Leaf angle: a target of genetic improvement in cereal crops tailored for high‐density planting
Summary High‐density planting is an effective measure for increasing crop yield per unit land area. Leaf angle (LA) is a key trait of plant architecture and a target for genetic improvement of crops. Upright leaves allow better light capture in canopy under high‐density planting, thus enhancing phot...
Saved in:
Published in | Plant biotechnology journal Vol. 20; no. 3; pp. 426 - 436 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
England
John Wiley & Sons, Inc
01.03.2022
John Wiley and Sons Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Summary
High‐density planting is an effective measure for increasing crop yield per unit land area. Leaf angle (LA) is a key trait of plant architecture and a target for genetic improvement of crops. Upright leaves allow better light capture in canopy under high‐density planting, thus enhancing photosynthesis efficiency, ventilation and stress resistance, and ultimately higher grain yield. Here, we summarized the latest progress on the cellular and molecular mechanisms regulating LA formation in rice and maize. We suggest several standing out questions for future studies and then propose some promising strategies to manipulate LA for breeding of cereal crops tailored for high‐density planting. |
---|---|
AbstractList | High‐density planting is an effective measure for increasing crop yield per unit land area. Leaf angle (LA) is a key trait of plant architecture and a target for genetic improvement of crops. Upright leaves allow better light capture in canopy under high‐density planting, thus enhancing photosynthesis efficiency, ventilation and stress resistance, and ultimately higher grain yield. Here, we summarized the latest progress on the cellular and molecular mechanisms regulating LA formation in rice and maize. We suggest several standing out questions for future studies and then propose some promising strategies to manipulate LA for breeding of cereal crops tailored for high‐density planting. Summary High‐density planting is an effective measure for increasing crop yield per unit land area. Leaf angle (LA) is a key trait of plant architecture and a target for genetic improvement of crops. Upright leaves allow better light capture in canopy under high‐density planting, thus enhancing photosynthesis efficiency, ventilation and stress resistance, and ultimately higher grain yield. Here, we summarized the latest progress on the cellular and molecular mechanisms regulating LA formation in rice and maize. We suggest several standing out questions for future studies and then propose some promising strategies to manipulate LA for breeding of cereal crops tailored for high‐density planting. High-density planting is an effective measure for increasing crop yield per unit land area. Leaf angle (LA) is a key trait of plant architecture and a target for genetic improvement of crops. Upright leaves allow better light capture in canopy under high-density planting, thus enhancing photosynthesis efficiency, ventilation and stress resistance, and ultimately higher grain yield. Here, we summarized the latest progress on the cellular and molecular mechanisms regulating LA formation in rice and maize. We suggest several standing out questions for future studies and then propose some promising strategies to manipulate LA for breeding of cereal crops tailored for high-density planting.High-density planting is an effective measure for increasing crop yield per unit land area. Leaf angle (LA) is a key trait of plant architecture and a target for genetic improvement of crops. Upright leaves allow better light capture in canopy under high-density planting, thus enhancing photosynthesis efficiency, ventilation and stress resistance, and ultimately higher grain yield. Here, we summarized the latest progress on the cellular and molecular mechanisms regulating LA formation in rice and maize. We suggest several standing out questions for future studies and then propose some promising strategies to manipulate LA for breeding of cereal crops tailored for high-density planting. |
Author | Shen, Rongxin Zhong, Zhuojun Wang, Haiyang Cao, Yingying |
AuthorAffiliation | 1 12526 State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bioresources South China Agricultural University Guangzhou China 2 12526 Guangdong Laboratory for Lingnan Modern Agriculture Guangzhou China |
AuthorAffiliation_xml | – name: 2 12526 Guangdong Laboratory for Lingnan Modern Agriculture Guangzhou China – name: 1 12526 State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bioresources South China Agricultural University Guangzhou China |
Author_xml | – sequence: 1 givenname: Yingying surname: Cao fullname: Cao, Yingying organization: South China Agricultural University – sequence: 2 givenname: Zhuojun surname: Zhong fullname: Zhong, Zhuojun organization: South China Agricultural University – sequence: 3 givenname: Haiyang orcidid: 0000-0002-1302-5747 surname: Wang fullname: Wang, Haiyang email: whyang@scau.edu.cn organization: Guangdong Laboratory for Lingnan Modern Agriculture – sequence: 4 givenname: Rongxin surname: Shen fullname: Shen, Rongxin email: shenrongxin@scau.edu.cn organization: South China Agricultural University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35075761$$D View this record in MEDLINE/PubMed |
BookMark | eNqNks9uFSEUxompsX904QsYEje6uC0MAzO4aKKNf5rcRBe6Rsoc5tIwMAK35u58BJ_RJ5F6bxttNJENJOf3fTnn8B2ivRADIPSYkmNaz8l84Y4p63pyDx3QVnSLTvBm7_bdtvvoMOdLQhoquHiA9hknHe8EPUCfl6At1mH08AJrXHQaoeBo8QgBijPYTXOKVzBBKNgFbCCB9tikOOdKOx8TDNjGhFduXP349n2AkF3Z4NnrUFwYH6L7VvsMj3b3Efr05vXHs3eL5fu352cvlwvTdoIsrG5BUyMa0jecCWMHJoETLWGwfWOlFMzAoAnnjLNOUgq9FFYMrQUyaG7YETrd-s7riwkGU_tN2qs5uUmnjYraqT8rwa3UGK9U3_dNJ2U1eLYzSPHLGnJRk8sGfJ0D4jqrRghKSMv-C22aumje04o-vYNexnUKdROVYkwQSSSr1JPfm7_t-uafKnCyBeric05glXFFFxevZ3FeUaKuk6BqEtSvJFTF8zuKG9O_sTv3r87D5t-g-vDqfKv4CcIYw7M |
CitedBy_id | crossref_primary_10_1007_s00122_024_04614_z crossref_primary_10_1186_s12864_025_11205_9 crossref_primary_10_2139_ssrn_4150572 crossref_primary_10_3389_fpls_2023_1190004 crossref_primary_10_1016_j_scienta_2023_112406 crossref_primary_10_1021_acs_jafc_4c02650 crossref_primary_10_1093_hr_uhad280 crossref_primary_10_3390_agronomy14071562 crossref_primary_10_3390_ijms25063180 crossref_primary_10_1111_jipb_13570 crossref_primary_10_3389_fpls_2024_1496351 crossref_primary_10_3390_plants12020303 crossref_primary_10_1016_j_molp_2024_06_014 crossref_primary_10_1111_pbr_13166 crossref_primary_10_3390_agronomy14091978 crossref_primary_10_1016_j_fcr_2024_109284 crossref_primary_10_1016_j_cj_2024_12_012 crossref_primary_10_1111_ppl_14321 crossref_primary_10_3390_plants12030680 crossref_primary_10_1016_j_jgg_2025_01_014 crossref_primary_10_1093_plphys_kiad635 crossref_primary_10_1111_pbi_13878 crossref_primary_10_1016_j_cj_2024_09_004 crossref_primary_10_3390_biology12081143 crossref_primary_10_3390_plants11223118 crossref_primary_10_3390_plants13131799 crossref_primary_10_1111_jipb_13603 crossref_primary_10_3389_fpls_2025_1488576 crossref_primary_10_1007_s10725_023_01087_w crossref_primary_10_1111_nph_19192 crossref_primary_10_1016_j_plantsci_2023_111625 crossref_primary_10_1111_ppl_14215 crossref_primary_10_1007_s00425_023_04126_y crossref_primary_10_3389_fpls_2022_1049803 crossref_primary_10_1007_s00122_022_04086_z crossref_primary_10_1016_j_fcr_2024_109493 crossref_primary_10_1111_tpj_70044 crossref_primary_10_1038_s41586_024_07669_6 crossref_primary_10_1093_pcp_pcad078 crossref_primary_10_1016_j_hpj_2025_01_001 crossref_primary_10_1093_plcell_koaf029 crossref_primary_10_1016_j_cj_2024_06_001 crossref_primary_10_1016_j_fcr_2022_108806 crossref_primary_10_1016_j_plantsci_2022_111459 crossref_primary_10_1093_jxb_eraf062 crossref_primary_10_3389_fgene_2022_1004211 crossref_primary_10_3390_ijms24010189 crossref_primary_10_1016_j_molp_2022_08_005 crossref_primary_10_3389_fpls_2022_973643 crossref_primary_10_1111_nph_19903 crossref_primary_10_1093_plphys_kiae147 crossref_primary_10_1111_pbi_14382 crossref_primary_10_3390_ijms25179325 crossref_primary_10_1007_s00122_024_04629_6 crossref_primary_10_1016_j_molp_2024_07_004 crossref_primary_10_1371_journal_pone_0276602 crossref_primary_10_3390_cells11213471 crossref_primary_10_1007_s00122_024_04657_2 crossref_primary_10_1093_genetics_iyae162 crossref_primary_10_1016_j_cpb_2025_100465 crossref_primary_10_1016_j_molp_2024_05_001 crossref_primary_10_1016_j_xplc_2024_101236 crossref_primary_10_1016_j_jafr_2025_101813 crossref_primary_10_3390_genes13122216 crossref_primary_10_1016_j_tplants_2023_04_005 crossref_primary_10_1186_s12870_024_05389_7 crossref_primary_10_3390_agronomy15010168 |
Cites_doi | 10.1007/s00122-006-0209-2 10.1038/cr.2010.109 10.1104/pp.16.00399 10.1105/tpc.111.093419 10.1046/j.1365-313X.2002.01438.x 10.1111/j.1467-7652.2009.00444.x 10.1111/jipb.12713 10.1007/s10681-021-02781-4 10.1104/pp.103.036707 10.1104/pp.121.4.1163 10.1093/plcell/koab175 10.1007/s11032-018-0914-y 10.1038/s41467-019-08479-5 10.1101/gad.193433.112 10.1002/csc2.20321 10.1016/j.cj.2017.05.001 10.1007/s10681-015-1502-4 10.1007/s11032-016-0483-x 10.1104/pp.119.2.651 10.1371/journal.pone.0030798 10.1111/pbr.12431 10.18356/b564c742-en 10.1002/(SICI)1520-6408(1996)18:3<198::AID-DVG2>3.0.CO;2-4 10.1016/j.devcel.2015.05.019 10.1371/journal.pgen.1002686 10.1242/dev.085787 10.2135/cropsci2011.05.0274 10.1104/pp.105.072330 10.1371/journal.pgen.1007323 10.1093/jxb/erw002 10.1111/pbi.13255 10.1105/tpc.106.047506 10.1007/s10681-015-1401-8 10.1104/pp.007179 10.1126/science.aax5482 10.1111/tpj.12517 10.1073/pnas.1108359108 10.1105/tpc.16.00611 10.1242/dev.116.1.21 10.3390/ijms22157792 10.1105/tpc.3.8.801 10.1073/pnas.0706386104 10.1105/tpc.12.9.1591 10.1104/pp.15.01668 10.1111/j.1469-8137.2012.04248.x 10.1105/tpc.114.132688 10.1104/pp.19.01421 10.3390/genes10090664 10.1105/tpc.112.099978 10.1073/pnas.1116437108 10.1105/tpc.114.132092 10.1101/gad.12.2.208 10.1111/nph.16970 10.1093/mp/sst027 10.1016/0012-1606(90)90117-2 10.1093/jxb/eraa052 10.1105/tpc.112.097394 10.1016/S1672-6308(12)60052-3 10.2134/agronj1968.00021962006000040027x 10.1111/jipb.12914 10.1021/jf050722f 10.1104/pp.15.00367 10.1105/tpc.16.00477 10.1104/pp.106.077081 10.1016/j.molp.2019.12.005 10.1104/pp.109.140806 10.1093/jxb/eru271 10.1111/j.1365-313X.2006.02804.x 10.1038/cr.2017.69 10.1007/s11103-009-9474-1 10.1007/s10681-015-1351-1 10.1093/jxb/err277 10.1038/s41437-018-0056-3 10.1111/pbr.12559 10.1111/j.1365-313X.2009.04033.x 10.1104/pp.16.01516 10.1016/j.pbi.2021.102038 10.1105/tpc.109.070441 10.1105/tpc.104.024950 10.3390/ijms21145052 10.1111/j.1365-313X.2006.02875.x 10.4161/psb.4.2.7627 10.1016/j.molp.2017.02.001 10.1007/s12042-020-09270-3 10.1016/j.jgg.2014.09.004 10.1007/s11103-007-9196-1 10.1104/pp.114.252882 10.1093/jxb/ers300 10.1016/j.fcr.2021.108128 10.1105/tpc.105.030973 10.1038/s41588-020-0616-3 10.1371/journal.pone.0141619 10.1038/nbt1173 10.1371/journal.pgen.1007829 10.1105/tpc.109.069575 10.3835/plantgenome2018.05.0024 10.1038/ng.746 10.2135/cropsci2002.1902 10.1242/dev.125.15.2857 10.1105/tpc.014712 10.1104/pp.17.00709 10.1104/pp.16.01653 10.1242/dev.111955 10.1242/dev.110.3.985 10.1111/pbr.12146 10.1186/s12284-018-0239-9 10.1371/journal.pone.0121624 10.1105/tpc.19.00677 10.1007/s00122-010-1364-z 10.1111/pbr.12749 10.1093/mp/sss064 10.1111/tpj.14332 10.1104/pp.19.00872 10.1007/s00299-016-2052-5 10.1007/s10681-019-2434-1 10.1111/pce.12397 10.1016/S0065-2113(05)86002-X 10.1101/gad.11.5.616 10.1111/tpj.14692 10.1023/A:1003533001014 10.1038/nplants.2017.43 10.1016/j.eja.2014.04.001 10.1104/pp.109.145920 10.1111/j.1365-313X.2008.03707.x |
ContentType | Journal Article |
Copyright | 2022 The Authors. published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd. 2022 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd. 2022. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2022 The Authors. published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd. – notice: 2022 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd. – notice: 2022. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QO 8FD 8FE 8FG 8FH ABJCF ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO FR3 GNUQQ HCIFZ L6V LK8 M7P M7S P64 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS 7X8 7S9 L.6 5PM |
DOI | 10.1111/pbi.13780 |
DatabaseName | Wiley Online Library Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central ProQuest Technology Collection Natural Science Collection ProQuest One ProQuest Central Engineering Research Database ProQuest Central Student ProQuest SciTech Premium Collection ProQuest Engineering Collection Biological Sciences Biological Science Database Engineering Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering collection MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Engineering Collection Biotechnology Research Abstracts Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) Engineering Collection Engineering Database ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Technology Collection Biological Science Database ProQuest SciTech Collection Biotechnology and BioEngineering Abstracts ProQuest One Academic UKI Edition Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | CrossRef MEDLINE Publicly Available Content Database AGRICOLA MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture |
DocumentTitleAlternate | Manipulating leaf angle for high density planting in crops |
EISSN | 1467-7652 |
EndPage | 436 |
ExternalDocumentID | PMC8882799 35075761 10_1111_pbi_13780 PBI13780 |
Genre | reviewArticle Research Support, Non-U.S. Gov't Journal Article Review |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 31771739; 31921004 – fundername: Natural Science Foundation of Guangdong Province‐Guangzhou City Collaborative Key Project funderid: 2019B1515120061 – fundername: ; grantid: 31771739; 31921004 – fundername: Natural Science Foundation of Guangdong Province‐Guangzhou City Collaborative Key Project grantid: 2019B1515120061 |
GroupedDBID | --- .3N .GA .Y3 05W 0R~ 10A 123 1OC 24P 29O 31~ 33P 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52W 52X 53G 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8FE 8FG 8FH 8UM 930 A03 A8Z AAEVG AAHBH AAHHS AANHP AAONW AAZKR ABCQN ABDBF ABEML ABIJN ABJCF ABPVW ACBWZ ACCFJ ACCMX ACIWK ACPRK ACRPL ACSCC ACUHS ACXQS ACYXJ ADBBV ADIZJ ADKYN ADNMO ADZMN AEEZP AEIMD AENEX AEQDE AEUQT AEUYN AFBPY AFEBI AFKRA AFRAH AFZJQ AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR ASPBG ATUGU AVUZU AVWKF AZBYB AZFZN BAFTC BBNVY BCNDV BDRZF BENPR BFHJK BGLVJ BHPHI BNHUX BROTX BRXPI BY8 CAG CCPQU COF CS3 D-E D-F DPXWK DR2 DU5 EAD EAP EBD EBS ECGQY EDH EJD EMK EMOBN EST ESX F00 F01 F04 F5P FEDTE G-S G.N GODZA GROUPED_DOAJ H.T H.X HCIFZ HF~ HOLLA HVGLF HZ~ IAO IEP IGS IHE ITC IX1 J0M KQ8 L6V LC2 LC3 LH4 LK8 LP6 LP7 LW6 M7P M7S MK4 ML0 N04 N05 N9A NF~ O66 O9- OIG OK1 P2P P2X P4D PIMPY PROAC PTHSS Q.N Q11 QB0 QM4 QO4 R.K ROL RPM RX1 SUPJJ SV3 TUS UB1 W8V W99 WIH WIN WQJ WRC XG1 ~IA ~KM ~WT AAYXX AGQPQ CITATION PHGZM PHGZT AAMMB AEFGJ AGXDD AIDQK AIDYY CGR CUY CVF ECM EIF NPM PQGLB 7QO 8FD ABUWG AZQEC DWQXO FR3 GNUQQ P64 PKEHL PQEST PQQKQ PQUKI PRINS 7X8 7S9 L.6 5PM |
ID | FETCH-LOGICAL-c4760-fa4ea1c62082536cfd39e50a9edf82f9963ceda0553537911e896f6d4fe0da5c3 |
IEDL.DBID | BENPR |
ISSN | 1467-7644 1467-7652 |
IngestDate | Thu Aug 21 17:26:14 EDT 2025 Fri Jul 11 18:25:22 EDT 2025 Fri Jul 11 12:00:58 EDT 2025 Wed Aug 13 08:44:53 EDT 2025 Mon Jul 21 05:59:55 EDT 2025 Tue Jul 01 02:34:48 EDT 2025 Thu Apr 24 23:05:29 EDT 2025 Wed Jan 22 16:26:54 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | cereal crop dense planting grain yield plant architecture leaf angle |
Language | English |
License | Attribution-NonCommercial-NoDerivs 2022 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd. This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc-nd/4.0/ License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4760-fa4ea1c62082536cfd39e50a9edf82f9963ceda0553537911e896f6d4fe0da5c3 |
Notes | Yingying Cao and Zhuojun Zhong contributed equally to this work. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0002-1302-5747 |
OpenAccessLink | https://www.proquest.com/docview/2633609093?pq-origsite=%requestingapplication% |
PMID | 35075761 |
PQID | 2633609093 |
PQPubID | 1096352 |
PageCount | 436 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_8882799 proquest_miscellaneous_2661004399 proquest_miscellaneous_2622656581 proquest_journals_2633609093 pubmed_primary_35075761 crossref_citationtrail_10_1111_pbi_13780 crossref_primary_10_1111_pbi_13780 wiley_primary_10_1111_pbi_13780_PBI13780 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | March 2022 |
PublicationDateYYYYMMDD | 2022-03-01 |
PublicationDate_xml | – month: 03 year: 2022 text: March 2022 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Southampton – name: Hoboken |
PublicationTitle | Plant biotechnology journal |
PublicationTitleAlternate | Plant Biotechnol J |
PublicationYear | 2022 |
Publisher | John Wiley & Sons, Inc John Wiley and Sons Inc |
Publisher_xml | – name: John Wiley & Sons, Inc – name: John Wiley and Sons Inc |
References | 2007; 104 2019; 99 2019; 10 2019; 12 2004; 24 2014; 26 2012; 19 2020; 13 2014; 133 2013; 6 1968; 60 2016; 36 2016; 35 2009; 11 2010; 22 2010; 20 2013; 58 2000; 12 1992; 116 2012; 26 2007; 65 2012; 24 1998; 12 2007; 19 1996; 18 2021; 266 2002; 130 2019; 39 2005; 86 2020; 32 2014; 41 2017; 136 2006; 112 1999; 109 2012; 196 2019; 181 2009; 70 2006; 47 2006; 48 2019; 215 2016; 171 2021; 61 2018; 11 2016; 170 2005; 17 2014; 141 2021; 63 1990; 110 2018; 14 1999; 119 2017; 5 2015; 34 2018; 121 2015; 38 2017; 3 2021; 22 1999; 121 2003; 15 2009; 151 1990; 141 2019; 365 2010; 61 2012; 52 2014; 65 2007; 29 2009; 57 2004; 135 2021; 33 2019; 61 1997; 11 2002; 42 2018; 137 2014; 58 2020; 139 2011; 23 1998; 125 2012; 63 1991; 3 2009; 21 2015; 204 2015; 168 2015; 169 2017; 27 2002; 32 2020a; 62 2021; 229 2015; 10 2010; 121 2017; 173 2013; 140 2017; 29 2017; 175 2020; 102 2015; 206 2015; 205 2006; 2 2020b; 21 2021; 14 2020b; 18 2011; 108 2020a; 183 2021 2020 2020; 71 2017; 10 2021; 217 2020a; 52 2006; 141 2006; 140 2005; 53 2011; 43 2009; 7 2009; 4 2012; 7 2014; 78 2016; 67 2012; 8 e_1_2_11_70_1 e_1_2_11_93_1 e_1_2_11_32_1 e_1_2_11_55_1 e_1_2_11_78_1 e_1_2_11_36_1 e_1_2_11_51_1 e_1_2_11_74_1 e_1_2_11_97_1 e_1_2_11_13_1 e_1_2_11_118_1 e_1_2_11_29_1 e_1_2_11_125_1 e_1_2_11_4_1 e_1_2_11_106_1 e_1_2_11_48_1 e_1_2_11_121_1 e_1_2_11_102_1 e_1_2_11_81_1 e_1_2_11_20_1 e_1_2_11_66_1 e_1_2_11_47_1 e_1_2_11_89_1 e_1_2_11_24_1 e_1_2_11_62_1 e_1_2_11_129_1 e_1_2_11_8_1 e_1_2_11_43_1 e_1_2_11_85_1 e_1_2_11_17_1 e_1_2_11_117_1 e_1_2_11_59_1 e_1_2_11_50_1 e_1_2_11_92_1 e_1_2_11_31_1 e_1_2_11_77_1 Attia K.A. (e_1_2_11_2_1) 2009; 11 e_1_2_11_119_1 e_1_2_11_35_1 e_1_2_11_73_1 e_1_2_11_12_1 e_1_2_11_54_1 e_1_2_11_96_1 e_1_2_11_103_1 e_1_2_11_126_1 e_1_2_11_28_1 e_1_2_11_5_1 Lu M. (e_1_2_11_58_1) 2007; 29 e_1_2_11_122_1 e_1_2_11_61_1 e_1_2_11_80_1 e_1_2_11_46_1 e_1_2_11_69_1 e_1_2_11_88_1 e_1_2_11_107_1 e_1_2_11_9_1 e_1_2_11_42_1 e_1_2_11_65_1 e_1_2_11_84_1 e_1_2_11_114_1 e_1_2_11_16_1 e_1_2_11_110_1 e_1_2_11_39_1 (e_1_2_11_23_1) 2021 e_1_2_11_72_1 e_1_2_11_91_1 e_1_2_11_30_1 e_1_2_11_57_1 e_1_2_11_99_1 e_1_2_11_34_1 e_1_2_11_53_1 e_1_2_11_76_1 e_1_2_11_95_1 e_1_2_11_11_1 e_1_2_11_6_1 e_1_2_11_104_1 e_1_2_11_27_1 e_1_2_11_127_1 Duvick D.N. (e_1_2_11_18_1) 2004; 24 e_1_2_11_100_1 e_1_2_11_123_1 e_1_2_11_83_1 e_1_2_11_60_1 e_1_2_11_45_1 e_1_2_11_68_1 e_1_2_11_41_1 e_1_2_11_87_1 e_1_2_11_108_1 e_1_2_11_22_1 e_1_2_11_64_1 e_1_2_11_115_1 e_1_2_11_15_1 e_1_2_11_111_1 e_1_2_11_38_1 e_1_2_11_19_1 e_1_2_11_130_1 e_1_2_11_94_1 e_1_2_11_71_1 e_1_2_11_90_1 e_1_2_11_10_1 e_1_2_11_56_1 e_1_2_11_79_1 e_1_2_11_14_1 e_1_2_11_52_1 e_1_2_11_98_1 e_1_2_11_33_1 e_1_2_11_75_1 e_1_2_11_7_1 e_1_2_11_105_1 e_1_2_11_128_1 e_1_2_11_26_1 e_1_2_11_3_1 e_1_2_11_49_1 e_1_2_11_101_1 e_1_2_11_124_1 e_1_2_11_120_1 e_1_2_11_82_1 e_1_2_11_21_1 e_1_2_11_44_1 e_1_2_11_67_1 e_1_2_11_25_1 e_1_2_11_40_1 e_1_2_11_63_1 e_1_2_11_86_1 e_1_2_11_109_1 Wassom J.J. (e_1_2_11_113_1) 2013; 58 e_1_2_11_116_1 e_1_2_11_37_1 e_1_2_11_112_1 e_1_2_11_131_1 |
References_xml | – volume: 58 start-page: 1 year: 2014 end-page: 10 article-title: Changes in the morphological traits of maize genotypes in China between the 1950s and 2000s publication-title: Eur. J. Agron. – volume: 61 start-page: 1280 year: 2021 end-page: 1288 article-title: PLASTOCHRON1 regulates leaf inclination through Brassinolide pathway in publication-title: Crop Sci. – volume: 104 start-page: 13839 year: 2007 end-page: 13844 article-title: Functions of OsBZR1 and 14‐3‐3 proteins in brassinosteroid signaling in rice publication-title: Proc. Natl Acad. Sci. USA – volume: 121 start-page: 1163 year: 1999 end-page: 1168 article-title: Disruption of auxin transport is associated with aberrant leaf development in maize publication-title: Plant Physiol – volume: 23 start-page: 4334 year: 2011 end-page: 4347 article-title: Increased leaf angle1, a Raf‐like MAPKKK that interacts with a nuclear protein family, regulates mechanical tissue formation in the Lamina joint of rice publication-title: Plant Cell – volume: 181 start-page: 4 year: 2019 end-page: 5 article-title: , a conserved gene regulating leaf angle and a target for yield improvement in wheat publication-title: Plant Physiol – volume: 6 start-page: 174 year: 2013 end-page: 187 article-title: Studies on the rice LEAF INCLINATION1 (LC1), an IAA–amido synthetase, reveal the effects of auxin in leaf inclination control publication-title: Mol. Plant – volume: 99 start-page: 426 year: 2019 end-page: 438 article-title: OsBZR1 turnover mediated by OsSK22‐regulated U‐box E3 ligase OsPUB24 in rice BR response publication-title: Plant J. – volume: 65 start-page: 487 year: 2007 end-page: 499 article-title: Mutations in the rice gene result in a complete loss of the auricle, ligule, and laminar joint publication-title: Plant Mol. Biol – volume: 63 start-page: 6467 year: 2012 end-page: 6480 article-title: A GH3 family member, OsGH3‐2, modulates auxin and abscisic acid levels and differentially affects drought and cold tolerance in rice publication-title: J. Exp. Bot – volume: 102 start-page: 1187 year: 2020 end-page: 1201 article-title: GSK2 stabilizes OFP3 to suppress brassinosteroid responses in rice publication-title: Plant J – volume: 121 start-page: 951 year: 2010 end-page: 959 article-title: Quantitative trait loci mapping of leaf angle and leaf orientation value in maize ( L.) publication-title: Theor. Appl. Genet – volume: 20 start-page: 935 year: 2010 end-page: 947 article-title: Rice leaf inclination2, a VIN3‐like protein, regulates leaf angle through modulating cell division of the collar publication-title: Cell Res – volume: 6 start-page: 988 year: 2013 end-page: 991 article-title: OsGRAS19 may be a novel component involved in the brassinosteroid signaling pathway in rice publication-title: Mol. Plant – volume: 32 start-page: 495 year: 2002 end-page: 508 article-title: Loss‐of‐function of a rice brassinosteroid biosynthetic enzyme, C‐6 oxidase, prevents the organized arrangement and polar elongation of cells in the leaves and stem publication-title: Plant J – volume: 29 start-page: 1131 year: 2007 end-page: 1138 article-title: Construction of a SSR linkage map and mapping of quantitative trait loci (QTL) for leaf angle and leaf orientation with an elite maize hybrid publication-title: Heredity – volume: 58 start-page: 318 year: 2013 end-page: 321 article-title: Quantitative trait loci for leaf angle, leaf width, leaf length, and plant height in a maize ( L) B73 × Mo17 population publication-title: Maydica – volume: 10 start-page: 516 year: 2017 end-page: 519 article-title: Regulation of leaf angle by auricle development in maize publication-title: Mol. Plant – volume: 24 start-page: 2917 year: 2012 end-page: 2933 article-title: Arabidopsis acts with to coordinate and expression in shoot and root meristems publication-title: Plant Cell – volume: 19 start-page: 277 year: 2012 end-page: 285 article-title: Genetic analysis and QTL mapping of large flag leaf angle trait in japonica rice publication-title: Rice Sci. – volume: 63 start-page: 102038 year: 2021 article-title: The dynamics of maize leaf development, patterned to grow while growing a pattern publication-title: Curr. Opin. Plant Biol – volume: 12 start-page: 180024 year: 2019 article-title: Dissection of leaf angle variation in maize through genetic mapping and meta‐analysis publication-title: Plant Genome – volume: 43 start-page: 159 year: 2011 end-page: 162 article-title: Genome‐wide association study of leaf architecture in the maize nested association mapping population publication-title: Nat. Genet – volume: 206 start-page: 203 year: 2015 end-page: 223 article-title: Integrative detection and verification of QTL for plant traits in two connected RIL populations of high‐oil maize publication-title: Euphytica – volume: 204 start-page: 395 year: 2015 end-page: 405 article-title: Identification of QTL for leaf angle and leaf space above ear position across different environments and generations in maize ( L.) publication-title: Euphytica – volume: 22 start-page: 1777 year: 2010 end-page: 1791 article-title: maintains brassinosteroid homeostasis via the coordinated activation of and biosynthetic genes in rice publication-title: Plant Cell – volume: 42 start-page: 1902 year: 2002 end-page: 1909 article-title: Quantitative trait loci controlling leaf and tassel traits in a B73 × Mo17 population of maize publication-title: Crop Sci. – volume: 141 start-page: 4590 year: 2014 end-page: 4597 article-title: Gene regulatory interactions at lateral organ boundaries in maize publication-title: Development – volume: 205 start-page: 421 year: 2015 end-page: 440 article-title: Genetic analysis for canopy architecture in an F2, 3 population derived from two‐type foundation parents across multi‐environments publication-title: Euphytica – volume: 171 start-page: 2633 year: 2016 end-page: 2647 article-title: encodes a maize ortholog of the arabidopsis brassinosteroid biosynthesis gene , identifying developmental interactions between brassinosteroids and gibberellins publication-title: Plant Physiol – volume: 21 start-page: 3767 year: 2009 end-page: 3780 article-title: Antagonistic HLH/bHLH transcription factors mediate brassinosteroid regulation of cell elongation and plant development in rice and arabidopsis publication-title: Plant Cell – volume: 10 year: 2015 article-title: Genomic dissection of leaf angle in maize ( L.) using a four‐way cross mapping population publication-title: PLoS ONE – volume: 60 start-page: 422 year: 1968 end-page: 424 article-title: Field investigations of the relationships of leaf angle in corn ( L.) to grain yield and apparent photosynthesis publication-title: Agron. J. – volume: 26 start-page: 1685 year: 2012 end-page: 1690 article-title: Unraveling the KNOTTED1 regulatory network in maize meristems publication-title: Genes Dev – volume: 109 start-page: 79 year: 1999 end-page: 84 article-title: RFLP facilitated analysis of tiller and leaf angles in rice ( L.) publication-title: Euphytica – volume: 229 start-page: 1832 year: 2021 end-page: 1839 article-title: determine lamina joint positioning and differentiation by inhibiting auxin signaling publication-title: New Phytol – volume: 62 start-page: 793 year: 2020a end-page: 811 article-title: mediator subunit OsMED25 interacts with OsBZR1 to regulate brassinosteroid signaling and plant architecture in rice publication-title: J. Integr. Plant Biol. – volume: 137 start-page: 60 year: 2018 end-page: 72 article-title: QTL mapping for six ear leaf architecture traits under water‐stressed and well‐watered conditions in maize ( L.) publication-title: Plant Breed. – volume: 8 year: 2012 article-title: Dynamics of brassinosteroid response modulated by negative regulator in rice publication-title: PLoS Genet – volume: 26 start-page: 4718 year: 2014 end-page: 4732 article-title: Transcriptomic analyses indicate that maize ligule development recapitulates gene expression patterns that occur during lateral organ initiation publication-title: Plant Cell – volume: 52 start-page: 565 year: 2020a end-page: 571 article-title: Genome‐wide selection and genetic improvement during modern maize breeding publication-title: Nat. Genet – volume: 108 start-page: 20260 year: 2011 end-page: 20264 article-title: Global food demand and the sustainable intensification of agriculture publication-title: Proc. Natl. Acad. Sci. USA – volume: 47 start-page: 519 year: 2006 end-page: 531 article-title: A brassinolide‐suppressed rice MADS‐box transcription factor, OsMDP1, has a negative regulatory role in BR signaling publication-title: Plant J – volume: 24 start-page: 2562 year: 2012 end-page: 2577 article-title: DWARF AND LOW‐TILLERING acts as a direct downstream target of a GSK3/SHAGGY‐like kinase to mediate brassinosteroid responses in rice publication-title: Plant Cell – volume: 3 start-page: 17043 year: 2017 article-title: acts in the brassinosteroid signalling pathway to regulate grain width and weight in rice publication-title: Nat. Plants – volume: 61 start-page: 70 year: 2010 end-page: 82 article-title: Genetic networks regulated by ( ) and in leaf development in , genes control five morphological events publication-title: Plant J – volume: 21 start-page: 5052 year: 2020b article-title: Synergistic interaction of phytohormones in determining leaf angle in crops publication-title: Int. J. Mol. Sci – volume: 24 start-page: 109 year: 2004 end-page: 151 article-title: Long‐term selection in a commercial hybrid maize breeding program publication-title: Plant Breed. Rev. – volume: 57 start-page: 498 year: 2009 end-page: 510 article-title: OsGSR1 is involved in crosstalk between gibberellins and brassinosteroids in rice publication-title: Plant J – volume: 3 start-page: 801 year: 1991 end-page: 807 article-title: Sectors of liguleless‐1 tissue interrupt an inductive signal during maize leaf development publication-title: Plant Cell – volume: 108 start-page: 19814 year: 2011 end-page: 19819 article-title: Brassinosteroid control of sex determination in maize publication-title: Proc. Natl Acad. Sci. USA – volume: 173 start-page: 688 year: 2017 end-page: 702 article-title: Rice leaf angle and grain size are affected by the OsBUL1 transcriptional activator complex publication-title: Plant Physiol – volume: 119 start-page: 651 year: 1999 end-page: 662 article-title: Ectopic expression of the maize homeobox gene alters cell fates in the leaf publication-title: Plant Physiol – volume: 22 start-page: 7792 year: 2021 article-title: Modulation of rice leaf angle and grain size by expressing and under the control of promoter publication-title: Int. J. Mol. Sci – volume: 19 start-page: 46 year: 2007 end-page: 62 article-title: The indeterminate gametophyte1 gene of maize encodes a LOB domain protein required for embryo sac and leaf development publication-title: Plant Cell – volume: 14 year: 2018 article-title: Genome‐wide association studies reveal that members of bHLH subfamily 16 share a conserved function in regulating flag leaf angle in rice ( ) publication-title: PLoS Genet – volume: 11 start-page: 616 year: 1997 end-page: 628 article-title: encodes a nuclear‐localized protein required for induction of ligules and auricles during maize leaf organogenesis publication-title: Genes Dev. – volume: 14 start-page: 34 year: 2021 end-page: 49 article-title: Identification of QTLs and candidate genes associated with leaf angle and leaf orientation value in maize ( L.) based on GBS publication-title: Trop. Plant Biol. – volume: 217 start-page: 75 year: 2021 article-title: Identification of QTL for leaf angle at canopy‐wide levels in maize publication-title: Euphytica – volume: 10 year: 2015 article-title: Genetic control of the leaf angle and leaf orientation value as revealed by ultra‐high density maps in three connected maize populations publication-title: PLoS ONE – volume: 110 start-page: 985 year: 1990 end-page: 1000 article-title: Division and differentiation during normal and maize leaf development publication-title: Development – volume: 5 start-page: 387 year: 2017 end-page: 395 article-title: QTL analysis of ear leaf traits in maize ( L.) under different planting densities publication-title: Crop J. – volume: 86 start-page: 83 year: 2005 end-page: 145 article-title: The contribution of breeding to yield advances in maize ( L.) publication-title: Adv. Agron. – volume: 141 start-page: 924e931 year: 2006 article-title: Morphological alteration caused by brassinosteroid insensitivity increases the biomass and grain production of rice publication-title: Plant Physiol. – volume: 196 start-page: 149 year: 2012 end-page: 161 article-title: Distinctive expression patterns and roles of the homolog module in regulating flag leaf inclination and primary and crown root growth in rice ( ) publication-title: New Phytol – volume: 27 start-page: 1182 year: 2017 end-page: 1185 article-title: Receptor‐like protein ELT1 promotes brassinosteroid signaling through interacting with and suppressing the endocytosis‐mediated degradation of receptor BRI1 publication-title: Cell Res – volume: 119 start-page: 651 year: 1999 end-page: 662 article-title: Ectopic expression of the maize homeobox gene liguleless3 alters cell fates in the leaf1 publication-title: Plant Physiol. – volume: 116 start-page: 21 year: 1992 end-page: 30 article-title: A dominant mutation in the maize homeobox gene, , causes its ectopic expression in leaf cells with altered fates publication-title: Development – volume: 26 start-page: 4376 year: 2014 end-page: 4393 article-title: Brassinosteroid regulates cell elongation by modulating gibberellin metabolism in rice publication-title: Plant Cell – volume: 41 start-page: 605 year: 2014 end-page: 608 article-title: The strigolactone‐related mutants have enhanced lamina joint inclination phenotype at the seedling stage publication-title: J. Genet. Genomics – volume: 175 start-page: 858 year: 2017 end-page: 873 article-title: The genetic basis of plant architecture in 10 maize recombinant inbred line populations publication-title: Plant Physiol – volume: 266 start-page: 108128 year: 2021 article-title: Quantitative trait loci for leaf inclination angle in rice detected using reciprocal mapping populations publication-title: Field. Crop. Res. – volume: 121 start-page: 75 year: 2018 end-page: 86 article-title: A new allele of the gene in maize can efficiently modify plant architecture publication-title: Heredity – volume: 53 start-page: 5872 year: 2005 end-page: 5881 article-title: In search of a maize ideotype for cell wall enzymatic degradability using histological and biochemical lignin characterization publication-title: J. Agric. Food Chem – year: 2021 – volume: 135 start-page: 300 year: 2004 end-page: 308 article-title: The dominant mutant disrupts patterning in a lateral domain of the maize leaf publication-title: Plant Physiol – volume: 12 start-page: 1591 year: 2000 end-page: 1606 article-title: Loss of function of a rice homolog prevents internode elongation and bending of the lamina joint publication-title: Plant Cell – volume: 10 start-page: 619 year: 2019 article-title: genes temporally and developmentally regulate the sheath to blade ratio of rice leaves publication-title: Nat. Commun – volume: 32 start-page: 1501 year: 2020 end-page: 1518 article-title: The maize ( ) mutation alters leaf patterning through increased cytokinin signaling publication-title: Plant Cell – volume: 78 start-page: 927 year: 2014 end-page: 936 article-title: The rice gene encodes a tryptophan aminotransferase, which affects pleiotropic auxin‐related processes publication-title: Plant J – volume: 18 start-page: 198 year: 1996 end-page: 222 article-title: Genetic analysis of mutations that alter cell fates in maize leaves, dominant mutations publication-title: Dev. Genet – volume: 365 start-page: 658 year: 2019 end-page: 664 article-title: Teosinte ligule allele narrows plant architecture and enhances high‐density maize yields publication-title: Science – volume: 63 start-page: 261 year: 2012 end-page: 274 article-title: Integrated multiple population analysis of leaf architecture traits in maize ( L.) publication-title: J. Exp. Bot – volume: 70 start-page: 297 year: 2009 end-page: 309 article-title: Characterization of osiaa1 gene, a member of rice Aux/IAA family involved in auxin and brassinosteroid hormone responses and plant morphogenesis publication-title: Plant Mol. Biol. – volume: 71 start-page: 2943 year: 2020 end-page: 2955 article-title: regulates plant architecture in maize publication-title: J. Exp. Bot – volume: 112 start-page: 1073 year: 2006 end-page: 1085 article-title: Candidate genes for barley mutants involved in plant architecture, an in silico approach publication-title: Theor. Appl. Genet. – volume: 183 start-page: 1184 year: 2020a end-page: 1199 article-title: Maize plant architecture is regulated by the ethylene biosynthetic gene publication-title: Plant Physiol – volume: 38 start-page: 638 year: 2015 end-page: 654 article-title: The auxin response factor, , controls rice leaf angles through positively regulating and publication-title: Plant Cell Environ – volume: 61 start-page: 406 year: 2019 end-page: 416 article-title: Rice miR394 suppresses leaf inclination through targeting an F‐box gene, publication-title: J. Integr. Plant Biol – volume: 169 start-page: 826 year: 2015 end-page: 839 article-title: RNA interference knockdown of in maize reveals novel functions for brassinosteroid signaling in controlling plant architecture publication-title: Plant Physiol – volume: 151 start-page: 669 year: 2009 end-page: 680 article-title: , encoding a helix‐loop‐helix protein, is a novel gene involved in brassinosteroid signaling and controls bending of the lamina joint in rice publication-title: Plant Physiol – volume: 65 start-page: 5063 year: 2014 end-page: 5076 article-title: The gene in the QTL controls leaf angle in maize ( L.) publication-title: J. Exp. Bot – volume: 173 start-page: 1554 year: 2017 end-page: 1564 article-title: High‐throughput phenotyping and QTL mapping reveals the genetic architecture of maize plant growth publication-title: Plant Physiol – volume: 140 start-page: 580 year: 2006 end-page: 590 article-title: The role of and its homologous genes, and , in rice publication-title: Plant Physiol – volume: 12 start-page: 208 year: 1998 end-page: 218 article-title: The maize gene encodes a basic leucine zipper protein involved in the establishment of the leaf blade‐sheath boundary publication-title: Genes Dev – volume: 33 start-page: 3120 year: 2021 end-page: 3133 article-title: AUXIN RESPONSE FACTORS 6 and 17 control the flag leaf angle in rice by regulating secondary cell wall biosynthesis of lamina joints publication-title: Plant Cell – volume: 7 year: 2012 article-title: gene in maize encodes a brassinosteroid C‐6 oxidase publication-title: PLoS ONE – volume: 17 start-page: 776 year: 2005 end-page: 790 article-title: A novel cytochrome P450 is implicated in brassinosteroid biosynthesis via the characterization of a rice dwarf mutant, , with reduced seed length publication-title: Plant Cell – volume: 17 start-page: 2243 year: 2005 end-page: 2254 article-title: The Rice mutant, defective in the rice homolog of Arabidopsis DIMINUTO/DWARF1, is rescued by the endogenously accumulated alternative bioactive brassinosteroid, dolichosterone publication-title: Plant Cell – volume: 140 start-page: 405 year: 2013 end-page: 412 article-title: The mutation affects proximal‐distal signaling and leaf growth publication-title: Development – volume: 130 start-page: 1152 year: 2002 end-page: 1161 article-title: Isolation and characterization of a rice dwarf mutant with a defect in brassinosteroid biosynthesis publication-title: Plant Physiol – volume: 36 start-page: 63 year: 2016 article-title: Genetic analysis of leaf morphology underlying the plant density response by QTL mapping in maize ( L.) publication-title: Mol Breed. – volume: 13 start-page: 586 year: 2020 end-page: 597 article-title: Strigolactones and brassinosteroids antagonistically regulate the stability of the D53‐OsBZR1 complex to determine expression in rice tillering publication-title: Mol. Plant – volume: 15 start-page: 2900 year: 2003 end-page: 2910 article-title: A rice brassinosteroid‐deficient mutant, ( ), is caused by a loss of function of a new member of cytochrome P450 publication-title: Plant Cell – volume: 141 start-page: 220 year: 1990 end-page: 232 article-title: The liguleless‐1 gene acts tissue specifically in maize leaf development publication-title: Dev. Biol – volume: 48 start-page: 390 year: 2006 end-page: 402 article-title: The rice gene functions as a negative regulator of gibberellin signaling by controlling the suppressive function of the DELLA protein, SLR1, and modulating brassinosteroid synthesis publication-title: Plant J. – volume: 10 start-page: 664 year: 2019 article-title: Natural variation and domestication selection of ZmPGP1 affects plant architecture and yield‐related traits in Maize publication-title: Genes – volume: 133 start-page: 203 year: 2014 end-page: 209 article-title: Quantitative trait loci mapping for flag leaf traits in rice using a chromosome segment substitution line population publication-title: Plant Breed – volume: 52 start-page: 1033 year: 2012 end-page: 1043 article-title: Morphological changes in parental lines of pioneer brand maize hybrids in the US central corn belt publication-title: Crop Sci. – volume: 35 start-page: 2423 year: 2016 end-page: 2433 article-title: Phytohormones signaling and crosstalk regulating leaf angle in rice publication-title: Plant Cell Rep – volume: 34 start-page: 220 year: 2015 end-page: 228 article-title: Brassinosteroid signaling regulates leaf erectness in via the control of a specific U‐type cyclin and cell proliferation publication-title: Dev. Cell – volume: 14 year: 2018 article-title: SPOC domain‐containing protein leaf inclination3 interacts with LIP1 to regulate rice leaf inclination through auxin signaling publication-title: PLoS Genet – volume: 168 start-page: 164 year: 2015 end-page: 174 article-title: The barley uniculme4 gene encodes a blade‐on‐petiole‐like protein that controls tillering and leaf patterning publication-title: Plant Physiol. – volume: 151 start-page: 1878 year: 2009 end-page: 1888 article-title: Distal expression of in maize leaves leads to reestablishment of proximal/distal patterning and leaf dissection publication-title: Plant Physiol – volume: 2 start-page: 105 year: 2006 end-page: 109 article-title: Erect leaves caused by brassinosteroid deficiency increase biomass production and grain yield in rice publication-title: Nat. Biotechnol. – volume: 7 start-page: 791 year: 2009 end-page: 806 article-title: Engineering gene as a molecular tool to improve rice architecture for high yield publication-title: Plant Biotechnol. J – volume: 139 start-page: 107 year: 2020 end-page: 118 article-title: Genetic mapping of quantitative trait locus for the leaf morphological traits in a recombinant inbred line population by ultra‐high–density maps across multi‐environments of maize ( L.) publication-title: Plant Breed – volume: 29 start-page: 292 year: 2017 end-page: 309 article-title: The RLA1/SMOS1 transcription factor functions with OsBZR1 to regulate brassinosteroid signaling and rice architecture publication-title: Plant Cell – volume: 29 start-page: 1622 year: 2017 end-page: 1641 article-title: Maize genes and regulate plant architecture publication-title: Plant Cell – volume: 11 start-page: 46 year: 2018 article-title: DS1/OsEMF1 interacts with OsARF11 to control rice architecture by regulation of brassinosteroid signaling publication-title: Rice – volume: 11 start-page: 29 year: 2009 end-page: 34 article-title: Antisense phenotypes reveal a functional expression of OsARF1, an auxin response factor, in transgenic rice publication-title: Curr. Issues Mol. Biol – volume: 125 start-page: 2857 year: 1998 end-page: 2865 article-title: The gene negatively regulates homeobox gene expression during maize leaf development publication-title: Development – volume: 215 start-page: 107 year: 2019 article-title: QTL analysis related to the flag‐leaf angle related with it gene in rice ( L.) publication-title: Euphytica – volume: 136 start-page: 33 year: 2017 end-page: 40 article-title: Detection of epistatic and environmental interaction QTLs for leaf orientation‐related traits in maize publication-title: Plant Breed. – year: 2020 – volume: 67 start-page: 1883 year: 2016 end-page: 1895 article-title: ( ) determines lamina joint bending by suppressing auxin signalling that interacts with C‐22‐hydroxylated and 6‐deoxo brassinosteroids in rice publication-title: J. Exp. Bot – volume: 4 start-page: 126 year: 2009 end-page: 128 article-title: Function of α subunit of heterotrimeric G protein in brassinosteroid response of rice plants publication-title: Plant Signal Behav. – volume: 170 start-page: 1149 year: 2016 end-page: 1161 article-title: OsBRI1 activates BR signaling by preventing binding between the TPR and kinase domains of OsBSK3 via phosphorylation publication-title: Plant Physiol – volume: 39 start-page: 7 year: 2019 article-title: High‐density quantitative trait locus mapping revealed genetic architecture of leaf angle and tassel size in maize publication-title: Mol. Breeding – volume: 18 start-page: 881 year: 2020b end-page: 883 article-title: ZmILI1 regulates leaf angle by directly affecting liguleless1 expression in maize publication-title: Plant Biotechnol. J. – ident: e_1_2_11_83_1 doi: 10.1007/s00122-006-0209-2 – ident: e_1_2_11_129_1 doi: 10.1038/cr.2010.109 – ident: e_1_2_11_6_1 doi: 10.1104/pp.16.00399 – ident: e_1_2_11_73_1 doi: 10.1105/tpc.111.093419 – ident: e_1_2_11_30_1 doi: 10.1046/j.1365-313X.2002.01438.x – ident: e_1_2_11_49_1 doi: 10.1111/j.1467-7652.2009.00444.x – ident: e_1_2_11_78_1 doi: 10.1111/jipb.12713 – ident: e_1_2_11_97_1 doi: 10.1007/s10681-021-02781-4 – ident: e_1_2_11_27_1 doi: 10.1104/pp.103.036707 – ident: e_1_2_11_105_1 doi: 10.1104/pp.121.4.1163 – ident: e_1_2_11_33_1 doi: 10.1093/plcell/koab175 – ident: e_1_2_11_56_1 doi: 10.1007/s11032-018-0914-y – ident: e_1_2_11_104_1 doi: 10.1038/s41467-019-08479-5 – ident: e_1_2_11_9_1 doi: 10.1101/gad.193433.112 – ident: e_1_2_11_115_1 doi: 10.1002/csc2.20321 – ident: e_1_2_11_109_1 doi: 10.1016/j.cj.2017.05.001 – ident: e_1_2_11_118_1 doi: 10.1007/s10681-015-1502-4 – ident: e_1_2_11_41_1 doi: 10.1007/s11032-016-0483-x – ident: e_1_2_11_70_1 doi: 10.1104/pp.119.2.651 – ident: e_1_2_11_61_1 doi: 10.1371/journal.pone.0030798 – ident: e_1_2_11_87_1 doi: 10.1111/pbr.12431 – ident: e_1_2_11_106_1 doi: 10.18356/b564c742-en – volume: 11 start-page: 29 year: 2009 ident: e_1_2_11_2_1 article-title: Antisense phenotypes reveal a functional expression of OsARF1, an auxin response factor, in transgenic rice publication-title: Curr. Issues Mol. Biol – ident: e_1_2_11_24_1 doi: 10.1002/(SICI)1520-6408(1996)18:3<198::AID-DVG2>3.0.CO;2-4 – ident: e_1_2_11_93_1 doi: 10.1016/j.devcel.2015.05.019 – ident: e_1_2_11_122_1 doi: 10.1371/journal.pgen.1002686 – ident: e_1_2_11_65_1 doi: 10.1242/dev.085787 – ident: e_1_2_11_44_1 doi: 10.2135/cropsci2011.05.0274 – ident: e_1_2_11_72_1 doi: 10.1104/pp.105.072330 – ident: e_1_2_11_15_1 doi: 10.1371/journal.pgen.1007323 – ident: e_1_2_11_55_1 doi: 10.1093/jxb/erw002 – ident: e_1_2_11_82_1 doi: 10.1111/pbi.13255 – ident: e_1_2_11_21_1 doi: 10.1105/tpc.106.047506 – ident: e_1_2_11_31_1 doi: 10.1007/s10681-015-1401-8 – ident: e_1_2_11_68_1 doi: 10.1104/pp.007179 – ident: e_1_2_11_100_1 doi: 10.1126/science.aax5482 – ident: e_1_2_11_119_1 doi: 10.1111/tpj.12517 – ident: e_1_2_11_26_1 doi: 10.1073/pnas.1108359108 – ident: e_1_2_11_77_1 doi: 10.1105/tpc.16.00611 – ident: e_1_2_11_89_1 doi: 10.1242/dev.116.1.21 – ident: e_1_2_11_36_1 doi: 10.3390/ijms22157792 – ident: e_1_2_11_5_1 doi: 10.1105/tpc.3.8.801 – ident: e_1_2_11_3_1 doi: 10.1073/pnas.0706386104 – ident: e_1_2_11_116_1 doi: 10.1105/tpc.12.9.1591 – ident: e_1_2_11_121_1 doi: 10.1104/pp.15.01668 – ident: e_1_2_11_7_1 doi: 10.1111/j.1469-8137.2012.04248.x – ident: e_1_2_11_38_1 doi: 10.1105/tpc.114.132688 – ident: e_1_2_11_50_1 doi: 10.1104/pp.19.01421 – ident: e_1_2_11_51_1 doi: 10.3390/genes10090664 – ident: e_1_2_11_80_1 doi: 10.1105/tpc.112.099978 – ident: e_1_2_11_101_1 doi: 10.1073/pnas.1116437108 – ident: e_1_2_11_103_1 doi: 10.1105/tpc.114.132092 – ident: e_1_2_11_107_1 doi: 10.1101/gad.12.2.208 – ident: e_1_2_11_111_1 doi: 10.1111/nph.16970 – ident: e_1_2_11_11_1 doi: 10.1093/mp/sst027 – ident: e_1_2_11_4_1 doi: 10.1016/0012-1606(90)90117-2 – ident: e_1_2_11_10_1 doi: 10.1093/jxb/eraa052 – ident: e_1_2_11_102_1 doi: 10.1105/tpc.112.097394 – volume-title: Food and Agriculture Organization of the United Nations Agriculture Databases year: 2021 ident: e_1_2_11_23_1 – ident: e_1_2_11_32_1 doi: 10.1016/S1672-6308(12)60052-3 – ident: e_1_2_11_76_1 doi: 10.2134/agronj1968.00021962006000040027x – ident: e_1_2_11_81_1 doi: 10.1111/jipb.12914 – ident: e_1_2_11_62_1 doi: 10.1021/jf050722f – ident: e_1_2_11_39_1 doi: 10.1104/pp.15.00367 – ident: e_1_2_11_92_1 doi: 10.1105/tpc.16.00477 – ident: e_1_2_11_69_1 doi: 10.1104/pp.106.077081 – ident: e_1_2_11_22_1 doi: 10.1016/j.molp.2019.12.005 – ident: e_1_2_11_96_1 doi: 10.1104/pp.109.140806 – ident: e_1_2_11_123_1 doi: 10.1093/jxb/eru271 – ident: e_1_2_11_17_1 doi: 10.1111/j.1365-313X.2006.02804.x – volume: 24 start-page: 109 year: 2004 ident: e_1_2_11_18_1 article-title: Long‐term selection in a commercial hybrid maize breeding program publication-title: Plant Breed. Rev. – ident: e_1_2_11_117_1 doi: 10.1038/cr.2017.69 – ident: e_1_2_11_90_1 doi: 10.1007/s11103-009-9474-1 – ident: e_1_2_11_13_1 doi: 10.1007/s10681-015-1351-1 – ident: e_1_2_11_42_1 doi: 10.1093/jxb/err277 – ident: e_1_2_11_112_1 doi: 10.1038/s41437-018-0056-3 – ident: e_1_2_11_131_1 doi: 10.1111/pbr.12559 – ident: e_1_2_11_34_1 doi: 10.1111/j.1365-313X.2009.04033.x – ident: e_1_2_11_128_1 doi: 10.1104/pp.16.01516 – ident: e_1_2_11_91_1 doi: 10.1016/j.pbi.2021.102038 – ident: e_1_2_11_125_1 doi: 10.1105/tpc.109.070441 – volume: 29 start-page: 1131 year: 2007 ident: e_1_2_11_58_1 article-title: Construction of a SSR linkage map and mapping of quantitative trait loci (QTL) for leaf angle and leaf orientation with an elite maize hybrid publication-title: Heredity – ident: e_1_2_11_95_1 doi: 10.1105/tpc.104.024950 – ident: e_1_2_11_53_1 doi: 10.3390/ijms21145052 – ident: e_1_2_11_88_1 doi: 10.1111/j.1365-313X.2006.02875.x – ident: e_1_2_11_74_1 doi: 10.4161/psb.4.2.7627 – ident: e_1_2_11_40_1 doi: 10.1016/j.molp.2017.02.001 – ident: e_1_2_11_126_1 doi: 10.1007/s12042-020-09270-3 – ident: e_1_2_11_52_1 doi: 10.1016/j.jgg.2014.09.004 – ident: e_1_2_11_45_1 doi: 10.1007/s11103-007-9196-1 – ident: e_1_2_11_98_1 doi: 10.1104/pp.114.252882 – volume: 58 start-page: 318 year: 2013 ident: e_1_2_11_113_1 article-title: Quantitative trait loci for leaf angle, leaf width, leaf length, and plant height in a maize (Zea mays L) B73 × Mo17 population publication-title: Maydica – ident: e_1_2_11_16_1 doi: 10.1093/jxb/ers300 – ident: e_1_2_11_85_1 doi: 10.1016/j.fcr.2021.108128 – ident: e_1_2_11_29_1 doi: 10.1105/tpc.105.030973 – ident: e_1_2_11_108_1 doi: 10.1038/s41588-020-0616-3 – ident: e_1_2_11_14_1 doi: 10.1371/journal.pone.0141619 – ident: e_1_2_11_84_1 doi: 10.1038/nbt1173 – ident: e_1_2_11_12_1 doi: 10.1371/journal.pgen.1007829 – ident: e_1_2_11_37_1 doi: 10.1105/tpc.109.069575 – ident: e_1_2_11_20_1 doi: 10.3835/plantgenome2018.05.0024 – ident: e_1_2_11_99_1 doi: 10.1038/ng.746 – ident: e_1_2_11_63_1 doi: 10.2135/cropsci2002.1902 – ident: e_1_2_11_86_1 doi: 10.1242/dev.125.15.2857 – ident: e_1_2_11_67_1 doi: 10.1104/pp.119.2.651 – ident: e_1_2_11_28_1 doi: 10.1105/tpc.014712 – ident: e_1_2_11_75_1 doi: 10.1104/pp.17.00709 – ident: e_1_2_11_35_1 doi: 10.1104/pp.16.01653 – ident: e_1_2_11_46_1 doi: 10.1242/dev.111955 – ident: e_1_2_11_94_1 doi: 10.1242/dev.110.3.985 – ident: e_1_2_11_8_1 doi: 10.1111/pbr.12146 – ident: e_1_2_11_57_1 doi: 10.1186/s12284-018-0239-9 – ident: e_1_2_11_48_1 doi: 10.1371/journal.pone.0121624 – ident: e_1_2_11_71_1 doi: 10.1105/tpc.19.00677 – ident: e_1_2_11_43_1 doi: 10.1007/s00122-010-1364-z – ident: e_1_2_11_124_1 doi: 10.1111/pbr.12749 – ident: e_1_2_11_130_1 doi: 10.1093/mp/sss064 – ident: e_1_2_11_64_1 doi: 10.1111/tpj.14332 – ident: e_1_2_11_120_1 doi: 10.1104/pp.19.00872 – ident: e_1_2_11_59_1 doi: 10.1007/s00299-016-2052-5 – ident: e_1_2_11_25_1 doi: 10.1007/s10681-019-2434-1 – ident: e_1_2_11_127_1 doi: 10.1111/pce.12397 – ident: e_1_2_11_19_1 doi: 10.1016/S0065-2113(05)86002-X – ident: e_1_2_11_66_1 doi: 10.1101/gad.11.5.616 – ident: e_1_2_11_114_1 doi: 10.1111/tpj.14692 – ident: e_1_2_11_47_1 doi: 10.1023/A:1003533001014 – ident: e_1_2_11_54_1 doi: 10.1038/nplants.2017.43 – ident: e_1_2_11_60_1 doi: 10.1016/j.eja.2014.04.001 – ident: e_1_2_11_79_1 doi: 10.1104/pp.109.145920 – ident: e_1_2_11_110_1 doi: 10.1111/j.1365-313X.2008.03707.x |
SSID | ssj0021656 |
Score | 2.5903444 |
SecondaryResourceType | review_article |
Snippet | Summary
High‐density planting is an effective measure for increasing crop yield per unit land area. Leaf angle (LA) is a key trait of plant architecture and a... High‐density planting is an effective measure for increasing crop yield per unit land area. Leaf angle (LA) is a key trait of plant architecture and a target... High-density planting is an effective measure for increasing crop yield per unit land area. Leaf angle (LA) is a key trait of plant architecture and a target... |
SourceID | pubmedcentral proquest pubmed crossref wiley |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 426 |
SubjectTerms | Agricultural production biotechnology canopy Cell division cereal crop Cereal crops Corn Crop yield Crops Crops, Agricultural - genetics dense planting Edible Grain - genetics Genetic improvement grain yield Leaf angle Leaves Molecular modelling Morphology Photosynthesis plant architecture Plant Breeding Plant Leaves - genetics Planting Planting density Review Rice stress tolerance Zea mays - genetics |
SummonAdditionalLinks | – databaseName: Wiley Online Library - Core collection (SURFmarket) dbid: DR2 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqnugBCi2wpSAX9dBLVkns-EFPBVGVChBCVOoBKfiVsmKVXe3jAKf-hP7G_hJmnIe6FBDiFsnjyLFn7G-cmW8I2XeGcWazPPGi0AlnyiXGsywB6Gw17Jo2NZjg_O69ODnjp-fF-Ro57HJhGn6I_sINLSPu12jgxs5vGPnUjoYZkwr9dYzVQkD0saeOypFVpskskomEQ79lFcIonr7n6ll0C2DejpO8iV_jAXR8j3zuht7EnXwbLhd26H78wur4n9-2Se62wJQeNZp0n6yF-gHZOLqYteQcYYt8eRtMRU19MQ4vqKFNEDmdVBSUEHMh6SjeUMQLRzqqqQuASMcUi4TNKUaqTmbBU0DJFEmSry-vPEbPL77T6djEghXb5Oz49adXJ0lboSFxXIo0qQwPJnMiR0eTCVd5pkORGh18pfIKfCnmgjdpUbCCSdhXg9KiEp5XIfWmcOwhWa8ndXhMqMpY4M6yQhrNNfcGmqUK1qjcolMzIAfdWpWupS_HKhrjsnNjYNLKOGkD8rwXnTacHb8T2u0WvGzNdl7mgjGR6lSzAdnrm8Hg8C-KqcNkiTKAWAEGq-xvMgKZ-AD8DcijRof6kTBA4ODkQW-5ol29ABJ-r7bUo6-R-FuBOyTxnQdRef78ceWHl2_iw86_iz4hd3JM7YjxdbtkfTFbhqcAuBb2WbSsn4DRKVQ priority: 102 providerName: Wiley-Blackwell |
Title | Leaf angle: a target of genetic improvement in cereal crops tailored for high‐density planting |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fpbi.13780 https://www.ncbi.nlm.nih.gov/pubmed/35075761 https://www.proquest.com/docview/2633609093 https://www.proquest.com/docview/2622656581 https://www.proquest.com/docview/2661004399 https://pubmed.ncbi.nlm.nih.gov/PMC8882799 |
Volume | 20 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Nb9QwELVoe4FDxTfblpVBHHoxJLFjO1yqFnUpCKpVRaXegmM7ZaVVst3dHrjxE_iN_JLOON7QqtBLFMmTKLGd8XuT8RtC3ljDBa_SjDmZF0xwbZlxPGUAnasCvGaVGNzg_PVYHp2Kz2f5WQy4LWJa5conBkftWosx8neZ5FwmBRDwvdkFw6pR-Hc1ltBYIxvggjWQr42Dw-PxSU-5UFum21-kmIKlP2oLYS7PrJq8TblCPcjrK9ItmHk7W_I6ig3L0Ogh2Yz4ke53A_6I3PPNY_Jg_3weNTT8E_L9izc1Nc351L-nhna53rStKcwV3LJIJyGQEOKCdNJQ6wE4TinW8lpQTCht595RALMUtYz__PrtMMl9-ZPOpibUlXhKTkeH3z4csVhIgVmhZMJqI7xJrcyQD3Jpa8cLnyem8K7WWQ2Uh1vvTJLnPOcK3J_XhaylE7VPnMktf0bWm7bxLwjVKffCVjxXphCFcAaalfaV0VmF3GNAdledWdqoMo7FLqblim1Av5eh3wfkdW8666Q1_mW0sxqRMn5di_LvXBiQV30zfBf4s8M0vr1EGwCWgFZ1epeNRME8wGgD8rwb5P5JOABl4GJwtbox_L0B6nLfbGkmP4I-twbWovCeu2Gi_P_lyvHBp3CydfdbbpP7Ge66CKlvO2R9Ob_0LwELLashWcvEGI569HEYJ_8wxBXweJJdAe8bDks |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwEB6VcgAOqPwvlGIQSL0EkthxkkqoKj_LLt1WHFqpt9SxnbLSKll2t0K98Qh9kj4UT8KM80OrQm-9RfLESsZj-xt75huA11pxwfMg9IyMUk_wRHvK8MBD6JynuGrmvqIE551dOdgXXw-igyU4a3NhKKyyXRPdQm0qTWfk70LJufRTdMA3pz88qhpFt6ttCY3aLLbtyU902ebvh59wfN-EYf_z3seB11QV8LSIpe8VSlgVaBmSc8SlLgxPbeSr1JoiCQvE_1xbo_wo4hGPcS2wSSoLaURhfaMizbHfG3BTcJ7SjEr6XzoHj5hs6mym2IsRaDRMRhQ5NM3HbwMeE_vk-f3vEqi9HJt5HjO7Ta-_AncbtMq2avO6B0u2vA93to5mDWOHfQCHI6sKpsqjid1gitWR5awqGFomJUiysTu2cKeQbFwybRGmThhVDpszCl-tZtYwhM6MmJN__zo1FFK_OGHTiXJVLB7C_rUo-BEsl1VpnwBLAm6FznkUq1SkwihsjhObqyTMydPpwXqrzEw3nOZUWmOStb4N6j1zeu_Bq050WhN5_EtotR2RrJnL8-yv5fXgZdeMs5CuVlRpq2OSQRiL2DgJrpKRRM-HiLAHj-tB7r6EIyxHzw_fji8MfydALOAXW8rxd8cGnqCPFFOf685Q_v9z2bcPQ_fw9Oq_fAG3Bns7o2w03N1-BrdDyvdwQXersLyYHdvniMIW-ZozfQaH1z3X_gBpGEZe |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwEB6VrYTggPhnoYBBIPUSmsSJnSAh1NKuurSsVohKvaWO7ZSVVsmyuxXqjUfgeXgcnoQZ54dWhd56i-RJlNhj5_vsmW8AXmnFI54HoWdEnHoRT7SnDA88hM55iqtm7itKcP40ErsH0cfD-HAFfrW5MBRW2a6JbqE2laY98o1QcC78FAn4RtGERYy3B-9n3zyqIEUnrW05jdpF9uzpd6Rvi3fDbRzr12E42PnyYddrKgx4OpLC9woVWRVoERJR4kIXhqc29lVqTZGEBXIBrq1RfhzzmEtcF2ySikKYqLC-UbHm-NxrsCqRFfk9WN3aGY0_d3SPdG3q3CbpSYQdja4RxRHN8smbgEvSojz7N7wAcS9Gap5F0O4XOLgNtxrsyjZrZ7sDK7a8Czc3j-eNfoe9B0f7VhVMlcdT-5YpVseZs6pg6KeULskmbhPD7UmyScm0RdA6ZVRHbMEomLWaW8MQSDPSUf7946ehAPvlKZtNlatpcR8OrqSLH0CvrEr7CFgScBvpnMdSpVEaGYXNMrG5SsKceE8f1tvOzHSjcE6FNqZZy3Sw3zPX73142ZnOalmPfxmttSOSNTN7kf31wz686JpxTtJBiyptdUI2CGoRKSfBZTaCxPoQH_bhYT3I3ZtwBOnIA_FueW74OwPSBD_fUk6-Om3wBBmTpGeuO0f5_8dl462hu3h8-Vc-h-s4z7L94WjvCdwIKfnDReCtQW85P7FPEZIt82eN7zM4uurp9gfkJkvw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Leaf+angle%3A+a+target+of+genetic+improvement+in+cereal+crops+tailored+for+high-density+planting&rft.jtitle=Plant+biotechnology+journal&rft.au=Cao%2C+Yingying&rft.au=Zhong%2C+Zhuojun&rft.au=Wang%2C+Haiyang&rft.au=Shen%2C+Rongxin&rft.date=2022-03-01&rft.eissn=1467-7652&rft.volume=20&rft.issue=3&rft.spage=426&rft_id=info:doi/10.1111%2Fpbi.13780&rft_id=info%3Apmid%2F35075761&rft.externalDocID=35075761 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1467-7644&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1467-7644&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1467-7644&client=summon |