Turn‐On Fluorescence in Tetra‐NHC Ligands by Rigidification through Metal Complexation: An Alternative to Aggregation‐Induced Emission

Two tetraphenylethylene (TPE) bridged tetraimidazolium salts, [H4L‐Et](PF6)4 and [H4L‐Bu](PF6)4, were used as precursors for the synthesis of the dinuclear AgI and AuI tetracarbene complexes [Ag2(L‐Et)](PF6)2, [Ag2(L‐Bu)](PF6)2, [Au2(L‐Et)](PF6)2, and [Au2(L‐Bu)](PF6)2. The tetraimidazolium salts sh...

Full description

Saved in:
Bibliographic Details
Published inAngewandte Chemie International Edition Vol. 56; no. 10; pp. 2785 - 2789
Main Authors Sinha, Narayan, Stegemann, Linda, Tan, Tristan T. Y., Doltsinis, Nikos L., Strassert, Cristian A., Hahn, F. Ekkehardt
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.03.2017
EditionInternational ed. in English
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Two tetraphenylethylene (TPE) bridged tetraimidazolium salts, [H4L‐Et](PF6)4 and [H4L‐Bu](PF6)4, were used as precursors for the synthesis of the dinuclear AgI and AuI tetracarbene complexes [Ag2(L‐Et)](PF6)2, [Ag2(L‐Bu)](PF6)2, [Au2(L‐Et)](PF6)2, and [Au2(L‐Bu)](PF6)2. The tetraimidazolium salts show almost no fluorescence (ΦF<1 %) in dilute solution while their NHC complexes display fluorescence “turn‐on” (ΦF up to 47 %). This can be ascribed to rigidification mediated by the restriction of intramolecular rotation within the TPE moiety upon complexation. DFT calculations confirm that the metals are not involved in the lowest excited singlet and triplet states, thus explaining the lack of phosphorescence and fast intersystem crossing as a result of heavy atom effects. The rigidification upon complexation for fluorescence turn‐on constitutes an alternative to the known aggregation‐induced emission (AIE). Stop rotating! Tetraphenylethylene (TPE) bridged tetrakis‐NHC precursors display fluorescence turn‐on in dilute solution upon formation of organometallic chelate complexes. The fluorescence enhancement can be attributed to the rigidification of the TPE moiety, caused by restriction of its intramolecular rotation. This ridigification method for the fluorescence turn‐on constitutes an alternative approach to aggregation‐induced emission.
AbstractList Two tetraphenylethylene (TPE) bridged tetraimidazolium salts, [H 4 L ‐Et](PF 6 ) 4 and [H 4 L ‐Bu](PF 6 ) 4 , were used as precursors for the synthesis of the dinuclear Ag I and Au I tetracarbene complexes [Ag 2 ( L ‐Et)](PF 6 ) 2 , [Ag 2 ( L ‐Bu)](PF 6 ) 2 , [Au 2 ( L ‐Et)](PF 6 ) 2 , and [Au 2 ( L ‐Bu)](PF 6 ) 2 . The tetraimidazolium salts show almost no fluorescence ( Φ F <1 %) in dilute solution while their NHC complexes display fluorescence “turn‐on” ( Φ F up to 47 %). This can be ascribed to rigidification mediated by the restriction of intramolecular rotation within the TPE moiety upon complexation. DFT calculations confirm that the metals are not involved in the lowest excited singlet and triplet states, thus explaining the lack of phosphorescence and fast intersystem crossing as a result of heavy atom effects. The rigidification upon complexation for fluorescence turn‐on constitutes an alternative to the known aggregation‐induced emission (AIE).
Two tetraphenylethylene (TPE) bridged tetraimidazolium salts, [H4L-Et](PF6)4 and [H4L-Bu](PF6)4, were used as precursors for the synthesis of the dinuclear AgI and AuI tetracarbene complexes [Ag2(L-Et)](PF6)2, [Ag2(L-Bu)](PF6)2, [Au2(L-Et)](PF6)2, and [Au2(L-Bu)](PF6)2. The tetraimidazolium salts show almost no fluorescence (ΦF<1%) in dilute solution while their NHC complexes display fluorescence "turn-on" (ΦF up to 47%). This can be ascribed to rigidification mediated by the restriction of intramolecular rotation within the TPE moiety upon complexation. DFT calculations confirm that the metals are not involved in the lowest excited singlet and triplet states, thus explaining the lack of phosphorescence and fast intersystem crossing as a result of heavy atom effects. The rigidification upon complexation for fluorescence turn-on constitutes an alternative to the known aggregation-induced emission (AIE).
Two tetraphenylethylene (TPE) bridged tetraimidazolium salts, [H4L‐Et](PF6)4 and [H4L‐Bu](PF6)4, were used as precursors for the synthesis of the dinuclear AgI and AuI tetracarbene complexes [Ag2(L‐Et)](PF6)2, [Ag2(L‐Bu)](PF6)2, [Au2(L‐Et)](PF6)2, and [Au2(L‐Bu)](PF6)2. The tetraimidazolium salts show almost no fluorescence (ΦF<1 %) in dilute solution while their NHC complexes display fluorescence “turn‐on” (ΦF up to 47 %). This can be ascribed to rigidification mediated by the restriction of intramolecular rotation within the TPE moiety upon complexation. DFT calculations confirm that the metals are not involved in the lowest excited singlet and triplet states, thus explaining the lack of phosphorescence and fast intersystem crossing as a result of heavy atom effects. The rigidification upon complexation for fluorescence turn‐on constitutes an alternative to the known aggregation‐induced emission (AIE). Stop rotating! Tetraphenylethylene (TPE) bridged tetrakis‐NHC precursors display fluorescence turn‐on in dilute solution upon formation of organometallic chelate complexes. The fluorescence enhancement can be attributed to the rigidification of the TPE moiety, caused by restriction of its intramolecular rotation. This ridigification method for the fluorescence turn‐on constitutes an alternative approach to aggregation‐induced emission.
Two tetraphenylethylene (TPE) bridged tetraimidazolium salts, [H4 L-Et](PF6 )4 and [H4 L-Bu](PF6 )4 , were used as precursors for the synthesis of the dinuclear AgI and AuI tetracarbene complexes [Ag2 (L-Et)](PF6 )2 , [Ag2 (L-Bu)](PF6 )2 , [Au2 (L-Et)](PF6 )2 , and [Au2 (L-Bu)](PF6 )2 . The tetraimidazolium salts show almost no fluorescence (ΦF <1 %) in dilute solution while their NHC complexes display fluorescence "turn-on" (ΦF up to 47 %). This can be ascribed to rigidification mediated by the restriction of intramolecular rotation within the TPE moiety upon complexation. DFT calculations confirm that the metals are not involved in the lowest excited singlet and triplet states, thus explaining the lack of phosphorescence and fast intersystem crossing as a result of heavy atom effects. The rigidification upon complexation for fluorescence turn-on constitutes an alternative to the known aggregation-induced emission (AIE).Two tetraphenylethylene (TPE) bridged tetraimidazolium salts, [H4 L-Et](PF6 )4 and [H4 L-Bu](PF6 )4 , were used as precursors for the synthesis of the dinuclear AgI and AuI tetracarbene complexes [Ag2 (L-Et)](PF6 )2 , [Ag2 (L-Bu)](PF6 )2 , [Au2 (L-Et)](PF6 )2 , and [Au2 (L-Bu)](PF6 )2 . The tetraimidazolium salts show almost no fluorescence (ΦF <1 %) in dilute solution while their NHC complexes display fluorescence "turn-on" (ΦF up to 47 %). This can be ascribed to rigidification mediated by the restriction of intramolecular rotation within the TPE moiety upon complexation. DFT calculations confirm that the metals are not involved in the lowest excited singlet and triplet states, thus explaining the lack of phosphorescence and fast intersystem crossing as a result of heavy atom effects. The rigidification upon complexation for fluorescence turn-on constitutes an alternative to the known aggregation-induced emission (AIE).
Two tetraphenylethylene (TPE) bridged tetraimidazolium salts, [H L-Et](PF ) and [H L-Bu](PF ) , were used as precursors for the synthesis of the dinuclear Ag and Au tetracarbene complexes [Ag (L-Et)](PF ) , [Ag (L-Bu)](PF ) , [Au (L-Et)](PF ) , and [Au (L-Bu)](PF ) . The tetraimidazolium salts show almost no fluorescence (Φ <1 %) in dilute solution while their NHC complexes display fluorescence "turn-on" (Φ up to 47 %). This can be ascribed to rigidification mediated by the restriction of intramolecular rotation within the TPE moiety upon complexation. DFT calculations confirm that the metals are not involved in the lowest excited singlet and triplet states, thus explaining the lack of phosphorescence and fast intersystem crossing as a result of heavy atom effects. The rigidification upon complexation for fluorescence turn-on constitutes an alternative to the known aggregation-induced emission (AIE).
Author Tan, Tristan T. Y.
Strassert, Cristian A.
Doltsinis, Nikos L.
Stegemann, Linda
Hahn, F. Ekkehardt
Sinha, Narayan
Author_xml – sequence: 1
  givenname: Narayan
  surname: Sinha
  fullname: Sinha, Narayan
  organization: Westfälische Wilhelms-Universität Münster
– sequence: 2
  givenname: Linda
  surname: Stegemann
  fullname: Stegemann, Linda
  organization: Westfälische Wilhelms-Universität Münster
– sequence: 3
  givenname: Tristan T. Y.
  surname: Tan
  fullname: Tan, Tristan T. Y.
  organization: Westfälische Wilhelms-Universität Münster
– sequence: 4
  givenname: Nikos L.
  surname: Doltsinis
  fullname: Doltsinis, Nikos L.
  organization: Westfälische Wilhelms-Universität Münster
– sequence: 5
  givenname: Cristian A.
  surname: Strassert
  fullname: Strassert, Cristian A.
  email: ca.s@uni-muenster.de
  organization: Westfälische Wilhelms-Universität Münster
– sequence: 6
  givenname: F. Ekkehardt
  surname: Hahn
  fullname: Hahn, F. Ekkehardt
  email: fehahn@uni-muenster.de
  organization: Westfälische Wilhelms-Universität Münster
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28128484$$D View this record in MEDLINE/PubMed
BookMark eNqFkc1u1DAUhS1URH9gyxJZYtNNhtjxxA67aDRtRxpaCQ1ry7FvUlcZe7AT6Ox4ABZ9Rp4Ed6a0UiXUlX_ud-69OucYHTjvAKH3JJ-QPKeflLMwoTkpSV5x8godkSklWcF5cZDurCgyLqbkEB3HeJN4IfLyDTqkglDBBDtCv1djcH9-3V05fNaPPkDU4DRg6_AKhqBS6fJihpe2U85E3GzxV9tZY1ur1WC9w8N18GN3jb_AoHo88-tND7e70mdcO1z3AwSX3j8ADx7XXReg25VT54UzowaD52sbY_p6i163qo_w7uE8Qd_O5qvZRba8Ol_M6mWmGS9JRluiTEsML5mm1AhVqcq0Vd4KyglTTNGp0aIBrbRpaMlIThpTTCtaAGub5MkJOt333QT_fYQ4yLSAhr5XDvwYJREl5SVnokzox2fojU-Ope0kqXiyuUi-J-rDAzU2azByE-xaha3853MCJntABx9jgPYRIbm8D1LeBykfg0wC9kyg7bDzLYVi-__Lqr3sp-1h-8IQWV8u5k_avxRitp8
CitedBy_id crossref_primary_10_1002_anie_201916729
crossref_primary_10_1021_acs_joc_9b00495
crossref_primary_10_1039_D1SC00846C
crossref_primary_10_1002_chem_202303043
crossref_primary_10_1007_s11224_018_1161_x
crossref_primary_10_1021_acssensors_7b00820
crossref_primary_10_1016_j_talanta_2017_10_026
crossref_primary_10_1002_chem_201901927
crossref_primary_10_1016_j_cjsc_2024_100356
crossref_primary_10_1016_j_ccr_2020_213755
crossref_primary_10_1021_acs_inorgchem_1c01623
crossref_primary_10_1039_D1CE01584B
crossref_primary_10_1021_acs_inorgchem_1c03527
crossref_primary_10_1002_chem_201701515
crossref_primary_10_1039_C9CC04660G
crossref_primary_10_1002_zaac_201900028
crossref_primary_10_1039_D0DT04100A
crossref_primary_10_1080_10406638_2022_2102666
crossref_primary_10_1021_jacs_1c10450
crossref_primary_10_1021_acsnano_1c02882
crossref_primary_10_1002_ange_202312151
crossref_primary_10_1016_j_jssc_2019_120993
crossref_primary_10_1002_ange_201814462
crossref_primary_10_1039_C9TC03831K
crossref_primary_10_1016_j_dyepig_2023_111249
crossref_primary_10_1021_acs_jpcc_7b11248
crossref_primary_10_1002_anie_202312151
crossref_primary_10_1002_adom_202301197
crossref_primary_10_1002_chem_202001515
crossref_primary_10_1002_chem_202403715
crossref_primary_10_1021_acs_joc_4c00538
crossref_primary_10_1007_s11426_021_1041_8
crossref_primary_10_1039_D3QO01426F
crossref_primary_10_1002_chem_201701867
crossref_primary_10_1002_ejoc_202001420
crossref_primary_10_1002_ange_202202190
crossref_primary_10_1039_D1SC00097G
crossref_primary_10_1039_D2CP05256C
crossref_primary_10_1002_chem_202303101
crossref_primary_10_1039_C8CC06689B
crossref_primary_10_1002_anie_202004318
crossref_primary_10_1002_chem_202002830
crossref_primary_10_1007_s11426_020_9937_4
crossref_primary_10_1039_C8NJ01503A
crossref_primary_10_1039_C8TC05989F
crossref_primary_10_1002_ejic_201700403
crossref_primary_10_1002_anie_202208376
crossref_primary_10_1021_jacs_9b03885
crossref_primary_10_1002_adom_202400781
crossref_primary_10_1021_acs_inorgchem_0c00505
crossref_primary_10_1002_zaac_202100042
crossref_primary_10_1002_chem_202400079
crossref_primary_10_1039_C7DT04666A
crossref_primary_10_1002_anie_201801653
crossref_primary_10_1016_j_cej_2023_142241
crossref_primary_10_1002_adfm_201701210
crossref_primary_10_1002_ejic_202100245
crossref_primary_10_1021_acs_langmuir_4c02366
crossref_primary_10_1002_ange_202312692
crossref_primary_10_1002_cphc_201701186
crossref_primary_10_1021_acs_inorgchem_3c01075
crossref_primary_10_1039_C8PY00329G
crossref_primary_10_1016_j_ica_2020_120055
crossref_primary_10_1021_acs_chemrev_0c00930
crossref_primary_10_1021_acs_accounts_0c00312
crossref_primary_10_1016_j_ccr_2022_214539
crossref_primary_10_1002_anie_202000078
crossref_primary_10_1021_acs_inorgchem_1c03797
crossref_primary_10_1039_D0QO00839G
crossref_primary_10_1002_ange_201801653
crossref_primary_10_1039_D1CC05603D
crossref_primary_10_1021_acsomega_0c05457
crossref_primary_10_1021_acs_chemrev_8b00119
crossref_primary_10_1021_acs_accounts_3c00102
crossref_primary_10_1002_anie_202312692
crossref_primary_10_1002_aoc_6746
crossref_primary_10_1039_C8OB00814K
crossref_primary_10_1039_D2CS00683A
crossref_primary_10_1002_ange_202004318
crossref_primary_10_1002_ange_202000078
crossref_primary_10_1002_chem_201806103
crossref_primary_10_1002_anie_201814462
crossref_primary_10_1002_cjoc_202300645
crossref_primary_10_1039_D3DT02317F
crossref_primary_10_1002_adom_202202516
crossref_primary_10_1002_anie_201912730
crossref_primary_10_3390_molecules24244593
crossref_primary_10_1021_acsomega_0c03565
crossref_primary_10_3390_M1210
crossref_primary_10_1021_acs_accounts_7b00158
crossref_primary_10_1021_acs_cgd_1c00459
crossref_primary_10_1002_ange_201916729
crossref_primary_10_1016_j_molstruc_2021_130301
crossref_primary_10_1021_acs_inorgchem_3c03759
crossref_primary_10_1021_acs_jpclett_8b02087
crossref_primary_10_1002_anie_202205403
crossref_primary_10_1021_acsami_8b02709
crossref_primary_10_1021_jacs_9b12689
crossref_primary_10_1021_acsmaterialslett_4c00145
crossref_primary_10_1039_C8SC05714A
crossref_primary_10_1016_j_dyepig_2022_110098
crossref_primary_10_1021_acs_inorgchem_0c00595
crossref_primary_10_1002_ange_202208376
crossref_primary_10_1002_ange_201912730
crossref_primary_10_1002_anie_201912322
crossref_primary_10_1002_ange_202205403
crossref_primary_10_1002_adom_202101925
crossref_primary_10_1039_C9CC04444B
crossref_primary_10_1039_D2CC06584C
crossref_primary_10_3389_fchem_2019_00493
crossref_primary_10_1039_C8SC01170B
crossref_primary_10_1021_acs_cgd_8b00141
crossref_primary_10_1021_acs_inorgchem_0c01192
crossref_primary_10_1039_D0QM01130D
crossref_primary_10_1002_anie_202202190
crossref_primary_10_1002_slct_202204406
crossref_primary_10_1039_D2BM00864E
crossref_primary_10_1039_C8QM00096D
crossref_primary_10_1039_C9DT03985F
crossref_primary_10_1002_cjoc_202300026
crossref_primary_10_1016_j_ccr_2021_213979
crossref_primary_10_1002_adom_202401793
crossref_primary_10_1002_ange_201912322
crossref_primary_10_1016_j_ccr_2020_213691
crossref_primary_10_1002_chem_201800243
crossref_primary_10_1021_acs_organomet_8b00291
crossref_primary_10_1016_j_ccr_2020_213693
crossref_primary_10_1016_j_snb_2018_07_109
crossref_primary_10_1016_j_dyepig_2018_03_062
crossref_primary_10_1016_j_ccr_2019_213094
crossref_primary_10_1039_C8CS00444G
crossref_primary_10_1021_acs_organomet_8b00217
crossref_primary_10_1021_acsanm_2c01250
crossref_primary_10_1002_agt2_297
crossref_primary_10_1002_agt2_575
crossref_primary_10_1039_C7SC03076B
Cites_doi 10.1002/chem.201604996
10.1039/b902030f
10.1021/cr8005153
10.1021/ja101490d
10.1039/C5CS00152H
10.1002/ange.201000165
10.1002/ange.201107227
10.1039/C4CC07274J
10.1021/om500729b
10.1021/cr800501s
10.1002/anie.201411006
10.1021/cr050004s
10.1021/om500973b
10.1038/nature13829
10.1016/j.ccr.2006.09.004
10.1021/ic400347r
10.1038/nature13384
10.1021/ja104585q
10.1007/978-3-642-04722-0_4
10.1021/om100925j
10.1039/b902238b
10.1038/nchem.2201
10.1002/anie.201107227
10.1021/ar000114f
10.1039/c2jm31949g
10.1039/c1cs15037e
10.1002/anie.201001316
10.1002/ange.201302686
10.1039/C2CS35314H
10.1002/ange.201504786
10.1021/cr900074m
10.1021/ja509446h
10.1021/cr800500u
10.1021/ja5006866
10.1021/acs.chemrev.5b00263
10.1021/ja306042w
10.1002/ange.200703883
10.1039/C3CS60466G
10.1021/ja209327q
10.1002/anie.201402169
10.1002/anie.200905697
10.1039/c3cs35440g
10.1021/ja205021p
10.1002/ange.201001316
10.1039/b105159h
10.1021/om101102j
10.1002/anie.201000165
10.1038/nchem.1706
10.1002/anie.201504786
10.1002/anie.201209787
10.1002/ange.201209787
10.1039/C4CS00372A
10.1002/anie.200703883
10.1002/anie.201302686
10.1002/chem.201501179
10.1021/cr200355j
10.1021/acs.chemmater.6b03376
10.1039/b907018d
10.1021/ja208284t
10.1002/ange.201411006
10.1021/ja502643p
10.1002/ange.201402169
10.1002/ange.200905697
10.1021/ja4032067
ContentType Journal Article
Copyright 2017 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim
2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2017 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
– notice: 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
DBID AAYXX
CITATION
NPM
7TM
K9.
7X8
DOI 10.1002/anie.201610971
DatabaseName CrossRef
PubMed
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
ProQuest Health & Medical Complete (Alumni)
Nucleic Acids Abstracts
MEDLINE - Academic
DatabaseTitleList CrossRef
ProQuest Health & Medical Complete (Alumni)

MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3773
Edition International ed. in English
EndPage 2789
ExternalDocumentID 28128484
10_1002_anie_201610971
ANIE201610971
Genre shortCommunication
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABLJU
ABPPZ
ABPVW
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BTSUX
BY8
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M53
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
VQA
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XSW
XV2
YZZ
ZZTAW
~IA
~KM
~WT
.GJ
.HR
.Y3
186
31~
9M8
AANHP
AAYJJ
AAYOK
AAYXX
ABDBF
ABDPE
ABEFU
ABJNI
ACBWZ
ACRPL
ACYXJ
ADNMO
ADXHL
AETEA
AEYWJ
AGCDD
AGHNM
AGQPQ
AGYGG
AI.
ASPBG
AVWKF
AZFZN
CITATION
FEDTE
HF~
HVGLF
H~9
MVM
NHB
OHT
PALCI
RIWAO
RJQFR
RWH
S10
SAMSI
UQL
VH1
WHG
XOL
YYP
ZCG
ZE2
ZGI
ZXP
ZY4
NPM
7TM
K9.
7X8
ID FETCH-LOGICAL-c4761-2f1adf1d764c22d8a9a9df90f82714a4a25dc8becacdb264101bd35923e4fb433
IEDL.DBID DR2
ISSN 1433-7851
1521-3773
IngestDate Fri Jul 11 01:36:46 EDT 2025
Sun Jul 13 05:41:17 EDT 2025
Mon Jul 21 05:38:33 EDT 2025
Thu Apr 24 22:52:25 EDT 2025
Tue Jul 01 03:27:26 EDT 2025
Wed Jan 22 17:05:24 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords organometallic complexes
fluorescence
tetraphenylethylene
rigidification
poly-NHC ligands
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4761-2f1adf1d764c22d8a9a9df90f82714a4a25dc8becacdb264101bd35923e4fb433
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 28128484
PQID 1977733097
PQPubID 946352
PageCount 5
ParticipantIDs proquest_miscellaneous_1862767486
proquest_journals_1977733097
pubmed_primary_28128484
crossref_primary_10_1002_anie_201610971
crossref_citationtrail_10_1002_anie_201610971
wiley_primary_10_1002_anie_201610971_ANIE201610971
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate March 1, 2017
PublicationDateYYYYMMDD 2017-03-01
PublicationDate_xml – month: 03
  year: 2017
  text: March 1, 2017
  day: 01
PublicationDecade 2010
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Angewandte Chemie International Edition
PublicationTitleAlternate Angew Chem Int Ed Engl
PublicationYear 2017
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2014 2014; 53 126
2014; 515
2010; 39
2011; 40
2013; 42
2009
2011; 30
2008
2010 2010; 49 122
2008 2008; 47 120
2013; 5
2015; 7
2014; 510
2014; 136
2011; 133
2013 2013; 52 125
2014; 43
2012; 112
2012; 134
2001
2015; 115
2010; 29
2012 2012; 51 124
2015; 44
2007; 251
2005; 105
2013; 52
2015; 21
2010; 132
2015 2015; 54 127
2013; 135
2016; 28
2001; 34
2009; 109
2014; 50
2012; 22
2010; 30
2014; 33
e_1_2_2_47_2
e_1_2_2_4_2
e_1_2_2_24_1
e_1_2_2_49_1
e_1_2_2_22_2
e_1_2_2_6_2
e_1_2_2_20_1
e_1_2_2_2_2
e_1_2_2_62_1
e_1_2_2_41_2
e_1_2_2_64_2
e_1_2_2_43_1
e_1_2_2_8_2
e_1_2_2_28_1
e_1_2_2_26_2
e_1_2_2_45_2
(e_1_2_2_66_1) 2008
e_1_2_2_60_1
e_1_2_2_36_2
e_1_2_2_13_1
e_1_2_2_59_1
e_1_2_2_38_2
e_1_2_2_11_1
e_1_2_2_38_3
e_1_2_2_51_2
e_1_2_2_19_2
e_1_2_2_30_2
e_1_2_2_53_2
e_1_2_2_17_2
e_1_2_2_32_2
e_1_2_2_15_3
e_1_2_2_55_1
e_1_2_2_15_2
e_1_2_2_34_2
e_1_2_2_57_2
e_1_2_2_34_3
e_1_2_2_3_2
e_1_2_2_46_3
e_1_2_2_48_1
e_1_2_2_23_2
e_1_2_2_5_2
e_1_2_2_21_3
e_1_2_2_7_1
e_1_2_2_21_2
e_1_2_2_1_1
e_1_2_2_40_2
e_1_2_2_29_2
e_1_2_2_42_2
e_1_2_2_63_2
e_1_2_2_67_1
e_1_2_2_27_2
e_1_2_2_44_2
e_1_2_2_65_2
e_1_2_2_25_3
e_1_2_2_9_2
e_1_2_2_25_2
e_1_2_2_46_2
e_1_2_2_67_2
e_1_2_2_61_1
e_1_2_2_37_2
e_1_2_2_58_2
e_1_2_2_12_1
e_1_2_2_39_2
e_1_2_2_10_1
e_1_2_2_50_2
e_1_2_2_18_3
e_1_2_2_18_2
e_1_2_2_31_2
e_1_2_2_52_2
e_1_2_2_33_1
e_1_2_2_16_2
e_1_2_2_54_2
e_1_2_2_56_3
e_1_2_2_58_1
e_1_2_2_14_2
e_1_2_2_35_2
e_1_2_2_56_2
References_xml – volume: 54 127
  start-page: 11540 11702
  year: 2015 2015
  end-page: 11544 11706
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 7
  start-page: 342
  year: 2015
  end-page: 348
  publication-title: Nat. Chem.
– volume: 22
  start-page: 23726
  year: 2012
  end-page: 23740
  publication-title: J. Mater. Chem.
– volume: 109
  start-page: 3677
  year: 2009
  end-page: 3707
  publication-title: Chem. Rev.
– volume: 133
  start-page: 11496
  year: 2011
  end-page: 11499
  publication-title: J. Am. Chem. Soc.
– volume: 33
  start-page: 6898
  year: 2014
  end-page: 6904
  publication-title: Organometallics
– volume: 49 122
  start-page: 8810 8992
  year: 2010 2010
  end-page: 8849 9032
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– start-page: 7168
  year: 2009
  end-page: 7178
  publication-title: Dalton Trans.
– volume: 510
  start-page: 485
  year: 2014
  end-page: 496
  publication-title: Nature
– volume: 115
  start-page: 11718
  year: 2015
  end-page: 11940
  publication-title: Chem. Rev.
– volume: 105
  start-page: 3978
  year: 2005
  end-page: 4008
  publication-title: Chem. Rev.
– volume: 44
  start-page: 6143
  year: 2015
  end-page: 6160
  publication-title: Chem. Soc. Rev.
– volume: 53 126
  start-page: 6632 6750
  year: 2014 2014
  end-page: 6636 6754
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 21
  start-page: 10566
  year: 2015
  end-page: 10575
  publication-title: Chem. Eur. J.
– start-page: 2124
  year: 2009
  end-page: 2126
  publication-title: Chem. Commun.
– volume: 40
  start-page: 4783
  year: 2011
  end-page: 4804
  publication-title: Chem. Soc. Rev.
– volume: 135
  start-page: 9263
  year: 2013
  end-page: 9266
  publication-title: J. Am. Chem. Soc.
– volume: 33
  start-page: 5077
  year: 2014
  end-page: 5080
  publication-title: Organometallics
– volume: 132
  start-page: 4572
  year: 2010
  end-page: 4573
  publication-title: J. Am. Chem. Soc.
– volume: 28
  start-page: 7889
  year: 2016
  end-page: 7897
  publication-title: Chem. Mater.
– volume: 47 120
  start-page: 3122 3166
  year: 2008 2008
  end-page: 3172 3216
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 34
  start-page: 18
  year: 2001
  end-page: 29
  publication-title: Acc. Chem. Res.
– volume: 52 125
  start-page: 2930 3002
  year: 2013 2013
  end-page: 2933 3005
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 134
  start-page: 15061
  year: 2012
  end-page: 15070
  publication-title: J. Am. Chem. Soc.
– year: 2008
– volume: 136
  start-page: 8269
  year: 2014
  end-page: 8276
  publication-title: J. Am. Chem. Soc.
– volume: 5
  start-page: 692
  year: 2013
  end-page: 697
  publication-title: Nat. Chem.
– volume: 52
  start-page: 5395
  year: 2013
  end-page: 5402
  publication-title: Inorg. Chem.
– volume: 50
  start-page: 15243
  year: 2014
  end-page: 15246
  publication-title: Chem. Commun.
– volume: 49 122
  start-page: 2349 2399
  year: 2010 2010
  end-page: 2353 2403
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 52 125
  start-page: 7009 7147
  year: 2013 2013
  end-page: 7013 7151
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 109
  start-page: 3859
  year: 2009
  end-page: 3884
  publication-title: Chem. Rev.
– volume: 251
  start-page: 642
  year: 2007
  end-page: 670
  publication-title: Coord. Chem. Rev.
– volume: 109
  start-page: 3612
  year: 2009
  end-page: 3676
  publication-title: Chem. Rev.
– volume: 39
  start-page: 1903
  year: 2010
  end-page: 1912
  publication-title: Chem. Soc. Rev.
– volume: 136
  start-page: 16724
  year: 2014
  end-page: 16727
  publication-title: J. Am. Chem. Soc.
– volume: 30
  start-page: 95
  year: 2010
  end-page: 129
  publication-title: Top. Organomet. Chem.
– volume: 29
  start-page: 6782
  year: 2010
  end-page: 6789
  publication-title: Organometallics
– volume: 133
  start-page: 17622
  year: 2011
  end-page: 17625
  publication-title: J. Am. Chem. Soc.
– volume: 54 127
  start-page: 4958 5042
  year: 2015 2015
  end-page: 4962 5046
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 133
  start-page: 20126
  year: 2011
  end-page: 20129
  publication-title: J. Am. Chem. Soc.
– volume: 42
  start-page: 755
  year: 2013
  end-page: 773
  publication-title: Chem. Soc. Rev.
– volume: 44
  start-page: 4547
  year: 2015
  end-page: 4595
  publication-title: Chem. Soc. Rev.
– volume: 112
  start-page: 4391
  year: 2012
  end-page: 4420
  publication-title: Chem. Rev.
– volume: 42
  start-page: 4963
  year: 2013
  end-page: 4976
  publication-title: Chem. Soc. Rev.
– start-page: 1740
  year: 2001
  end-page: 1741
  publication-title: Chem. Commun.
– volume: 109
  start-page: 3561
  year: 2009
  end-page: 3598
  publication-title: Chem. Rev.
– volume: 49 122
  start-page: 10214 10412
  year: 2010 2010
  end-page: 10216 10414
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 136
  start-page: 7241
  year: 2014
  end-page: 7244
  publication-title: J. Am. Chem. Soc.
– volume: 51 124
  start-page: 2195 2238
  year: 2012 2012
  end-page: 2198 2241
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 132
  start-page: 10009
  year: 2010
  end-page: 10011
  publication-title: J. Am. Chem. Soc.
– volume: 30
  start-page: 334
  year: 2011
  end-page: 347
  publication-title: Organometallics
– volume: 43
  start-page: 3551
  year: 2014
  end-page: 3574
  publication-title: Chem. Soc. Rev.
– volume: 515
  start-page: 96
  year: 2014
  end-page: 99
  publication-title: Nature
– ident: e_1_2_2_42_2
  doi: 10.1002/chem.201604996
– ident: e_1_2_2_29_2
  doi: 10.1039/b902030f
– ident: e_1_2_2_63_2
  doi: 10.1021/cr8005153
– ident: e_1_2_2_41_2
  doi: 10.1021/ja101490d
– ident: e_1_2_2_2_2
  doi: 10.1039/C5CS00152H
– ident: e_1_2_2_15_3
  doi: 10.1002/ange.201000165
– ident: e_1_2_2_38_3
  doi: 10.1002/ange.201107227
– ident: e_1_2_2_60_1
  doi: 10.1039/C4CC07274J
– ident: e_1_2_2_36_2
  doi: 10.1021/om500729b
– ident: e_1_2_2_62_1
– ident: e_1_2_2_17_2
  doi: 10.1021/cr800501s
– ident: e_1_2_2_34_2
  doi: 10.1002/anie.201411006
– ident: e_1_2_2_65_2
  doi: 10.1021/cr050004s
– ident: e_1_2_2_35_2
  doi: 10.1021/om500973b
– ident: e_1_2_2_8_2
  doi: 10.1038/nature13829
– ident: e_1_2_2_28_1
– ident: e_1_2_2_64_2
  doi: 10.1016/j.ccr.2006.09.004
– ident: e_1_2_2_31_2
  doi: 10.1021/ic400347r
– ident: e_1_2_2_19_2
  doi: 10.1038/nature13384
– ident: e_1_2_2_33_1
– ident: e_1_2_2_47_2
  doi: 10.1021/ja104585q
– ident: e_1_2_2_14_2
  doi: 10.1007/978-3-642-04722-0_4
– ident: e_1_2_2_32_2
  doi: 10.1021/om100925j
– ident: e_1_2_2_16_2
  doi: 10.1039/b902238b
– ident: e_1_2_2_55_1
– ident: e_1_2_2_59_1
  doi: 10.1038/nchem.2201
– ident: e_1_2_2_38_2
  doi: 10.1002/anie.201107227
– ident: e_1_2_2_23_2
  doi: 10.1021/ar000114f
– ident: e_1_2_2_48_1
  doi: 10.1039/c2jm31949g
– ident: e_1_2_2_5_2
  doi: 10.1039/c1cs15037e
– ident: e_1_2_2_49_1
– ident: e_1_2_2_43_1
– ident: e_1_2_2_7_1
– ident: e_1_2_2_1_1
– ident: e_1_2_2_46_2
  doi: 10.1002/anie.201001316
– ident: e_1_2_2_21_3
  doi: 10.1002/ange.201302686
– ident: e_1_2_2_27_2
  doi: 10.1039/C2CS35314H
– ident: e_1_2_2_56_3
  doi: 10.1002/ange.201504786
– ident: e_1_2_2_22_2
  doi: 10.1021/cr900074m
– ident: e_1_2_2_50_2
  doi: 10.1021/ja509446h
– ident: e_1_2_2_26_2
  doi: 10.1021/cr800500u
– ident: e_1_2_2_51_2
  doi: 10.1021/ja5006866
– ident: e_1_2_2_12_1
  doi: 10.1021/acs.chemrev.5b00263
– ident: e_1_2_2_53_2
  doi: 10.1021/ja306042w
– ident: e_1_2_2_18_3
  doi: 10.1002/ange.200703883
– ident: e_1_2_2_20_1
– ident: e_1_2_2_45_2
  doi: 10.1039/C3CS60466G
– ident: e_1_2_2_54_2
  doi: 10.1021/ja209327q
– ident: e_1_2_2_58_1
  doi: 10.1002/anie.201402169
– ident: e_1_2_2_67_1
  doi: 10.1002/anie.200905697
– ident: e_1_2_2_9_2
  doi: 10.1039/c3cs35440g
– ident: e_1_2_2_39_2
  doi: 10.1021/ja205021p
– ident: e_1_2_2_46_3
  doi: 10.1002/ange.201001316
– ident: e_1_2_2_61_1
– ident: e_1_2_2_11_1
  doi: 10.1039/b105159h
– ident: e_1_2_2_40_2
  doi: 10.1021/om101102j
– ident: e_1_2_2_15_2
  doi: 10.1002/anie.201000165
– ident: e_1_2_2_3_2
  doi: 10.1038/nchem.1706
– ident: e_1_2_2_56_2
  doi: 10.1002/anie.201504786
– ident: e_1_2_2_25_2
  doi: 10.1002/anie.201209787
– ident: e_1_2_2_25_3
  doi: 10.1002/ange.201209787
– ident: e_1_2_2_10_1
  doi: 10.1039/C4CS00372A
– ident: e_1_2_2_13_1
– ident: e_1_2_2_18_2
  doi: 10.1002/anie.200703883
– ident: e_1_2_2_21_2
  doi: 10.1002/anie.201302686
– ident: e_1_2_2_24_1
– volume-title: Highly Efficient OLEDs with Phosphorescent Materials
  year: 2008
  ident: e_1_2_2_66_1
– ident: e_1_2_2_44_2
  doi: 10.1002/chem.201501179
– ident: e_1_2_2_4_2
  doi: 10.1021/cr200355j
– ident: e_1_2_2_6_2
  doi: 10.1021/acs.chemmater.6b03376
– ident: e_1_2_2_30_2
  doi: 10.1039/b907018d
– ident: e_1_2_2_57_2
  doi: 10.1021/ja208284t
– ident: e_1_2_2_34_3
  doi: 10.1002/ange.201411006
– ident: e_1_2_2_52_2
  doi: 10.1021/ja502643p
– ident: e_1_2_2_58_2
  doi: 10.1002/ange.201402169
– ident: e_1_2_2_67_2
  doi: 10.1002/ange.200905697
– ident: e_1_2_2_37_2
  doi: 10.1021/ja4032067
SSID ssj0028806
Score 2.5578747
Snippet Two tetraphenylethylene (TPE) bridged tetraimidazolium salts, [H4L‐Et](PF6)4 and [H4L‐Bu](PF6)4, were used as precursors for the synthesis of the dinuclear AgI...
Two tetraphenylethylene (TPE) bridged tetraimidazolium salts, [H 4 L ‐Et](PF 6 ) 4 and [H 4 L ‐Bu](PF 6 ) 4 , were used as precursors for the synthesis of the...
Two tetraphenylethylene (TPE) bridged tetraimidazolium salts, [H L-Et](PF ) and [H L-Bu](PF ) , were used as precursors for the synthesis of the dinuclear Ag...
Two tetraphenylethylene (TPE) bridged tetraimidazolium salts, [H4L-Et](PF6)4 and [H4L-Bu](PF6)4, were used as precursors for the synthesis of the dinuclear AgI...
Two tetraphenylethylene (TPE) bridged tetraimidazolium salts, [H4 L-Et](PF6 )4 and [H4 L-Bu](PF6 )4 , were used as precursors for the synthesis of the...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2785
SubjectTerms Agglomeration
Complexation
Dilution
Emission
Emissions
Fluorescence
Metals
organometallic complexes
Phosphorescence
poly-NHC ligands
rigidification
Salts
tetraphenylethylene
Title Turn‐On Fluorescence in Tetra‐NHC Ligands by Rigidification through Metal Complexation: An Alternative to Aggregation‐Induced Emission
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.201610971
https://www.ncbi.nlm.nih.gov/pubmed/28128484
https://www.proquest.com/docview/1977733097
https://www.proquest.com/docview/1862767486
Volume 56
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9tAEB5KLu2l74fatGyh0NMm1motybkJY-OWxoXgQG5iXxImRi6OXEhO_QE55Dfml3Rm9WjdUgrtUcystNqdWX27mvkG4F3ihnGUaMUR3qZcmrDgOnKCIxjH_QTVUdWU73w8j2en8uPZ8OynLP6GH6I_cCPP8Os1ObjSF4c_SEMpA5tCs4gv3CeRU8AWoaKTnj9KoHE26UVRxKkKfcfaOBCHu813v0q_Qc1d5Oo_PdMHoLpONxEn5wfbWh-Yq1_4HP_nrR7C_RaXsqwxpEdwx1WP4e64Kwf3BK4XqHH77eZzxaar7XrjaaCMY8uKLVy9USiaz8bs07Kk5GGmL9nJslxaikTyk8_aikDs2CHeZ7QOUW4NiY5YVrFs1R5NfnWsXrOsLDeu9GK8MxUYMc6yCfaGjveewul0shjPeFvKgRuZxCEXRahsEdoklkYIm6qRGtliNChSkYRSSSWG1qRoT8pYjRgNFwptoyGiTycLjdP3DPaqdeVeAIslUdIMIjdInERTSi2hlkTakXIF4q0AeDeVuWl5zqncxipvGJpFTmOc92McwPte_0vD8PFHzf3OMvLW0y_yEAF0EkUoD-BtL8bRoB8vqnLrLergtpFIk9I4gOeNRfWPEikhhFQGILxd_KUPeTb_MOmvXv5Lo1dwTxA28YF0-7BXb7buNSKrWr_x3vMdRIsdAQ
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwEB6h5bBceD8CCxgJiZN3G8dNUm5R1aoLbZFWXYlb5FeiiipFJUWCEz-AA7-RX8KM80AFISQ4RmMnjj3jfJ7MfAPwPHHDOEq04ghvUy5NWHAdOcERjON5guqoasp3Xizj2aV89XbYRRNSLkzDD9E73Mgy_H5NBk4O6bOfrKGUgk2xWUQYTlnkV6mstz9VXfQMUgLVs0kwiiJOdeg73saBODvsf_hd-g1sHmJX__GZ3gDdDbuJOXl3uq_1qfn8C6Pjf73XTbjeQlOWNbp0C6646jYcj7uKcHfg6wpbfP_y7U3Fppv9dueZoIxj64qtXL1TKFrOxmy-Lil_mOlP7GJdri0FI_n1Z21RILZwCPkZbUWUXkOilyyrWLZpvZMfHau3LCvLnSu9GO9MNUaMs2yCoyEP3124nE5W4xlvqzlwI5M45KIIlS1Cm8TSCGFTNVIjW4wGRSqSUCqpxNCaFFVKGasRpuFeoW00RADqZKFx_e7BUbWt3ANgsSRWmkHkBomTqE2pJeCSSDtSrkDIFQDv1jI3LdU5VdzY5A1Js8hpjvN-jgN40bd_35B8_LHlSacaeWvsH_IQMXQSRSgP4Fkvxtmgfy-qcts9tsGTI_EmpXEA9xuV6h8lUgIJqQxAeMX4yxjybHk-6a8e_kunp3A8Wy3m-fx8-foRXBMEVXxc3Qkc1bu9e4xAq9ZPvCn9AP9hIRw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB6hIgEX3g9DgUVC4uTWXm_sDTcrTZRCG1CVSr1Z-7IVETlV6lSCEz-AA7-RX8KMXxAQQoKjNbP2endm_e165huAl4kbxFGilY_wVvrChLmvI8d9BOO4n6A6qprynY9n8fRUvDkbnP2Uxd_wQ_QHbuQZ9XpNDn5u8_0fpKGUgU2hWcQXTknkV0UcSLLrg5OeQIqjdTb5RVHkUxn6jrYx4Pvb7bc_S79hzW3oWn97JrdAdb1uQk4-7G0qvWc-_ULo-D-vdRtutsCUpY0l3YErrrwL10ddPbh78GWOGt8-f31Xsslys1rXPFDGsUXJ5q5aKxTNpiN2tCgoe5jpj-xkUSwshSLVs8_akkDs2CHgZ7QQUXINiV6ztGTpsj2bvHSsWrG0KNauqMV4Z6owYpxlY-wNne_dh9PJeD6a-m0tB9-IJA59nofK5qFNYmE4t1IN1dDmwyCXPAmFEooPrJFoUMpYjSANVwptowHCTydyjdP3AHbKVekeAYsFcdIEkQsSJ9CWpCXYkgg7VC5HwOWB301lZlqic6q3scwaimae0Rhn_Rh78KrXP28oPv6oudtZRta6-kUWIoJOogjlHrzoxTga9OdFlW61QR3cNxJrkow9eNhYVP8oLgkiSOEBr-3iL33I0tnhuL96_C-NnsO19weT7Ohw9vYJ3OCEU-qgul3YqdYb9xRRVqWf1Y70HaEmH9Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Turn-On+Fluorescence+in+Tetra-NHC+Ligands+by+Rigidification+through+Metal+Complexation%3A+An+Alternative+to+Aggregation-Induced+Emission&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Sinha%2C+Narayan&rft.au=Stegemann%2C+Linda&rft.au=Tan%2C+Tristan+T+Y&rft.au=Doltsinis%2C+Nikos+L&rft.date=2017-03-01&rft.eissn=1521-3773&rft.volume=56&rft.issue=10&rft.spage=2785&rft_id=info:doi/10.1002%2Fanie.201610971&rft_id=info%3Apmid%2F28128484&rft.externalDocID=28128484
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon