High‐Preservation Single‐Cell Operation through a Photo‐responsive Hydrogel‐Nanopipette System
Single‐cell and in situ cell‐based operation with nanopipette approach offers a possibility to elucidate the intracellular processes and may aid the improvement of therapy efficiency and precision. We present here a photo‐responsive hydrogel‐nanopipette hybrid system that can achieve single‐cell ope...
Saved in:
Published in | Angewandte Chemie International Edition Vol. 60; no. 10; pp. 5157 - 5161 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.03.2021
|
Edition | International ed. in English |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Single‐cell and in situ cell‐based operation with nanopipette approach offers a possibility to elucidate the intracellular processes and may aid the improvement of therapy efficiency and precision. We present here a photo‐responsive hydrogel‐nanopipette hybrid system that can achieve single‐cell operation with high spatial/temporal resolution and negligible cell damage. This strategy overcomes long‐time obstacles in nanopipette single‐cell studies as high electric potential (ca. 1000 mV) or organic solvent is always used during operations, which would inevitably impose disturbance and damage to targeted cells. The light‐triggered system promotes a potential‐free, non‐invasive single‐cell injection, resulting in a well‐retained cell viability (90 % survival rate). Moreover, the photo‐driven injection enables a precisely dose‐controllable single‐cell drug delivery. Significantly reduced lethal doses of doxorubicin (163–217 fg cell−1) are demonstrated in corresponding cell lines.
The fabrication of photo‐responsive hydrogel‐nanopipette system ensures both precision single‐cell operation and high cell preservation. Upon light‐controlled, non‐invasive operation, a high cell viability over 90 % as well as precise quantification of injection are obtained. Hence, a single‐cell precise‐dosing is achieved with a minimum lethal dose of 163–217 fg cell−1. |
---|---|
AbstractList | Single-cell and in situ cell-based operation with nanopipette approach offers a possibility to elucidate the intracellular processes and may aid the improvement of therapy efficiency and precision. We present here a photo-responsive hydrogel-nanopipette hybrid system that can achieve single-cell operation with high spatial/temporal resolution and negligible cell damage. This strategy overcomes long-time obstacles in nanopipette single-cell studies as high electric potential (ca. 1000 mV) or organic solvent is always used during operations, which would inevitably impose disturbance and damage to targeted cells. The light-triggered system promotes a potential-free, non-invasive single-cell injection, resulting in a well-retained cell viability (90 % survival rate). Moreover, the photo-driven injection enables a precisely dose-controllable single-cell drug delivery. Significantly reduced lethal doses of doxorubicin (163-217 fg cell
) are demonstrated in corresponding cell lines. Single‐cell and in situ cell‐based operation with nanopipette approach offers a possibility to elucidate the intracellular processes and may aid the improvement of therapy efficiency and precision. We present here a photo‐responsive hydrogel‐nanopipette hybrid system that can achieve single‐cell operation with high spatial/temporal resolution and negligible cell damage. This strategy overcomes long‐time obstacles in nanopipette single‐cell studies as high electric potential (ca. 1000 mV) or organic solvent is always used during operations, which would inevitably impose disturbance and damage to targeted cells. The light‐triggered system promotes a potential‐free, non‐invasive single‐cell injection, resulting in a well‐retained cell viability (90 % survival rate). Moreover, the photo‐driven injection enables a precisely dose‐controllable single‐cell drug delivery. Significantly reduced lethal doses of doxorubicin (163–217 fg cell−1) are demonstrated in corresponding cell lines. The fabrication of photo‐responsive hydrogel‐nanopipette system ensures both precision single‐cell operation and high cell preservation. Upon light‐controlled, non‐invasive operation, a high cell viability over 90 % as well as precise quantification of injection are obtained. Hence, a single‐cell precise‐dosing is achieved with a minimum lethal dose of 163–217 fg cell−1. Single‐cell and in situ cell‐based operation with nanopipette approach offers a possibility to elucidate the intracellular processes and may aid the improvement of therapy efficiency and precision. We present here a photo‐responsive hydrogel‐nanopipette hybrid system that can achieve single‐cell operation with high spatial/temporal resolution and negligible cell damage. This strategy overcomes long‐time obstacles in nanopipette single‐cell studies as high electric potential (ca. 1000 mV) or organic solvent is always used during operations, which would inevitably impose disturbance and damage to targeted cells. The light‐triggered system promotes a potential‐free, non‐invasive single‐cell injection, resulting in a well‐retained cell viability (90 % survival rate). Moreover, the photo‐driven injection enables a precisely dose‐controllable single‐cell drug delivery. Significantly reduced lethal doses of doxorubicin (163–217 fg cell−1) are demonstrated in corresponding cell lines. Single‐cell and in situ cell‐based operation with nanopipette approach offers a possibility to elucidate the intracellular processes and may aid the improvement of therapy efficiency and precision. We present here a photo‐responsive hydrogel‐nanopipette hybrid system that can achieve single‐cell operation with high spatial/temporal resolution and negligible cell damage. This strategy overcomes long‐time obstacles in nanopipette single‐cell studies as high electric potential (ca. 1000 mV) or organic solvent is always used during operations, which would inevitably impose disturbance and damage to targeted cells. The light‐triggered system promotes a potential‐free, non‐invasive single‐cell injection, resulting in a well‐retained cell viability (90 % survival rate). Moreover, the photo‐driven injection enables a precisely dose‐controllable single‐cell drug delivery. Significantly reduced lethal doses of doxorubicin (163–217 fg cell −1 ) are demonstrated in corresponding cell lines. Single-cell and in situ cell-based operation with nanopipette approach offers a possibility to elucidate the intracellular processes and may aid the improvement of therapy efficiency and precision. We present here a photo-responsive hydrogel-nanopipette hybrid system that can achieve single-cell operation with high spatial/temporal resolution and negligible cell damage. This strategy overcomes long-time obstacles in nanopipette single-cell studies as high electric potential (ca. 1000 mV) or organic solvent is always used during operations, which would inevitably impose disturbance and damage to targeted cells. The light-triggered system promotes a potential-free, non-invasive single-cell injection, resulting in a well-retained cell viability (90 % survival rate). Moreover, the photo-driven injection enables a precisely dose-controllable single-cell drug delivery. Significantly reduced lethal doses of doxorubicin (163-217 fg cell-1 ) are demonstrated in corresponding cell lines.Single-cell and in situ cell-based operation with nanopipette approach offers a possibility to elucidate the intracellular processes and may aid the improvement of therapy efficiency and precision. We present here a photo-responsive hydrogel-nanopipette hybrid system that can achieve single-cell operation with high spatial/temporal resolution and negligible cell damage. This strategy overcomes long-time obstacles in nanopipette single-cell studies as high electric potential (ca. 1000 mV) or organic solvent is always used during operations, which would inevitably impose disturbance and damage to targeted cells. The light-triggered system promotes a potential-free, non-invasive single-cell injection, resulting in a well-retained cell viability (90 % survival rate). Moreover, the photo-driven injection enables a precisely dose-controllable single-cell drug delivery. Significantly reduced lethal doses of doxorubicin (163-217 fg cell-1 ) are demonstrated in corresponding cell lines. |
Author | Li, Yuan‐Jie Wang, Wenhui Liu, Ying‐Ya Song, Yanyan Zhang, Junji Tian, He Li, Zi‐Yuan |
Author_xml | – sequence: 1 givenname: Zi‐Yuan surname: Li fullname: Li, Zi‐Yuan organization: East China University of Science & Technology – sequence: 2 givenname: Ying‐Ya surname: Liu fullname: Liu, Ying‐Ya organization: East China University of Science & Technology – sequence: 3 givenname: Yuan‐Jie surname: Li fullname: Li, Yuan‐Jie organization: East China University of Science & Technology – sequence: 4 givenname: Wenhui surname: Wang fullname: Wang, Wenhui organization: East China University of Science & Technology – sequence: 5 givenname: Yanyan surname: Song fullname: Song, Yanyan organization: East China University of Science & Technology – sequence: 6 givenname: Junji orcidid: 0000-0003-2823-4637 surname: Zhang fullname: Zhang, Junji email: zhangjunji@ecust.edu.cn organization: East China University of Science & Technology – sequence: 7 givenname: He orcidid: 0000-0003-3547-7485 surname: Tian fullname: Tian, He organization: East China University of Science & Technology |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33241876$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc1qGzEUhUVxqJ2fbZdloJtsxtGVNH9LY5I6EJJA2rXQzNyxFcbSVNIkeNdH6DP2SarUSQuBkJUuh-9cdM85JBNjDRLyCegcKGVnymicM8oocArwgcwgY5DyouCTOAvO06LMYEoOvb-PfFnS_COZcs4ElEU-I91Krze_f_66dejRPaigrUnutFn3GNUl9n1yM6Db62Hj7LjeJCq53dhgIxBdgzVeP2Cy2rXOrrGP6rUydtADhoDJ3c4H3B6Tg071Hk-e3yPy_eL823KVXt18vVwurtJGFDmkgmVV3TLWVVlZsFxlHdaUYs0RWVNyFBUvIOetqHOlskKIFljV0SZelSnsKn5ETvd7B2d_jOiD3GrfxCuUQTt6yUQucpoBQES_vELv7ehM_F2kKoipsZJF6vMzNdZbbOXg9Fa5nXxJMAJiDzTOeu-wk40Of-MKTuleApVPRcmnouS_oqJt_sr2svlNQ7U3POoed-_QcnF9ef7f-wdlIKl9 |
CitedBy_id | crossref_primary_10_1002_anie_202205758 crossref_primary_10_1007_s10118_024_3211_8 crossref_primary_10_1002_anie_202117735 crossref_primary_10_1016_j_jconrel_2025_113587 crossref_primary_10_1021_acsbiomaterials_4c00314 crossref_primary_10_1039_D3AN01973J crossref_primary_10_1016_j_cbpa_2022_102226 crossref_primary_10_1002_smll_202201821 crossref_primary_10_1016_j_cej_2022_138494 crossref_primary_10_1002_adhm_202101169 crossref_primary_10_1021_acs_langmuir_1c01394 crossref_primary_10_1002_adfm_202311920 crossref_primary_10_1021_acssensors_1c00463 crossref_primary_10_1002_VIW_20200112 crossref_primary_10_1016_j_talanta_2024_127422 crossref_primary_10_1002_smtd_202301105 crossref_primary_10_1016_j_reactfunctpolym_2021_104983 crossref_primary_10_1021_acs_analchem_4c06722 crossref_primary_10_1002_anie_202301476 crossref_primary_10_1021_acs_analchem_1c03313 crossref_primary_10_1021_acs_analchem_1c04462 crossref_primary_10_1002_cbic_202100217 crossref_primary_10_3390_gels10050295 crossref_primary_10_1002_appl_202100016 crossref_primary_10_1016_j_nantod_2023_102073 crossref_primary_10_1002_adma_202108289 crossref_primary_10_1080_15583724_2024_2427184 crossref_primary_10_1002_smll_202307067 crossref_primary_10_1002_ange_202117735 crossref_primary_10_1007_s40242_024_3281_8 crossref_primary_10_1039_D1SC02995A crossref_primary_10_1016_j_mtcomm_2021_103019 crossref_primary_10_1021_acs_analchem_2c02415 crossref_primary_10_1016_j_aca_2023_341000 crossref_primary_10_1039_D1CS00688F crossref_primary_10_1002_adma_202408484 crossref_primary_10_1002_asia_202200158 crossref_primary_10_1002_smtd_202401448 crossref_primary_10_1002_ange_202205758 crossref_primary_10_1002_adom_202102390 crossref_primary_10_1002_smll_202107992 crossref_primary_10_1021_acs_nanolett_3c02423 crossref_primary_10_1016_j_cej_2024_152578 crossref_primary_10_1002_chem_202400281 crossref_primary_10_1016_j_bios_2024_116385 crossref_primary_10_1021_acs_chemrev_2c00215 crossref_primary_10_1002_ange_202301476 |
Cites_doi | 10.1002/ange.201910955 10.1021/jacs.7b12106 10.1021/ja0650899 10.1002/ange.201510140 10.1021/cr500249p 10.1002/anie.201803229 10.1038/348346a0 10.1002/anie.201700171 10.1021/jacs.8b10481 10.1021/ac500443q 10.1038/srep41277 10.1038/nchem.2075 10.1038/ncomms10220 10.1039/c2an35707k 10.1021/acs.analchem.8b04159 10.1021/am506202s 10.1073/pnas.0705102104 10.1002/ange.201311160 10.1002/anie.201510140 10.1021/ja513027s 10.1021/nn405612q 10.1002/anie.201311160 10.1038/s41565-018-0315-8 10.1002/ange.201700171 10.1002/ange.201803229 10.1146/annurev-anchem-061417-125840 10.1098/rsif.2008.0052 10.1038/s41590-017-0004-z 10.1002/smll.201200996 10.3390/cells7060055 10.1021/ja5053279 10.1021/acs.chemrev.8b00037 10.1039/C6CC08125H 10.1016/j.cplett.2008.02.091 10.1021/acs.analchem.5b00542 10.1021/acs.chemrev.7b00767 10.1021/nl504660t 10.1038/s41467-017-02481-5 10.1038/s41467-018-05832-y 10.1002/adfm.201404484 10.1038/15095 10.1038/nchem.1496 10.1039/c0lc00114g 10.1021/nn405097u 10.1074/jbc.M117.800763 10.1002/anie.201910955 10.1038/nprot.2015.110 10.1039/C7LC00133A 10.1289/ehp.97105s51261 10.1021/acs.chemrev.6b00638 10.1039/c2nr31700a 10.1021/ja0613106 10.1016/j.tibtech.2014.04.008 10.1038/nn.4091 10.1038/nnano.2016.268 |
ContentType | Journal Article |
Copyright | 2020 Wiley‐VCH GmbH 2020 Wiley-VCH GmbH. 2021 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2020 Wiley‐VCH GmbH – notice: 2020 Wiley-VCH GmbH. – notice: 2021 Wiley‐VCH GmbH |
DBID | AAYXX CITATION NPM 7TM K9. 7X8 |
DOI | 10.1002/anie.202013011 |
DatabaseName | CrossRef PubMed Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed ProQuest Health & Medical Complete (Alumni) Nucleic Acids Abstracts MEDLINE - Academic |
DatabaseTitleList | PubMed ProQuest Health & Medical Complete (Alumni) CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3773 |
Edition | International ed. in English |
EndPage | 5161 |
ExternalDocumentID | 33241876 10_1002_anie_202013011 ANIE202013011 |
Genre | shortCommunication Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Fundamental Research Funds for the Central Universities funderid: 222201717003 – fundername: International Cooperation Program of Shanghai Science and Technology Committee funderid: 17520750100 – fundername: National Natural Science Foundation of China funderid: 21878086, 21788102, 22020102006 – fundername: Shanghai Sailing Program funderid: 20YF1410300 – fundername: Shanghai Rising-Star Program funderid: 19QA1402500 – fundername: Shanghai Municipal Science and Technology Major Project funderid: 2018SHZDZX03 – fundername: China Postdoctoral Science Foundation funderid: 2020M671017 |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABLJU ABPPZ ABPVW ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BTSUX BY8 CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES M53 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ TN5 UB1 UPT UQL V2E VQA W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XSW XV2 YZZ ZZTAW ~IA ~KM ~WT .GJ .HR .Y3 186 31~ 9M8 AANHP AASGY AAYJJ AAYOK AAYXX ABDBF ABDPE ABEFU ABJNI ACBWZ ACRPL ACYXJ ADNMO ADXHL AETEA AEYWJ AGCDD AGHNM AGQPQ AGYGG AI. ASPBG AVWKF AZFZN CITATION EJD FEDTE HF~ HVGLF H~9 LW6 MVM NHB OHT PALCI RIWAO RJQFR RWH S10 SAMSI VH1 WHG XOL YYP ZCG ZE2 ZGI ZXP ZY4 NPM 7TM K9. 7X8 |
ID | FETCH-LOGICAL-c4761-4259bd22f958726a5feb00eb3ee2c83e4937163d4b6aa5744d129f0c8065aef93 |
IEDL.DBID | DR2 |
ISSN | 1433-7851 1521-3773 |
IngestDate | Fri Jul 11 11:52:28 EDT 2025 Fri Jul 25 10:31:54 EDT 2025 Mon Jul 21 05:47:41 EDT 2025 Tue Jul 01 01:17:52 EDT 2025 Thu Apr 24 23:10:13 EDT 2025 Wed Jan 22 16:30:18 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Keywords | potential-free nanopipette supramolecular hydrogel precise dosing single-cell operation diarylethene |
Language | English |
License | 2020 Wiley-VCH GmbH. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4761-4259bd22f958726a5feb00eb3ee2c83e4937163d4b6aa5744d129f0c8065aef93 |
Notes | These authors contributed equally to this work. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 ObjectType-Undefined-3 |
ORCID | 0000-0003-2823-4637 0000-0003-3547-7485 |
PMID | 33241876 |
PQID | 2491851282 |
PQPubID | 946352 |
PageCount | 5 |
ParticipantIDs | proquest_miscellaneous_2464605111 proquest_journals_2491851282 pubmed_primary_33241876 crossref_citationtrail_10_1002_anie_202013011 crossref_primary_10_1002_anie_202013011 wiley_primary_10_1002_anie_202013011_ANIE202013011 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | March 1, 2021 |
PublicationDateYYYYMMDD | 2021-03-01 |
PublicationDate_xml | – month: 03 year: 2021 text: March 1, 2021 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Angewandte Chemie International Edition |
PublicationTitleAlternate | Angew Chem Int Ed Engl |
PublicationYear | 2021 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2014 2014; 53 126 2007; 104 2015; 15 2017; 7 1990; 348 2018; 140 2015; 18 2019; 14 2015; 10 2011; 11 2016; 52 2008; 5 2013; 5 2015; 7 2014; 136 2014; 114 2019 2019; 58 131 2013; 9 2017; 117 2014; 86 2018; 7 2018; 19 2018; 9 2016; 7 1997; 105 2015; 25 2016 2016; 55 128 2018; 293 2015; 137 2017; 17 2018; 118 1999; 17 2018 2018; 57 130 2015; 87 2017; 12 2018; 90 2008; 455 2014; 8 2012; 137 2018; 11 2012; 4 2010; 5 2006; 128 2014; 6 2014; 32 e_1_2_2_4_1 e_1_2_2_24_1 e_1_2_2_49_1 e_1_2_2_6_1 e_1_2_2_22_1 e_1_2_2_20_1 e_1_2_2_2_1 e_1_2_2_41_1 e_1_2_2_43_1 e_1_2_2_8_1 e_1_2_2_28_1 e_1_2_2_45_1 e_1_2_2_26_1 e_1_2_2_47_1 e_1_2_2_36_2 e_1_2_2_13_1 e_1_2_2_38_1 e_1_2_2_11_1 e_1_2_2_30_1 e_1_2_2_51_1 e_1_2_2_19_1 e_1_2_2_32_1 e_1_2_2_17_1 e_1_2_2_34_1 e_1_2_2_34_2 e_1_2_2_15_1 e_1_2_2_36_1 e_1_2_2_25_1 e_1_2_2_48_1 e_1_2_2_5_1 e_1_2_2_23_1 e_1_2_2_7_1 e_1_2_2_21_2 e_1_2_2_21_1 e_1_2_2_1_1 e_1_2_2_3_1 e_1_2_2_40_1 e_1_2_2_42_1 e_1_2_2_42_2 e_1_2_2_9_1 e_1_2_2_29_1 e_1_2_2_44_1 e_1_2_2_27_1 Sadeghi-Aliabadi H. (e_1_2_2_46_1) 2010; 5 e_1_2_2_14_1 e_1_2_2_37_1 e_1_2_2_12_1 e_1_2_2_39_1 e_1_2_2_10_1 e_1_2_2_50_2 e_1_2_2_31_1 e_1_2_2_18_1 e_1_2_2_33_1 e_1_2_2_16_1 e_1_2_2_35_1 e_1_2_2_50_1 |
References_xml | – volume: 7 start-page: 41277 year: 2017 publication-title: Sci. Rep. – volume: 140 start-page: 17691 year: 2018 end-page: 17701 publication-title: J. Am. Chem. Soc. – volume: 11 start-page: 79 year: 2011 end-page: 86 publication-title: Lab Chip – volume: 32 start-page: 381 year: 2014 end-page: 388 publication-title: Trends Biotechnol. – volume: 118 start-page: 9412 year: 2018 end-page: 9454 publication-title: Chem. Rev. – volume: 5 start-page: 127 year: 2010 end-page: 133 publication-title: Res. Pharm. Sci. – volume: 11 start-page: 265 year: 2018 end-page: 286 publication-title: Annu. Rev. Anal. Chem. – volume: 114 start-page: 12174 year: 2014 end-page: 12277 publication-title: Chem. Rev. – volume: 5 start-page: 671 year: 2008 end-page: 690 publication-title: J. R. Soc. Interface – volume: 7 start-page: 301 year: 2015 end-page: 307 publication-title: ACS Appl. Mater. Interfaces – volume: 86 start-page: 4515 year: 2014 end-page: 4520 publication-title: Anal. Chem. – volume: 19 start-page: 76 year: 2018 end-page: 84 publication-title: Nat. Immunol. – volume: 8 start-page: 546 year: 2014 end-page: 553 publication-title: ACS Nano – volume: 136 start-page: 10858 year: 2014 end-page: 10861 publication-title: J. Am. Chem. Soc. – volume: 12 start-page: 335 year: 2017 end-page: 342 publication-title: Nat. Nanotechnol. – volume: 6 start-page: 964 year: 2014 end-page: 970 publication-title: Nat. Chem. – volume: 57 130 start-page: 2768 2816 year: 2018 2018 end-page: 2798 2848 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 58 131 start-page: 3706 3744 year: 2019 2019 end-page: 3714 3752 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 52 start-page: 13909 year: 2016 end-page: 13911 publication-title: Chem. Commun. – volume: 17 start-page: 1635 year: 2017 end-page: 1644 publication-title: Lab Chip – volume: 17 start-page: 1109 year: 1999 end-page: 1111 publication-title: Nat. Biotechnol. – volume: 137 start-page: 2738 year: 2015 end-page: 2747 publication-title: J. Am. Chem. Soc. – volume: 117 start-page: 4342 year: 2017 end-page: 4375 publication-title: Chem. Rev. – volume: 87 start-page: 8138 year: 2015 end-page: 8143 publication-title: Anal. Chem. – volume: 9 start-page: 21 year: 2018 publication-title: Nat. Commun. – volume: 455 start-page: 256 year: 2008 end-page: 260 publication-title: Chem. Phys. Lett. – volume: 7 start-page: 55 year: 2018 publication-title: Cell – volume: 10 start-page: 1612 year: 2015 end-page: 1624 publication-title: Nat. Protoc. – volume: 8 start-page: 875 year: 2014 end-page: 884 publication-title: ACS Nano – volume: 5 start-page: 42 year: 2013 end-page: 47 publication-title: Nat. Chem. – volume: 128 start-page: 16462 year: 2006 end-page: 16463 publication-title: J. Am. Chem. Soc. – volume: 118 start-page: 10710 year: 2018 end-page: 10747 publication-title: Chem. Rev. – volume: 137 start-page: 5215 year: 2012 end-page: 5221 publication-title: Analyst – volume: 4 start-page: 5843 year: 2012 end-page: 5846 publication-title: Nanoscale – volume: 104 start-page: 11895 year: 2007 end-page: 11900 publication-title: Proc. Natl. Acad. Sci. USA – volume: 105 start-page: 1261 year: 1997 end-page: 1263 publication-title: Environ. Health Perspect. – volume: 9 start-page: 9 year: 2013 end-page: 21 publication-title: Small – volume: 128 start-page: 8378 year: 2006 end-page: 8379 publication-title: J. Am. Chem. Soc. – volume: 53 126 start-page: 5073 5173 year: 2014 2014 end-page: 7507 5177 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 7 start-page: 10220 year: 2016 publication-title: Nat. Commun. – volume: 9 start-page: 3657 year: 2018 publication-title: Nat. Commun. – volume: 58 131 start-page: 16894 17050 year: 2019 2019 end-page: 16898 17054 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 25 start-page: 2489 year: 2015 end-page: 2500 publication-title: Adv. Funct. Mater. – volume: 15 start-page: 1374 year: 2015 end-page: 1381 publication-title: Nano Lett. – volume: 18 start-page: 1213 year: 2015 end-page: 1225 publication-title: Nat. Neurosci. – volume: 140 start-page: 5385 year: 2018 end-page: 5392 publication-title: J. Am. Chem. Soc. – volume: 90 start-page: 13744 year: 2018 end-page: 13750 publication-title: Anal. Chem. – volume: 55 128 start-page: 2411 2457 year: 2016 2016 end-page: 2415 2461 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 293 start-page: 4940 year: 2018 end-page: 4951 publication-title: J. Biol. Chem. – volume: 14 start-page: 80 year: 2019 end-page: 88 publication-title: Nat. Nanotechnol. – volume: 348 start-page: 346 year: 1990 end-page: 348 publication-title: Nature – ident: e_1_2_2_42_2 doi: 10.1002/ange.201910955 – ident: e_1_2_2_2_1 doi: 10.1021/jacs.7b12106 – ident: e_1_2_2_23_1 doi: 10.1021/ja0650899 – ident: e_1_2_2_36_2 doi: 10.1002/ange.201510140 – ident: e_1_2_2_33_1 doi: 10.1021/cr500249p – ident: e_1_2_2_21_1 doi: 10.1002/anie.201803229 – ident: e_1_2_2_18_1 doi: 10.1038/348346a0 – ident: e_1_2_2_50_1 doi: 10.1002/anie.201700171 – ident: e_1_2_2_37_1 doi: 10.1021/jacs.8b10481 – ident: e_1_2_2_11_1 doi: 10.1021/ac500443q – ident: e_1_2_2_32_1 doi: 10.1038/srep41277 – ident: e_1_2_2_39_1 doi: 10.1038/nchem.2075 – ident: e_1_2_2_12_1 doi: 10.1038/ncomms10220 – ident: e_1_2_2_13_1 doi: 10.1039/c2an35707k – ident: e_1_2_2_29_1 doi: 10.1021/acs.analchem.8b04159 – ident: e_1_2_2_40_1 doi: 10.1021/am506202s – ident: e_1_2_2_30_1 doi: 10.1073/pnas.0705102104 – ident: e_1_2_2_34_2 doi: 10.1002/ange.201311160 – ident: e_1_2_2_36_1 doi: 10.1002/anie.201510140 – ident: e_1_2_2_35_1 doi: 10.1021/ja513027s – ident: e_1_2_2_6_1 doi: 10.1021/nn405612q – ident: e_1_2_2_34_1 doi: 10.1002/anie.201311160 – ident: e_1_2_2_3_1 doi: 10.1038/s41565-018-0315-8 – ident: e_1_2_2_50_2 doi: 10.1002/ange.201700171 – ident: e_1_2_2_21_2 doi: 10.1002/ange.201803229 – ident: e_1_2_2_25_1 doi: 10.1146/annurev-anchem-061417-125840 – ident: e_1_2_2_17_1 doi: 10.1098/rsif.2008.0052 – ident: e_1_2_2_44_1 doi: 10.1038/s41590-017-0004-z – ident: e_1_2_2_10_1 doi: 10.1002/smll.201200996 – ident: e_1_2_2_1_1 doi: 10.3390/cells7060055 – ident: e_1_2_2_5_1 doi: 10.1021/ja5053279 – ident: e_1_2_2_48_1 doi: 10.1021/acs.chemrev.8b00037 – ident: e_1_2_2_28_1 doi: 10.1039/C6CC08125H – ident: e_1_2_2_41_1 doi: 10.1016/j.cplett.2008.02.091 – ident: e_1_2_2_7_1 doi: 10.1021/acs.analchem.5b00542 – ident: e_1_2_2_51_1 doi: 10.1021/acs.chemrev.7b00767 – ident: e_1_2_2_27_1 doi: 10.1021/nl504660t – ident: e_1_2_2_43_1 doi: 10.1038/s41467-017-02481-5 – ident: e_1_2_2_31_1 doi: 10.1038/s41467-018-05832-y – volume: 5 start-page: 127 year: 2010 ident: e_1_2_2_46_1 publication-title: Res. Pharm. Sci. – ident: e_1_2_2_47_1 doi: 10.1002/adfm.201404484 – ident: e_1_2_2_14_1 doi: 10.1038/15095 – ident: e_1_2_2_38_1 doi: 10.1038/nchem.1496 – ident: e_1_2_2_9_1 doi: 10.1039/c0lc00114g – ident: e_1_2_2_4_1 doi: 10.1021/nn405097u – ident: e_1_2_2_22_1 doi: 10.1074/jbc.M117.800763 – ident: e_1_2_2_42_1 doi: 10.1002/anie.201910955 – ident: e_1_2_2_15_1 doi: 10.1038/nprot.2015.110 – ident: e_1_2_2_20_1 doi: 10.1039/C7LC00133A – ident: e_1_2_2_45_1 doi: 10.1289/ehp.97105s51261 – ident: e_1_2_2_16_1 doi: 10.1021/acs.chemrev.6b00638 – ident: e_1_2_2_26_1 doi: 10.1039/c2nr31700a – ident: e_1_2_2_8_1 doi: 10.1021/ja0613106 – ident: e_1_2_2_19_1 doi: 10.1016/j.tibtech.2014.04.008 – ident: e_1_2_2_49_1 doi: 10.1038/nn.4091 – ident: e_1_2_2_24_1 doi: 10.1038/nnano.2016.268 |
SSID | ssj0028806 |
Score | 2.5387716 |
Snippet | Single‐cell and in situ cell‐based operation with nanopipette approach offers a possibility to elucidate the intracellular processes and may aid the... Single-cell and in situ cell-based operation with nanopipette approach offers a possibility to elucidate the intracellular processes and may aid the... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 5157 |
SubjectTerms | Cell lines Cell survival Cell viability Damage diarylethene Dosage Doxorubicin Drug delivery Electric potential Hybrid systems Hydrogels Injection potential-free nanopipette precise dosing single-cell operation supramolecular hydrogel Survival Temporal resolution |
Title | High‐Preservation Single‐Cell Operation through a Photo‐responsive Hydrogel‐Nanopipette System |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202013011 https://www.ncbi.nlm.nih.gov/pubmed/33241876 https://www.proquest.com/docview/2491851282 https://www.proquest.com/docview/2464605111 |
Volume | 60 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fT9swELcQL9vL2F_oYJORkPYUaBzHaR9RRVUmDRBbJd4i_zkDWtRUpZ0ET3yEfcZ9kt3FSViZEBI8xjknjn3O3fnufsfYjsqcccq5SNmej6TXJjIaulEcQ1_ZrocMKHf425EajeXXs_Tsnyz-gA_RHrjRzqj-17TBtbnauwMNpQxstO8Eud6q5F4K2CKt6LTFjxLInCG9KEkiqkLfoDZ2xd5y92Wp9J-quay5VqJnuMZ0M-gQcfJzdzE3u_bmHp7jc77qNXtV66V8PzDSG7YCk7fsxaApB_eOeYoI-XP7m2I2moNc_h0FXwHYOoCi4MdTCPzE6-o_XPOTi3JeIsGsjsX9BXx07WblORTYiv_2cno5pXAjHrDT37Px8ODHYBTVRRoiKzOF9ifaT8YJ4ftpLxNKp56qEaGJDiBsLwFJgHsqcdIordNMSocahu9acuhq8P3kA1udlBPYYFwrNG9il4ASTsbeaRAJxEYqa9O057MOi5pFym2NYE6FNIo8YC-LnGYvb2evw7609NOA3fEg5Vaz5nm9h69yNExRmUH5LTpsu72Ns04uFT2BckE0ihzLMT1iPfBK-6oEddUYhU2HiWrFHxlDvn90eNBefXxKp032UlDITRUit8VW57MFfEKdaW4-V_viL7kKEm8 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB6hcigXyj8LBYyExCntxnGc3WO1arWFdkHQStwi_4wLItqstrtIcOIReEaehJk4CVoQQoJjnHHi2OPMjGfmG4BnuvDWa-8T7UYhUcHYxBocJmmKY-2GAQvk3OHTmZ6eqxfv8i6akHNhIj5Ef-DGO6P5X_MG5wPp_Z-ooZyCTQaeZN8bZ_de5bLejVX1pkeQksSeMcEoyxKuQ9_hNg7l_mb_Tbn0m7K5qbs2wudoB2w37Bhz8nFvvbJ77ssviI7_9V034HqrmoqDyEs34QrOb8H2pKsIdxsCB4V8__qNwza6s1zxlmRfhdQ6waoSrxYYWUq0BYCEEa_f16uaCJZtOO4nFNPPfllfYEWt9HuvFx8WHHEkInz6HTg_OjybTJO2TkPiVKHJBCUTynopwzgfFVKbPHBBIrLSEaUbZagYc09nXlltTF4o5UnJCEPHPl2DYZzdha15Pcf7IIwmCyf1GWrpVRq8QZlhapV2Ls9HoRhA0q1S6VoQc66lUZURflmWPHtlP3sDeN7TLyJ8xx8pd7tFL9ttfFmSbUr6DIlwOYCn_W2adfaqmDnWa6bR7FtO-RH3IrP0r8pIXU1J3gxANkv-lzGUB7Pjw_7qwb90egLb07PTk_LkePbyIVyTHIHTRMztwtZqucZHpEKt7ONmk_wAzYAWig |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwELaqVgIuLb_tQgEjIXFKmziOkz1W2662_CwVUKm3yLHHgIg20bKLRE99BJ6xT9KZOAlsEUKCY5xx4tjjzIxn5hvGnqvUFlZZGyiTuUA6XQSFhjCIIhgqEzpIgXKH30zV5FS-PEvOfsni9_gQ_YEb7Yzmf00bvLZu_ydoKGVgo30nyPVGyb0bUoUZ8fXhux5ASiB3-vyiOA6oDH0H2xiK_dX-q2LpN11zVXVtZM94i-lu1D7k5MveclHsmfNrgI7_81m32WarmPIDz0l32BrM7rKbo64e3D3mKCTk8uIHBW10J7n8PUq-ErB1BGXJ39bgGYq35X-45iefqkWFBPM2GPcb8Ml3O68-Qomt-HOv6s81xRtxD55-n52Ojz6MJkFbpSEwMlVogKIBVVgh3DDJUqF04qgcEdroAMJkMUhC3FOxlYXSOkmltKhiuNCQR1eDG8YP2PqsmsEO41qhfRPZGJSwMnJWg4ghKqQyJkkylw5Y0C1SbloIc6qkUeYefFnkNHt5P3sD9qKnrz14xx8pd7s1z9tN_DVHyxS1GRTgYsCe9bdx1smnomdQLYlGkWc5okdse17pXxWjshqhtBkw0az4X8aQH0yPj_qrh__S6Sm7cXI4zl8fT189YrcEhd804XK7bH0xX8Jj1J8WxZNmi1wBmS4VQg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High%E2%80%90Preservation+Single%E2%80%90Cell+Operation+through+a+Photo%E2%80%90responsive+Hydrogel%E2%80%90Nanopipette+System&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Zi%E2%80%90Yuan+Li&rft.au=Ying%E2%80%90Ya+Liu&rft.au=Yuan%E2%80%90Jie+Li&rft.au=Wang%2C+Wenhui&rft.date=2021-03-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=60&rft.issue=10&rft.spage=5157&rft.epage=5161&rft_id=info:doi/10.1002%2Fanie.202013011&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon |