Antigenic variation of SARS‐CoV‐2 in response to immune pressure

Analysis of the bat viruses most closely related to SARS‐CoV‐2 indicated that the virus probably required limited adaptation to spread in humans. Nonetheless, since its introduction in human populations, SARS‐CoV‐2 must have been subject to the selective pressure imposed by the human immune system....

Full description

Saved in:
Bibliographic Details
Published inMolecular ecology Vol. 30; no. 14; pp. 3548 - 3559
Main Authors Forni, Diego, Cagliani, Rachele, Pontremoli, Chiara, Mozzi, Alessandra, Pozzoli, Uberto, Clerici, Mario, Sironi, Manuela
Format Journal Article
LanguageEnglish
Published England Blackwell Publishing Ltd 01.07.2021
John Wiley and Sons Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Analysis of the bat viruses most closely related to SARS‐CoV‐2 indicated that the virus probably required limited adaptation to spread in humans. Nonetheless, since its introduction in human populations, SARS‐CoV‐2 must have been subject to the selective pressure imposed by the human immune system. We exploited the availability of a large number of high‐quality SARS‐CoV‐2 genomes, as well as of validated epitope predictions, to show that B cell epitopes in the spike glycoprotein (S) and in the nucleocapsid protein (N) have higher diversity than nonepitope positions. Similar results were obtained for other human coronaviruses and for sarbecoviruses sampled in bats. Conversely, in the SARS‐CoV‐2 population, epitopes for CD4+ and CD8+ T cells were not more variable than nonepitope positions. A significant reduction in epitope variability was instead observed for some of the most immunogenic proteins (S, N, ORF8 and ORF3a). Analysis over longer evolutionary time frames indicated that this effect is not due to differential constraints. These data indicate that SARS‐CoV‐2 evolves to elude the host humoral immune response, whereas recognition by T cells is not actively avoided by the virus. However, we also found a trend of lower diversity of T cell epitopes for common cold coronaviruses, indicating that epitope conservation per se is not directly linked to disease severity. We suggest that conservation serves to maintain epitopes that elicit tolerizing T cell responses or induce T cells with regulatory activity.
AbstractList Analysis of the bat viruses most closely related to SARS‐CoV‐2 indicated that the virus probably required limited adaptation to spread in humans. Nonetheless, since its introduction in human populations, SARS‐CoV‐2 must have been subject to the selective pressure imposed by the human immune system. We exploited the availability of a large number of high‐quality SARS‐CoV‐2 genomes, as well as of validated epitope predictions, to show that B cell epitopes in the spike glycoprotein (S) and in the nucleocapsid protein (N) have higher diversity than nonepitope positions. Similar results were obtained for other human coronaviruses and for sarbecoviruses sampled in bats. Conversely, in the SARS‐CoV‐2 population, epitopes for CD4+ and CD8+ T cells were not more variable than nonepitope positions. A significant reduction in epitope variability was instead observed for some of the most immunogenic proteins (S, N, ORF8 and ORF3a). Analysis over longer evolutionary time frames indicated that this effect is not due to differential constraints. These data indicate that SARS‐CoV‐2 evolves to elude the host humoral immune response, whereas recognition by T cells is not actively avoided by the virus. However, we also found a trend of lower diversity of T cell epitopes for common cold coronaviruses, indicating that epitope conservation per se is not directly linked to disease severity. We suggest that conservation serves to maintain epitopes that elicit tolerizing T cell responses or induce T cells with regulatory activity.
Analysis of the bat viruses most closely related to SARS‐CoV‐2 indicated that the virus probably required limited adaptation to spread in humans. Nonetheless, since its introduction in human populations, SARS‐CoV‐2 must have been subject to the selective pressure imposed by the human immune system. We exploited the availability of a large number of high‐quality SARS‐CoV‐2 genomes, as well as of validated epitope predictions, to show that B cell epitopes in the spike glycoprotein (S) and in the nucleocapsid protein (N) have higher diversity than nonepitope positions. Similar results were obtained for other human coronaviruses and for sarbecoviruses sampled in bats. Conversely, in the SARS‐CoV‐2 population, epitopes for CD4 + and CD8 + T cells were not more variable than nonepitope positions. A significant reduction in epitope variability was instead observed for some of the most immunogenic proteins (S, N, ORF8 and ORF3a). Analysis over longer evolutionary time frames indicated that this effect is not due to differential constraints. These data indicate that SARS‐CoV‐2 evolves to elude the host humoral immune response, whereas recognition by T cells is not actively avoided by the virus. However, we also found a trend of lower diversity of T cell epitopes for common cold coronaviruses, indicating that epitope conservation per se is not directly linked to disease severity. We suggest that conservation serves to maintain epitopes that elicit tolerizing T cell responses or induce T cells with regulatory activity.
Analysis of the bat viruses most closely related to SARS-CoV-2 indicated that the virus probably required limited adaptation to spread in humans. Nonetheless, since its introduction in human populations, SARS-CoV-2 must have been subject to the selective pressure imposed by the human immune system. We exploited the availability of a large number of high-quality SARS-CoV-2 genomes, as well as of validated epitope predictions, to show that B cell epitopes in the spike glycoprotein (S) and in the nucleocapsid protein (N) have higher diversity than nonepitope positions. Similar results were obtained for other human coronaviruses and for sarbecoviruses sampled in bats. Conversely, in the SARS-CoV-2 population, epitopes for CD4 and CD8 T cells were not more variable than nonepitope positions. A significant reduction in epitope variability was instead observed for some of the most immunogenic proteins (S, N, ORF8 and ORF3a). Analysis over longer evolutionary time frames indicated that this effect is not due to differential constraints. These data indicate that SARS-CoV-2 evolves to elude the host humoral immune response, whereas recognition by T cells is not actively avoided by the virus. However, we also found a trend of lower diversity of T cell epitopes for common cold coronaviruses, indicating that epitope conservation per se is not directly linked to disease severity. We suggest that conservation serves to maintain epitopes that elicit tolerizing T cell responses or induce T cells with regulatory activity.
Analysis of the bat viruses most closely related to SARS-CoV-2 indicated that the virus probably required limited adaptation to spread in humans. Nonetheless, since its introduction in human populations, SARS-CoV-2 must have been subject to the selective pressure imposed by the human immune system. We exploited the availability of a large number of high-quality SARS-CoV-2 genomes, as well as of validated epitope predictions, to show that B cell epitopes in the spike glycoprotein (S) and in the nucleocapsid protein (N) have higher diversity than nonepitope positions. Similar results were obtained for other human coronaviruses and for sarbecoviruses sampled in bats. Conversely, in the SARS-CoV-2 population, epitopes for CD4+ and CD8+ T cells were not more variable than nonepitope positions. A significant reduction in epitope variability was instead observed for some of the most immunogenic proteins (S, N, ORF8 and ORF3a). Analysis over longer evolutionary time frames indicated that this effect is not due to differential constraints. These data indicate that SARS-CoV-2 evolves to elude the host humoral immune response, whereas recognition by T cells is not actively avoided by the virus. However, we also found a trend of lower diversity of T cell epitopes for common cold coronaviruses, indicating that epitope conservation per se is not directly linked to disease severity. We suggest that conservation serves to maintain epitopes that elicit tolerizing T cell responses or induce T cells with regulatory activity.Analysis of the bat viruses most closely related to SARS-CoV-2 indicated that the virus probably required limited adaptation to spread in humans. Nonetheless, since its introduction in human populations, SARS-CoV-2 must have been subject to the selective pressure imposed by the human immune system. We exploited the availability of a large number of high-quality SARS-CoV-2 genomes, as well as of validated epitope predictions, to show that B cell epitopes in the spike glycoprotein (S) and in the nucleocapsid protein (N) have higher diversity than nonepitope positions. Similar results were obtained for other human coronaviruses and for sarbecoviruses sampled in bats. Conversely, in the SARS-CoV-2 population, epitopes for CD4+ and CD8+ T cells were not more variable than nonepitope positions. A significant reduction in epitope variability was instead observed for some of the most immunogenic proteins (S, N, ORF8 and ORF3a). Analysis over longer evolutionary time frames indicated that this effect is not due to differential constraints. These data indicate that SARS-CoV-2 evolves to elude the host humoral immune response, whereas recognition by T cells is not actively avoided by the virus. However, we also found a trend of lower diversity of T cell epitopes for common cold coronaviruses, indicating that epitope conservation per se is not directly linked to disease severity. We suggest that conservation serves to maintain epitopes that elicit tolerizing T cell responses or induce T cells with regulatory activity.
Analysis of the bat viruses most closely related to SARS‐CoV‐2 indicated that the virus probably required limited adaptation to spread in humans. Nonetheless, since its introduction in human populations, SARS‐CoV‐2 must have been subject to the selective pressure imposed by the human immune system. We exploited the availability of a large number of high‐quality SARS‐CoV‐2 genomes, as well as of validated epitope predictions, to show that B cell epitopes in the spike glycoprotein (S) and in the nucleocapsid protein (N) have higher diversity than nonepitope positions. Similar results were obtained for other human coronaviruses and for sarbecoviruses sampled in bats. Conversely, in the SARS‐CoV‐2 population, epitopes for CD4⁺ and CD8⁺ T cells were not more variable than nonepitope positions. A significant reduction in epitope variability was instead observed for some of the most immunogenic proteins (S, N, ORF8 and ORF3a). Analysis over longer evolutionary time frames indicated that this effect is not due to differential constraints. These data indicate that SARS‐CoV‐2 evolves to elude the host humoral immune response, whereas recognition by T cells is not actively avoided by the virus. However, we also found a trend of lower diversity of T cell epitopes for common cold coronaviruses, indicating that epitope conservation per se is not directly linked to disease severity. We suggest that conservation serves to maintain epitopes that elicit tolerizing T cell responses or induce T cells with regulatory activity.
Author Forni, Diego
Pozzoli, Uberto
Mozzi, Alessandra
Cagliani, Rachele
Pontremoli, Chiara
Clerici, Mario
Sironi, Manuela
AuthorAffiliation 1 Scientific Institute IRCCS E. MEDEA Bioinformatics Bosisio Parini Italy
2 Department of Physiopathology and Transplantation University of Milan Milan Italy
3 Don C. Gnocchi Foundation ONLUS IRCCS Milan Italy
AuthorAffiliation_xml – name: 1 Scientific Institute IRCCS E. MEDEA Bioinformatics Bosisio Parini Italy
– name: 3 Don C. Gnocchi Foundation ONLUS IRCCS Milan Italy
– name: 2 Department of Physiopathology and Transplantation University of Milan Milan Italy
Author_xml – sequence: 1
  givenname: Diego
  orcidid: 0000-0001-9291-5352
  surname: Forni
  fullname: Forni, Diego
  email: diego.forni@lanostrafamiglia.it
  organization: Bioinformatics
– sequence: 2
  givenname: Rachele
  orcidid: 0000-0003-2670-3532
  surname: Cagliani
  fullname: Cagliani, Rachele
  organization: Bioinformatics
– sequence: 3
  givenname: Chiara
  orcidid: 0000-0002-3022-502X
  surname: Pontremoli
  fullname: Pontremoli, Chiara
  organization: Bioinformatics
– sequence: 4
  givenname: Alessandra
  surname: Mozzi
  fullname: Mozzi, Alessandra
  organization: Bioinformatics
– sequence: 5
  givenname: Uberto
  surname: Pozzoli
  fullname: Pozzoli, Uberto
  organization: Bioinformatics
– sequence: 6
  givenname: Mario
  surname: Clerici
  fullname: Clerici, Mario
  organization: IRCCS
– sequence: 7
  givenname: Manuela
  orcidid: 0000-0002-2267-5266
  surname: Sironi
  fullname: Sironi, Manuela
  organization: Bioinformatics
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33289207$$D View this record in MEDLINE/PubMed
BookMark eNqFkcFOFTEUhhuCgQu68AXMJGxwMdD2dNqZDcnNBdQEYyLEuGt6O2ewZKa9tDMYdj6Cz8iTWLlIlETtok3a7_w5Pd8O2fTBIyEvGT1geR0OaA9YpYBukBkDWZW8EZ83yYw2kpeM1rBNdlK6opQBr6otsg3A64ZTNSPHcz-6S_TOFjcmOjO64IvQFefzj-d3374vwqe888L5ImJaBZ-wGEPhhmHyWKzyXZoiPifPOtMnfPFw7pKL05OLxdvy7MObd4v5WWmFkrSsDFNgjRCipRVvVSva1lhTW1V3nVXCKlnLJSqqFCAIurTM2NZA1SqpOgu75Ggdu5qWA7YW_RhNr1fRDSbe6mCc_vPFuy_6MtxopSoQwHLA_kNADNcTplEPLlnse-MxTElzCVKwpmbi_6iQNQAIDhnde4JehSn6PAidpy04l03TZOrV780_dv1LRQZerwEbQ0oRu0eEUf1Ts86a9b3mzB4-Ya0b793lf7v-XxVfXY-3f4_W708W64ofdIm5ow
CitedBy_id crossref_primary_10_3390_vaccines12030218
crossref_primary_10_1016_j_bios_2022_114222
crossref_primary_10_1073_pnas_2123248119
crossref_primary_10_1186_s42269_024_01207_0
crossref_primary_10_3389_fmicb_2022_895695
crossref_primary_10_1111_tan_15071
crossref_primary_10_3390_children9050652
crossref_primary_10_1590_0074_02760210127
crossref_primary_10_1038_s41598_022_14016_0
crossref_primary_10_1093_femsre_fuac003
crossref_primary_10_1017_S0950268823001619
crossref_primary_10_3389_fimmu_2022_832106
Cites_doi 10.1001/jama.2020.2648
10.7150/ijbs.45472
10.1002/jmv.25701
10.1038/s41590-020-0782-6
10.1002/ece3.5373
10.1371/journal.pone.0002402
10.1016/j.chom.2020.03.002
10.1093/molbev/mst010
10.1038/s41586-020-2012-7
10.4161/rna.8.2.15013
10.3201/eid2602.190697
10.1038/s41467-020-16638-2
10.1038/s41591-020-0820-9
10.1007/s12026-014-8534-z
10.1128/JVI.02356-07
10.1152/advan.00017.2010
10.3201/eid2607.200841
10.1086/497151
10.1002/gch2.1018
10.1128/mBio.02590-20
10.1038/s41564-020-0771-4
10.1038/s41564-020-0695-z
10.1016/j.chom.2015.10.008
10.1038/s41579-018-0118-9
10.1016/j.immuni.2007.04.003
10.1038/s41577-020-0321-6
10.1371/journal.ppat.1008421
10.1016/j.cmi.2020.03.026
10.4049/jimmunol.1502062
10.1016/j.cell.2020.06.043
10.1128/JVI.01277-07
10.1038/s41586-020-2895-3
10.3389/fmolb.2020.00157
10.1016/j.meegid.2020.104351
10.1038/s41586-020-2313-x
10.1016/B978-0-12-799942-5.00026-3
10.1016/j.immuni.2020.04.023
10.1016/j.cell.2020.08.026
10.3181/00379727-139-36224
10.1016/j.immuni.2014.11.014
10.1128/JVI.80.7.3617-3623.2006
10.1038/s41586-020-2169-0
10.1038/s41591-020-0965-6
10.4049/jimmunol.1700893
10.1128/JVI.01381-18
10.1038/s41564-020-0690-4
10.1016/j.cell.2015.07.020
10.1002/cpim.12
10.1038/ng.590
10.1016/j.imlet.2020.07.001
10.1002/jmv.25715
10.1038/srep21256
10.1016/j.cell.2020.05.015
10.1038/s41467-020-17488-8
10.3201/eid2506.181722
10.1128/JVI.01543-07
10.1038/ncomms8952
10.1093/nar/gkx346
10.1016/j.meegid.2020.104384
10.1371/journal.pbio.1001523
10.4049/jimmunol.2000526
10.1371/journal.pgen.1000304
10.1086/651022
10.1093/cid/ciaa344
10.1371/journal.pcbi.1002829
10.1073/pnas.1704766114
10.1016/j.immuni.2020.05.002
10.1073/pnas.1416537112
10.1371/journal.pone.0238089
10.3201/eid1112.041293
10.1128/JVI.00411-20
10.1038/s41577-020-0308-3
10.1186/1471-2164-13-261
10.1016/j.tim.2016.09.001
10.1371/journal.pbio.3000436
ContentType Journal Article
Copyright 2020 The Authors. Molecular Ecology published by John Wiley & Sons Ltd
2020 The Authors. Molecular Ecology published by John Wiley & Sons Ltd.
2020. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2020 The Authors. Molecular Ecology published by John Wiley & Sons Ltd
– notice: 2020 The Authors. Molecular Ecology published by John Wiley & Sons Ltd.
– notice: 2020. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
NPM
7SN
7SS
8FD
C1K
FR3
M7N
P64
RC3
7X8
7S9
L.6
5PM
DOI 10.1111/mec.15730
DatabaseName Wiley Online Library Open Access
CrossRef
PubMed
Ecology Abstracts
Entomology Abstracts (Full archive)
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Entomology Abstracts
Genetics Abstracts
Technology Research Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Engineering Research Database
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
Entomology Abstracts

CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Ecology
DocumentTitleAlternate FORNI et al
EISSN 1365-294X
EndPage 3559
ExternalDocumentID PMC7753431
33289207
10_1111_mec_15730
MEC15730
Genre article
Journal Article
GrantInformation_xml – fundername: Italian Ministry of Health
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
123
1OB
1OC
24P
29M
31~
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACNCT
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHEFC
AIAGR
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BIYOS
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CAG
COF
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
ECGQY
EJD
ESX
F00
F01
F04
F5P
FEDTE
FZ0
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
IHE
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TN5
UB1
V8K
W8V
W99
WBKPD
WH7
WIH
WIK
WNSPC
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XJT
Y6R
ZZTAW
~02
~IA
~KM
~WT
AAYXX
AETEA
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
NPM
7SN
7SS
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
C1K
FR3
M7N
P64
RC3
7X8
7S9
L.6
5PM
ID FETCH-LOGICAL-c4760-5a173ca444d052d7d4ddaca8c78ffc74c7686be70773e340bc1acda35d767fc3
IEDL.DBID DR2
ISSN 0962-1083
1365-294X
IngestDate Thu Aug 21 18:30:59 EDT 2025
Fri Jul 11 18:31:04 EDT 2025
Fri Jul 11 15:27:01 EDT 2025
Wed Aug 13 06:20:28 EDT 2025
Thu Apr 03 07:06:40 EDT 2025
Tue Jul 01 03:22:09 EDT 2025
Thu Apr 24 22:54:21 EDT 2025
Wed Jan 22 16:30:02 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 14
Keywords B cell epitope
human coronavirus
T cell epitope
COVID‐19
SARS‐CoV‐2
sarbecovirus
Language English
License Attribution
2020 The Authors. Molecular Ecology published by John Wiley & Sons Ltd.
This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4760-5a173ca444d052d7d4ddaca8c78ffc74c7686be70773e340bc1acda35d767fc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Funding information: This work was supported by the Italian Ministry of Health (“Ricerca Corrente 2019–2020” to M.S., “Ricerca Corrente 2018–2020” to D.F.).
ORCID 0000-0003-2670-3532
0000-0002-3022-502X
0000-0002-2267-5266
0000-0001-9291-5352
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fmec.15730
PMID 33289207
PQID 2554226999
PQPubID 31465
PageCount 12
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7753431
proquest_miscellaneous_2636419814
proquest_miscellaneous_2468333423
proquest_journals_2554226999
pubmed_primary_33289207
crossref_primary_10_1111_mec_15730
crossref_citationtrail_10_1111_mec_15730
wiley_primary_10_1111_mec_15730_MEC15730
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate July 2021
PublicationDateYYYYMMDD 2021-07-01
PublicationDate_xml – month: 07
  year: 2021
  text: July 2021
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Oxford
– name: Hoboken
PublicationTitle Molecular ecology
PublicationTitleAlternate Mol Ecol
PublicationYear 2021
Publisher Blackwell Publishing Ltd
John Wiley and Sons Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: John Wiley and Sons Inc
References 2017; 1
2019; 93
2020; 20
2017; 45
2019; 17
2020; 16
2020; 15
2020; 205
2020; 11
2008; 3
2020; 323
2008; 4
2017; 199
2012; 13
2017; 114
1972; 139
2020; 7
2020; 6
2020; 5
2013; 11
2020; 52
2020; 94
2020; 92
2019; 25
2014; 59
2020; 579
2016; 114
2016; 196
2007; 26
2015; 162
2010; 34
2005; 192
2019; 9
2015; 6
2015; 18
2017; 25
2020; 583
2020; 84
2020; 83
2020; 82
2020; 181
2020; 183
2010; 201
2014; 41
2011; 8
2016; 6
2010; 42
2006; 80
2020
2020; 71
2015; 112
2013; 30
2020; 27
2020; 26
2007; 81
2017
2020; 21
2008; 82
2005; 11
2012; 8
e_1_2_8_24_1
e_1_2_8_47_1
Wu F. (e_1_2_8_74_1) 2020
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_68_1
Wong M. C. (e_1_2_8_72_1) 2020
e_1_2_8_3_1
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_66_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_64_1
e_1_2_8_62_1
e_1_2_8_41_1
e_1_2_8_60_1
e_1_2_8_83_1
e_1_2_8_17_1
Zhang L. (e_1_2_8_81_1) 2020
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_59_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_57_1
Chen Y. (e_1_2_8_12_1) 2020
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_78_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_76_1
e_1_2_8_51_1
e_1_2_8_30_1
e_1_2_8_29_1
Yurkovetskiy L. (e_1_2_8_79_1) 2020
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_48_1
e_1_2_8_69_1
e_1_2_8_2_1
e_1_2_8_80_1
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_67_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_65_1
e_1_2_8_63_1
e_1_2_8_40_1
e_1_2_8_61_1
e_1_2_8_82_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_58_1
Weissman D. (e_1_2_8_70_1) 2020
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_56_1
e_1_2_8_77_1
e_1_2_8_33_1
e_1_2_8_54_1
e_1_2_8_75_1
e_1_2_8_52_1
e_1_2_8_73_1
Hou Y. J. (e_1_2_8_28_1) 2020
e_1_2_8_50_1
e_1_2_8_71_1
References_xml – volume: 6
  start-page: 21256
  year: 2016
  article-title: Evolution and comparative analysis of the bat MHC‐I region
  publication-title: Scientific Reports
– volume: 25
  start-page: 1161
  year: 2019
  end-page: 1168
  article-title: Sequential emergence and wide spread of neutralization escape Middle East respiratory syndrome coronavirus mutants, South Korea, 2015
  publication-title: Emerging Infectious Diseases
– volume: 34
  start-page: 128
  year: 2010
  end-page: 133
  article-title: When t‐tests or Wilcoxon‐Mann‐Whitney tests won't do
  publication-title: Advances in Physiology Education
– volume: 5
  start-page: 529
  year: 2020
  end-page: 530
  article-title: We shouldn’t worry when a virus mutates during disease outbreaks
  publication-title: Nature Microbiology
– volume: 114
  start-page: 18.19.1
  year: 2016
  end-page: 18.19.24
  article-title: TepiTool: A pipeline for computational prediction of T cell epitope candidates
  publication-title: Current Protocols in Immunology
– volume: 11
  start-page: 1
  year: 2020
  end-page: 11
  article-title: SARS‐CoV‐2 proteome microarray for global profiling of COVID‐19 specific IgG and IgM responses
  publication-title: Nature Communications
– volume: 71
  start-page: 2027
  year: 2020
  end-page: 2034
  article-title: Antibody responses to SARS‐CoV‐2 in patients of novel coronavirus disease 2019
  publication-title: Clinical Infectious Diseases
– volume: 181
  start-page: 1489
  year: 2020
  end-page: 1501
  article-title: Targets of T cell responses to SARS‐CoV‐2 coronavirus in humans with COVID‐19 disease and unexposed individuals
  publication-title: Cell
– year: 2020
  article-title: Spike mutation D614G alters SARS‐CoV‐2 fitness
  publication-title: Nature
– volume: 162
  start-page: 738
  year: 2015
  end-page: 750
  article-title: Clinical sequencing uncovers origins and evolution of Lassa virus
  publication-title: Cell
– year: 2020
  article-title: Evidence of recombination in coronaviruses implicating pangolin origins of nCoV‐2019
  publication-title: BioRxiv
– volume: 205
  start-page: 555
  year: 2020
  end-page: 564
  article-title: Early Insights into Immune Responses during COVID‐19
  publication-title: The Journal of Immunology
– volume: 17
  start-page: 181
  issue: 3
  year: 2019
  end-page: 192
  article-title: Origin and evolution of pathogenic coronaviruses
  publication-title: Nature Reviews Microbiology
– volume: 81
  start-page: 12179
  year: 2007
  end-page: 12188
  article-title: Evolution of human immunodeficiency virus type 1 cytotoxic T‐lymphocyte epitopes: Fitness‐balanced escape
  publication-title: Journal of Virology
– volume: 59
  start-page: 118
  year: 2014
  end-page: 128
  article-title: T cell‐mediated immune response to respiratory coronaviruses
  publication-title: Immunologic Research
– start-page: 711
  year: 2017
  end-page: 728
– volume: 17
  start-page: 1
  year: 2019
  end-page: 24
  article-title: Peptide presentation by bat MHC class I provides new insight into the antiviral immunity of bats
  publication-title: PLoS Biology
– volume: 80
  start-page: 3617
  year: 2006
  end-page: 3623
  article-title: Fitness cost of escape mutations in p24 Gag in association with control of human immunodeficiency virus type 1
  publication-title: Journal of Virology
– volume: 52
  start-page: 910
  year: 2020
  end-page: 941
  article-title: Immunology of COVID‐19: Current state of the science
  publication-title: Immunity
– volume: 323
  start-page: 1239
  year: 2020
  end-page: 1242
  article-title: Characteristics of and important lessons from the coronavirus disease 2019 (COVID‐19) outbreak in China: Summary of a report of 72 314 cases from the Chinese Center for Disease Control and Prevention
  publication-title: JAMA
– volume: 26
  start-page: 397
  year: 2007
  end-page: 406
  article-title: The final touches make perfect the peptide‐MHC class I repertoire
  publication-title: Immunity
– volume: 94
  year: 2020
  article-title: Computational inference of selection underlying the evolution of the novel coronavirus, SARS‐CoV‐2
  publication-title: Journal of Virology
– volume: 20
  start-page: 339
  year: 2020
  end-page: 341
  article-title: The potential danger of suboptimal antibody responses in COVID‐19
  publication-title: Nature Reviews Immunology
– volume: 6
  start-page: 7952
  year: 2015
  article-title: Phylodynamics of H1N1/2009 influenza reveals the transition from host adaptation to immune‐driven selection
  publication-title: Nature Communications
– volume: 18
  start-page: 538
  year: 2015
  end-page: 548
  article-title: M. tuberculosis T cell epitope analysis reveals paucity of antigenic variation and identifies rare variable TB antigens
  publication-title: Cell Host & Microbe
– volume: 26
  start-page: 191
  year: 2020
  end-page: 198
  article-title: Middle East respiratory syndrome coronavirus transmission
  publication-title: Emerging Infectious Diseases
– volume: 16
  start-page: 1686
  year: 2020
  end-page: 1697
  article-title: Zoonotic origins of human coronaviruses
  publication-title: International Journal of Biological Sciences
– volume: 84
  year: 2020
  article-title: SARS‐CoV‐2 and COVID‐19: A genetic, epidemiological, and evolutionary perspective
  publication-title: Infection, Genetics and Evolution
– volume: 583
  start-page: 286
  year: 2020
  end-page: 289
  article-title: Isolation of SARS‐CoV‐2‐related coronavirus from Malayan pangolins
  publication-title: Nature
– volume: 579
  start-page: 270
  year: 2020
  end-page: 273
  article-title: A pneumonia outbreak associated with a new coronavirus of probable bat origin
  publication-title: Nature
– volume: 93
  year: 2019
  article-title: Mutations in the spike protein of middle East respiratory syndrome coronavirus transmitted in Korea increase resistance to antibody‐mediated neutralization
  publication-title: Journal of Virology
– year: 2020
  article-title: The D614G mutation in the SARS‐CoV‐2 spike protein reduces S1 shedding and increases infectivity
  publication-title: bioRxiv
– volume: 112
  start-page: E147
  year: 2015
  end-page: E155
  article-title: Immunological consequences of intragenus conservation of Mycobacterium tuberculosis T‐cell epitopes
  publication-title: Proceedings of the National Academy of Sciences
– volume: 139
  start-page: 722
  issue: 3
  year: 1972
  end-page: 727
  article-title: Studies with human coronaviruses II. Some properties of strains 229E and OC43
  publication-title: Experimental Biology and Medicine
– volume: 26
  start-page: 1200
  year: 2020
  end-page: 1204
  article-title: Clinical and immunological assessment of asymptomatic SARS‐CoV‐2 infections
  publication-title: Nature Medicine
– volume: 5
  start-page: 536
  year: 2020
  end-page: 544
  article-title: The species Severe acute respiratory syndrome‐related coronavirus: Classifying 2019‐nCoV and naming it SARS‐CoV‐2
  publication-title: Nature Microbiology
– volume: 92
  start-page: 501
  year: 2020
  end-page: 511
  article-title: Transmission dynamics and evolutionary history of 2019‐nCoV
  publication-title: Journal of Medical Virology
– volume: 13
  start-page: 261
  year: 2012
  article-title: The immune gene repertoire of an important viral reservoir, the Australian black flying fox
  publication-title: BMC Genomics
– volume: 8
  start-page: 270
  year: 2011
  end-page: 279
  article-title: Coronaviruses: An RNA proofreading machine regulates replication fidelity and diversity
  publication-title: RNA Biology
– volume: 82
  start-page: 812
  year: 2020
  end-page: 827
  article-title: Tracking changes in SARS‐CoV‐2 Spike: Evidence that D614G increases infectivity of the COVID‐19 virus
  publication-title: Cell
– volume: 16
  year: 2020
  article-title: Are pangolins the intermediate host of the 2019 novel coronavirus (SARS‐CoV‐2)?
  publication-title: PLoS Pathogens
– volume: 52
  start-page: 971
  year: 2020
  end-page: 977
  article-title: Detection of SARS‐CoV‐2‐specific humoral and cellular immunity in COVID‐19 convalescent individuals
  publication-title: Immunity
– volume: 6
  start-page: 38
  year: 2020
  end-page: 45
  article-title: Intermittent fasting, a possible priming tool for host defense against SARS‐CoV‐2 infection: Crosstalk among calorie restriction, autophagy and immune response
  publication-title: Immunology Letters
– volume: 3
  year: 2008
  article-title: A detailed analysis of the murine TAP transporter substrate specificity
  publication-title: PLoS One
– volume: 114
  start-page: E4812
  year: 2017
  end-page: E4821
  article-title: Structure‐guided evolution of antigenically distinct adeno‐associated virus variants for immune evasion
  publication-title: Proceedings of the National Academy of Sciences
– year: 2020
  article-title: D614G spike mutation increases SARS CoV‐2 susceptibility to neutralization
  publication-title: MedRxiv
– volume: 7
  start-page: 157
  year: 2020
  article-title: Immune phenotyping based on the neutrophil‐to‐lymphocyte ratio and IgG level predicts disease severity and outcome for patients with COVID‐19
  publication-title: Frontiers in Molecular Biosciences
– volume: 42
  start-page: 498
  year: 2010
  end-page: 503
  article-title: Human T cell epitopes of Mycobacterium tuberculosis are evolutionarily hyperconserved
  publication-title: Nature Genetics
– volume: 11
  year: 2020
  article-title: Decline of humoral responses against SARS‐CoV‐2 spike in convalescent individuals
  publication-title: MBio
– year: 2020
  article-title: SARS‐CoV‐2 D614G variant exhibits enhanced replication ex vivo and earlier transmission in vivo
  publication-title: bioRxiv
– volume: 583
  start-page: 282
  year: 2020
  end-page: 285
  article-title: Identifying SARS‐CoV‐2 related coronaviruses in Malayan pangolins
  publication-title: Nature
– volume: 201
  start-page: 946
  year: 2010
  end-page: 955
  article-title: Escape from human monoclonal antibody neutralization affects in vitro and in vivo fitness of severe acute respiratory syndrome coronavirus
  publication-title: The Journal of Infectious Diseases
– volume: 25
  start-page: 35
  year: 2017
  end-page: 48
  article-title: Molecular evolution of human coronavirus genomes
  publication-title: Trends in Microbiology
– volume: 82
  start-page: 5594
  year: 2008
  end-page: 5605
  article-title: Structural and functional constraints limit options for cytotoxic T‐lymphocyte escape in the immunodominant HLA‐B27‐restricted epitope in human immunodeficiency virus type 1 capsid
  publication-title: Journal of Virology
– volume: 30
  start-page: 772
  year: 2013
  end-page: 780
  article-title: MAFFT multiple sequence alignment software version 7: Improvements in performance and usability
  publication-title: Molecular Biology and Evolution
– year: 2020
  article-title: Neutralizing antibody responses to SARS‐CoV‐2 in a COVID‐19 recovered patient cohort and their implications
  publication-title: MedRxiv
– volume: 4
  year: 2008
  article-title: The population genetics of dN/dS
  publication-title: PLoS Genetics
– volume: 5
  start-page: 1408
  year: 2020
  end-page: 1417
  article-title: Evolutionary origins of the SARS‐CoV‐2 sarbecovirus lineage responsible for the COVID‐19 pandemic
  publication-title: Nature Microbiology
– volume: 20
  start-page: 269
  year: 2020
  end-page: 270
  article-title: COVID‐19: Immunopathology and its implications for therapy
  publication-title: Nature Reviews Immunology
– volume: 192
  start-page: 1898
  year: 2005
  end-page: 1907
  article-title: Clinical and molecular epidemiological features of coronavirus HKU1‐associated community‐acquired pneumonia
  publication-title: The Journal of Infectious Diseases
– year: 2020
  article-title: SARS‐CoV‐2 Spike protein variant D614G increases infectivity and retains sensitivity to antibodies that target the receptor binding domain
  publication-title: BioRxiv
– volume: 26
  start-page: 729
  year: 2020
  end-page: 734
  article-title: COVID‐19, SARS and MERS: Are they closely related?
  publication-title: Clinical Microbiology and Infection
– volume: 15
  year: 2020
  article-title: Identification of immunodominant linear epitopes from SARS‐CoV‐2 patient plasma
  publication-title: PLoS One
– volume: 27
  start-page: 671
  year: 2020
  end-page: 680
  article-title: A sequence homology and bioinformatic approach can predict candidate targets for immune responses to SARS‐CoV‐2
  publication-title: Cell Host & Microbe
– volume: 11
  start-page: 1860
  year: 2005
  end-page: 1865
  article-title: SARS‐CoV infection in a restaurant from palm civet
  publication-title: Emerging Infectious Diseases
– volume: 196
  start-page: 4468
  issue: 11
  year: 2016
  end-page: 4476
  article-title: Characterization of the antigen processing machinery and endogenous peptide presentation of a bat MHC class I molecule
  publication-title: The Journal of Immunology
– volume: 8
  year: 2012
  article-title: Reliable B cell epitope predictions: Impacts of method development and improved benchmarking
  publication-title: PLoS Computational Biology
– volume: 1
  start-page: 33
  year: 2017
  end-page: 46
  article-title: Data, disease and diplomacy: GISAID's innovative contribution to global health
  publication-title: Global Challenges (Hoboken, NJ)
– volume: 81
  start-page: 12382
  year: 2007
  end-page: 12393
  article-title: Escape from the dominant HLA‐B27‐restricted cytotoxic T‐lymphocyte response in Gag is associated with a dramatic reduction in human immunodeficiency virus type 1 replication
  publication-title: Journal of Virology
– volume: 83
  year: 2020
  article-title: Emergence of genomic diversity and recurrent mutations in SARS‐CoV‐2
  publication-title: Infection, Genetics and Evolution
– volume: 26
  start-page: 450
  year: 2020
  end-page: 452
  article-title: The proximal origin of SARS‐CoV‐2
  publication-title: Nature Medicine
– volume: 11
  start-page: 1
  year: 2013
  end-page: 10
  article-title: Immune activation promotes evolutionary conservation of T‐cell epitopes in HIV‐1
  publication-title: PLoS Biology
– year: 2020
  article-title: The novel severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) directly decimates human spleens and lymph nodes
  publication-title: medRxiv
– volume: 199
  start-page: 3360
  issue: 9
  year: 2017
  end-page: 3368
  article-title: NetMHCpan‐4.0: Improved peptide–MHC class I interaction predictions integrating eluted ligand and peptide binding affinity data
  publication-title: The Journal of Immunology
– volume: 11
  start-page: 2806
  year: 2020
  article-title: Two linear epitopes on the SARS‐CoV‐2 spike protein that elicit neutralising antibodies in COVID‐19 patients
  publication-title: Nature Communications
– volume: 41
  start-page: 909
  year: 2014
  end-page: 918
  article-title: Antibody light‐chain‐restricted recognition of the site of immune pressure in the RV144 HIV‐1 vaccine trial is phylogenetically conserved
  publication-title: Immunity
– volume: 9
  start-page: 7861
  year: 2019
  end-page: 7874
  article-title: Origin and evolution of the major histocompatibility complex class I region in eutherian mammals
  publication-title: Ecology and Evolution
– volume: 183
  start-page: 169
  year: 2020
  end-page: 184
  article-title: A single‐dose intranasal ChAd vaccine protects upper and lower respiratory tracts against SARS‐CoV‐2
  publication-title: Cell
– volume: 21
  start-page: 1336
  year: 2020
  end-page: 1345
  article-title: Broad and strong memory CD4 and CD8 T cells induced by SARS‐CoV‐2 in UK convalescent individuals following COVID‐19
  publication-title: Nature Immunology
– volume: 92
  start-page: 512
  year: 2020
  end-page: 517
  article-title: Antibodies to coronaviruses are higher in older compared with younger adults and binding antibodies are more sensitive than neutralizing antibodies in identifying coronavirus‐associated illnesses
  publication-title: Journal of Medical Virology
– volume: 45
  start-page: W24
  year: 2017
  end-page: W29
  article-title: BepiPred‐2.0: Improving sequence‐based B‐cell epitope prediction using conformational epitopes
  publication-title: Nucleic Acids Research
– volume: 26
  start-page: 1478
  year: 2020
  end-page: 1488
  article-title: Severe acute respiratory syndrome coronavirus 2 − Specific antibody responses in coronavirus disease patients
  publication-title: Emerging Infectious Diseases
– ident: e_1_2_8_75_1
  doi: 10.1001/jama.2020.2648
– ident: e_1_2_8_78_1
  doi: 10.7150/ijbs.45472
– ident: e_1_2_8_41_1
  doi: 10.1002/jmv.25701
– ident: e_1_2_8_54_1
  doi: 10.1038/s41590-020-0782-6
– ident: e_1_2_8_2_1
  doi: 10.1002/ece3.5373
– ident: e_1_2_8_8_1
  doi: 10.1371/journal.pone.0002402
– ident: e_1_2_8_22_1
  doi: 10.1016/j.chom.2020.03.002
– ident: e_1_2_8_33_1
  doi: 10.1093/molbev/mst010
– ident: e_1_2_8_83_1
  doi: 10.1038/s41586-020-2012-7
– ident: e_1_2_8_17_1
  doi: 10.4161/rna.8.2.15013
– ident: e_1_2_8_34_1
  doi: 10.3201/eid2602.190697
– ident: e_1_2_8_57_1
  doi: 10.1038/s41467-020-16638-2
– ident: e_1_2_8_3_1
  doi: 10.1038/s41591-020-0820-9
– ident: e_1_2_8_11_1
  doi: 10.1007/s12026-014-8534-z
– ident: e_1_2_8_60_1
  doi: 10.1128/JVI.02356-07
– ident: e_1_2_8_48_1
  doi: 10.1152/advan.00017.2010
– ident: e_1_2_8_51_1
  doi: 10.3201/eid2607.200841
– ident: e_1_2_8_73_1
  doi: 10.1086/497151
– year: 2020
  ident: e_1_2_8_72_1
  article-title: Evidence of recombination in coronaviruses implicating pangolin origins of nCoV‐2019
  publication-title: BioRxiv
– ident: e_1_2_8_18_1
  doi: 10.1002/gch2.1018
– ident: e_1_2_8_5_1
  doi: 10.1128/mBio.02590-20
– ident: e_1_2_8_6_1
  doi: 10.1038/s41564-020-0771-4
– ident: e_1_2_8_14_1
  doi: 10.1038/s41564-020-0695-z
– ident: e_1_2_8_15_1
  doi: 10.1016/j.chom.2015.10.008
– ident: e_1_2_8_16_1
  doi: 10.1038/s41579-018-0118-9
– ident: e_1_2_8_25_1
  doi: 10.1016/j.immuni.2007.04.003
– ident: e_1_2_8_29_1
  doi: 10.1038/s41577-020-0321-6
– ident: e_1_2_8_43_1
  doi: 10.1371/journal.ppat.1008421
– ident: e_1_2_8_55_1
  doi: 10.1016/j.cmi.2020.03.026
– ident: e_1_2_8_76_1
  doi: 10.4049/jimmunol.1502062
– ident: e_1_2_8_37_1
  doi: 10.1016/j.cell.2020.06.043
– ident: e_1_2_8_44_1
  doi: 10.1128/JVI.01277-07
– year: 2020
  ident: e_1_2_8_74_1
  article-title: Neutralizing antibody responses to SARS‐CoV‐2 in a COVID‐19 recovered patient cohort and their implications
  publication-title: MedRxiv
– ident: e_1_2_8_56_1
  doi: 10.1038/s41586-020-2895-3
– ident: e_1_2_8_80_1
  doi: 10.3389/fmolb.2020.00157
– ident: e_1_2_8_68_1
  doi: 10.1016/j.meegid.2020.104351
– ident: e_1_2_8_77_1
  doi: 10.1038/s41586-020-2313-x
– ident: e_1_2_8_62_1
  doi: 10.1016/B978-0-12-799942-5.00026-3
– ident: e_1_2_8_50_1
  doi: 10.1016/j.immuni.2020.04.023
– ident: e_1_2_8_27_1
  doi: 10.1016/j.cell.2020.08.026
– ident: e_1_2_8_7_1
  doi: 10.3181/00379727-139-36224
– ident: e_1_2_8_71_1
  doi: 10.1016/j.immuni.2014.11.014
– year: 2020
  ident: e_1_2_8_12_1
  article-title: The novel severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) directly decimates human spleens and lymph nodes
  publication-title: medRxiv
– ident: e_1_2_8_47_1
  doi: 10.1128/JVI.80.7.3617-3623.2006
– ident: e_1_2_8_40_1
  doi: 10.1038/s41586-020-2169-0
– ident: e_1_2_8_45_1
  doi: 10.1038/s41591-020-0965-6
– ident: e_1_2_8_32_1
  doi: 10.4049/jimmunol.1700893
– ident: e_1_2_8_36_1
  doi: 10.1128/JVI.01381-18
– year: 2020
  ident: e_1_2_8_81_1
  article-title: The D614G mutation in the SARS‐CoV‐2 spike protein reduces S1 shedding and increases infectivity
  publication-title: bioRxiv
– ident: e_1_2_8_24_1
  doi: 10.1038/s41564-020-0690-4
– ident: e_1_2_8_4_1
  doi: 10.1016/j.cell.2015.07.020
– ident: e_1_2_8_53_1
  doi: 10.1002/cpim.12
– ident: e_1_2_8_13_1
  doi: 10.1038/ng.590
– ident: e_1_2_8_26_1
  doi: 10.1016/j.imlet.2020.07.001
– ident: e_1_2_8_21_1
  doi: 10.1002/jmv.25715
– ident: e_1_2_8_49_1
  doi: 10.1038/srep21256
– ident: e_1_2_8_23_1
  doi: 10.1016/j.cell.2020.05.015
– ident: e_1_2_8_31_1
  doi: 10.1038/s41467-020-17488-8
– ident: e_1_2_8_35_1
  doi: 10.3201/eid2506.181722
– ident: e_1_2_8_61_1
  doi: 10.1128/JVI.01543-07
– ident: e_1_2_8_65_1
  doi: 10.1038/ncomms8952
– ident: e_1_2_8_30_1
  doi: 10.1093/nar/gkx346
– ident: e_1_2_8_63_1
  doi: 10.1016/j.meegid.2020.104384
– ident: e_1_2_8_59_1
  doi: 10.1371/journal.pbio.1001523
– ident: e_1_2_8_64_1
  doi: 10.4049/jimmunol.2000526
– year: 2020
  ident: e_1_2_8_70_1
  article-title: D614G spike mutation increases SARS CoV‐2 susceptibility to neutralization
  publication-title: MedRxiv
– ident: e_1_2_8_39_1
  doi: 10.1371/journal.pgen.1000304
– ident: e_1_2_8_58_1
  doi: 10.1086/651022
– year: 2020
  ident: e_1_2_8_79_1
  article-title: SARS‐CoV‐2 Spike protein variant D614G increases infectivity and retains sensitivity to antibodies that target the receptor binding domain
  publication-title: BioRxiv
– ident: e_1_2_8_82_1
  doi: 10.1093/cid/ciaa344
– ident: e_1_2_8_38_1
  doi: 10.1371/journal.pcbi.1002829
– ident: e_1_2_8_66_1
  doi: 10.1073/pnas.1704766114
– ident: e_1_2_8_67_1
  doi: 10.1016/j.immuni.2020.05.002
– year: 2020
  ident: e_1_2_8_28_1
  article-title: SARS‐CoV‐2 D614G variant exhibits enhanced replication ex vivo and earlier transmission in vivo
  publication-title: bioRxiv
– ident: e_1_2_8_42_1
  doi: 10.1073/pnas.1416537112
– ident: e_1_2_8_19_1
  doi: 10.1371/journal.pone.0238089
– ident: e_1_2_8_69_1
  doi: 10.3201/eid1112.041293
– ident: e_1_2_8_9_1
  doi: 10.1128/JVI.00411-20
– ident: e_1_2_8_10_1
  doi: 10.1038/s41577-020-0308-3
– ident: e_1_2_8_52_1
  doi: 10.1186/1471-2164-13-261
– ident: e_1_2_8_20_1
  doi: 10.1016/j.tim.2016.09.001
– ident: e_1_2_8_46_1
  doi: 10.1371/journal.pbio.3000436
SSID ssj0013255
Score 2.4657617
Snippet Analysis of the bat viruses most closely related to SARS‐CoV‐2 indicated that the virus probably required limited adaptation to spread in humans. Nonetheless,...
Analysis of the bat viruses most closely related to SARS-CoV-2 indicated that the virus probably required limited adaptation to spread in humans. Nonetheless,...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3548
SubjectTerms antigenic variation
Antigens
B cell epitope
B-lymphocytes
CD4 antigen
CD8 antigen
Chiroptera
Common cold
Conservation
Coronaviridae
Coronaviruses
COVID-19
disease severity
ecology
Epitopes
genome
Genomes
Glycoproteins
human coronavirus
Human populations
humans
humoral immunity
Immune response
Immune response (humoral)
Immune system
Immunogenicity
Lymphocytes
Lymphocytes T
nucleocapsid proteins
Nucleocapsids
Original
Proteins
sarbecovirus
SARS‐CoV‐2
Severe acute respiratory syndrome
Severe acute respiratory syndrome coronavirus 2
Spike glycoprotein
T cell epitope
Viral diseases
Viruses
Title Antigenic variation of SARS‐CoV‐2 in response to immune pressure
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fmec.15730
https://www.ncbi.nlm.nih.gov/pubmed/33289207
https://www.proquest.com/docview/2554226999
https://www.proquest.com/docview/2468333423
https://www.proquest.com/docview/2636419814
https://pubmed.ncbi.nlm.nih.gov/PMC7753431
Volume 30
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9RAEB9qQfDF1u9oLav44EuOTXazk8On47xShIq0VfoghM1mQw_bpFxzQn3qn-Df6F_i7OaDO6sivoSFTGA_ZnZ_k535DcArOlW5TrgI0YzHoSx1GeaRTMI4KY2MNE_H2iU4H7xX-x_lu5PkZAPe9LkwLT_E8MPNWYbfr52B6_xyxcjPrRlFCSko7b8uVssBosN45QbBVzwlhB7TVpOKjlXIRfEMX66fRTcA5s04yVX86g-gvS343He9jTv5Mlo2-ch8-4XV8T_Htg13O2DKJq0m3YMNW92H222pyitqzTy99dUDeDupGkfhOTfsKznafmVZXbKjyeHRj-vv0_oTPWM2r9iijb-1rKnZ3OWhWObDbpcL-xCO92bH0_2wq8UQGomKh4mOUBgtpSx4EhdYyKLQRqcG07I0KA25LSq3yBGFFZLnJtKm0CIpUGFpxCPYrOrKPgFGEAdlWkSISrs0Wc21RZUjQTmR5nEUwOt-UTLT8ZS7chlnWe-v0OxkfnYCeDmIXrTkHL8T2ulXNuvs8zIj5XApxISOA3gxvCbLctclurL1kmSkSoVwDIl_kVFCyWicRjKAx62yDD0RgpzZmGMAuKZGg4Bj9l5_U81PPcM3khNJyI6mwmvJnweXHcymvvH030WfwZ3YBeb4mOMd2GwWS_uckFWT78KtWH7Y9Yb0E20YIC4
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwEB6VIkQv_FNSChjEgUtWSex4shKX1bLVAt0e2gX1giLHccQKSNCSRWpPPALPyJMwdn60SwEhLpElT6TYnom_sWe-AXhKu2qg4oD7qIdDXxSq8LNQxH4UF1qEKkiGyiY4z47k9I14dRqfbsHzLhem4YfoD9ysZbj_tTVweyC9ZuWfjB6EMWnoJbhsK3o7h-o4WrtDcDVPCaNH9LNJeMsrZON4-lc3d6MLEPNipOQ6gnVb0MF1eNd9fBN58mGwqrOBPv-F1_F_R3cDrrXYlI0aZboJW6a8BVeaapVn1Jo4huuz2_BiVNaWxXOh2Vfytd3isqpgJ6Pjkx_fvo-rt_SM2KJkyyYE17C6YgubimKYi7xdLc0dmB9M5uOp35Zj8LVAGfixCpFrJYTIgzjKMRd5rrRKNCZFoVFo8lxkZjBA5IaLINOh0rnicY4SC83vwnZZleYeMEI5KJI8RJTKZsqqQBmUGRKa40kWhR4861Yl1S1Vua2Y8THtXBaandTNjgdPetHPDT_H74T2u6VNWxP9kpJ22CxiAsgePO67ybjsjYkqTbUiGSETzi1J4l9kJJciHCah8GC30Zb-SzgnfzYK0APc0KNewJJ7b_aUi_eO5BvJjyRwR1Ph1OTPg0tnk7Fr7P276CO4Op3PDtPDl0ev78NOZON0XAjyPmzXy5V5QECrzh46e_oJh0Mjcg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VIlAv5V0CBQziwCWrJHY8WXFabXdVHq1QW1APSJHjOGLVklTbLFI58RP4jfwSxs5DuxQQ4hJZ8iTyY8b-Jp75DPCcdtVAxQH3UQ-HvihU4WehiP0oLrQIVZAMlU1w3tuXu-_F6-P4eA1edrkwDT9E_8PNWoZbr62Bn-XFkpF_NnoQxqSgV-CqkPRRi4gOoqUjBHflKUH0iNaahLe0QjaMp391dTO6hDAvB0ouA1i3A01vwMeu7U3gyclgUWcD_fUXWsf_7NxN2GyRKRs1qnQL1kx5G641d1VeUGni-K0v7sDOqKwth-dMsy_kabupZVXBDkcHhz--fR9XH-gZsVnJ5k0ArmF1xWY2EcUwF3e7mJu7cDSdHI13_fYyBl8LlIEfqxC5VkKIPIijHHOR50qrRGNSFBqFJr9FZgYDRG64CDIdKp0rHucosdD8HqyXVWnuAyOMgyLJQ0SpbJ6sCpRBmSFhOZ5kUejBi25SUt0Sldv7Mk7TzmGh0Und6HjwrBc9a9g5fie03c1s2hroeUrKYXOICR578LSvJtOy5yWqNNWCZIRMOLcUiX-RkVyKcJiEwoOtRln6lnBO3mwUoAe4oka9gKX2Xq0pZ58cxTeSF0nQjobCacmfO5fuTcau8ODfRZ_A9Xc70_Ttq_03D2EjskE6Lv54G9br-cI8IpRVZ4-dNf0EJgIiKg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Antigenic+variation+of+SARS%E2%80%90CoV%E2%80%902+in+response+to+immune+pressure&rft.jtitle=Molecular+ecology&rft.au=Forni%2C+Diego&rft.au=Cagliani%2C+Rachele&rft.au=Pontremoli%2C+Chiara&rft.au=Mozzi%2C+Alessandra&rft.date=2021-07-01&rft.issn=0962-1083&rft.eissn=1365-294X&rft.volume=30&rft.issue=14&rft.spage=3548&rft.epage=3559&rft_id=info:doi/10.1111%2Fmec.15730&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_mec_15730
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0962-1083&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0962-1083&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0962-1083&client=summon