Leaf angle: a target of genetic improvement in cereal crops tailored for high‐density planting

Summary High‐density planting is an effective measure for increasing crop yield per unit land area. Leaf angle (LA) is a key trait of plant architecture and a target for genetic improvement of crops. Upright leaves allow better light capture in canopy under high‐density planting, thus enhancing phot...

Full description

Saved in:
Bibliographic Details
Published inPlant biotechnology journal Vol. 20; no. 3; pp. 426 - 436
Main Authors Cao, Yingying, Zhong, Zhuojun, Wang, Haiyang, Shen, Rongxin
Format Journal Article
LanguageEnglish
Published England John Wiley & Sons, Inc 01.03.2022
John Wiley and Sons Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Summary High‐density planting is an effective measure for increasing crop yield per unit land area. Leaf angle (LA) is a key trait of plant architecture and a target for genetic improvement of crops. Upright leaves allow better light capture in canopy under high‐density planting, thus enhancing photosynthesis efficiency, ventilation and stress resistance, and ultimately higher grain yield. Here, we summarized the latest progress on the cellular and molecular mechanisms regulating LA formation in rice and maize. We suggest several standing out questions for future studies and then propose some promising strategies to manipulate LA for breeding of cereal crops tailored for high‐density planting.
AbstractList High‐density planting is an effective measure for increasing crop yield per unit land area. Leaf angle (LA) is a key trait of plant architecture and a target for genetic improvement of crops. Upright leaves allow better light capture in canopy under high‐density planting, thus enhancing photosynthesis efficiency, ventilation and stress resistance, and ultimately higher grain yield. Here, we summarized the latest progress on the cellular and molecular mechanisms regulating LA formation in rice and maize. We suggest several standing out questions for future studies and then propose some promising strategies to manipulate LA for breeding of cereal crops tailored for high‐density planting.
Summary High‐density planting is an effective measure for increasing crop yield per unit land area. Leaf angle (LA) is a key trait of plant architecture and a target for genetic improvement of crops. Upright leaves allow better light capture in canopy under high‐density planting, thus enhancing photosynthesis efficiency, ventilation and stress resistance, and ultimately higher grain yield. Here, we summarized the latest progress on the cellular and molecular mechanisms regulating LA formation in rice and maize. We suggest several standing out questions for future studies and then propose some promising strategies to manipulate LA for breeding of cereal crops tailored for high‐density planting.
High-density planting is an effective measure for increasing crop yield per unit land area. Leaf angle (LA) is a key trait of plant architecture and a target for genetic improvement of crops. Upright leaves allow better light capture in canopy under high-density planting, thus enhancing photosynthesis efficiency, ventilation and stress resistance, and ultimately higher grain yield. Here, we summarized the latest progress on the cellular and molecular mechanisms regulating LA formation in rice and maize. We suggest several standing out questions for future studies and then propose some promising strategies to manipulate LA for breeding of cereal crops tailored for high-density planting.High-density planting is an effective measure for increasing crop yield per unit land area. Leaf angle (LA) is a key trait of plant architecture and a target for genetic improvement of crops. Upright leaves allow better light capture in canopy under high-density planting, thus enhancing photosynthesis efficiency, ventilation and stress resistance, and ultimately higher grain yield. Here, we summarized the latest progress on the cellular and molecular mechanisms regulating LA formation in rice and maize. We suggest several standing out questions for future studies and then propose some promising strategies to manipulate LA for breeding of cereal crops tailored for high-density planting.
Author Shen, Rongxin
Zhong, Zhuojun
Wang, Haiyang
Cao, Yingying
AuthorAffiliation 1 12526 State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bioresources South China Agricultural University Guangzhou China
2 12526 Guangdong Laboratory for Lingnan Modern Agriculture Guangzhou China
AuthorAffiliation_xml – name: 2 12526 Guangdong Laboratory for Lingnan Modern Agriculture Guangzhou China
– name: 1 12526 State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bioresources South China Agricultural University Guangzhou China
Author_xml – sequence: 1
  givenname: Yingying
  surname: Cao
  fullname: Cao, Yingying
  organization: South China Agricultural University
– sequence: 2
  givenname: Zhuojun
  surname: Zhong
  fullname: Zhong, Zhuojun
  organization: South China Agricultural University
– sequence: 3
  givenname: Haiyang
  orcidid: 0000-0002-1302-5747
  surname: Wang
  fullname: Wang, Haiyang
  email: whyang@scau.edu.cn
  organization: Guangdong Laboratory for Lingnan Modern Agriculture
– sequence: 4
  givenname: Rongxin
  surname: Shen
  fullname: Shen, Rongxin
  email: shenrongxin@scau.edu.cn
  organization: South China Agricultural University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35075761$$D View this record in MEDLINE/PubMed
BookMark eNqNks9uFSEUxompsX904QsYEje6uC0MAzO4aKKNf5rcRBe6Rsoc5tIwMAK35u58BJ_RJ5F6bxttNJENJOf3fTnn8B2ivRADIPSYkmNaz8l84Y4p63pyDx3QVnSLTvBm7_bdtvvoMOdLQhoquHiA9hknHe8EPUCfl6At1mH08AJrXHQaoeBo8QgBijPYTXOKVzBBKNgFbCCB9tikOOdKOx8TDNjGhFduXP349n2AkF3Z4NnrUFwYH6L7VvsMj3b3Efr05vXHs3eL5fu352cvlwvTdoIsrG5BUyMa0jecCWMHJoETLWGwfWOlFMzAoAnnjLNOUgq9FFYMrQUyaG7YETrd-s7riwkGU_tN2qs5uUmnjYraqT8rwa3UGK9U3_dNJ2U1eLYzSPHLGnJRk8sGfJ0D4jqrRghKSMv-C22aumje04o-vYNexnUKdROVYkwQSSSr1JPfm7_t-uafKnCyBeric05glXFFFxevZ3FeUaKuk6BqEtSvJFTF8zuKG9O_sTv3r87D5t-g-vDqfKv4CcIYw7M
CitedBy_id crossref_primary_10_1007_s00122_024_04614_z
crossref_primary_10_1186_s12864_025_11205_9
crossref_primary_10_2139_ssrn_4150572
crossref_primary_10_3389_fpls_2023_1190004
crossref_primary_10_1016_j_scienta_2023_112406
crossref_primary_10_1021_acs_jafc_4c02650
crossref_primary_10_1093_hr_uhad280
crossref_primary_10_3390_agronomy14071562
crossref_primary_10_3390_ijms25063180
crossref_primary_10_1111_jipb_13570
crossref_primary_10_3389_fpls_2024_1496351
crossref_primary_10_3390_plants12020303
crossref_primary_10_1016_j_molp_2024_06_014
crossref_primary_10_1111_pbr_13166
crossref_primary_10_3390_agronomy14091978
crossref_primary_10_1016_j_fcr_2024_109284
crossref_primary_10_1016_j_cj_2024_12_012
crossref_primary_10_1111_ppl_14321
crossref_primary_10_3390_plants12030680
crossref_primary_10_1016_j_jgg_2025_01_014
crossref_primary_10_1093_plphys_kiad635
crossref_primary_10_1111_pbi_13878
crossref_primary_10_1016_j_cj_2024_09_004
crossref_primary_10_3390_biology12081143
crossref_primary_10_3390_plants11223118
crossref_primary_10_3390_plants13131799
crossref_primary_10_1111_jipb_13603
crossref_primary_10_3389_fpls_2025_1488576
crossref_primary_10_1007_s10725_023_01087_w
crossref_primary_10_1111_nph_19192
crossref_primary_10_1016_j_plantsci_2023_111625
crossref_primary_10_1111_ppl_14215
crossref_primary_10_1007_s00425_023_04126_y
crossref_primary_10_3389_fpls_2022_1049803
crossref_primary_10_1007_s00122_022_04086_z
crossref_primary_10_1016_j_fcr_2024_109493
crossref_primary_10_1111_tpj_70044
crossref_primary_10_1038_s41586_024_07669_6
crossref_primary_10_1093_pcp_pcad078
crossref_primary_10_1016_j_hpj_2025_01_001
crossref_primary_10_1093_plcell_koaf029
crossref_primary_10_1016_j_cj_2024_06_001
crossref_primary_10_1016_j_fcr_2022_108806
crossref_primary_10_1016_j_plantsci_2022_111459
crossref_primary_10_1093_jxb_eraf062
crossref_primary_10_3389_fgene_2022_1004211
crossref_primary_10_3390_ijms24010189
crossref_primary_10_1016_j_molp_2022_08_005
crossref_primary_10_3389_fpls_2022_973643
crossref_primary_10_1111_nph_19903
crossref_primary_10_1093_plphys_kiae147
crossref_primary_10_1111_pbi_14382
crossref_primary_10_3390_ijms25179325
crossref_primary_10_1007_s00122_024_04629_6
crossref_primary_10_1016_j_molp_2024_07_004
crossref_primary_10_1371_journal_pone_0276602
crossref_primary_10_3390_cells11213471
crossref_primary_10_1007_s00122_024_04657_2
crossref_primary_10_1093_genetics_iyae162
crossref_primary_10_1016_j_cpb_2025_100465
crossref_primary_10_1016_j_molp_2024_05_001
crossref_primary_10_1016_j_xplc_2024_101236
crossref_primary_10_1016_j_jafr_2025_101813
crossref_primary_10_3390_genes13122216
crossref_primary_10_1016_j_tplants_2023_04_005
crossref_primary_10_1186_s12870_024_05389_7
crossref_primary_10_3390_agronomy15010168
Cites_doi 10.1007/s00122-006-0209-2
10.1038/cr.2010.109
10.1104/pp.16.00399
10.1105/tpc.111.093419
10.1046/j.1365-313X.2002.01438.x
10.1111/j.1467-7652.2009.00444.x
10.1111/jipb.12713
10.1007/s10681-021-02781-4
10.1104/pp.103.036707
10.1104/pp.121.4.1163
10.1093/plcell/koab175
10.1007/s11032-018-0914-y
10.1038/s41467-019-08479-5
10.1101/gad.193433.112
10.1002/csc2.20321
10.1016/j.cj.2017.05.001
10.1007/s10681-015-1502-4
10.1007/s11032-016-0483-x
10.1104/pp.119.2.651
10.1371/journal.pone.0030798
10.1111/pbr.12431
10.18356/b564c742-en
10.1002/(SICI)1520-6408(1996)18:3<198::AID-DVG2>3.0.CO;2-4
10.1016/j.devcel.2015.05.019
10.1371/journal.pgen.1002686
10.1242/dev.085787
10.2135/cropsci2011.05.0274
10.1104/pp.105.072330
10.1371/journal.pgen.1007323
10.1093/jxb/erw002
10.1111/pbi.13255
10.1105/tpc.106.047506
10.1007/s10681-015-1401-8
10.1104/pp.007179
10.1126/science.aax5482
10.1111/tpj.12517
10.1073/pnas.1108359108
10.1105/tpc.16.00611
10.1242/dev.116.1.21
10.3390/ijms22157792
10.1105/tpc.3.8.801
10.1073/pnas.0706386104
10.1105/tpc.12.9.1591
10.1104/pp.15.01668
10.1111/j.1469-8137.2012.04248.x
10.1105/tpc.114.132688
10.1104/pp.19.01421
10.3390/genes10090664
10.1105/tpc.112.099978
10.1073/pnas.1116437108
10.1105/tpc.114.132092
10.1101/gad.12.2.208
10.1111/nph.16970
10.1093/mp/sst027
10.1016/0012-1606(90)90117-2
10.1093/jxb/eraa052
10.1105/tpc.112.097394
10.1016/S1672-6308(12)60052-3
10.2134/agronj1968.00021962006000040027x
10.1111/jipb.12914
10.1021/jf050722f
10.1104/pp.15.00367
10.1105/tpc.16.00477
10.1104/pp.106.077081
10.1016/j.molp.2019.12.005
10.1104/pp.109.140806
10.1093/jxb/eru271
10.1111/j.1365-313X.2006.02804.x
10.1038/cr.2017.69
10.1007/s11103-009-9474-1
10.1007/s10681-015-1351-1
10.1093/jxb/err277
10.1038/s41437-018-0056-3
10.1111/pbr.12559
10.1111/j.1365-313X.2009.04033.x
10.1104/pp.16.01516
10.1016/j.pbi.2021.102038
10.1105/tpc.109.070441
10.1105/tpc.104.024950
10.3390/ijms21145052
10.1111/j.1365-313X.2006.02875.x
10.4161/psb.4.2.7627
10.1016/j.molp.2017.02.001
10.1007/s12042-020-09270-3
10.1016/j.jgg.2014.09.004
10.1007/s11103-007-9196-1
10.1104/pp.114.252882
10.1093/jxb/ers300
10.1016/j.fcr.2021.108128
10.1105/tpc.105.030973
10.1038/s41588-020-0616-3
10.1371/journal.pone.0141619
10.1038/nbt1173
10.1371/journal.pgen.1007829
10.1105/tpc.109.069575
10.3835/plantgenome2018.05.0024
10.1038/ng.746
10.2135/cropsci2002.1902
10.1242/dev.125.15.2857
10.1105/tpc.014712
10.1104/pp.17.00709
10.1104/pp.16.01653
10.1242/dev.111955
10.1242/dev.110.3.985
10.1111/pbr.12146
10.1186/s12284-018-0239-9
10.1371/journal.pone.0121624
10.1105/tpc.19.00677
10.1007/s00122-010-1364-z
10.1111/pbr.12749
10.1093/mp/sss064
10.1111/tpj.14332
10.1104/pp.19.00872
10.1007/s00299-016-2052-5
10.1007/s10681-019-2434-1
10.1111/pce.12397
10.1016/S0065-2113(05)86002-X
10.1101/gad.11.5.616
10.1111/tpj.14692
10.1023/A:1003533001014
10.1038/nplants.2017.43
10.1016/j.eja.2014.04.001
10.1104/pp.109.145920
10.1111/j.1365-313X.2008.03707.x
ContentType Journal Article
Copyright 2022 The Authors. published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.
2022 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.
2022. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022 The Authors. published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.
– notice: 2022 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.
– notice: 2022. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
8FD
8FE
8FG
8FH
ABJCF
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
GNUQQ
HCIFZ
L6V
LK8
M7P
M7S
P64
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
7X8
7S9
L.6
5PM
DOI 10.1111/pbi.13780
DatabaseName Wiley Online Library Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
ProQuest Technology Collection
Natural Science Collection
ProQuest One
ProQuest Central
Engineering Research Database
ProQuest Central Student
ProQuest SciTech Premium Collection
ProQuest Engineering Collection
Biological Sciences
Biological Science Database
Engineering Database
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering collection
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Engineering Collection
Biotechnology Research Abstracts
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
Engineering Collection
Engineering Database
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
Biological Science Database
ProQuest SciTech Collection
Biotechnology and BioEngineering Abstracts
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList CrossRef
MEDLINE
Publicly Available Content Database
AGRICOLA


MEDLINE - Academic
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
DocumentTitleAlternate Manipulating leaf angle for high density planting in crops
EISSN 1467-7652
EndPage 436
ExternalDocumentID PMC8882799
35075761
10_1111_pbi_13780
PBI13780
Genre reviewArticle
Research Support, Non-U.S. Gov't
Journal Article
Review
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 31771739; 31921004
– fundername: Natural Science Foundation of Guangdong Province‐Guangzhou City Collaborative Key Project
  funderid: 2019B1515120061
– fundername: ;
  grantid: 31771739; 31921004
– fundername: Natural Science Foundation of Guangdong Province‐Guangzhou City Collaborative Key Project
  grantid: 2019B1515120061
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
123
1OC
24P
29O
31~
33P
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52W
52X
53G
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8FE
8FG
8FH
8UM
930
A03
A8Z
AAEVG
AAHBH
AAHHS
AANHP
AAONW
AAZKR
ABCQN
ABDBF
ABEML
ABIJN
ABJCF
ABPVW
ACBWZ
ACCFJ
ACCMX
ACIWK
ACPRK
ACRPL
ACSCC
ACUHS
ACXQS
ACYXJ
ADBBV
ADIZJ
ADKYN
ADNMO
ADZMN
AEEZP
AEIMD
AENEX
AEQDE
AEUQT
AEUYN
AFBPY
AFEBI
AFKRA
AFRAH
AFZJQ
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
ASPBG
ATUGU
AVUZU
AVWKF
AZBYB
AZFZN
BAFTC
BBNVY
BCNDV
BDRZF
BENPR
BFHJK
BGLVJ
BHPHI
BNHUX
BROTX
BRXPI
BY8
CAG
CCPQU
COF
CS3
D-E
D-F
DPXWK
DR2
DU5
EAD
EAP
EBD
EBS
ECGQY
EDH
EJD
EMK
EMOBN
EST
ESX
F00
F01
F04
F5P
FEDTE
G-S
G.N
GODZA
GROUPED_DOAJ
H.T
H.X
HCIFZ
HF~
HOLLA
HVGLF
HZ~
IAO
IEP
IGS
IHE
ITC
IX1
J0M
KQ8
L6V
LC2
LC3
LH4
LK8
LP6
LP7
LW6
M7P
M7S
MK4
ML0
N04
N05
N9A
NF~
O66
O9-
OIG
OK1
P2P
P2X
P4D
PIMPY
PROAC
PTHSS
Q.N
Q11
QB0
QM4
QO4
R.K
ROL
RPM
RX1
SUPJJ
SV3
TUS
UB1
W8V
W99
WIH
WIN
WQJ
WRC
XG1
~IA
~KM
~WT
AAYXX
AGQPQ
CITATION
PHGZM
PHGZT
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
CGR
CUY
CVF
ECM
EIF
NPM
PQGLB
7QO
8FD
ABUWG
AZQEC
DWQXO
FR3
GNUQQ
P64
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7X8
7S9
L.6
5PM
ID FETCH-LOGICAL-c4760-fa4ea1c62082536cfd39e50a9edf82f9963ceda0553537911e896f6d4fe0da5c3
IEDL.DBID BENPR
ISSN 1467-7644
1467-7652
IngestDate Thu Aug 21 17:26:14 EDT 2025
Fri Jul 11 18:25:22 EDT 2025
Fri Jul 11 12:00:58 EDT 2025
Wed Aug 13 08:44:53 EDT 2025
Mon Jul 21 05:59:55 EDT 2025
Tue Jul 01 02:34:48 EDT 2025
Thu Apr 24 23:05:29 EDT 2025
Wed Jan 22 16:26:54 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords cereal crop
dense planting
grain yield
plant architecture
leaf angle
Language English
License Attribution-NonCommercial-NoDerivs
2022 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.
This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc-nd/4.0/ License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4760-fa4ea1c62082536cfd39e50a9edf82f9963ceda0553537911e896f6d4fe0da5c3
Notes Yingying Cao and Zhuojun Zhong contributed equally to this work.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0002-1302-5747
OpenAccessLink https://www.proquest.com/docview/2633609093?pq-origsite=%requestingapplication%
PMID 35075761
PQID 2633609093
PQPubID 1096352
PageCount 436
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8882799
proquest_miscellaneous_2661004399
proquest_miscellaneous_2622656581
proquest_journals_2633609093
pubmed_primary_35075761
crossref_citationtrail_10_1111_pbi_13780
crossref_primary_10_1111_pbi_13780
wiley_primary_10_1111_pbi_13780_PBI13780
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate March 2022
PublicationDateYYYYMMDD 2022-03-01
PublicationDate_xml – month: 03
  year: 2022
  text: March 2022
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Southampton
– name: Hoboken
PublicationTitle Plant biotechnology journal
PublicationTitleAlternate Plant Biotechnol J
PublicationYear 2022
Publisher John Wiley & Sons, Inc
John Wiley and Sons Inc
Publisher_xml – name: John Wiley & Sons, Inc
– name: John Wiley and Sons Inc
References 2007; 104
2019; 99
2019; 10
2019; 12
2004; 24
2014; 26
2012; 19
2020; 13
2014; 133
2013; 6
1968; 60
2016; 36
2016; 35
2009; 11
2010; 22
2010; 20
2013; 58
2000; 12
1992; 116
2012; 26
2007; 65
2012; 24
1998; 12
2007; 19
1996; 18
2021; 266
2002; 130
2019; 39
2005; 86
2020; 32
2014; 41
2017; 136
2006; 112
1999; 109
2012; 196
2019; 181
2009; 70
2006; 47
2006; 48
2019; 215
2016; 171
2021; 61
2018; 11
2016; 170
2005; 17
2014; 141
2021; 63
1990; 110
2018; 14
1999; 119
2017; 5
2015; 34
2018; 121
2015; 38
2017; 3
2021; 22
1999; 121
2003; 15
2009; 151
1990; 141
2019; 365
2010; 61
2012; 52
2014; 65
2007; 29
2009; 57
2004; 135
2021; 33
2019; 61
1997; 11
2002; 42
2018; 137
2014; 58
2020; 139
2011; 23
1998; 125
2012; 63
1991; 3
2009; 21
2015; 204
2015; 168
2015; 169
2017; 27
2002; 32
2020a; 62
2021; 229
2015; 10
2010; 121
2017; 173
2013; 140
2017; 29
2017; 175
2020; 102
2015; 206
2015; 205
2006; 2
2020b; 21
2021; 14
2020b; 18
2011; 108
2020a; 183
2021
2020
2020; 71
2017; 10
2021; 217
2020a; 52
2006; 141
2006; 140
2005; 53
2011; 43
2009; 7
2009; 4
2012; 7
2014; 78
2016; 67
2012; 8
e_1_2_11_70_1
e_1_2_11_93_1
e_1_2_11_32_1
e_1_2_11_55_1
e_1_2_11_78_1
e_1_2_11_36_1
e_1_2_11_51_1
e_1_2_11_74_1
e_1_2_11_97_1
e_1_2_11_13_1
e_1_2_11_118_1
e_1_2_11_29_1
e_1_2_11_125_1
e_1_2_11_4_1
e_1_2_11_106_1
e_1_2_11_48_1
e_1_2_11_121_1
e_1_2_11_102_1
e_1_2_11_81_1
e_1_2_11_20_1
e_1_2_11_66_1
e_1_2_11_47_1
e_1_2_11_89_1
e_1_2_11_24_1
e_1_2_11_62_1
e_1_2_11_129_1
e_1_2_11_8_1
e_1_2_11_43_1
e_1_2_11_85_1
e_1_2_11_17_1
e_1_2_11_117_1
e_1_2_11_59_1
e_1_2_11_50_1
e_1_2_11_92_1
e_1_2_11_31_1
e_1_2_11_77_1
Attia K.A. (e_1_2_11_2_1) 2009; 11
e_1_2_11_119_1
e_1_2_11_35_1
e_1_2_11_73_1
e_1_2_11_12_1
e_1_2_11_54_1
e_1_2_11_96_1
e_1_2_11_103_1
e_1_2_11_126_1
e_1_2_11_28_1
e_1_2_11_5_1
Lu M. (e_1_2_11_58_1) 2007; 29
e_1_2_11_122_1
e_1_2_11_61_1
e_1_2_11_80_1
e_1_2_11_46_1
e_1_2_11_69_1
e_1_2_11_88_1
e_1_2_11_107_1
e_1_2_11_9_1
e_1_2_11_42_1
e_1_2_11_65_1
e_1_2_11_84_1
e_1_2_11_114_1
e_1_2_11_16_1
e_1_2_11_110_1
e_1_2_11_39_1
(e_1_2_11_23_1) 2021
e_1_2_11_72_1
e_1_2_11_91_1
e_1_2_11_30_1
e_1_2_11_57_1
e_1_2_11_99_1
e_1_2_11_34_1
e_1_2_11_53_1
e_1_2_11_76_1
e_1_2_11_95_1
e_1_2_11_11_1
e_1_2_11_6_1
e_1_2_11_104_1
e_1_2_11_27_1
e_1_2_11_127_1
Duvick D.N. (e_1_2_11_18_1) 2004; 24
e_1_2_11_100_1
e_1_2_11_123_1
e_1_2_11_83_1
e_1_2_11_60_1
e_1_2_11_45_1
e_1_2_11_68_1
e_1_2_11_41_1
e_1_2_11_87_1
e_1_2_11_108_1
e_1_2_11_22_1
e_1_2_11_64_1
e_1_2_11_115_1
e_1_2_11_15_1
e_1_2_11_111_1
e_1_2_11_38_1
e_1_2_11_19_1
e_1_2_11_130_1
e_1_2_11_94_1
e_1_2_11_71_1
e_1_2_11_90_1
e_1_2_11_10_1
e_1_2_11_56_1
e_1_2_11_79_1
e_1_2_11_14_1
e_1_2_11_52_1
e_1_2_11_98_1
e_1_2_11_33_1
e_1_2_11_75_1
e_1_2_11_7_1
e_1_2_11_105_1
e_1_2_11_128_1
e_1_2_11_26_1
e_1_2_11_3_1
e_1_2_11_49_1
e_1_2_11_101_1
e_1_2_11_124_1
e_1_2_11_120_1
e_1_2_11_82_1
e_1_2_11_21_1
e_1_2_11_44_1
e_1_2_11_67_1
e_1_2_11_25_1
e_1_2_11_40_1
e_1_2_11_63_1
e_1_2_11_86_1
e_1_2_11_109_1
Wassom J.J. (e_1_2_11_113_1) 2013; 58
e_1_2_11_116_1
e_1_2_11_37_1
e_1_2_11_112_1
e_1_2_11_131_1
References_xml – volume: 58
  start-page: 1
  year: 2014
  end-page: 10
  article-title: Changes in the morphological traits of maize genotypes in China between the 1950s and 2000s
  publication-title: Eur. J. Agron.
– volume: 61
  start-page: 1280
  year: 2021
  end-page: 1288
  article-title: PLASTOCHRON1 regulates leaf inclination through Brassinolide pathway in
  publication-title: Crop Sci.
– volume: 104
  start-page: 13839
  year: 2007
  end-page: 13844
  article-title: Functions of OsBZR1 and 14‐3‐3 proteins in brassinosteroid signaling in rice
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 121
  start-page: 1163
  year: 1999
  end-page: 1168
  article-title: Disruption of auxin transport is associated with aberrant leaf development in maize
  publication-title: Plant Physiol
– volume: 23
  start-page: 4334
  year: 2011
  end-page: 4347
  article-title: Increased leaf angle1, a Raf‐like MAPKKK that interacts with a nuclear protein family, regulates mechanical tissue formation in the Lamina joint of rice
  publication-title: Plant Cell
– volume: 181
  start-page: 4
  year: 2019
  end-page: 5
  article-title: , a conserved gene regulating leaf angle and a target for yield improvement in wheat
  publication-title: Plant Physiol
– volume: 6
  start-page: 174
  year: 2013
  end-page: 187
  article-title: Studies on the rice LEAF INCLINATION1 (LC1), an IAA–amido synthetase, reveal the effects of auxin in leaf inclination control
  publication-title: Mol. Plant
– volume: 99
  start-page: 426
  year: 2019
  end-page: 438
  article-title: OsBZR1 turnover mediated by OsSK22‐regulated U‐box E3 ligase OsPUB24 in rice BR response
  publication-title: Plant J.
– volume: 65
  start-page: 487
  year: 2007
  end-page: 499
  article-title: Mutations in the rice gene result in a complete loss of the auricle, ligule, and laminar joint
  publication-title: Plant Mol. Biol
– volume: 63
  start-page: 6467
  year: 2012
  end-page: 6480
  article-title: A GH3 family member, OsGH3‐2, modulates auxin and abscisic acid levels and differentially affects drought and cold tolerance in rice
  publication-title: J. Exp. Bot
– volume: 102
  start-page: 1187
  year: 2020
  end-page: 1201
  article-title: GSK2 stabilizes OFP3 to suppress brassinosteroid responses in rice
  publication-title: Plant J
– volume: 121
  start-page: 951
  year: 2010
  end-page: 959
  article-title: Quantitative trait loci mapping of leaf angle and leaf orientation value in maize ( L.)
  publication-title: Theor. Appl. Genet
– volume: 20
  start-page: 935
  year: 2010
  end-page: 947
  article-title: Rice leaf inclination2, a VIN3‐like protein, regulates leaf angle through modulating cell division of the collar
  publication-title: Cell Res
– volume: 6
  start-page: 988
  year: 2013
  end-page: 991
  article-title: OsGRAS19 may be a novel component involved in the brassinosteroid signaling pathway in rice
  publication-title: Mol. Plant
– volume: 32
  start-page: 495
  year: 2002
  end-page: 508
  article-title: Loss‐of‐function of a rice brassinosteroid biosynthetic enzyme, C‐6 oxidase, prevents the organized arrangement and polar elongation of cells in the leaves and stem
  publication-title: Plant J
– volume: 29
  start-page: 1131
  year: 2007
  end-page: 1138
  article-title: Construction of a SSR linkage map and mapping of quantitative trait loci (QTL) for leaf angle and leaf orientation with an elite maize hybrid
  publication-title: Heredity
– volume: 58
  start-page: 318
  year: 2013
  end-page: 321
  article-title: Quantitative trait loci for leaf angle, leaf width, leaf length, and plant height in a maize ( L) B73 × Mo17 population
  publication-title: Maydica
– volume: 10
  start-page: 516
  year: 2017
  end-page: 519
  article-title: Regulation of leaf angle by auricle development in maize
  publication-title: Mol. Plant
– volume: 24
  start-page: 2917
  year: 2012
  end-page: 2933
  article-title: Arabidopsis acts with to coordinate and expression in shoot and root meristems
  publication-title: Plant Cell
– volume: 19
  start-page: 277
  year: 2012
  end-page: 285
  article-title: Genetic analysis and QTL mapping of large flag leaf angle trait in japonica rice
  publication-title: Rice Sci.
– volume: 63
  start-page: 102038
  year: 2021
  article-title: The dynamics of maize leaf development, patterned to grow while growing a pattern
  publication-title: Curr. Opin. Plant Biol
– volume: 12
  start-page: 180024
  year: 2019
  article-title: Dissection of leaf angle variation in maize through genetic mapping and meta‐analysis
  publication-title: Plant Genome
– volume: 43
  start-page: 159
  year: 2011
  end-page: 162
  article-title: Genome‐wide association study of leaf architecture in the maize nested association mapping population
  publication-title: Nat. Genet
– volume: 206
  start-page: 203
  year: 2015
  end-page: 223
  article-title: Integrative detection and verification of QTL for plant traits in two connected RIL populations of high‐oil maize
  publication-title: Euphytica
– volume: 204
  start-page: 395
  year: 2015
  end-page: 405
  article-title: Identification of QTL for leaf angle and leaf space above ear position across different environments and generations in maize ( L.)
  publication-title: Euphytica
– volume: 22
  start-page: 1777
  year: 2010
  end-page: 1791
  article-title: maintains brassinosteroid homeostasis via the coordinated activation of and biosynthetic genes in rice
  publication-title: Plant Cell
– volume: 42
  start-page: 1902
  year: 2002
  end-page: 1909
  article-title: Quantitative trait loci controlling leaf and tassel traits in a B73 × Mo17 population of maize
  publication-title: Crop Sci.
– volume: 141
  start-page: 4590
  year: 2014
  end-page: 4597
  article-title: Gene regulatory interactions at lateral organ boundaries in maize
  publication-title: Development
– volume: 205
  start-page: 421
  year: 2015
  end-page: 440
  article-title: Genetic analysis for canopy architecture in an F2, 3 population derived from two‐type foundation parents across multi‐environments
  publication-title: Euphytica
– volume: 171
  start-page: 2633
  year: 2016
  end-page: 2647
  article-title: encodes a maize ortholog of the arabidopsis brassinosteroid biosynthesis gene , identifying developmental interactions between brassinosteroids and gibberellins
  publication-title: Plant Physiol
– volume: 21
  start-page: 3767
  year: 2009
  end-page: 3780
  article-title: Antagonistic HLH/bHLH transcription factors mediate brassinosteroid regulation of cell elongation and plant development in rice and arabidopsis
  publication-title: Plant Cell
– volume: 10
  year: 2015
  article-title: Genomic dissection of leaf angle in maize ( L.) using a four‐way cross mapping population
  publication-title: PLoS ONE
– volume: 60
  start-page: 422
  year: 1968
  end-page: 424
  article-title: Field investigations of the relationships of leaf angle in corn ( L.) to grain yield and apparent photosynthesis
  publication-title: Agron. J.
– volume: 26
  start-page: 1685
  year: 2012
  end-page: 1690
  article-title: Unraveling the KNOTTED1 regulatory network in maize meristems
  publication-title: Genes Dev
– volume: 109
  start-page: 79
  year: 1999
  end-page: 84
  article-title: RFLP facilitated analysis of tiller and leaf angles in rice ( L.)
  publication-title: Euphytica
– volume: 229
  start-page: 1832
  year: 2021
  end-page: 1839
  article-title: determine lamina joint positioning and differentiation by inhibiting auxin signaling
  publication-title: New Phytol
– volume: 62
  start-page: 793
  year: 2020a
  end-page: 811
  article-title: mediator subunit OsMED25 interacts with OsBZR1 to regulate brassinosteroid signaling and plant architecture in rice
  publication-title: J. Integr. Plant Biol.
– volume: 137
  start-page: 60
  year: 2018
  end-page: 72
  article-title: QTL mapping for six ear leaf architecture traits under water‐stressed and well‐watered conditions in maize ( L.)
  publication-title: Plant Breed.
– volume: 8
  year: 2012
  article-title: Dynamics of brassinosteroid response modulated by negative regulator in rice
  publication-title: PLoS Genet
– volume: 26
  start-page: 4718
  year: 2014
  end-page: 4732
  article-title: Transcriptomic analyses indicate that maize ligule development recapitulates gene expression patterns that occur during lateral organ initiation
  publication-title: Plant Cell
– volume: 52
  start-page: 565
  year: 2020a
  end-page: 571
  article-title: Genome‐wide selection and genetic improvement during modern maize breeding
  publication-title: Nat. Genet
– volume: 108
  start-page: 20260
  year: 2011
  end-page: 20264
  article-title: Global food demand and the sustainable intensification of agriculture
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 47
  start-page: 519
  year: 2006
  end-page: 531
  article-title: A brassinolide‐suppressed rice MADS‐box transcription factor, OsMDP1, has a negative regulatory role in BR signaling
  publication-title: Plant J
– volume: 24
  start-page: 2562
  year: 2012
  end-page: 2577
  article-title: DWARF AND LOW‐TILLERING acts as a direct downstream target of a GSK3/SHAGGY‐like kinase to mediate brassinosteroid responses in rice
  publication-title: Plant Cell
– volume: 3
  start-page: 17043
  year: 2017
  article-title: acts in the brassinosteroid signalling pathway to regulate grain width and weight in rice
  publication-title: Nat. Plants
– volume: 61
  start-page: 70
  year: 2010
  end-page: 82
  article-title: Genetic networks regulated by ( ) and in leaf development in , genes control five morphological events
  publication-title: Plant J
– volume: 21
  start-page: 5052
  year: 2020b
  article-title: Synergistic interaction of phytohormones in determining leaf angle in crops
  publication-title: Int. J. Mol. Sci
– volume: 24
  start-page: 109
  year: 2004
  end-page: 151
  article-title: Long‐term selection in a commercial hybrid maize breeding program
  publication-title: Plant Breed. Rev.
– volume: 57
  start-page: 498
  year: 2009
  end-page: 510
  article-title: OsGSR1 is involved in crosstalk between gibberellins and brassinosteroids in rice
  publication-title: Plant J
– volume: 3
  start-page: 801
  year: 1991
  end-page: 807
  article-title: Sectors of liguleless‐1 tissue interrupt an inductive signal during maize leaf development
  publication-title: Plant Cell
– volume: 108
  start-page: 19814
  year: 2011
  end-page: 19819
  article-title: Brassinosteroid control of sex determination in maize
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 173
  start-page: 688
  year: 2017
  end-page: 702
  article-title: Rice leaf angle and grain size are affected by the OsBUL1 transcriptional activator complex
  publication-title: Plant Physiol
– volume: 119
  start-page: 651
  year: 1999
  end-page: 662
  article-title: Ectopic expression of the maize homeobox gene alters cell fates in the leaf
  publication-title: Plant Physiol
– volume: 22
  start-page: 7792
  year: 2021
  article-title: Modulation of rice leaf angle and grain size by expressing and under the control of promoter
  publication-title: Int. J. Mol. Sci
– volume: 19
  start-page: 46
  year: 2007
  end-page: 62
  article-title: The indeterminate gametophyte1 gene of maize encodes a LOB domain protein required for embryo sac and leaf development
  publication-title: Plant Cell
– volume: 14
  year: 2018
  article-title: Genome‐wide association studies reveal that members of bHLH subfamily 16 share a conserved function in regulating flag leaf angle in rice ( )
  publication-title: PLoS Genet
– volume: 11
  start-page: 616
  year: 1997
  end-page: 628
  article-title: encodes a nuclear‐localized protein required for induction of ligules and auricles during maize leaf organogenesis
  publication-title: Genes Dev.
– volume: 14
  start-page: 34
  year: 2021
  end-page: 49
  article-title: Identification of QTLs and candidate genes associated with leaf angle and leaf orientation value in maize ( L.) based on GBS
  publication-title: Trop. Plant Biol.
– volume: 217
  start-page: 75
  year: 2021
  article-title: Identification of QTL for leaf angle at canopy‐wide levels in maize
  publication-title: Euphytica
– volume: 10
  year: 2015
  article-title: Genetic control of the leaf angle and leaf orientation value as revealed by ultra‐high density maps in three connected maize populations
  publication-title: PLoS ONE
– volume: 110
  start-page: 985
  year: 1990
  end-page: 1000
  article-title: Division and differentiation during normal and maize leaf development
  publication-title: Development
– volume: 5
  start-page: 387
  year: 2017
  end-page: 395
  article-title: QTL analysis of ear leaf traits in maize ( L.) under different planting densities
  publication-title: Crop J.
– volume: 86
  start-page: 83
  year: 2005
  end-page: 145
  article-title: The contribution of breeding to yield advances in maize ( L.)
  publication-title: Adv. Agron.
– volume: 141
  start-page: 924e931
  year: 2006
  article-title: Morphological alteration caused by brassinosteroid insensitivity increases the biomass and grain production of rice
  publication-title: Plant Physiol.
– volume: 196
  start-page: 149
  year: 2012
  end-page: 161
  article-title: Distinctive expression patterns and roles of the homolog module in regulating flag leaf inclination and primary and crown root growth in rice ( )
  publication-title: New Phytol
– volume: 27
  start-page: 1182
  year: 2017
  end-page: 1185
  article-title: Receptor‐like protein ELT1 promotes brassinosteroid signaling through interacting with and suppressing the endocytosis‐mediated degradation of receptor BRI1
  publication-title: Cell Res
– volume: 119
  start-page: 651
  year: 1999
  end-page: 662
  article-title: Ectopic expression of the maize homeobox gene liguleless3 alters cell fates in the leaf1
  publication-title: Plant Physiol.
– volume: 116
  start-page: 21
  year: 1992
  end-page: 30
  article-title: A dominant mutation in the maize homeobox gene, , causes its ectopic expression in leaf cells with altered fates
  publication-title: Development
– volume: 26
  start-page: 4376
  year: 2014
  end-page: 4393
  article-title: Brassinosteroid regulates cell elongation by modulating gibberellin metabolism in rice
  publication-title: Plant Cell
– volume: 41
  start-page: 605
  year: 2014
  end-page: 608
  article-title: The strigolactone‐related mutants have enhanced lamina joint inclination phenotype at the seedling stage
  publication-title: J. Genet. Genomics
– volume: 175
  start-page: 858
  year: 2017
  end-page: 873
  article-title: The genetic basis of plant architecture in 10 maize recombinant inbred line populations
  publication-title: Plant Physiol
– volume: 266
  start-page: 108128
  year: 2021
  article-title: Quantitative trait loci for leaf inclination angle in rice detected using reciprocal mapping populations
  publication-title: Field. Crop. Res.
– volume: 121
  start-page: 75
  year: 2018
  end-page: 86
  article-title: A new allele of the gene in maize can efficiently modify plant architecture
  publication-title: Heredity
– volume: 53
  start-page: 5872
  year: 2005
  end-page: 5881
  article-title: In search of a maize ideotype for cell wall enzymatic degradability using histological and biochemical lignin characterization
  publication-title: J. Agric. Food Chem
– year: 2021
– volume: 135
  start-page: 300
  year: 2004
  end-page: 308
  article-title: The dominant mutant disrupts patterning in a lateral domain of the maize leaf
  publication-title: Plant Physiol
– volume: 12
  start-page: 1591
  year: 2000
  end-page: 1606
  article-title: Loss of function of a rice homolog prevents internode elongation and bending of the lamina joint
  publication-title: Plant Cell
– volume: 10
  start-page: 619
  year: 2019
  article-title: genes temporally and developmentally regulate the sheath to blade ratio of rice leaves
  publication-title: Nat. Commun
– volume: 32
  start-page: 1501
  year: 2020
  end-page: 1518
  article-title: The maize ( ) mutation alters leaf patterning through increased cytokinin signaling
  publication-title: Plant Cell
– volume: 78
  start-page: 927
  year: 2014
  end-page: 936
  article-title: The rice gene encodes a tryptophan aminotransferase, which affects pleiotropic auxin‐related processes
  publication-title: Plant J
– volume: 18
  start-page: 198
  year: 1996
  end-page: 222
  article-title: Genetic analysis of mutations that alter cell fates in maize leaves, dominant mutations
  publication-title: Dev. Genet
– volume: 365
  start-page: 658
  year: 2019
  end-page: 664
  article-title: Teosinte ligule allele narrows plant architecture and enhances high‐density maize yields
  publication-title: Science
– volume: 63
  start-page: 261
  year: 2012
  end-page: 274
  article-title: Integrated multiple population analysis of leaf architecture traits in maize ( L.)
  publication-title: J. Exp. Bot
– volume: 70
  start-page: 297
  year: 2009
  end-page: 309
  article-title: Characterization of osiaa1 gene, a member of rice Aux/IAA family involved in auxin and brassinosteroid hormone responses and plant morphogenesis
  publication-title: Plant Mol. Biol.
– volume: 71
  start-page: 2943
  year: 2020
  end-page: 2955
  article-title: regulates plant architecture in maize
  publication-title: J. Exp. Bot
– volume: 112
  start-page: 1073
  year: 2006
  end-page: 1085
  article-title: Candidate genes for barley mutants involved in plant architecture, an in silico approach
  publication-title: Theor. Appl. Genet.
– volume: 183
  start-page: 1184
  year: 2020a
  end-page: 1199
  article-title: Maize plant architecture is regulated by the ethylene biosynthetic gene
  publication-title: Plant Physiol
– volume: 38
  start-page: 638
  year: 2015
  end-page: 654
  article-title: The auxin response factor, , controls rice leaf angles through positively regulating and
  publication-title: Plant Cell Environ
– volume: 61
  start-page: 406
  year: 2019
  end-page: 416
  article-title: Rice miR394 suppresses leaf inclination through targeting an F‐box gene,
  publication-title: J. Integr. Plant Biol
– volume: 169
  start-page: 826
  year: 2015
  end-page: 839
  article-title: RNA interference knockdown of in maize reveals novel functions for brassinosteroid signaling in controlling plant architecture
  publication-title: Plant Physiol
– volume: 151
  start-page: 669
  year: 2009
  end-page: 680
  article-title: , encoding a helix‐loop‐helix protein, is a novel gene involved in brassinosteroid signaling and controls bending of the lamina joint in rice
  publication-title: Plant Physiol
– volume: 65
  start-page: 5063
  year: 2014
  end-page: 5076
  article-title: The gene in the QTL controls leaf angle in maize ( L.)
  publication-title: J. Exp. Bot
– volume: 173
  start-page: 1554
  year: 2017
  end-page: 1564
  article-title: High‐throughput phenotyping and QTL mapping reveals the genetic architecture of maize plant growth
  publication-title: Plant Physiol
– volume: 140
  start-page: 580
  year: 2006
  end-page: 590
  article-title: The role of and its homologous genes, and , in rice
  publication-title: Plant Physiol
– volume: 12
  start-page: 208
  year: 1998
  end-page: 218
  article-title: The maize gene encodes a basic leucine zipper protein involved in the establishment of the leaf blade‐sheath boundary
  publication-title: Genes Dev
– volume: 33
  start-page: 3120
  year: 2021
  end-page: 3133
  article-title: AUXIN RESPONSE FACTORS 6 and 17 control the flag leaf angle in rice by regulating secondary cell wall biosynthesis of lamina joints
  publication-title: Plant Cell
– volume: 7
  year: 2012
  article-title: gene in maize encodes a brassinosteroid C‐6 oxidase
  publication-title: PLoS ONE
– volume: 17
  start-page: 776
  year: 2005
  end-page: 790
  article-title: A novel cytochrome P450 is implicated in brassinosteroid biosynthesis via the characterization of a rice dwarf mutant, , with reduced seed length
  publication-title: Plant Cell
– volume: 17
  start-page: 2243
  year: 2005
  end-page: 2254
  article-title: The Rice mutant, defective in the rice homolog of Arabidopsis DIMINUTO/DWARF1, is rescued by the endogenously accumulated alternative bioactive brassinosteroid, dolichosterone
  publication-title: Plant Cell
– volume: 140
  start-page: 405
  year: 2013
  end-page: 412
  article-title: The mutation affects proximal‐distal signaling and leaf growth
  publication-title: Development
– volume: 130
  start-page: 1152
  year: 2002
  end-page: 1161
  article-title: Isolation and characterization of a rice dwarf mutant with a defect in brassinosteroid biosynthesis
  publication-title: Plant Physiol
– volume: 36
  start-page: 63
  year: 2016
  article-title: Genetic analysis of leaf morphology underlying the plant density response by QTL mapping in maize ( L.)
  publication-title: Mol Breed.
– volume: 13
  start-page: 586
  year: 2020
  end-page: 597
  article-title: Strigolactones and brassinosteroids antagonistically regulate the stability of the D53‐OsBZR1 complex to determine expression in rice tillering
  publication-title: Mol. Plant
– volume: 15
  start-page: 2900
  year: 2003
  end-page: 2910
  article-title: A rice brassinosteroid‐deficient mutant, ( ), is caused by a loss of function of a new member of cytochrome P450
  publication-title: Plant Cell
– volume: 141
  start-page: 220
  year: 1990
  end-page: 232
  article-title: The liguleless‐1 gene acts tissue specifically in maize leaf development
  publication-title: Dev. Biol
– volume: 48
  start-page: 390
  year: 2006
  end-page: 402
  article-title: The rice gene functions as a negative regulator of gibberellin signaling by controlling the suppressive function of the DELLA protein, SLR1, and modulating brassinosteroid synthesis
  publication-title: Plant J.
– volume: 10
  start-page: 664
  year: 2019
  article-title: Natural variation and domestication selection of ZmPGP1 affects plant architecture and yield‐related traits in Maize
  publication-title: Genes
– volume: 133
  start-page: 203
  year: 2014
  end-page: 209
  article-title: Quantitative trait loci mapping for flag leaf traits in rice using a chromosome segment substitution line population
  publication-title: Plant Breed
– volume: 52
  start-page: 1033
  year: 2012
  end-page: 1043
  article-title: Morphological changes in parental lines of pioneer brand maize hybrids in the US central corn belt
  publication-title: Crop Sci.
– volume: 35
  start-page: 2423
  year: 2016
  end-page: 2433
  article-title: Phytohormones signaling and crosstalk regulating leaf angle in rice
  publication-title: Plant Cell Rep
– volume: 34
  start-page: 220
  year: 2015
  end-page: 228
  article-title: Brassinosteroid signaling regulates leaf erectness in via the control of a specific U‐type cyclin and cell proliferation
  publication-title: Dev. Cell
– volume: 14
  year: 2018
  article-title: SPOC domain‐containing protein leaf inclination3 interacts with LIP1 to regulate rice leaf inclination through auxin signaling
  publication-title: PLoS Genet
– volume: 168
  start-page: 164
  year: 2015
  end-page: 174
  article-title: The barley uniculme4 gene encodes a blade‐on‐petiole‐like protein that controls tillering and leaf patterning
  publication-title: Plant Physiol.
– volume: 151
  start-page: 1878
  year: 2009
  end-page: 1888
  article-title: Distal expression of in maize leaves leads to reestablishment of proximal/distal patterning and leaf dissection
  publication-title: Plant Physiol
– volume: 2
  start-page: 105
  year: 2006
  end-page: 109
  article-title: Erect leaves caused by brassinosteroid deficiency increase biomass production and grain yield in rice
  publication-title: Nat. Biotechnol.
– volume: 7
  start-page: 791
  year: 2009
  end-page: 806
  article-title: Engineering gene as a molecular tool to improve rice architecture for high yield
  publication-title: Plant Biotechnol. J
– volume: 139
  start-page: 107
  year: 2020
  end-page: 118
  article-title: Genetic mapping of quantitative trait locus for the leaf morphological traits in a recombinant inbred line population by ultra‐high–density maps across multi‐environments of maize ( L.)
  publication-title: Plant Breed
– volume: 29
  start-page: 292
  year: 2017
  end-page: 309
  article-title: The RLA1/SMOS1 transcription factor functions with OsBZR1 to regulate brassinosteroid signaling and rice architecture
  publication-title: Plant Cell
– volume: 29
  start-page: 1622
  year: 2017
  end-page: 1641
  article-title: Maize genes and regulate plant architecture
  publication-title: Plant Cell
– volume: 11
  start-page: 46
  year: 2018
  article-title: DS1/OsEMF1 interacts with OsARF11 to control rice architecture by regulation of brassinosteroid signaling
  publication-title: Rice
– volume: 11
  start-page: 29
  year: 2009
  end-page: 34
  article-title: Antisense phenotypes reveal a functional expression of OsARF1, an auxin response factor, in transgenic rice
  publication-title: Curr. Issues Mol. Biol
– volume: 125
  start-page: 2857
  year: 1998
  end-page: 2865
  article-title: The gene negatively regulates homeobox gene expression during maize leaf development
  publication-title: Development
– volume: 215
  start-page: 107
  year: 2019
  article-title: QTL analysis related to the flag‐leaf angle related with it gene in rice ( L.)
  publication-title: Euphytica
– volume: 136
  start-page: 33
  year: 2017
  end-page: 40
  article-title: Detection of epistatic and environmental interaction QTLs for leaf orientation‐related traits in maize
  publication-title: Plant Breed.
– year: 2020
– volume: 67
  start-page: 1883
  year: 2016
  end-page: 1895
  article-title: ( ) determines lamina joint bending by suppressing auxin signalling that interacts with C‐22‐hydroxylated and 6‐deoxo brassinosteroids in rice
  publication-title: J. Exp. Bot
– volume: 4
  start-page: 126
  year: 2009
  end-page: 128
  article-title: Function of α subunit of heterotrimeric G protein in brassinosteroid response of rice plants
  publication-title: Plant Signal Behav.
– volume: 170
  start-page: 1149
  year: 2016
  end-page: 1161
  article-title: OsBRI1 activates BR signaling by preventing binding between the TPR and kinase domains of OsBSK3 via phosphorylation
  publication-title: Plant Physiol
– volume: 39
  start-page: 7
  year: 2019
  article-title: High‐density quantitative trait locus mapping revealed genetic architecture of leaf angle and tassel size in maize
  publication-title: Mol. Breeding
– volume: 18
  start-page: 881
  year: 2020b
  end-page: 883
  article-title: ZmILI1 regulates leaf angle by directly affecting liguleless1 expression in maize
  publication-title: Plant Biotechnol. J.
– ident: e_1_2_11_83_1
  doi: 10.1007/s00122-006-0209-2
– ident: e_1_2_11_129_1
  doi: 10.1038/cr.2010.109
– ident: e_1_2_11_6_1
  doi: 10.1104/pp.16.00399
– ident: e_1_2_11_73_1
  doi: 10.1105/tpc.111.093419
– ident: e_1_2_11_30_1
  doi: 10.1046/j.1365-313X.2002.01438.x
– ident: e_1_2_11_49_1
  doi: 10.1111/j.1467-7652.2009.00444.x
– ident: e_1_2_11_78_1
  doi: 10.1111/jipb.12713
– ident: e_1_2_11_97_1
  doi: 10.1007/s10681-021-02781-4
– ident: e_1_2_11_27_1
  doi: 10.1104/pp.103.036707
– ident: e_1_2_11_105_1
  doi: 10.1104/pp.121.4.1163
– ident: e_1_2_11_33_1
  doi: 10.1093/plcell/koab175
– ident: e_1_2_11_56_1
  doi: 10.1007/s11032-018-0914-y
– ident: e_1_2_11_104_1
  doi: 10.1038/s41467-019-08479-5
– ident: e_1_2_11_9_1
  doi: 10.1101/gad.193433.112
– ident: e_1_2_11_115_1
  doi: 10.1002/csc2.20321
– ident: e_1_2_11_109_1
  doi: 10.1016/j.cj.2017.05.001
– ident: e_1_2_11_118_1
  doi: 10.1007/s10681-015-1502-4
– ident: e_1_2_11_41_1
  doi: 10.1007/s11032-016-0483-x
– ident: e_1_2_11_70_1
  doi: 10.1104/pp.119.2.651
– ident: e_1_2_11_61_1
  doi: 10.1371/journal.pone.0030798
– ident: e_1_2_11_87_1
  doi: 10.1111/pbr.12431
– ident: e_1_2_11_106_1
  doi: 10.18356/b564c742-en
– volume: 11
  start-page: 29
  year: 2009
  ident: e_1_2_11_2_1
  article-title: Antisense phenotypes reveal a functional expression of OsARF1, an auxin response factor, in transgenic rice
  publication-title: Curr. Issues Mol. Biol
– ident: e_1_2_11_24_1
  doi: 10.1002/(SICI)1520-6408(1996)18:3<198::AID-DVG2>3.0.CO;2-4
– ident: e_1_2_11_93_1
  doi: 10.1016/j.devcel.2015.05.019
– ident: e_1_2_11_122_1
  doi: 10.1371/journal.pgen.1002686
– ident: e_1_2_11_65_1
  doi: 10.1242/dev.085787
– ident: e_1_2_11_44_1
  doi: 10.2135/cropsci2011.05.0274
– ident: e_1_2_11_72_1
  doi: 10.1104/pp.105.072330
– ident: e_1_2_11_15_1
  doi: 10.1371/journal.pgen.1007323
– ident: e_1_2_11_55_1
  doi: 10.1093/jxb/erw002
– ident: e_1_2_11_82_1
  doi: 10.1111/pbi.13255
– ident: e_1_2_11_21_1
  doi: 10.1105/tpc.106.047506
– ident: e_1_2_11_31_1
  doi: 10.1007/s10681-015-1401-8
– ident: e_1_2_11_68_1
  doi: 10.1104/pp.007179
– ident: e_1_2_11_100_1
  doi: 10.1126/science.aax5482
– ident: e_1_2_11_119_1
  doi: 10.1111/tpj.12517
– ident: e_1_2_11_26_1
  doi: 10.1073/pnas.1108359108
– ident: e_1_2_11_77_1
  doi: 10.1105/tpc.16.00611
– ident: e_1_2_11_89_1
  doi: 10.1242/dev.116.1.21
– ident: e_1_2_11_36_1
  doi: 10.3390/ijms22157792
– ident: e_1_2_11_5_1
  doi: 10.1105/tpc.3.8.801
– ident: e_1_2_11_3_1
  doi: 10.1073/pnas.0706386104
– ident: e_1_2_11_116_1
  doi: 10.1105/tpc.12.9.1591
– ident: e_1_2_11_121_1
  doi: 10.1104/pp.15.01668
– ident: e_1_2_11_7_1
  doi: 10.1111/j.1469-8137.2012.04248.x
– ident: e_1_2_11_38_1
  doi: 10.1105/tpc.114.132688
– ident: e_1_2_11_50_1
  doi: 10.1104/pp.19.01421
– ident: e_1_2_11_51_1
  doi: 10.3390/genes10090664
– ident: e_1_2_11_80_1
  doi: 10.1105/tpc.112.099978
– ident: e_1_2_11_101_1
  doi: 10.1073/pnas.1116437108
– ident: e_1_2_11_103_1
  doi: 10.1105/tpc.114.132092
– ident: e_1_2_11_107_1
  doi: 10.1101/gad.12.2.208
– ident: e_1_2_11_111_1
  doi: 10.1111/nph.16970
– ident: e_1_2_11_11_1
  doi: 10.1093/mp/sst027
– ident: e_1_2_11_4_1
  doi: 10.1016/0012-1606(90)90117-2
– ident: e_1_2_11_10_1
  doi: 10.1093/jxb/eraa052
– ident: e_1_2_11_102_1
  doi: 10.1105/tpc.112.097394
– volume-title: Food and Agriculture Organization of the United Nations Agriculture Databases
  year: 2021
  ident: e_1_2_11_23_1
– ident: e_1_2_11_32_1
  doi: 10.1016/S1672-6308(12)60052-3
– ident: e_1_2_11_76_1
  doi: 10.2134/agronj1968.00021962006000040027x
– ident: e_1_2_11_81_1
  doi: 10.1111/jipb.12914
– ident: e_1_2_11_62_1
  doi: 10.1021/jf050722f
– ident: e_1_2_11_39_1
  doi: 10.1104/pp.15.00367
– ident: e_1_2_11_92_1
  doi: 10.1105/tpc.16.00477
– ident: e_1_2_11_69_1
  doi: 10.1104/pp.106.077081
– ident: e_1_2_11_22_1
  doi: 10.1016/j.molp.2019.12.005
– ident: e_1_2_11_96_1
  doi: 10.1104/pp.109.140806
– ident: e_1_2_11_123_1
  doi: 10.1093/jxb/eru271
– ident: e_1_2_11_17_1
  doi: 10.1111/j.1365-313X.2006.02804.x
– volume: 24
  start-page: 109
  year: 2004
  ident: e_1_2_11_18_1
  article-title: Long‐term selection in a commercial hybrid maize breeding program
  publication-title: Plant Breed. Rev.
– ident: e_1_2_11_117_1
  doi: 10.1038/cr.2017.69
– ident: e_1_2_11_90_1
  doi: 10.1007/s11103-009-9474-1
– ident: e_1_2_11_13_1
  doi: 10.1007/s10681-015-1351-1
– ident: e_1_2_11_42_1
  doi: 10.1093/jxb/err277
– ident: e_1_2_11_112_1
  doi: 10.1038/s41437-018-0056-3
– ident: e_1_2_11_131_1
  doi: 10.1111/pbr.12559
– ident: e_1_2_11_34_1
  doi: 10.1111/j.1365-313X.2009.04033.x
– ident: e_1_2_11_128_1
  doi: 10.1104/pp.16.01516
– ident: e_1_2_11_91_1
  doi: 10.1016/j.pbi.2021.102038
– ident: e_1_2_11_125_1
  doi: 10.1105/tpc.109.070441
– volume: 29
  start-page: 1131
  year: 2007
  ident: e_1_2_11_58_1
  article-title: Construction of a SSR linkage map and mapping of quantitative trait loci (QTL) for leaf angle and leaf orientation with an elite maize hybrid
  publication-title: Heredity
– ident: e_1_2_11_95_1
  doi: 10.1105/tpc.104.024950
– ident: e_1_2_11_53_1
  doi: 10.3390/ijms21145052
– ident: e_1_2_11_88_1
  doi: 10.1111/j.1365-313X.2006.02875.x
– ident: e_1_2_11_74_1
  doi: 10.4161/psb.4.2.7627
– ident: e_1_2_11_40_1
  doi: 10.1016/j.molp.2017.02.001
– ident: e_1_2_11_126_1
  doi: 10.1007/s12042-020-09270-3
– ident: e_1_2_11_52_1
  doi: 10.1016/j.jgg.2014.09.004
– ident: e_1_2_11_45_1
  doi: 10.1007/s11103-007-9196-1
– ident: e_1_2_11_98_1
  doi: 10.1104/pp.114.252882
– volume: 58
  start-page: 318
  year: 2013
  ident: e_1_2_11_113_1
  article-title: Quantitative trait loci for leaf angle, leaf width, leaf length, and plant height in a maize (Zea mays L) B73 × Mo17 population
  publication-title: Maydica
– ident: e_1_2_11_16_1
  doi: 10.1093/jxb/ers300
– ident: e_1_2_11_85_1
  doi: 10.1016/j.fcr.2021.108128
– ident: e_1_2_11_29_1
  doi: 10.1105/tpc.105.030973
– ident: e_1_2_11_108_1
  doi: 10.1038/s41588-020-0616-3
– ident: e_1_2_11_14_1
  doi: 10.1371/journal.pone.0141619
– ident: e_1_2_11_84_1
  doi: 10.1038/nbt1173
– ident: e_1_2_11_12_1
  doi: 10.1371/journal.pgen.1007829
– ident: e_1_2_11_37_1
  doi: 10.1105/tpc.109.069575
– ident: e_1_2_11_20_1
  doi: 10.3835/plantgenome2018.05.0024
– ident: e_1_2_11_99_1
  doi: 10.1038/ng.746
– ident: e_1_2_11_63_1
  doi: 10.2135/cropsci2002.1902
– ident: e_1_2_11_86_1
  doi: 10.1242/dev.125.15.2857
– ident: e_1_2_11_67_1
  doi: 10.1104/pp.119.2.651
– ident: e_1_2_11_28_1
  doi: 10.1105/tpc.014712
– ident: e_1_2_11_75_1
  doi: 10.1104/pp.17.00709
– ident: e_1_2_11_35_1
  doi: 10.1104/pp.16.01653
– ident: e_1_2_11_46_1
  doi: 10.1242/dev.111955
– ident: e_1_2_11_94_1
  doi: 10.1242/dev.110.3.985
– ident: e_1_2_11_8_1
  doi: 10.1111/pbr.12146
– ident: e_1_2_11_57_1
  doi: 10.1186/s12284-018-0239-9
– ident: e_1_2_11_48_1
  doi: 10.1371/journal.pone.0121624
– ident: e_1_2_11_71_1
  doi: 10.1105/tpc.19.00677
– ident: e_1_2_11_43_1
  doi: 10.1007/s00122-010-1364-z
– ident: e_1_2_11_124_1
  doi: 10.1111/pbr.12749
– ident: e_1_2_11_130_1
  doi: 10.1093/mp/sss064
– ident: e_1_2_11_64_1
  doi: 10.1111/tpj.14332
– ident: e_1_2_11_120_1
  doi: 10.1104/pp.19.00872
– ident: e_1_2_11_59_1
  doi: 10.1007/s00299-016-2052-5
– ident: e_1_2_11_25_1
  doi: 10.1007/s10681-019-2434-1
– ident: e_1_2_11_127_1
  doi: 10.1111/pce.12397
– ident: e_1_2_11_19_1
  doi: 10.1016/S0065-2113(05)86002-X
– ident: e_1_2_11_66_1
  doi: 10.1101/gad.11.5.616
– ident: e_1_2_11_114_1
  doi: 10.1111/tpj.14692
– ident: e_1_2_11_47_1
  doi: 10.1023/A:1003533001014
– ident: e_1_2_11_54_1
  doi: 10.1038/nplants.2017.43
– ident: e_1_2_11_60_1
  doi: 10.1016/j.eja.2014.04.001
– ident: e_1_2_11_79_1
  doi: 10.1104/pp.109.145920
– ident: e_1_2_11_110_1
  doi: 10.1111/j.1365-313X.2008.03707.x
SSID ssj0021656
Score 2.5903444
SecondaryResourceType review_article
Snippet Summary High‐density planting is an effective measure for increasing crop yield per unit land area. Leaf angle (LA) is a key trait of plant architecture and a...
High‐density planting is an effective measure for increasing crop yield per unit land area. Leaf angle (LA) is a key trait of plant architecture and a target...
High-density planting is an effective measure for increasing crop yield per unit land area. Leaf angle (LA) is a key trait of plant architecture and a target...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 426
SubjectTerms Agricultural production
biotechnology
canopy
Cell division
cereal crop
Cereal crops
Corn
Crop yield
Crops
Crops, Agricultural - genetics
dense planting
Edible Grain - genetics
Genetic improvement
grain yield
Leaf angle
Leaves
Molecular modelling
Morphology
Photosynthesis
plant architecture
Plant Breeding
Plant Leaves - genetics
Planting
Planting density
Review
Rice
stress tolerance
Zea mays - genetics
SummonAdditionalLinks – databaseName: Wiley Online Library - Core collection (SURFmarket)
  dbid: DR2
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqnugBCi2wpSAX9dBLVkns-EFPBVGVChBCVOoBKfiVsmKVXe3jAKf-hP7G_hJmnIe6FBDiFsnjyLFn7G-cmW8I2XeGcWazPPGi0AlnyiXGsywB6Gw17Jo2NZjg_O69ODnjp-fF-Ro57HJhGn6I_sINLSPu12jgxs5vGPnUjoYZkwr9dYzVQkD0saeOypFVpskskomEQ79lFcIonr7n6ll0C2DejpO8iV_jAXR8j3zuht7EnXwbLhd26H78wur4n9-2Se62wJQeNZp0n6yF-gHZOLqYteQcYYt8eRtMRU19MQ4vqKFNEDmdVBSUEHMh6SjeUMQLRzqqqQuASMcUi4TNKUaqTmbBU0DJFEmSry-vPEbPL77T6djEghXb5Oz49adXJ0lboSFxXIo0qQwPJnMiR0eTCVd5pkORGh18pfIKfCnmgjdpUbCCSdhXg9KiEp5XIfWmcOwhWa8ndXhMqMpY4M6yQhrNNfcGmqUK1qjcolMzIAfdWpWupS_HKhrjsnNjYNLKOGkD8rwXnTacHb8T2u0WvGzNdl7mgjGR6lSzAdnrm8Hg8C-KqcNkiTKAWAEGq-xvMgKZ-AD8DcijRof6kTBA4ODkQW-5ol29ABJ-r7bUo6-R-FuBOyTxnQdRef78ceWHl2_iw86_iz4hd3JM7YjxdbtkfTFbhqcAuBb2WbSsn4DRKVQ
  priority: 102
  providerName: Wiley-Blackwell
Title Leaf angle: a target of genetic improvement in cereal crops tailored for high‐density planting
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fpbi.13780
https://www.ncbi.nlm.nih.gov/pubmed/35075761
https://www.proquest.com/docview/2633609093
https://www.proquest.com/docview/2622656581
https://www.proquest.com/docview/2661004399
https://pubmed.ncbi.nlm.nih.gov/PMC8882799
Volume 20
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Nb9QwELVoe4FDxTfblpVBHHoxJLFjO1yqFnUpCKpVRaXegmM7ZaVVst3dHrjxE_iN_JLOON7QqtBLFMmTKLGd8XuT8RtC3ljDBa_SjDmZF0xwbZlxPGUAnasCvGaVGNzg_PVYHp2Kz2f5WQy4LWJa5conBkftWosx8neZ5FwmBRDwvdkFw6pR-Hc1ltBYIxvggjWQr42Dw-PxSU-5UFum21-kmIKlP2oLYS7PrJq8TblCPcjrK9ItmHk7W_I6ig3L0Ogh2Yz4ke53A_6I3PPNY_Jg_3weNTT8E_L9izc1Nc351L-nhna53rStKcwV3LJIJyGQEOKCdNJQ6wE4TinW8lpQTCht595RALMUtYz__PrtMMl9-ZPOpibUlXhKTkeH3z4csVhIgVmhZMJqI7xJrcyQD3Jpa8cLnyem8K7WWQ2Uh1vvTJLnPOcK3J_XhaylE7VPnMktf0bWm7bxLwjVKffCVjxXphCFcAaalfaV0VmF3GNAdledWdqoMo7FLqblim1Av5eh3wfkdW8666Q1_mW0sxqRMn5di_LvXBiQV30zfBf4s8M0vr1EGwCWgFZ1epeNRME8wGgD8rwb5P5JOABl4GJwtbox_L0B6nLfbGkmP4I-twbWovCeu2Gi_P_lyvHBp3CydfdbbpP7Ge66CKlvO2R9Ob_0LwELLashWcvEGI569HEYJ_8wxBXweJJdAe8bDks
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwEB6VcgAOqPwvlGIQSL0EkthxkkqoKj_LLt1WHFqpt9SxnbLSKll2t0K98Qh9kj4UT8KM80OrQm-9RfLESsZj-xt75huA11pxwfMg9IyMUk_wRHvK8MBD6JynuGrmvqIE551dOdgXXw-igyU4a3NhKKyyXRPdQm0qTWfk70LJufRTdMA3pz88qhpFt6ttCY3aLLbtyU902ebvh59wfN-EYf_z3seB11QV8LSIpe8VSlgVaBmSc8SlLgxPbeSr1JoiCQvE_1xbo_wo4hGPcS2wSSoLaURhfaMizbHfG3BTcJ7SjEr6XzoHj5hs6mym2IsRaDRMRhQ5NM3HbwMeE_vk-f3vEqi9HJt5HjO7Ta-_AncbtMq2avO6B0u2vA93to5mDWOHfQCHI6sKpsqjid1gitWR5awqGFomJUiysTu2cKeQbFwybRGmThhVDpszCl-tZtYwhM6MmJN__zo1FFK_OGHTiXJVLB7C_rUo-BEsl1VpnwBLAm6FznkUq1SkwihsjhObqyTMydPpwXqrzEw3nOZUWmOStb4N6j1zeu_Bq050WhN5_EtotR2RrJnL8-yv5fXgZdeMs5CuVlRpq2OSQRiL2DgJrpKRRM-HiLAHj-tB7r6EIyxHzw_fji8MfydALOAXW8rxd8cGnqCPFFOf685Q_v9z2bcPQ_fw9Oq_fAG3Bns7o2w03N1-BrdDyvdwQXersLyYHdvniMIW-ZozfQaH1z3X_gBpGEZe
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwEB6VrYTggPhnoYBBIPUSmsSJnSAh1NKuurSsVohKvaWO7ZSVVsmyuxXqjUfgeXgcnoQZ54dWhd56i-RJlNhj5_vsmW8AXmnFI54HoWdEnHoRT7SnDA88hM55iqtm7itKcP40ErsH0cfD-HAFfrW5MBRW2a6JbqE2laY98o1QcC78FAn4RtGERYy3B-9n3zyqIEUnrW05jdpF9uzpd6Rvi3fDbRzr12E42PnyYddrKgx4OpLC9woVWRVoERJR4kIXhqc29lVqTZGEBXIBrq1RfhzzmEtcF2ySikKYqLC-UbHm-NxrsCqRFfk9WN3aGY0_d3SPdG3q3CbpSYQdja4RxRHN8smbgEvSojz7N7wAcS9Gap5F0O4XOLgNtxrsyjZrZ7sDK7a8Czc3j-eNfoe9B0f7VhVMlcdT-5YpVseZs6pg6KeULskmbhPD7UmyScm0RdA6ZVRHbMEomLWaW8MQSDPSUf7946ehAPvlKZtNlatpcR8OrqSLH0CvrEr7CFgScBvpnMdSpVEaGYXNMrG5SsKceE8f1tvOzHSjcE6FNqZZy3Sw3zPX73142ZnOalmPfxmttSOSNTN7kf31wz686JpxTtJBiyptdUI2CGoRKSfBZTaCxPoQH_bhYT3I3ZtwBOnIA_FueW74OwPSBD_fUk6-Om3wBBmTpGeuO0f5_8dl462hu3h8-Vc-h-s4z7L94WjvCdwIKfnDReCtQW85P7FPEZIt82eN7zM4uurp9gfkJkvw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Leaf+angle%3A+a+target+of+genetic+improvement+in+cereal+crops+tailored+for+high-density+planting&rft.jtitle=Plant+biotechnology+journal&rft.au=Cao%2C+Yingying&rft.au=Zhong%2C+Zhuojun&rft.au=Wang%2C+Haiyang&rft.au=Shen%2C+Rongxin&rft.date=2022-03-01&rft.eissn=1467-7652&rft.volume=20&rft.issue=3&rft.spage=426&rft_id=info:doi/10.1111%2Fpbi.13780&rft_id=info%3Apmid%2F35075761&rft.externalDocID=35075761
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1467-7644&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1467-7644&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1467-7644&client=summon