Social animal models for quantifying plasticity, assortment, and selection on interacting phenotypes

Both assortment and plasticity can facilitate social evolution, as each may generate heritable associations between the phenotypes and fitness of individuals and their social partners. However, it currently remains difficult to empirically disentangle these distinct mechanisms in the wild, particula...

Full description

Saved in:
Bibliographic Details
Published inJournal of evolutionary biology Vol. 35; no. 4; pp. 520 - 538
Main Authors Martin, Jordan S., Jaeggi, Adrian V.
Format Journal Article
LanguageEnglish
Published England Oxford University Press 01.04.2022
John Wiley and Sons Inc
Subjects
Online AccessGet full text
ISSN1010-061X
1420-9101
1420-9101
DOI10.1111/jeb.13900

Cover

Loading…
Abstract Both assortment and plasticity can facilitate social evolution, as each may generate heritable associations between the phenotypes and fitness of individuals and their social partners. However, it currently remains difficult to empirically disentangle these distinct mechanisms in the wild, particularly for complex and environmentally responsive phenotypes subject to measurement error. To address this challenge, we extend the widely used animal model to facilitate unbiased estimation of plasticity, assortment and selection on social traits, for both phenotypic and quantitative genetic (QG) analysis. Our social animal models (SAMs) estimate key evolutionary parameters for the latent reaction norms underlying repeatable patterns of phenotypic interaction across social environments. As a consequence of this approach, SAMs avoid inferential biases caused by various forms of measurement error in the raw phenotypic associations between social partners. We conducted a simulation study to demonstrate the application of SAMs and investigate their performance for both phenotypic and QG analyses. With sufficient repeated measurements, we found desirably high power, low bias and low uncertainty across model parameters using modest sample and effect sizes, leading to robust predictions of selection and adaptation. Our results suggest that SAMs will readily enhance social evolutionary research on a variety of phenotypes in the wild. We provide detailed coding tutorials and worked examples for implementing SAMs in the Stan statistical programming language. Empirical study of the causes and evolutionary consequences of social interactions remains challenging. Raw associations between social partners' phenotypes are often biased by various forms of measurement error (left), and tend to confound distinct social effects within (plasticity) and between partners (assortment) over time (top right). By separating out these distinct mechanisms, social animal models facilitate more accurate predictions of social selection and adaptation (bottom right).
AbstractList Both assortment and plasticity can facilitate social evolution, as each may generate heritable associations between the phenotypes and fitness of individuals and their social partners. However, it currently remains difficult to empirically disentangle these distinct mechanisms in the wild, particularly for complex and environmentally responsive phenotypes subject to measurement error. To address this challenge, we extend the widely used animal model to facilitate unbiased estimation of plasticity, assortment and selection on social traits, for both phenotypic and quantitative genetic (QG) analysis. Our social animal models (SAMs) estimate key evolutionary parameters for the latent reaction norms underlying repeatable patterns of phenotypic interaction across social environments. As a consequence of this approach, SAMs avoid inferential biases caused by various forms of measurement error in the raw phenotypic associations between social partners. We conducted a simulation study to demonstrate the application of SAMs and investigate their performance for both phenotypic and QG analyses. With sufficient repeated measurements, we found desirably high power, low bias and low uncertainty across model parameters using modest sample and effect sizes, leading to robust predictions of selection and adaptation. Our results suggest that SAMs will readily enhance social evolutionary research on a variety of phenotypes in the wild. We provide detailed coding tutorials and worked examples for implementing SAMs in the Stan statistical programming language.
Both assortment and plasticity can facilitate social evolution, as each may generate heritable associations between the phenotypes and fitness of individuals and their social partners. However, it currently remains difficult to empirically disentangle these distinct mechanisms in the wild, particularly for complex and environmentally responsive phenotypes subject to measurement error. To address this challenge, we extend the widely used animal model to facilitate unbiased estimation of plasticity, assortment and selection on social traits, for both phenotypic and quantitative genetic (QG) analysis. Our social animal models (SAMs) estimate key evolutionary parameters for the latent reaction norms underlying repeatable patterns of phenotypic interaction across social environments. As a consequence of this approach, SAMs avoid inferential biases caused by various forms of measurement error in the raw phenotypic associations between social partners. We conducted a simulation study to demonstrate the application of SAMs and investigate their performance for both phenotypic and QG analyses. With sufficient repeated measurements, we found desirably high power, low bias and low uncertainty across model parameters using modest sample and effect sizes, leading to robust predictions of selection and adaptation. Our results suggest that SAMs will readily enhance social evolutionary research on a variety of phenotypes in the wild. We provide detailed coding tutorials and worked examples for implementing SAMs in the Stan statistical programming language. Empirical study of the causes and evolutionary consequences of social interactions remains challenging. Raw associations between social partners' phenotypes are often biased by various forms of measurement error (left), and tend to confound distinct social effects within (plasticity) and between partners (assortment) over time (top right). By separating out these distinct mechanisms, social animal models facilitate more accurate predictions of social selection and adaptation (bottom right).
Both assortment and plasticity can facilitate social evolution, as each may generate heritable associations between the phenotypes and fitness of individuals and their social partners. However, it currently remains difficult to empirically disentangle these distinct mechanisms in the wild, particularly for complex and environmentally responsive phenotypes subject to measurement error. To address this challenge, we extend the widely used animal model to facilitate unbiased estimation of plasticity, assortment and selection on social traits, for both phenotypic and quantitative genetic (QG) analysis. Our social animal models (SAMs) estimate key evolutionary parameters for the latent reaction norms underlying repeatable patterns of phenotypic interaction across social environments. As a consequence of this approach, SAMs avoid inferential biases caused by various forms of measurement error in the raw phenotypic associations between social partners. We conducted a simulation study to demonstrate the application of SAMs and investigate their performance for both phenotypic and QG analyses. With sufficient repeated measurements, we found desirably high power, low bias and low uncertainty across model parameters using modest sample and effect sizes, leading to robust predictions of selection and adaptation. Our results suggest that SAMs will readily enhance social evolutionary research on a variety of phenotypes in the wild. We provide detailed coding tutorials and worked examples for implementing SAMs in the Stan statistical programming language. Empirical study of the causes and evolutionary consequences of social interactions remains challenging. Raw associations between social partners' phenotypes are often biased by various forms of measurement error (left), and tend to confound distinct social effects within (plasticity) and between partners (assortment) over time (top right). By separating out these distinct mechanisms, social animal models facilitate more accurate predictions of social selection and adaptation (bottom right).
Both assortment and plasticity can facilitate social evolution, as each may generate heritable associations between the phenotypes and fitness of individuals and their social partners. However, it currently remains difficult to empirically disentangle these distinct mechanisms in the wild, particularly for complex and environmentally responsive phenotypes subject to measurement error. To address this challenge, we extend the widely used animal model to facilitate unbiased estimation of plasticity, assortment and selection on social traits, for both phenotypic and quantitative genetic (QG) analysis. Our social animal models (SAMs) estimate key evolutionary parameters for the latent reaction norms underlying repeatable patterns of phenotypic interaction across social environments. As a consequence of this approach, SAMs avoid inferential biases caused by various forms of measurement error in the raw phenotypic associations between social partners. We conducted a simulation study to demonstrate the application of SAMs and investigate their performance for both phenotypic and QG analyses. With sufficient repeated measurements, we found desirably high power, low bias and low uncertainty across model parameters using modest sample and effect sizes, leading to robust predictions of selection and adaptation. Our results suggest that SAMs will readily enhance social evolutionary research on a variety of phenotypes in the wild. We provide detailed coding tutorials and worked examples for implementing SAMs in the Stan statistical programming language.Both assortment and plasticity can facilitate social evolution, as each may generate heritable associations between the phenotypes and fitness of individuals and their social partners. However, it currently remains difficult to empirically disentangle these distinct mechanisms in the wild, particularly for complex and environmentally responsive phenotypes subject to measurement error. To address this challenge, we extend the widely used animal model to facilitate unbiased estimation of plasticity, assortment and selection on social traits, for both phenotypic and quantitative genetic (QG) analysis. Our social animal models (SAMs) estimate key evolutionary parameters for the latent reaction norms underlying repeatable patterns of phenotypic interaction across social environments. As a consequence of this approach, SAMs avoid inferential biases caused by various forms of measurement error in the raw phenotypic associations between social partners. We conducted a simulation study to demonstrate the application of SAMs and investigate their performance for both phenotypic and QG analyses. With sufficient repeated measurements, we found desirably high power, low bias and low uncertainty across model parameters using modest sample and effect sizes, leading to robust predictions of selection and adaptation. Our results suggest that SAMs will readily enhance social evolutionary research on a variety of phenotypes in the wild. We provide detailed coding tutorials and worked examples for implementing SAMs in the Stan statistical programming language.
Both assortment and plasticity can facilitate social evolution, as each may generate heritable associations between the phenotypes and fitness of individuals and their social partners. However, it currently remains difficult to empirically disentangle these distinct mechanisms in the wild, particularly for complex and environmentally responsive phenotypes subject to measurement error. To address this challenge, we extend the widely used animal model to facilitate unbiased estimation of plasticity, assortment and selection on social traits, for both phenotypic and quantitative genetic (QG) analysis. Our social animal models (SAMs) estimate key evolutionary parameters for the latent reaction norms underlying repeatable patterns of phenotypic interaction across social environments. As a consequence of this approach, SAMs avoid inferential biases caused by various forms of measurement error in the raw phenotypic associations between social partners. We conducted a simulation study to demonstrate the application of SAMs and investigate their performance for both phenotypic and QG analyses. With sufficient repeated measurements, we found desirably high power, low bias and low uncertainty across model parameters using modest sample and effect sizes, leading to robust predictions of selection and adaptation. Our results suggest that SAMs will readily enhance social evolutionary research on a variety of phenotypes in the wild. We provide detailed coding tutorials and worked examples for implementing SAMs in the Stan statistical programming language.
Author Martin, Jordan S.
Jaeggi, Adrian V.
AuthorAffiliation 1 Human Ecology Group Institute of Evolutionary Medicine University of Zurich Zurich Switzerland
AuthorAffiliation_xml – name: 1 Human Ecology Group Institute of Evolutionary Medicine University of Zurich Zurich Switzerland
Author_xml – sequence: 1
  givenname: Jordan S.
  orcidid: 0000-0001-8704-6076
  surname: Martin
  fullname: Martin, Jordan S.
  email: jordan.martin@uzh.ch
  organization: University of Zurich
– sequence: 2
  givenname: Adrian V.
  orcidid: 0000-0003-1695-0388
  surname: Jaeggi
  fullname: Jaeggi, Adrian V.
  organization: University of Zurich
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34233047$$D View this record in MEDLINE/PubMed
BookMark eNqNkl1rFTEQhoNU7Ide-AdkwRsFt53sJtndG8GW-kXBCxW8C9nsbJtDNjlN9lj23zvHU4sWFENgJuSZNzOZOWR7IQZk7CmHY07rZIX9Ma87gAfsgIsKyo4D3yMfOJSg-Ld9dpjzCoArIeUjtl-Lqq5BNAds-BytM74wwU1kpjigz8UYU3G9MWF24-LCZbH2Js_Ounl5VZicY5onDDP5YSgyerSzi6Gg7cKMydBxG3SFIc7LGvNj9nA0PuOTW3vEvr49_3L2vrz49O7D2ZuL0opGQTkIaRujLLSICI1qe-ihEaMZpMAeBwm16Wppqp7LphqVsX3bjpy3nDfQNqo-Yq93uutNP-FgKcdkvF4nqi0tOhqn_7wJ7kpfxu-6q7pKKkkCL24FUrzeYJ715LJF703AuMm6UopDraD7D1SKTlFSghP6_B66ipsU6CdIUNDLUAlB1LPfk7_L-levCHi5A2yKOScc7xAOejsHmuZA_5wDYk_usdQ8s-0S1e38vyJunMfl79L64_npLuIHxArEfg
CitedBy_id crossref_primary_10_1016_j_neubiorev_2022_104980
crossref_primary_10_1016_j_peptides_2024_171270
crossref_primary_10_1111_jeb_13998
crossref_primary_10_1111_brv_12879
crossref_primary_10_1111_brv_12934
crossref_primary_10_1016_j_anbehav_2023_01_015
crossref_primary_10_1093_evolut_qpad136
crossref_primary_10_1016_j_neubiorev_2022_104996
Cites_doi 10.1073/pnas.0805473105
10.1098/rstb.2001.0926
10.32942/OSF.IO/U26TZ
10.1017/9781139161879
10.1016/j.anbehav.2008.11.006
10.1111/j.1467-9531.2010.01225.x
10.1111/jeb.12587
10.1073/pnas.1010661108
10.1111/j.1439-0310.2011.01990.x
10.1086/670160
10.1093/beheco/arx127
10.1007/s00265-008-0646-9
10.1098/rstb.2010.0129
10.1098/rspb.2017.2763
10.2307/2527838
10.1086/705825
10.1016/0022-5193(64)90039-6
10.1007/978-4-431-53892-9_5
10.1017/S0003356100037752
10.1093/acprof:oso/9780199231157.001.0001
10.1111/j.1558-5646.1990.tb03807.x
10.1093/beheco/arx023
10.1016/j.tree.2009.07.013
10.1111/2041-210X.13100
10.1038/s41467-019-10074-7
10.1111/j.1558-5646.1997.tb01458.x
10.1098/rspb.2018.0875
10.1111/j.1420-9101.2008.01550.x
10.1098/rsos.140444
10.1098/rspb.2013.2645
10.1111/j.1558-5646.2011.01340.x
10.1111/j.1420-9101.2007.01377.x
10.1111/brv.12484
10.1111/j.1558-5646.1983.tb00236.x
10.1111/nph.12035
10.1111/jeb.13437
10.1371/journal.pone.0207757
10.1038/ncomms4570
10.3389/fevo.2017.00092
10.1016/j.anbehav.2013.11.008
10.1016/j.tree.2016.07.004
10.1111/evo.13365
10.1098/rsos.181493
10.1016/j.anbehav.2008.12.022
10.18637/jss.v033.i02
10.1111/2041-210X.12802
10.1111/brv.12131
10.1201/9780429343001-8
10.1515/9780691206820
10.18637/jss.v076.i01
10.1111/j.1752-4571.2010.00147.x
10.1111/1365-2656.13360
10.1126/science.1156108
10.1111/j.1469-185X.2010.00141.x
10.1093/acprof:oso/9780199674237.003.0006
10.1016/S0169-5347(97)01232-9
10.1093/oso/9780198526841.001.0001
10.1016/j.cub.2007.06.005
10.1073/pnas.1917166117
10.1080/02664763.2020.1808599
10.1111/evo.13660
10.1086/648604
10.1111/1365-2656.12013
10.1111/j.1558-5646.2010.01012.x
10.1111/j.1420-9101.2007.01300.x
10.1038/s41598-020-58826-6
10.1111/2041-210X.12837
10.1111/evo.12438
10.1002/ajpa.22721
10.1086/303168
10.1534/genetics.111.130617
10.1371/journal.pone.0197720
10.1111/j.1558-5646.2009.00676.x
10.1111/j.1420-9101.2010.02084.x
10.1098/rstb.2017.0281
10.1101/2021.03.27.437341
10.1098/rstb.2013.0358
10.1111/oik.05985
10.1111/evo.12321
10.1073/pnas.1100298108
10.1111/j.1558-5646.2010.00952.x
10.1093/icb/icx071
10.1111/brv.12143
10.1111/j.1558-5646.2012.01632.x
10.1126/science.aal3618
10.1201/9780429029608
10.1016/j.tree.2014.12.002
10.1111/j.1558-5646.1979.tb04694.x
10.1086/704089
10.1073/pnas.1421402112
10.1111/j.1365-2656.2009.01639.x
10.1152/ajpregu.00006.2018
10.1371/journal.pbio.3000156
10.1515/9781400866564
10.1007/s00265-013-1527-4
10.1111/j.1469-1809.1957.tb01874.x
10.1017/9781107338319
10.1111/j.1558-5646.2012.01585.x
10.1534/genetics.115.186536
10.1093/oso/9780198815778.001.0001
10.1038/s41598-017-08258-6
10.1111/j.1558-5646.2011.01490.x
10.1038/hdy.2013.15
10.1007/s10071-018-1198-7
10.1111/evo.14198
10.1111/evo.14054
10.1073/pnas.1510497113
10.1111/evo.12077
ContentType Journal Article
Copyright 2021 The Authors. published by John Wiley & Sons Ltd on behalf of European Society for Evolutionary Biology.
2021 The Authors. Journal of Evolutionary Biology published by John Wiley & Sons Ltd on behalf of European Society for Evolutionary Biology.
2021. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2021 The Authors. published by John Wiley & Sons Ltd on behalf of European Society for Evolutionary Biology.
– notice: 2021 The Authors. Journal of Evolutionary Biology published by John Wiley & Sons Ltd on behalf of European Society for Evolutionary Biology.
– notice: 2021. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QP
7QR
7SN
7SS
7TK
8FD
C1K
FR3
K9.
P64
RC3
7X8
7S9
L.6
5PM
DOI 10.1111/jeb.13900
DatabaseName Wiley Online Library Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Animal Behavior Abstracts
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Neurosciences Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Entomology Abstracts
Genetics Abstracts
Technology Research Database
Animal Behavior Abstracts
ProQuest Health & Medical Complete (Alumni)
Chemoreception Abstracts
Engineering Research Database
Ecology Abstracts
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Entomology Abstracts


MEDLINE - Academic
MEDLINE
AGRICOLA
CrossRef
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Botany
DocumentTitleAlternate MARTIN and JAEGGI
EISSN 1420-9101
EndPage 538
ExternalDocumentID PMC9292565
34233047
10_1111_jeb_13900
JEB13900
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Universitat Zurich
GroupedDBID ---
-~X
.3N
.GA
.Y3
05W
0R~
10A
1OC
24P
29K
2WC
31~
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5HH
5LA
5VS
5WD
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHHS
AANLZ
AAONW
AASGY
AAUAY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDFA
ABEJV
ABEML
ABJNI
ABLJU
ABMNT
ABPVW
ABTAH
ABXVV
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ACZBC
ADBBV
ADEOM
ADIPN
ADIZJ
ADKYN
ADMGS
ADOZA
ADVOB
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFNX
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AGMDO
AHMBA
AIURR
AIWBW
AJAOE
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BAWUL
BCRHZ
BFHJK
BGNMA
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
C45
CAG
COF
CS3
D-E
D-F
D-I
DCZOG
DIK
DPXWK
DR2
DRFUL
DRSTM
E3Z
EBS
ECGQY
EJD
ESX
F00
F01
F04
F5P
FIJ
G-S
G.N
GODZA
H.T
H.X
HF~
HZI
HZ~
IHE
IPNFZ
IX1
J0M
K48
KOP
LAS
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M4Y
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
N04
N05
N9A
NF~
NU-
NU0
O66
O9-
OBOKY
OIG
OJZSN
OK1
OVD
OWPYF
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
R.K
ROL
ROX
RX1
SUPJJ
TEORI
UB1
W8V
W99
WBKPD
WIH
WIK
WIN
WNSPC
WOHZO
WQJ
WRC
WYISQ
XG1
YFH
ZY4
ZZTAW
~IA
~KM
~WT
AAFWJ
AAYXX
ABGNP
ACVCV
ADNBA
AEOTA
AGORE
AHGBF
AJBYB
AJDVS
AJNCP
CITATION
H13
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QP
7QR
7SN
7SS
7TK
8FD
C1K
FR3
K9.
P64
RC3
7X8
7S9
L.6
5PM
ID FETCH-LOGICAL-c4760-d45c7a6c08eee0768b0b074fad54ebed503a935a2b1572f6acb88f11811708763
IEDL.DBID DR2
ISSN 1010-061X
1420-9101
IngestDate Thu Aug 21 13:50:24 EDT 2025
Fri Jul 11 18:33:58 EDT 2025
Wed Sep 03 01:29:26 EDT 2025
Mon Jul 28 13:50:40 EDT 2025
Mon Jul 21 06:00:33 EDT 2025
Tue Jul 01 03:26:10 EDT 2025
Thu Apr 24 23:04:53 EDT 2025
Wed Jan 22 16:25:06 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords plasticity
reaction norm
assortment
animal model
social evolution
Language English
License Attribution-NonCommercial
2021 The Authors. Journal of Evolutionary Biology published by John Wiley & Sons Ltd on behalf of European Society for Evolutionary Biology.
This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4760-d45c7a6c08eee0768b0b074fad54ebed503a935a2b1572f6acb88f11811708763
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-8704-6076
0000-0003-1695-0388
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fjeb.13900
PMID 34233047
PQID 2649250244
PQPubID 37112
PageCount 19
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_9292565
proquest_miscellaneous_2661036095
proquest_miscellaneous_2549687641
proquest_journals_2649250244
pubmed_primary_34233047
crossref_primary_10_1111_jeb_13900
crossref_citationtrail_10_1111_jeb_13900
wiley_primary_10_1111_jeb_13900_JEB13900
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate April 2022
PublicationDateYYYYMMDD 2022-04-01
PublicationDate_xml – month: 04
  year: 2022
  text: April 2022
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Oxford
– name: Hoboken
PublicationTitle Journal of evolutionary biology
PublicationTitleAlternate J Evol Biol
PublicationYear 2022
Publisher Oxford University Press
John Wiley and Sons Inc
Publisher_xml – name: Oxford University Press
– name: John Wiley and Sons Inc
References 2018; 285
2017; 5
2017; 7
2017; 8
2019; 94
2013; 67
2019; 10
1964; 7
2015; 30
2019; 17
2016; 31
2002; 357
2014; 68
2008; 105
2019; 128
2020; 10
1979; 33
2017; 355
2018; 373
2010; 23
2014; 369
2010; 64
2014; 5
1997; 51
1990; 44
2021; 75
2010; 25
2017; 71
2017; 76
2016; 113
2011; 65
2008; 21
2020; 89
2008; 63
2014; 281
2015; 90
2019; 316
2013; 197
2007; 20
2010; 3
2019; 194
2012; 66
1998; 13
2015; 2
2007; 17
2010; 33
2018; 29
2009; 63
2019; 6
2019; 73
2010; 79
2011
2017; 28
2019; 32
1966; 8
2010; 365
1998
2016; 204
2003
2002
2013; 181
2008; 320
1983; 37
2018; 21
2010; 85
2014; 88
2010; 40
2014; 112
1961; 17
2009; 77
2015; 28
2011; 108
2020; 74
2015; 157
2021
2020
2015; 112
2017; 57
1999; 153
2020; 117
2013; 82
2010; 175
2017
2016
2015
2014
2013
1972; 35
2011; 189
2012; 118
2018; 13
e_1_2_10_21_1
e_1_2_10_44_1
e_1_2_10_40_1
e_1_2_10_109_1
e_1_2_10_70_1
e_1_2_10_93_1
e_1_2_10_2_1
e_1_2_10_18_1
e_1_2_10_74_1
e_1_2_10_97_1
e_1_2_10_6_1
e_1_2_10_55_1
e_1_2_10_14_1
e_1_2_10_37_1
e_1_2_10_78_1
e_1_2_10_112_1
e_1_2_10_32_1
e_1_2_10_51_1
e_1_2_10_82_1
e_1_2_10_29_1
e_1_2_10_63_1
e_1_2_10_86_1
e_1_2_10_105_1
e_1_2_10_25_1
e_1_2_10_48_1
e_1_2_10_67_1
e_1_2_10_101_1
e_1_2_10_45_1
Box G. E. (e_1_2_10_13_1) 2016
e_1_2_10_22_1
e_1_2_10_41_1
R Core Team (e_1_2_10_85_1) 2013
e_1_2_10_90_1
e_1_2_10_71_1
e_1_2_10_94_1
e_1_2_10_52_1
e_1_2_10_3_1
e_1_2_10_19_1
e_1_2_10_75_1
e_1_2_10_38_1
e_1_2_10_98_1
e_1_2_10_56_1
e_1_2_10_79_1
e_1_2_10_7_1
e_1_2_10_15_1
e_1_2_10_10_1
e_1_2_10_33_1
e_1_2_10_60_1
e_1_2_10_106_1
e_1_2_10_83_1
e_1_2_10_64_1
e_1_2_10_102_1
e_1_2_10_49_1
e_1_2_10_87_1
e_1_2_10_26_1
e_1_2_10_68_1
e_1_2_10_23_1
e_1_2_10_46_1
e_1_2_10_69_1
e_1_2_10_42_1
e_1_2_10_110_1
e_1_2_10_91_1
e_1_2_10_72_1
e_1_2_10_95_1
e_1_2_10_4_1
e_1_2_10_53_1
e_1_2_10_16_1
e_1_2_10_76_1
e_1_2_10_99_1
e_1_2_10_8_1
e_1_2_10_57_1
e_1_2_10_58_1
e_1_2_10_34_1
e_1_2_10_11_1
e_1_2_10_30_1
e_1_2_10_80_1
e_1_2_10_61_1
e_1_2_10_84_1
e_1_2_10_107_1
e_1_2_10_27_1
e_1_2_10_65_1
e_1_2_10_88_1
e_1_2_10_103_1
e_1_2_10_24_1
Gilmour A. R. (e_1_2_10_39_1) 2002
e_1_2_10_43_1
e_1_2_10_20_1
e_1_2_10_108_1
e_1_2_10_73_1
e_1_2_10_96_1
e_1_2_10_54_1
e_1_2_10_5_1
e_1_2_10_17_1
e_1_2_10_77_1
e_1_2_10_111_1
e_1_2_10_36_1
e_1_2_10_12_1
e_1_2_10_35_1
e_1_2_10_9_1
e_1_2_10_59_1
e_1_2_10_31_1
e_1_2_10_50_1
Smith J. M. (e_1_2_10_92_1) 2003
e_1_2_10_81_1
e_1_2_10_62_1
e_1_2_10_104_1
e_1_2_10_28_1
e_1_2_10_66_1
e_1_2_10_100_1
e_1_2_10_47_1
e_1_2_10_89_1
References_xml – year: 2011
– volume: 373
  start-page: 20170281
  year: 2018
  article-title: The repeatability of cognitive performance: A meta‐analysis
  publication-title: Philosophical Transactions of the Royal Society B
– volume: 204
  start-page: 1281
  year: 2016
  end-page: 1294
  article-title: General methods for evolutionary quantitative genetic inference from generalized mixed models
  publication-title: Genetics
– volume: 281
  start-page: 20132645
  year: 2014
  article-title: Characterizing behavioural ‘characters’: An evolutionary framework
  publication-title: Proceedings of the Royal Society B
– volume: 63
  start-page: 1
  year: 2008
  end-page: 9
  article-title: Mortality and other determinants of bird divorce rate
  publication-title: Behavioral Ecology and Sociobiology
– volume: 8
  start-page: 1910
  year: 2017
  end-page: 1919
  article-title: A statistical methodology for estimating assortative mating for phenotypic traits that are labile or measured with error
  publication-title: Methods in Ecology and Evolution
– volume: 20
  start-page: 831
  year: 2007
  end-page: 844
  article-title: The evolutionary ecology of individual phenotypic plasticity in wild populations
  publication-title: Journal of Evolutionary Biology
– volume: 21
  start-page: 1175
  year: 2008
  end-page: 1188
  article-title: The joint effects of kin, multilevel selection and indirect genetic effects on response to genetic selection
  publication-title: Journal of Evolutionary Biology
– volume: 33
  start-page: 1
  year: 2010
  end-page: 22
  article-title: MCMC methods for multi‐response generalized linear mixed models: The MCMCglmm R package
  publication-title: Journal of Statistical Software
– volume: 6
  start-page: 181493
  year: 2019
  article-title: Evolution of non‐kin cooperation: Social assortment by cooperative phenotype in guppies
  publication-title: Royal Society Open Science
– volume: 17
  start-page: 474
  year: 1961
  end-page: 480
  article-title: Phenotypic, genetic, and environmental correlations
  publication-title: Biometrics
– volume: 128
  start-page: 912
  year: 2019
  end-page: 928
  article-title: Moving beyond noninformative priors: Why and how to choose weakly informative priors in Bayesian analyses
  publication-title: Oikos
– volume: 77
  start-page: 753
  year: 2009
  end-page: 758
  article-title: A simple method for distinguishing within‐ versus between‐subject effects using mixed models
  publication-title: Animal Behaviour
– year: 1998
– volume: 73
  start-page: 175
  year: 2019
  end-page: 187
  article-title: Phenological mismatch drives selection on elevation, but not on slope, of breeding time plasticity in a wild songbird
  publication-title: Evolution
– start-page: 1
  year: 2020
  end-page: 23
  article-title: Robust analogs to the coefficient of variation
  publication-title: Journal of Applied Statistics
– volume: 112
  start-page: 61
  year: 2014
  end-page: 69
  article-title: The quantitative genetics of indirect genetic effects: A selective review of modelling issues
  publication-title: Heredity
– volume: 13
  start-page: 52
  year: 1998
  end-page: 58
  article-title: Extra‐pair paternity in birds: Explaining variation between species and populations
  publication-title: Trends in Ecology & Evolution
– volume: 28
  start-page: 948
  year: 2017
  end-page: 952
  article-title: Avoiding the misuse of BLUP in behavioural ecology
  publication-title: Behavioral Ecology
– volume: 20
  start-page: 1890
  year: 2007
  end-page: 1903
  article-title: How to separate genetic and environmental causes of similarity between relatives
  publication-title: Journal of Evolutionary Biology
– volume: 157
  start-page: 507
  year: 2015
  end-page: 512
  article-title: Multilevel modeling analysis of dyadic network data with an application to Ye'kwana food sharing
  publication-title: American Journal of Physical Anthropology
– volume: 357
  start-page: 319
  year: 2002
  end-page: 330
  article-title: Why is mutual mate choice not the norm? Operational sex ratios, sex roles and the evolution of sexually dimorphic and monomorphic signalling
  publication-title: Philosophical Transactions of the Royal Society of London. Series B
– volume: 66
  start-page: 890
  year: 2012
  end-page: 895
  article-title: Evolution in response to social selection: The importance of interactive effects of traits on fitness
  publication-title: Evolution
– volume: 112
  start-page: 10112
  year: 2015
  end-page: 10119
  article-title: Major evolutionary transitions in individuality
  publication-title: Proceedings of the National Academy of Sciences
– volume: 66
  start-page: 2399
  year: 2012
  end-page: 2410
  article-title: The prediction of adaptive evolution: Empirical application of the secondary theorem of selection and comparison to the breeder’s equation
  publication-title: Evolution
– volume: 285
  start-page: 20172763
  year: 2018
  article-title: Heritable spouse effects increase evolutionary potential of human reproductive timing
  publication-title: Proceedings of the Royal Society B
– volume: 28
  start-page: 547
  year: 2015
  end-page: 556
  article-title: Selection for territory acquisition is modulated by social network structure in a wild songbird
  publication-title: Journal of Evolutionary Biology
– volume: 75
  start-page: 806
  year: 2021
  end-page: 818
  article-title: Most published selection gradients are underestimated: Why this is and how to fix it
  publication-title: Evolution
– volume: 64
  start-page: 2558
  year: 2010
  end-page: 2574
  article-title: Interacting phenotypes and the evolutionary process III. Social evolution
  publication-title: Evolution
– volume: 10
  start-page: 245
  year: 2019
  end-page: 257
  article-title: The EGA+ GNM framework: An integrative approach to modelling behavioural syndromes
  publication-title: Methods in Ecology and Evolution
– volume: 82
  start-page: 39
  year: 2013
  end-page: 54
  article-title: Quantifying individual variation in behaviour: Mixed‐effect modelling approaches
  publication-title: Journal of Animal Ecology
– volume: 194
  start-page: 194
  year: 2019
  end-page: 206
  article-title: Individual variation in the social plasticity of water dragons
  publication-title: The American Naturalist
– volume: 32
  start-page: 559
  year: 2019
  end-page: 571
  article-title: Social effects of territorial neighbours on the timing of spring breeding in North American red squirrels
  publication-title: Journal of Evolutionary Biology
– start-page: 139
  year: 2021
  end-page: 160
– volume: 355
  start-page: 584
  year: 2017
  end-page: 585
  article-title: Measurement error and the replication crisis
  publication-title: Science
– volume: 30
  start-page: 88
  year: 2015
  end-page: 97
  article-title: Interacting personalities: Behavioural ecology meets quantitative genetics
  publication-title: Trends in Ecology & Evolution
– volume: 117
  start-page: 10746
  year: 2020
  end-page: 10754
  article-title: Paternal provisioning results from ecological change
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 189
  start-page: 1347
  year: 2011
  end-page: 1359
  article-title: A general definition of the heritable variation that determines the potential of a population to respond to selection
  publication-title: Genetics
– volume: 8
  start-page: 688
  year: 2017
  end-page: 699
  article-title: Interpreting selection when individuals interact
  publication-title: Methods in Ecology and Evolution
– year: 2016
– volume: 76
  start-page: 1
  year: 2017
  end-page: 23
  article-title: Stan: A probabilistic programming language
  publication-title: Journal of Statistical Software
– volume: 365
  start-page: 4013
  year: 2010
  end-page: 4020
  article-title: Applying a quantitative genetics framework to behavioural syndrome research
  publication-title: Philosophical Transactions of the Royal Society B
– start-page: 84
  year: 2014
  end-page: 103
– volume: 23
  start-page: 2277
  year: 2010
  end-page: 2288
  article-title: The danger of applying the breeder's equation in observational studies of natural populations
  publication-title: Journal of Evolutionary Biology
– year: 2002
– volume: 66
  start-page: 2056
  year: 2012
  end-page: 2064
  article-title: The evolution of social interactions changes predictions about interacting phenotypes
  publication-title: Evolution
– volume: 17
  year: 2019
  article-title: Scrutinizing assortative mating in birds
  publication-title: PLoS Biology
– volume: 10
  start-page: 1
  year: 2019
  end-page: 10
  article-title: Meta‐analytic evidence that sexual selection improves population fitness
  publication-title: Nature Communications
– volume: 89
  start-page: 2813
  year: 2020
  end-page: 2824
  article-title: Collision between biological process and statistical analysis revealed by mean centring
  publication-title: Journal of Animal Ecology
– volume: 85
  start-page: 935
  year: 2010
  end-page: 956
  article-title: Repeatability for Gaussian and non‐Gaussian data: A practical guide for biologists
  publication-title: Biological Reviews
– volume: 194
  start-page: 865
  year: 2019
  end-page: 875
  article-title: Assortative mating in animals and its role for speciation
  publication-title: The American Naturalist
– volume: 13
  year: 2018
  article-title: Equal division of parental care enhances nestling development in the Blackcap
  publication-title: PLoS One
– volume: 2
  start-page: 140444
  year: 2015
  article-title: Phenotypic assortment in wild primate networks: Implications for the dissemination of information
  publication-title: Royal Society Open Science
– volume: 10
  start-page: 1
  year: 2020
  end-page: 9
  article-title: Melanism influences the use of social information in a polymorphic owl
  publication-title: Scientific Reports
– volume: 88
  start-page: 67
  year: 2014
  end-page: 78
  article-title: Cooperating to compete: Altruism, sexual selection and causes of male reproductive cooperation
  publication-title: Animal Behaviour
– year: 2013
– volume: 67
  start-page: 2094
  year: 2013
  end-page: 2100
  article-title: Unification of regression‐based methods for the analysis of natural selection
  publication-title: Evolution
– year: 2021
– volume: 153
  start-page: 254
  year: 1999
  end-page: 266
  article-title: Interacting phenotypes and the evolutionary process. II. Selection resulting from social interactions
  publication-title: The American Naturalist
– volume: 74
  start-page: 1894
  year: 2020
  end-page: 1907
  article-title: Pathways to social evolution and their evolutionary feedbacks
  publication-title: Evolution
– volume: 57
  start-page: 566
  year: 2017
  end-page: 579
  article-title: Stags, hawks, and doves: Social evolution theory and individual variation in cooperation
  publication-title: Integrative and Comparative Biology
– volume: 21
  start-page: 639
  year: 2018
  end-page: 650
  article-title: Chimpanzees demonstrate individual differences in social information use
  publication-title: Animal Cognition
– start-page: 115
  year: 2011
  end-page: 136
– volume: 320
  start-page: 1213
  year: 2008
  end-page: 1216
  article-title: Ancestral monogamy shows kin selection is key to the evolution of eusociality
  publication-title: Science
– volume: 68
  start-page: 1188
  year: 2014
  end-page: 1196
  article-title: Estimating uncertainty in multivariate responses to selection
  publication-title: Evolution
– volume: 197
  start-page: 631
  year: 2013
  end-page: 641
  article-title: Genetic control of interactions among individuals: Contrasting outcomes of indirect genetic effects arising from neighbour disease infection and competition in a forest tree
  publication-title: New Phytologist
– volume: 181
  start-page: E125
  year: 2013
  end-page: E138
  article-title: Assortative mating in animals
  publication-title: The American Naturalist
– volume: 37
  start-page: 1210
  year: 1983
  end-page: 1226
  article-title: The measurement of selection on correlated characters
  publication-title: Evolution
– volume: 63
  start-page: 1785
  year: 2009
  end-page: 1795
  article-title: How to measure indirect genetic effects: The congruence of trait‐based and variance‐partitioning approaches
  publication-title: Evolution
– volume: 3
  start-page: 453
  year: 2010
  end-page: 465
  article-title: Group selection and social evolution in domesticated animals
  publication-title: Evolutionary Applications
– volume: 25
  start-page: 81
  year: 2010
  end-page: 89
  article-title: Behavioural reaction norms: Animal personality meets individual plasticity
  publication-title: Trends in Ecology & Evolution
– volume: 113
  start-page: 7377
  year: 2016
  end-page: 7382
  article-title: Linear mixed model for heritability estimation that explicitly addresses environmental variation
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 40
  start-page: 329
  year: 2010
  end-page: 393
  article-title: Dynamic networks and behavior: Separating selection from influence
  publication-title: Sociological Methodology
– volume: 8
  start-page: 95
  year: 1966
  end-page: 108
  article-title: A mathematical model of the culling process in dairy cattle
  publication-title: Animal Science
– volume: 64
  start-page: 1849
  year: 2010
  end-page: 1856
  article-title: Experimental evidence for the evolution of indirect genetic effects: Changes in the interaction effect coefficient, psi (ψ), due to sexual selection
  publication-title: Evolution
– volume: 369
  start-page: 20130358
  year: 2014
  article-title: Quantitative genetic versions of Hamilton's rule with empirical applications
  publication-title: Philosophical Transactions of the Royal Society B
– year: 2015
– volume: 44
  start-page: 820
  year: 1990
  end-page: 831
  article-title: Measuring selection on reaction norms: An exploration of the Eurosta‐Solidago system
  publication-title: Evolution
– volume: 105
  start-page: 15825
  year: 2008
  end-page: 15830
  article-title: Evolutionary emergence of responsive and unresponsive personalities
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 5
  start-page: 1
  year: 2014
  end-page: 9
  article-title: Consistent individual differences in human social learning strategies
  publication-title: Nature Communications
– volume: 7
  start-page: 1
  year: 2017
  end-page: 9
  article-title: Indirect genetic effects: A key component of the genetic architecture of behaviour
  publication-title: Scientific Reports
– volume: 108
  start-page: 10792
  year: 2011
  end-page: 10799
  article-title: Expanded social fitness and Hamilton's rule for kin, kith, and kind
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 108
  start-page: 15639
  year: 2011
  end-page: 15646
  article-title: Structural equation models and the quantification of behavior
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 51
  start-page: 1352
  year: 1997
  end-page: 1362
  article-title: Interacting phenotypes and the evolutionary process: I. Direct and indirect genetic effects of social interactions
  publication-title: Evolution
– year: 2003
– volume: 94
  start-page: 929
  year: 2019
  end-page: 956
  article-title: Sexual selection and its evolutionary consequences in female animals
  publication-title: Biological Reviews
– volume: 65
  start-page: 2771
  issue: 10
  year: 2011
  end-page: 2781
  article-title: Phenotypic assortment mediates the effect of social selection in a wild beetle population
  publication-title: Evolution: International Journal of Organic Evolution
– volume: 13
  year: 2018
  article-title: A guide to using a multiple‐matrix animal model to disentangle genetic and nongenetic causes of phenotypic variance
  publication-title: PLoS One
– volume: 175
  start-page: 116
  year: 2010
  end-page: 125
  article-title: The misuse of BLUP in ecology and evolution
  publication-title: The American Naturalist
– volume: 67
  start-page: 1027
  year: 2013
  end-page: 1032
  article-title: On between‐individual and residual (co) variances in the study of animal personality: Are you willing to take the “individual gambit”?
  publication-title: Behavioral Ecology and Sociobiology
– volume: 33
  start-page: 402
  year: 1979
  end-page: 416
  article-title: Quantitative genetic analysis of multivariate evolution, applied to brain: Body size allometry
  publication-title: Evolution
– volume: 7
  start-page: 17
  year: 1964
  end-page: 52
  article-title: The genetical evolution of social behaviour. II
  publication-title: Journal of Theoretical Biology
– volume: 90
  start-page: 1015
  year: 2015
  end-page: 1034
  article-title: Trading up: The fitness consequences of divorce in monogamous birds
  publication-title: Biological Reviews
– volume: 68
  start-page: 2245
  year: 2014
  end-page: 2258
  article-title: Pathways to social evolution: Reciprocity, relatedness, and synergy
  publication-title: Evolution
– volume: 285
  start-page: 20180875
  year: 2018
  article-title: Biparental care is more than the sum of its parts: Experimental evidence for synergistic effects on offspring fitness
  publication-title: Proceedings of the Royal Society B
– volume: 118
  start-page: 76
  year: 2012
  end-page: 86
  article-title: Behavioural syndromes, partner compatibility and reproductive performance in Steller’s jays
  publication-title: Ethology
– year: 2020
– volume: 90
  start-page: 729
  year: 2015
  end-page: 743
  article-title: The biology hidden inside residual within‐individual phenotypic variation
  publication-title: Biological Reviews
– volume: 79
  start-page: 13
  year: 2010
  end-page: 26
  article-title: An ecologist’s guide to the animal model
  publication-title: Journal of Animal Ecology
– volume: 71
  start-page: 2693
  year: 2017
  end-page: 2702
  article-title: Assortment and the analysis of natural selection on social traits
  publication-title: Evolution
– volume: 316
  start-page: R101
  year: 2019
  end-page: R109
  article-title: Meta‐analytic insights into factors influencing the repeatability of hormone levels in agricultural, ecological, and medical fields
  publication-title: American Journal of Physiology‐Regulatory, Integrative and Comparative Physiology
– volume: 17
  start-page: R648
  year: 2007
  end-page: R650
  article-title: All of life is social
  publication-title: Current Biology
– volume: 77
  start-page: 771
  year: 2009
  end-page: 783
  article-title: The repeatability of behaviour: A meta‐analysis
  publication-title: Animal Behaviour
– year: 2017
– volume: 31
  start-page: 742
  year: 2016
  end-page: 751
  article-title: Why sexually selected weapons are not ornaments
  publication-title: Trends in Ecology & Evolution
– volume: 5
  start-page: 92
  year: 2017
  article-title: An approach to distinguish between plasticity and non‐random distributions of behavioral types along urban gradients in a wild passerine bird
  publication-title: Frontiers in Ecology and Evolution
– volume: 29
  start-page: 1
  year: 2018
  end-page: 11
  article-title: Indirect genetic effects in behavioral ecology: Does behavior play a special role in evolution?
  publication-title: Behavioral Ecology
– volume: 35
  start-page: 485
  year: 1972
  end-page: 490
  article-title: Extension of covariance selection mathematics
  publication-title: Annals of Human Genetics
– ident: e_1_2_10_112_1
  doi: 10.1073/pnas.0805473105
– ident: e_1_2_10_52_1
  doi: 10.1098/rstb.2001.0926
– ident: e_1_2_10_62_1
  doi: 10.32942/OSF.IO/U26TZ
– ident: e_1_2_10_38_1
  doi: 10.1017/9781139161879
– ident: e_1_2_10_101_1
  doi: 10.1016/j.anbehav.2008.11.006
– ident: e_1_2_10_95_1
  doi: 10.1111/j.1467-9531.2010.01225.x
– ident: e_1_2_10_32_1
  doi: 10.1111/jeb.12587
– volume-title: Time series analysis: Forecasting and control
  year: 2016
  ident: e_1_2_10_13_1
– ident: e_1_2_10_11_1
  doi: 10.1073/pnas.1010661108
– ident: e_1_2_10_37_1
  doi: 10.1111/j.1439-0310.2011.01990.x
– ident: e_1_2_10_50_1
  doi: 10.1086/670160
– ident: e_1_2_10_6_1
  doi: 10.1093/beheco/arx127
– ident: e_1_2_10_49_1
  doi: 10.1007/s00265-008-0646-9
– volume-title: R: A language and environment for statistical computing
  year: 2013
  ident: e_1_2_10_85_1
– ident: e_1_2_10_29_1
  doi: 10.1098/rstb.2010.0129
– ident: e_1_2_10_30_1
  doi: 10.1098/rspb.2017.2763
– ident: e_1_2_10_90_1
  doi: 10.2307/2527838
– ident: e_1_2_10_48_1
  doi: 10.1086/705825
– ident: e_1_2_10_43_1
  doi: 10.1016/0022-5193(64)90039-6
– ident: e_1_2_10_53_1
  doi: 10.1007/978-4-431-53892-9_5
– ident: e_1_2_10_87_1
  doi: 10.1017/S0003356100037752
– ident: e_1_2_10_12_1
  doi: 10.1093/acprof:oso/9780199231157.001.0001
– ident: e_1_2_10_105_1
  doi: 10.1111/j.1558-5646.1990.tb03807.x
– ident: e_1_2_10_46_1
  doi: 10.1093/beheco/arx023
– ident: e_1_2_10_28_1
  doi: 10.1016/j.tree.2009.07.013
– ident: e_1_2_10_63_1
  doi: 10.1111/2041-210X.13100
– ident: e_1_2_10_16_1
  doi: 10.1038/s41467-019-10074-7
– volume-title: ASReml user guide release 1.0
  year: 2002
  ident: e_1_2_10_39_1
– ident: e_1_2_10_74_1
  doi: 10.1111/j.1558-5646.1997.tb01458.x
– ident: e_1_2_10_82_1
  doi: 10.1098/rspb.2018.0875
– ident: e_1_2_10_10_1
  doi: 10.1111/j.1420-9101.2008.01550.x
– ident: e_1_2_10_18_1
  doi: 10.1098/rsos.140444
– ident: e_1_2_10_4_1
  doi: 10.1098/rspb.2013.2645
– ident: e_1_2_10_34_1
  doi: 10.1111/j.1558-5646.2011.01340.x
– ident: e_1_2_10_55_1
  doi: 10.1111/j.1420-9101.2007.01377.x
– ident: e_1_2_10_44_1
  doi: 10.1111/brv.12484
– ident: e_1_2_10_57_1
  doi: 10.1111/j.1558-5646.1983.tb00236.x
– ident: e_1_2_10_91_1
  doi: 10.1111/nph.12035
– ident: e_1_2_10_33_1
  doi: 10.1111/jeb.13437
– ident: e_1_2_10_59_1
  doi: 10.1371/journal.pone.0207757
– ident: e_1_2_10_73_1
  doi: 10.1038/ncomms4570
– ident: e_1_2_10_94_1
  doi: 10.3389/fevo.2017.00092
– ident: e_1_2_10_24_1
  doi: 10.1016/j.anbehav.2013.11.008
– ident: e_1_2_10_65_1
  doi: 10.1016/j.tree.2016.07.004
– ident: e_1_2_10_66_1
  doi: 10.1111/evo.13365
– ident: e_1_2_10_14_1
  doi: 10.1098/rsos.181493
– ident: e_1_2_10_7_1
  doi: 10.1016/j.anbehav.2008.12.022
– ident: e_1_2_10_40_1
  doi: 10.18637/jss.v033.i02
– ident: e_1_2_10_41_1
  doi: 10.1111/2041-210X.12802
– ident: e_1_2_10_109_1
  doi: 10.1111/brv.12131
– ident: e_1_2_10_93_1
  doi: 10.1201/9780429343001-8
– ident: e_1_2_10_35_1
  doi: 10.1515/9780691206820
– ident: e_1_2_10_17_1
  doi: 10.18637/jss.v076.i01
– ident: e_1_2_10_102_1
  doi: 10.1111/j.1752-4571.2010.00147.x
– ident: e_1_2_10_108_1
  doi: 10.1111/1365-2656.13360
– ident: e_1_2_10_47_1
  doi: 10.1126/science.1156108
– ident: e_1_2_10_78_1
  doi: 10.1111/j.1469-185X.2010.00141.x
– ident: e_1_2_10_64_1
  doi: 10.1093/acprof:oso/9780199674237.003.0006
– ident: e_1_2_10_81_1
  doi: 10.1016/S0169-5347(97)01232-9
– volume-title: Animal signals
  year: 2003
  ident: e_1_2_10_92_1
  doi: 10.1093/oso/9780198526841.001.0001
– ident: e_1_2_10_36_1
  doi: 10.1016/j.cub.2007.06.005
– ident: e_1_2_10_2_1
  doi: 10.1073/pnas.1917166117
– ident: e_1_2_10_3_1
  doi: 10.1080/02664763.2020.1808599
– ident: e_1_2_10_86_1
  doi: 10.1111/evo.13660
– ident: e_1_2_10_42_1
  doi: 10.1086/648604
– ident: e_1_2_10_27_1
  doi: 10.1111/1365-2656.12013
– ident: e_1_2_10_70_1
  doi: 10.1111/j.1558-5646.2010.01012.x
– ident: e_1_2_10_79_1
  doi: 10.1111/j.1420-9101.2007.01300.x
– ident: e_1_2_10_80_1
  doi: 10.1038/s41598-020-58826-6
– ident: e_1_2_10_21_1
  doi: 10.1111/2041-210X.12837
– ident: e_1_2_10_100_1
  doi: 10.1111/evo.12438
– ident: e_1_2_10_54_1
  doi: 10.1002/ajpa.22721
– ident: e_1_2_10_111_1
  doi: 10.1086/303168
– ident: e_1_2_10_8_1
  doi: 10.1534/genetics.111.130617
– ident: e_1_2_10_98_1
  doi: 10.1371/journal.pone.0197720
– ident: e_1_2_10_69_1
  doi: 10.1111/j.1558-5646.2009.00676.x
– ident: e_1_2_10_75_1
  doi: 10.1111/j.1420-9101.2010.02084.x
– ident: e_1_2_10_19_1
  doi: 10.1098/rstb.2017.0281
– ident: e_1_2_10_68_1
  doi: 10.1101/2021.03.27.437341
– ident: e_1_2_10_71_1
  doi: 10.1098/rstb.2013.0358
– ident: e_1_2_10_58_1
  doi: 10.1111/oik.05985
– ident: e_1_2_10_96_1
  doi: 10.1111/evo.12321
– ident: e_1_2_10_84_1
  doi: 10.1073/pnas.1100298108
– ident: e_1_2_10_20_1
  doi: 10.1111/j.1558-5646.2010.00952.x
– ident: e_1_2_10_99_1
  doi: 10.1093/icb/icx071
– ident: e_1_2_10_22_1
  doi: 10.1111/brv.12143
– ident: e_1_2_10_76_1
  doi: 10.1111/j.1558-5646.2012.01632.x
– ident: e_1_2_10_60_1
  doi: 10.1126/science.aal3618
– ident: e_1_2_10_67_1
  doi: 10.1201/9780429029608
– ident: e_1_2_10_25_1
  doi: 10.1016/j.tree.2014.12.002
– ident: e_1_2_10_56_1
  doi: 10.1111/j.1558-5646.1979.tb04694.x
– ident: e_1_2_10_97_1
  doi: 10.1086/704089
– ident: e_1_2_10_106_1
  doi: 10.1073/pnas.1421402112
– ident: e_1_2_10_110_1
  doi: 10.1111/j.1365-2656.2009.01639.x
– ident: e_1_2_10_31_1
  doi: 10.1152/ajpregu.00006.2018
– ident: e_1_2_10_103_1
  doi: 10.1371/journal.pbio.3000156
– ident: e_1_2_10_61_1
  doi: 10.1515/9781400866564
– ident: e_1_2_10_15_1
  doi: 10.1007/s00265-013-1527-4
– ident: e_1_2_10_83_1
  doi: 10.1111/j.1469-1809.1957.tb01874.x
– ident: e_1_2_10_88_1
  doi: 10.1017/9781107338319
– ident: e_1_2_10_51_1
  doi: 10.1111/j.1558-5646.2012.01585.x
– ident: e_1_2_10_23_1
  doi: 10.1534/genetics.115.186536
– ident: e_1_2_10_72_1
  doi: 10.1093/oso/9780198815778.001.0001
– ident: e_1_2_10_89_1
  doi: 10.1038/s41598-017-08258-6
– ident: e_1_2_10_107_1
  doi: 10.1111/j.1558-5646.2011.01490.x
– ident: e_1_2_10_9_1
  doi: 10.1038/hdy.2013.15
– ident: e_1_2_10_104_1
  doi: 10.1007/s10071-018-1198-7
– ident: e_1_2_10_26_1
  doi: 10.1111/evo.14198
– ident: e_1_2_10_5_1
  doi: 10.1111/evo.14054
– ident: e_1_2_10_45_1
  doi: 10.1073/pnas.1510497113
– ident: e_1_2_10_77_1
  doi: 10.1111/evo.12077
SSID ssj0016455
Score 2.427899
Snippet Both assortment and plasticity can facilitate social evolution, as each may generate heritable associations between the phenotypes and fitness of individuals...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 520
SubjectTerms Adaptation, Physiological - genetics
animal model
Animal models
Animals
assortment
Biological Evolution
Evolution
Genetic analysis
Mathematical models
Models, Animal
Norms
Parameters
Phenotype
Phenotypes
Phenotypic plasticity
Plastic properties
Plasticity
Programming languages
Quantitative genetics
reaction norm
Selection, Genetic
Social Behavior
social evolution
uncertainty
Title Social animal models for quantifying plasticity, assortment, and selection on interacting phenotypes
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fjeb.13900
https://www.ncbi.nlm.nih.gov/pubmed/34233047
https://www.proquest.com/docview/2649250244
https://www.proquest.com/docview/2549687641
https://www.proquest.com/docview/2661036095
https://pubmed.ncbi.nlm.nih.gov/PMC9292565
Volume 35
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3fS9xAEMcHFQVf6q_WprWyFR98MEdyt5tN6JMWRYSWUhTuQQi72V1ObHNq7h6uf70zmx941RYRDi6QSdgkM8lnd2e_A7AvuTNx5mzI1YCHHL95YZo6EUqecRm5NDWWBvS_fU_OLvn5UAwX4Eu7FqbWh-gG3Cgy_PuaAlzp6nGQW91DfImov065WgREPzvpKOwF-IqnsZ_sTeJhoyrks3jaI-e_RU8A82me5GN-9R-g0zW4apte553c9KYT3Sv-_KXq-MprW4c3DZiyo9qTNmDBlpuwUpeqnG3C8vEYMXK2BaZe0MtUef0b_3wlnYoh-rK7qaLMI1o3xW4RyilfezI7ZIjnyPg0ConbpWGVL72D_sDwR3IVfqEWHTSy5ZjGhKu3cHl6cvH1LGxKNYQFl0kUGi4KqZIiSq21NLmnI41w4pQRHN3EiGigsoFQfR0L2XeJKjS6BC16jaUXxXsHS-W4tO-BZXiqlKeOXi3ciUJLYwfCOOQoRfqGARy0Dy0vGh1zKqfxK-_6M1bn_u4FsNeZ3tbiHc8Z7bRPPm_it8oREzOEQ2SfAD53uzHyaDpFlXY8RRvsWifYdh7_xwbxBxkBOTaA7dqZupaQ9iJNegYg59ysMyDl7_k95fXIK4Aj0yKq4jkPvBf9--Ly85Njv_Hh5aYfYbVPazx8etIOLE3up_YTktdE78Jin__Y9YH2ANCXKyg
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS9xAEB_EVvSltn60sbaupQ8-NEdyt5tNwBctymnVh6JwLyXsZndRanPq3T2cf31nNh942kopBBLIJGySmexvZmd-A_BZcmfizNmQqx4POc55YZo6EUqecRm5NDWWAvqnZ0n_gh8PxGAOdptamIofog24kWX4_zUZOAWkH1q51R3ELxE67C-oo7d3qL635FHoB_iep7Ff7k3iQc0r5PN4mktnZ6MnEPNppuRDBOunoMNl-NEMvso8-dmZjHWnuH_E6_i_T_caXtXYlO1VyvQG5my5AgtVt8rpCrzcHyKSnK6CqWp6mSqvfuHON9MZMUS_7HaiKPmISqfYDeJyStkeT78wROgI8ykQicelYSPffQdVguFGjBW-VosuurTlkMLCozW4ODw4_9oP624NYcFlEoWGi0KqpIhSay2t7-lIIz5xygiOmmJE1FNZT6iujoXsukQVGrWC6l5j6Xnx1mG-HJb2HbAMb5Xy1NHfhTtRaGlsTxiHUEoRxWEAO81Xy4uaypw6alznrUtjde7fXgCfWtGbir_jT0KbzafPaxMe5YgUM8SHCH8C2G5Po_HRiooq7XCCMuhdJzh2Hj8jgwgIYQJC2QDeVtrUjoToF2ndMwA5o2etAJF_z54pry49CTjCWkSreM8dr0Z_f7j8-GDfH2z8u-gWLPbPT0_yk6Ozb-9hqUslHz5baRPmx3cT-wGB2Fh_9Pb2G1JKLmw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3fb9MwEMdP0waIl7EfDAIb89Ae9rBUSWvHiXhibNV-MSHEpD5MiuzY1iYg7db2ofz13Dk_tDJACKlSI-USOcld8rF9_h7AruTOxJmzIVc9HnL85oVp6kQoecZl5NLUWBrQ_3iRHF_y04EYLMC7Zi1MpQ_RDrhRZPj3NQX4yLj7QW51B_Elwv76Ek-ilFz68HOrHYXdAF_yNPazvUk8qGWFfBpPc-j8x-gBYT5MlLwPsP4L1H8GV03bq8STr53pRHeKH7_IOv7nxa3Ack2m7H3lSquwYMs1eFzVqpytwaODIXLkbB1MtaKXqfLmO_75UjpjhuzLbqeKUo9o4RQbIZVTwvZkts-QzxHyaRgSt0vDxr72DjoEwx_pVfiVWnTQtS2HNCg8fg6X_aMvH47DulZDWHCZRKHhopAqKaLUWkuzezrSSCdOGcHRT4yIeirrCdXVsZBdl6hCo0_QqtdYelW8DVgsh6V9CSzDU6U8dfRu4U4UWhrbE8YhSCkSOAxgr3loeVELmVM9jW9526GxOvd3L4C3remoUu_4ndFm8-TzOoDHOXJihnSI8BPATrsbQ4_mU1Rph1O0wb51gm3n8V9skH8QEhBkA3hROVPbEhJfpFnPAOScm7UGJP09v6e8ufYS4Ai1yKp4zj3vRX--uPz06MBvvPp302148umwn5-fXJy9hqddWu_hU5U2YXFyN7VbSGET_cZH20_I3S0k
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Social+animal+models+for+quantifying+plasticity%2C+assortment%2C+and+selection+on+interacting+phenotypes&rft.jtitle=Journal+of+evolutionary+biology&rft.au=Martin%2C+Jordan+S&rft.au=Jaeggi%2C+Adrian+V&rft.date=2022-04-01&rft.eissn=1420-9101&rft.volume=35&rft.issue=4&rft.spage=520&rft_id=info:doi/10.1111%2Fjeb.13900&rft_id=info%3Apmid%2F34233047&rft.externalDocID=34233047
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1010-061X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1010-061X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1010-061X&client=summon