Evolution of Morphology of POEGMA‐b‐PBzMA Nano‐Objects Formed by PISA

The evolution of particle morphology occurring during polymerization‐induced self‐assembly (PISA) of a block copolymer poly(oligo(ethylene glycol) methacrylate)‐b‐poly(benzyl methacrylate) (POEGMA‐b‐PBzMA) is studied. A well‐controlled reversible addition–fragmentation chain transfer (RAFT) polymeri...

Full description

Saved in:
Bibliographic Details
Published inMacromolecular rapid communications. Vol. 40; no. 2; pp. e1800331 - n/a
Main Authors Zhang, Yaoming, Wang, Zongyu, Matyjaszewski, Krzysztof, Pietrasik, Joanna
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.01.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The evolution of particle morphology occurring during polymerization‐induced self‐assembly (PISA) of a block copolymer poly(oligo(ethylene glycol) methacrylate)‐b‐poly(benzyl methacrylate) (POEGMA‐b‐PBzMA) is studied. A well‐controlled reversible addition–fragmentation chain transfer (RAFT) polymerization yields nano‐objects with various morphologies: spheres, aggregates, worm‐like structures, and vesicles. A comparison of the morphology of the nano‐objects formed from two different chain‐length stabilizers established that the unreacted monomer played an important role during the morphology transitions, which is contrary to previous observations. In addition, morphology evolution to higher‐order structures could be attained simply by extending the reaction time, after reaching full monomer conversion. The evolution of morphology of POEGMA‐b‐PBzMA during polymerization‐induced self‐assembly (PISA) was studied. Various morphologies including spheres, worm‐like structures, and vesicles were obtained by PISA. The morphology evolution to higher‐order structures could be attained by extending the reaction time, after reaching full monomer conversion.
AbstractList The evolution of particle morphology occurring during polymerization-induced self-assembly (PISA) of a block copolymer poly(oligo(ethylene glycol) methacrylate)-b-poly(benzyl methacrylate) (POEGMA-b-PBzMA) is studied. A well-controlled reversible addition-fragmentation chain transfer (RAFT) polymerization yields nano-objects with various morphologies: spheres, aggregates, worm-like structures, and vesicles. A comparison of the morphology of the nano-objects formed from two different chain-length stabilizers established that the unreacted monomer played an important role during the morphology transitions, which is contrary to previous observations. In addition, morphology evolution to higher-order structures could be attained simply by extending the reaction time, after reaching full monomer conversion.The evolution of particle morphology occurring during polymerization-induced self-assembly (PISA) of a block copolymer poly(oligo(ethylene glycol) methacrylate)-b-poly(benzyl methacrylate) (POEGMA-b-PBzMA) is studied. A well-controlled reversible addition-fragmentation chain transfer (RAFT) polymerization yields nano-objects with various morphologies: spheres, aggregates, worm-like structures, and vesicles. A comparison of the morphology of the nano-objects formed from two different chain-length stabilizers established that the unreacted monomer played an important role during the morphology transitions, which is contrary to previous observations. In addition, morphology evolution to higher-order structures could be attained simply by extending the reaction time, after reaching full monomer conversion.
The evolution of particle morphology occurring during polymerization‐induced self‐assembly (PISA) of a block copolymer poly(oligo(ethylene glycol) methacrylate)‐b‐poly(benzyl methacrylate) (POEGMA‐b‐PBzMA) is studied. A well‐controlled reversible addition–fragmentation chain transfer (RAFT) polymerization yields nano‐objects with various morphologies: spheres, aggregates, worm‐like structures, and vesicles. A comparison of the morphology of the nano‐objects formed from two different chain‐length stabilizers established that the unreacted monomer played an important role during the morphology transitions, which is contrary to previous observations. In addition, morphology evolution to higher‐order structures could be attained simply by extending the reaction time, after reaching full monomer conversion. The evolution of morphology of POEGMA‐b‐PBzMA during polymerization‐induced self‐assembly (PISA) was studied. Various morphologies including spheres, worm‐like structures, and vesicles were obtained by PISA. The morphology evolution to higher‐order structures could be attained by extending the reaction time, after reaching full monomer conversion.
The evolution of particle morphology occurring during polymerization-induced self-assembly (PISA) of a block copolymer poly(oligo(ethylene glycol) methacrylate)-b-poly(benzyl methacrylate) (POEGMA-b-PBzMA) is studied. A well-controlled reversible addition-fragmentation chain transfer (RAFT) polymerization yields nano-objects with various morphologies: spheres, aggregates, worm-like structures, and vesicles. A comparison of the morphology of the nano-objects formed from two different chain-length stabilizers established that the unreacted monomer played an important role during the morphology transitions, which is contrary to previous observations. In addition, morphology evolution to higher-order structures could be attained simply by extending the reaction time, after reaching full monomer conversion.
The evolution of particle morphology occurring during polymerization‐induced self‐assembly (PISA) of a block copolymer poly(oligo(ethylene glycol) methacrylate)‐ b ‐poly(benzyl methacrylate) (POEGMA‐ b ‐PBzMA) is studied. A well‐controlled reversible addition–fragmentation chain transfer (RAFT) polymerization yields nano‐objects with various morphologies: spheres, aggregates, worm‐like structures, and vesicles. A comparison of the morphology of the nano‐objects formed from two different chain‐length stabilizers established that the unreacted monomer played an important role during the morphology transitions, which is contrary to previous observations. In addition, morphology evolution to higher‐order structures could be attained simply by extending the reaction time, after reaching full monomer conversion.
Author Matyjaszewski, Krzysztof
Zhang, Yaoming
Pietrasik, Joanna
Wang, Zongyu
Author_xml – sequence: 1
  givenname: Yaoming
  surname: Zhang
  fullname: Zhang, Yaoming
  organization: Lodz University of Technology
– sequence: 2
  givenname: Zongyu
  surname: Wang
  fullname: Wang, Zongyu
  organization: Carnegie Mellon University
– sequence: 3
  givenname: Krzysztof
  surname: Matyjaszewski
  fullname: Matyjaszewski, Krzysztof
  email: km3b@andrew.cmu.edu
  organization: Lodz University of Technology
– sequence: 4
  givenname: Joanna
  surname: Pietrasik
  fullname: Pietrasik, Joanna
  email: joanna.pietrasik@p.lodz.pl
  organization: Lodz University of Technology
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29974536$$D View this record in MEDLINE/PubMed
BookMark eNqFkctOAjEUhhuDkYtuXZpJ3LgBe5npTJcjASSCEC_rZtopOmSYYjujwZWP4DP6JJYAmpAYF017ku8_5-9_mqBW6EIBcIpgB0GILxeJkR0MUQQhIegANFCAUZswHNbcG2LcRoTQOmhaO4cQRj7ER6COGQv9gNAGuOm96rwqM114euaNtVk-61w_rdbVdNIbjOOvj0_hzvTqfRx7t0mhXTERcyVL6_W1WajUEytvOryPj8HhLMmtOtneLfDY7z10r9ujyWDYjUdt6YfUmUOEMaZElKaSYoJ8EVDFnDlEZRIwRkWKJQ3ClJE0SiLp-yJFKBRE-pFSLCQtcLHpuzT6pVK25IvMSpXnSaF0ZTmG1A2iIcQOPd9D57oyhXPHMaIRDGEQBY4621KVcP_hS5O5XFd8F5MD_A0gjbbWqBmXWZmsUytNkuUcQb7eBl9vg_9sw8k6e7Jd5z8FbCN4y3K1-ofm4_iu-6v9Box0m7E
CitedBy_id crossref_primary_10_1016_j_eurpolymj_2024_113666
crossref_primary_10_1039_D1PY00032B
crossref_primary_10_1021_acs_langmuir_1c01609
crossref_primary_10_1021_acs_biomac_1c00569
crossref_primary_10_1021_acsomega_2c03440
crossref_primary_10_1021_acs_langmuir_0c02538
crossref_primary_10_1039_D0SC01320J
crossref_primary_10_1002_marc_201800885
crossref_primary_10_1039_D0PY00710B
crossref_primary_10_1021_acs_macromol_0c02341
crossref_primary_10_1016_j_polymer_2021_123747
crossref_primary_10_1007_s00289_021_03929_x
crossref_primary_10_1016_j_eurpolymj_2024_113340
crossref_primary_10_1021_acs_macromol_2c00561
crossref_primary_10_1021_acs_langmuir_3c03392
Cites_doi 10.1021/ma300713f
10.1021/ma501140h
10.1002/marc.201300730
10.1002/anie.201511159
10.1021/ja511423m
10.1039/C7PY00407A
10.1039/c3sc50305d
10.1021/ja205887v
10.1126/science.1141768
10.1021/ja501756h
10.1002/ange.201609365
10.1021/ja206301a
10.1021/mz500195u
10.1021/ma301459y
10.1021/acs.macromol.6b01729
10.1016/j.polymer.2007.11.020
10.1021/acs.macromol.7b02039
10.1021/acs.macromol.6b01966
10.1002/adma.201200925
10.1021/ma981472p
10.1039/C5PY01795E
10.1039/C7PY01161J
10.1021/acsmacrolett.7b00836
10.1021/la010831y
10.1021/acs.macromol.5b02602
10.1021/ma035467j
10.1021/ma9804951
10.1021/ja3024059
10.1039/c2sm25537e
ContentType Journal Article
Copyright 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
– notice: 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7SR
7U5
8FD
JG9
JQ2
L7M
7X8
DOI 10.1002/marc.201800331
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

MEDLINE
Materials Research Database
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3927
EndPage n/a
ExternalDocumentID 29974536
10_1002_marc_201800331
MARC201800331
Genre article
Journal Article
GrantInformation_xml – fundername: National Science Center
  funderid: UMO‐2014/14/A/ST5/ 00204
– fundername: NSF
  funderid: DMR 1501324
– fundername: NSF
  grantid: DMR 1501324
– fundername: National Science Center
  grantid: UMO-2014/14/A/ST5/ 00204
GroupedDBID ---
-~X
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABLJU
ABPVW
ABTAH
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
GYXMG
H.T
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M6T
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
RNS
ROL
RWB
RWI
RX1
RYL
SAMSI
SUPJJ
TUS
UB1
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
ZY4
ZZTAW
~IA
~WT
AAYXX
ADMLS
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7SR
7U5
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
JQ2
L7M
7X8
ID FETCH-LOGICAL-c4761-313999eb8ddc62314b56e900016ca5996bd2c657d93d8a8c44bd117b3c48ee973
IEDL.DBID DR2
ISSN 1022-1336
1521-3927
IngestDate Fri Jul 11 01:25:01 EDT 2025
Fri Jul 25 10:42:51 EDT 2025
Thu Apr 03 07:09:28 EDT 2025
Thu Apr 24 23:07:12 EDT 2025
Tue Jul 01 03:31:38 EDT 2025
Wed Jan 22 16:48:52 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords polymerization-induced self-assembly
reversible addition-fragmentation chain transfer
morphology
nanostructures
Language English
License 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4761-313999eb8ddc62314b56e900016ca5996bd2c657d93d8a8c44bd117b3c48ee973
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 29974536
PQID 2168070585
PQPubID 1016394
PageCount 6
ParticipantIDs proquest_miscellaneous_2064766702
proquest_journals_2168070585
pubmed_primary_29974536
crossref_citationtrail_10_1002_marc_201800331
crossref_primary_10_1002_marc_201800331
wiley_primary_10_1002_marc_201800331_MARC201800331
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2019
PublicationDateYYYYMMDD 2019-01-01
PublicationDate_xml – month: 01
  year: 2019
  text: January 2019
PublicationDecade 2010
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Macromolecular rapid communications.
PublicationTitleAlternate Macromol Rapid Commun
PublicationYear 2019
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017; 7
2015; 5
2013; 1
2017; 24
2002; 1
2004; 4
2008; 5
2012; 17
2011; 39
2013; 5
1999; 6
2012; 30
2016; 11
1998; 16
2016; 4
2016; 6
2014; 4
2016; 1
2017; 33
2017; 12
2014; 16
2011; 41
2014; 15
2016; 20
2017; 18
2007; 5838
2012; 25
2014; 7
2012; 23
2016; 22
e_1_2_4_21_1
e_1_2_4_20_1
e_1_2_4_23_1
e_1_2_4_22_1
e_1_2_4_25_1
e_1_2_4_24_1
e_1_2_4_27_1
e_1_2_4_26_1
e_1_2_4_29_1
e_1_2_4_28_1
e_1_2_4_1_1
e_1_2_4_3_1
e_1_2_4_2_1
e_1_2_4_5_1
e_1_2_4_4_1
e_1_2_4_7_1
e_1_2_4_6_1
e_1_2_4_9_1
e_1_2_4_8_1
e_1_2_4_30_1
e_1_2_4_10_1
e_1_2_4_11_1
e_1_2_4_12_1
e_1_2_4_13_1
e_1_2_4_14_1
e_1_2_4_15_1
e_1_2_4_16_1
e_1_2_4_18_1
e_1_2_4_17_1
Derry M. J. (e_1_2_4_19_1) 2016; 1
References_xml – volume: 5
  start-page: 2081
  year: 2013
  publication-title: Chem. Sci.
– volume: 16
  start-page: 5559
  year: 1998
  publication-title: Macromolecules
– volume: 1
  start-page: 128
  year: 2013
  publication-title: Macromolecules
– volume: 24
  start-page: 9750
  year: 2017
  publication-title: Macromolecules
– volume: 11
  start-page: 3739
  year: 2016
  publication-title: Angew. Chem. Int. Ed.
– volume: 7
  start-page: 1772
  year: 2017
  publication-title: Angew. Chem.
– volume: 4
  start-page: 851
  year: 2016
  publication-title: Polym. Chem.
– volume: 17
  start-page: 6753
  year: 2012
  publication-title: Macromolecules
– volume: 4
  start-page: 417
  year: 2014
  publication-title: Macromol. Rapid Commun.
– volume: 5
  start-page: 1929
  year: 2015
  publication-title: J. Am. Chem. Soc.
– volume: 41
  start-page: 16581
  year: 2011
  publication-title: J. Am. Chem. Soc.
– volume: 5838
  start-page: 647
  year: 2007
  publication-title: Science
– volume: 20
  start-page: 7897
  year: 2016
  publication-title: Macromolecules
– volume: 18
  start-page: 2860
  year: 2017
  publication-title: Polym. Chem.
– volume: 30
  start-page: 7753
  year: 2012
  publication-title: Soft Matter
– volume: 15
  start-page: 5790
  year: 2014
  publication-title: J. Am. Chem. Soc.
– volume: 1
  start-page: 31
  year: 2002
  publication-title: Langmuir
– volume: 6
  start-page: 1985
  year: 2016
  publication-title: Macromolecules
– volume: 5
  start-page: 1079
  year: 2008
  publication-title: Polymer
– volume: 39
  start-page: 15707
  year: 2011
  publication-title: J. Am. Chem. Soc.
– volume: 1
  year: 2016
  publication-title: Prog. Polym. Sci.
– volume: 33
  start-page: 4811
  year: 2017
  publication-title: Polym. Chem.
– volume: 7
  start-page: 591
  year: 2014
  publication-title: ACS Macro Lett.
– volume: 16
  start-page: 5613
  year: 2014
  publication-title: Macromolecules
– volume: 23
  start-page: 9741
  year: 2012
  publication-title: J. Am. Chem. Soc.
– volume: 25
  start-page: 3378
  year: 2012
  publication-title: Adv. Mater.
– volume: 12
  start-page: 1379
  year: 2017
  publication-title: ACS Macro Lett.
– volume: 4
  start-page: 1511
  year: 2004
  publication-title: Macromolecules
– volume: 22
  start-page: 8605
  year: 2016
  publication-title: Macromolecules
– volume: 6
  start-page: 2071
  year: 1999
  publication-title: Macromolecules
– ident: e_1_2_4_2_1
  doi: 10.1021/ma300713f
– ident: e_1_2_4_22_1
  doi: 10.1021/ma501140h
– ident: e_1_2_4_13_1
  doi: 10.1002/marc.201300730
– ident: e_1_2_4_20_1
  doi: 10.1002/anie.201511159
– ident: e_1_2_4_7_1
  doi: 10.1021/ja511423m
– ident: e_1_2_4_28_1
  doi: 10.1039/C7PY00407A
– ident: e_1_2_4_6_1
  doi: 10.1039/c3sc50305d
– ident: e_1_2_4_17_1
  doi: 10.1021/ja205887v
– ident: e_1_2_4_25_1
  doi: 10.1126/science.1141768
– ident: e_1_2_4_18_1
  doi: 10.1021/ja501756h
– ident: e_1_2_4_29_1
  doi: 10.1002/ange.201609365
– ident: e_1_2_4_8_1
  doi: 10.1021/ja206301a
– ident: e_1_2_4_14_1
  doi: 10.1021/mz500195u
– ident: e_1_2_4_16_1
  doi: 10.1021/ma301459y
– ident: e_1_2_4_23_1
  doi: 10.1021/acs.macromol.6b01729
– ident: e_1_2_4_12_1
  doi: 10.1016/j.polymer.2007.11.020
– ident: e_1_2_4_9_1
  doi: 10.1021/acs.macromol.7b02039
– ident: e_1_2_4_27_1
  doi: 10.1021/acs.macromol.6b01966
– ident: e_1_2_4_15_1
  doi: 10.1002/adma.201200925
– ident: e_1_2_4_11_1
  doi: 10.1021/ma981472p
– ident: e_1_2_4_21_1
  doi: 10.1039/C5PY01795E
– ident: e_1_2_4_5_1
  doi: 10.1039/C7PY01161J
– ident: e_1_2_4_4_1
  doi: 10.1021/acsmacrolett.7b00836
– ident: e_1_2_4_24_1
  doi: 10.1021/la010831y
– ident: e_1_2_4_3_1
  doi: 10.1021/acs.macromol.5b02602
– ident: e_1_2_4_26_1
  doi: 10.1021/ma035467j
– ident: e_1_2_4_10_1
  doi: 10.1021/ma9804951
– volume: 1
  year: 2016
  ident: e_1_2_4_19_1
  publication-title: Prog. Polym. Sci.
– ident: e_1_2_4_30_1
  doi: 10.1021/ja3024059
– ident: e_1_2_4_1_1
  doi: 10.1039/c2sm25537e
SSID ssj0008402
Score 2.3544583
Snippet The evolution of particle morphology occurring during polymerization‐induced self‐assembly (PISA) of a block copolymer poly(oligo(ethylene glycol)...
The evolution of particle morphology occurring during polymerization-induced self-assembly (PISA) of a block copolymer poly(oligo(ethylene glycol)...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e1800331
SubjectTerms Addition polymerization
Block copolymers
Chain transfer
Chemistry Techniques, Synthetic - methods
Ethylene glycol
Evolution
Microscopy, Electron, Transmission
Monomers
Morphology
Nanoparticles - chemistry
Nanoparticles - ultrastructure
nanostructures
Polyethylene glycol
Polymerization
polymerization‐induced self‐assembly
Polymethacrylic Acids - chemical synthesis
Polymethacrylic Acids - chemistry
Reaction time
reversible addition–fragmentation chain transfer
Title Evolution of Morphology of POEGMA‐b‐PBzMA Nano‐Objects Formed by PISA
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmarc.201800331
https://www.ncbi.nlm.nih.gov/pubmed/29974536
https://www.proquest.com/docview/2168070585
https://www.proquest.com/docview/2064766702
Volume 40
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB4hLnBp6TsFqlRC6ilAHMeOj2G1W1qUsqJF4hb5lQvVpuruIsGJn8Bv7C9hJi-6rapK7SFSrDiK4xmPvxnb3wDsuSq1rFIikpxSmLmERSrJRGSl1NwZVllGp5GLT-L4nH-8SC9-OsXf8kMMATcaGY29pgGuzfzggTSUqB5oa1ZG6cjI_6ENW4SKzh74o9B7aZc70eNCZ0z0rI2H7GD19dVZ6TeouYpcm6ln8hh03-h2x8nl_nJh9u3NL3yO__NXW_Cow6Vh3irSE1jzs6ewMerTwT2Dk_FVp6VhXYVFjfJpIvJUmp6O3xf5j9s7g9f06KbIQ7TaNRZODcV55uEEobF3obkOpx8-58_hfDL-MjqOukwMkeWSAlSIE5XyJnPOIl6KuUmFVw1etJoIXoxjVqTSqcRlOrOcGxfH0iSWZ94rmbyA9Vk9868g9NZUSebQsBjNfRUrTh6pTm1ltJRKBRD1kihtR1NO2TK-li3BMiupi8qhiwJ4N9T_1hJ0_LHmTi_Yshuo85LFIkOrh05TAG-Hx9i1tG6iZ75eYh06kCuEPGQBvGwVYvgUzuaSp4kIgDVi_UsbyiI_Gw2l1__y0jZs4r1qw0A7sL74vvS7CIwW5k2j_PcVCwPH
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtNAFL0qZVE2vB-BAkYCsXJbj8czngULkyYkpG6j0krdGc_DG1CMSAJqV3wCv8Kv8Al8Cff6VQWEkJC6YOHF2OPX3PedmXMBntoiMqxQwpecSpjZkPkqjIVvpMy51awwjHYjp_tidMxfn0Qna_Ct3QtT40N0CTeSjEpfk4BTQnr7HDWUsB5obVZM9ciCZl3lxJ1-xqht_mK8iyR-xthwcNQf-U1hAd9wSfkWdHuUcjq21qD5D7iOhFOV-2NywivRlhkRSatCG-ex4VzbIJA6NDx2TskQn3sJLlMZcYLr3z08R6zCeKmeYMUYD8M_0eJE7rDt1e9dtYO_ObervnJl7IbX4Hs7TPUal3dby4XeMme_IEj-V-N4Ha42rreX1LJyA9bc7CZs9NuKd7dgMvjUCKJXFl5aIgtWkw7Umh4MXqXJjy9fNR7Tl2dp4qFhKrFxoCmVNfeG6P076-lTbzp-k9yG4wv5lzuwPitn7h54zugijC3qTp1zVwSKU9CdR6bQuZRK9cBvSZ-ZBomdCoK8z2oMaZYRSbKOJD143vX_UGOQ_LHnZstJWaOL5hkLRIyKHePCHjzpLuPQ0tRQPnPlEvvQnmMh5A7rwd2aA7tXocMieRSKHrCKj_7yDVmaHPa71v1_uekxbIyO0r1sb7w_eQBX8Lyqs16bsL74uHQP0Q9c6EeV5Hnw9qJZ9CexD2Am
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3JbtQwGP5VigS9sC-BAkYCcUo7cRw7PnAIs9BhSDsqVOotjZdciiYVMwNqTzwCj8Kr8Ao8Cb-zVQNCSEg9cMjBibP533_b3w_wzBSRpoXkvmCuhJkJqS_DmPtaiJwZRQtN3W7kdJfvHLA3h9HhGnxr98LU-BBdws1JRqWvnYCfmGL7HDTUQT24pVmxK0cWNMsqJ_b0MwZt85fjAVL4OaWj4fv-jt_UFfA1Ey7dgl6PlFbFxmi0_gFTEbey8n507uBKlKGaR8LI0MR5rBlTJgiECjWLrZUixOdegsuM96QrFjHYPweswnCpnl_FEA-jP97CRPbo9ur3rprB33zbVVe5snWj6_C9HaV6icvx1nKhtvTZLwCS_9Mw3oBrjeNNklpSbsKand2Cq_223t1tmAw_NWJIyoKkJTJgNeXgWtO94es0-fHlq8Jj-uosTQiapRIbe8olsuZkhL6_NUSdkun4XXIHDi7kX-7C-qyc2ftArFZFGBvUnCpntggkcyF3HulC5UJI6YHfUj7TDQ67KwfyIasRpGnmSJJ1JPHgRdf_pEYg-WPPzZaRskYTzTMa8BjVOkaFHjztLuPQuomhfGbLJfZxO445Fz3qwb2aAbtXobsiWBRyD2jFRn_5hixN9vtd68G_3PQErkwHo-zteHfyEDbwtKxTXpuwvvi4tI_QCVyox5XcETi6aA79CQj5XtU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evolution+of+Morphology+of+POEGMA-b-PBzMA+Nano-Objects+Formed+by+PISA&rft.jtitle=Macromolecular+rapid+communications.&rft.au=Zhang%2C+Yaoming&rft.au=Wang%2C+Zongyu&rft.au=Matyjaszewski%2C+Krzysztof&rft.au=Pietrasik%2C+Joanna&rft.date=2019-01-01&rft.issn=1521-3927&rft.eissn=1521-3927&rft.volume=40&rft.issue=2&rft.spage=e1800331&rft_id=info:doi/10.1002%2Fmarc.201800331&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1022-1336&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1022-1336&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1022-1336&client=summon