses of doxorubicin (163-217 fg cell ) are demonstrated in corresponding cell lines.
Single‐cell and in situ cell‐based operation with nanopipette approach offers a possibility to elucidate the intracellular processes and may aid the improvement of therapy efficiency and precision. We present here a photo‐responsive hydrogel‐nanopipette hybrid system that can achieve single‐cell operation with high spatial/temporal resolution and negligible cell damage. This strategy overcomes long‐time obstacles in nanopipette single‐cell studies as high electric potential (ca. 1000 mV) or organic solvent is always used during operations, which would inevitably impose disturbance and damage to targeted cells. The light‐triggered system promotes a potential‐free, non‐invasive single‐cell injection, resulting in a well‐retained cell viability (90 % survival rate). Moreover, the photo‐driven injection enables a precisely dose‐controllable single‐cell drug delivery. Significantly reduced lethal doses of doxorubicin (163–217 fg cell−1) are demonstrated in corresponding cell lines. The fabrication of photo‐responsive hydrogel‐nanopipette system ensures both precision single‐cell operation and high cell preservation. Upon light‐controlled, non‐invasive operation, a high cell viability over 90 % as well as precise quantification of injection are obtained. Hence, a single‐cell precise‐dosing is achieved with a minimum lethal dose of 163–217 fg cell−1.
Single‐cell and in situ cell‐based operation with nanopipette approach offers a possibility to elucidate the intracellular processes and may aid the improvement of therapy efficiency and precision. We present here a photo‐responsive hydrogel‐nanopipette hybrid system that can achieve single‐cell operation with high spatial/temporal resolution and negligible cell damage. This strategy overcomes long‐time obstacles in nanopipette single‐cell studies as high electric potential (ca. 1000 mV) or organic solvent is always used during operations, which would inevitably impose disturbance and damage to targeted cells. The light‐triggered system promotes a potential‐free, non‐invasive single‐cell injection, resulting in a well‐retained cell viability (90 % survival rate). Moreover, the photo‐driven injection enables a precisely dose‐controllable single‐cell drug delivery. Significantly reduced lethal doses of doxorubicin (163–217 fg cell−1) are demonstrated in corresponding cell lines.
Single‐cell and in situ cell‐based operation with nanopipette approach offers a possibility to elucidate the intracellular processes and may aid the improvement of therapy efficiency and precision. We present here a photo‐responsive hydrogel‐nanopipette hybrid system that can achieve single‐cell operation with high spatial/temporal resolution and negligible cell damage. This strategy overcomes long‐time obstacles in nanopipette single‐cell studies as high electric potential (ca. 1000 mV) or organic solvent is always used during operations, which would inevitably impose disturbance and damage to targeted cells. The light‐triggered system promotes a potential‐free, non‐invasive single‐cell injection, resulting in a well‐retained cell viability (90 % survival rate). Moreover, the photo‐driven injection enables a precisely dose‐controllable single‐cell drug delivery. Significantly reduced lethal doses of doxorubicin (163–217 fg cell −1 ) are demonstrated in corresponding cell lines.
Single-cell and in situ cell-based operation with nanopipette approach offers a possibility to elucidate the intracellular processes and may aid the improvement of therapy efficiency and precision. We present here a photo-responsive hydrogel-nanopipette hybrid system that can achieve single-cell operation with high spatial/temporal resolution and negligible cell damage. This strategy overcomes long-time obstacles in nanopipette single-cell studies as high electric potential (ca. 1000 mV) or organic solvent is always used during operations, which would inevitably impose disturbance and damage to targeted cells. The light-triggered system promotes a potential-free, non-invasive single-cell injection, resulting in a well-retained cell viability (90 % survival rate). Moreover, the photo-driven injection enables a precisely dose-controllable single-cell drug delivery. Significantly reduced lethal doses of doxorubicin (163-217 fg cell-1 ) are demonstrated in corresponding cell lines.Single-cell and in situ cell-based operation with nanopipette approach offers a possibility to elucidate the intracellular processes and may aid the improvement of therapy efficiency and precision. We present here a photo-responsive hydrogel-nanopipette hybrid system that can achieve single-cell operation with high spatial/temporal resolution and negligible cell damage. This strategy overcomes long-time obstacles in nanopipette single-cell studies as high electric potential (ca. 1000 mV) or organic solvent is always used during operations, which would inevitably impose disturbance and damage to targeted cells. The light-triggered system promotes a potential-free, non-invasive single-cell injection, resulting in a well-retained cell viability (90 % survival rate). Moreover, the photo-driven injection enables a precisely dose-controllable single-cell drug delivery. Significantly reduced lethal doses of doxorubicin (163-217 fg cell-1 ) are demonstrated in corresponding cell lines.
Author Li, Yuan‐Jie
Wang, Wenhui
Liu, Ying‐Ya
Song, Yanyan
Zhang, Junji
Tian, He
Li, Zi‐Yuan
Author_xml – sequence: 1
  givenname: Zi‐Yuan
  surname: Li
  fullname: Li, Zi‐Yuan
  organization: East China University of Science & Technology
– sequence: 2
  givenname: Ying‐Ya
  surname: Liu
  fullname: Liu, Ying‐Ya
  organization: East China University of Science & Technology
– sequence: 3
  givenname: Yuan‐Jie
  surname: Li
  fullname: Li, Yuan‐Jie
  organization: East China University of Science & Technology
– sequence: 4
  givenname: Wenhui
  surname: Wang
  fullname: Wang, Wenhui
  organization: East China University of Science & Technology
– sequence: 5
  givenname: Yanyan
  surname: Song
  fullname: Song, Yanyan
  organization: East China University of Science & Technology
– sequence: 6
  givenname: Junji
  orcidid: 0000-0003-2823-4637
  surname: Zhang
  fullname: Zhang, Junji
  email: zhangjunji@ecust.edu.cn
  organization: East China University of Science & Technology
– sequence: 7
  givenname: He
  orcidid: 0000-0003-3547-7485
  surname: Tian
  fullname: Tian, He
  organization: East China University of Science & Technology
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33241876$$D View this record in MEDLINE/PubMed
BookMark eNqFkc1qGzEUhUVxqJ2fbZdloJtsxtGVNH9LY5I6EJJA2rXQzNyxFcbSVNIkeNdH6DP2SarUSQuBkJUuh-9cdM85JBNjDRLyCegcKGVnymicM8oocArwgcwgY5DyouCTOAvO06LMYEoOvb-PfFnS_COZcs4ElEU-I91Krze_f_66dejRPaigrUnutFn3GNUl9n1yM6Db62Hj7LjeJCq53dhgIxBdgzVeP2Cy2rXOrrGP6rUydtADhoDJ3c4H3B6Tg071Hk-e3yPy_eL823KVXt18vVwurtJGFDmkgmVV3TLWVVlZsFxlHdaUYs0RWVNyFBUvIOetqHOlskKIFljV0SZelSnsKn5ETvd7B2d_jOiD3GrfxCuUQTt6yUQucpoBQES_vELv7ehM_F2kKoipsZJF6vMzNdZbbOXg9Fa5nXxJMAJiDzTOeu-wk40Of-MKTuleApVPRcmnouS_oqJt_sr2svlNQ7U3POoed-_QcnF9ef7f-wdlIKl9
CitedBy_id crossref_primary_10_1002_anie_202205758
crossref_primary_10_1007_s10118_024_3211_8
crossref_primary_10_1002_anie_202117735
crossref_primary_10_1016_j_jconrel_2025_113587
crossref_primary_10_1021_acsbiomaterials_4c00314
crossref_primary_10_1039_D3AN01973J
crossref_primary_10_1016_j_cbpa_2022_102226
crossref_primary_10_1002_smll_202201821
crossref_primary_10_1016_j_cej_2022_138494
crossref_primary_10_1002_adhm_202101169
crossref_primary_10_1021_acs_langmuir_1c01394
crossref_primary_10_1002_adfm_202311920
crossref_primary_10_1021_acssensors_1c00463
crossref_primary_10_1002_VIW_20200112
crossref_primary_10_1016_j_talanta_2024_127422
crossref_primary_10_1002_smtd_202301105
crossref_primary_10_1016_j_reactfunctpolym_2021_104983
crossref_primary_10_1021_acs_analchem_4c06722
crossref_primary_10_1002_anie_202301476
crossref_primary_10_1021_acs_analchem_1c03313
crossref_primary_10_1021_acs_analchem_1c04462
crossref_primary_10_1002_cbic_202100217
crossref_primary_10_3390_gels10050295
crossref_primary_10_1002_appl_202100016
crossref_primary_10_1016_j_nantod_2023_102073
crossref_primary_10_1002_adma_202108289
crossref_primary_10_1080_15583724_2024_2427184
crossref_primary_10_1002_smll_202307067
crossref_primary_10_1002_ange_202117735
crossref_primary_10_1007_s40242_024_3281_8
crossref_primary_10_1039_D1SC02995A
crossref_primary_10_1016_j_mtcomm_2021_103019
crossref_primary_10_1021_acs_analchem_2c02415
crossref_primary_10_1016_j_aca_2023_341000
crossref_primary_10_1039_D1CS00688F
crossref_primary_10_1002_adma_202408484
crossref_primary_10_1002_asia_202200158
crossref_primary_10_1002_smtd_202401448
crossref_primary_10_1002_ange_202205758
crossref_primary_10_1002_adom_202102390
crossref_primary_10_1002_smll_202107992
crossref_primary_10_1021_acs_nanolett_3c02423
crossref_primary_10_1016_j_cej_2024_152578
crossref_primary_10_1002_chem_202400281
crossref_primary_10_1016_j_bios_2024_116385
crossref_primary_10_1021_acs_chemrev_2c00215
crossref_primary_10_1002_ange_202301476
Cites_doi 10.1002/ange.201910955
10.1021/jacs.7b12106
10.1021/ja0650899
10.1002/ange.201510140
10.1021/cr500249p
10.1002/anie.201803229
10.1038/348346a0
10.1002/anie.201700171
10.1021/jacs.8b10481
10.1021/ac500443q
10.1038/srep41277
10.1038/nchem.2075
10.1038/ncomms10220
10.1039/c2an35707k
10.1021/acs.analchem.8b04159
10.1021/am506202s
10.1073/pnas.0705102104
10.1002/ange.201311160
10.1002/anie.201510140
10.1021/ja513027s
10.1021/nn405612q
10.1002/anie.201311160
10.1038/s41565-018-0315-8
10.1002/ange.201700171
10.1002/ange.201803229
10.1146/annurev-anchem-061417-125840
10.1098/rsif.2008.0052
10.1038/s41590-017-0004-z
10.1002/smll.201200996
10.3390/cells7060055
10.1021/ja5053279
10.1021/acs.chemrev.8b00037
10.1039/C6CC08125H
10.1016/j.cplett.2008.02.091
10.1021/acs.analchem.5b00542
10.1021/acs.chemrev.7b00767
10.1021/nl504660t
10.1038/s41467-017-02481-5
10.1038/s41467-018-05832-y
10.1002/adfm.201404484
10.1038/15095
10.1038/nchem.1496
10.1039/c0lc00114g
10.1021/nn405097u
10.1074/jbc.M117.800763
10.1002/anie.201910955
10.1038/nprot.2015.110
10.1039/C7LC00133A
10.1289/ehp.97105s51261
10.1021/acs.chemrev.6b00638
10.1039/c2nr31700a
10.1021/ja0613106
10.1016/j.tibtech.2014.04.008
10.1038/nn.4091
10.1038/nnano.2016.268
ContentType Journal Article
Copyright 2020 Wiley‐VCH GmbH
2020 Wiley-VCH GmbH.
2021 Wiley‐VCH GmbH
Copyright_xml – notice: 2020 Wiley‐VCH GmbH
– notice: 2020 Wiley-VCH GmbH.
– notice: 2021 Wiley‐VCH GmbH
DBID AAYXX
CITATION
NPM
7TM
K9.
7X8
DOI 10.1002/anie.202013011
DatabaseName CrossRef
PubMed
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
ProQuest Health & Medical Complete (Alumni)
Nucleic Acids Abstracts
MEDLINE - Academic
DatabaseTitleList PubMed

ProQuest Health & Medical Complete (Alumni)
CrossRef
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3773
Edition International ed. in English
EndPage 5161
ExternalDocumentID 33241876
10_1002_anie_202013011
ANIE202013011
Genre shortCommunication
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Fundamental Research Funds for the Central Universities
  funderid: 222201717003
– fundername: International Cooperation Program of Shanghai Science and Technology Committee
  funderid: 17520750100
– fundername: National Natural Science Foundation of China
  funderid: 21878086, 21788102, 22020102006
– fundername: Shanghai Sailing Program
  funderid: 20YF1410300
– fundername: Shanghai Rising-Star Program
  funderid: 19QA1402500
– fundername: Shanghai Municipal Science and Technology Major Project
  funderid: 2018SHZDZX03
– fundername: China Postdoctoral Science Foundation
  funderid: 2020M671017
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABLJU
ABPPZ
ABPVW
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BTSUX
BY8
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
M53
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
TN5
UB1
UPT
UQL
V2E
VQA
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XSW
XV2
YZZ
ZZTAW
~IA
~KM
~WT
.GJ
.HR
.Y3
186
31~
9M8
AANHP
AASGY
AAYJJ
AAYOK
AAYXX
ABDBF
ABDPE
ABEFU
ABJNI
ACBWZ
ACRPL
ACYXJ
ADNMO
ADXHL
AETEA
AEYWJ
AGCDD
AGHNM
AGQPQ
AGYGG
AI.
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
HF~
HVGLF
H~9
LW6
MVM
NHB
OHT
PALCI
RIWAO
RJQFR
RWH
S10
SAMSI
VH1
WHG
XOL
YYP
ZCG
ZE2
ZGI
ZXP
ZY4
NPM
7TM
K9.
7X8
ID FETCH-LOGICAL-c4761-4259bd22f958726a5feb00eb3ee2c83e4937163d4b6aa5744d129f0c8065aef93
IEDL.DBID DR2
ISSN 1433-7851
1521-3773
IngestDate Fri Jul 11 11:52:28 EDT 2025
Fri Jul 25 10:31:54 EDT 2025
Mon Jul 21 05:47:41 EDT 2025
Tue Jul 01 01:17:52 EDT 2025
Thu Apr 24 23:10:13 EDT 2025
Wed Jan 22 16:30:18 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords potential-free nanopipette
supramolecular hydrogel
precise dosing
single-cell operation
diarylethene
Language English
License 2020 Wiley-VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4761-4259bd22f958726a5feb00eb3ee2c83e4937163d4b6aa5744d129f0c8065aef93
Notes These authors contributed equally to this work.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ObjectType-Undefined-3
ORCID 0000-0003-2823-4637
0000-0003-3547-7485
PMID 33241876
PQID 2491851282
PQPubID 946352
PageCount 5
ParticipantIDs proquest_miscellaneous_2464605111
proquest_journals_2491851282
pubmed_primary_33241876
crossref_citationtrail_10_1002_anie_202013011
crossref_primary_10_1002_anie_202013011
wiley_primary_10_1002_anie_202013011_ANIE202013011
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate March 1, 2021
PublicationDateYYYYMMDD 2021-03-01
PublicationDate_xml – month: 03
  year: 2021
  text: March 1, 2021
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Angewandte Chemie International Edition
PublicationTitleAlternate Angew Chem Int Ed Engl
PublicationYear 2021
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2014 2014; 53 126
2007; 104
2015; 15
2017; 7
1990; 348
2018; 140
2015; 18
2019; 14
2015; 10
2011; 11
2016; 52
2008; 5
2013; 5
2015; 7
2014; 136
2014; 114
2019 2019; 58 131
2013; 9
2017; 117
2014; 86
2018; 7
2018; 19
2018; 9
2016; 7
1997; 105
2015; 25
2016 2016; 55 128
2018; 293
2015; 137
2017; 17
2018; 118
1999; 17
2018 2018; 57 130
2015; 87
2017; 12
2018; 90
2008; 455
2014; 8
2012; 137
2018; 11
2012; 4
2010; 5
2006; 128
2014; 6
2014; 32
e_1_2_2_4_1
e_1_2_2_24_1
e_1_2_2_49_1
e_1_2_2_6_1
e_1_2_2_22_1
e_1_2_2_20_1
e_1_2_2_2_1
e_1_2_2_41_1
e_1_2_2_43_1
e_1_2_2_8_1
e_1_2_2_28_1
e_1_2_2_45_1
e_1_2_2_26_1
e_1_2_2_47_1
e_1_2_2_36_2
e_1_2_2_13_1
e_1_2_2_38_1
e_1_2_2_11_1
e_1_2_2_30_1
e_1_2_2_51_1
e_1_2_2_19_1
e_1_2_2_32_1
e_1_2_2_17_1
e_1_2_2_34_1
e_1_2_2_34_2
e_1_2_2_15_1
e_1_2_2_36_1
e_1_2_2_25_1
e_1_2_2_48_1
e_1_2_2_5_1
e_1_2_2_23_1
e_1_2_2_7_1
e_1_2_2_21_2
e_1_2_2_21_1
e_1_2_2_1_1
e_1_2_2_3_1
e_1_2_2_40_1
e_1_2_2_42_1
e_1_2_2_42_2
e_1_2_2_9_1
e_1_2_2_29_1
e_1_2_2_44_1
e_1_2_2_27_1
Sadeghi-Aliabadi H. (e_1_2_2_46_1) 2010; 5
e_1_2_2_14_1
e_1_2_2_37_1
e_1_2_2_12_1
e_1_2_2_39_1
e_1_2_2_10_1
e_1_2_2_50_2
e_1_2_2_31_1
e_1_2_2_18_1
e_1_2_2_33_1
e_1_2_2_16_1
e_1_2_2_35_1
e_1_2_2_50_1
References_xml – volume: 7
  start-page: 41277
  year: 2017
  publication-title: Sci. Rep.
– volume: 140
  start-page: 17691
  year: 2018
  end-page: 17701
  publication-title: J. Am. Chem. Soc.
– volume: 11
  start-page: 79
  year: 2011
  end-page: 86
  publication-title: Lab Chip
– volume: 32
  start-page: 381
  year: 2014
  end-page: 388
  publication-title: Trends Biotechnol.
– volume: 118
  start-page: 9412
  year: 2018
  end-page: 9454
  publication-title: Chem. Rev.
– volume: 5
  start-page: 127
  year: 2010
  end-page: 133
  publication-title: Res. Pharm. Sci.
– volume: 11
  start-page: 265
  year: 2018
  end-page: 286
  publication-title: Annu. Rev. Anal. Chem.
– volume: 114
  start-page: 12174
  year: 2014
  end-page: 12277
  publication-title: Chem. Rev.
– volume: 5
  start-page: 671
  year: 2008
  end-page: 690
  publication-title: J. R. Soc. Interface
– volume: 7
  start-page: 301
  year: 2015
  end-page: 307
  publication-title: ACS Appl. Mater. Interfaces
– volume: 86
  start-page: 4515
  year: 2014
  end-page: 4520
  publication-title: Anal. Chem.
– volume: 19
  start-page: 76
  year: 2018
  end-page: 84
  publication-title: Nat. Immunol.
– volume: 8
  start-page: 546
  year: 2014
  end-page: 553
  publication-title: ACS Nano
– volume: 136
  start-page: 10858
  year: 2014
  end-page: 10861
  publication-title: J. Am. Chem. Soc.
– volume: 12
  start-page: 335
  year: 2017
  end-page: 342
  publication-title: Nat. Nanotechnol.
– volume: 6
  start-page: 964
  year: 2014
  end-page: 970
  publication-title: Nat. Chem.
– volume: 57 130
  start-page: 2768 2816
  year: 2018 2018
  end-page: 2798 2848
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 58 131
  start-page: 3706 3744
  year: 2019 2019
  end-page: 3714 3752
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 52
  start-page: 13909
  year: 2016
  end-page: 13911
  publication-title: Chem. Commun.
– volume: 17
  start-page: 1635
  year: 2017
  end-page: 1644
  publication-title: Lab Chip
– volume: 17
  start-page: 1109
  year: 1999
  end-page: 1111
  publication-title: Nat. Biotechnol.
– volume: 137
  start-page: 2738
  year: 2015
  end-page: 2747
  publication-title: J. Am. Chem. Soc.
– volume: 117
  start-page: 4342
  year: 2017
  end-page: 4375
  publication-title: Chem. Rev.
– volume: 87
  start-page: 8138
  year: 2015
  end-page: 8143
  publication-title: Anal. Chem.
– volume: 9
  start-page: 21
  year: 2018
  publication-title: Nat. Commun.
– volume: 455
  start-page: 256
  year: 2008
  end-page: 260
  publication-title: Chem. Phys. Lett.
– volume: 7
  start-page: 55
  year: 2018
  publication-title: Cell
– volume: 10
  start-page: 1612
  year: 2015
  end-page: 1624
  publication-title: Nat. Protoc.
– volume: 8
  start-page: 875
  year: 2014
  end-page: 884
  publication-title: ACS Nano
– volume: 5
  start-page: 42
  year: 2013
  end-page: 47
  publication-title: Nat. Chem.
– volume: 128
  start-page: 16462
  year: 2006
  end-page: 16463
  publication-title: J. Am. Chem. Soc.
– volume: 118
  start-page: 10710
  year: 2018
  end-page: 10747
  publication-title: Chem. Rev.
– volume: 137
  start-page: 5215
  year: 2012
  end-page: 5221
  publication-title: Analyst
– volume: 4
  start-page: 5843
  year: 2012
  end-page: 5846
  publication-title: Nanoscale
– volume: 104
  start-page: 11895
  year: 2007
  end-page: 11900
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 105
  start-page: 1261
  year: 1997
  end-page: 1263
  publication-title: Environ. Health Perspect.
– volume: 9
  start-page: 9
  year: 2013
  end-page: 21
  publication-title: Small
– volume: 128
  start-page: 8378
  year: 2006
  end-page: 8379
  publication-title: J. Am. Chem. Soc.
– volume: 53 126
  start-page: 5073 5173
  year: 2014 2014
  end-page: 7507 5177
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 7
  start-page: 10220
  year: 2016
  publication-title: Nat. Commun.
– volume: 9
  start-page: 3657
  year: 2018
  publication-title: Nat. Commun.
– volume: 58 131
  start-page: 16894 17050
  year: 2019 2019
  end-page: 16898 17054
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 25
  start-page: 2489
  year: 2015
  end-page: 2500
  publication-title: Adv. Funct. Mater.
– volume: 15
  start-page: 1374
  year: 2015
  end-page: 1381
  publication-title: Nano Lett.
– volume: 18
  start-page: 1213
  year: 2015
  end-page: 1225
  publication-title: Nat. Neurosci.
– volume: 140
  start-page: 5385
  year: 2018
  end-page: 5392
  publication-title: J. Am. Chem. Soc.
– volume: 90
  start-page: 13744
  year: 2018
  end-page: 13750
  publication-title: Anal. Chem.
– volume: 55 128
  start-page: 2411 2457
  year: 2016 2016
  end-page: 2415 2461
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 293
  start-page: 4940
  year: 2018
  end-page: 4951
  publication-title: J. Biol. Chem.
– volume: 14
  start-page: 80
  year: 2019
  end-page: 88
  publication-title: Nat. Nanotechnol.
– volume: 348
  start-page: 346
  year: 1990
  end-page: 348
  publication-title: Nature
– ident: e_1_2_2_42_2
  doi: 10.1002/ange.201910955
– ident: e_1_2_2_2_1
  doi: 10.1021/jacs.7b12106
– ident: e_1_2_2_23_1
  doi: 10.1021/ja0650899
– ident: e_1_2_2_36_2
  doi: 10.1002/ange.201510140
– ident: e_1_2_2_33_1
  doi: 10.1021/cr500249p
– ident: e_1_2_2_21_1
  doi: 10.1002/anie.201803229
– ident: e_1_2_2_18_1
  doi: 10.1038/348346a0
– ident: e_1_2_2_50_1
  doi: 10.1002/anie.201700171
– ident: e_1_2_2_37_1
  doi: 10.1021/jacs.8b10481
– ident: e_1_2_2_11_1
  doi: 10.1021/ac500443q
– ident: e_1_2_2_32_1
  doi: 10.1038/srep41277
– ident: e_1_2_2_39_1
  doi: 10.1038/nchem.2075
– ident: e_1_2_2_12_1
  doi: 10.1038/ncomms10220
– ident: e_1_2_2_13_1
  doi: 10.1039/c2an35707k
– ident: e_1_2_2_29_1
  doi: 10.1021/acs.analchem.8b04159
– ident: e_1_2_2_40_1
  doi: 10.1021/am506202s
– ident: e_1_2_2_30_1
  doi: 10.1073/pnas.0705102104
– ident: e_1_2_2_34_2
  doi: 10.1002/ange.201311160
– ident: e_1_2_2_36_1
  doi: 10.1002/anie.201510140
– ident: e_1_2_2_35_1
  doi: 10.1021/ja513027s
– ident: e_1_2_2_6_1
  doi: 10.1021/nn405612q
– ident: e_1_2_2_34_1
  doi: 10.1002/anie.201311160
– ident: e_1_2_2_3_1
  doi: 10.1038/s41565-018-0315-8
– ident: e_1_2_2_50_2
  doi: 10.1002/ange.201700171
– ident: e_1_2_2_21_2
  doi: 10.1002/ange.201803229
– ident: e_1_2_2_25_1
  doi: 10.1146/annurev-anchem-061417-125840
– ident: e_1_2_2_17_1
  doi: 10.1098/rsif.2008.0052
– ident: e_1_2_2_44_1
  doi: 10.1038/s41590-017-0004-z
– ident: e_1_2_2_10_1
  doi: 10.1002/smll.201200996
– ident: e_1_2_2_1_1
  doi: 10.3390/cells7060055
– ident: e_1_2_2_5_1
  doi: 10.1021/ja5053279
– ident: e_1_2_2_48_1
  doi: 10.1021/acs.chemrev.8b00037
– ident: e_1_2_2_28_1
  doi: 10.1039/C6CC08125H
– ident: e_1_2_2_41_1
  doi: 10.1016/j.cplett.2008.02.091
– ident: e_1_2_2_7_1
  doi: 10.1021/acs.analchem.5b00542
– ident: e_1_2_2_51_1
  doi: 10.1021/acs.chemrev.7b00767
– ident: e_1_2_2_27_1
  doi: 10.1021/nl504660t
– ident: e_1_2_2_43_1
  doi: 10.1038/s41467-017-02481-5
– ident: e_1_2_2_31_1
  doi: 10.1038/s41467-018-05832-y
– volume: 5
  start-page: 127
  year: 2010
  ident: e_1_2_2_46_1
  publication-title: Res. Pharm. Sci.
– ident: e_1_2_2_47_1
  doi: 10.1002/adfm.201404484
– ident: e_1_2_2_14_1
  doi: 10.1038/15095
– ident: e_1_2_2_38_1
  doi: 10.1038/nchem.1496
– ident: e_1_2_2_9_1
  doi: 10.1039/c0lc00114g
– ident: e_1_2_2_4_1
  doi: 10.1021/nn405097u
– ident: e_1_2_2_22_1
  doi: 10.1074/jbc.M117.800763
– ident: e_1_2_2_42_1
  doi: 10.1002/anie.201910955
– ident: e_1_2_2_15_1
  doi: 10.1038/nprot.2015.110
– ident: e_1_2_2_20_1
  doi: 10.1039/C7LC00133A
– ident: e_1_2_2_45_1
  doi: 10.1289/ehp.97105s51261
– ident: e_1_2_2_16_1
  doi: 10.1021/acs.chemrev.6b00638
– ident: e_1_2_2_26_1
  doi: 10.1039/c2nr31700a
– ident: e_1_2_2_8_1
  doi: 10.1021/ja0613106
– ident: e_1_2_2_19_1
  doi: 10.1016/j.tibtech.2014.04.008
– ident: e_1_2_2_49_1
  doi: 10.1038/nn.4091
– ident: e_1_2_2_24_1
  doi: 10.1038/nnano.2016.268
SSID ssj0028806
Score 2.5387716
Snippet Single‐cell and in situ cell‐based operation with nanopipette approach offers a possibility to elucidate the intracellular processes and may aid the...
Single-cell and in situ cell-based operation with nanopipette approach offers a possibility to elucidate the intracellular processes and may aid the...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 5157
SubjectTerms Cell lines
Cell survival
Cell viability
Damage
diarylethene
Dosage
Doxorubicin
Drug delivery
Electric potential
Hybrid systems
Hydrogels
Injection
potential-free nanopipette
precise dosing
single-cell operation
supramolecular hydrogel
Survival
Temporal resolution
Title High‐Preservation Single‐Cell Operation through a Photo‐responsive Hydrogel‐Nanopipette System
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202013011
https://www.ncbi.nlm.nih.gov/pubmed/33241876
https://www.proquest.com/docview/2491851282
https://www.proquest.com/docview/2464605111
Volume 60
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fT9swELcQL9vL2F_oYJORkPYUaBzHaR9RRVUmDRBbJd4i_zkDWtRUpZ0ET3yEfcZ9kt3FSViZEBI8xjknjn3O3fnufsfYjsqcccq5SNmej6TXJjIaulEcQ1_ZrocMKHf425EajeXXs_Tsnyz-gA_RHrjRzqj-17TBtbnauwMNpQxstO8Eud6q5F4K2CKt6LTFjxLInCG9KEkiqkLfoDZ2xd5y92Wp9J-quay5VqJnuMZ0M-gQcfJzdzE3u_bmHp7jc77qNXtV66V8PzDSG7YCk7fsxaApB_eOeYoI-XP7m2I2moNc_h0FXwHYOoCi4MdTCPzE6-o_XPOTi3JeIsGsjsX9BXx07WblORTYiv_2cno5pXAjHrDT37Px8ODHYBTVRRoiKzOF9ifaT8YJ4ftpLxNKp56qEaGJDiBsLwFJgHsqcdIordNMSocahu9acuhq8P3kA1udlBPYYFwrNG9il4ASTsbeaRAJxEYqa9O057MOi5pFym2NYE6FNIo8YC-LnGYvb2evw7609NOA3fEg5Vaz5nm9h69yNExRmUH5LTpsu72Ns04uFT2BckE0ihzLMT1iPfBK-6oEddUYhU2HiWrFHxlDvn90eNBefXxKp032UlDITRUit8VW57MFfEKdaW4-V_viL7kKEm8
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB6hcigXyj8LBYyExCntxnGc3WO1arWFdkHQStwi_4wLItqstrtIcOIReEaehJk4CVoQQoJjnHHi2OPMjGfmG4BnuvDWa-8T7UYhUcHYxBocJmmKY-2GAQvk3OHTmZ6eqxfv8i6akHNhIj5Ef-DGO6P5X_MG5wPp_Z-ooZyCTQaeZN8bZ_de5bLejVX1pkeQksSeMcEoyxKuQ9_hNg7l_mb_Tbn0m7K5qbs2wudoB2w37Bhz8nFvvbJ77ssviI7_9V034HqrmoqDyEs34QrOb8H2pKsIdxsCB4V8__qNwza6s1zxlmRfhdQ6waoSrxYYWUq0BYCEEa_f16uaCJZtOO4nFNPPfllfYEWt9HuvFx8WHHEkInz6HTg_OjybTJO2TkPiVKHJBCUTynopwzgfFVKbPHBBIrLSEaUbZagYc09nXlltTF4o5UnJCEPHPl2DYZzdha15Pcf7IIwmCyf1GWrpVRq8QZlhapV2Ls9HoRhA0q1S6VoQc66lUZURflmWPHtlP3sDeN7TLyJ8xx8pd7tFL9ttfFmSbUr6DIlwOYCn_W2adfaqmDnWa6bR7FtO-RH3IrP0r8pIXU1J3gxANkv-lzGUB7Pjw_7qwb90egLb07PTk_LkePbyIVyTHIHTRMztwtZqucZHpEKt7ONmk_wAzYAWig
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwELaqVgIuLb_tQgEjIXFKmziOkz1W2662_CwVUKm3yLHHgIg20bKLRE99BJ6xT9KZOAlsEUKCY5xx4tjjzIxn5hvGnqvUFlZZGyiTuUA6XQSFhjCIIhgqEzpIgXKH30zV5FS-PEvOfsni9_gQ_YEb7Yzmf00bvLZu_ydoKGVgo30nyPVGyb0bUoUZ8fXhux5ASiB3-vyiOA6oDH0H2xiK_dX-q2LpN11zVXVtZM94i-lu1D7k5MveclHsmfNrgI7_81m32WarmPIDz0l32BrM7rKbo64e3D3mKCTk8uIHBW10J7n8PUq-ErB1BGXJ39bgGYq35X-45iefqkWFBPM2GPcb8Ml3O68-Qomt-HOv6s81xRtxD55-n52Ojz6MJkFbpSEwMlVogKIBVVgh3DDJUqF04qgcEdroAMJkMUhC3FOxlYXSOkmltKhiuNCQR1eDG8YP2PqsmsEO41qhfRPZGJSwMnJWg4ghKqQyJkkylw5Y0C1SbloIc6qkUeYefFnkNHt5P3sD9qKnrz14xx8pd7s1z9tN_DVHyxS1GRTgYsCe9bdx1smnomdQLYlGkWc5okdse17pXxWjshqhtBkw0az4X8aQH0yPj_qrh__S6Sm7cXI4zl8fT189YrcEhd804XK7bH0xX8Jj1J8WxZNmi1wBmS4VQg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High%E2%80%90Preservation+Single%E2%80%90Cell+Operation+through+a+Photo%E2%80%90responsive+Hydrogel%E2%80%90Nanopipette+System&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Zi%E2%80%90Yuan+Li&rft.au=Ying%E2%80%90Ya+Liu&rft.au=Yuan%E2%80%90Jie+Li&rft.au=Wang%2C+Wenhui&rft.date=2021-03-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=60&rft.issue=10&rft.spage=5157&rft.epage=5161&rft_id=info:doi/10.1002%2Fanie.202013011&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon