Social animal models for quantifying plasticity, assortment, and selection on interacting phenotypes
Both assortment and plasticity can facilitate social evolution, as each may generate heritable associations between the phenotypes and fitness of individuals and their social partners. However, it currently remains difficult to empirically disentangle these distinct mechanisms in the wild, particula...
Saved in:
Published in | Journal of evolutionary biology Vol. 35; no. 4; pp. 520 - 538 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
England
Oxford University Press
01.04.2022
John Wiley and Sons Inc |
Subjects | |
Online Access | Get full text |
ISSN | 1010-061X 1420-9101 1420-9101 |
DOI | 10.1111/jeb.13900 |
Cover
Loading…
Abstract | Both assortment and plasticity can facilitate social evolution, as each may generate heritable associations between the phenotypes and fitness of individuals and their social partners. However, it currently remains difficult to empirically disentangle these distinct mechanisms in the wild, particularly for complex and environmentally responsive phenotypes subject to measurement error. To address this challenge, we extend the widely used animal model to facilitate unbiased estimation of plasticity, assortment and selection on social traits, for both phenotypic and quantitative genetic (QG) analysis. Our social animal models (SAMs) estimate key evolutionary parameters for the latent reaction norms underlying repeatable patterns of phenotypic interaction across social environments. As a consequence of this approach, SAMs avoid inferential biases caused by various forms of measurement error in the raw phenotypic associations between social partners. We conducted a simulation study to demonstrate the application of SAMs and investigate their performance for both phenotypic and QG analyses. With sufficient repeated measurements, we found desirably high power, low bias and low uncertainty across model parameters using modest sample and effect sizes, leading to robust predictions of selection and adaptation. Our results suggest that SAMs will readily enhance social evolutionary research on a variety of phenotypes in the wild. We provide detailed coding tutorials and worked examples for implementing SAMs in the Stan statistical programming language.
Empirical study of the causes and evolutionary consequences of social interactions remains challenging. Raw associations between social partners' phenotypes are often biased by various forms of measurement error (left), and tend to confound distinct social effects within (plasticity) and between partners (assortment) over time (top right). By separating out these distinct mechanisms, social animal models facilitate more accurate predictions of social selection and adaptation (bottom right). |
---|---|
AbstractList | Both assortment and plasticity can facilitate social evolution, as each may generate heritable associations between the phenotypes and fitness of individuals and their social partners. However, it currently remains difficult to empirically disentangle these distinct mechanisms in the wild, particularly for complex and environmentally responsive phenotypes subject to measurement error. To address this challenge, we extend the widely used animal model to facilitate unbiased estimation of plasticity, assortment and selection on social traits, for both phenotypic and quantitative genetic (QG) analysis. Our social animal models (SAMs) estimate key evolutionary parameters for the latent reaction norms underlying repeatable patterns of phenotypic interaction across social environments. As a consequence of this approach, SAMs avoid inferential biases caused by various forms of measurement error in the raw phenotypic associations between social partners. We conducted a simulation study to demonstrate the application of SAMs and investigate their performance for both phenotypic and QG analyses. With sufficient repeated measurements, we found desirably high power, low bias and low uncertainty across model parameters using modest sample and effect sizes, leading to robust predictions of selection and adaptation. Our results suggest that SAMs will readily enhance social evolutionary research on a variety of phenotypes in the wild. We provide detailed coding tutorials and worked examples for implementing SAMs in the Stan statistical programming language. Both assortment and plasticity can facilitate social evolution, as each may generate heritable associations between the phenotypes and fitness of individuals and their social partners. However, it currently remains difficult to empirically disentangle these distinct mechanisms in the wild, particularly for complex and environmentally responsive phenotypes subject to measurement error. To address this challenge, we extend the widely used animal model to facilitate unbiased estimation of plasticity, assortment and selection on social traits, for both phenotypic and quantitative genetic (QG) analysis. Our social animal models (SAMs) estimate key evolutionary parameters for the latent reaction norms underlying repeatable patterns of phenotypic interaction across social environments. As a consequence of this approach, SAMs avoid inferential biases caused by various forms of measurement error in the raw phenotypic associations between social partners. We conducted a simulation study to demonstrate the application of SAMs and investigate their performance for both phenotypic and QG analyses. With sufficient repeated measurements, we found desirably high power, low bias and low uncertainty across model parameters using modest sample and effect sizes, leading to robust predictions of selection and adaptation. Our results suggest that SAMs will readily enhance social evolutionary research on a variety of phenotypes in the wild. We provide detailed coding tutorials and worked examples for implementing SAMs in the Stan statistical programming language. Empirical study of the causes and evolutionary consequences of social interactions remains challenging. Raw associations between social partners' phenotypes are often biased by various forms of measurement error (left), and tend to confound distinct social effects within (plasticity) and between partners (assortment) over time (top right). By separating out these distinct mechanisms, social animal models facilitate more accurate predictions of social selection and adaptation (bottom right). Both assortment and plasticity can facilitate social evolution, as each may generate heritable associations between the phenotypes and fitness of individuals and their social partners. However, it currently remains difficult to empirically disentangle these distinct mechanisms in the wild, particularly for complex and environmentally responsive phenotypes subject to measurement error. To address this challenge, we extend the widely used animal model to facilitate unbiased estimation of plasticity, assortment and selection on social traits, for both phenotypic and quantitative genetic (QG) analysis. Our social animal models (SAMs) estimate key evolutionary parameters for the latent reaction norms underlying repeatable patterns of phenotypic interaction across social environments. As a consequence of this approach, SAMs avoid inferential biases caused by various forms of measurement error in the raw phenotypic associations between social partners. We conducted a simulation study to demonstrate the application of SAMs and investigate their performance for both phenotypic and QG analyses. With sufficient repeated measurements, we found desirably high power, low bias and low uncertainty across model parameters using modest sample and effect sizes, leading to robust predictions of selection and adaptation. Our results suggest that SAMs will readily enhance social evolutionary research on a variety of phenotypes in the wild. We provide detailed coding tutorials and worked examples for implementing SAMs in the Stan statistical programming language. Empirical study of the causes and evolutionary consequences of social interactions remains challenging. Raw associations between social partners' phenotypes are often biased by various forms of measurement error (left), and tend to confound distinct social effects within (plasticity) and between partners (assortment) over time (top right). By separating out these distinct mechanisms, social animal models facilitate more accurate predictions of social selection and adaptation (bottom right). Both assortment and plasticity can facilitate social evolution, as each may generate heritable associations between the phenotypes and fitness of individuals and their social partners. However, it currently remains difficult to empirically disentangle these distinct mechanisms in the wild, particularly for complex and environmentally responsive phenotypes subject to measurement error. To address this challenge, we extend the widely used animal model to facilitate unbiased estimation of plasticity, assortment and selection on social traits, for both phenotypic and quantitative genetic (QG) analysis. Our social animal models (SAMs) estimate key evolutionary parameters for the latent reaction norms underlying repeatable patterns of phenotypic interaction across social environments. As a consequence of this approach, SAMs avoid inferential biases caused by various forms of measurement error in the raw phenotypic associations between social partners. We conducted a simulation study to demonstrate the application of SAMs and investigate their performance for both phenotypic and QG analyses. With sufficient repeated measurements, we found desirably high power, low bias and low uncertainty across model parameters using modest sample and effect sizes, leading to robust predictions of selection and adaptation. Our results suggest that SAMs will readily enhance social evolutionary research on a variety of phenotypes in the wild. We provide detailed coding tutorials and worked examples for implementing SAMs in the Stan statistical programming language.Both assortment and plasticity can facilitate social evolution, as each may generate heritable associations between the phenotypes and fitness of individuals and their social partners. However, it currently remains difficult to empirically disentangle these distinct mechanisms in the wild, particularly for complex and environmentally responsive phenotypes subject to measurement error. To address this challenge, we extend the widely used animal model to facilitate unbiased estimation of plasticity, assortment and selection on social traits, for both phenotypic and quantitative genetic (QG) analysis. Our social animal models (SAMs) estimate key evolutionary parameters for the latent reaction norms underlying repeatable patterns of phenotypic interaction across social environments. As a consequence of this approach, SAMs avoid inferential biases caused by various forms of measurement error in the raw phenotypic associations between social partners. We conducted a simulation study to demonstrate the application of SAMs and investigate their performance for both phenotypic and QG analyses. With sufficient repeated measurements, we found desirably high power, low bias and low uncertainty across model parameters using modest sample and effect sizes, leading to robust predictions of selection and adaptation. Our results suggest that SAMs will readily enhance social evolutionary research on a variety of phenotypes in the wild. We provide detailed coding tutorials and worked examples for implementing SAMs in the Stan statistical programming language. Both assortment and plasticity can facilitate social evolution, as each may generate heritable associations between the phenotypes and fitness of individuals and their social partners. However, it currently remains difficult to empirically disentangle these distinct mechanisms in the wild, particularly for complex and environmentally responsive phenotypes subject to measurement error. To address this challenge, we extend the widely used animal model to facilitate unbiased estimation of plasticity, assortment and selection on social traits, for both phenotypic and quantitative genetic (QG) analysis. Our social animal models (SAMs) estimate key evolutionary parameters for the latent reaction norms underlying repeatable patterns of phenotypic interaction across social environments. As a consequence of this approach, SAMs avoid inferential biases caused by various forms of measurement error in the raw phenotypic associations between social partners. We conducted a simulation study to demonstrate the application of SAMs and investigate their performance for both phenotypic and QG analyses. With sufficient repeated measurements, we found desirably high power, low bias and low uncertainty across model parameters using modest sample and effect sizes, leading to robust predictions of selection and adaptation. Our results suggest that SAMs will readily enhance social evolutionary research on a variety of phenotypes in the wild. We provide detailed coding tutorials and worked examples for implementing SAMs in the Stan statistical programming language. |
Author | Martin, Jordan S. Jaeggi, Adrian V. |
AuthorAffiliation | 1 Human Ecology Group Institute of Evolutionary Medicine University of Zurich Zurich Switzerland |
AuthorAffiliation_xml | – name: 1 Human Ecology Group Institute of Evolutionary Medicine University of Zurich Zurich Switzerland |
Author_xml | – sequence: 1 givenname: Jordan S. orcidid: 0000-0001-8704-6076 surname: Martin fullname: Martin, Jordan S. email: jordan.martin@uzh.ch organization: University of Zurich – sequence: 2 givenname: Adrian V. orcidid: 0000-0003-1695-0388 surname: Jaeggi fullname: Jaeggi, Adrian V. organization: University of Zurich |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34233047$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkl1rFTEQhoNU7Ide-AdkwRsFt53sJtndG8GW-kXBCxW8C9nsbJtDNjlN9lj23zvHU4sWFENgJuSZNzOZOWR7IQZk7CmHY07rZIX9Ma87gAfsgIsKyo4D3yMfOJSg-Ld9dpjzCoArIeUjtl-Lqq5BNAds-BytM74wwU1kpjigz8UYU3G9MWF24-LCZbH2Js_Ounl5VZicY5onDDP5YSgyerSzi6Gg7cKMydBxG3SFIc7LGvNj9nA0PuOTW3vEvr49_3L2vrz49O7D2ZuL0opGQTkIaRujLLSICI1qe-ihEaMZpMAeBwm16Wppqp7LphqVsX3bjpy3nDfQNqo-Yq93uutNP-FgKcdkvF4nqi0tOhqn_7wJ7kpfxu-6q7pKKkkCL24FUrzeYJ715LJF703AuMm6UopDraD7D1SKTlFSghP6_B66ipsU6CdIUNDLUAlB1LPfk7_L-levCHi5A2yKOScc7xAOejsHmuZA_5wDYk_usdQ8s-0S1e38vyJunMfl79L64_npLuIHxArEfg |
CitedBy_id | crossref_primary_10_1016_j_neubiorev_2022_104980 crossref_primary_10_1016_j_peptides_2024_171270 crossref_primary_10_1111_jeb_13998 crossref_primary_10_1111_brv_12879 crossref_primary_10_1111_brv_12934 crossref_primary_10_1016_j_anbehav_2023_01_015 crossref_primary_10_1093_evolut_qpad136 crossref_primary_10_1016_j_neubiorev_2022_104996 |
Cites_doi | 10.1073/pnas.0805473105 10.1098/rstb.2001.0926 10.32942/OSF.IO/U26TZ 10.1017/9781139161879 10.1016/j.anbehav.2008.11.006 10.1111/j.1467-9531.2010.01225.x 10.1111/jeb.12587 10.1073/pnas.1010661108 10.1111/j.1439-0310.2011.01990.x 10.1086/670160 10.1093/beheco/arx127 10.1007/s00265-008-0646-9 10.1098/rstb.2010.0129 10.1098/rspb.2017.2763 10.2307/2527838 10.1086/705825 10.1016/0022-5193(64)90039-6 10.1007/978-4-431-53892-9_5 10.1017/S0003356100037752 10.1093/acprof:oso/9780199231157.001.0001 10.1111/j.1558-5646.1990.tb03807.x 10.1093/beheco/arx023 10.1016/j.tree.2009.07.013 10.1111/2041-210X.13100 10.1038/s41467-019-10074-7 10.1111/j.1558-5646.1997.tb01458.x 10.1098/rspb.2018.0875 10.1111/j.1420-9101.2008.01550.x 10.1098/rsos.140444 10.1098/rspb.2013.2645 10.1111/j.1558-5646.2011.01340.x 10.1111/j.1420-9101.2007.01377.x 10.1111/brv.12484 10.1111/j.1558-5646.1983.tb00236.x 10.1111/nph.12035 10.1111/jeb.13437 10.1371/journal.pone.0207757 10.1038/ncomms4570 10.3389/fevo.2017.00092 10.1016/j.anbehav.2013.11.008 10.1016/j.tree.2016.07.004 10.1111/evo.13365 10.1098/rsos.181493 10.1016/j.anbehav.2008.12.022 10.18637/jss.v033.i02 10.1111/2041-210X.12802 10.1111/brv.12131 10.1201/9780429343001-8 10.1515/9780691206820 10.18637/jss.v076.i01 10.1111/j.1752-4571.2010.00147.x 10.1111/1365-2656.13360 10.1126/science.1156108 10.1111/j.1469-185X.2010.00141.x 10.1093/acprof:oso/9780199674237.003.0006 10.1016/S0169-5347(97)01232-9 10.1093/oso/9780198526841.001.0001 10.1016/j.cub.2007.06.005 10.1073/pnas.1917166117 10.1080/02664763.2020.1808599 10.1111/evo.13660 10.1086/648604 10.1111/1365-2656.12013 10.1111/j.1558-5646.2010.01012.x 10.1111/j.1420-9101.2007.01300.x 10.1038/s41598-020-58826-6 10.1111/2041-210X.12837 10.1111/evo.12438 10.1002/ajpa.22721 10.1086/303168 10.1534/genetics.111.130617 10.1371/journal.pone.0197720 10.1111/j.1558-5646.2009.00676.x 10.1111/j.1420-9101.2010.02084.x 10.1098/rstb.2017.0281 10.1101/2021.03.27.437341 10.1098/rstb.2013.0358 10.1111/oik.05985 10.1111/evo.12321 10.1073/pnas.1100298108 10.1111/j.1558-5646.2010.00952.x 10.1093/icb/icx071 10.1111/brv.12143 10.1111/j.1558-5646.2012.01632.x 10.1126/science.aal3618 10.1201/9780429029608 10.1016/j.tree.2014.12.002 10.1111/j.1558-5646.1979.tb04694.x 10.1086/704089 10.1073/pnas.1421402112 10.1111/j.1365-2656.2009.01639.x 10.1152/ajpregu.00006.2018 10.1371/journal.pbio.3000156 10.1515/9781400866564 10.1007/s00265-013-1527-4 10.1111/j.1469-1809.1957.tb01874.x 10.1017/9781107338319 10.1111/j.1558-5646.2012.01585.x 10.1534/genetics.115.186536 10.1093/oso/9780198815778.001.0001 10.1038/s41598-017-08258-6 10.1111/j.1558-5646.2011.01490.x 10.1038/hdy.2013.15 10.1007/s10071-018-1198-7 10.1111/evo.14198 10.1111/evo.14054 10.1073/pnas.1510497113 10.1111/evo.12077 |
ContentType | Journal Article |
Copyright | 2021 The Authors. published by John Wiley & Sons Ltd on behalf of European Society for Evolutionary Biology. 2021 The Authors. Journal of Evolutionary Biology published by John Wiley & Sons Ltd on behalf of European Society for Evolutionary Biology. 2021. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2021 The Authors. published by John Wiley & Sons Ltd on behalf of European Society for Evolutionary Biology. – notice: 2021 The Authors. Journal of Evolutionary Biology published by John Wiley & Sons Ltd on behalf of European Society for Evolutionary Biology. – notice: 2021. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QP 7QR 7SN 7SS 7TK 8FD C1K FR3 K9. P64 RC3 7X8 7S9 L.6 5PM |
DOI | 10.1111/jeb.13900 |
DatabaseName | Wiley Online Library Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Animal Behavior Abstracts Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Neurosciences Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database ProQuest Health & Medical Complete (Alumni) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Entomology Abstracts Genetics Abstracts Technology Research Database Animal Behavior Abstracts ProQuest Health & Medical Complete (Alumni) Chemoreception Abstracts Engineering Research Database Ecology Abstracts Calcium & Calcified Tissue Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Entomology Abstracts MEDLINE - Academic MEDLINE AGRICOLA CrossRef |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology Botany |
DocumentTitleAlternate | MARTIN and JAEGGI |
EISSN | 1420-9101 |
EndPage | 538 |
ExternalDocumentID | PMC9292565 34233047 10_1111_jeb_13900 JEB13900 |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Universitat Zurich |
GroupedDBID | --- -~X .3N .GA .Y3 05W 0R~ 10A 1OC 24P 29K 2WC 31~ 33P 36B 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5HH 5LA 5VS 5WD 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHBH AAHHS AANLZ AAONW AASGY AAUAY AAXRX AAYCA AAZKR ABCQN ABCUV ABDFA ABEJV ABEML ABJNI ABLJU ABMNT ABPVW ABTAH ABXVV ACAHQ ACCFJ ACCZN ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ACZBC ADBBV ADEOM ADIPN ADIZJ ADKYN ADMGS ADOZA ADVOB ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFNX AFGKR AFPWT AFRAH AFWVQ AFZJQ AGMDO AHMBA AIURR AIWBW AJAOE AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BAWUL BCRHZ BFHJK BGNMA BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 C45 CAG COF CS3 D-E D-F D-I DCZOG DIK DPXWK DR2 DRFUL DRSTM E3Z EBS ECGQY EJD ESX F00 F01 F04 F5P FIJ G-S G.N GODZA H.T H.X HF~ HZI HZ~ IHE IPNFZ IX1 J0M K48 KOP LAS LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M4Y MK4 MRFUL MRSTM MSFUL MSSTM MVM MXFUL MXSTM N04 N05 N9A NF~ NU- NU0 O66 O9- OBOKY OIG OJZSN OK1 OVD OWPYF P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 R.K ROL ROX RX1 SUPJJ TEORI UB1 W8V W99 WBKPD WIH WIK WIN WNSPC WOHZO WQJ WRC WYISQ XG1 YFH ZY4 ZZTAW ~IA ~KM ~WT AAFWJ AAYXX ABGNP ACVCV ADNBA AEOTA AGORE AHGBF AJBYB AJDVS AJNCP CITATION H13 AAMMB AEFGJ AGXDD AIDQK AIDYY CGR CUY CVF ECM EIF NPM 7QG 7QP 7QR 7SN 7SS 7TK 8FD C1K FR3 K9. P64 RC3 7X8 7S9 L.6 5PM |
ID | FETCH-LOGICAL-c4760-d45c7a6c08eee0768b0b074fad54ebed503a935a2b1572f6acb88f11811708763 |
IEDL.DBID | DR2 |
ISSN | 1010-061X 1420-9101 |
IngestDate | Thu Aug 21 13:50:24 EDT 2025 Fri Jul 11 18:33:58 EDT 2025 Wed Sep 03 01:29:26 EDT 2025 Mon Jul 28 13:50:40 EDT 2025 Mon Jul 21 06:00:33 EDT 2025 Tue Jul 01 03:26:10 EDT 2025 Thu Apr 24 23:04:53 EDT 2025 Wed Jan 22 16:25:06 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | plasticity reaction norm assortment animal model social evolution |
Language | English |
License | Attribution-NonCommercial 2021 The Authors. Journal of Evolutionary Biology published by John Wiley & Sons Ltd on behalf of European Society for Evolutionary Biology. This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4760-d45c7a6c08eee0768b0b074fad54ebed503a935a2b1572f6acb88f11811708763 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-8704-6076 0000-0003-1695-0388 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fjeb.13900 |
PMID | 34233047 |
PQID | 2649250244 |
PQPubID | 37112 |
PageCount | 19 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_9292565 proquest_miscellaneous_2661036095 proquest_miscellaneous_2549687641 proquest_journals_2649250244 pubmed_primary_34233047 crossref_primary_10_1111_jeb_13900 crossref_citationtrail_10_1111_jeb_13900 wiley_primary_10_1111_jeb_13900_JEB13900 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | April 2022 |
PublicationDateYYYYMMDD | 2022-04-01 |
PublicationDate_xml | – month: 04 year: 2022 text: April 2022 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Oxford – name: Hoboken |
PublicationTitle | Journal of evolutionary biology |
PublicationTitleAlternate | J Evol Biol |
PublicationYear | 2022 |
Publisher | Oxford University Press John Wiley and Sons Inc |
Publisher_xml | – name: Oxford University Press – name: John Wiley and Sons Inc |
References | 2018; 285 2017; 5 2017; 7 2017; 8 2019; 94 2013; 67 2019; 10 1964; 7 2015; 30 2019; 17 2016; 31 2002; 357 2014; 68 2008; 105 2019; 128 2020; 10 1979; 33 2017; 355 2018; 373 2010; 23 2014; 369 2010; 64 2014; 5 1997; 51 1990; 44 2021; 75 2010; 25 2017; 71 2017; 76 2016; 113 2011; 65 2008; 21 2020; 89 2008; 63 2014; 281 2015; 90 2019; 316 2013; 197 2007; 20 2010; 3 2019; 194 2012; 66 1998; 13 2015; 2 2007; 17 2010; 33 2018; 29 2009; 63 2019; 6 2019; 73 2010; 79 2011 2017; 28 2019; 32 1966; 8 2010; 365 1998 2016; 204 2003 2002 2013; 181 2008; 320 1983; 37 2018; 21 2010; 85 2014; 88 2010; 40 2014; 112 1961; 17 2009; 77 2015; 28 2011; 108 2020; 74 2015; 157 2021 2020 2015; 112 2017; 57 1999; 153 2020; 117 2013; 82 2010; 175 2017 2016 2015 2014 2013 1972; 35 2011; 189 2012; 118 2018; 13 e_1_2_10_21_1 e_1_2_10_44_1 e_1_2_10_40_1 e_1_2_10_109_1 e_1_2_10_70_1 e_1_2_10_93_1 e_1_2_10_2_1 e_1_2_10_18_1 e_1_2_10_74_1 e_1_2_10_97_1 e_1_2_10_6_1 e_1_2_10_55_1 e_1_2_10_14_1 e_1_2_10_37_1 e_1_2_10_78_1 e_1_2_10_112_1 e_1_2_10_32_1 e_1_2_10_51_1 e_1_2_10_82_1 e_1_2_10_29_1 e_1_2_10_63_1 e_1_2_10_86_1 e_1_2_10_105_1 e_1_2_10_25_1 e_1_2_10_48_1 e_1_2_10_67_1 e_1_2_10_101_1 e_1_2_10_45_1 Box G. E. (e_1_2_10_13_1) 2016 e_1_2_10_22_1 e_1_2_10_41_1 R Core Team (e_1_2_10_85_1) 2013 e_1_2_10_90_1 e_1_2_10_71_1 e_1_2_10_94_1 e_1_2_10_52_1 e_1_2_10_3_1 e_1_2_10_19_1 e_1_2_10_75_1 e_1_2_10_38_1 e_1_2_10_98_1 e_1_2_10_56_1 e_1_2_10_79_1 e_1_2_10_7_1 e_1_2_10_15_1 e_1_2_10_10_1 e_1_2_10_33_1 e_1_2_10_60_1 e_1_2_10_106_1 e_1_2_10_83_1 e_1_2_10_64_1 e_1_2_10_102_1 e_1_2_10_49_1 e_1_2_10_87_1 e_1_2_10_26_1 e_1_2_10_68_1 e_1_2_10_23_1 e_1_2_10_46_1 e_1_2_10_69_1 e_1_2_10_42_1 e_1_2_10_110_1 e_1_2_10_91_1 e_1_2_10_72_1 e_1_2_10_95_1 e_1_2_10_4_1 e_1_2_10_53_1 e_1_2_10_16_1 e_1_2_10_76_1 e_1_2_10_99_1 e_1_2_10_8_1 e_1_2_10_57_1 e_1_2_10_58_1 e_1_2_10_34_1 e_1_2_10_11_1 e_1_2_10_30_1 e_1_2_10_80_1 e_1_2_10_61_1 e_1_2_10_84_1 e_1_2_10_107_1 e_1_2_10_27_1 e_1_2_10_65_1 e_1_2_10_88_1 e_1_2_10_103_1 e_1_2_10_24_1 Gilmour A. R. (e_1_2_10_39_1) 2002 e_1_2_10_43_1 e_1_2_10_20_1 e_1_2_10_108_1 e_1_2_10_73_1 e_1_2_10_96_1 e_1_2_10_54_1 e_1_2_10_5_1 e_1_2_10_17_1 e_1_2_10_77_1 e_1_2_10_111_1 e_1_2_10_36_1 e_1_2_10_12_1 e_1_2_10_35_1 e_1_2_10_9_1 e_1_2_10_59_1 e_1_2_10_31_1 e_1_2_10_50_1 Smith J. M. (e_1_2_10_92_1) 2003 e_1_2_10_81_1 e_1_2_10_62_1 e_1_2_10_104_1 e_1_2_10_28_1 e_1_2_10_66_1 e_1_2_10_100_1 e_1_2_10_47_1 e_1_2_10_89_1 |
References_xml | – year: 2011 – volume: 373 start-page: 20170281 year: 2018 article-title: The repeatability of cognitive performance: A meta‐analysis publication-title: Philosophical Transactions of the Royal Society B – volume: 204 start-page: 1281 year: 2016 end-page: 1294 article-title: General methods for evolutionary quantitative genetic inference from generalized mixed models publication-title: Genetics – volume: 281 start-page: 20132645 year: 2014 article-title: Characterizing behavioural ‘characters’: An evolutionary framework publication-title: Proceedings of the Royal Society B – volume: 63 start-page: 1 year: 2008 end-page: 9 article-title: Mortality and other determinants of bird divorce rate publication-title: Behavioral Ecology and Sociobiology – volume: 8 start-page: 1910 year: 2017 end-page: 1919 article-title: A statistical methodology for estimating assortative mating for phenotypic traits that are labile or measured with error publication-title: Methods in Ecology and Evolution – volume: 20 start-page: 831 year: 2007 end-page: 844 article-title: The evolutionary ecology of individual phenotypic plasticity in wild populations publication-title: Journal of Evolutionary Biology – volume: 21 start-page: 1175 year: 2008 end-page: 1188 article-title: The joint effects of kin, multilevel selection and indirect genetic effects on response to genetic selection publication-title: Journal of Evolutionary Biology – volume: 33 start-page: 1 year: 2010 end-page: 22 article-title: MCMC methods for multi‐response generalized linear mixed models: The MCMCglmm R package publication-title: Journal of Statistical Software – volume: 6 start-page: 181493 year: 2019 article-title: Evolution of non‐kin cooperation: Social assortment by cooperative phenotype in guppies publication-title: Royal Society Open Science – volume: 17 start-page: 474 year: 1961 end-page: 480 article-title: Phenotypic, genetic, and environmental correlations publication-title: Biometrics – volume: 128 start-page: 912 year: 2019 end-page: 928 article-title: Moving beyond noninformative priors: Why and how to choose weakly informative priors in Bayesian analyses publication-title: Oikos – volume: 77 start-page: 753 year: 2009 end-page: 758 article-title: A simple method for distinguishing within‐ versus between‐subject effects using mixed models publication-title: Animal Behaviour – year: 1998 – volume: 73 start-page: 175 year: 2019 end-page: 187 article-title: Phenological mismatch drives selection on elevation, but not on slope, of breeding time plasticity in a wild songbird publication-title: Evolution – start-page: 1 year: 2020 end-page: 23 article-title: Robust analogs to the coefficient of variation publication-title: Journal of Applied Statistics – volume: 112 start-page: 61 year: 2014 end-page: 69 article-title: The quantitative genetics of indirect genetic effects: A selective review of modelling issues publication-title: Heredity – volume: 13 start-page: 52 year: 1998 end-page: 58 article-title: Extra‐pair paternity in birds: Explaining variation between species and populations publication-title: Trends in Ecology & Evolution – volume: 28 start-page: 948 year: 2017 end-page: 952 article-title: Avoiding the misuse of BLUP in behavioural ecology publication-title: Behavioral Ecology – volume: 20 start-page: 1890 year: 2007 end-page: 1903 article-title: How to separate genetic and environmental causes of similarity between relatives publication-title: Journal of Evolutionary Biology – volume: 157 start-page: 507 year: 2015 end-page: 512 article-title: Multilevel modeling analysis of dyadic network data with an application to Ye'kwana food sharing publication-title: American Journal of Physical Anthropology – volume: 357 start-page: 319 year: 2002 end-page: 330 article-title: Why is mutual mate choice not the norm? Operational sex ratios, sex roles and the evolution of sexually dimorphic and monomorphic signalling publication-title: Philosophical Transactions of the Royal Society of London. Series B – volume: 66 start-page: 890 year: 2012 end-page: 895 article-title: Evolution in response to social selection: The importance of interactive effects of traits on fitness publication-title: Evolution – volume: 112 start-page: 10112 year: 2015 end-page: 10119 article-title: Major evolutionary transitions in individuality publication-title: Proceedings of the National Academy of Sciences – volume: 66 start-page: 2399 year: 2012 end-page: 2410 article-title: The prediction of adaptive evolution: Empirical application of the secondary theorem of selection and comparison to the breeder’s equation publication-title: Evolution – volume: 285 start-page: 20172763 year: 2018 article-title: Heritable spouse effects increase evolutionary potential of human reproductive timing publication-title: Proceedings of the Royal Society B – volume: 28 start-page: 547 year: 2015 end-page: 556 article-title: Selection for territory acquisition is modulated by social network structure in a wild songbird publication-title: Journal of Evolutionary Biology – volume: 75 start-page: 806 year: 2021 end-page: 818 article-title: Most published selection gradients are underestimated: Why this is and how to fix it publication-title: Evolution – volume: 64 start-page: 2558 year: 2010 end-page: 2574 article-title: Interacting phenotypes and the evolutionary process III. Social evolution publication-title: Evolution – volume: 10 start-page: 245 year: 2019 end-page: 257 article-title: The EGA+ GNM framework: An integrative approach to modelling behavioural syndromes publication-title: Methods in Ecology and Evolution – volume: 82 start-page: 39 year: 2013 end-page: 54 article-title: Quantifying individual variation in behaviour: Mixed‐effect modelling approaches publication-title: Journal of Animal Ecology – volume: 194 start-page: 194 year: 2019 end-page: 206 article-title: Individual variation in the social plasticity of water dragons publication-title: The American Naturalist – volume: 32 start-page: 559 year: 2019 end-page: 571 article-title: Social effects of territorial neighbours on the timing of spring breeding in North American red squirrels publication-title: Journal of Evolutionary Biology – start-page: 139 year: 2021 end-page: 160 – volume: 355 start-page: 584 year: 2017 end-page: 585 article-title: Measurement error and the replication crisis publication-title: Science – volume: 30 start-page: 88 year: 2015 end-page: 97 article-title: Interacting personalities: Behavioural ecology meets quantitative genetics publication-title: Trends in Ecology & Evolution – volume: 117 start-page: 10746 year: 2020 end-page: 10754 article-title: Paternal provisioning results from ecological change publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 189 start-page: 1347 year: 2011 end-page: 1359 article-title: A general definition of the heritable variation that determines the potential of a population to respond to selection publication-title: Genetics – volume: 8 start-page: 688 year: 2017 end-page: 699 article-title: Interpreting selection when individuals interact publication-title: Methods in Ecology and Evolution – year: 2016 – volume: 76 start-page: 1 year: 2017 end-page: 23 article-title: Stan: A probabilistic programming language publication-title: Journal of Statistical Software – volume: 365 start-page: 4013 year: 2010 end-page: 4020 article-title: Applying a quantitative genetics framework to behavioural syndrome research publication-title: Philosophical Transactions of the Royal Society B – start-page: 84 year: 2014 end-page: 103 – volume: 23 start-page: 2277 year: 2010 end-page: 2288 article-title: The danger of applying the breeder's equation in observational studies of natural populations publication-title: Journal of Evolutionary Biology – year: 2002 – volume: 66 start-page: 2056 year: 2012 end-page: 2064 article-title: The evolution of social interactions changes predictions about interacting phenotypes publication-title: Evolution – volume: 17 year: 2019 article-title: Scrutinizing assortative mating in birds publication-title: PLoS Biology – volume: 10 start-page: 1 year: 2019 end-page: 10 article-title: Meta‐analytic evidence that sexual selection improves population fitness publication-title: Nature Communications – volume: 89 start-page: 2813 year: 2020 end-page: 2824 article-title: Collision between biological process and statistical analysis revealed by mean centring publication-title: Journal of Animal Ecology – volume: 85 start-page: 935 year: 2010 end-page: 956 article-title: Repeatability for Gaussian and non‐Gaussian data: A practical guide for biologists publication-title: Biological Reviews – volume: 194 start-page: 865 year: 2019 end-page: 875 article-title: Assortative mating in animals and its role for speciation publication-title: The American Naturalist – volume: 13 year: 2018 article-title: Equal division of parental care enhances nestling development in the Blackcap publication-title: PLoS One – volume: 2 start-page: 140444 year: 2015 article-title: Phenotypic assortment in wild primate networks: Implications for the dissemination of information publication-title: Royal Society Open Science – volume: 10 start-page: 1 year: 2020 end-page: 9 article-title: Melanism influences the use of social information in a polymorphic owl publication-title: Scientific Reports – volume: 88 start-page: 67 year: 2014 end-page: 78 article-title: Cooperating to compete: Altruism, sexual selection and causes of male reproductive cooperation publication-title: Animal Behaviour – year: 2013 – volume: 67 start-page: 2094 year: 2013 end-page: 2100 article-title: Unification of regression‐based methods for the analysis of natural selection publication-title: Evolution – year: 2021 – volume: 153 start-page: 254 year: 1999 end-page: 266 article-title: Interacting phenotypes and the evolutionary process. II. Selection resulting from social interactions publication-title: The American Naturalist – volume: 74 start-page: 1894 year: 2020 end-page: 1907 article-title: Pathways to social evolution and their evolutionary feedbacks publication-title: Evolution – volume: 57 start-page: 566 year: 2017 end-page: 579 article-title: Stags, hawks, and doves: Social evolution theory and individual variation in cooperation publication-title: Integrative and Comparative Biology – volume: 21 start-page: 639 year: 2018 end-page: 650 article-title: Chimpanzees demonstrate individual differences in social information use publication-title: Animal Cognition – start-page: 115 year: 2011 end-page: 136 – volume: 320 start-page: 1213 year: 2008 end-page: 1216 article-title: Ancestral monogamy shows kin selection is key to the evolution of eusociality publication-title: Science – volume: 68 start-page: 1188 year: 2014 end-page: 1196 article-title: Estimating uncertainty in multivariate responses to selection publication-title: Evolution – volume: 197 start-page: 631 year: 2013 end-page: 641 article-title: Genetic control of interactions among individuals: Contrasting outcomes of indirect genetic effects arising from neighbour disease infection and competition in a forest tree publication-title: New Phytologist – volume: 181 start-page: E125 year: 2013 end-page: E138 article-title: Assortative mating in animals publication-title: The American Naturalist – volume: 37 start-page: 1210 year: 1983 end-page: 1226 article-title: The measurement of selection on correlated characters publication-title: Evolution – volume: 63 start-page: 1785 year: 2009 end-page: 1795 article-title: How to measure indirect genetic effects: The congruence of trait‐based and variance‐partitioning approaches publication-title: Evolution – volume: 3 start-page: 453 year: 2010 end-page: 465 article-title: Group selection and social evolution in domesticated animals publication-title: Evolutionary Applications – volume: 25 start-page: 81 year: 2010 end-page: 89 article-title: Behavioural reaction norms: Animal personality meets individual plasticity publication-title: Trends in Ecology & Evolution – volume: 113 start-page: 7377 year: 2016 end-page: 7382 article-title: Linear mixed model for heritability estimation that explicitly addresses environmental variation publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 40 start-page: 329 year: 2010 end-page: 393 article-title: Dynamic networks and behavior: Separating selection from influence publication-title: Sociological Methodology – volume: 8 start-page: 95 year: 1966 end-page: 108 article-title: A mathematical model of the culling process in dairy cattle publication-title: Animal Science – volume: 64 start-page: 1849 year: 2010 end-page: 1856 article-title: Experimental evidence for the evolution of indirect genetic effects: Changes in the interaction effect coefficient, psi (ψ), due to sexual selection publication-title: Evolution – volume: 369 start-page: 20130358 year: 2014 article-title: Quantitative genetic versions of Hamilton's rule with empirical applications publication-title: Philosophical Transactions of the Royal Society B – year: 2015 – volume: 44 start-page: 820 year: 1990 end-page: 831 article-title: Measuring selection on reaction norms: An exploration of the Eurosta‐Solidago system publication-title: Evolution – volume: 105 start-page: 15825 year: 2008 end-page: 15830 article-title: Evolutionary emergence of responsive and unresponsive personalities publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 5 start-page: 1 year: 2014 end-page: 9 article-title: Consistent individual differences in human social learning strategies publication-title: Nature Communications – volume: 7 start-page: 1 year: 2017 end-page: 9 article-title: Indirect genetic effects: A key component of the genetic architecture of behaviour publication-title: Scientific Reports – volume: 108 start-page: 10792 year: 2011 end-page: 10799 article-title: Expanded social fitness and Hamilton's rule for kin, kith, and kind publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 108 start-page: 15639 year: 2011 end-page: 15646 article-title: Structural equation models and the quantification of behavior publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 51 start-page: 1352 year: 1997 end-page: 1362 article-title: Interacting phenotypes and the evolutionary process: I. Direct and indirect genetic effects of social interactions publication-title: Evolution – year: 2003 – volume: 94 start-page: 929 year: 2019 end-page: 956 article-title: Sexual selection and its evolutionary consequences in female animals publication-title: Biological Reviews – volume: 65 start-page: 2771 issue: 10 year: 2011 end-page: 2781 article-title: Phenotypic assortment mediates the effect of social selection in a wild beetle population publication-title: Evolution: International Journal of Organic Evolution – volume: 13 year: 2018 article-title: A guide to using a multiple‐matrix animal model to disentangle genetic and nongenetic causes of phenotypic variance publication-title: PLoS One – volume: 175 start-page: 116 year: 2010 end-page: 125 article-title: The misuse of BLUP in ecology and evolution publication-title: The American Naturalist – volume: 67 start-page: 1027 year: 2013 end-page: 1032 article-title: On between‐individual and residual (co) variances in the study of animal personality: Are you willing to take the “individual gambit”? publication-title: Behavioral Ecology and Sociobiology – volume: 33 start-page: 402 year: 1979 end-page: 416 article-title: Quantitative genetic analysis of multivariate evolution, applied to brain: Body size allometry publication-title: Evolution – volume: 7 start-page: 17 year: 1964 end-page: 52 article-title: The genetical evolution of social behaviour. II publication-title: Journal of Theoretical Biology – volume: 90 start-page: 1015 year: 2015 end-page: 1034 article-title: Trading up: The fitness consequences of divorce in monogamous birds publication-title: Biological Reviews – volume: 68 start-page: 2245 year: 2014 end-page: 2258 article-title: Pathways to social evolution: Reciprocity, relatedness, and synergy publication-title: Evolution – volume: 285 start-page: 20180875 year: 2018 article-title: Biparental care is more than the sum of its parts: Experimental evidence for synergistic effects on offspring fitness publication-title: Proceedings of the Royal Society B – volume: 118 start-page: 76 year: 2012 end-page: 86 article-title: Behavioural syndromes, partner compatibility and reproductive performance in Steller’s jays publication-title: Ethology – year: 2020 – volume: 90 start-page: 729 year: 2015 end-page: 743 article-title: The biology hidden inside residual within‐individual phenotypic variation publication-title: Biological Reviews – volume: 79 start-page: 13 year: 2010 end-page: 26 article-title: An ecologist’s guide to the animal model publication-title: Journal of Animal Ecology – volume: 71 start-page: 2693 year: 2017 end-page: 2702 article-title: Assortment and the analysis of natural selection on social traits publication-title: Evolution – volume: 316 start-page: R101 year: 2019 end-page: R109 article-title: Meta‐analytic insights into factors influencing the repeatability of hormone levels in agricultural, ecological, and medical fields publication-title: American Journal of Physiology‐Regulatory, Integrative and Comparative Physiology – volume: 17 start-page: R648 year: 2007 end-page: R650 article-title: All of life is social publication-title: Current Biology – volume: 77 start-page: 771 year: 2009 end-page: 783 article-title: The repeatability of behaviour: A meta‐analysis publication-title: Animal Behaviour – year: 2017 – volume: 31 start-page: 742 year: 2016 end-page: 751 article-title: Why sexually selected weapons are not ornaments publication-title: Trends in Ecology & Evolution – volume: 5 start-page: 92 year: 2017 article-title: An approach to distinguish between plasticity and non‐random distributions of behavioral types along urban gradients in a wild passerine bird publication-title: Frontiers in Ecology and Evolution – volume: 29 start-page: 1 year: 2018 end-page: 11 article-title: Indirect genetic effects in behavioral ecology: Does behavior play a special role in evolution? publication-title: Behavioral Ecology – volume: 35 start-page: 485 year: 1972 end-page: 490 article-title: Extension of covariance selection mathematics publication-title: Annals of Human Genetics – ident: e_1_2_10_112_1 doi: 10.1073/pnas.0805473105 – ident: e_1_2_10_52_1 doi: 10.1098/rstb.2001.0926 – ident: e_1_2_10_62_1 doi: 10.32942/OSF.IO/U26TZ – ident: e_1_2_10_38_1 doi: 10.1017/9781139161879 – ident: e_1_2_10_101_1 doi: 10.1016/j.anbehav.2008.11.006 – ident: e_1_2_10_95_1 doi: 10.1111/j.1467-9531.2010.01225.x – ident: e_1_2_10_32_1 doi: 10.1111/jeb.12587 – volume-title: Time series analysis: Forecasting and control year: 2016 ident: e_1_2_10_13_1 – ident: e_1_2_10_11_1 doi: 10.1073/pnas.1010661108 – ident: e_1_2_10_37_1 doi: 10.1111/j.1439-0310.2011.01990.x – ident: e_1_2_10_50_1 doi: 10.1086/670160 – ident: e_1_2_10_6_1 doi: 10.1093/beheco/arx127 – ident: e_1_2_10_49_1 doi: 10.1007/s00265-008-0646-9 – volume-title: R: A language and environment for statistical computing year: 2013 ident: e_1_2_10_85_1 – ident: e_1_2_10_29_1 doi: 10.1098/rstb.2010.0129 – ident: e_1_2_10_30_1 doi: 10.1098/rspb.2017.2763 – ident: e_1_2_10_90_1 doi: 10.2307/2527838 – ident: e_1_2_10_48_1 doi: 10.1086/705825 – ident: e_1_2_10_43_1 doi: 10.1016/0022-5193(64)90039-6 – ident: e_1_2_10_53_1 doi: 10.1007/978-4-431-53892-9_5 – ident: e_1_2_10_87_1 doi: 10.1017/S0003356100037752 – ident: e_1_2_10_12_1 doi: 10.1093/acprof:oso/9780199231157.001.0001 – ident: e_1_2_10_105_1 doi: 10.1111/j.1558-5646.1990.tb03807.x – ident: e_1_2_10_46_1 doi: 10.1093/beheco/arx023 – ident: e_1_2_10_28_1 doi: 10.1016/j.tree.2009.07.013 – ident: e_1_2_10_63_1 doi: 10.1111/2041-210X.13100 – ident: e_1_2_10_16_1 doi: 10.1038/s41467-019-10074-7 – volume-title: ASReml user guide release 1.0 year: 2002 ident: e_1_2_10_39_1 – ident: e_1_2_10_74_1 doi: 10.1111/j.1558-5646.1997.tb01458.x – ident: e_1_2_10_82_1 doi: 10.1098/rspb.2018.0875 – ident: e_1_2_10_10_1 doi: 10.1111/j.1420-9101.2008.01550.x – ident: e_1_2_10_18_1 doi: 10.1098/rsos.140444 – ident: e_1_2_10_4_1 doi: 10.1098/rspb.2013.2645 – ident: e_1_2_10_34_1 doi: 10.1111/j.1558-5646.2011.01340.x – ident: e_1_2_10_55_1 doi: 10.1111/j.1420-9101.2007.01377.x – ident: e_1_2_10_44_1 doi: 10.1111/brv.12484 – ident: e_1_2_10_57_1 doi: 10.1111/j.1558-5646.1983.tb00236.x – ident: e_1_2_10_91_1 doi: 10.1111/nph.12035 – ident: e_1_2_10_33_1 doi: 10.1111/jeb.13437 – ident: e_1_2_10_59_1 doi: 10.1371/journal.pone.0207757 – ident: e_1_2_10_73_1 doi: 10.1038/ncomms4570 – ident: e_1_2_10_94_1 doi: 10.3389/fevo.2017.00092 – ident: e_1_2_10_24_1 doi: 10.1016/j.anbehav.2013.11.008 – ident: e_1_2_10_65_1 doi: 10.1016/j.tree.2016.07.004 – ident: e_1_2_10_66_1 doi: 10.1111/evo.13365 – ident: e_1_2_10_14_1 doi: 10.1098/rsos.181493 – ident: e_1_2_10_7_1 doi: 10.1016/j.anbehav.2008.12.022 – ident: e_1_2_10_40_1 doi: 10.18637/jss.v033.i02 – ident: e_1_2_10_41_1 doi: 10.1111/2041-210X.12802 – ident: e_1_2_10_109_1 doi: 10.1111/brv.12131 – ident: e_1_2_10_93_1 doi: 10.1201/9780429343001-8 – ident: e_1_2_10_35_1 doi: 10.1515/9780691206820 – ident: e_1_2_10_17_1 doi: 10.18637/jss.v076.i01 – ident: e_1_2_10_102_1 doi: 10.1111/j.1752-4571.2010.00147.x – ident: e_1_2_10_108_1 doi: 10.1111/1365-2656.13360 – ident: e_1_2_10_47_1 doi: 10.1126/science.1156108 – ident: e_1_2_10_78_1 doi: 10.1111/j.1469-185X.2010.00141.x – ident: e_1_2_10_64_1 doi: 10.1093/acprof:oso/9780199674237.003.0006 – ident: e_1_2_10_81_1 doi: 10.1016/S0169-5347(97)01232-9 – volume-title: Animal signals year: 2003 ident: e_1_2_10_92_1 doi: 10.1093/oso/9780198526841.001.0001 – ident: e_1_2_10_36_1 doi: 10.1016/j.cub.2007.06.005 – ident: e_1_2_10_2_1 doi: 10.1073/pnas.1917166117 – ident: e_1_2_10_3_1 doi: 10.1080/02664763.2020.1808599 – ident: e_1_2_10_86_1 doi: 10.1111/evo.13660 – ident: e_1_2_10_42_1 doi: 10.1086/648604 – ident: e_1_2_10_27_1 doi: 10.1111/1365-2656.12013 – ident: e_1_2_10_70_1 doi: 10.1111/j.1558-5646.2010.01012.x – ident: e_1_2_10_79_1 doi: 10.1111/j.1420-9101.2007.01300.x – ident: e_1_2_10_80_1 doi: 10.1038/s41598-020-58826-6 – ident: e_1_2_10_21_1 doi: 10.1111/2041-210X.12837 – ident: e_1_2_10_100_1 doi: 10.1111/evo.12438 – ident: e_1_2_10_54_1 doi: 10.1002/ajpa.22721 – ident: e_1_2_10_111_1 doi: 10.1086/303168 – ident: e_1_2_10_8_1 doi: 10.1534/genetics.111.130617 – ident: e_1_2_10_98_1 doi: 10.1371/journal.pone.0197720 – ident: e_1_2_10_69_1 doi: 10.1111/j.1558-5646.2009.00676.x – ident: e_1_2_10_75_1 doi: 10.1111/j.1420-9101.2010.02084.x – ident: e_1_2_10_19_1 doi: 10.1098/rstb.2017.0281 – ident: e_1_2_10_68_1 doi: 10.1101/2021.03.27.437341 – ident: e_1_2_10_71_1 doi: 10.1098/rstb.2013.0358 – ident: e_1_2_10_58_1 doi: 10.1111/oik.05985 – ident: e_1_2_10_96_1 doi: 10.1111/evo.12321 – ident: e_1_2_10_84_1 doi: 10.1073/pnas.1100298108 – ident: e_1_2_10_20_1 doi: 10.1111/j.1558-5646.2010.00952.x – ident: e_1_2_10_99_1 doi: 10.1093/icb/icx071 – ident: e_1_2_10_22_1 doi: 10.1111/brv.12143 – ident: e_1_2_10_76_1 doi: 10.1111/j.1558-5646.2012.01632.x – ident: e_1_2_10_60_1 doi: 10.1126/science.aal3618 – ident: e_1_2_10_67_1 doi: 10.1201/9780429029608 – ident: e_1_2_10_25_1 doi: 10.1016/j.tree.2014.12.002 – ident: e_1_2_10_56_1 doi: 10.1111/j.1558-5646.1979.tb04694.x – ident: e_1_2_10_97_1 doi: 10.1086/704089 – ident: e_1_2_10_106_1 doi: 10.1073/pnas.1421402112 – ident: e_1_2_10_110_1 doi: 10.1111/j.1365-2656.2009.01639.x – ident: e_1_2_10_31_1 doi: 10.1152/ajpregu.00006.2018 – ident: e_1_2_10_103_1 doi: 10.1371/journal.pbio.3000156 – ident: e_1_2_10_61_1 doi: 10.1515/9781400866564 – ident: e_1_2_10_15_1 doi: 10.1007/s00265-013-1527-4 – ident: e_1_2_10_83_1 doi: 10.1111/j.1469-1809.1957.tb01874.x – ident: e_1_2_10_88_1 doi: 10.1017/9781107338319 – ident: e_1_2_10_51_1 doi: 10.1111/j.1558-5646.2012.01585.x – ident: e_1_2_10_23_1 doi: 10.1534/genetics.115.186536 – ident: e_1_2_10_72_1 doi: 10.1093/oso/9780198815778.001.0001 – ident: e_1_2_10_89_1 doi: 10.1038/s41598-017-08258-6 – ident: e_1_2_10_107_1 doi: 10.1111/j.1558-5646.2011.01490.x – ident: e_1_2_10_9_1 doi: 10.1038/hdy.2013.15 – ident: e_1_2_10_104_1 doi: 10.1007/s10071-018-1198-7 – ident: e_1_2_10_26_1 doi: 10.1111/evo.14198 – ident: e_1_2_10_5_1 doi: 10.1111/evo.14054 – ident: e_1_2_10_45_1 doi: 10.1073/pnas.1510497113 – ident: e_1_2_10_77_1 doi: 10.1111/evo.12077 |
SSID | ssj0016455 |
Score | 2.427899 |
Snippet | Both assortment and plasticity can facilitate social evolution, as each may generate heritable associations between the phenotypes and fitness of individuals... |
SourceID | pubmedcentral proquest pubmed crossref wiley |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 520 |
SubjectTerms | Adaptation, Physiological - genetics animal model Animal models Animals assortment Biological Evolution Evolution Genetic analysis Mathematical models Models, Animal Norms Parameters Phenotype Phenotypes Phenotypic plasticity Plastic properties Plasticity Programming languages Quantitative genetics reaction norm Selection, Genetic Social Behavior social evolution uncertainty |
Title | Social animal models for quantifying plasticity, assortment, and selection on interacting phenotypes |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fjeb.13900 https://www.ncbi.nlm.nih.gov/pubmed/34233047 https://www.proquest.com/docview/2649250244 https://www.proquest.com/docview/2549687641 https://www.proquest.com/docview/2661036095 https://pubmed.ncbi.nlm.nih.gov/PMC9292565 |
Volume | 35 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3fS9xAEMcHFQVf6q_WprWyFR98MEdyt5tN6JMWRYSWUhTuQQi72V1ObHNq7h6uf70zmx941RYRDi6QSdgkM8lnd2e_A7AvuTNx5mzI1YCHHL95YZo6EUqecRm5NDWWBvS_fU_OLvn5UAwX4Eu7FqbWh-gG3Cgy_PuaAlzp6nGQW91DfImov065WgREPzvpKOwF-IqnsZ_sTeJhoyrks3jaI-e_RU8A82me5GN-9R-g0zW4apte553c9KYT3Sv-_KXq-MprW4c3DZiyo9qTNmDBlpuwUpeqnG3C8vEYMXK2BaZe0MtUef0b_3wlnYoh-rK7qaLMI1o3xW4RyilfezI7ZIjnyPg0ConbpWGVL72D_sDwR3IVfqEWHTSy5ZjGhKu3cHl6cvH1LGxKNYQFl0kUGi4KqZIiSq21NLmnI41w4pQRHN3EiGigsoFQfR0L2XeJKjS6BC16jaUXxXsHS-W4tO-BZXiqlKeOXi3ciUJLYwfCOOQoRfqGARy0Dy0vGh1zKqfxK-_6M1bn_u4FsNeZ3tbiHc8Z7bRPPm_it8oREzOEQ2SfAD53uzHyaDpFlXY8RRvsWifYdh7_xwbxBxkBOTaA7dqZupaQ9iJNegYg59ysMyDl7_k95fXIK4Aj0yKq4jkPvBf9--Ly85Njv_Hh5aYfYbVPazx8etIOLE3up_YTktdE78Jin__Y9YH2ANCXKyg |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS9xAEB_EVvSltn60sbaupQ8-NEdyt5tNwBctymnVh6JwLyXsZndRanPq3T2cf31nNh942kopBBLIJGySmexvZmd-A_BZcmfizNmQqx4POc55YZo6EUqecRm5NDWWAvqnZ0n_gh8PxGAOdptamIofog24kWX4_zUZOAWkH1q51R3ELxE67C-oo7d3qL635FHoB_iep7Ff7k3iQc0r5PN4mktnZ6MnEPNppuRDBOunoMNl-NEMvso8-dmZjHWnuH_E6_i_T_caXtXYlO1VyvQG5my5AgtVt8rpCrzcHyKSnK6CqWp6mSqvfuHON9MZMUS_7HaiKPmISqfYDeJyStkeT78wROgI8ykQicelYSPffQdVguFGjBW-VosuurTlkMLCozW4ODw4_9oP624NYcFlEoWGi0KqpIhSay2t7-lIIz5xygiOmmJE1FNZT6iujoXsukQVGrWC6l5j6Xnx1mG-HJb2HbAMb5Xy1NHfhTtRaGlsTxiHUEoRxWEAO81Xy4uaypw6alznrUtjde7fXgCfWtGbir_jT0KbzafPaxMe5YgUM8SHCH8C2G5Po_HRiooq7XCCMuhdJzh2Hj8jgwgIYQJC2QDeVtrUjoToF2ndMwA5o2etAJF_z54pry49CTjCWkSreM8dr0Z_f7j8-GDfH2z8u-gWLPbPT0_yk6Ozb-9hqUslHz5baRPmx3cT-wGB2Fh_9Pb2G1JKLmw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3fb9MwEMdP0waIl7EfDAIb89Ae9rBUSWvHiXhibNV-MSHEpD5MiuzY1iYg7db2ofz13Dk_tDJACKlSI-USOcld8rF9_h7AruTOxJmzIVc9HnL85oVp6kQoecZl5NLUWBrQ_3iRHF_y04EYLMC7Zi1MpQ_RDrhRZPj3NQX4yLj7QW51B_Elwv76Ek-ilFz68HOrHYXdAF_yNPazvUk8qGWFfBpPc-j8x-gBYT5MlLwPsP4L1H8GV03bq8STr53pRHeKH7_IOv7nxa3Ack2m7H3lSquwYMs1eFzVqpytwaODIXLkbB1MtaKXqfLmO_75UjpjhuzLbqeKUo9o4RQbIZVTwvZkts-QzxHyaRgSt0vDxr72DjoEwx_pVfiVWnTQtS2HNCg8fg6X_aMvH47DulZDWHCZRKHhopAqKaLUWkuzezrSSCdOGcHRT4yIeirrCdXVsZBdl6hCo0_QqtdYelW8DVgsh6V9CSzDU6U8dfRu4U4UWhrbE8YhSCkSOAxgr3loeVELmVM9jW9526GxOvd3L4C3remoUu_4ndFm8-TzOoDHOXJihnSI8BPATrsbQ4_mU1Rph1O0wb51gm3n8V9skH8QEhBkA3hROVPbEhJfpFnPAOScm7UGJP09v6e8ufYS4Ai1yKp4zj3vRX--uPz06MBvvPp302148umwn5-fXJy9hqddWu_hU5U2YXFyN7VbSGET_cZH20_I3S0k |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Social+animal+models+for+quantifying+plasticity%2C+assortment%2C+and+selection+on+interacting+phenotypes&rft.jtitle=Journal+of+evolutionary+biology&rft.au=Martin%2C+Jordan+S&rft.au=Jaeggi%2C+Adrian+V&rft.date=2022-04-01&rft.eissn=1420-9101&rft.volume=35&rft.issue=4&rft.spage=520&rft_id=info:doi/10.1111%2Fjeb.13900&rft_id=info%3Apmid%2F34233047&rft.externalDocID=34233047 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1010-061X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1010-061X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1010-061X&client=summon |