Triptycene‐based Chiral Porous Polyimides for Enantioselective Membrane Separation

Enantiomers of 2, 6‐diaminotriptycene (R, R‐1 and S, S‐1) are split by chiral‐phase HPLC and their absolute configurations are identified by single‐crystal X‐ray diffraction technology. Using the enantiomers as monomers, a couple of chiral porous polyimides (R‐FTPI and S‐FTPI) are prepared by polyco...

Full description

Saved in:
Bibliographic Details
Published inAngewandte Chemie International Edition Vol. 60; no. 23; pp. 12781 - 12785
Main Authors Zhang, Qing‐Pu, Wang, Zhen, Zhang, Zhe‐Wen, Zhai, Tian‐Long, Chen, Jing‐Jing, Ma, Hui, Tan, Bien, Zhang, Chun
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.06.2021
EditionInternational ed. in English
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Enantiomers of 2, 6‐diaminotriptycene (R, R‐1 and S, S‐1) are split by chiral‐phase HPLC and their absolute configurations are identified by single‐crystal X‐ray diffraction technology. Using the enantiomers as monomers, a couple of chiral porous polyimides (R‐FTPI and S‐FTPI) are prepared by polycondensation reactions and display good heat stability, high BET surface area and good solubility in organic solvents. Moreover, both of R‐FTPI and S‐FTPI can be cast into robust, free‐standing films suitable for enantioselective separation with symmetrical chiral selectivity. Chiral porous polyimides (FTPI) were synthesized using monomers of chiral 2,6‐diaminotriptycene. The absolute configurations were identified by single‐crystal X‐ray diffraction. The obtained R‐FTPI and S‐FTPI can be cast into robust, free‐standing films suitable for enantioselective separation with high permeation rates.
AbstractList Enantiomers of 2, 6-diaminotriptycene (R, R-1 and S, S-1) are split by chiral-phase HPLC and their absolute configurations are identified by single-crystal X-ray diffraction technology. Using the enantiomers as monomers, a couple of chiral porous polyimides (R-FTPI and S-FTPI) are prepared by polycondensation reactions and display good heat stability, high BET surface area and good solubility in organic solvents. Moreover, both of R-FTPI and S-FTPI can be cast into robust, free-standing films suitable for enantioselective separation with symmetrical chiral selectivity.Enantiomers of 2, 6-diaminotriptycene (R, R-1 and S, S-1) are split by chiral-phase HPLC and their absolute configurations are identified by single-crystal X-ray diffraction technology. Using the enantiomers as monomers, a couple of chiral porous polyimides (R-FTPI and S-FTPI) are prepared by polycondensation reactions and display good heat stability, high BET surface area and good solubility in organic solvents. Moreover, both of R-FTPI and S-FTPI can be cast into robust, free-standing films suitable for enantioselective separation with symmetrical chiral selectivity.
Enantiomers of 2, 6-diaminotriptycene (R, R-1 and S, S-1) are split by chiral-phase HPLC and their absolute configurations are identified by single-crystal X-ray diffraction technology. Using the enantiomers as monomers, a couple of chiral porous polyimides (R-FTPI and S-FTPI) are prepared by polycondensation reactions and display good heat stability, high BET surface area and good solubility in organic solvents. Moreover, both of R-FTPI and S-FTPI can be cast into robust, free-standing films suitable for enantioselective separation with symmetrical chiral selectivity.
Enantiomers of 2, 6‐diaminotriptycene (R, R‐1 and S, S‐1) are split by chiral‐phase HPLC and their absolute configurations are identified by single‐crystal X‐ray diffraction technology. Using the enantiomers as monomers, a couple of chiral porous polyimides (R‐FTPI and S‐FTPI) are prepared by polycondensation reactions and display good heat stability, high BET surface area and good solubility in organic solvents. Moreover, both of R‐FTPI and S‐FTPI can be cast into robust, free‐standing films suitable for enantioselective separation with symmetrical chiral selectivity. Chiral porous polyimides (FTPI) were synthesized using monomers of chiral 2,6‐diaminotriptycene. The absolute configurations were identified by single‐crystal X‐ray diffraction. The obtained R‐FTPI and S‐FTPI can be cast into robust, free‐standing films suitable for enantioselective separation with high permeation rates.
Enantiomers of 2, 6‐diaminotriptycene (R, R‐ 1 and S, S‐ 1 ) are split by chiral‐phase HPLC and their absolute configurations are identified by single‐crystal X‐ray diffraction technology. Using the enantiomers as monomers, a couple of chiral porous polyimides (R‐FTPI and S‐FTPI) are prepared by polycondensation reactions and display good heat stability, high BET surface area and good solubility in organic solvents. Moreover, both of R‐FTPI and S‐FTPI can be cast into robust, free‐standing films suitable for enantioselective separation with symmetrical chiral selectivity.
Author Zhai, Tian‐Long
Ma, Hui
Wang, Zhen
Zhang, Chun
Zhang, Qing‐Pu
Chen, Jing‐Jing
Zhang, Zhe‐Wen
Tan, Bien
Author_xml – sequence: 1
  givenname: Qing‐Pu
  surname: Zhang
  fullname: Zhang, Qing‐Pu
  organization: Huazhong University of Science and Technology
– sequence: 2
  givenname: Zhen
  surname: Wang
  fullname: Wang, Zhen
  organization: Huazhong University of Science and Technology
– sequence: 3
  givenname: Zhe‐Wen
  surname: Zhang
  fullname: Zhang, Zhe‐Wen
  organization: Huazhong University of Science and Technology
– sequence: 4
  givenname: Tian‐Long
  surname: Zhai
  fullname: Zhai, Tian‐Long
  organization: Huazhong University of Science and Technology
– sequence: 5
  givenname: Jing‐Jing
  surname: Chen
  fullname: Chen, Jing‐Jing
  organization: Huazhong University of Science and Technology
– sequence: 6
  givenname: Hui
  surname: Ma
  fullname: Ma, Hui
  organization: Huazhong University of Science and Technology
– sequence: 7
  givenname: Bien
  surname: Tan
  fullname: Tan, Bien
  organization: Huazhong University of Science and Technology
– sequence: 8
  givenname: Chun
  orcidid: 0000-0002-5190-7396
  surname: Zhang
  fullname: Zhang, Chun
  email: chunzhang@hust.edu.cn
  organization: Huazhong University of Science and Technology
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33792135$$D View this record in MEDLINE/PubMed
BookMark eNqFkUtLxDAUhYMo6qhbl1Jw46bjzatNlzKMD_AFjuuStrcYadMx6Siz8yf4G_0lZhwdQRBXN5DvJOeeMyDrtrNIyD6FIQVgx9oaHDJgFBiXsEa2qWQ05mnK18NZcB6nStItMvD-MfBKQbJJtjhPM0a53CaTiTPTfl6ixffXt0J7rKLRg3G6iW471818GM3ctKZCH9Wdi8ZW2950Hhsse_OM0RW2hdMWozucaqfDnd0lG7VuPO59zR1yfzqejM7jy5uzi9HJZVyKNIG44iKTqLWshYREVZSXDKpCACYUtIJSU5aIAgSTqpYSOGcZMkgSVqhMhoV3yNHy3anrnmbo-7w1vsSmCXaC9ZxJCEFwlaUBPfyFPnYzZ4O7QHEGSmSpCtTBFzUrWqzyqTOtdvP8O68ADJdA6TrvHdYrhEK-KCRfFJKvCgkC8UtQmv4zpN5p0_wty5ayF9Pg_J9P8pPri_GP9gMp8p6a
CitedBy_id crossref_primary_10_1002_chir_23358
crossref_primary_10_1002_marc_202100630
crossref_primary_10_1016_j_seppur_2025_132470
crossref_primary_10_1021_acsami_3c01735
crossref_primary_10_1007_s40242_022_1507_1
crossref_primary_10_3390_sym16010116
crossref_primary_10_1016_j_memsci_2022_121016
crossref_primary_10_1016_j_cjche_2022_06_017
crossref_primary_10_1002_anie_202407495
crossref_primary_10_1016_j_advmem_2024_100099
crossref_primary_10_1016_j_memsci_2025_124016
crossref_primary_10_1016_j_cej_2021_134055
crossref_primary_10_1039_D2SC01876D
crossref_primary_10_1038_s41467_024_52402_6
crossref_primary_10_1002_ange_202212139
crossref_primary_10_1002_pi_6506
crossref_primary_10_1038_s41428_024_00920_x
crossref_primary_10_1007_s40843_023_2806_8
crossref_primary_10_3390_polym16010156
crossref_primary_10_1002_agt2_122
crossref_primary_10_1021_acs_analchem_2c04371
crossref_primary_10_1016_j_chroma_2025_465652
crossref_primary_10_1021_acs_macromol_2c00491
crossref_primary_10_1134_S1070427224090039
crossref_primary_10_1039_D4SC02755H
crossref_primary_10_6023_A24060191
crossref_primary_10_1016_j_ccr_2023_215392
crossref_primary_10_1016_j_memsci_2023_121424
crossref_primary_10_3390_molecules27238527
crossref_primary_10_1016_j_cclet_2023_109201
crossref_primary_10_20517_cs_2023_54
crossref_primary_10_1002_ange_202407495
crossref_primary_10_1002_marc_202100449
crossref_primary_10_1039_D2RA04031J
crossref_primary_10_1039_D3SC01630G
crossref_primary_10_1039_D3QM00217A
crossref_primary_10_1016_j_memsci_2021_119994
crossref_primary_10_1016_j_seppur_2023_124898
crossref_primary_10_1021_acs_macromol_1c01462
crossref_primary_10_1021_acsmacrolett_1c00660
crossref_primary_10_1002_anie_202212139
crossref_primary_10_1016_j_seppur_2021_120336
crossref_primary_10_1021_acsapm_3c03178
crossref_primary_10_1021_acs_chemrev_1c00846
Cites_doi 10.1016/j.memsci.2016.09.013
10.1021/ma9517254
10.1002/anie.201810925
10.1002/anie.200460037
10.1039/C7CS00173H
10.1002/anie.201804383
10.1016/S0376-7388(00)00647-5
10.1021/ja404701s
10.1021/ar5000677
10.1002/anie.201910408
10.1002/anie.199715341
10.1038/nmat4035
10.1039/C5SC03511B
10.1038/s41563-018-0107-4
10.1021/jacs.5b05758
10.1039/C7PY01122A
10.1021/ja411887c
10.1021/acs.macromol.5b02222
10.1021/ac020240s
10.1002/adma.201401328
10.1002/adma.201305783
10.1021/acsami.9b17657
10.1002/ange.201504934
10.1021/jacs.9b06500
10.1080/01496395.2014.911023
10.1038/s41467-019-10381-z
10.1021/ma101333p
10.1021/jacs.9b10007
10.1002/asia.201501105
10.1126/science.1079237
10.1002/ange.200800957
10.1002/anie.202003807
10.1002/adma.201902009
10.1021/jacs.6b07714
10.1002/ange.201600911
10.1002/ange.200301664
10.1021/acs.accounts.5b00530
10.1126/science.1071396
10.1021/jacs.6b07516
10.1080/15583721003698853
10.1002/anie.201504934
10.1002/ange.200460037
10.1002/ange.201810925
10.1038/nchem.2352
10.1039/b211327a
10.1002/ange.201804383
10.1021/ar800107v
10.1002/ange.202003807
10.1002/anie.200800957
10.1002/ange.19971091318
10.1002/ange.201910408
10.1021/acsmacrolett.6b00567
10.1002/anie.200301664
10.1002/anie.201600911
10.1039/C7RA01614J
10.1080/01496395.2011.585625
ContentType Journal Article
Copyright 2021 Wiley‐VCH GmbH
2021 Wiley-VCH GmbH.
Copyright_xml – notice: 2021 Wiley‐VCH GmbH
– notice: 2021 Wiley-VCH GmbH.
DBID AAYXX
CITATION
NPM
7TM
K9.
7X8
DOI 10.1002/anie.202102350
DatabaseName CrossRef
PubMed
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
ProQuest Health & Medical Complete (Alumni)
Nucleic Acids Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed

CrossRef
ProQuest Health & Medical Complete (Alumni)
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3773
Edition International ed. in English
EndPage 12785
ExternalDocumentID 33792135
10_1002_anie_202102350
ANIE202102350
Genre shortCommunication
Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 21875079, 22031010; 22005110, 22161142005
– fundername: National Natural Science Foundation of China
  grantid: 22005110
– fundername: National Natural Science Foundation of China
  grantid: 21875079, 22031010
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABLJU
ABPPZ
ABPVW
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BTSUX
BY8
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
M53
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
TN5
UB1
UPT
UQL
V2E
VQA
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XSW
XV2
YZZ
ZZTAW
~IA
~KM
~WT
.GJ
.HR
.Y3
186
31~
9M8
AANHP
AASGY
AAYJJ
AAYOK
AAYXX
ABDBF
ABDPE
ABEFU
ABJNI
ACBWZ
ACRPL
ACYXJ
ADNMO
ADXHL
AETEA
AEYWJ
AGCDD
AGHNM
AGQPQ
AGYGG
AI.
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
HF~
HVGLF
H~9
LW6
MVM
NHB
OHT
PALCI
RIWAO
RJQFR
RWH
S10
SAMSI
VH1
WHG
XOL
YYP
ZCG
ZE2
ZGI
ZXP
ZY4
NPM
7TM
K9.
7X8
ID FETCH-LOGICAL-c4760-d3495eaa5f45068d13c20db40e610a80ca1264b04258f5503329e20662b895023
IEDL.DBID DR2
ISSN 1433-7851
1521-3773
IngestDate Fri Jul 11 01:46:01 EDT 2025
Fri Jul 25 10:49:45 EDT 2025
Thu Apr 03 07:06:49 EDT 2025
Tue Jul 01 01:17:59 EDT 2025
Thu Apr 24 23:10:47 EDT 2025
Wed Jan 22 16:30:31 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 23
Keywords membranes
enantioelective separation
chiral microporous polymers
triptycene
Language English
License 2021 Wiley-VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4760-d3495eaa5f45068d13c20db40e610a80ca1264b04258f5503329e20662b895023
Notes These authors contributed equally to this work.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-5190-7396
PMID 33792135
PQID 2532084978
PQPubID 946352
PageCount 5
ParticipantIDs proquest_miscellaneous_2507733897
proquest_journals_2532084978
pubmed_primary_33792135
crossref_primary_10_1002_anie_202102350
crossref_citationtrail_10_1002_anie_202102350
wiley_primary_10_1002_anie_202102350_ANIE202102350
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate June 1, 2021
PublicationDateYYYYMMDD 2021-06-01
PublicationDate_xml – month: 06
  year: 2021
  text: June 1, 2021
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Angewandte Chemie International Edition
PublicationTitleAlternate Angew Chem Int Ed Engl
PublicationYear 2021
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017; 7
2017; 8
2004 2004; 43 116
2001; 185
2002; 74
2002; 296
2019; 11
2019; 10
2017; 46
2020 2020; 59 132
2014; 49
2014; 26
2014; 47
2003 2003; 42 115
2020; 32
2008 2008; 47 120
2019; 141
2003; 299
2015; 7
2014; 136
2019 2019; 58 131
2016; 11
2016; 5
2015; 48
2018; 17
2016; 7
1996; 29
2016 2016; 55 128
2015; 137
2018 2018; 57 130
2015 2015; 54 127
2011; 44
2013; 135
2014; 13
1997 1997; 36 109
2011; 46
2016; 138
2008; 41
2003; 1
2016; 49
2017; 522
2010; 50
e_1_2_2_24_2
e_1_2_2_4_2
e_1_2_2_6_1
e_1_2_2_49_2
e_1_2_2_22_1
e_1_2_2_20_2
e_1_2_2_2_2
e_1_2_2_41_2
e_1_2_2_41_3
e_1_2_2_8_2
e_1_2_2_28_2
e_1_2_2_43_2
e_1_2_2_45_2
e_1_2_2_8_3
e_1_2_2_26_1
e_1_2_2_47_1
e_1_2_2_13_2
e_1_2_2_36_2
e_1_2_2_11_3
e_1_2_2_59_1
e_1_2_2_11_2
e_1_2_2_38_2
e_1_2_2_30_1
e_1_2_2_51_1
e_1_2_2_19_2
e_1_2_2_17_3
e_1_2_2_53_1
e_1_2_2_17_2
e_1_2_2_32_2
e_1_2_2_55_2
e_1_2_2_32_3
e_1_2_2_34_1
e_1_2_2_15_2
e_1_2_2_57_2
e_1_2_2_36_1
e_1_2_2_3_2
e_1_2_2_23_3
e_1_2_2_23_2
e_1_2_2_48_2
e_1_2_2_5_2
e_1_2_2_5_3
e_1_2_2_21_2
e_1_2_2_1_1
e_1_2_2_40_2
e_1_2_2_42_1
e_1_2_2_29_2
e_1_2_2_7_2
e_1_2_2_9_1
e_1_2_2_27_2
e_1_2_2_44_2
e_1_2_2_25_2
e_1_2_2_46_2
e_1_2_2_37_1
e_1_2_2_12_1
e_1_2_2_10_2
e_1_2_2_39_2
e_1_2_2_52_1
e_1_2_2_50_2
e_1_2_2_54_1
e_1_2_2_18_2
e_1_2_2_31_2
e_1_2_2_31_3
e_1_2_2_33_2
e_1_2_2_16_1
e_1_2_2_33_3
e_1_2_2_35_1
e_1_2_2_58_1
e_1_2_2_14_2
e_1_2_2_56_2
References_xml – volume: 11
  start-page: 294
  year: 2016
  end-page: 298
  publication-title: Chem. Asian J.
– volume: 136
  start-page: 1746
  year: 2014
  end-page: 1749
  publication-title: J. Am. Chem. Soc.
– volume: 46
  start-page: 2555
  year: 2017
  end-page: 2576
  publication-title: Chem. Soc. Rev.
– volume: 58 131
  start-page: 16928 17084
  year: 2019 2019
  end-page: 16935 17091
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 141
  start-page: 20187
  year: 2019
  end-page: 20197
  publication-title: J. Am. Chem. Soc.
– volume: 138
  start-page: 11489
  year: 2016
  end-page: 11492
  publication-title: J. Am. Chem. Soc.
– volume: 57 130
  start-page: 8629 8765
  year: 2018 2018
  end-page: 8633 8769
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 54 127
  start-page: 11214 11366
  year: 2015 2015
  end-page: 11218 11370
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 7
  start-page: 469
  year: 2016
  end-page: 474
  publication-title: Chem. Sci.
– volume: 29
  start-page: 4192
  year: 1996
  end-page: 4198
  publication-title: Macromolecules
– volume: 13
  start-page: 954
  year: 2014
  end-page: 960
  publication-title: Nat. Mater.
– volume: 74
  start-page: 2863
  year: 2002
  end-page: 2872
  publication-title: Anal. Chem.
– volume: 50
  start-page: 113
  year: 2010
  end-page: 143
  publication-title: Polym. Rev.
– volume: 49
  start-page: 2630
  year: 2014
  end-page: 2641
  publication-title: Sep. Sci. Technol.
– volume: 57 130
  start-page: 17130 17376
  year: 2018 2018
  end-page: 17134 17380
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 47 120
  start-page: 6970 7076
  year: 2008 2008
  end-page: 6992 7100
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 10
  start-page: 2500
  year: 2019
  publication-title: Nat. Commun.
– volume: 42 115
  start-page: 3336 3458
  year: 2003 2003
  end-page: 3337 3459
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 46
  start-page: 1898
  year: 2011
  end-page: 1907
  publication-title: Sep. Sci. Technol.
– volume: 7
  start-page: 22548
  year: 2017
  end-page: 22552
  publication-title: RSC Adv.
– volume: 49
  start-page: 483
  year: 2016
  end-page: 493
  publication-title: Acc. Chem. Res.
– volume: 1
  start-page: 1080
  year: 2003
  end-page: 1085
  publication-title: Org. Biomol. Chem.
– volume: 55 128
  start-page: 5304 5390
  year: 2016 2016
  end-page: 5308 5394
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 141
  start-page: 14306
  year: 2019
  end-page: 14316
  publication-title: J. Am. Chem. Soc.
– volume: 59 132
  start-page: 11355 11451
  year: 2020 2020
  end-page: 11359 11455
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 138
  start-page: 12332
  year: 2016
  end-page: 12335
  publication-title: J. Am. Chem. Soc.
– volume: 26
  start-page: 6696
  year: 2014
  end-page: 6700
  publication-title: Adv. Mater.
– volume: 522
  start-page: 12
  year: 2017
  end-page: 22
  publication-title: J. Membr. Sci.
– volume: 36 109
  start-page: 1534 1529
  year: 1997 1997
  end-page: 1536 1531
  publication-title: Angew. Chem. Int. Ed. Engl. Angew. Chem.
– volume: 44
  start-page: 976
  year: 2011
  end-page: 980
  publication-title: Macromolecules
– volume: 48
  start-page: 8509
  year: 2015
  end-page: 8514
  publication-title: Macromolecules
– volume: 43 116
  start-page: 5293 5405
  year: 2004 2004
  end-page: 5295 5407
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 137
  start-page: 9739
  year: 2015
  end-page: 9745
  publication-title: J. Am. Chem. Soc.
– volume: 8
  start-page: 5533
  year: 2017
  end-page: 5538
  publication-title: Polym. Chem.
– volume: 41
  start-page: 1181
  year: 2008
  end-page: 1189
  publication-title: Acc. Chem. Res.
– volume: 299
  start-page: 1694
  year: 2003
  end-page: 1697
  publication-title: Science
– volume: 32
  year: 2020
  publication-title: Adv. Mater.
– volume: 135
  start-page: 10282
  year: 2013
  end-page: 10285
  publication-title: J. Am. Chem. Soc.
– volume: 7
  start-page: 905
  year: 2015
  end-page: 912
  publication-title: Nat. Chem.
– volume: 11
  start-page: 48402
  year: 2019
  end-page: 48411
  publication-title: ACS Appl. Mater. Interfaces
– volume: 17
  start-page: 599
  year: 2018
  end-page: 604
  publication-title: Nat. Mater.
– volume: 296
  start-page: 2198
  year: 2002
  end-page: 2200
  publication-title: Science
– volume: 185
  start-page: 207
  year: 2001
  end-page: 221
  publication-title: J. Membr. Sci.
– volume: 26
  start-page: 3526
  year: 2014
  end-page: 3531
  publication-title: Adv. Mater.
– volume: 47
  start-page: 2026
  year: 2014
  end-page: 2040
  publication-title: Acc. Chem. Res.
– volume: 5
  start-page: 1039
  year: 2016
  end-page: 1043
  publication-title: ACS Macro Lett.
– ident: e_1_2_2_50_2
  doi: 10.1016/j.memsci.2016.09.013
– ident: e_1_2_2_58_1
  doi: 10.1021/ma9517254
– ident: e_1_2_2_33_2
  doi: 10.1002/anie.201810925
– ident: e_1_2_2_23_2
  doi: 10.1002/anie.200460037
– ident: e_1_2_2_54_1
– ident: e_1_2_2_3_2
  doi: 10.1039/C7CS00173H
– ident: e_1_2_2_32_2
  doi: 10.1002/anie.201804383
– ident: e_1_2_2_37_1
– ident: e_1_2_2_27_2
  doi: 10.1016/S0376-7388(00)00647-5
– ident: e_1_2_2_55_2
  doi: 10.1021/ja404701s
– ident: e_1_2_2_38_2
  doi: 10.1021/ar5000677
– ident: e_1_2_2_31_2
  doi: 10.1002/anie.201910408
– ident: e_1_2_2_8_2
  doi: 10.1002/anie.199715341
– ident: e_1_2_2_57_2
  doi: 10.1038/nmat4035
– ident: e_1_2_2_40_2
  doi: 10.1039/C5SC03511B
– ident: e_1_2_2_18_2
  doi: 10.1038/s41563-018-0107-4
– ident: e_1_2_2_39_2
  doi: 10.1021/jacs.5b05758
– ident: e_1_2_2_43_2
  doi: 10.1039/C7PY01122A
– ident: e_1_2_2_56_2
  doi: 10.1021/ja411887c
– ident: e_1_2_2_45_2
  doi: 10.1021/acs.macromol.5b02222
– ident: e_1_2_2_13_2
  doi: 10.1021/ac020240s
– ident: e_1_2_2_22_1
– ident: e_1_2_2_30_1
– ident: e_1_2_2_49_2
  doi: 10.1002/adma.201401328
– ident: e_1_2_2_48_2
  doi: 10.1002/adma.201305783
– ident: e_1_2_2_15_2
  doi: 10.1021/acsami.9b17657
– ident: e_1_2_2_6_1
– ident: e_1_2_2_36_2
  doi: 10.1002/ange.201504934
– ident: e_1_2_2_9_1
– ident: e_1_2_2_47_1
– ident: e_1_2_2_14_2
  doi: 10.1021/jacs.9b06500
– ident: e_1_2_2_25_2
  doi: 10.1080/01496395.2014.911023
– ident: e_1_2_2_1_1
– ident: e_1_2_2_35_1
  doi: 10.1038/s41467-019-10381-z
– ident: e_1_2_2_52_1
  doi: 10.1021/ma101333p
– ident: e_1_2_2_12_1
– ident: e_1_2_2_34_1
  doi: 10.1021/jacs.9b10007
– ident: e_1_2_2_46_2
  doi: 10.1002/asia.201501105
– ident: e_1_2_2_10_2
  doi: 10.1126/science.1079237
– ident: e_1_2_2_5_3
  doi: 10.1002/ange.200800957
– ident: e_1_2_2_17_2
  doi: 10.1002/anie.202003807
– ident: e_1_2_2_2_2
  doi: 10.1002/adma.201902009
– ident: e_1_2_2_19_2
  doi: 10.1021/jacs.6b07714
– ident: e_1_2_2_41_3
  doi: 10.1002/ange.201600911
– ident: e_1_2_2_42_1
– ident: e_1_2_2_11_3
  doi: 10.1002/ange.200301664
– ident: e_1_2_2_4_2
  doi: 10.1021/acs.accounts.5b00530
– ident: e_1_2_2_26_1
– ident: e_1_2_2_29_2
  doi: 10.1126/science.1071396
– ident: e_1_2_2_20_2
  doi: 10.1021/jacs.6b07516
– ident: e_1_2_2_28_2
  doi: 10.1080/15583721003698853
– ident: e_1_2_2_36_1
  doi: 10.1002/anie.201504934
– ident: e_1_2_2_23_3
  doi: 10.1002/ange.200460037
– ident: e_1_2_2_33_3
  doi: 10.1002/ange.201810925
– ident: e_1_2_2_21_2
  doi: 10.1038/nchem.2352
– ident: e_1_2_2_7_2
  doi: 10.1039/b211327a
– ident: e_1_2_2_59_1
– ident: e_1_2_2_32_3
  doi: 10.1002/ange.201804383
– ident: e_1_2_2_51_1
  doi: 10.1021/ar800107v
– ident: e_1_2_2_17_3
  doi: 10.1002/ange.202003807
– ident: e_1_2_2_5_2
  doi: 10.1002/anie.200800957
– ident: e_1_2_2_8_3
  doi: 10.1002/ange.19971091318
– ident: e_1_2_2_31_3
  doi: 10.1002/ange.201910408
– ident: e_1_2_2_44_2
  doi: 10.1021/acsmacrolett.6b00567
– ident: e_1_2_2_16_1
– ident: e_1_2_2_11_2
  doi: 10.1002/anie.200301664
– ident: e_1_2_2_41_2
  doi: 10.1002/anie.201600911
– ident: e_1_2_2_53_1
  doi: 10.1039/C7RA01614J
– ident: e_1_2_2_24_2
  doi: 10.1080/01496395.2011.585625
SSID ssj0028806
Score 2.5508275
Snippet Enantiomers of 2, 6‐diaminotriptycene (R, R‐1 and S, S‐1) are split by chiral‐phase HPLC and their absolute configurations are identified by single‐crystal...
Enantiomers of 2, 6‐diaminotriptycene (R, R‐ 1 and S, S‐ 1 ) are split by chiral‐phase HPLC and their absolute configurations are identified by single‐crystal...
Enantiomers of 2, 6-diaminotriptycene (R, R-1 and S, S-1) are split by chiral-phase HPLC and their absolute configurations are identified by single-crystal...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 12781
SubjectTerms chiral microporous polymers
enantioelective separation
Enantiomers
High-performance liquid chromatography
Liquid chromatography
Membrane separation
membranes
Monomers
Organic solvents
Polycondensation reactions
Polyimide resins
Selectivity
Separation
Surface stability
triptycene
Title Triptycene‐based Chiral Porous Polyimides for Enantioselective Membrane Separation
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202102350
https://www.ncbi.nlm.nih.gov/pubmed/33792135
https://www.proquest.com/docview/2532084978
https://www.proquest.com/docview/2507733897
Volume 60
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTtwwEB5VXODCPyX8KZWQejJ47WQTH9FqEa0EQrBI3CI7ccSKJUGb3QOceASekSdhJt6kbFFVqT0lUWzFHtsz38TjbwAOI63R5zKWiU4aswBNNFN5EDON5jzL0dtWig4Kn190z26Cn7fh7YdT_I4fov3hRiuj1te0wLWpjn-RhtIJbPTvyGWRtdNOAVuEiq5a_iiBk9MdL5KSURb6hrWRi-P56vNW6RPUnEeutek5XQHdNNpFnNwfTSfmKH3-jc_xf3q1CsszXOqfuIm0Bl9ssQ6LvSYd3AYMBqRenlLUjW8vr2T8Mr93NxxjpctyXE4rvIyehg_DzFY-ImG_TyE2w7KqE-2gTvXP7QO2rLD-tXWE42WxCTen_UHvjM1SMrA0iLqcZRIdKqt1mAch78ZZR6aCZybgFmGYjnmqO4iwDGmCOA9pi1QoS4zxwsQqxD5twUJRFnYbfOL9USbKEZHYgMtA8yznGZcpV8Iaoz1gzZAk6YyvnNJmjBLHtCwSklXSysqD7235R8fU8ceSe80IJ7MVWyWCMmTElG_Pg2_ta5QxbaCgbFCOWIZHEfr0KvLgq5sZ7aekjJToyNADUY_vX9qQnFz86LdPO_9SaReW6N7Fre3BwmQ8tfuIkCbmoF4F73u9BbY
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB4heqCXlkcf4dVUQurJ4LWTTXxEy6KFsitEF6m3yE4csSok1T4OcOpP4DfyS5iJN0ELqiqVU5TEVpyx52XPfAOwF2mNPpexTLTSmAWoopnKg5hpVOdZjt62UpQo3B-0e5fB6c-wjiakXBiHD9FsuBFnVPKaGJw2pA-eUEMpBRsdPPJZJHntb6isN8HnH100CFICl6dLMJKSUR36GreRi4PF_ot66YWxuWi7Vsrn-D2Yetgu5uTX_mxq9tO7Z4iOr_qvVXg3N039Q7eW1mDJFuuw0qkrwm3AcEgS5jZF8fjw5570X-Z3rkZj7HRejsvZBC_Xt6ObUWYnPhrDfpeibEblpKq1g2LV79sbHFph_R_WYY6XxQe4PO4OOz02r8rA0iBqc5ZJ9Kms1mEehLwdZy2ZCp6ZgFu0xHTMU91CI8uQMIjzkE5JhbIEGi9MrEL8p4-wXJSF_Qw-Qf8oE-VolNiAy0DzLOcZlylXwhqjPWD1nCTpHLKcKmdcJw5sWSREq6ShlQffmva_HVjHX1tu11OczJl2kggqkhFTyT0PvjavkcZ0hoK0QTpiGx5F6NaryINPbmk0n5IyUqIlQw9ENcH_GENyODjpNneb_9PpC6z0hv2z5Oxk8H0L3tJzF8a2DcvT8czuoME0NbsVSzwC4CIJ0g
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB6hIgEXKP-BFoKExMmt13Y28bHa7qoFuqpgK_UW2bGjrmiTan8O5cQj8Iw8SWfiTeiCEBKcoiS2Yo_tmW9izzcAb1Nj0OeynolekTGFJprpUmXMoDl3JXrbWlOg8NG4f3Ci3p8mpzei-AM_RPfDjVZGo69pgV-6cvcnaShFYKN_Ry6LJKf9tupzTckb9j91BFICZ2eIL5KSURr6lraRi931-utm6TesuQ5dG9szegCmbXU4cvJlZ7mwO8XXXwgd_6dbm3B_BUzjvTCTHsItXz2Cu4M2H9xjmExIv1wVqBx_fPtO1s_Fg7PpDCsd17N6OcfL-dX0Yur8PEYoHA_pjM20njeZdlCpxkf-AltW-fizD4zjdfUETkbDyeCArXIysEKlfc6cRI_KG5OUKuH9zPVkIbizinvEYSbjhekhxLKkCrIyoT1SoT1Rxgub6QT79BQ2qrryzyEm4h9t0xIhiVdcKsNdyR2XBdfCW2siYO2Q5MWKsJzyZpzngWpZ5CSrvJNVBO-68peBquOPJbfaEc5XS3aeC0qRkVHCvQjedK9RxrSDgrJBOWIZnqbo1Os0gmdhZnSfkjLVoieTCEQzvn9pQ743Phx2dy_-pdJruHO8P8o_Ho4_vIR79DicYduCjcVs6bcRLS3sq2ZBXAOwhwiB
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Triptycene%E2%80%90based+Chiral+Porous+Polyimides+for+Enantioselective+Membrane+Separation&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Qing%E2%80%90Pu+Zhang&rft.au=Wang%2C+Zhen&rft.au=Zhe%E2%80%90Wen+Zhang&rft.au=Tian%E2%80%90Long+Zhai&rft.date=2021-06-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=60&rft.issue=23&rft.spage=12781&rft.epage=12785&rft_id=info:doi/10.1002%2Fanie.202102350&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon