Palladium(II)‐Initiated Catellani‐Type Reactions

The Catellani reaction is known as a powerful strategy for the expeditious synthesis of highly substituted arenes and benzo‐fused rings, which are usually difficult to access through traditional cross‐coupling strategies. It utilizes the synergistic interplay of palladium and norbornene catalysis to...

Full description

Saved in:
Bibliographic Details
Published inAngewandte Chemie International Edition Vol. 58; no. 18; pp. 5832 - 5844
Main Authors Cheng, Hong‐Gang, Chen, Shuqing, Chen, Ruiming, Zhou, Qianghui
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 23.04.2019
EditionInternational ed. in English
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The Catellani reaction is known as a powerful strategy for the expeditious synthesis of highly substituted arenes and benzo‐fused rings, which are usually difficult to access through traditional cross‐coupling strategies. It utilizes the synergistic interplay of palladium and norbornene catalysis to facilitate sequential ortho C−H functionalization and ipso termination of aryl halides in a single operation. In classical Catellani‐type reactions, aryl halides are mainly used as the substrates, and a Pd0 catalyst is required to initiate the reaction. Nevertheless, recent advances showcase that Catellani‐type reactions can also be initiated by a PdII catalyst with different starting materials instead of aryl halides via different reaction mechanisms and under different conditions. This emerging concept of PdII/norbornene cooperative catalysis has significantly advanced Catellani‐type reactions, thus enabling future developments of this field. In this Minireview, PdII‐initiated Catellani‐type reactions and their application in the synthesis of bioactive molecules are summarized. Cooperative solutions: Palladium(II)‐initiated norbornene (NBE)‐mediated cooperative catalysis has enabled significant developments of the Catellani reaction. These advances and their application in the synthesis of bioactive molecules are summarized in this Minireview.
AbstractList The Catellani reaction is known as a powerful strategy for the expeditious synthesis of highly substituted arenes and benzo‐fused rings, which are usually difficult to access through traditional cross‐coupling strategies. It utilizes the synergistic interplay of palladium and norbornene catalysis to facilitate sequential ortho C−H functionalization and ipso termination of aryl halides in a single operation. In classical Catellani‐type reactions, aryl halides are mainly used as the substrates, and a Pd0 catalyst is required to initiate the reaction. Nevertheless, recent advances showcase that Catellani‐type reactions can also be initiated by a PdII catalyst with different starting materials instead of aryl halides via different reaction mechanisms and under different conditions. This emerging concept of PdII/norbornene cooperative catalysis has significantly advanced Catellani‐type reactions, thus enabling future developments of this field. In this Minireview, PdII‐initiated Catellani‐type reactions and their application in the synthesis of bioactive molecules are summarized. Cooperative solutions: Palladium(II)‐initiated norbornene (NBE)‐mediated cooperative catalysis has enabled significant developments of the Catellani reaction. These advances and their application in the synthesis of bioactive molecules are summarized in this Minireview.
The Catellani reaction is known as a powerful strategy for the expeditious synthesis of highly substituted arenes and benzo-fused rings, which are usually difficult to access through traditional cross-coupling strategies. It utilizes the synergistic interplay of palladium and norbornene catalysis to facilitate sequential ortho C-H functionalization and ipso termination of aryl halides in a single operation. In classical Catellani-type reactions, aryl halides are mainly used as the substrates, and a Pd catalyst is required to initiate the reaction. Nevertheless, recent advances showcase that Catellani-type reactions can also be initiated by a Pd catalyst with different starting materials instead of aryl halides via different reaction mechanisms and under different conditions. This emerging concept of Pd /norbornene cooperative catalysis has significantly advanced Catellani-type reactions, thus enabling future developments of this field. In this Minireview, Pd -initiated Catellani-type reactions and their application in the synthesis of bioactive molecules are summarized.
The Catellani reaction is known as a powerful strategy for the expeditious synthesis of highly substituted arenes and benzo‐fused rings, which are usually difficult to access through traditional cross‐coupling strategies. It utilizes the synergistic interplay of palladium and norbornene catalysis to facilitate sequential ortho C−H functionalization and ipso termination of aryl halides in a single operation. In classical Catellani‐type reactions, aryl halides are mainly used as the substrates, and a Pd0 catalyst is required to initiate the reaction. Nevertheless, recent advances showcase that Catellani‐type reactions can also be initiated by a PdII catalyst with different starting materials instead of aryl halides via different reaction mechanisms and under different conditions. This emerging concept of PdII/norbornene cooperative catalysis has significantly advanced Catellani‐type reactions, thus enabling future developments of this field. In this Minireview, PdII‐initiated Catellani‐type reactions and their application in the synthesis of bioactive molecules are summarized.
The Catellani reaction is known as a powerful strategy for the expeditious synthesis of highly substituted arenes and benzo‐fused rings, which are usually difficult to access through traditional cross‐coupling strategies. It utilizes the synergistic interplay of palladium and norbornene catalysis to facilitate sequential ortho C−H functionalization and ipso termination of aryl halides in a single operation. In classical Catellani‐type reactions, aryl halides are mainly used as the substrates, and a Pd 0 catalyst is required to initiate the reaction. Nevertheless, recent advances showcase that Catellani‐type reactions can also be initiated by a Pd II catalyst with different starting materials instead of aryl halides via different reaction mechanisms and under different conditions. This emerging concept of Pd II /norbornene cooperative catalysis has significantly advanced Catellani‐type reactions, thus enabling future developments of this field. In this Minireview, Pd II ‐initiated Catellani‐type reactions and their application in the synthesis of bioactive molecules are summarized.
The Catellani reaction is known as a powerful strategy for the expeditious synthesis of highly substituted arenes and benzo-fused rings, which are usually difficult to access through traditional cross-coupling strategies. It utilizes the synergistic interplay of palladium and norbornene catalysis to facilitate sequential ortho C-H functionalization and ipso termination of aryl halides in a single operation. In classical Catellani-type reactions, aryl halides are mainly used as the substrates, and a Pd0 catalyst is required to initiate the reaction. Nevertheless, recent advances showcase that Catellani-type reactions can also be initiated by a PdII catalyst with different starting materials instead of aryl halides via different reaction mechanisms and under different conditions. This emerging concept of PdII /norbornene cooperative catalysis has significantly advanced Catellani-type reactions, thus enabling future developments of this field. In this Minireview, PdII -initiated Catellani-type reactions and their application in the synthesis of bioactive molecules are summarized.The Catellani reaction is known as a powerful strategy for the expeditious synthesis of highly substituted arenes and benzo-fused rings, which are usually difficult to access through traditional cross-coupling strategies. It utilizes the synergistic interplay of palladium and norbornene catalysis to facilitate sequential ortho C-H functionalization and ipso termination of aryl halides in a single operation. In classical Catellani-type reactions, aryl halides are mainly used as the substrates, and a Pd0 catalyst is required to initiate the reaction. Nevertheless, recent advances showcase that Catellani-type reactions can also be initiated by a PdII catalyst with different starting materials instead of aryl halides via different reaction mechanisms and under different conditions. This emerging concept of PdII /norbornene cooperative catalysis has significantly advanced Catellani-type reactions, thus enabling future developments of this field. In this Minireview, PdII -initiated Catellani-type reactions and their application in the synthesis of bioactive molecules are summarized.
Author Chen, Ruiming
Chen, Shuqing
Zhou, Qianghui
Cheng, Hong‐Gang
Author_xml – sequence: 1
  givenname: Hong‐Gang
  surname: Cheng
  fullname: Cheng, Hong‐Gang
  organization: Wuhan University
– sequence: 2
  givenname: Shuqing
  surname: Chen
  fullname: Chen, Shuqing
  organization: Wuhan University
– sequence: 3
  givenname: Ruiming
  surname: Chen
  fullname: Chen, Ruiming
  organization: Wuhan University
– sequence: 4
  givenname: Qianghui
  orcidid: 0000-0002-8125-0380
  surname: Zhou
  fullname: Zhou, Qianghui
  email: qhzhou@whu.edu.cn
  organization: Wuhan University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30589184$$D View this record in MEDLINE/PubMed
BookMark eNqFkMtKAzEUhoNU7EW3LqXgpi6m5jaZzLKUqgNFReo6ZJIMpMylTmYo3fkIPqNPYmprhYK4OTkk339y-PqgU1alAeASwTGCEN_K0poxhogjQmN0AnooxCggUUQ6vqeEBBEPURf0nVt6nnPIzkCXwJDHiNMeoM8yz6W2bTFKkpvP94-ktI2VjdHDqa_-rbT-drFZmeGLkaqxVenOwWkmc2cu9ucAvN7NFtOHYP50n0wn80DRiKEAGxySFJlQ45SniPGQcRNHNIaEQK2ySDPOFKGMYR1DnqZSZbHWnsYE41STARjt5q7q6q01rhGFdep7KVO1TmDEEGQUMujR6yN0WbV16bcTGMPIS6DeyQBc7ak2LYwWq9oWst6IHx8eGO8AVVfO1SY7IAiKrXCxFS4Own2AHgWUbeTWUlNLm_8di3extc3N5p9PxOQxmf1mvwB3hpQy
CitedBy_id crossref_primary_10_1039_D4SC05111D
crossref_primary_10_1039_D4OB01689K
crossref_primary_10_1002_anie_202201239
crossref_primary_10_1002_anie_202005664
crossref_primary_10_1002_slct_202102641
crossref_primary_10_1021_acs_orglett_0c02897
crossref_primary_10_1002_adsc_202301356
crossref_primary_10_1021_acs_orglett_9b03565
crossref_primary_10_1039_D1CC00546D
crossref_primary_10_1002_anie_202201750
crossref_primary_10_1039_D2QO01761J
crossref_primary_10_1016_j_xcrp_2022_100776
crossref_primary_10_1002_anie_202300703
crossref_primary_10_1007_s11426_023_1758_1
crossref_primary_10_1039_D2QO01609E
crossref_primary_10_1002_cjoc_202100034
crossref_primary_10_1038_s44160_024_00673_8
crossref_primary_10_1039_D3CS00791J
crossref_primary_10_1021_acs_orglett_4c01484
crossref_primary_10_1038_s41467_021_23058_3
crossref_primary_10_1039_C9SC04062E
crossref_primary_10_1002_ejoc_202201175
crossref_primary_10_1039_D1SC03569J
crossref_primary_10_1039_D2OB01674E
crossref_primary_10_1002_ajoc_202200642
crossref_primary_10_1021_acs_orglett_9b03674
crossref_primary_10_1002_anie_202110971
crossref_primary_10_1002_ange_202109771
crossref_primary_10_1021_jacs_9b10857
crossref_primary_10_1002_anie_202409366
crossref_primary_10_1039_D0CC00872A
crossref_primary_10_1002_chem_202100201
crossref_primary_10_1021_acs_joc_2c02988
crossref_primary_10_1021_acs_joc_3c01522
crossref_primary_10_1021_acs_orglett_4c01658
crossref_primary_10_1021_acs_joc_3c02730
crossref_primary_10_1021_jacs_9b07857
crossref_primary_10_1039_D1QO01103K
crossref_primary_10_1002_ange_202103428
crossref_primary_10_1021_jacs_3c03780
crossref_primary_10_1021_acs_chemrev_9b00079
crossref_primary_10_1039_D1QO01454D
crossref_primary_10_1021_acs_orglett_2c00318
crossref_primary_10_1016_j_tet_2022_132956
crossref_primary_10_1007_s41981_020_00077_7
crossref_primary_10_1002_anie_202109771
crossref_primary_10_1002_cctc_202400279
crossref_primary_10_1021_acs_joc_1c02088
crossref_primary_10_1002_ange_202403950
crossref_primary_10_1002_cjoc_202300621
crossref_primary_10_1002_cjoc_202100693
crossref_primary_10_1038_s41467_024_47060_7
crossref_primary_10_1021_acs_orglett_9b03228
crossref_primary_10_1002_anie_202008482
crossref_primary_10_1002_ange_202005664
crossref_primary_10_1039_D0QO01350A
crossref_primary_10_1126_science_abl7854
crossref_primary_10_1002_anie_202103428
crossref_primary_10_1039_D0CS00447B
crossref_primary_10_1002_anie_202303110
crossref_primary_10_1002_ange_202201750
crossref_primary_10_1038_s41557_022_00898_0
crossref_primary_10_1007_s40242_020_0158_3
crossref_primary_10_1021_acs_orglett_0c03732
crossref_primary_10_1002_adsc_202200801
crossref_primary_10_1002_ange_202201239
crossref_primary_10_1002_asia_202200858
crossref_primary_10_1021_acs_joc_0c01695
crossref_primary_10_1039_D0QO00135J
crossref_primary_10_1002_chem_202102006
crossref_primary_10_1021_acs_orglett_3c03266
crossref_primary_10_1002_anie_202403950
crossref_primary_10_1039_C9SC02759A
crossref_primary_10_1055_a_1866_7737
crossref_primary_10_1002_ejoc_202300877
crossref_primary_10_1021_acs_joc_0c02151
crossref_primary_10_1039_D0QO00601G
crossref_primary_10_1002_ejoc_201901738
crossref_primary_10_1021_acscatal_3c00508
crossref_primary_10_1039_D4QO00030G
crossref_primary_10_1002_aoc_6851
crossref_primary_10_1021_acscatal_0c05156
crossref_primary_10_1002_ange_202303110
crossref_primary_10_1016_j_cclet_2024_110543
crossref_primary_10_1039_D1SC07028B
crossref_primary_10_1021_acscatal_4c00690
crossref_primary_10_1021_acs_accounts_1c00547
crossref_primary_10_1055_a_1984_0755
crossref_primary_10_1039_D2QO00660J
crossref_primary_10_1002_chem_202303245
crossref_primary_10_1002_ange_202008482
crossref_primary_10_1021_acs_joc_9b02352
crossref_primary_10_1016_j_tet_2023_133307
crossref_primary_10_1002_adsc_202400469
crossref_primary_10_1021_acs_orglett_0c00952
crossref_primary_10_1039_C9CC03126J
crossref_primary_10_1002_slct_202300153
crossref_primary_10_1021_acs_orglett_5c00298
crossref_primary_10_1016_j_xcrp_2021_100615
crossref_primary_10_1021_acs_orglett_1c01613
crossref_primary_10_1039_D3QO01484C
crossref_primary_10_1002_ange_202409366
crossref_primary_10_1016_j_ccr_2020_213683
crossref_primary_10_1021_acs_chemrev_9b00682
crossref_primary_10_1007_s11426_022_1526_7
crossref_primary_10_1016_j_tet_2021_132173
crossref_primary_10_6023_A23010013
crossref_primary_10_1002_anie_201910792
crossref_primary_10_1021_acs_orglett_3c03932
crossref_primary_10_1021_jacs_4c15956
crossref_primary_10_1021_jacs_9b05009
crossref_primary_10_1002_adsc_201901372
crossref_primary_10_1016_j_mcat_2022_112320
crossref_primary_10_1021_jacs_0c09193
crossref_primary_10_1039_D4QO00506F
crossref_primary_10_1021_acs_orglett_1c01165
crossref_primary_10_1002_chem_202001832
crossref_primary_10_1021_acscatal_9b05177
crossref_primary_10_1021_jacs_0c05434
crossref_primary_10_1021_acs_orglett_5c00503
crossref_primary_10_1021_jacs_9b11479
crossref_primary_10_1021_acscatal_0c03317
crossref_primary_10_1039_D0QO00982B
crossref_primary_10_1039_C9CC09265J
crossref_primary_10_1021_acs_joc_3c02014
crossref_primary_10_1002_ange_202300703
crossref_primary_10_1055_a_2193_4927
crossref_primary_10_1002_cctc_202301764
crossref_primary_10_1021_jacsau_1c00328
crossref_primary_10_1021_jacsau_2c00630
crossref_primary_10_1002_ange_201910792
crossref_primary_10_3762_bjoc_19_38
crossref_primary_10_3390_catal10050571
crossref_primary_10_1002_ejoc_202201264
crossref_primary_10_1021_acs_orglett_0c03004
crossref_primary_10_1021_acs_organomet_1c00291
crossref_primary_10_1039_D0CC03749D
crossref_primary_10_1039_D3OB00260H
crossref_primary_10_1016_j_chempr_2020_09_004
crossref_primary_10_1021_acs_joc_4c02128
crossref_primary_10_3390_molecules25245900
crossref_primary_10_1002_adsc_202300883
crossref_primary_10_1021_acs_joc_0c02994
crossref_primary_10_1021_acscatal_2c06310
crossref_primary_10_1016_j_cclet_2020_07_005
crossref_primary_10_1016_j_tet_2019_01_033
crossref_primary_10_1002_adsc_202401570
crossref_primary_10_1002_cjoc_202000600
crossref_primary_10_1039_D4QO01619J
crossref_primary_10_1021_acs_orglett_4c01944
crossref_primary_10_1021_acs_organomet_2c00530
crossref_primary_10_1021_acs_orglett_3c01579
crossref_primary_10_1021_acs_orglett_3c00883
crossref_primary_10_1134_S0012500820120046
crossref_primary_10_1039_D0QO00905A
crossref_primary_10_1021_acs_orglett_9b01072
crossref_primary_10_1002_cctc_201901355
crossref_primary_10_1021_acs_orglett_1c02715
crossref_primary_10_1021_acscatal_4c03757
crossref_primary_10_1039_C9OB01085H
crossref_primary_10_1021_jacs_0c07634
crossref_primary_10_1039_D3CC01753B
crossref_primary_10_1021_acs_orglett_4c01431
crossref_primary_10_1039_D5SC00617A
crossref_primary_10_1039_D2QO00490A
crossref_primary_10_1002_ange_202110971
crossref_primary_10_1002_chem_202101598
crossref_primary_10_1039_D4NP00023D
crossref_primary_10_1016_j_chempr_2021_04_005
crossref_primary_10_1016_j_gresc_2020_09_002
Cites_doi 10.1039/C8OB01025K
10.1021/acscentsci.5b00312
10.1039/C7OB01135K
10.1021/ja410823e
10.1002/ange.201701803
10.1039/c2cs15281a
10.1021/acscatal.7b03648
10.1038/nchem.2372
10.1002/ange.201712393
10.1002/ange.201702686
10.1021/acscatal.8b00423
10.1021/jacs.5b08435
10.1002/ange.201801894
10.1021/ja410760f
10.1016/j.tetlet.2017.04.066
10.1002/ange.201813699
10.1038/460197a
10.1002/anie.200400655
10.1039/C7CS00064B
10.1021/jacs.6b03402
10.1038/s41586-018-0220-1
10.1039/C5SC04060D
10.1021/ar970282g
10.1002/anie.201803865
10.1038/nchem.2322
10.1021/acs.joc.8b01933
10.1002/ange.200803793
10.1021/jacs.6b11055
10.1002/anie.201704411
10.1002/anie.199701191
10.1038/nchem.1607
10.1016/j.chempr.2017.11.002
10.1021/ol035806t
10.1021/jacs.5b08914
10.1007/3418_2015_130
10.1002/anie.201504390
10.1002/ange.200806273
10.1007/978-3-642-12356-6
10.1021/cr900005n
10.1002/anie.201503112
10.1021/cr900184e
10.1021/ja00096a059
10.1002/ange.201704411
10.1039/b606984n
10.6023/A15050319
10.1021/ar010074v
10.1039/C7CC00110J
10.1039/c1cs15083a
10.1002/chem.201703054
10.1038/ncomms15430
10.1021/ja075219t
10.1002/ange.201806780
10.1021/ja3058138
10.1039/C6CC02384C
10.1002/anie.201809929
10.1002/chem.201100210
10.1021/jacs.6b08942
10.1002/anie.200602585
10.1021/acscatal.8b00975
10.1021/cr020033s
10.1039/B601930G
10.1021/cr1002276
10.1021/jacs.6b04966
10.1002/ange.201301154
10.1002/(SICI)1521-3773(20000317)39:6<1045::AID-ANIE1045>3.0.CO;2-Q
10.1038/nature11158
10.1002/anie.201708967
10.1126/science.1114731
10.1021/acscatal.8b00637
10.1111/j.1527-3466.2001.tb00061.x
10.1021/acs.chemrev.6b00554
10.1002/anie.201800573
10.1038/nature12963
10.1002/ange.201803865
10.1038/s41570-017-0035
10.1093/bioinformatics/btn479
10.1021/jacs.5b02809
10.1126/science.219.4582.245
10.1021/acs.accounts.6b00165
10.1002/ange.201511549
10.1002/anie.200803793
10.1021/ja208286b
10.1021/ja2055066
10.6023/cjoc201505035
10.1038/nature14214
10.1021/ar300014f
10.1002/anie.200806273
10.1002/anie.201701803
10.1021/jm000164q
10.1002/anie.201712393
10.1002/ange.201504390
10.1002/chem.201802818
10.1002/ange.200602585
10.1002/0471212466.ch40
10.1002/ange.201503112
10.1039/c4cc01843e
10.1039/C7CC08153G
10.1002/anie.201813699
10.1055/s-0032-1318218
10.1002/ange.200400655
10.1021/jacs.6b11097
10.1021/acscatal.8b01599
10.1002/ange.201809929
10.1002/ange.201800573
10.1021/ja063710z
10.1021/jo402107m
10.1021/ja00092a058
10.1002/(SICI)1521-3757(20000317)112:6<1087::AID-ANGE1087>3.0.CO;2-W
10.1002/anie.201301154
10.1002/ange.19971090146
10.1007/128_2009_13
10.1021/acscatal.7b03220
10.1021/ar9600650
10.1002/anie.201511549
10.1021/ar800040u
10.1039/C7CS00496F
10.1002/ange.201708967
10.1038/nature21418
10.1021/ja110988p
10.1002/anie.201702686
10.1021/jacs.6b08164
10.1021/ja401466y
10.1002/anie.201801894
10.1021/ar200185g
10.1002/anie.201806780
10.1021/jacs.5b11683
ContentType Journal Article
Copyright 2019 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim
2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Copyright_xml – notice: 2019 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
DBID AAYXX
CITATION
NPM
7TM
K9.
7X8
DOI 10.1002/anie.201813491
DatabaseName CrossRef
PubMed
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
ProQuest Health & Medical Complete (Alumni)
Nucleic Acids Abstracts
MEDLINE - Academic
DatabaseTitleList
PubMed
ProQuest Health & Medical Complete (Alumni)
CrossRef
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3773
Edition International ed. in English
EndPage 5844
ExternalDocumentID 30589184
10_1002_anie_201813491
ANIE201813491
Genre reviewArticle
Research Support, Non-U.S. Gov't
Journal Article
Review
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABLJU
ABPPZ
ABPVW
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BTSUX
BY8
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
M53
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
TN5
UB1
UPT
UQL
V2E
VQA
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XSW
XV2
YZZ
ZZTAW
~IA
~KM
~WT
AAYXX
ABDBF
ABJNI
AEYWJ
AGHNM
AGYGG
CITATION
NPM
YIN
7TM
K9.
7X8
ID FETCH-LOGICAL-c4761-2e253b1e5d2b8b168568e97490330dcf7d686c34662d908bbacf9ddd2b2322bd3
IEDL.DBID DR2
ISSN 1433-7851
1521-3773
IngestDate Fri Jul 11 14:15:21 EDT 2025
Sun Jul 13 04:43:02 EDT 2025
Wed Feb 19 02:30:10 EST 2025
Thu Apr 24 22:53:16 EDT 2025
Tue Jul 01 02:26:40 EDT 2025
Wed Jan 22 17:10:33 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 18
Keywords C−H functionalization
palladium catalysis
Catellani reaction
norbornene
cooperative catalysis
Language English
License 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4761-2e253b1e5d2b8b168568e97490330dcf7d686c34662d908bbacf9ddd2b2322bd3
Notes Dedicated to the 125th anniversary of Wuhan University
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0002-8125-0380
PMID 30589184
PQID 2207785477
PQPubID 946352
PageCount 13
ParticipantIDs proquest_miscellaneous_2161064060
proquest_journals_2207785477
pubmed_primary_30589184
crossref_primary_10_1002_anie_201813491
crossref_citationtrail_10_1002_anie_201813491
wiley_primary_10_1002_anie_201813491_ANIE201813491
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate April 23, 2019
PublicationDateYYYYMMDD 2019-04-23
PublicationDate_xml – month: 04
  year: 2019
  text: April 23, 2019
  day: 23
PublicationDecade 2010
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Angewandte Chemie International Edition
PublicationTitleAlternate Angew Chem Int Ed Engl
PublicationYear 2019
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2015; 35
2017; 8
2017; 1
2012; 486
2000 2000; 39 112
2009 2009; 48 121
2015; 73
2000; 43
2017; 46
2018; 83
2008 2008; 47 120
2011; 17
2013; 5
2007; 36
2011; 111
2017; 117
2013 2013; 52 125
2018; 8
2012; 134
2018; 4
2015; 137
2006; 23
2018 2018; 57 130
2010; 110
2001; 19
2015 2015; 54 127
2003; 5
2008; 24
1997 1997; 36 109
2016; 49
2014; 50
2006; 128
2015; 1
1994; 116
2004 2004; 43 116
2007; 129
2010
2013; 45
2002; 35
2011; 40
2015; 55
2017; 23
2016; 52
2014; 46
2017 2017; 56 129
2002
2015; 7
1983; 219
2019 2019; 58 131
2011; 133
2006; 312
2017; 139
2018; 24
2006 2006; 45 118
2017; 53
2016; 7
2014; 507
2016 2016; 55 128
2017; 15
2017; 58
2013; 78
2018; 558
2015; 519
2017
2013; 135
2016; 138
2009; 460
2008; 41
2010; 292
2003; 103
2012; 45
2017; 543
1998; 31
2018; 16
2012; 41
e_1_2_8_49_2
e_1_2_8_68_3
e_1_2_8_26_2
e_1_2_8_68_2
e_1_2_8_9_2
e_1_2_8_5_2
e_1_2_8_117_1
e_1_2_8_87_2
e_1_2_8_45_1
e_1_2_8_64_1
e_1_2_8_22_2
e_1_2_8_113_1
e_1_2_8_83_2
e_1_2_8_1_1
e_1_2_8_41_1
e_1_2_8_83_1
e_1_2_8_60_2
e_1_2_8_113_2
e_1_2_8_38_2
e_1_2_8_19_2
e_1_2_8_109_2
e_1_2_8_34_2
e_1_2_8_15_1
e_1_2_8_57_1
e_1_2_8_91_2
e_1_2_8_95_1
e_1_2_8_120_2
e_1_2_8_99_1
e_1_2_8_99_2
e_1_2_8_30_2
e_1_2_8_76_2
e_1_2_8_105_2
e_1_2_8_11_1
e_1_2_8_11_2
e_1_2_8_53_2
e_1_2_8_101_1
e_1_2_8_72_2
e_1_2_8_48_3
e_1_2_8_29_2
e_1_2_8_29_3
(e_1_2_8_56_2) 2017
e_1_2_8_118_3
e_1_2_8_25_2
e_1_2_8_48_2
e_1_2_8_67_2
e_1_2_8_2_2
Jiao L. (e_1_2_8_39_2) 2014; 46
e_1_2_8_110_1
e_1_2_8_6_2
e_1_2_8_21_2
e_1_2_8_63_2
e_1_2_8_86_2
e_1_2_8_118_2
e_1_2_8_44_1
e_1_2_8_63_3
e_1_2_8_40_1
e_1_2_8_82_1
e_1_2_8_114_1
e_1_2_8_18_2
e_1_2_8_14_2
e_1_2_8_79_2
e_1_2_8_37_1
e_1_2_8_90_2
e_1_2_8_94_1
e_1_2_8_121_2
e_1_2_8_98_1
e_1_2_8_10_2
e_1_2_8_52_2
e_1_2_8_75_2
e_1_2_8_106_2
e_1_2_8_33_1
e_1_2_8_121_3
e_1_2_8_71_2
e_1_2_8_102_2
e_1_2_8_28_2
e_1_2_8_28_3
e_1_2_8_47_1
e_1_2_8_24_2
e_1_2_8_119_2
e_1_2_8_81_1
e_1_2_8_111_1
e_1_2_8_3_2
e_1_2_8_7_2
e_1_2_8_43_1
e_1_2_8_89_1
e_1_2_8_20_2
e_1_2_8_66_2
e_1_2_8_115_2
e_1_2_8_43_2
e_1_2_8_85_1
e_1_2_8_62_2
e_1_2_8_17_2
e_1_2_8_36_1
e_1_2_8_13_2
e_1_2_8_59_2
e_1_2_8_13_3
e_1_2_8_78_3
e_1_2_8_78_2
e_1_2_8_122_1
e_1_2_8_97_1
e_1_2_8_55_2
e_1_2_8_32_3
e_1_2_8_32_2
e_1_2_8_74_2
e_1_2_8_107_2
e_1_2_8_51_2
e_1_2_8_70_2
e_1_2_8_93_1
e_1_2_8_103_2
e_1_2_8_27_2
e_1_2_8_27_3
e_1_2_8_23_2
e_1_2_8_46_2
e_1_2_8_69_2
e_1_2_8_46_1
e_1_2_8_80_2
e_1_2_8_4_1
e_1_2_8_8_2
e_1_2_8_65_2
e_1_2_8_88_2
e_1_2_8_116_2
e_1_2_8_42_1
e_1_2_8_116_3
e_1_2_8_61_2
e_1_2_8_61_3
e_1_2_8_84_1
e_1_2_8_112_1
e_1_2_8_16_2
e_1_2_8_35_2
e_1_2_8_58_2
e_1_2_8_108_2
e_1_2_8_92_1
e_1_2_8_96_1
e_1_2_8_100_1
e_1_2_8_96_2
e_1_2_8_31_2
e_1_2_8_54_2
e_1_2_8_77_2
e_1_2_8_12_1
e_1_2_8_31_3
e_1_2_8_50_2
e_1_2_8_73_1
e_1_2_8_123_1
e_1_2_8_104_1
References_xml – volume: 41
  start-page: 1512
  year: 2008
  end-page: 1522
  publication-title: Acc. Chem. Res.
– volume: 8
  start-page: 15430
  year: 2017
  end-page: 15437
  publication-title: Nat. Commun.
– volume: 8
  start-page: 3775
  year: 2018
  end-page: 3779
  publication-title: ACS Catal.
– volume: 49
  start-page: 1389
  year: 2016
  end-page: 1400
  publication-title: Acc. Chem. Res.
– volume: 486
  start-page: 518
  year: 2012
  end-page: 522
  publication-title: Nature
– volume: 543
  start-page: 538
  year: 2017
  end-page: 542
  publication-title: Nature
– volume: 54 127
  start-page: 8515 8635
  year: 2015 2015
  end-page: 8519 8639
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 46
  start-page: 35
  year: 2014
  end-page: 41
  publication-title: Synthesis
– volume: 1
  start-page: 0035
  year: 2017
  publication-title: Nat. Rev. Chem.
– volume: 46
  start-page: 4299
  year: 2017
  end-page: 4328
  publication-title: Chem. Soc. Rev.
– volume: 36
  start-page: 1173
  year: 2007
  end-page: 1193
  publication-title: Chem. Soc. Rev.
– volume: 52 125
  start-page: 6080 6196
  year: 2013 2013
  end-page: 6083 6199
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 1
  start-page: 394
  year: 2015
  end-page: 399
  publication-title: ACS Cent. Sci.
– volume: 137
  start-page: 11574
  year: 2015
  end-page: 11577
  publication-title: J. Am. Chem. Soc.
– start-page: 973
  year: 2002
  end-page: 993
– volume: 8
  start-page: 2173
  year: 2018
  end-page: 2180
  publication-title: ACS Catal.
– volume: 41
  start-page: 3651
  year: 2012
  end-page: 3678
  publication-title: Chem. Soc. Rev.
– volume: 56 129
  start-page: 13351 13536
  year: 2017 2017
  end-page: 13355 13540
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 116
  start-page: 5969
  year: 1994
  end-page: 5970
  publication-title: J. Am. Chem. Soc.
– volume: 57 130
  start-page: 5151 5245
  year: 2018 2018
  end-page: 5155 5249
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 519
  start-page: 334
  year: 2015
  end-page: 338
  publication-title: Nature
– volume: 8
  start-page: 4783
  year: 2018
  end-page: 4788
  publication-title: ACS Catal.
– volume: 23
  start-page: 1007
  year: 2006
  end-page: 1045
  publication-title: Nat. Prod. Rep.
– volume: 57 130
  start-page: 10980 11146
  year: 2018 2018
  end-page: 10984 11150
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 8
  start-page: 3764
  year: 2018
  end-page: 3769
  publication-title: ACS Catal.
– volume: 83
  start-page: 13211
  year: 2018
  end-page: 13216
  publication-title: J. Org. Chem.
– volume: 135
  start-page: 5877
  year: 2013
  end-page: 5884
  publication-title: J. Am. Chem. Soc.
– volume: 4
  start-page: 199
  year: 2018
  end-page: 222
  publication-title: Chem
– volume: 138
  start-page: 9269
  year: 2016
  end-page: 9276
  publication-title: J. Am. Chem. Soc.
– volume: 23
  start-page: 11519
  year: 2017
  end-page: 11523
  publication-title: Chem. Eur. J.
– volume: 138
  start-page: 8470
  year: 2016
  end-page: 8475
  publication-title: J. Am. Chem. Soc.
– volume: 45
  start-page: 788
  year: 2012
  end-page: 802
  publication-title: Acc. Chem. Res.
– volume: 56 129
  start-page: 6874 6978
  year: 2017 2017
  end-page: 6877 6981
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 134
  start-page: 14563
  year: 2012
  end-page: 14572
  publication-title: J. Am. Chem. Soc.
– volume: 48 121
  start-page: 5094 5196
  year: 2009 2009
  end-page: 5115 5217
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 558
  start-page: 581
  year: 2018
  end-page: 585
  publication-title: Nature
– year: 2010
– volume: 135
  start-page: 18350
  year: 2013
  end-page: 18353
  publication-title: J. Am. Chem. Soc.
– volume: 111
  start-page: 1529
  year: 2011
  end-page: 1541
  publication-title: Chem. Rev.
– volume: 39 112
  start-page: 1045 1087
  year: 2000 2000
  end-page: 1046 1088
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 5
  start-page: 369
  year: 2013
  end-page: 375
  publication-title: Nat. Chem.
– volume: 219
  start-page: 245
  year: 1983
  end-page: 250
  publication-title: Science
– volume: 52
  start-page: 6903
  year: 2016
  end-page: 6906
  publication-title: Chem. Commun.
– volume: 8
  start-page: 7362
  year: 2018
  end-page: 7367
  publication-title: ACS Catal.
– volume: 55
  start-page: 217
  year: 2015
  end-page: 257
  publication-title: Top. Organomet. Chem.
– volume: 138
  start-page: 12759
  year: 2016
  end-page: 12762
  publication-title: J. Am. Chem. Soc.
– volume: 138
  start-page: 14876
  year: 2016
  end-page: 14879
  publication-title: J. Am. Chem. Soc.
– volume: 57 130
  start-page: 3444 3502
  year: 2018 2018
  end-page: 3448 3506
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 24
  start-page: 15461
  year: 2018
  end-page: 15476
  publication-title: Chem. Eur. J.
– volume: 312
  start-page: 67
  year: 2006
  end-page: 72
  publication-title: Science
– volume: 58
  start-page: 2213
  year: 2017
  end-page: 2216
  publication-title: Tetrahedron Lett.
– volume: 5
  start-page: 4827
  year: 2003
  end-page: 4830
  publication-title: Org. Lett.
– volume: 103
  start-page: 893
  year: 2003
  end-page: 930
  publication-title: Chem. Rev.
– volume: 7
  start-page: 863
  year: 2015
  end-page: 870
  publication-title: Nat. Chem.
– volume: 137
  start-page: 5887
  year: 2015
  end-page: 5890
  publication-title: J. Am. Chem. Soc.
– volume: 57 130
  start-page: 15762 15988
  year: 2018 2018
  end-page: 15766 15992
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 133
  start-page: 19298
  year: 2011
  end-page: 19301
  publication-title: J. Am. Chem. Soc.
– volume: 110
  start-page: 1147
  year: 2010
  end-page: 1169
  publication-title: Chem. Rev.
– volume: 15
  start-page: 5112
  year: 2017
  end-page: 5116
  publication-title: Org. Biomol. Chem.
– volume: 56 129
  start-page: 5125 5207
  year: 2017 2017
  end-page: 5129 5211
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 55 128
  start-page: 4044 4112
  year: 2016 2016
  end-page: 4048 4116
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 73
  start-page: 1231
  year: 2015
  publication-title: Acta Chim. Sinica
– volume: 292
  start-page: 1
  year: 2010
  end-page: 33
  publication-title: Top. Curr. Chem.
– volume: 45
  start-page: 936
  year: 2012
  end-page: 946
  publication-title: Acc. Chem. Res.
– volume: 54 127
  start-page: 11677 11843
  year: 2015 2015
  end-page: 11680 11846
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 139
  start-page: 417
  year: 2017
  end-page: 425
  publication-title: J. Am. Chem. Soc.
– volume: 31
  start-page: 805
  year: 1998
  end-page: 818
  publication-title: Acc. Chem. Res.
– volume: 129
  start-page: 12092
  year: 2007
  end-page: 12903
  publication-title: J. Am. Chem. Soc.
– volume: 128
  start-page: 16384
  year: 2006
  end-page: 16393
  publication-title: J. Am. Chem. Soc.
– volume: 50
  start-page: 5782
  year: 2014
  end-page: 5785
  publication-title: Chem. Commun.
– volume: 133
  start-page: 12990
  year: 2011
  end-page: 12993
  publication-title: J. Am. Chem. Soc.
– volume: 43
  start-page: 3443
  year: 2000
  end-page: 3447
  publication-title: J. Med. Chem.
– volume: 16
  start-page: 5376
  year: 2018
  end-page: 5385
  publication-title: Org. Biomol. Chem.
– volume: 45
  start-page: 581
  year: 2013
  end-page: 591
  publication-title: Synthesis
– volume: 137
  start-page: 13894
  year: 2015
  end-page: 13901
  publication-title: J. Am. Chem. Soc.
– volume: 53
  start-page: 12665
  year: 2017
  end-page: 12667
  publication-title: Chem. Commun.
– volume: 110
  start-page: 624
  year: 2010
  end-page: 655
  publication-title: Chem. Rev.
– volume: 19
  start-page: 152
  year: 2001
  end-page: 171
  publication-title: Cardiovasc. Drug Rev.
– volume: 35
  start-page: 717
  year: 2002
  end-page: 727
  publication-title: Acc. Chem. Res.
– volume: 57 130
  start-page: 7161 7279
  year: 2018 2018
  end-page: 7165 7283
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 17
  start-page: 8175
  year: 2011
  end-page: 8188
  publication-title: Chem. Eur. J.
– volume: 116
  start-page: 7901
  year: 1994
  end-page: 7902
  publication-title: J. Am. Chem. Soc.
– volume: 78
  start-page: 12263
  year: 2013
  end-page: 12267
  publication-title: J. Org. Chem.
– volume: 8
  start-page: 886
  year: 2018
  end-page: 892
  publication-title: ACS Catal.
– volume: 40
  start-page: 4740
  year: 2011
  end-page: 4761
  publication-title: Chem. Soc. Rev.
– volume: 36 109
  start-page: 119 142
  year: 1997 1997
  end-page: 122 145
  publication-title: Angew. Chem. Int. Ed. Engl. Angew. Chem.
– volume: 7
  start-page: 3147
  year: 2016
  end-page: 3153
  publication-title: Chem. Sci.
– volume: 31
  start-page: 852
  year: 1998
  end-page: 860
  publication-title: Acc. Chem. Res.
– volume: 507
  start-page: 215
  year: 2014
  end-page: 220
  publication-title: Nature
– volume: 35
  start-page: 2291
  year: 2015
  end-page: 2300
  publication-title: Chin. J. Org. Chem.
– volume: 460
  start-page: 197
  year: 2009
  end-page: 201
  publication-title: Nature
– volume: 46
  start-page: 7145
  year: 2017
  end-page: 7153
  publication-title: Chem. Soc. Rev.
– volume: 138
  start-page: 14092
  year: 2016
  end-page: 14099
  publication-title: J. Am. Chem. Soc.
– volume: 58 131
  start-page: 2144 2166
  year: 2019 2019
  end-page: 2148 2170
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 57 130
  start-page: 1697 1713
  year: 2018 2018
  end-page: 1701 1717
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 135
  start-page: 18056
  year: 2013
  end-page: 18059
  publication-title: J. Am. Chem. Soc.
– volume: 24
  start-page: 2518
  year: 2008
  end-page: 2525
  publication-title: Bioinformatics
– volume: 53
  start-page: 2166
  year: 2017
  end-page: 2169
  publication-title: Chem. Commun.
– volume: 47 120
  start-page: 9326 9466
  year: 2008 2008
  end-page: 9329 9469
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 43 116
  start-page: 6250 6408
  year: 2004 2004
  end-page: 6284 6443
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 45 118
  start-page: 6336 6484
  year: 2006 2006
  end-page: 6338 6486
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 56 129
  start-page: 8183 8295
  year: 2017 2017
  end-page: 8186 8298
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 117
  start-page: 8977
  year: 2017
  end-page: 9015
  publication-title: Chem. Rev.
– year: 2017
– volume: 133
  start-page: 8574
  year: 2011
  end-page: 8585
  publication-title: J. Am. Chem. Soc.
– volume: 7
  start-page: 712
  year: 2015
  end-page: 717
  publication-title: Nat. Chem.
– volume: 138
  start-page: 84
  year: 2016
  end-page: 87
  publication-title: J. Am. Chem. Soc.
– ident: e_1_2_8_25_2
  doi: 10.1039/C8OB01025K
– ident: e_1_2_8_37_1
– ident: e_1_2_8_77_2
  doi: 10.1021/acscentsci.5b00312
– ident: e_1_2_8_91_2
  doi: 10.1039/C7OB01135K
– ident: e_1_2_8_109_2
  doi: 10.1021/ja410823e
– ident: e_1_2_8_96_2
  doi: 10.1002/ange.201701803
– ident: e_1_2_8_52_2
  doi: 10.1039/c2cs15281a
– ident: e_1_2_8_72_2
  doi: 10.1021/acscatal.7b03648
– ident: e_1_2_8_19_2
  doi: 10.1038/nchem.2372
– ident: e_1_2_8_28_3
  doi: 10.1002/ange.201712393
– ident: e_1_2_8_99_2
  doi: 10.1002/ange.201702686
– ident: e_1_2_8_62_2
  doi: 10.1021/acscatal.8b00423
– ident: e_1_2_8_69_2
  doi: 10.1021/jacs.5b08435
– ident: e_1_2_8_31_3
  doi: 10.1002/ange.201801894
– ident: e_1_2_8_76_2
  doi: 10.1021/ja410760f
– ident: e_1_2_8_45_1
  doi: 10.1016/j.tetlet.2017.04.066
– ident: e_1_2_8_85_1
– ident: e_1_2_8_27_3
  doi: 10.1002/ange.201813699
– ident: e_1_2_8_3_2
  doi: 10.1038/460197a
– ident: e_1_2_8_116_2
  doi: 10.1002/anie.200400655
– ident: e_1_2_8_55_2
  doi: 10.1039/C7CS00064B
– ident: e_1_2_8_70_2
  doi: 10.1021/jacs.6b03402
– ident: e_1_2_8_111_1
  doi: 10.1038/s41586-018-0220-1
– ident: e_1_2_8_79_2
  doi: 10.1039/C5SC04060D
– ident: e_1_2_8_108_2
  doi: 10.1021/ar970282g
– ident: e_1_2_8_113_1
  doi: 10.1002/anie.201803865
– ident: e_1_2_8_58_2
  doi: 10.1038/nchem.2322
– ident: e_1_2_8_84_1
  doi: 10.1021/acs.joc.8b01933
– ident: e_1_2_8_121_3
  doi: 10.1002/ange.200803793
– ident: e_1_2_8_100_1
  doi: 10.1021/jacs.6b11055
– ident: e_1_2_8_83_1
  doi: 10.1002/anie.201704411
– ident: e_1_2_8_11_1
  doi: 10.1002/anie.199701191
– ident: e_1_2_8_10_2
  doi: 10.1038/nchem.1607
– ident: e_1_2_8_24_2
  doi: 10.1016/j.chempr.2017.11.002
– ident: e_1_2_8_14_2
  doi: 10.1021/ol035806t
– ident: e_1_2_8_73_1
– ident: e_1_2_8_82_1
  doi: 10.1021/jacs.5b08914
– ident: e_1_2_8_53_2
  doi: 10.1007/3418_2015_130
– ident: e_1_2_8_68_2
  doi: 10.1002/anie.201504390
– ident: e_1_2_8_48_3
  doi: 10.1002/ange.200806273
– ident: e_1_2_8_114_1
– ident: e_1_2_8_7_2
  doi: 10.1007/978-3-642-12356-6
– ident: e_1_2_8_50_2
  doi: 10.1021/cr900005n
– ident: e_1_2_8_101_1
– ident: e_1_2_8_78_2
  doi: 10.1002/anie.201503112
– ident: e_1_2_8_49_2
  doi: 10.1021/cr900184e
– ident: e_1_2_8_106_2
  doi: 10.1021/ja00096a059
– ident: e_1_2_8_83_2
  doi: 10.1002/ange.201704411
– ident: e_1_2_8_6_2
  doi: 10.1039/b606984n
– ident: e_1_2_8_1_1
– ident: e_1_2_8_54_2
  doi: 10.6023/A15050319
– ident: e_1_2_8_47_1
– ident: e_1_2_8_115_2
  doi: 10.1021/ar010074v
– ident: e_1_2_8_92_1
  doi: 10.1039/C7CC00110J
– ident: e_1_2_8_51_2
  doi: 10.1039/c1cs15083a
– ident: e_1_2_8_98_1
  doi: 10.1002/chem.201703054
– ident: e_1_2_8_71_2
  doi: 10.1038/ncomms15430
– ident: e_1_2_8_120_2
  doi: 10.1021/ja075219t
– ident: e_1_2_8_32_3
  doi: 10.1002/ange.201806780
– ident: e_1_2_8_38_2
  doi: 10.1021/ja3058138
– ident: e_1_2_8_90_2
  doi: 10.1039/C6CC02384C
– ident: e_1_2_8_63_2
  doi: 10.1002/anie.201809929
– ident: e_1_2_8_35_2
  doi: 10.1002/chem.201100210
– ident: e_1_2_8_110_1
  doi: 10.1021/jacs.6b08942
– ident: e_1_2_8_118_2
  doi: 10.1002/anie.200602585
– ident: e_1_2_8_30_2
  doi: 10.1021/acscatal.8b00975
– ident: e_1_2_8_87_2
  doi: 10.1021/cr020033s
– ident: e_1_2_8_57_1
– ident: e_1_2_8_103_2
  doi: 10.1039/B601930G
– volume-title: Strategies for Palladium-Catalyzed Non-Directed and Directed C−H Bond Functionalization
  year: 2017
  ident: e_1_2_8_56_2
– ident: e_1_2_8_123_1
  doi: 10.1021/cr1002276
– ident: e_1_2_8_95_1
  doi: 10.1021/jacs.6b04966
– ident: e_1_2_8_46_2
  doi: 10.1002/ange.201301154
– ident: e_1_2_8_13_2
  doi: 10.1002/(SICI)1521-3773(20000317)39:6<1045::AID-ANIE1045>3.0.CO;2-Q
– ident: e_1_2_8_74_2
  doi: 10.1038/nature11158
– ident: e_1_2_8_61_2
  doi: 10.1002/anie.201708967
– ident: e_1_2_8_5_2
  doi: 10.1126/science.1114731
– ident: e_1_2_8_112_1
  doi: 10.1021/acscatal.8b00637
– ident: e_1_2_8_102_2
  doi: 10.1111/j.1527-3466.2001.tb00061.x
– ident: e_1_2_8_117_1
– ident: e_1_2_8_22_2
  doi: 10.1021/acs.chemrev.6b00554
– ident: e_1_2_8_29_2
  doi: 10.1002/anie.201800573
– ident: e_1_2_8_75_2
  doi: 10.1038/nature12963
– ident: e_1_2_8_113_2
  doi: 10.1002/ange.201803865
– ident: e_1_2_8_23_2
  doi: 10.1038/s41570-017-0035
– ident: e_1_2_8_104_1
– ident: e_1_2_8_88_2
  doi: 10.1093/bioinformatics/btn479
– ident: e_1_2_8_94_1
  doi: 10.1021/jacs.5b02809
– ident: e_1_2_8_89_1
– ident: e_1_2_8_2_2
  doi: 10.1126/science.219.4582.245
– ident: e_1_2_8_21_2
  doi: 10.1021/acs.accounts.6b00165
– ident: e_1_2_8_43_2
  doi: 10.1002/ange.201511549
– ident: e_1_2_8_121_2
  doi: 10.1002/anie.200803793
– ident: e_1_2_8_66_2
  doi: 10.1021/ja208286b
– ident: e_1_2_8_4_1
– ident: e_1_2_8_36_1
  doi: 10.1021/ja2055066
– ident: e_1_2_8_20_2
  doi: 10.6023/cjoc201505035
– ident: e_1_2_8_81_1
  doi: 10.1038/nature14214
– ident: e_1_2_8_9_2
  doi: 10.1021/ar300014f
– ident: e_1_2_8_48_2
  doi: 10.1002/anie.200806273
– ident: e_1_2_8_96_1
  doi: 10.1002/anie.201701803
– ident: e_1_2_8_86_2
  doi: 10.1021/jm000164q
– ident: e_1_2_8_28_2
  doi: 10.1002/anie.201712393
– ident: e_1_2_8_68_3
  doi: 10.1002/ange.201504390
– ident: e_1_2_8_26_2
  doi: 10.1002/chem.201802818
– ident: e_1_2_8_118_3
  doi: 10.1002/ange.200602585
– ident: e_1_2_8_15_1
– ident: e_1_2_8_122_1
  doi: 10.1002/0471212466.ch40
– volume: 46
  start-page: 35
  year: 2014
  ident: e_1_2_8_39_2
  publication-title: Synthesis
– ident: e_1_2_8_78_3
  doi: 10.1002/ange.201503112
– ident: e_1_2_8_12_1
– ident: e_1_2_8_42_1
  doi: 10.1039/c4cc01843e
– ident: e_1_2_8_64_1
– ident: e_1_2_8_44_1
  doi: 10.1039/C7CC08153G
– ident: e_1_2_8_27_2
  doi: 10.1002/anie.201813699
– ident: e_1_2_8_18_2
  doi: 10.1055/s-0032-1318218
– ident: e_1_2_8_116_3
  doi: 10.1002/ange.200400655
– ident: e_1_2_8_93_1
  doi: 10.1021/jacs.6b11097
– ident: e_1_2_8_97_1
  doi: 10.1021/acscatal.8b01599
– ident: e_1_2_8_33_1
– ident: e_1_2_8_63_3
  doi: 10.1002/ange.201809929
– ident: e_1_2_8_29_3
  doi: 10.1002/ange.201800573
– ident: e_1_2_8_119_2
  doi: 10.1021/ja063710z
– ident: e_1_2_8_40_1
  doi: 10.1021/jo402107m
– ident: e_1_2_8_105_2
  doi: 10.1021/ja00092a058
– ident: e_1_2_8_13_3
  doi: 10.1002/(SICI)1521-3757(20000317)112:6<1087::AID-ANGE1087>3.0.CO;2-W
– ident: e_1_2_8_46_1
  doi: 10.1002/anie.201301154
– ident: e_1_2_8_11_2
  doi: 10.1002/ange.19971090146
– ident: e_1_2_8_17_2
  doi: 10.1007/128_2009_13
– ident: e_1_2_8_41_1
  doi: 10.1021/acscatal.7b03220
– ident: e_1_2_8_107_2
  doi: 10.1021/ar9600650
– ident: e_1_2_8_43_1
  doi: 10.1002/anie.201511549
– ident: e_1_2_8_16_2
  doi: 10.1021/ar800040u
– ident: e_1_2_8_65_2
  doi: 10.1039/C7CS00496F
– ident: e_1_2_8_61_3
  doi: 10.1002/ange.201708967
– ident: e_1_2_8_80_2
  doi: 10.1038/nature21418
– ident: e_1_2_8_34_2
  doi: 10.1021/ja110988p
– ident: e_1_2_8_99_1
  doi: 10.1002/anie.201702686
– ident: e_1_2_8_60_2
  doi: 10.1021/jacs.6b08164
– ident: e_1_2_8_67_2
  doi: 10.1021/ja401466y
– ident: e_1_2_8_31_2
  doi: 10.1002/anie.201801894
– ident: e_1_2_8_8_2
  doi: 10.1021/ar200185g
– ident: e_1_2_8_32_2
  doi: 10.1002/anie.201806780
– ident: e_1_2_8_59_2
  doi: 10.1021/jacs.5b11683
SSID ssj0028806
Score 2.6258202
SecondaryResourceType review_article
Snippet The Catellani reaction is known as a powerful strategy for the expeditious synthesis of highly substituted arenes and benzo‐fused rings, which are usually...
The Catellani reaction is known as a powerful strategy for the expeditious synthesis of highly substituted arenes and benzo-fused rings, which are usually...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 5832
SubjectTerms Aromatic compounds
Catalysis
Catalysts
Catellani reaction
Chemical synthesis
cooperative catalysis
Coupling (molecular)
C−H functionalization
Halides
norbornene
Palladium
palladium catalysis
Reaction mechanisms
Substrates
Title Palladium(II)‐Initiated Catellani‐Type Reactions
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.201813491
https://www.ncbi.nlm.nih.gov/pubmed/30589184
https://www.proquest.com/docview/2207785477
https://www.proquest.com/docview/2161064060
Volume 58
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB7Ei158P6qrrCCoh2iapGl6lMXFFRRZFLyVPEHUXXF3L578Cf5Gf4lJu62uIoLe-pi06WTSfElmvgHYFTLBVCYZclQKxLg1KCOWoQxb4zw81abIDXh-wU-v2dlNcvMpir_kh6gX3ELPKP7XoYNLNTj6IA0NEdjBNUsEgr0w_wkOWwEVdWv-KOKNswwvohSFLPQVayMmR5PFJ0elb1BzErkWQ097HmRV6dLj5O5wNFSH-vkLn-N_vmoB5sa4tHlcGtIiTNneEsy0qnRwy8Auw5K7uR097Hc6B28vr53gduSRqmm2ZAhF8c_0V8O8ttm1ZbjEYAWu2ydXrVM0TrmANEt5jIglCVWxTQxRQsVcJFxYP-XIMKXYaJcaLrimjHNiMiyUktplxnhpj8yIMnQVpnv9nl2HpssUl845GSvMtKbKP8DjTYVVSpyK4whQpfJcj_nIQ1qM-7xkUiZ50EVe6yKCvVr-sWTi-FGyUbVgPu6Rg5wQnHoTYGkawU592-tQFxqy_ZGX8fA37GxyHMFa2fL1q2iRf1GwCEjRfr_UIT--6JzUZxt_KbQJs_642LoitAHTw6eR3fIIaKi2Cyt_B_Ms_JA
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTtwwEB5VcIBLoQXaAG0XqVLLweDYjuMcVyvQBpZVhUDqLYr_JFRYEOxeeuoj8Ix9ko6dTdBSVZXaY5yx44zt5Bt75huAj6rOKK-zgnheKyKks6RgTpCCOusRnhobcwOejeXwUpx8zVpvwhAL0_BDdBtuYWXE73VY4GFD-vCJNTSEYAffLBUY9tAAWg5pvaNVdd4xSDGcnk2AEeck5KFveRspO1ysv_hf-g1sLmLX-PM5XgPddrvxOfl2MJvqA_P9GaPjf73XOrycQ9Nev5lLr-CFm7yGlUGbEW4DxJew626vZjefy3L_54_HMngeIVi1vUEdolGwTSwNpm3v3DUREw-bcHl8dDEYknnWBWJELlPCHMu4Tl1mmVY6lSqTyqHVUVDOqTU-t1JJw4WUzBZUaV0bX1iL0gjOmLZ8C5YmtxP3Fnq-0LL23teppsIYrrEBhJya6px5naYJkFbnlZlTkofMGNdVQ6bMqqCLqtNFAp86-buGjOOPkrvtEFbzRflQMUZznAMizxPY626jDk3UkLudoQwi4HC4KWkCb5qh7x7FYwpGJRJgcQD_0oeqPy6Puqvtf6n0AVaGF2ejalSOT3dgFcvjSRbju7A0vZ-5dwiIpvp9nPK_AMIeALo
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB5VIBUuhZZXCrRbCQl68OLYjuMc0cKKtGWFEEjcovglIWBBZffSEz-B39hf0nGyCSwIVWqPccaOPR7Hnx_zDcCWKhPKyyQjnpeKCOksyZgTJKPOeoSnxlaxAY8G8vBMfDtPzp948df8EO2GWxgZ1f86DPBb63cfSUODB3a4mqUCwR6uf2aFpCrY9f5JSyDF0Dpr_yLOSQhD39A2UrY7nX96WnqBNaehazX39BegbGpdXzm57I5Humt-PSN0_J9mLcK7CTDt7NWW9B7euOEHmOs18eCWQByHPXd7Mb7eyfOvv-8f8nDvCKGq7fTK4IuCZWJqWNh2TlztL3G3DGf9g9PeIZnEXCBGpDImzLGE69gllmmlY6kSqRyuOTLKObXGp1YqabiQktmMKq1L4zNrURqhGdOWr8DM8Gbo1qDjMy1L730ZayqM4RoLQMCpqU6Z13EcAWlUXpgJIXmIi3FV1FTKrAi6KFpdRLDdyt_WVByvSm40PVhMhuRdwRhN0QREmkbwpX2NOjSVhtzNGGUQ_4ajTUkjWK17vv0UrwIwKhEBq_rvL3Uo9gb5Qfv08V8yfYa3x_v94kc--L4O85hcHWMxvgEzo59jt4loaKQ_VQb_B9Qi_2M
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Palladium%28II%29-Initiated+Catellani-Type+Reactions&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Cheng%2C+Hong-Gang&rft.au=Chen%2C+Shuqing&rft.au=Chen%2C+Ruiming&rft.au=Zhou%2C+Qianghui&rft.date=2019-04-23&rft.eissn=1521-3773&rft.volume=58&rft.issue=18&rft.spage=5832&rft_id=info:doi/10.1002%2Fanie.201813491&rft_id=info%3Apmid%2F30589184&rft.externalDocID=30589184
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon