Turn‐On Fluorescence in Tetra‐NHC Ligands by Rigidification through Metal Complexation: An Alternative to Aggregation‐Induced Emission
Two tetraphenylethylene (TPE) bridged tetraimidazolium salts, [H4L‐Et](PF6)4 and [H4L‐Bu](PF6)4, were used as precursors for the synthesis of the dinuclear AgI and AuI tetracarbene complexes [Ag2(L‐Et)](PF6)2, [Ag2(L‐Bu)](PF6)2, [Au2(L‐Et)](PF6)2, and [Au2(L‐Bu)](PF6)2. The tetraimidazolium salts sh...
Saved in:
Published in | Angewandte Chemie International Edition Vol. 56; no. 10; pp. 2785 - 2789 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.03.2017
|
Edition | International ed. in English |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Two tetraphenylethylene (TPE) bridged tetraimidazolium salts, [H4L‐Et](PF6)4 and [H4L‐Bu](PF6)4, were used as precursors for the synthesis of the dinuclear AgI and AuI tetracarbene complexes [Ag2(L‐Et)](PF6)2, [Ag2(L‐Bu)](PF6)2, [Au2(L‐Et)](PF6)2, and [Au2(L‐Bu)](PF6)2. The tetraimidazolium salts show almost no fluorescence (ΦF<1 %) in dilute solution while their NHC complexes display fluorescence “turn‐on” (ΦF up to 47 %). This can be ascribed to rigidification mediated by the restriction of intramolecular rotation within the TPE moiety upon complexation. DFT calculations confirm that the metals are not involved in the lowest excited singlet and triplet states, thus explaining the lack of phosphorescence and fast intersystem crossing as a result of heavy atom effects. The rigidification upon complexation for fluorescence turn‐on constitutes an alternative to the known aggregation‐induced emission (AIE).
Stop rotating! Tetraphenylethylene (TPE) bridged tetrakis‐NHC precursors display fluorescence turn‐on in dilute solution upon formation of organometallic chelate complexes. The fluorescence enhancement can be attributed to the rigidification of the TPE moiety, caused by restriction of its intramolecular rotation. This ridigification method for the fluorescence turn‐on constitutes an alternative approach to aggregation‐induced emission. |
---|---|
AbstractList | Two tetraphenylethylene (TPE) bridged tetraimidazolium salts, [H
4
L
‐Et](PF
6
)
4
and [H
4
L
‐Bu](PF
6
)
4
, were used as precursors for the synthesis of the dinuclear Ag
I
and Au
I
tetracarbene complexes [Ag
2
(
L
‐Et)](PF
6
)
2
, [Ag
2
(
L
‐Bu)](PF
6
)
2
, [Au
2
(
L
‐Et)](PF
6
)
2
, and [Au
2
(
L
‐Bu)](PF
6
)
2
. The tetraimidazolium salts show almost no fluorescence (
Φ
F
<1 %) in dilute solution while their NHC complexes display fluorescence “turn‐on” (
Φ
F
up to 47 %). This can be ascribed to rigidification mediated by the restriction of intramolecular rotation within the TPE moiety upon complexation. DFT calculations confirm that the metals are not involved in the lowest excited singlet and triplet states, thus explaining the lack of phosphorescence and fast intersystem crossing as a result of heavy atom effects. The rigidification upon complexation for fluorescence turn‐on constitutes an alternative to the known aggregation‐induced emission (AIE). Two tetraphenylethylene (TPE) bridged tetraimidazolium salts, [H4L-Et](PF6)4 and [H4L-Bu](PF6)4, were used as precursors for the synthesis of the dinuclear AgI and AuI tetracarbene complexes [Ag2(L-Et)](PF6)2, [Ag2(L-Bu)](PF6)2, [Au2(L-Et)](PF6)2, and [Au2(L-Bu)](PF6)2. The tetraimidazolium salts show almost no fluorescence (ΦF<1%) in dilute solution while their NHC complexes display fluorescence "turn-on" (ΦF up to 47%). This can be ascribed to rigidification mediated by the restriction of intramolecular rotation within the TPE moiety upon complexation. DFT calculations confirm that the metals are not involved in the lowest excited singlet and triplet states, thus explaining the lack of phosphorescence and fast intersystem crossing as a result of heavy atom effects. The rigidification upon complexation for fluorescence turn-on constitutes an alternative to the known aggregation-induced emission (AIE). Two tetraphenylethylene (TPE) bridged tetraimidazolium salts, [H4L‐Et](PF6)4 and [H4L‐Bu](PF6)4, were used as precursors for the synthesis of the dinuclear AgI and AuI tetracarbene complexes [Ag2(L‐Et)](PF6)2, [Ag2(L‐Bu)](PF6)2, [Au2(L‐Et)](PF6)2, and [Au2(L‐Bu)](PF6)2. The tetraimidazolium salts show almost no fluorescence (ΦF<1 %) in dilute solution while their NHC complexes display fluorescence “turn‐on” (ΦF up to 47 %). This can be ascribed to rigidification mediated by the restriction of intramolecular rotation within the TPE moiety upon complexation. DFT calculations confirm that the metals are not involved in the lowest excited singlet and triplet states, thus explaining the lack of phosphorescence and fast intersystem crossing as a result of heavy atom effects. The rigidification upon complexation for fluorescence turn‐on constitutes an alternative to the known aggregation‐induced emission (AIE). Stop rotating! Tetraphenylethylene (TPE) bridged tetrakis‐NHC precursors display fluorescence turn‐on in dilute solution upon formation of organometallic chelate complexes. The fluorescence enhancement can be attributed to the rigidification of the TPE moiety, caused by restriction of its intramolecular rotation. This ridigification method for the fluorescence turn‐on constitutes an alternative approach to aggregation‐induced emission. Two tetraphenylethylene (TPE) bridged tetraimidazolium salts, [H4 L-Et](PF6 )4 and [H4 L-Bu](PF6 )4 , were used as precursors for the synthesis of the dinuclear AgI and AuI tetracarbene complexes [Ag2 (L-Et)](PF6 )2 , [Ag2 (L-Bu)](PF6 )2 , [Au2 (L-Et)](PF6 )2 , and [Au2 (L-Bu)](PF6 )2 . The tetraimidazolium salts show almost no fluorescence (ΦF <1 %) in dilute solution while their NHC complexes display fluorescence "turn-on" (ΦF up to 47 %). This can be ascribed to rigidification mediated by the restriction of intramolecular rotation within the TPE moiety upon complexation. DFT calculations confirm that the metals are not involved in the lowest excited singlet and triplet states, thus explaining the lack of phosphorescence and fast intersystem crossing as a result of heavy atom effects. The rigidification upon complexation for fluorescence turn-on constitutes an alternative to the known aggregation-induced emission (AIE).Two tetraphenylethylene (TPE) bridged tetraimidazolium salts, [H4 L-Et](PF6 )4 and [H4 L-Bu](PF6 )4 , were used as precursors for the synthesis of the dinuclear AgI and AuI tetracarbene complexes [Ag2 (L-Et)](PF6 )2 , [Ag2 (L-Bu)](PF6 )2 , [Au2 (L-Et)](PF6 )2 , and [Au2 (L-Bu)](PF6 )2 . The tetraimidazolium salts show almost no fluorescence (ΦF <1 %) in dilute solution while their NHC complexes display fluorescence "turn-on" (ΦF up to 47 %). This can be ascribed to rigidification mediated by the restriction of intramolecular rotation within the TPE moiety upon complexation. DFT calculations confirm that the metals are not involved in the lowest excited singlet and triplet states, thus explaining the lack of phosphorescence and fast intersystem crossing as a result of heavy atom effects. The rigidification upon complexation for fluorescence turn-on constitutes an alternative to the known aggregation-induced emission (AIE). Two tetraphenylethylene (TPE) bridged tetraimidazolium salts, [H L-Et](PF ) and [H L-Bu](PF ) , were used as precursors for the synthesis of the dinuclear Ag and Au tetracarbene complexes [Ag (L-Et)](PF ) , [Ag (L-Bu)](PF ) , [Au (L-Et)](PF ) , and [Au (L-Bu)](PF ) . The tetraimidazolium salts show almost no fluorescence (Φ <1 %) in dilute solution while their NHC complexes display fluorescence "turn-on" (Φ up to 47 %). This can be ascribed to rigidification mediated by the restriction of intramolecular rotation within the TPE moiety upon complexation. DFT calculations confirm that the metals are not involved in the lowest excited singlet and triplet states, thus explaining the lack of phosphorescence and fast intersystem crossing as a result of heavy atom effects. The rigidification upon complexation for fluorescence turn-on constitutes an alternative to the known aggregation-induced emission (AIE). |
Author | Tan, Tristan T. Y. Strassert, Cristian A. Doltsinis, Nikos L. Stegemann, Linda Hahn, F. Ekkehardt Sinha, Narayan |
Author_xml | – sequence: 1 givenname: Narayan surname: Sinha fullname: Sinha, Narayan organization: Westfälische Wilhelms-Universität Münster – sequence: 2 givenname: Linda surname: Stegemann fullname: Stegemann, Linda organization: Westfälische Wilhelms-Universität Münster – sequence: 3 givenname: Tristan T. Y. surname: Tan fullname: Tan, Tristan T. Y. organization: Westfälische Wilhelms-Universität Münster – sequence: 4 givenname: Nikos L. surname: Doltsinis fullname: Doltsinis, Nikos L. organization: Westfälische Wilhelms-Universität Münster – sequence: 5 givenname: Cristian A. surname: Strassert fullname: Strassert, Cristian A. email: ca.s@uni-muenster.de organization: Westfälische Wilhelms-Universität Münster – sequence: 6 givenname: F. Ekkehardt surname: Hahn fullname: Hahn, F. Ekkehardt email: fehahn@uni-muenster.de organization: Westfälische Wilhelms-Universität Münster |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28128484$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc1u1DAUhS1URH9gyxJZYtNNhtjxxA67aDRtRxpaCQ1ry7FvUlcZe7AT6Ox4ABZ9Rp4Ed6a0UiXUlX_ud-69OucYHTjvAKH3JJ-QPKeflLMwoTkpSV5x8godkSklWcF5cZDurCgyLqbkEB3HeJN4IfLyDTqkglDBBDtCv1djcH9-3V05fNaPPkDU4DRg6_AKhqBS6fJihpe2U85E3GzxV9tZY1ur1WC9w8N18GN3jb_AoHo88-tND7e70mdcO1z3AwSX3j8ADx7XXReg25VT54UzowaD52sbY_p6i163qo_w7uE8Qd_O5qvZRba8Ol_M6mWmGS9JRluiTEsML5mm1AhVqcq0Vd4KyglTTNGp0aIBrbRpaMlIThpTTCtaAGub5MkJOt333QT_fYQ4yLSAhr5XDvwYJREl5SVnokzox2fojU-Ope0kqXiyuUi-J-rDAzU2azByE-xaha3853MCJntABx9jgPYRIbm8D1LeBykfg0wC9kyg7bDzLYVi-__Lqr3sp-1h-8IQWV8u5k_avxRitp8 |
CitedBy_id | crossref_primary_10_1002_anie_201916729 crossref_primary_10_1021_acs_joc_9b00495 crossref_primary_10_1039_D1SC00846C crossref_primary_10_1002_chem_202303043 crossref_primary_10_1007_s11224_018_1161_x crossref_primary_10_1021_acssensors_7b00820 crossref_primary_10_1016_j_talanta_2017_10_026 crossref_primary_10_1002_chem_201901927 crossref_primary_10_1016_j_cjsc_2024_100356 crossref_primary_10_1016_j_ccr_2020_213755 crossref_primary_10_1021_acs_inorgchem_1c01623 crossref_primary_10_1039_D1CE01584B crossref_primary_10_1021_acs_inorgchem_1c03527 crossref_primary_10_1002_chem_201701515 crossref_primary_10_1039_C9CC04660G crossref_primary_10_1002_zaac_201900028 crossref_primary_10_1039_D0DT04100A crossref_primary_10_1080_10406638_2022_2102666 crossref_primary_10_1021_jacs_1c10450 crossref_primary_10_1021_acsnano_1c02882 crossref_primary_10_1002_ange_202312151 crossref_primary_10_1016_j_jssc_2019_120993 crossref_primary_10_1002_ange_201814462 crossref_primary_10_1039_C9TC03831K crossref_primary_10_1016_j_dyepig_2023_111249 crossref_primary_10_1021_acs_jpcc_7b11248 crossref_primary_10_1002_anie_202312151 crossref_primary_10_1002_adom_202301197 crossref_primary_10_1002_chem_202001515 crossref_primary_10_1002_chem_202403715 crossref_primary_10_1021_acs_joc_4c00538 crossref_primary_10_1007_s11426_021_1041_8 crossref_primary_10_1039_D3QO01426F crossref_primary_10_1002_chem_201701867 crossref_primary_10_1002_ejoc_202001420 crossref_primary_10_1002_ange_202202190 crossref_primary_10_1039_D1SC00097G crossref_primary_10_1039_D2CP05256C crossref_primary_10_1002_chem_202303101 crossref_primary_10_1039_C8CC06689B crossref_primary_10_1002_anie_202004318 crossref_primary_10_1002_chem_202002830 crossref_primary_10_1007_s11426_020_9937_4 crossref_primary_10_1039_C8NJ01503A crossref_primary_10_1039_C8TC05989F crossref_primary_10_1002_ejic_201700403 crossref_primary_10_1002_anie_202208376 crossref_primary_10_1021_jacs_9b03885 crossref_primary_10_1002_adom_202400781 crossref_primary_10_1021_acs_inorgchem_0c00505 crossref_primary_10_1002_zaac_202100042 crossref_primary_10_1002_chem_202400079 crossref_primary_10_1039_C7DT04666A crossref_primary_10_1002_anie_201801653 crossref_primary_10_1016_j_cej_2023_142241 crossref_primary_10_1002_adfm_201701210 crossref_primary_10_1002_ejic_202100245 crossref_primary_10_1021_acs_langmuir_4c02366 crossref_primary_10_1002_ange_202312692 crossref_primary_10_1002_cphc_201701186 crossref_primary_10_1021_acs_inorgchem_3c01075 crossref_primary_10_1039_C8PY00329G crossref_primary_10_1016_j_ica_2020_120055 crossref_primary_10_1021_acs_chemrev_0c00930 crossref_primary_10_1021_acs_accounts_0c00312 crossref_primary_10_1016_j_ccr_2022_214539 crossref_primary_10_1002_anie_202000078 crossref_primary_10_1021_acs_inorgchem_1c03797 crossref_primary_10_1039_D0QO00839G crossref_primary_10_1002_ange_201801653 crossref_primary_10_1039_D1CC05603D crossref_primary_10_1021_acsomega_0c05457 crossref_primary_10_1021_acs_chemrev_8b00119 crossref_primary_10_1021_acs_accounts_3c00102 crossref_primary_10_1002_anie_202312692 crossref_primary_10_1002_aoc_6746 crossref_primary_10_1039_C8OB00814K crossref_primary_10_1039_D2CS00683A crossref_primary_10_1002_ange_202004318 crossref_primary_10_1002_ange_202000078 crossref_primary_10_1002_chem_201806103 crossref_primary_10_1002_anie_201814462 crossref_primary_10_1002_cjoc_202300645 crossref_primary_10_1039_D3DT02317F crossref_primary_10_1002_adom_202202516 crossref_primary_10_1002_anie_201912730 crossref_primary_10_3390_molecules24244593 crossref_primary_10_1021_acsomega_0c03565 crossref_primary_10_3390_M1210 crossref_primary_10_1021_acs_accounts_7b00158 crossref_primary_10_1021_acs_cgd_1c00459 crossref_primary_10_1002_ange_201916729 crossref_primary_10_1016_j_molstruc_2021_130301 crossref_primary_10_1021_acs_inorgchem_3c03759 crossref_primary_10_1021_acs_jpclett_8b02087 crossref_primary_10_1002_anie_202205403 crossref_primary_10_1021_acsami_8b02709 crossref_primary_10_1021_jacs_9b12689 crossref_primary_10_1021_acsmaterialslett_4c00145 crossref_primary_10_1039_C8SC05714A crossref_primary_10_1016_j_dyepig_2022_110098 crossref_primary_10_1021_acs_inorgchem_0c00595 crossref_primary_10_1002_ange_202208376 crossref_primary_10_1002_ange_201912730 crossref_primary_10_1002_anie_201912322 crossref_primary_10_1002_ange_202205403 crossref_primary_10_1002_adom_202101925 crossref_primary_10_1039_C9CC04444B crossref_primary_10_1039_D2CC06584C crossref_primary_10_3389_fchem_2019_00493 crossref_primary_10_1039_C8SC01170B crossref_primary_10_1021_acs_cgd_8b00141 crossref_primary_10_1021_acs_inorgchem_0c01192 crossref_primary_10_1039_D0QM01130D crossref_primary_10_1002_anie_202202190 crossref_primary_10_1002_slct_202204406 crossref_primary_10_1039_D2BM00864E crossref_primary_10_1039_C8QM00096D crossref_primary_10_1039_C9DT03985F crossref_primary_10_1002_cjoc_202300026 crossref_primary_10_1016_j_ccr_2021_213979 crossref_primary_10_1002_adom_202401793 crossref_primary_10_1002_ange_201912322 crossref_primary_10_1016_j_ccr_2020_213691 crossref_primary_10_1002_chem_201800243 crossref_primary_10_1021_acs_organomet_8b00291 crossref_primary_10_1016_j_ccr_2020_213693 crossref_primary_10_1016_j_snb_2018_07_109 crossref_primary_10_1016_j_dyepig_2018_03_062 crossref_primary_10_1016_j_ccr_2019_213094 crossref_primary_10_1039_C8CS00444G crossref_primary_10_1021_acs_organomet_8b00217 crossref_primary_10_1021_acsanm_2c01250 crossref_primary_10_1002_agt2_297 crossref_primary_10_1002_agt2_575 crossref_primary_10_1039_C7SC03076B |
Cites_doi | 10.1002/chem.201604996 10.1039/b902030f 10.1021/cr8005153 10.1021/ja101490d 10.1039/C5CS00152H 10.1002/ange.201000165 10.1002/ange.201107227 10.1039/C4CC07274J 10.1021/om500729b 10.1021/cr800501s 10.1002/anie.201411006 10.1021/cr050004s 10.1021/om500973b 10.1038/nature13829 10.1016/j.ccr.2006.09.004 10.1021/ic400347r 10.1038/nature13384 10.1021/ja104585q 10.1007/978-3-642-04722-0_4 10.1021/om100925j 10.1039/b902238b 10.1038/nchem.2201 10.1002/anie.201107227 10.1021/ar000114f 10.1039/c2jm31949g 10.1039/c1cs15037e 10.1002/anie.201001316 10.1002/ange.201302686 10.1039/C2CS35314H 10.1002/ange.201504786 10.1021/cr900074m 10.1021/ja509446h 10.1021/cr800500u 10.1021/ja5006866 10.1021/acs.chemrev.5b00263 10.1021/ja306042w 10.1002/ange.200703883 10.1039/C3CS60466G 10.1021/ja209327q 10.1002/anie.201402169 10.1002/anie.200905697 10.1039/c3cs35440g 10.1021/ja205021p 10.1002/ange.201001316 10.1039/b105159h 10.1021/om101102j 10.1002/anie.201000165 10.1038/nchem.1706 10.1002/anie.201504786 10.1002/anie.201209787 10.1002/ange.201209787 10.1039/C4CS00372A 10.1002/anie.200703883 10.1002/anie.201302686 10.1002/chem.201501179 10.1021/cr200355j 10.1021/acs.chemmater.6b03376 10.1039/b907018d 10.1021/ja208284t 10.1002/ange.201411006 10.1021/ja502643p 10.1002/ange.201402169 10.1002/ange.200905697 10.1021/ja4032067 |
ContentType | Journal Article |
Copyright | 2017 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: 2017 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. – notice: 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | AAYXX CITATION NPM 7TM K9. 7X8 |
DOI | 10.1002/anie.201610971 |
DatabaseName | CrossRef PubMed Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed ProQuest Health & Medical Complete (Alumni) Nucleic Acids Abstracts MEDLINE - Academic |
DatabaseTitleList | CrossRef ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3773 |
Edition | International ed. in English |
EndPage | 2789 |
ExternalDocumentID | 28128484 10_1002_anie_201610971 ANIE201610971 |
Genre | shortCommunication Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABLJU ABPPZ ABPVW ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BTSUX BY8 CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS EJD F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M53 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ TN5 UB1 UPT V2E VQA W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XSW XV2 YZZ ZZTAW ~IA ~KM ~WT .GJ .HR .Y3 186 31~ 9M8 AANHP AAYJJ AAYOK AAYXX ABDBF ABDPE ABEFU ABJNI ACBWZ ACRPL ACYXJ ADNMO ADXHL AETEA AEYWJ AGCDD AGHNM AGQPQ AGYGG AI. ASPBG AVWKF AZFZN CITATION FEDTE HF~ HVGLF H~9 MVM NHB OHT PALCI RIWAO RJQFR RWH S10 SAMSI UQL VH1 WHG XOL YYP ZCG ZE2 ZGI ZXP ZY4 NPM 7TM K9. 7X8 |
ID | FETCH-LOGICAL-c4761-2f1adf1d764c22d8a9a9df90f82714a4a25dc8becacdb264101bd35923e4fb433 |
IEDL.DBID | DR2 |
ISSN | 1433-7851 1521-3773 |
IngestDate | Fri Jul 11 01:36:46 EDT 2025 Sun Jul 13 05:41:17 EDT 2025 Mon Jul 21 05:38:33 EDT 2025 Thu Apr 24 22:52:25 EDT 2025 Tue Jul 01 03:27:26 EDT 2025 Wed Jan 22 17:05:24 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Keywords | organometallic complexes fluorescence tetraphenylethylene rigidification poly-NHC ligands |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4761-2f1adf1d764c22d8a9a9df90f82714a4a25dc8becacdb264101bd35923e4fb433 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PMID | 28128484 |
PQID | 1977733097 |
PQPubID | 946352 |
PageCount | 5 |
ParticipantIDs | proquest_miscellaneous_1862767486 proquest_journals_1977733097 pubmed_primary_28128484 crossref_primary_10_1002_anie_201610971 crossref_citationtrail_10_1002_anie_201610971 wiley_primary_10_1002_anie_201610971_ANIE201610971 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | March 1, 2017 |
PublicationDateYYYYMMDD | 2017-03-01 |
PublicationDate_xml | – month: 03 year: 2017 text: March 1, 2017 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Angewandte Chemie International Edition |
PublicationTitleAlternate | Angew Chem Int Ed Engl |
PublicationYear | 2017 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2014 2014; 53 126 2014; 515 2010; 39 2011; 40 2013; 42 2009 2011; 30 2008 2010 2010; 49 122 2008 2008; 47 120 2013; 5 2015; 7 2014; 510 2014; 136 2011; 133 2013 2013; 52 125 2014; 43 2012; 112 2012; 134 2001 2015; 115 2010; 29 2012 2012; 51 124 2015; 44 2007; 251 2005; 105 2013; 52 2015; 21 2010; 132 2015 2015; 54 127 2013; 135 2016; 28 2001; 34 2009; 109 2014; 50 2012; 22 2010; 30 2014; 33 e_1_2_2_47_2 e_1_2_2_4_2 e_1_2_2_24_1 e_1_2_2_49_1 e_1_2_2_22_2 e_1_2_2_6_2 e_1_2_2_20_1 e_1_2_2_2_2 e_1_2_2_62_1 e_1_2_2_41_2 e_1_2_2_64_2 e_1_2_2_43_1 e_1_2_2_8_2 e_1_2_2_28_1 e_1_2_2_26_2 e_1_2_2_45_2 (e_1_2_2_66_1) 2008 e_1_2_2_60_1 e_1_2_2_36_2 e_1_2_2_13_1 e_1_2_2_59_1 e_1_2_2_38_2 e_1_2_2_11_1 e_1_2_2_38_3 e_1_2_2_51_2 e_1_2_2_19_2 e_1_2_2_30_2 e_1_2_2_53_2 e_1_2_2_17_2 e_1_2_2_32_2 e_1_2_2_15_3 e_1_2_2_55_1 e_1_2_2_15_2 e_1_2_2_34_2 e_1_2_2_57_2 e_1_2_2_34_3 e_1_2_2_3_2 e_1_2_2_46_3 e_1_2_2_48_1 e_1_2_2_23_2 e_1_2_2_5_2 e_1_2_2_21_3 e_1_2_2_7_1 e_1_2_2_21_2 e_1_2_2_1_1 e_1_2_2_40_2 e_1_2_2_29_2 e_1_2_2_42_2 e_1_2_2_63_2 e_1_2_2_67_1 e_1_2_2_27_2 e_1_2_2_44_2 e_1_2_2_65_2 e_1_2_2_25_3 e_1_2_2_9_2 e_1_2_2_25_2 e_1_2_2_46_2 e_1_2_2_67_2 e_1_2_2_61_1 e_1_2_2_37_2 e_1_2_2_58_2 e_1_2_2_12_1 e_1_2_2_39_2 e_1_2_2_10_1 e_1_2_2_50_2 e_1_2_2_18_3 e_1_2_2_18_2 e_1_2_2_31_2 e_1_2_2_52_2 e_1_2_2_33_1 e_1_2_2_16_2 e_1_2_2_54_2 e_1_2_2_56_3 e_1_2_2_58_1 e_1_2_2_14_2 e_1_2_2_35_2 e_1_2_2_56_2 |
References_xml | – volume: 54 127 start-page: 11540 11702 year: 2015 2015 end-page: 11544 11706 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 7 start-page: 342 year: 2015 end-page: 348 publication-title: Nat. Chem. – volume: 22 start-page: 23726 year: 2012 end-page: 23740 publication-title: J. Mater. Chem. – volume: 109 start-page: 3677 year: 2009 end-page: 3707 publication-title: Chem. Rev. – volume: 133 start-page: 11496 year: 2011 end-page: 11499 publication-title: J. Am. Chem. Soc. – volume: 33 start-page: 6898 year: 2014 end-page: 6904 publication-title: Organometallics – volume: 49 122 start-page: 8810 8992 year: 2010 2010 end-page: 8849 9032 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – start-page: 7168 year: 2009 end-page: 7178 publication-title: Dalton Trans. – volume: 510 start-page: 485 year: 2014 end-page: 496 publication-title: Nature – volume: 115 start-page: 11718 year: 2015 end-page: 11940 publication-title: Chem. Rev. – volume: 105 start-page: 3978 year: 2005 end-page: 4008 publication-title: Chem. Rev. – volume: 44 start-page: 6143 year: 2015 end-page: 6160 publication-title: Chem. Soc. Rev. – volume: 53 126 start-page: 6632 6750 year: 2014 2014 end-page: 6636 6754 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 21 start-page: 10566 year: 2015 end-page: 10575 publication-title: Chem. Eur. J. – start-page: 2124 year: 2009 end-page: 2126 publication-title: Chem. Commun. – volume: 40 start-page: 4783 year: 2011 end-page: 4804 publication-title: Chem. Soc. Rev. – volume: 135 start-page: 9263 year: 2013 end-page: 9266 publication-title: J. Am. Chem. Soc. – volume: 33 start-page: 5077 year: 2014 end-page: 5080 publication-title: Organometallics – volume: 132 start-page: 4572 year: 2010 end-page: 4573 publication-title: J. Am. Chem. Soc. – volume: 28 start-page: 7889 year: 2016 end-page: 7897 publication-title: Chem. Mater. – volume: 47 120 start-page: 3122 3166 year: 2008 2008 end-page: 3172 3216 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 34 start-page: 18 year: 2001 end-page: 29 publication-title: Acc. Chem. Res. – volume: 52 125 start-page: 2930 3002 year: 2013 2013 end-page: 2933 3005 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 134 start-page: 15061 year: 2012 end-page: 15070 publication-title: J. Am. Chem. Soc. – year: 2008 – volume: 136 start-page: 8269 year: 2014 end-page: 8276 publication-title: J. Am. Chem. Soc. – volume: 5 start-page: 692 year: 2013 end-page: 697 publication-title: Nat. Chem. – volume: 52 start-page: 5395 year: 2013 end-page: 5402 publication-title: Inorg. Chem. – volume: 50 start-page: 15243 year: 2014 end-page: 15246 publication-title: Chem. Commun. – volume: 49 122 start-page: 2349 2399 year: 2010 2010 end-page: 2353 2403 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 52 125 start-page: 7009 7147 year: 2013 2013 end-page: 7013 7151 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 109 start-page: 3859 year: 2009 end-page: 3884 publication-title: Chem. Rev. – volume: 251 start-page: 642 year: 2007 end-page: 670 publication-title: Coord. Chem. Rev. – volume: 109 start-page: 3612 year: 2009 end-page: 3676 publication-title: Chem. Rev. – volume: 39 start-page: 1903 year: 2010 end-page: 1912 publication-title: Chem. Soc. Rev. – volume: 136 start-page: 16724 year: 2014 end-page: 16727 publication-title: J. Am. Chem. Soc. – volume: 30 start-page: 95 year: 2010 end-page: 129 publication-title: Top. Organomet. Chem. – volume: 29 start-page: 6782 year: 2010 end-page: 6789 publication-title: Organometallics – volume: 133 start-page: 17622 year: 2011 end-page: 17625 publication-title: J. Am. Chem. Soc. – volume: 54 127 start-page: 4958 5042 year: 2015 2015 end-page: 4962 5046 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 133 start-page: 20126 year: 2011 end-page: 20129 publication-title: J. Am. Chem. Soc. – volume: 42 start-page: 755 year: 2013 end-page: 773 publication-title: Chem. Soc. Rev. – volume: 44 start-page: 4547 year: 2015 end-page: 4595 publication-title: Chem. Soc. Rev. – volume: 112 start-page: 4391 year: 2012 end-page: 4420 publication-title: Chem. Rev. – volume: 42 start-page: 4963 year: 2013 end-page: 4976 publication-title: Chem. Soc. Rev. – start-page: 1740 year: 2001 end-page: 1741 publication-title: Chem. Commun. – volume: 109 start-page: 3561 year: 2009 end-page: 3598 publication-title: Chem. Rev. – volume: 49 122 start-page: 10214 10412 year: 2010 2010 end-page: 10216 10414 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 136 start-page: 7241 year: 2014 end-page: 7244 publication-title: J. Am. Chem. Soc. – volume: 51 124 start-page: 2195 2238 year: 2012 2012 end-page: 2198 2241 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 132 start-page: 10009 year: 2010 end-page: 10011 publication-title: J. Am. Chem. Soc. – volume: 30 start-page: 334 year: 2011 end-page: 347 publication-title: Organometallics – volume: 43 start-page: 3551 year: 2014 end-page: 3574 publication-title: Chem. Soc. Rev. – volume: 515 start-page: 96 year: 2014 end-page: 99 publication-title: Nature – ident: e_1_2_2_42_2 doi: 10.1002/chem.201604996 – ident: e_1_2_2_29_2 doi: 10.1039/b902030f – ident: e_1_2_2_63_2 doi: 10.1021/cr8005153 – ident: e_1_2_2_41_2 doi: 10.1021/ja101490d – ident: e_1_2_2_2_2 doi: 10.1039/C5CS00152H – ident: e_1_2_2_15_3 doi: 10.1002/ange.201000165 – ident: e_1_2_2_38_3 doi: 10.1002/ange.201107227 – ident: e_1_2_2_60_1 doi: 10.1039/C4CC07274J – ident: e_1_2_2_36_2 doi: 10.1021/om500729b – ident: e_1_2_2_62_1 – ident: e_1_2_2_17_2 doi: 10.1021/cr800501s – ident: e_1_2_2_34_2 doi: 10.1002/anie.201411006 – ident: e_1_2_2_65_2 doi: 10.1021/cr050004s – ident: e_1_2_2_35_2 doi: 10.1021/om500973b – ident: e_1_2_2_8_2 doi: 10.1038/nature13829 – ident: e_1_2_2_28_1 – ident: e_1_2_2_64_2 doi: 10.1016/j.ccr.2006.09.004 – ident: e_1_2_2_31_2 doi: 10.1021/ic400347r – ident: e_1_2_2_19_2 doi: 10.1038/nature13384 – ident: e_1_2_2_33_1 – ident: e_1_2_2_47_2 doi: 10.1021/ja104585q – ident: e_1_2_2_14_2 doi: 10.1007/978-3-642-04722-0_4 – ident: e_1_2_2_32_2 doi: 10.1021/om100925j – ident: e_1_2_2_16_2 doi: 10.1039/b902238b – ident: e_1_2_2_55_1 – ident: e_1_2_2_59_1 doi: 10.1038/nchem.2201 – ident: e_1_2_2_38_2 doi: 10.1002/anie.201107227 – ident: e_1_2_2_23_2 doi: 10.1021/ar000114f – ident: e_1_2_2_48_1 doi: 10.1039/c2jm31949g – ident: e_1_2_2_5_2 doi: 10.1039/c1cs15037e – ident: e_1_2_2_49_1 – ident: e_1_2_2_43_1 – ident: e_1_2_2_7_1 – ident: e_1_2_2_1_1 – ident: e_1_2_2_46_2 doi: 10.1002/anie.201001316 – ident: e_1_2_2_21_3 doi: 10.1002/ange.201302686 – ident: e_1_2_2_27_2 doi: 10.1039/C2CS35314H – ident: e_1_2_2_56_3 doi: 10.1002/ange.201504786 – ident: e_1_2_2_22_2 doi: 10.1021/cr900074m – ident: e_1_2_2_50_2 doi: 10.1021/ja509446h – ident: e_1_2_2_26_2 doi: 10.1021/cr800500u – ident: e_1_2_2_51_2 doi: 10.1021/ja5006866 – ident: e_1_2_2_12_1 doi: 10.1021/acs.chemrev.5b00263 – ident: e_1_2_2_53_2 doi: 10.1021/ja306042w – ident: e_1_2_2_18_3 doi: 10.1002/ange.200703883 – ident: e_1_2_2_20_1 – ident: e_1_2_2_45_2 doi: 10.1039/C3CS60466G – ident: e_1_2_2_54_2 doi: 10.1021/ja209327q – ident: e_1_2_2_58_1 doi: 10.1002/anie.201402169 – ident: e_1_2_2_67_1 doi: 10.1002/anie.200905697 – ident: e_1_2_2_9_2 doi: 10.1039/c3cs35440g – ident: e_1_2_2_39_2 doi: 10.1021/ja205021p – ident: e_1_2_2_46_3 doi: 10.1002/ange.201001316 – ident: e_1_2_2_61_1 – ident: e_1_2_2_11_1 doi: 10.1039/b105159h – ident: e_1_2_2_40_2 doi: 10.1021/om101102j – ident: e_1_2_2_15_2 doi: 10.1002/anie.201000165 – ident: e_1_2_2_3_2 doi: 10.1038/nchem.1706 – ident: e_1_2_2_56_2 doi: 10.1002/anie.201504786 – ident: e_1_2_2_25_2 doi: 10.1002/anie.201209787 – ident: e_1_2_2_25_3 doi: 10.1002/ange.201209787 – ident: e_1_2_2_10_1 doi: 10.1039/C4CS00372A – ident: e_1_2_2_13_1 – ident: e_1_2_2_18_2 doi: 10.1002/anie.200703883 – ident: e_1_2_2_21_2 doi: 10.1002/anie.201302686 – ident: e_1_2_2_24_1 – volume-title: Highly Efficient OLEDs with Phosphorescent Materials year: 2008 ident: e_1_2_2_66_1 – ident: e_1_2_2_44_2 doi: 10.1002/chem.201501179 – ident: e_1_2_2_4_2 doi: 10.1021/cr200355j – ident: e_1_2_2_6_2 doi: 10.1021/acs.chemmater.6b03376 – ident: e_1_2_2_30_2 doi: 10.1039/b907018d – ident: e_1_2_2_57_2 doi: 10.1021/ja208284t – ident: e_1_2_2_34_3 doi: 10.1002/ange.201411006 – ident: e_1_2_2_52_2 doi: 10.1021/ja502643p – ident: e_1_2_2_58_2 doi: 10.1002/ange.201402169 – ident: e_1_2_2_67_2 doi: 10.1002/ange.200905697 – ident: e_1_2_2_37_2 doi: 10.1021/ja4032067 |
SSID | ssj0028806 |
Score | 2.5578747 |
Snippet | Two tetraphenylethylene (TPE) bridged tetraimidazolium salts, [H4L‐Et](PF6)4 and [H4L‐Bu](PF6)4, were used as precursors for the synthesis of the dinuclear AgI... Two tetraphenylethylene (TPE) bridged tetraimidazolium salts, [H 4 L ‐Et](PF 6 ) 4 and [H 4 L ‐Bu](PF 6 ) 4 , were used as precursors for the synthesis of the... Two tetraphenylethylene (TPE) bridged tetraimidazolium salts, [H L-Et](PF ) and [H L-Bu](PF ) , were used as precursors for the synthesis of the dinuclear Ag... Two tetraphenylethylene (TPE) bridged tetraimidazolium salts, [H4L-Et](PF6)4 and [H4L-Bu](PF6)4, were used as precursors for the synthesis of the dinuclear AgI... Two tetraphenylethylene (TPE) bridged tetraimidazolium salts, [H4 L-Et](PF6 )4 and [H4 L-Bu](PF6 )4 , were used as precursors for the synthesis of the... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2785 |
SubjectTerms | Agglomeration Complexation Dilution Emission Emissions Fluorescence Metals organometallic complexes Phosphorescence poly-NHC ligands rigidification Salts tetraphenylethylene |
Title | Turn‐On Fluorescence in Tetra‐NHC Ligands by Rigidification through Metal Complexation: An Alternative to Aggregation‐Induced Emission |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.201610971 https://www.ncbi.nlm.nih.gov/pubmed/28128484 https://www.proquest.com/docview/1977733097 https://www.proquest.com/docview/1862767486 |
Volume | 56 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9tAEB5KLu2l74fatGyh0NMm1motybkJY-OWxoXgQG5iXxImRi6OXEhO_QE55Dfml3Rm9WjdUgrtUcystNqdWX27mvkG4F3ihnGUaMUR3qZcmrDgOnKCIxjH_QTVUdWU73w8j2en8uPZ8OynLP6GH6I_cCPP8Os1ObjSF4c_SEMpA5tCs4gv3CeRU8AWoaKTnj9KoHE26UVRxKkKfcfaOBCHu813v0q_Qc1d5Oo_PdMHoLpONxEn5wfbWh-Yq1_4HP_nrR7C_RaXsqwxpEdwx1WP4e64Kwf3BK4XqHH77eZzxaar7XrjaaCMY8uKLVy9USiaz8bs07Kk5GGmL9nJslxaikTyk8_aikDs2CHeZ7QOUW4NiY5YVrFs1R5NfnWsXrOsLDeu9GK8MxUYMc6yCfaGjveewul0shjPeFvKgRuZxCEXRahsEdoklkYIm6qRGtliNChSkYRSSSWG1qRoT8pYjRgNFwptoyGiTycLjdP3DPaqdeVeAIslUdIMIjdInERTSi2hlkTakXIF4q0AeDeVuWl5zqncxipvGJpFTmOc92McwPte_0vD8PFHzf3OMvLW0y_yEAF0EkUoD-BtL8bRoB8vqnLrLergtpFIk9I4gOeNRfWPEikhhFQGILxd_KUPeTb_MOmvXv5Lo1dwTxA28YF0-7BXb7buNSKrWr_x3vMdRIsdAQ |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwEB6h5bBceD8CCxgJiZN3G8dNUm5R1aoLbZFWXYlb5FeiiipFJUWCEz-AA7-RX8KM80AFISQ4RmMnjj3jfJ7MfAPwPHHDOEq04ghvUy5NWHAdOcERjON5guqoasp3Xizj2aV89XbYRRNSLkzDD9E73Mgy_H5NBk4O6bOfrKGUgk2xWUQYTlnkV6mstz9VXfQMUgLVs0kwiiJOdeg73saBODvsf_hd-g1sHmJX__GZ3gDdDbuJOXl3uq_1qfn8C6Pjf73XTbjeQlOWNbp0C6646jYcj7uKcHfg6wpbfP_y7U3Fppv9dueZoIxj64qtXL1TKFrOxmy-Lil_mOlP7GJdri0FI_n1Z21RILZwCPkZbUWUXkOilyyrWLZpvZMfHau3LCvLnSu9GO9MNUaMs2yCoyEP3124nE5W4xlvqzlwI5M45KIIlS1Cm8TSCGFTNVIjW4wGRSqSUCqpxNCaFFVKGasRpuFeoW00RADqZKFx_e7BUbWt3ANgsSRWmkHkBomTqE2pJeCSSDtSrkDIFQDv1jI3LdU5VdzY5A1Js8hpjvN-jgN40bd_35B8_LHlSacaeWvsH_IQMXQSRSgP4Fkvxtmgfy-qcts9tsGTI_EmpXEA9xuV6h8lUgIJqQxAeMX4yxjybHk-6a8e_kunp3A8Wy3m-fx8-foRXBMEVXxc3Qkc1bu9e4xAq9ZPvCn9AP9hIRw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB6hIgEX3g9DgUVC4uTWXm_sDTcrTZRCG1CVSr1Z-7IVETlV6lSCEz-AA7-RX8KMXxAQQoKjNbP2endm_e165huAl4kbxFGilY_wVvrChLmvI8d9BOO4n6A6qprynY9n8fRUvDkbnP2Uxd_wQ_QHbuQZ9XpNDn5u8_0fpKGUgU2hWcQXTknkV0UcSLLrg5OeQIqjdTb5RVHkUxn6jrYx4Pvb7bc_S79hzW3oWn97JrdAdb1uQk4-7G0qvWc-_ULo-D-vdRtutsCUpY0l3YErrrwL10ddPbh78GWOGt8-f31Xsslys1rXPFDGsUXJ5q5aKxTNpiN2tCgoe5jpj-xkUSwshSLVs8_akkDs2CHgZ7QQUXINiV6ztGTpsj2bvHSsWrG0KNauqMV4Z6owYpxlY-wNne_dh9PJeD6a-m0tB9-IJA59nofK5qFNYmE4t1IN1dDmwyCXPAmFEooPrJFoUMpYjSANVwptowHCTydyjdP3AHbKVekeAYsFcdIEkQsSJ9CWpCXYkgg7VC5HwOWB301lZlqic6q3scwaimae0Rhn_Rh78KrXP28oPv6oudtZRta6-kUWIoJOogjlHrzoxTga9OdFlW61QR3cNxJrkow9eNhYVP8oLgkiSOEBr-3iL33I0tnhuL96_C-NnsO19weT7Ohw9vYJ3OCEU-qgul3YqdYb9xRRVqWf1Y70HaEmH9Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Turn-On+Fluorescence+in+Tetra-NHC+Ligands+by+Rigidification+through+Metal+Complexation%3A+An+Alternative+to+Aggregation-Induced+Emission&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Sinha%2C+Narayan&rft.au=Stegemann%2C+Linda&rft.au=Tan%2C+Tristan+T+Y&rft.au=Doltsinis%2C+Nikos+L&rft.date=2017-03-01&rft.eissn=1521-3773&rft.volume=56&rft.issue=10&rft.spage=2785&rft_id=info:doi/10.1002%2Fanie.201610971&rft_id=info%3Apmid%2F28128484&rft.externalDocID=28128484 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon |