Palladium(II)‐Initiated Catellani‐Type Reactions
The Catellani reaction is known as a powerful strategy for the expeditious synthesis of highly substituted arenes and benzo‐fused rings, which are usually difficult to access through traditional cross‐coupling strategies. It utilizes the synergistic interplay of palladium and norbornene catalysis to...
Saved in:
Published in | Angewandte Chemie International Edition Vol. 58; no. 18; pp. 5832 - 5844 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
23.04.2019
|
Edition | International ed. in English |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The Catellani reaction is known as a powerful strategy for the expeditious synthesis of highly substituted arenes and benzo‐fused rings, which are usually difficult to access through traditional cross‐coupling strategies. It utilizes the synergistic interplay of palladium and norbornene catalysis to facilitate sequential ortho C−H functionalization and ipso termination of aryl halides in a single operation. In classical Catellani‐type reactions, aryl halides are mainly used as the substrates, and a Pd0 catalyst is required to initiate the reaction. Nevertheless, recent advances showcase that Catellani‐type reactions can also be initiated by a PdII catalyst with different starting materials instead of aryl halides via different reaction mechanisms and under different conditions. This emerging concept of PdII/norbornene cooperative catalysis has significantly advanced Catellani‐type reactions, thus enabling future developments of this field. In this Minireview, PdII‐initiated Catellani‐type reactions and their application in the synthesis of bioactive molecules are summarized.
Cooperative solutions: Palladium(II)‐initiated norbornene (NBE)‐mediated cooperative catalysis has enabled significant developments of the Catellani reaction. These advances and their application in the synthesis of bioactive molecules are summarized in this Minireview. |
---|---|
AbstractList | The Catellani reaction is known as a powerful strategy for the expeditious synthesis of highly substituted arenes and benzo‐fused rings, which are usually difficult to access through traditional cross‐coupling strategies. It utilizes the synergistic interplay of palladium and norbornene catalysis to facilitate sequential ortho C−H functionalization and ipso termination of aryl halides in a single operation. In classical Catellani‐type reactions, aryl halides are mainly used as the substrates, and a Pd0 catalyst is required to initiate the reaction. Nevertheless, recent advances showcase that Catellani‐type reactions can also be initiated by a PdII catalyst with different starting materials instead of aryl halides via different reaction mechanisms and under different conditions. This emerging concept of PdII/norbornene cooperative catalysis has significantly advanced Catellani‐type reactions, thus enabling future developments of this field. In this Minireview, PdII‐initiated Catellani‐type reactions and their application in the synthesis of bioactive molecules are summarized.
Cooperative solutions: Palladium(II)‐initiated norbornene (NBE)‐mediated cooperative catalysis has enabled significant developments of the Catellani reaction. These advances and their application in the synthesis of bioactive molecules are summarized in this Minireview. The Catellani reaction is known as a powerful strategy for the expeditious synthesis of highly substituted arenes and benzo-fused rings, which are usually difficult to access through traditional cross-coupling strategies. It utilizes the synergistic interplay of palladium and norbornene catalysis to facilitate sequential ortho C-H functionalization and ipso termination of aryl halides in a single operation. In classical Catellani-type reactions, aryl halides are mainly used as the substrates, and a Pd catalyst is required to initiate the reaction. Nevertheless, recent advances showcase that Catellani-type reactions can also be initiated by a Pd catalyst with different starting materials instead of aryl halides via different reaction mechanisms and under different conditions. This emerging concept of Pd /norbornene cooperative catalysis has significantly advanced Catellani-type reactions, thus enabling future developments of this field. In this Minireview, Pd -initiated Catellani-type reactions and their application in the synthesis of bioactive molecules are summarized. The Catellani reaction is known as a powerful strategy for the expeditious synthesis of highly substituted arenes and benzo‐fused rings, which are usually difficult to access through traditional cross‐coupling strategies. It utilizes the synergistic interplay of palladium and norbornene catalysis to facilitate sequential ortho C−H functionalization and ipso termination of aryl halides in a single operation. In classical Catellani‐type reactions, aryl halides are mainly used as the substrates, and a Pd0 catalyst is required to initiate the reaction. Nevertheless, recent advances showcase that Catellani‐type reactions can also be initiated by a PdII catalyst with different starting materials instead of aryl halides via different reaction mechanisms and under different conditions. This emerging concept of PdII/norbornene cooperative catalysis has significantly advanced Catellani‐type reactions, thus enabling future developments of this field. In this Minireview, PdII‐initiated Catellani‐type reactions and their application in the synthesis of bioactive molecules are summarized. The Catellani reaction is known as a powerful strategy for the expeditious synthesis of highly substituted arenes and benzo‐fused rings, which are usually difficult to access through traditional cross‐coupling strategies. It utilizes the synergistic interplay of palladium and norbornene catalysis to facilitate sequential ortho C−H functionalization and ipso termination of aryl halides in a single operation. In classical Catellani‐type reactions, aryl halides are mainly used as the substrates, and a Pd 0 catalyst is required to initiate the reaction. Nevertheless, recent advances showcase that Catellani‐type reactions can also be initiated by a Pd II catalyst with different starting materials instead of aryl halides via different reaction mechanisms and under different conditions. This emerging concept of Pd II /norbornene cooperative catalysis has significantly advanced Catellani‐type reactions, thus enabling future developments of this field. In this Minireview, Pd II ‐initiated Catellani‐type reactions and their application in the synthesis of bioactive molecules are summarized. The Catellani reaction is known as a powerful strategy for the expeditious synthesis of highly substituted arenes and benzo-fused rings, which are usually difficult to access through traditional cross-coupling strategies. It utilizes the synergistic interplay of palladium and norbornene catalysis to facilitate sequential ortho C-H functionalization and ipso termination of aryl halides in a single operation. In classical Catellani-type reactions, aryl halides are mainly used as the substrates, and a Pd0 catalyst is required to initiate the reaction. Nevertheless, recent advances showcase that Catellani-type reactions can also be initiated by a PdII catalyst with different starting materials instead of aryl halides via different reaction mechanisms and under different conditions. This emerging concept of PdII /norbornene cooperative catalysis has significantly advanced Catellani-type reactions, thus enabling future developments of this field. In this Minireview, PdII -initiated Catellani-type reactions and their application in the synthesis of bioactive molecules are summarized.The Catellani reaction is known as a powerful strategy for the expeditious synthesis of highly substituted arenes and benzo-fused rings, which are usually difficult to access through traditional cross-coupling strategies. It utilizes the synergistic interplay of palladium and norbornene catalysis to facilitate sequential ortho C-H functionalization and ipso termination of aryl halides in a single operation. In classical Catellani-type reactions, aryl halides are mainly used as the substrates, and a Pd0 catalyst is required to initiate the reaction. Nevertheless, recent advances showcase that Catellani-type reactions can also be initiated by a PdII catalyst with different starting materials instead of aryl halides via different reaction mechanisms and under different conditions. This emerging concept of PdII /norbornene cooperative catalysis has significantly advanced Catellani-type reactions, thus enabling future developments of this field. In this Minireview, PdII -initiated Catellani-type reactions and their application in the synthesis of bioactive molecules are summarized. |
Author | Chen, Ruiming Chen, Shuqing Zhou, Qianghui Cheng, Hong‐Gang |
Author_xml | – sequence: 1 givenname: Hong‐Gang surname: Cheng fullname: Cheng, Hong‐Gang organization: Wuhan University – sequence: 2 givenname: Shuqing surname: Chen fullname: Chen, Shuqing organization: Wuhan University – sequence: 3 givenname: Ruiming surname: Chen fullname: Chen, Ruiming organization: Wuhan University – sequence: 4 givenname: Qianghui orcidid: 0000-0002-8125-0380 surname: Zhou fullname: Zhou, Qianghui email: qhzhou@whu.edu.cn organization: Wuhan University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30589184$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkMtKAzEUhoNU7EW3LqXgpi6m5jaZzLKUqgNFReo6ZJIMpMylTmYo3fkIPqNPYmprhYK4OTkk339y-PqgU1alAeASwTGCEN_K0poxhogjQmN0AnooxCggUUQ6vqeEBBEPURf0nVt6nnPIzkCXwJDHiNMeoM8yz6W2bTFKkpvP94-ktI2VjdHDqa_-rbT-drFZmeGLkaqxVenOwWkmc2cu9ucAvN7NFtOHYP50n0wn80DRiKEAGxySFJlQ45SniPGQcRNHNIaEQK2ySDPOFKGMYR1DnqZSZbHWnsYE41STARjt5q7q6q01rhGFdep7KVO1TmDEEGQUMujR6yN0WbV16bcTGMPIS6DeyQBc7ak2LYwWq9oWst6IHx8eGO8AVVfO1SY7IAiKrXCxFS4Own2AHgWUbeTWUlNLm_8di3extc3N5p9PxOQxmf1mvwB3hpQy |
CitedBy_id | crossref_primary_10_1039_D4SC05111D crossref_primary_10_1039_D4OB01689K crossref_primary_10_1002_anie_202201239 crossref_primary_10_1002_anie_202005664 crossref_primary_10_1002_slct_202102641 crossref_primary_10_1021_acs_orglett_0c02897 crossref_primary_10_1002_adsc_202301356 crossref_primary_10_1021_acs_orglett_9b03565 crossref_primary_10_1039_D1CC00546D crossref_primary_10_1002_anie_202201750 crossref_primary_10_1039_D2QO01761J crossref_primary_10_1016_j_xcrp_2022_100776 crossref_primary_10_1002_anie_202300703 crossref_primary_10_1007_s11426_023_1758_1 crossref_primary_10_1039_D2QO01609E crossref_primary_10_1002_cjoc_202100034 crossref_primary_10_1038_s44160_024_00673_8 crossref_primary_10_1039_D3CS00791J crossref_primary_10_1021_acs_orglett_4c01484 crossref_primary_10_1038_s41467_021_23058_3 crossref_primary_10_1039_C9SC04062E crossref_primary_10_1002_ejoc_202201175 crossref_primary_10_1039_D1SC03569J crossref_primary_10_1039_D2OB01674E crossref_primary_10_1002_ajoc_202200642 crossref_primary_10_1021_acs_orglett_9b03674 crossref_primary_10_1002_anie_202110971 crossref_primary_10_1002_ange_202109771 crossref_primary_10_1021_jacs_9b10857 crossref_primary_10_1002_anie_202409366 crossref_primary_10_1039_D0CC00872A crossref_primary_10_1002_chem_202100201 crossref_primary_10_1021_acs_joc_2c02988 crossref_primary_10_1021_acs_joc_3c01522 crossref_primary_10_1021_acs_orglett_4c01658 crossref_primary_10_1021_acs_joc_3c02730 crossref_primary_10_1021_jacs_9b07857 crossref_primary_10_1039_D1QO01103K crossref_primary_10_1002_ange_202103428 crossref_primary_10_1021_jacs_3c03780 crossref_primary_10_1021_acs_chemrev_9b00079 crossref_primary_10_1039_D1QO01454D crossref_primary_10_1021_acs_orglett_2c00318 crossref_primary_10_1016_j_tet_2022_132956 crossref_primary_10_1007_s41981_020_00077_7 crossref_primary_10_1002_anie_202109771 crossref_primary_10_1002_cctc_202400279 crossref_primary_10_1021_acs_joc_1c02088 crossref_primary_10_1002_ange_202403950 crossref_primary_10_1002_cjoc_202300621 crossref_primary_10_1002_cjoc_202100693 crossref_primary_10_1038_s41467_024_47060_7 crossref_primary_10_1021_acs_orglett_9b03228 crossref_primary_10_1002_anie_202008482 crossref_primary_10_1002_ange_202005664 crossref_primary_10_1039_D0QO01350A crossref_primary_10_1126_science_abl7854 crossref_primary_10_1002_anie_202103428 crossref_primary_10_1039_D0CS00447B crossref_primary_10_1002_anie_202303110 crossref_primary_10_1002_ange_202201750 crossref_primary_10_1038_s41557_022_00898_0 crossref_primary_10_1007_s40242_020_0158_3 crossref_primary_10_1021_acs_orglett_0c03732 crossref_primary_10_1002_adsc_202200801 crossref_primary_10_1002_ange_202201239 crossref_primary_10_1002_asia_202200858 crossref_primary_10_1021_acs_joc_0c01695 crossref_primary_10_1039_D0QO00135J crossref_primary_10_1002_chem_202102006 crossref_primary_10_1021_acs_orglett_3c03266 crossref_primary_10_1002_anie_202403950 crossref_primary_10_1039_C9SC02759A crossref_primary_10_1055_a_1866_7737 crossref_primary_10_1002_ejoc_202300877 crossref_primary_10_1021_acs_joc_0c02151 crossref_primary_10_1039_D0QO00601G crossref_primary_10_1002_ejoc_201901738 crossref_primary_10_1021_acscatal_3c00508 crossref_primary_10_1039_D4QO00030G crossref_primary_10_1002_aoc_6851 crossref_primary_10_1021_acscatal_0c05156 crossref_primary_10_1002_ange_202303110 crossref_primary_10_1016_j_cclet_2024_110543 crossref_primary_10_1039_D1SC07028B crossref_primary_10_1021_acscatal_4c00690 crossref_primary_10_1021_acs_accounts_1c00547 crossref_primary_10_1055_a_1984_0755 crossref_primary_10_1039_D2QO00660J crossref_primary_10_1002_chem_202303245 crossref_primary_10_1002_ange_202008482 crossref_primary_10_1021_acs_joc_9b02352 crossref_primary_10_1016_j_tet_2023_133307 crossref_primary_10_1002_adsc_202400469 crossref_primary_10_1021_acs_orglett_0c00952 crossref_primary_10_1039_C9CC03126J crossref_primary_10_1002_slct_202300153 crossref_primary_10_1021_acs_orglett_5c00298 crossref_primary_10_1016_j_xcrp_2021_100615 crossref_primary_10_1021_acs_orglett_1c01613 crossref_primary_10_1039_D3QO01484C crossref_primary_10_1002_ange_202409366 crossref_primary_10_1016_j_ccr_2020_213683 crossref_primary_10_1021_acs_chemrev_9b00682 crossref_primary_10_1007_s11426_022_1526_7 crossref_primary_10_1016_j_tet_2021_132173 crossref_primary_10_6023_A23010013 crossref_primary_10_1002_anie_201910792 crossref_primary_10_1021_acs_orglett_3c03932 crossref_primary_10_1021_jacs_4c15956 crossref_primary_10_1021_jacs_9b05009 crossref_primary_10_1002_adsc_201901372 crossref_primary_10_1016_j_mcat_2022_112320 crossref_primary_10_1021_jacs_0c09193 crossref_primary_10_1039_D4QO00506F crossref_primary_10_1021_acs_orglett_1c01165 crossref_primary_10_1002_chem_202001832 crossref_primary_10_1021_acscatal_9b05177 crossref_primary_10_1021_jacs_0c05434 crossref_primary_10_1021_acs_orglett_5c00503 crossref_primary_10_1021_jacs_9b11479 crossref_primary_10_1021_acscatal_0c03317 crossref_primary_10_1039_D0QO00982B crossref_primary_10_1039_C9CC09265J crossref_primary_10_1021_acs_joc_3c02014 crossref_primary_10_1002_ange_202300703 crossref_primary_10_1055_a_2193_4927 crossref_primary_10_1002_cctc_202301764 crossref_primary_10_1021_jacsau_1c00328 crossref_primary_10_1021_jacsau_2c00630 crossref_primary_10_1002_ange_201910792 crossref_primary_10_3762_bjoc_19_38 crossref_primary_10_3390_catal10050571 crossref_primary_10_1002_ejoc_202201264 crossref_primary_10_1021_acs_orglett_0c03004 crossref_primary_10_1021_acs_organomet_1c00291 crossref_primary_10_1039_D0CC03749D crossref_primary_10_1039_D3OB00260H crossref_primary_10_1016_j_chempr_2020_09_004 crossref_primary_10_1021_acs_joc_4c02128 crossref_primary_10_3390_molecules25245900 crossref_primary_10_1002_adsc_202300883 crossref_primary_10_1021_acs_joc_0c02994 crossref_primary_10_1021_acscatal_2c06310 crossref_primary_10_1016_j_cclet_2020_07_005 crossref_primary_10_1016_j_tet_2019_01_033 crossref_primary_10_1002_adsc_202401570 crossref_primary_10_1002_cjoc_202000600 crossref_primary_10_1039_D4QO01619J crossref_primary_10_1021_acs_orglett_4c01944 crossref_primary_10_1021_acs_organomet_2c00530 crossref_primary_10_1021_acs_orglett_3c01579 crossref_primary_10_1021_acs_orglett_3c00883 crossref_primary_10_1134_S0012500820120046 crossref_primary_10_1039_D0QO00905A crossref_primary_10_1021_acs_orglett_9b01072 crossref_primary_10_1002_cctc_201901355 crossref_primary_10_1021_acs_orglett_1c02715 crossref_primary_10_1021_acscatal_4c03757 crossref_primary_10_1039_C9OB01085H crossref_primary_10_1021_jacs_0c07634 crossref_primary_10_1039_D3CC01753B crossref_primary_10_1021_acs_orglett_4c01431 crossref_primary_10_1039_D5SC00617A crossref_primary_10_1039_D2QO00490A crossref_primary_10_1002_ange_202110971 crossref_primary_10_1002_chem_202101598 crossref_primary_10_1039_D4NP00023D crossref_primary_10_1016_j_chempr_2021_04_005 crossref_primary_10_1016_j_gresc_2020_09_002 |
Cites_doi | 10.1039/C8OB01025K 10.1021/acscentsci.5b00312 10.1039/C7OB01135K 10.1021/ja410823e 10.1002/ange.201701803 10.1039/c2cs15281a 10.1021/acscatal.7b03648 10.1038/nchem.2372 10.1002/ange.201712393 10.1002/ange.201702686 10.1021/acscatal.8b00423 10.1021/jacs.5b08435 10.1002/ange.201801894 10.1021/ja410760f 10.1016/j.tetlet.2017.04.066 10.1002/ange.201813699 10.1038/460197a 10.1002/anie.200400655 10.1039/C7CS00064B 10.1021/jacs.6b03402 10.1038/s41586-018-0220-1 10.1039/C5SC04060D 10.1021/ar970282g 10.1002/anie.201803865 10.1038/nchem.2322 10.1021/acs.joc.8b01933 10.1002/ange.200803793 10.1021/jacs.6b11055 10.1002/anie.201704411 10.1002/anie.199701191 10.1038/nchem.1607 10.1016/j.chempr.2017.11.002 10.1021/ol035806t 10.1021/jacs.5b08914 10.1007/3418_2015_130 10.1002/anie.201504390 10.1002/ange.200806273 10.1007/978-3-642-12356-6 10.1021/cr900005n 10.1002/anie.201503112 10.1021/cr900184e 10.1021/ja00096a059 10.1002/ange.201704411 10.1039/b606984n 10.6023/A15050319 10.1021/ar010074v 10.1039/C7CC00110J 10.1039/c1cs15083a 10.1002/chem.201703054 10.1038/ncomms15430 10.1021/ja075219t 10.1002/ange.201806780 10.1021/ja3058138 10.1039/C6CC02384C 10.1002/anie.201809929 10.1002/chem.201100210 10.1021/jacs.6b08942 10.1002/anie.200602585 10.1021/acscatal.8b00975 10.1021/cr020033s 10.1039/B601930G 10.1021/cr1002276 10.1021/jacs.6b04966 10.1002/ange.201301154 10.1002/(SICI)1521-3773(20000317)39:6<1045::AID-ANIE1045>3.0.CO;2-Q 10.1038/nature11158 10.1002/anie.201708967 10.1126/science.1114731 10.1021/acscatal.8b00637 10.1111/j.1527-3466.2001.tb00061.x 10.1021/acs.chemrev.6b00554 10.1002/anie.201800573 10.1038/nature12963 10.1002/ange.201803865 10.1038/s41570-017-0035 10.1093/bioinformatics/btn479 10.1021/jacs.5b02809 10.1126/science.219.4582.245 10.1021/acs.accounts.6b00165 10.1002/ange.201511549 10.1002/anie.200803793 10.1021/ja208286b 10.1021/ja2055066 10.6023/cjoc201505035 10.1038/nature14214 10.1021/ar300014f 10.1002/anie.200806273 10.1002/anie.201701803 10.1021/jm000164q 10.1002/anie.201712393 10.1002/ange.201504390 10.1002/chem.201802818 10.1002/ange.200602585 10.1002/0471212466.ch40 10.1002/ange.201503112 10.1039/c4cc01843e 10.1039/C7CC08153G 10.1002/anie.201813699 10.1055/s-0032-1318218 10.1002/ange.200400655 10.1021/jacs.6b11097 10.1021/acscatal.8b01599 10.1002/ange.201809929 10.1002/ange.201800573 10.1021/ja063710z 10.1021/jo402107m 10.1021/ja00092a058 10.1002/(SICI)1521-3757(20000317)112:6<1087::AID-ANGE1087>3.0.CO;2-W 10.1002/anie.201301154 10.1002/ange.19971090146 10.1007/128_2009_13 10.1021/acscatal.7b03220 10.1021/ar9600650 10.1002/anie.201511549 10.1021/ar800040u 10.1039/C7CS00496F 10.1002/ange.201708967 10.1038/nature21418 10.1021/ja110988p 10.1002/anie.201702686 10.1021/jacs.6b08164 10.1021/ja401466y 10.1002/anie.201801894 10.1021/ar200185g 10.1002/anie.201806780 10.1021/jacs.5b11683 |
ContentType | Journal Article |
Copyright | 2019 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. |
Copyright_xml | – notice: 2019 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. |
DBID | AAYXX CITATION NPM 7TM K9. 7X8 |
DOI | 10.1002/anie.201813491 |
DatabaseName | CrossRef PubMed Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed ProQuest Health & Medical Complete (Alumni) Nucleic Acids Abstracts MEDLINE - Academic |
DatabaseTitleList | PubMed ProQuest Health & Medical Complete (Alumni) CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3773 |
Edition | International ed. in English |
EndPage | 5844 |
ExternalDocumentID | 30589184 10_1002_anie_201813491 ANIE201813491 |
Genre | reviewArticle Research Support, Non-U.S. Gov't Journal Article Review |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABLJU ABPPZ ABPVW ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BTSUX BY8 CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS EJD F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES M53 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ TN5 UB1 UPT UQL V2E VQA W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XSW XV2 YZZ ZZTAW ~IA ~KM ~WT AAYXX ABDBF ABJNI AEYWJ AGHNM AGYGG CITATION NPM YIN 7TM K9. 7X8 |
ID | FETCH-LOGICAL-c4761-2e253b1e5d2b8b168568e97490330dcf7d686c34662d908bbacf9ddd2b2322bd3 |
IEDL.DBID | DR2 |
ISSN | 1433-7851 1521-3773 |
IngestDate | Fri Jul 11 14:15:21 EDT 2025 Sun Jul 13 04:43:02 EDT 2025 Wed Feb 19 02:30:10 EST 2025 Thu Apr 24 22:53:16 EDT 2025 Tue Jul 01 02:26:40 EDT 2025 Wed Jan 22 17:10:33 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 18 |
Keywords | C−H functionalization palladium catalysis Catellani reaction norbornene cooperative catalysis |
Language | English |
License | 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4761-2e253b1e5d2b8b168568e97490330dcf7d686c34662d908bbacf9ddd2b2322bd3 |
Notes | Dedicated to the 125th anniversary of Wuhan University ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0002-8125-0380 |
PMID | 30589184 |
PQID | 2207785477 |
PQPubID | 946352 |
PageCount | 13 |
ParticipantIDs | proquest_miscellaneous_2161064060 proquest_journals_2207785477 pubmed_primary_30589184 crossref_primary_10_1002_anie_201813491 crossref_citationtrail_10_1002_anie_201813491 wiley_primary_10_1002_anie_201813491_ANIE201813491 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | April 23, 2019 |
PublicationDateYYYYMMDD | 2019-04-23 |
PublicationDate_xml | – month: 04 year: 2019 text: April 23, 2019 day: 23 |
PublicationDecade | 2010 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Angewandte Chemie International Edition |
PublicationTitleAlternate | Angew Chem Int Ed Engl |
PublicationYear | 2019 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2015; 35 2017; 8 2017; 1 2012; 486 2000 2000; 39 112 2009 2009; 48 121 2015; 73 2000; 43 2017; 46 2018; 83 2008 2008; 47 120 2011; 17 2013; 5 2007; 36 2011; 111 2017; 117 2013 2013; 52 125 2018; 8 2012; 134 2018; 4 2015; 137 2006; 23 2018 2018; 57 130 2010; 110 2001; 19 2015 2015; 54 127 2003; 5 2008; 24 1997 1997; 36 109 2016; 49 2014; 50 2006; 128 2015; 1 1994; 116 2004 2004; 43 116 2007; 129 2010 2013; 45 2002; 35 2011; 40 2015; 55 2017; 23 2016; 52 2014; 46 2017 2017; 56 129 2002 2015; 7 1983; 219 2019 2019; 58 131 2011; 133 2006; 312 2017; 139 2018; 24 2006 2006; 45 118 2017; 53 2016; 7 2014; 507 2016 2016; 55 128 2017; 15 2017; 58 2013; 78 2018; 558 2015; 519 2017 2013; 135 2016; 138 2009; 460 2008; 41 2010; 292 2003; 103 2012; 45 2017; 543 1998; 31 2018; 16 2012; 41 e_1_2_8_49_2 e_1_2_8_68_3 e_1_2_8_26_2 e_1_2_8_68_2 e_1_2_8_9_2 e_1_2_8_5_2 e_1_2_8_117_1 e_1_2_8_87_2 e_1_2_8_45_1 e_1_2_8_64_1 e_1_2_8_22_2 e_1_2_8_113_1 e_1_2_8_83_2 e_1_2_8_1_1 e_1_2_8_41_1 e_1_2_8_83_1 e_1_2_8_60_2 e_1_2_8_113_2 e_1_2_8_38_2 e_1_2_8_19_2 e_1_2_8_109_2 e_1_2_8_34_2 e_1_2_8_15_1 e_1_2_8_57_1 e_1_2_8_91_2 e_1_2_8_95_1 e_1_2_8_120_2 e_1_2_8_99_1 e_1_2_8_99_2 e_1_2_8_30_2 e_1_2_8_76_2 e_1_2_8_105_2 e_1_2_8_11_1 e_1_2_8_11_2 e_1_2_8_53_2 e_1_2_8_101_1 e_1_2_8_72_2 e_1_2_8_48_3 e_1_2_8_29_2 e_1_2_8_29_3 (e_1_2_8_56_2) 2017 e_1_2_8_118_3 e_1_2_8_25_2 e_1_2_8_48_2 e_1_2_8_67_2 e_1_2_8_2_2 Jiao L. (e_1_2_8_39_2) 2014; 46 e_1_2_8_110_1 e_1_2_8_6_2 e_1_2_8_21_2 e_1_2_8_63_2 e_1_2_8_86_2 e_1_2_8_118_2 e_1_2_8_44_1 e_1_2_8_63_3 e_1_2_8_40_1 e_1_2_8_82_1 e_1_2_8_114_1 e_1_2_8_18_2 e_1_2_8_14_2 e_1_2_8_79_2 e_1_2_8_37_1 e_1_2_8_90_2 e_1_2_8_94_1 e_1_2_8_121_2 e_1_2_8_98_1 e_1_2_8_10_2 e_1_2_8_52_2 e_1_2_8_75_2 e_1_2_8_106_2 e_1_2_8_33_1 e_1_2_8_121_3 e_1_2_8_71_2 e_1_2_8_102_2 e_1_2_8_28_2 e_1_2_8_28_3 e_1_2_8_47_1 e_1_2_8_24_2 e_1_2_8_119_2 e_1_2_8_81_1 e_1_2_8_111_1 e_1_2_8_3_2 e_1_2_8_7_2 e_1_2_8_43_1 e_1_2_8_89_1 e_1_2_8_20_2 e_1_2_8_66_2 e_1_2_8_115_2 e_1_2_8_43_2 e_1_2_8_85_1 e_1_2_8_62_2 e_1_2_8_17_2 e_1_2_8_36_1 e_1_2_8_13_2 e_1_2_8_59_2 e_1_2_8_13_3 e_1_2_8_78_3 e_1_2_8_78_2 e_1_2_8_122_1 e_1_2_8_97_1 e_1_2_8_55_2 e_1_2_8_32_3 e_1_2_8_32_2 e_1_2_8_74_2 e_1_2_8_107_2 e_1_2_8_51_2 e_1_2_8_70_2 e_1_2_8_93_1 e_1_2_8_103_2 e_1_2_8_27_2 e_1_2_8_27_3 e_1_2_8_23_2 e_1_2_8_46_2 e_1_2_8_69_2 e_1_2_8_46_1 e_1_2_8_80_2 e_1_2_8_4_1 e_1_2_8_8_2 e_1_2_8_65_2 e_1_2_8_88_2 e_1_2_8_116_2 e_1_2_8_42_1 e_1_2_8_116_3 e_1_2_8_61_2 e_1_2_8_61_3 e_1_2_8_84_1 e_1_2_8_112_1 e_1_2_8_16_2 e_1_2_8_35_2 e_1_2_8_58_2 e_1_2_8_108_2 e_1_2_8_92_1 e_1_2_8_96_1 e_1_2_8_100_1 e_1_2_8_96_2 e_1_2_8_31_2 e_1_2_8_54_2 e_1_2_8_77_2 e_1_2_8_12_1 e_1_2_8_31_3 e_1_2_8_50_2 e_1_2_8_73_1 e_1_2_8_123_1 e_1_2_8_104_1 |
References_xml | – volume: 41 start-page: 1512 year: 2008 end-page: 1522 publication-title: Acc. Chem. Res. – volume: 8 start-page: 15430 year: 2017 end-page: 15437 publication-title: Nat. Commun. – volume: 8 start-page: 3775 year: 2018 end-page: 3779 publication-title: ACS Catal. – volume: 49 start-page: 1389 year: 2016 end-page: 1400 publication-title: Acc. Chem. Res. – volume: 486 start-page: 518 year: 2012 end-page: 522 publication-title: Nature – volume: 543 start-page: 538 year: 2017 end-page: 542 publication-title: Nature – volume: 54 127 start-page: 8515 8635 year: 2015 2015 end-page: 8519 8639 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 46 start-page: 35 year: 2014 end-page: 41 publication-title: Synthesis – volume: 1 start-page: 0035 year: 2017 publication-title: Nat. Rev. Chem. – volume: 46 start-page: 4299 year: 2017 end-page: 4328 publication-title: Chem. Soc. Rev. – volume: 36 start-page: 1173 year: 2007 end-page: 1193 publication-title: Chem. Soc. Rev. – volume: 52 125 start-page: 6080 6196 year: 2013 2013 end-page: 6083 6199 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 1 start-page: 394 year: 2015 end-page: 399 publication-title: ACS Cent. Sci. – volume: 137 start-page: 11574 year: 2015 end-page: 11577 publication-title: J. Am. Chem. Soc. – start-page: 973 year: 2002 end-page: 993 – volume: 8 start-page: 2173 year: 2018 end-page: 2180 publication-title: ACS Catal. – volume: 41 start-page: 3651 year: 2012 end-page: 3678 publication-title: Chem. Soc. Rev. – volume: 56 129 start-page: 13351 13536 year: 2017 2017 end-page: 13355 13540 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 116 start-page: 5969 year: 1994 end-page: 5970 publication-title: J. Am. Chem. Soc. – volume: 57 130 start-page: 5151 5245 year: 2018 2018 end-page: 5155 5249 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 519 start-page: 334 year: 2015 end-page: 338 publication-title: Nature – volume: 8 start-page: 4783 year: 2018 end-page: 4788 publication-title: ACS Catal. – volume: 23 start-page: 1007 year: 2006 end-page: 1045 publication-title: Nat. Prod. Rep. – volume: 57 130 start-page: 10980 11146 year: 2018 2018 end-page: 10984 11150 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 8 start-page: 3764 year: 2018 end-page: 3769 publication-title: ACS Catal. – volume: 83 start-page: 13211 year: 2018 end-page: 13216 publication-title: J. Org. Chem. – volume: 135 start-page: 5877 year: 2013 end-page: 5884 publication-title: J. Am. Chem. Soc. – volume: 4 start-page: 199 year: 2018 end-page: 222 publication-title: Chem – volume: 138 start-page: 9269 year: 2016 end-page: 9276 publication-title: J. Am. Chem. Soc. – volume: 23 start-page: 11519 year: 2017 end-page: 11523 publication-title: Chem. Eur. J. – volume: 138 start-page: 8470 year: 2016 end-page: 8475 publication-title: J. Am. Chem. Soc. – volume: 45 start-page: 788 year: 2012 end-page: 802 publication-title: Acc. Chem. Res. – volume: 56 129 start-page: 6874 6978 year: 2017 2017 end-page: 6877 6981 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 134 start-page: 14563 year: 2012 end-page: 14572 publication-title: J. Am. Chem. Soc. – volume: 48 121 start-page: 5094 5196 year: 2009 2009 end-page: 5115 5217 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 558 start-page: 581 year: 2018 end-page: 585 publication-title: Nature – year: 2010 – volume: 135 start-page: 18350 year: 2013 end-page: 18353 publication-title: J. Am. Chem. Soc. – volume: 111 start-page: 1529 year: 2011 end-page: 1541 publication-title: Chem. Rev. – volume: 39 112 start-page: 1045 1087 year: 2000 2000 end-page: 1046 1088 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 5 start-page: 369 year: 2013 end-page: 375 publication-title: Nat. Chem. – volume: 219 start-page: 245 year: 1983 end-page: 250 publication-title: Science – volume: 52 start-page: 6903 year: 2016 end-page: 6906 publication-title: Chem. Commun. – volume: 8 start-page: 7362 year: 2018 end-page: 7367 publication-title: ACS Catal. – volume: 55 start-page: 217 year: 2015 end-page: 257 publication-title: Top. Organomet. Chem. – volume: 138 start-page: 12759 year: 2016 end-page: 12762 publication-title: J. Am. Chem. Soc. – volume: 138 start-page: 14876 year: 2016 end-page: 14879 publication-title: J. Am. Chem. Soc. – volume: 57 130 start-page: 3444 3502 year: 2018 2018 end-page: 3448 3506 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 24 start-page: 15461 year: 2018 end-page: 15476 publication-title: Chem. Eur. J. – volume: 312 start-page: 67 year: 2006 end-page: 72 publication-title: Science – volume: 58 start-page: 2213 year: 2017 end-page: 2216 publication-title: Tetrahedron Lett. – volume: 5 start-page: 4827 year: 2003 end-page: 4830 publication-title: Org. Lett. – volume: 103 start-page: 893 year: 2003 end-page: 930 publication-title: Chem. Rev. – volume: 7 start-page: 863 year: 2015 end-page: 870 publication-title: Nat. Chem. – volume: 137 start-page: 5887 year: 2015 end-page: 5890 publication-title: J. Am. Chem. Soc. – volume: 57 130 start-page: 15762 15988 year: 2018 2018 end-page: 15766 15992 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 133 start-page: 19298 year: 2011 end-page: 19301 publication-title: J. Am. Chem. Soc. – volume: 110 start-page: 1147 year: 2010 end-page: 1169 publication-title: Chem. Rev. – volume: 15 start-page: 5112 year: 2017 end-page: 5116 publication-title: Org. Biomol. Chem. – volume: 56 129 start-page: 5125 5207 year: 2017 2017 end-page: 5129 5211 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 55 128 start-page: 4044 4112 year: 2016 2016 end-page: 4048 4116 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 73 start-page: 1231 year: 2015 publication-title: Acta Chim. Sinica – volume: 292 start-page: 1 year: 2010 end-page: 33 publication-title: Top. Curr. Chem. – volume: 45 start-page: 936 year: 2012 end-page: 946 publication-title: Acc. Chem. Res. – volume: 54 127 start-page: 11677 11843 year: 2015 2015 end-page: 11680 11846 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 139 start-page: 417 year: 2017 end-page: 425 publication-title: J. Am. Chem. Soc. – volume: 31 start-page: 805 year: 1998 end-page: 818 publication-title: Acc. Chem. Res. – volume: 129 start-page: 12092 year: 2007 end-page: 12903 publication-title: J. Am. Chem. Soc. – volume: 128 start-page: 16384 year: 2006 end-page: 16393 publication-title: J. Am. Chem. Soc. – volume: 50 start-page: 5782 year: 2014 end-page: 5785 publication-title: Chem. Commun. – volume: 133 start-page: 12990 year: 2011 end-page: 12993 publication-title: J. Am. Chem. Soc. – volume: 43 start-page: 3443 year: 2000 end-page: 3447 publication-title: J. Med. Chem. – volume: 16 start-page: 5376 year: 2018 end-page: 5385 publication-title: Org. Biomol. Chem. – volume: 45 start-page: 581 year: 2013 end-page: 591 publication-title: Synthesis – volume: 137 start-page: 13894 year: 2015 end-page: 13901 publication-title: J. Am. Chem. Soc. – volume: 53 start-page: 12665 year: 2017 end-page: 12667 publication-title: Chem. Commun. – volume: 110 start-page: 624 year: 2010 end-page: 655 publication-title: Chem. Rev. – volume: 19 start-page: 152 year: 2001 end-page: 171 publication-title: Cardiovasc. Drug Rev. – volume: 35 start-page: 717 year: 2002 end-page: 727 publication-title: Acc. Chem. Res. – volume: 57 130 start-page: 7161 7279 year: 2018 2018 end-page: 7165 7283 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 17 start-page: 8175 year: 2011 end-page: 8188 publication-title: Chem. Eur. J. – volume: 116 start-page: 7901 year: 1994 end-page: 7902 publication-title: J. Am. Chem. Soc. – volume: 78 start-page: 12263 year: 2013 end-page: 12267 publication-title: J. Org. Chem. – volume: 8 start-page: 886 year: 2018 end-page: 892 publication-title: ACS Catal. – volume: 40 start-page: 4740 year: 2011 end-page: 4761 publication-title: Chem. Soc. Rev. – volume: 36 109 start-page: 119 142 year: 1997 1997 end-page: 122 145 publication-title: Angew. Chem. Int. Ed. Engl. Angew. Chem. – volume: 7 start-page: 3147 year: 2016 end-page: 3153 publication-title: Chem. Sci. – volume: 31 start-page: 852 year: 1998 end-page: 860 publication-title: Acc. Chem. Res. – volume: 507 start-page: 215 year: 2014 end-page: 220 publication-title: Nature – volume: 35 start-page: 2291 year: 2015 end-page: 2300 publication-title: Chin. J. Org. Chem. – volume: 460 start-page: 197 year: 2009 end-page: 201 publication-title: Nature – volume: 46 start-page: 7145 year: 2017 end-page: 7153 publication-title: Chem. Soc. Rev. – volume: 138 start-page: 14092 year: 2016 end-page: 14099 publication-title: J. Am. Chem. Soc. – volume: 58 131 start-page: 2144 2166 year: 2019 2019 end-page: 2148 2170 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 57 130 start-page: 1697 1713 year: 2018 2018 end-page: 1701 1717 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 135 start-page: 18056 year: 2013 end-page: 18059 publication-title: J. Am. Chem. Soc. – volume: 24 start-page: 2518 year: 2008 end-page: 2525 publication-title: Bioinformatics – volume: 53 start-page: 2166 year: 2017 end-page: 2169 publication-title: Chem. Commun. – volume: 47 120 start-page: 9326 9466 year: 2008 2008 end-page: 9329 9469 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 43 116 start-page: 6250 6408 year: 2004 2004 end-page: 6284 6443 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 45 118 start-page: 6336 6484 year: 2006 2006 end-page: 6338 6486 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 56 129 start-page: 8183 8295 year: 2017 2017 end-page: 8186 8298 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 117 start-page: 8977 year: 2017 end-page: 9015 publication-title: Chem. Rev. – year: 2017 – volume: 133 start-page: 8574 year: 2011 end-page: 8585 publication-title: J. Am. Chem. Soc. – volume: 7 start-page: 712 year: 2015 end-page: 717 publication-title: Nat. Chem. – volume: 138 start-page: 84 year: 2016 end-page: 87 publication-title: J. Am. Chem. Soc. – ident: e_1_2_8_25_2 doi: 10.1039/C8OB01025K – ident: e_1_2_8_37_1 – ident: e_1_2_8_77_2 doi: 10.1021/acscentsci.5b00312 – ident: e_1_2_8_91_2 doi: 10.1039/C7OB01135K – ident: e_1_2_8_109_2 doi: 10.1021/ja410823e – ident: e_1_2_8_96_2 doi: 10.1002/ange.201701803 – ident: e_1_2_8_52_2 doi: 10.1039/c2cs15281a – ident: e_1_2_8_72_2 doi: 10.1021/acscatal.7b03648 – ident: e_1_2_8_19_2 doi: 10.1038/nchem.2372 – ident: e_1_2_8_28_3 doi: 10.1002/ange.201712393 – ident: e_1_2_8_99_2 doi: 10.1002/ange.201702686 – ident: e_1_2_8_62_2 doi: 10.1021/acscatal.8b00423 – ident: e_1_2_8_69_2 doi: 10.1021/jacs.5b08435 – ident: e_1_2_8_31_3 doi: 10.1002/ange.201801894 – ident: e_1_2_8_76_2 doi: 10.1021/ja410760f – ident: e_1_2_8_45_1 doi: 10.1016/j.tetlet.2017.04.066 – ident: e_1_2_8_85_1 – ident: e_1_2_8_27_3 doi: 10.1002/ange.201813699 – ident: e_1_2_8_3_2 doi: 10.1038/460197a – ident: e_1_2_8_116_2 doi: 10.1002/anie.200400655 – ident: e_1_2_8_55_2 doi: 10.1039/C7CS00064B – ident: e_1_2_8_70_2 doi: 10.1021/jacs.6b03402 – ident: e_1_2_8_111_1 doi: 10.1038/s41586-018-0220-1 – ident: e_1_2_8_79_2 doi: 10.1039/C5SC04060D – ident: e_1_2_8_108_2 doi: 10.1021/ar970282g – ident: e_1_2_8_113_1 doi: 10.1002/anie.201803865 – ident: e_1_2_8_58_2 doi: 10.1038/nchem.2322 – ident: e_1_2_8_84_1 doi: 10.1021/acs.joc.8b01933 – ident: e_1_2_8_121_3 doi: 10.1002/ange.200803793 – ident: e_1_2_8_100_1 doi: 10.1021/jacs.6b11055 – ident: e_1_2_8_83_1 doi: 10.1002/anie.201704411 – ident: e_1_2_8_11_1 doi: 10.1002/anie.199701191 – ident: e_1_2_8_10_2 doi: 10.1038/nchem.1607 – ident: e_1_2_8_24_2 doi: 10.1016/j.chempr.2017.11.002 – ident: e_1_2_8_14_2 doi: 10.1021/ol035806t – ident: e_1_2_8_73_1 – ident: e_1_2_8_82_1 doi: 10.1021/jacs.5b08914 – ident: e_1_2_8_53_2 doi: 10.1007/3418_2015_130 – ident: e_1_2_8_68_2 doi: 10.1002/anie.201504390 – ident: e_1_2_8_48_3 doi: 10.1002/ange.200806273 – ident: e_1_2_8_114_1 – ident: e_1_2_8_7_2 doi: 10.1007/978-3-642-12356-6 – ident: e_1_2_8_50_2 doi: 10.1021/cr900005n – ident: e_1_2_8_101_1 – ident: e_1_2_8_78_2 doi: 10.1002/anie.201503112 – ident: e_1_2_8_49_2 doi: 10.1021/cr900184e – ident: e_1_2_8_106_2 doi: 10.1021/ja00096a059 – ident: e_1_2_8_83_2 doi: 10.1002/ange.201704411 – ident: e_1_2_8_6_2 doi: 10.1039/b606984n – ident: e_1_2_8_1_1 – ident: e_1_2_8_54_2 doi: 10.6023/A15050319 – ident: e_1_2_8_47_1 – ident: e_1_2_8_115_2 doi: 10.1021/ar010074v – ident: e_1_2_8_92_1 doi: 10.1039/C7CC00110J – ident: e_1_2_8_51_2 doi: 10.1039/c1cs15083a – ident: e_1_2_8_98_1 doi: 10.1002/chem.201703054 – ident: e_1_2_8_71_2 doi: 10.1038/ncomms15430 – ident: e_1_2_8_120_2 doi: 10.1021/ja075219t – ident: e_1_2_8_32_3 doi: 10.1002/ange.201806780 – ident: e_1_2_8_38_2 doi: 10.1021/ja3058138 – ident: e_1_2_8_90_2 doi: 10.1039/C6CC02384C – ident: e_1_2_8_63_2 doi: 10.1002/anie.201809929 – ident: e_1_2_8_35_2 doi: 10.1002/chem.201100210 – ident: e_1_2_8_110_1 doi: 10.1021/jacs.6b08942 – ident: e_1_2_8_118_2 doi: 10.1002/anie.200602585 – ident: e_1_2_8_30_2 doi: 10.1021/acscatal.8b00975 – ident: e_1_2_8_87_2 doi: 10.1021/cr020033s – ident: e_1_2_8_57_1 – ident: e_1_2_8_103_2 doi: 10.1039/B601930G – volume-title: Strategies for Palladium-Catalyzed Non-Directed and Directed C−H Bond Functionalization year: 2017 ident: e_1_2_8_56_2 – ident: e_1_2_8_123_1 doi: 10.1021/cr1002276 – ident: e_1_2_8_95_1 doi: 10.1021/jacs.6b04966 – ident: e_1_2_8_46_2 doi: 10.1002/ange.201301154 – ident: e_1_2_8_13_2 doi: 10.1002/(SICI)1521-3773(20000317)39:6<1045::AID-ANIE1045>3.0.CO;2-Q – ident: e_1_2_8_74_2 doi: 10.1038/nature11158 – ident: e_1_2_8_61_2 doi: 10.1002/anie.201708967 – ident: e_1_2_8_5_2 doi: 10.1126/science.1114731 – ident: e_1_2_8_112_1 doi: 10.1021/acscatal.8b00637 – ident: e_1_2_8_102_2 doi: 10.1111/j.1527-3466.2001.tb00061.x – ident: e_1_2_8_117_1 – ident: e_1_2_8_22_2 doi: 10.1021/acs.chemrev.6b00554 – ident: e_1_2_8_29_2 doi: 10.1002/anie.201800573 – ident: e_1_2_8_75_2 doi: 10.1038/nature12963 – ident: e_1_2_8_113_2 doi: 10.1002/ange.201803865 – ident: e_1_2_8_23_2 doi: 10.1038/s41570-017-0035 – ident: e_1_2_8_104_1 – ident: e_1_2_8_88_2 doi: 10.1093/bioinformatics/btn479 – ident: e_1_2_8_94_1 doi: 10.1021/jacs.5b02809 – ident: e_1_2_8_89_1 – ident: e_1_2_8_2_2 doi: 10.1126/science.219.4582.245 – ident: e_1_2_8_21_2 doi: 10.1021/acs.accounts.6b00165 – ident: e_1_2_8_43_2 doi: 10.1002/ange.201511549 – ident: e_1_2_8_121_2 doi: 10.1002/anie.200803793 – ident: e_1_2_8_66_2 doi: 10.1021/ja208286b – ident: e_1_2_8_4_1 – ident: e_1_2_8_36_1 doi: 10.1021/ja2055066 – ident: e_1_2_8_20_2 doi: 10.6023/cjoc201505035 – ident: e_1_2_8_81_1 doi: 10.1038/nature14214 – ident: e_1_2_8_9_2 doi: 10.1021/ar300014f – ident: e_1_2_8_48_2 doi: 10.1002/anie.200806273 – ident: e_1_2_8_96_1 doi: 10.1002/anie.201701803 – ident: e_1_2_8_86_2 doi: 10.1021/jm000164q – ident: e_1_2_8_28_2 doi: 10.1002/anie.201712393 – ident: e_1_2_8_68_3 doi: 10.1002/ange.201504390 – ident: e_1_2_8_26_2 doi: 10.1002/chem.201802818 – ident: e_1_2_8_118_3 doi: 10.1002/ange.200602585 – ident: e_1_2_8_15_1 – ident: e_1_2_8_122_1 doi: 10.1002/0471212466.ch40 – volume: 46 start-page: 35 year: 2014 ident: e_1_2_8_39_2 publication-title: Synthesis – ident: e_1_2_8_78_3 doi: 10.1002/ange.201503112 – ident: e_1_2_8_12_1 – ident: e_1_2_8_42_1 doi: 10.1039/c4cc01843e – ident: e_1_2_8_64_1 – ident: e_1_2_8_44_1 doi: 10.1039/C7CC08153G – ident: e_1_2_8_27_2 doi: 10.1002/anie.201813699 – ident: e_1_2_8_18_2 doi: 10.1055/s-0032-1318218 – ident: e_1_2_8_116_3 doi: 10.1002/ange.200400655 – ident: e_1_2_8_93_1 doi: 10.1021/jacs.6b11097 – ident: e_1_2_8_97_1 doi: 10.1021/acscatal.8b01599 – ident: e_1_2_8_33_1 – ident: e_1_2_8_63_3 doi: 10.1002/ange.201809929 – ident: e_1_2_8_29_3 doi: 10.1002/ange.201800573 – ident: e_1_2_8_119_2 doi: 10.1021/ja063710z – ident: e_1_2_8_40_1 doi: 10.1021/jo402107m – ident: e_1_2_8_105_2 doi: 10.1021/ja00092a058 – ident: e_1_2_8_13_3 doi: 10.1002/(SICI)1521-3757(20000317)112:6<1087::AID-ANGE1087>3.0.CO;2-W – ident: e_1_2_8_46_1 doi: 10.1002/anie.201301154 – ident: e_1_2_8_11_2 doi: 10.1002/ange.19971090146 – ident: e_1_2_8_17_2 doi: 10.1007/128_2009_13 – ident: e_1_2_8_41_1 doi: 10.1021/acscatal.7b03220 – ident: e_1_2_8_107_2 doi: 10.1021/ar9600650 – ident: e_1_2_8_43_1 doi: 10.1002/anie.201511549 – ident: e_1_2_8_16_2 doi: 10.1021/ar800040u – ident: e_1_2_8_65_2 doi: 10.1039/C7CS00496F – ident: e_1_2_8_61_3 doi: 10.1002/ange.201708967 – ident: e_1_2_8_80_2 doi: 10.1038/nature21418 – ident: e_1_2_8_34_2 doi: 10.1021/ja110988p – ident: e_1_2_8_99_1 doi: 10.1002/anie.201702686 – ident: e_1_2_8_60_2 doi: 10.1021/jacs.6b08164 – ident: e_1_2_8_67_2 doi: 10.1021/ja401466y – ident: e_1_2_8_31_2 doi: 10.1002/anie.201801894 – ident: e_1_2_8_8_2 doi: 10.1021/ar200185g – ident: e_1_2_8_32_2 doi: 10.1002/anie.201806780 – ident: e_1_2_8_59_2 doi: 10.1021/jacs.5b11683 |
SSID | ssj0028806 |
Score | 2.6258202 |
SecondaryResourceType | review_article |
Snippet | The Catellani reaction is known as a powerful strategy for the expeditious synthesis of highly substituted arenes and benzo‐fused rings, which are usually... The Catellani reaction is known as a powerful strategy for the expeditious synthesis of highly substituted arenes and benzo-fused rings, which are usually... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 5832 |
SubjectTerms | Aromatic compounds Catalysis Catalysts Catellani reaction Chemical synthesis cooperative catalysis Coupling (molecular) C−H functionalization Halides norbornene Palladium palladium catalysis Reaction mechanisms Substrates |
Title | Palladium(II)‐Initiated Catellani‐Type Reactions |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.201813491 https://www.ncbi.nlm.nih.gov/pubmed/30589184 https://www.proquest.com/docview/2207785477 https://www.proquest.com/docview/2161064060 |
Volume | 58 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB7Ei158P6qrrCCoh2iapGl6lMXFFRRZFLyVPEHUXXF3L578Cf5Gf4lJu62uIoLe-pi06WTSfElmvgHYFTLBVCYZclQKxLg1KCOWoQxb4zw81abIDXh-wU-v2dlNcvMpir_kh6gX3ELPKP7XoYNLNTj6IA0NEdjBNUsEgr0w_wkOWwEVdWv-KOKNswwvohSFLPQVayMmR5PFJ0elb1BzErkWQ097HmRV6dLj5O5wNFSH-vkLn-N_vmoB5sa4tHlcGtIiTNneEsy0qnRwy8Auw5K7uR097Hc6B28vr53gduSRqmm2ZAhF8c_0V8O8ttm1ZbjEYAWu2ydXrVM0TrmANEt5jIglCVWxTQxRQsVcJFxYP-XIMKXYaJcaLrimjHNiMiyUktplxnhpj8yIMnQVpnv9nl2HpssUl845GSvMtKbKP8DjTYVVSpyK4whQpfJcj_nIQ1qM-7xkUiZ50EVe6yKCvVr-sWTi-FGyUbVgPu6Rg5wQnHoTYGkawU592-tQFxqy_ZGX8fA37GxyHMFa2fL1q2iRf1GwCEjRfr_UIT--6JzUZxt_KbQJs_642LoitAHTw6eR3fIIaKi2Cyt_B_Ms_JA |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTtwwEB5VcIBLoQXaAG0XqVLLweDYjuMcVyvQBpZVhUDqLYr_JFRYEOxeeuoj8Ix9ko6dTdBSVZXaY5yx44zt5Bt75huAj6rOKK-zgnheKyKks6RgTpCCOusRnhobcwOejeXwUpx8zVpvwhAL0_BDdBtuYWXE73VY4GFD-vCJNTSEYAffLBUY9tAAWg5pvaNVdd4xSDGcnk2AEeck5KFveRspO1ysv_hf-g1sLmLX-PM5XgPddrvxOfl2MJvqA_P9GaPjf73XOrycQ9Nev5lLr-CFm7yGlUGbEW4DxJew626vZjefy3L_54_HMngeIVi1vUEdolGwTSwNpm3v3DUREw-bcHl8dDEYknnWBWJELlPCHMu4Tl1mmVY6lSqTyqHVUVDOqTU-t1JJw4WUzBZUaV0bX1iL0gjOmLZ8C5YmtxP3Fnq-0LL23teppsIYrrEBhJya6px5naYJkFbnlZlTkofMGNdVQ6bMqqCLqtNFAp86-buGjOOPkrvtEFbzRflQMUZznAMizxPY626jDk3UkLudoQwi4HC4KWkCb5qh7x7FYwpGJRJgcQD_0oeqPy6Puqvtf6n0AVaGF2ejalSOT3dgFcvjSRbju7A0vZ-5dwiIpvp9nPK_AMIeALo |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB5VIBUuhZZXCrRbCQl68OLYjuMc0cKKtGWFEEjcovglIWBBZffSEz-B39hf0nGyCSwIVWqPccaOPR7Hnx_zDcCWKhPKyyQjnpeKCOksyZgTJKPOeoSnxlaxAY8G8vBMfDtPzp948df8EO2GWxgZ1f86DPBb63cfSUODB3a4mqUCwR6uf2aFpCrY9f5JSyDF0Dpr_yLOSQhD39A2UrY7nX96WnqBNaehazX39BegbGpdXzm57I5Humt-PSN0_J9mLcK7CTDt7NWW9B7euOEHmOs18eCWQByHPXd7Mb7eyfOvv-8f8nDvCKGq7fTK4IuCZWJqWNh2TlztL3G3DGf9g9PeIZnEXCBGpDImzLGE69gllmmlY6kSqRyuOTLKObXGp1YqabiQktmMKq1L4zNrURqhGdOWr8DM8Gbo1qDjMy1L730ZayqM4RoLQMCpqU6Z13EcAWlUXpgJIXmIi3FV1FTKrAi6KFpdRLDdyt_WVByvSm40PVhMhuRdwRhN0QREmkbwpX2NOjSVhtzNGGUQ_4ajTUkjWK17vv0UrwIwKhEBq_rvL3Uo9gb5Qfv08V8yfYa3x_v94kc--L4O85hcHWMxvgEzo59jt4loaKQ_VQb_B9Qi_2M |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Palladium%28II%29-Initiated+Catellani-Type+Reactions&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Cheng%2C+Hong-Gang&rft.au=Chen%2C+Shuqing&rft.au=Chen%2C+Ruiming&rft.au=Zhou%2C+Qianghui&rft.date=2019-04-23&rft.eissn=1521-3773&rft.volume=58&rft.issue=18&rft.spage=5832&rft_id=info:doi/10.1002%2Fanie.201813491&rft_id=info%3Apmid%2F30589184&rft.externalDocID=30589184 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon |