Catalytic Biomimetic Asymmetric Reduction of Alkenes and Imines Enabled by Chiral and Regenerable NAD(P)H Models
The development of biomimetic chemistry based on the NAD(P)H with hydrogen gas as terminal reductant is a long‐standing challenge. Through rational design of the chiral and regenerable NAD(P)H analogues based on planar‐chiral ferrocene, a biomimetic asymmetric reduction has been realized using bench...
Saved in:
Published in | Angewandte Chemie International Edition Vol. 58; no. 6; pp. 1813 - 1817 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
WEINHEIM
Wiley
04.02.2019
Wiley Subscription Services, Inc |
Edition | International ed. in English |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The development of biomimetic chemistry based on the NAD(P)H with hydrogen gas as terminal reductant is a long‐standing challenge. Through rational design of the chiral and regenerable NAD(P)H analogues based on planar‐chiral ferrocene, a biomimetic asymmetric reduction has been realized using bench‐stable Lewis acids as transfer catalysts. A broad set of alkenes and imines could be reduced with up to 98 % yield and 98 % ee, likely enabled by enzyme‐like cooperative bifunctional activation. This reaction represents the first general biomimetic asymmetric reduction (BMAR) process enabled by chiral and regenerable NAD(P)H analogues. This concept demonstrates catalytic utility of a chiral coenzyme NAD(P)H in asymmetric catalysis.
Through rational design of chiral and regenerable NAD(P)H analogues based on planar‐chiral ferrocene, a biomimetic asymmetric reduction has been realized using bench‐stable Lewis acids as transfer catalysts. A broad set of tetrasubstituted alkenes and imines could be reduced with up to 98 % yield and 98 % ee. This protocol represents the first general biomimetic asymmetric reduction process enabled by NAD(P)H analogues. |
---|---|
AbstractList | The development of biomimetic chemistry based on the NAD(P)H with hydrogen gas as terminal reductant is a long‐standing challenge. Through rational design of the chiral and regenerable NAD(P)H analogues based on planar‐chiral ferrocene, a biomimetic asymmetric reduction has been realized using bench‐stable Lewis acids as transfer catalysts. A broad set of alkenes and imines could be reduced with up to 98 % yield and 98 % ee, likely enabled by enzyme‐like cooperative bifunctional activation. This reaction represents the first general biomimetic asymmetric reduction (BMAR) process enabled by chiral and regenerable NAD(P)H analogues. This concept demonstrates catalytic utility of a chiral coenzyme NAD(P)H in asymmetric catalysis.
Through rational design of chiral and regenerable NAD(P)H analogues based on planar‐chiral ferrocene, a biomimetic asymmetric reduction has been realized using bench‐stable Lewis acids as transfer catalysts. A broad set of tetrasubstituted alkenes and imines could be reduced with up to 98 % yield and 98 % ee. This protocol represents the first general biomimetic asymmetric reduction process enabled by NAD(P)H analogues. The development of biomimetic chemistry based on the NAD(P)H with hydrogen gas as terminal reductant is a long‐standing challenge. Through rational design of the chiral and regenerable NAD(P)H analogues based on planar‐chiral ferrocene, a biomimetic asymmetric reduction has been realized using bench‐stable Lewis acids as transfer catalysts. A broad set of alkenes and imines could be reduced with up to 98 % yield and 98 % ee , likely enabled by enzyme‐like cooperative bifunctional activation. This reaction represents the first general biomimetic asymmetric reduction (BMAR) process enabled by chiral and regenerable NAD(P)H analogues. This concept demonstrates catalytic utility of a chiral coenzyme NAD(P)H in asymmetric catalysis. The development of biomimetic chemistry based on the NAD(P)H with hydrogen gas as terminal reductant is a long-standing challenge. Through rational design of the chiral and regenerable NAD(P)H analogues based on planar-chiral ferrocene, a biomimetic asymmetric reduction has been realized using bench-stable Lewis acids as transfer catalysts. A broad set of alkenes and imines could be reduced with up to 98 % yield and 98 % ee, likely enabled by enzyme-like cooperative bifunctional activation. This reaction represents the first general biomimetic asymmetric reduction (BMAR) process enabled by chiral and regenerable NAD(P)H analogues. This concept demonstrates catalytic utility of a chiral coenzyme NAD(P)H in asymmetric catalysis.The development of biomimetic chemistry based on the NAD(P)H with hydrogen gas as terminal reductant is a long-standing challenge. Through rational design of the chiral and regenerable NAD(P)H analogues based on planar-chiral ferrocene, a biomimetic asymmetric reduction has been realized using bench-stable Lewis acids as transfer catalysts. A broad set of alkenes and imines could be reduced with up to 98 % yield and 98 % ee, likely enabled by enzyme-like cooperative bifunctional activation. This reaction represents the first general biomimetic asymmetric reduction (BMAR) process enabled by chiral and regenerable NAD(P)H analogues. This concept demonstrates catalytic utility of a chiral coenzyme NAD(P)H in asymmetric catalysis. The development of biomimetic chemistry based on the NAD(P)H with hydrogen gas as terminal reductant is a long‐standing challenge. Through rational design of the chiral and regenerable NAD(P)H analogues based on planar‐chiral ferrocene, a biomimetic asymmetric reduction has been realized using bench‐stable Lewis acids as transfer catalysts. A broad set of alkenes and imines could be reduced with up to 98 % yield and 98 % ee, likely enabled by enzyme‐like cooperative bifunctional activation. This reaction represents the first general biomimetic asymmetric reduction (BMAR) process enabled by chiral and regenerable NAD(P)H analogues. This concept demonstrates catalytic utility of a chiral coenzyme NAD(P)H in asymmetric catalysis. The development of biomimetic chemistry based on the NAD(P)H with hydrogen gas as terminal reductant is a long-standing challenge. Through rational design of the chiral and regenerable NAD(P)H analogues based on planarchiral ferrocene, a biomimetic asymmetric reduction has been realized using bench-stable Lewis acids as transfer catalysts. A broad set of alkenes and imines could be reduced with up to 98% yield and 98% ee, likely enabled by enzyme-like cooperative bifunctional activation. This reaction represents the first general biomimetic asymmetric reduction (BMAR) process enabled by chiral and regenerable NAD(P)H analogues. This concept demonstrates catalytic utility of a chiral coenzyme NAD(P)H in asymmetric catalysis. |
Author | Chen, Mu‐Wang Chen, Qing‐An Zhu, Zhou‐Hao Zhou, Yong‐Gui Wang, Jie |
Author_xml | – sequence: 1 givenname: Jie orcidid: 0000-0001-8077-8047 surname: Wang fullname: Wang, Jie organization: University of Chinese Academy of Sciences – sequence: 2 givenname: Zhou‐Hao orcidid: 0000-0002-5227-5669 surname: Zhu fullname: Zhu, Zhou‐Hao organization: Chinese Academy of Sciences – sequence: 3 givenname: Mu‐Wang orcidid: 0000-0001-6493-1363 surname: Chen fullname: Chen, Mu‐Wang organization: Chinese Academy of Sciences – sequence: 4 givenname: Qing‐An orcidid: 0000-0002-9129-2656 surname: Chen fullname: Chen, Qing‐An organization: Chinese Academy of Sciences – sequence: 5 givenname: Yong‐Gui orcidid: 0000-0002-3321-5521 surname: Zhou fullname: Zhou, Yong‐Gui email: ygzhou@dicp.ac.cn organization: Dalian University of Technology |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30556234$$D View this record in MEDLINE/PubMed |
BookMark | eNqNks1v1DAQxS1URNuFK0cUiUsrtIs_4th7DGGhK5WCqt4jx5mAi2MvdiKU_74OuyxSJQQnP2l-z_P0NOfoxHkHCL0keEUwpm-VM7CimEjCcoyfoDPCKVkyIdhJ0jljSyE5OUXnMd4nXkpcPEOnDHNeUJafoV2lBmWnwejsnfG96WGWZZz6pEKSt9COejDeZb7LSvsdHMRMuTbb9maWG6caC23WTFn1zQRlfw1v4WsCwzzKbsr3F18ur7JPvgUbn6OnnbIRXhzeBbr7sLmrrpbXnz9uq_J6qXNR4GXK14kUds0LzXTOBRCaM8VxQyRmSipgtGs6rfBa8qKlDS6EFG1OtGhaaNkCXey_3QX_Y4Q41L2JGqxVDvwYa0q4KDjLU28L9PoReu_H4FK4RAmKCybxTL06UGPTQ1vvgulVmOrfVSZA7oGf0PguagNOwxHDGOdcSlrIWcnKDGoutfKjG5L1zf9bE73a0zr4GAN0R5Lgej6Kej6K-ngUyZA_MujD-iEoY_9uWx9SGQvTP5bU5c1288f7AFHExxc |
CitedBy_id | crossref_primary_10_6023_cjoc202312004 crossref_primary_10_1002_ange_202422698 crossref_primary_10_2174_1570178618666210706112141 crossref_primary_10_1016_j_tet_2021_131968 crossref_primary_10_1021_acs_orglett_1c03430 crossref_primary_10_1021_acscatal_0c03958 crossref_primary_10_1039_D0CC03091K crossref_primary_10_1021_acs_joc_4c00965 crossref_primary_10_1039_D4DT03063J crossref_primary_10_3390_ijms24010400 crossref_primary_10_1039_D2QI01711C crossref_primary_10_1055_a_2089_4934 crossref_primary_10_1021_jacs_4c13618 crossref_primary_10_1002_cssc_202201348 crossref_primary_10_1021_acs_orglett_1c00993 crossref_primary_10_1039_D0AN01837F crossref_primary_10_1021_acs_orglett_2c01314 crossref_primary_10_1021_acs_joc_9b03054 crossref_primary_10_1002_cjoc_202000409 crossref_primary_10_1021_acs_joc_2c02905 crossref_primary_10_1021_acs_orglett_0c02700 crossref_primary_10_1007_s11426_023_1578_y crossref_primary_10_1002_adsc_202201391 crossref_primary_10_1016_j_gresc_2024_02_007 crossref_primary_10_1021_acs_orglett_1c02568 crossref_primary_10_1039_D2OB01655A crossref_primary_10_1039_D1OB02079J crossref_primary_10_1002_ange_202303709 crossref_primary_10_1039_D3SC02080K crossref_primary_10_3390_molecules26020489 crossref_primary_10_1021_acs_accounts_3c00129 crossref_primary_10_1021_acs_joc_0c01782 crossref_primary_10_1039_D0SC04188B crossref_primary_10_1002_cjoc_202000045 crossref_primary_10_1039_D1TA07449K crossref_primary_10_1039_D3CC03409G crossref_primary_10_1002_anie_201914377 crossref_primary_10_1039_D3QO01609A crossref_primary_10_1021_acs_joc_2c00677 crossref_primary_10_1038_s41557_023_01157_6 crossref_primary_10_1002_anie_202114490 crossref_primary_10_3390_inorganics10100152 crossref_primary_10_1021_acscatal_2c00083 crossref_primary_10_1002_anie_202422698 crossref_primary_10_1021_acs_orglett_1c04132 crossref_primary_10_1039_D3QO01196H crossref_primary_10_1039_D1CC06896B crossref_primary_10_1002_anie_202303709 crossref_primary_10_1039_D3SC03806H crossref_primary_10_1021_acs_joc_3c02954 crossref_primary_10_1021_acs_orglett_4c00425 crossref_primary_10_1002_ejic_202100911 crossref_primary_10_1039_C9RA02694K crossref_primary_10_1021_acsami_4c01101 crossref_primary_10_1016_j_gresc_2021_05_004 crossref_primary_10_1002_ange_201914377 crossref_primary_10_1002_ange_202114490 crossref_primary_10_1021_acs_orglett_4c02560 crossref_primary_10_1002_elps_202200148 |
Cites_doi | 10.1021/acs.orglett.7b01343 10.1210/er.2009-0026 10.1021/ja8069852 10.1021/ar7001864 10.1021/ar020153m 10.1002/ange.201106808 10.1039/c39850001162 10.1021/ol0624373 10.1002/ange.201301972 10.1021/ja00066a066 10.1021/ol901762g 10.1021/ja903547q 10.1002/ange.201103240 10.1002/ange.200702555 10.1002/anie.201712435 10.1002/adsc.201000328 10.1016/j.tetasy.2007.04.028 10.1002/ange.201702926 10.1021/ja057222n 10.1039/c1gc15027h 10.1002/anie.200703925 10.1002/ange.200602482 10.1021/ol500176v 10.1039/b706887e 10.1002/anie.201301972 10.1002/anie.200462432 10.1002/anie.200600191 10.1002/1521-3757(20020201)114:3<496::AID-ANGE496>3.0.CO;2-Z 10.1021/ja211684v 10.1002/anie.201103240 10.1021/ol400995c 10.1002/ange.201204179 10.1039/c3gc37129h 10.1002/ange.201712435 10.1002/adsc.201000274 10.1002/ange.200600512 10.1002/ange.200601832 10.1021/acs.orglett.6b02283 10.1021/cr0500131 10.1039/c1cs15268h 10.1002/anie.200602482 10.1039/b700682a 10.1021/jacs.5b00085 10.1002/ange.200600191 10.1021/ja208073w 10.1021/ja509005e 10.1002/anie.201307371 10.1039/b618792g 10.1002/anie.201204179 10.1021/ar030171j 10.1002/anie.201702926 10.1002/anie.200461816 10.1002/ange.200462432 10.1021/jacs.7b07188 10.1021/ja00849a055 10.1021/ja065708d 10.1002/anie.200601832 10.1002/anie.200600512 10.1039/C7OB00113D 10.1002/anie.201706994 10.1021/ja992990y 10.1055/s-2007-990840 10.1021/ja074045c 10.1002/1521-3773(20020201)41:3<478::AID-ANIE478>3.0.CO;2-K 10.1002/anie.201106808 10.1021/acs.joc.5b00153 10.1021/ja043834g 10.1002/ange.201307371 10.1021/ja510980d 10.1002/ange.200703925 10.1021/ol0610892 10.1021/ol3012869 10.1021/ja990535w 10.1002/ange.201706994 10.1002/ange.200461816 10.1002/anie.200702555 10.1021/ol0515964 10.1021/ar500414x 10.1039/c7ob00113d 10.1055/s-0036-1588665 |
ContentType | Journal Article |
Copyright | 2019 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. |
Copyright_xml | – notice: 2019 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. |
DBID | AAYXX CITATION 17B 1KM 1KN AAWJD BLEPL DTL EGQ NPM 7TM K9. 7X8 |
DOI | 10.1002/anie.201813400 |
DatabaseName | CrossRef Web of Knowledge Index Chemicus Current Chemical Reactions Web of Science - Science Citation Index Expanded - 2019 Web of Science Core Collection Science Citation Index Expanded Web of Science Primary (SCIE, SSCI & AHCI) PubMed Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef Web of Science PubMed ProQuest Health & Medical Complete (Alumni) Nucleic Acids Abstracts MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic ProQuest Health & Medical Complete (Alumni) Web of Science PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 1KN name: Current Chemical Reactions url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/woscc/search-with-editions?editions=WOS.CCR sourceTypes: Enrichment Source Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3773 |
Edition | International ed. in English |
EndPage | 1817 |
ExternalDocumentID | 30556234 000458826800048 10_1002_anie_201813400 ANIE201813400 |
Genre | shortCommunication Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 21532006, 21690074 – fundername: Dalian Institute of Chemical Physics funderid: DMTO201501 – fundername: Chinese Academy of Sciences funderid: XDB17020300, QYZDJ-SSW-SLH035 – fundername: Dalian Institute of Chemical Physics grantid: DMTO201501 – fundername: Chinese Academy of Sciences grantid: XDB17020300; QYZDJ-SSW-SLH035 – fundername: National Natural Science Foundation of China; National Natural Science Foundation of China (NSFC) grantid: 21532006; 21690074 – fundername: National Natural Science Foundation of China grantid: 21532006, 21690074 – fundername: Chinese Academy of Sciences grantid: XDB17020300, QYZDJ-SSW-SLH035 |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABLJU ABPPZ ABPVW ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BTSUX BY8 CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS EJD F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES M53 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ TN5 UB1 UPT UQL V2E VQA W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XSW XV2 YZZ ZZTAW ~IA ~KM ~WT AAYXX ABDBF ABJNI AEYWJ AGHNM AGYGG CITATION 17B 1KM 1KN BLEPL DTL GROUPED_WOS_SCIENCE_CITATION_INDEX_EXPANDED GROUPED_WOS_WEB_OF_SCIENCE NPM YIN 7TM K9. 7X8 |
ID | FETCH-LOGICAL-c4760-556f7806956c3c457e1243a50b1803a8ae32fbfca09856d2b06787d41c7bded3 |
IEDL.DBID | DR2 |
ISICitedReferencesCount | 61 |
ISICitedReferencesURI | https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestApp=WOS&DestLinkType=CitingArticles&UT=000458826800048 |
ISSN | 1433-7851 1521-3773 |
IngestDate | Fri Jul 11 00:45:37 EDT 2025 Fri Jul 25 10:45:18 EDT 2025 Wed Feb 19 02:30:39 EST 2025 Fri Aug 29 15:57:53 EDT 2025 Wed Jul 09 17:54:43 EDT 2025 Thu Apr 24 22:53:08 EDT 2025 Tue Jul 01 02:26:39 EDT 2025 Wed Jan 22 17:03:09 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | QUINOLINES alkenes HANTZSCH ESTERS HYDROAMINATION/ASYMMETRIC TRANSFER HYDROGENATION ENANTIOSELECTIVE TRANSFER HYDROGENATION DEHYDROGENASE asymmetric synthesis NADH BENZOTHIAZOLINE biomimetic chemistry reduction ORGANOCATALYTIC TRANSFER HYDROGENATION DERIVATIVES synthetic methods METAL-FREE |
Language | English |
License | 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. |
LinkModel | DirectLink |
LogoURL | https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg |
MergedId | FETCHMERGED-LOGICAL-c4760-556f7806956c3c457e1243a50b1803a8ae32fbfca09856d2b06787d41c7bded3 |
Notes | Dedicated to the 70th anniversary of the Dalian Institute of Chemical Physics, Chinese Academy of Sciences ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-8077-8047 0000-0002-9129-2656 0000-0001-6493-1363 0000-0002-5227-5669 0000-0002-3321-5521 |
PMID | 30556234 |
PQID | 2172063801 |
PQPubID | 946352 |
PageCount | 5 |
ParticipantIDs | proquest_miscellaneous_2157653481 crossref_primary_10_1002_anie_201813400 wiley_primary_10_1002_anie_201813400_ANIE201813400 proquest_journals_2172063801 webofscience_primary_000458826800048CitationCount crossref_citationtrail_10_1002_anie_201813400 webofscience_primary_000458826800048 pubmed_primary_30556234 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | February 4, 2019 |
PublicationDateYYYYMMDD | 2019-02-04 |
PublicationDate_xml | – month: 02 year: 2019 text: February 4, 2019 day: 04 |
PublicationDecade | 2010 |
PublicationPlace | WEINHEIM |
PublicationPlace_xml | – name: WEINHEIM – name: Germany – name: Weinheim |
PublicationTitle | Angewandte Chemie International Edition |
PublicationTitleAbbrev | ANGEW CHEM INT EDIT |
PublicationTitleAlternate | Angew Chem Int Ed Engl |
PublicationYear | 2019 |
Publisher | Wiley Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley – name: Wiley Subscription Services, Inc |
References | 2014 2014; 53 126 1999; 121 1975; 97 2011; 13 2015; 80 2008 2008; 47 120 2012; 14 2014; 136 2013 2013; 52 125 2009; 11 2015; 48 2013; 15 2012; 134 2015; 137 2002 2002; 41 114 2012 2012; 51 124 2018 2018; 57 130 2004; 37 2005; 105 2010; 352 2014; 16 1985 2007; 5 2000; 122 2006; 128 2007; 18 2010; 31 2004 2004; 43 116 2007; 129 2017; 28 2006; 8 2003; 36 2007 2009; 131 2017 2017; 56 129 2016; 18 2011; 133 2009; 26 1989; 28 2017; 139 2006 2006; 45 118 2017; 15 2005; 127 2007 2007; 46 119 2004 2004; 44 117 2005; 7 2017; 19 2011 2011; 50 123 2007; 40 1993; 115 2008; 130 2012; 41 e_1_2_2_24_2 e_1_2_2_47_2 e_1_2_2_4_2 e_1_2_2_47_3 e_1_2_2_6_1 e_1_2_2_49_2 e_1_2_2_20_3 e_1_2_2_22_1 e_1_2_2_20_2 e_1_2_2_2_2 e_1_2_2_62_2 e_1_2_2_41_2 e_1_2_2_64_2 e_1_2_2_28_3 e_1_2_2_8_2 e_1_2_2_28_2 e_1_2_2_43_2 e_1_2_2_66_2 e_1_2_2_43_3 e_1_2_2_26_2 e_1_2_2_45_2 e_1_2_2_68_2 e_1_2_2_24_3 e_1_2_2_45_3 e_1_2_2_60_2 e_1_2_2_13_2 e_1_2_2_36_2 e_1_2_2_57_3 e_1_2_2_59_1 e_1_2_2_38_2 e_1_2_2_11_1 e_1_2_2_38_3 e_1_2_2_51_2 e_1_2_2_74_2 Singh S. (e_1_2_2_23_2) 1989; 28 e_1_2_2_74_3 e_1_2_2_19_2 e_1_2_2_30_2 e_1_2_2_53_2 e_1_2_2_30_3 e_1_2_2_51_3 e_1_2_2_17_2 e_1_2_2_32_2 e_1_2_2_55_2 e_1_2_2_32_3 e_1_2_2_15_2 e_1_2_2_34_2 e_1_2_2_57_2 e_1_2_2_76_2 e_1_2_2_70_1 e_1_2_2_72_1 e_1_2_2_3_2 e_1_2_2_69_3 e_1_2_2_48_2 e_1_2_2_69_2 e_1_2_2_5_2 e_1_2_2_21_2 e_1_2_2_1_1 Bai C.-B. (e_1_2_2_10_2) 2017; 28 e_1_2_2_40_2 e_1_2_2_61_2 e_1_2_2_63_3 e_1_2_2_29_2 e_1_2_2_42_2 e_1_2_2_63_2 e_1_2_2_7_2 e_1_2_2_65_3 e_1_2_2_67_1 e_1_2_2_27_2 e_1_2_2_44_2 e_1_2_2_65_2 e_1_2_2_25_3 e_1_2_2_46_1 e_1_2_2_9_2 e_1_2_2_25_2 e_1_2_2_35_3 e_1_2_2_12_2 e_1_2_2_37_2 e_1_2_2_58_2 e_1_2_2_39_1 e_1_2_2_52_1 e_1_2_2_50_2 e_1_2_2_75_2 e_1_2_2_18_2 e_1_2_2_31_2 e_1_2_2_73_2 e_1_2_2_56_1 e_1_2_2_33_2 e_1_2_2_54_2 e_1_2_2_16_1 e_1_2_2_77_1 e_1_2_2_14_2 e_1_2_2_35_2 e_1_2_2_71_1 Terada, M. (000458826800048.55) 2014; 126 Xu, HJ (WOS:000239309900010) 2006; 8 Phillips, AMF (WOS:000397945900002) 2017; 15 Rueping, M. (000458826800048.45) 2006; 118 Rueping, M. (000458826800048.48) 2006; 118 Macías, FA (WOS:000264555000002) 2009; 26 Ren, L (WOS:000299034200034) 2012; 51 Mayer, S. (000458826800048.33) 2006; 118 Zhu, C (WOS:000269670700039) 2009; 11 Rueping, M (WOS:000231294400046) 2005; 7 Chen, QA (WOS:000301084600085) 2012; 134 Liu, YT (WOS:000411810600054) 2017; 56 Wu, H (WOS:000320781200005) 2013; 15 Rueping, M (WOS:000238068000026) 2006; 45 Yang, JW (WOS:000225869900011) 2004; 43 Troutman, MV (WOS:000080646000031) 1999; 121 Zhao, L. (000458826800048.75) 2017; 129 Liu, YT (WOS:000403854300049) 2017; 19 Chen, MW (WOS:000383640600052) 2016; 18 Henseler, A. (000458826800048.16) 2011; 123 Xia, ZL (WOS:000426252400022) 2018; 57 OHNISHI, Y (WOS:A1975AL36200055) 1975; 97 Yang, J. W. (000458826800048.72) 2004; 116 Guo, QS (WOS:000252652200029) 2008; 47 Martin, NJA (WOS:000241157600026) 2006; 128 Schrems, MG (WOS:000250966100038) 2007; 46 Gebicki, J (WOS:000222094000005) 2004; 37 Tu, X.F. (000458826800048.58) 2012; 124 Sakamoto, T (WOS:000306050300020) 2012; 14 Yang, JW (WOS:000242046100059) 2006; 8 Cui, XH (WOS:000231916100004) 2005; 105 Henseler, A (WOS:000294177500043) 2011; 50 Zheng, C (WOS:000300797700025) 2012; 41 Zhu, C (WOS:000349806300025) 2015; 48 Zhao, L (WOS:000405308500013) 2017; 56 Arrayás, RG (WOS:000242595700007) 2006; 45 Yang, JW (WOS:000226010500016) 2005; 44 Han, ZY (WOS:000267633300025) 2009; 131 Mayer, S (WOS:000238718500028) 2006; 45 Terada, M (WOS:000328714900033) 2014; 53 Zhu, C (WOS:000281654500007) 2010; 352 Du, YL (WOS:000354004600056) 2015; 80 Dai, LX (WOS:000185430400003) 2003; 36 Rueping, M (WOS:000241474500037) 2006; 45 Lo, H. C. (000458826800048.24) 2002; 114 Houtkooper, RH (WOS:000276320300004) 2010; 31 Yang, J. W. (000458826800048.70) 2004; 117 Guo, Q.S. (000458826800048.12) 2008; 120 Yin, Q (WOS:000320298900031) 2013; 15 Wang, QL (WOS:000345308700005) 2014; 136 Lu, L.Q. (000458826800048.28) 2013; 125 Schrems, M. G. (000458826800048.51) 2007; 119 Lo, HC (WOS:000173880900016) 2002; 41 Wang, NX (WOS:000251507000002) 2007 Martin, NJA (WOS:000248185500025) 2007; 129 Lin, H (WOS:000248559900003) 2007; 5 Bai, CB (WOS:000402748600008) 2017; 28 Ouellet, SG (WOS:000251787500012) 2007; 40 Procuranti, B (WOS:000245261400007) 2007 Ren, L. (000458826800048.40) 2012; 124 l mez Arrays, R. G (000458826800048.2) 2006; 118 ZEHANI, S (WOS:A1985AQN3600012) 1985 Xia, Z.L. (000458826800048.65) 2018; 130 Tu, XF (WOS:000310874400031) 2012; 51 Wang, DW (WOS:000247898000011) 2007; 18 Xue, ZY (WOS:000282621700005) 2010; 352 Lu, LQ (WOS:000350192700049) 2015; 137 Rueping, M (WOS:000290227800003) 2011; 13 Ouellet, SG (WOS:000226240900015) 2005; 127 RIANT, O (WOS:A1993LT17200066) 1993; 115 Liu, Y.T. (000458826800048.23) 2017; 129 Lu, LQ (WOS:000322631600039) 2013; 52 Storer, RI (WOS:000234547700042) 2006; 128 Martin, NJA (WOS:000260047700026) 2008; 130 SINGH, S (WOS:A1989U517200001) 1989; 28 Kraft, S (WOS:000409286000001) 2017; 139 Chen, QA (WOS:000295997500030) 2011; 133 Wang, ZB (WOS:000348483500066) 2015; 137 Kanomata, N (WOS:000087118100005) 2000; 122 Chen, ZP (WOS:000332756400034) 2014; 16 |
References_xml | – volume: 53 126 start-page: 235 239 year: 2014 2014 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 31 start-page: 194 year: 2010 publication-title: Endocr. Rev. – volume: 18 start-page: 2785 year: 2007 publication-title: Synlett – start-page: 1162 year: 1985 publication-title: J. Chem. Soc. Chem. Commun. – volume: 50 123 start-page: 8180 8330 year: 2011 2011 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 139 start-page: 11630 year: 2017 publication-title: J. Am. Chem. Soc. – volume: 122 start-page: 4563 year: 2000 publication-title: J. Am. Chem. Soc. – volume: 56 129 start-page: 8692 8818 year: 2017 2017 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 56 129 start-page: 12708 12882 year: 2017 2017 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 97 start-page: 4766 year: 1975 publication-title: J. Am. Chem. Soc. – volume: 45 118 start-page: 4193 4299 year: 2006 2006 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 131 start-page: 9182 year: 2009 publication-title: J. Am. Chem. Soc. – volume: 137 start-page: 383 year: 2015 publication-title: J. Am. Chem. Soc. – start-page: 1421 year: 2007 publication-title: Chem. Commun. – volume: 43 116 start-page: 6660 6829 year: 2004 2004 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 28 start-page: 402 year: 2017 publication-title: Synlett – volume: 115 start-page: 5835 year: 1993 publication-title: J. Am. Chem. Soc. – volume: 45 118 start-page: 6751 6903 year: 2006 2006 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 137 start-page: 2763 year: 2015 publication-title: J. Am. Chem. Soc. – volume: 5 start-page: 2541 year: 2007 publication-title: Org. Biomol. Chem. – volume: 46 119 start-page: 8274 8422 year: 2007 2007 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 19 start-page: 3231 year: 2017 publication-title: Org. Lett. – volume: 52 125 start-page: 8382 8540 year: 2013 2013 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 128 start-page: 13368 year: 2006 publication-title: J. Am. Chem. Soc. – volume: 133 start-page: 16432 year: 2011 publication-title: J. Am. Chem. Soc. – volume: 47 120 start-page: 759 771 year: 2008 2008 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 128 start-page: 84 year: 2006 publication-title: J. Am. Chem. Soc. – volume: 127 start-page: 32 year: 2005 publication-title: J. Am. Chem. Soc. – volume: 57 130 start-page: 2653 2683 year: 2018 2018 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 8 start-page: 3449 year: 2006 publication-title: Org. Lett. – volume: 40 start-page: 1327 year: 2007 publication-title: Acc. Chem. Res. – volume: 45 118 start-page: 3683 3765 year: 2006 2006 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 18 start-page: 1103 year: 2007 publication-title: Tetrahedron: Asymmetry – volume: 15 start-page: 1773 year: 2013 publication-title: Green Chem. – volume: 28 start-page: 1 year: 1989 publication-title: Indian J. Chem. Sect. B – volume: 352 start-page: 1846 year: 2010 publication-title: Adv. Synth. Catal. – volume: 48 start-page: 388 year: 2015 publication-title: Acc. Chem. Res. – volume: 352 start-page: 2132 year: 2010 publication-title: Adv. Synth. Catal. – volume: 80 start-page: 4754 year: 2015 publication-title: J. Org. Chem. – volume: 129 start-page: 8976 year: 2007 publication-title: J. Am. Chem. Soc. – volume: 51 124 start-page: 771 795 year: 2012 2012 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 11 start-page: 4180 year: 2009 publication-title: Org. Lett. – volume: 130 start-page: 13862 year: 2008 publication-title: J. Am. Chem. Soc. – volume: 41 start-page: 2498 year: 2012 publication-title: Chem. Soc. Rev. – volume: 121 start-page: 4916 year: 1999 publication-title: J. Am. Chem. Soc. – volume: 51 124 start-page: 11346 11508 year: 2012 2012 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 16 start-page: 1406 year: 2014 publication-title: Org. Lett. – volume: 37 start-page: 379 year: 2004 publication-title: Acc. Chem. Res. – volume: 41 114 start-page: 478 496 year: 2002 2002 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 15 start-page: 2307 year: 2017 publication-title: Org. Biomol. Chem. – volume: 15 start-page: 2688 year: 2013 publication-title: Org. Lett. – volume: 8 start-page: 5653 year: 2006 publication-title: Org. Lett. – volume: 18 start-page: 4650 year: 2016 publication-title: Org. Lett. – volume: 105 start-page: 3272 year: 2005 publication-title: Chem. Rev. – volume: 134 start-page: 2442 year: 2012 publication-title: J. Am. Chem. Soc. – volume: 44 117 start-page: 108 110 year: 2004 2004 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 136 start-page: 16120 year: 2014 publication-title: J. Am. Chem. Soc. – volume: 7 start-page: 3781 year: 2005 publication-title: Org. Lett. – volume: 36 start-page: 659 year: 2003 publication-title: Acc. Chem. Res. – volume: 26 start-page: 478 year: 2009 publication-title: Nat. Prod. Rep. – volume: 13 start-page: 1084 year: 2011 publication-title: Green Chem. – volume: 14 start-page: 3312 year: 2012 publication-title: Org. Lett. – volume: 45 118 start-page: 7674 7836 year: 2006 2006 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – ident: e_1_2_2_46_1 – ident: e_1_2_2_64_2 doi: 10.1021/acs.orglett.7b01343 – ident: e_1_2_2_3_2 doi: 10.1210/er.2009-0026 – ident: e_1_2_2_33_2 doi: 10.1021/ja8069852 – ident: e_1_2_2_77_1 – ident: e_1_2_2_12_2 doi: 10.1021/ar7001864 – ident: e_1_2_2_68_2 doi: 10.1021/ar020153m – ident: e_1_2_2_35_3 doi: 10.1002/ange.201106808 – ident: e_1_2_2_40_2 doi: 10.1039/c39850001162 – ident: e_1_2_2_41_2 doi: 10.1021/ol0624373 – ident: e_1_2_2_57_3 doi: 10.1002/ange.201301972 – ident: e_1_2_2_70_1 doi: 10.1021/ja00066a066 – ident: e_1_2_2_18_2 doi: 10.1021/ol901762g – ident: e_1_2_2_34_2 doi: 10.1021/ja903547q – ident: e_1_2_2_20_3 doi: 10.1002/ange.201103240 – ident: e_1_2_2_63_3 doi: 10.1002/ange.200702555 – ident: e_1_2_2_38_2 doi: 10.1002/anie.201712435 – ident: e_1_2_2_11_1 – ident: e_1_2_2_19_2 doi: 10.1002/adsc.201000328 – ident: e_1_2_2_42_2 doi: 10.1016/j.tetasy.2007.04.028 – ident: e_1_2_2_51_3 doi: 10.1002/ange.201702926 – ident: e_1_2_2_75_2 doi: 10.1021/ja057222n – ident: e_1_2_2_13_2 doi: 10.1039/c1gc15027h – ident: e_1_2_2_32_2 doi: 10.1002/anie.200703925 – ident: e_1_2_2_69_3 doi: 10.1002/ange.200602482 – ident: e_1_2_2_54_2 doi: 10.1021/ol500176v – ident: e_1_2_2_5_2 doi: 10.1039/b706887e – ident: e_1_2_2_22_1 – ident: e_1_2_2_57_2 doi: 10.1002/anie.201301972 – ident: e_1_2_2_24_2 doi: 10.1002/anie.200462432 – ident: e_1_2_2_30_2 doi: 10.1002/anie.200600191 – ident: e_1_2_2_47_3 doi: 10.1002/1521-3757(20020201)114:3<496::AID-ANGE496>3.0.CO;2-Z – ident: e_1_2_2_53_2 doi: 10.1021/ja211684v – ident: e_1_2_2_52_1 – ident: e_1_2_2_6_1 – ident: e_1_2_2_20_2 doi: 10.1002/anie.201103240 – ident: e_1_2_2_36_2 doi: 10.1021/ol400995c – ident: e_1_2_2_39_1 – ident: e_1_2_2_45_3 doi: 10.1002/ange.201204179 – ident: e_1_2_2_71_1 – ident: e_1_2_2_4_2 doi: 10.1039/c3gc37129h – volume: 28 start-page: 1 year: 1989 ident: e_1_2_2_23_2 publication-title: Indian J. Chem. Sect. B – ident: e_1_2_2_38_3 doi: 10.1002/ange.201712435 – ident: e_1_2_2_76_2 doi: 10.1002/adsc.201000274 – ident: e_1_2_2_28_3 doi: 10.1002/ange.200600512 – ident: e_1_2_2_74_3 doi: 10.1002/ange.200601832 – ident: e_1_2_2_1_1 – ident: e_1_2_2_55_2 doi: 10.1021/acs.orglett.6b02283 – ident: e_1_2_2_61_2 doi: 10.1021/cr0500131 – ident: e_1_2_2_14_2 doi: 10.1039/c1cs15268h – ident: e_1_2_2_69_2 doi: 10.1002/anie.200602482 – ident: e_1_2_2_73_2 doi: 10.1039/b700682a – ident: e_1_2_2_58_2 doi: 10.1021/jacs.5b00085 – ident: e_1_2_2_30_3 doi: 10.1002/ange.200600191 – ident: e_1_2_2_50_2 doi: 10.1021/ja208073w – ident: e_1_2_2_66_2 doi: 10.1021/ja509005e – ident: e_1_2_2_43_2 doi: 10.1002/anie.201307371 – ident: e_1_2_2_49_2 doi: 10.1039/b618792g – ident: e_1_2_2_45_2 doi: 10.1002/anie.201204179 – ident: e_1_2_2_2_2 doi: 10.1021/ar030171j – ident: e_1_2_2_51_2 doi: 10.1002/anie.201702926 – ident: e_1_2_2_25_2 doi: 10.1002/anie.200461816 – ident: e_1_2_2_24_3 doi: 10.1002/ange.200462432 – ident: e_1_2_2_60_2 doi: 10.1021/jacs.7b07188 – ident: e_1_2_2_7_2 doi: 10.1021/ja00849a055 – ident: e_1_2_2_29_2 doi: 10.1021/ja065708d – volume: 28 start-page: 402 year: 2017 ident: e_1_2_2_10_2 publication-title: Synlett – ident: e_1_2_2_74_2 doi: 10.1002/anie.200601832 – ident: e_1_2_2_28_2 doi: 10.1002/anie.200600512 – ident: e_1_2_2_56_1 – ident: e_1_2_2_15_2 doi: 10.1039/C7OB00113D – ident: e_1_2_2_65_2 doi: 10.1002/anie.201706994 – ident: e_1_2_2_8_2 doi: 10.1021/ja992990y – ident: e_1_2_2_9_2 doi: 10.1055/s-2007-990840 – ident: e_1_2_2_31_2 doi: 10.1021/ja074045c – ident: e_1_2_2_47_2 doi: 10.1002/1521-3773(20020201)41:3<478::AID-ANIE478>3.0.CO;2-K – ident: e_1_2_2_72_1 – ident: e_1_2_2_35_2 doi: 10.1002/anie.201106808 – ident: e_1_2_2_44_2 doi: 10.1021/acs.joc.5b00153 – ident: e_1_2_2_59_1 – ident: e_1_2_2_67_1 – ident: e_1_2_2_27_2 doi: 10.1021/ja043834g – ident: e_1_2_2_43_3 doi: 10.1002/ange.201307371 – ident: e_1_2_2_37_2 doi: 10.1021/ja510980d – ident: e_1_2_2_32_3 doi: 10.1002/ange.200703925 – ident: e_1_2_2_48_2 doi: 10.1021/ol0610892 – ident: e_1_2_2_21_2 doi: 10.1021/ol3012869 – ident: e_1_2_2_16_1 – ident: e_1_2_2_62_2 doi: 10.1021/ja990535w – ident: e_1_2_2_65_3 doi: 10.1002/ange.201706994 – ident: e_1_2_2_25_3 doi: 10.1002/ange.200461816 – ident: e_1_2_2_63_2 doi: 10.1002/anie.200702555 – ident: e_1_2_2_26_2 doi: 10.1021/ol0515964 – ident: e_1_2_2_17_2 doi: 10.1021/ar500414x – volume: 40 start-page: 1327 year: 2007 ident: WOS:000251787500012 article-title: Enantioselective organocatalytic transfer hydrogenation reactions using Hantzsch esters publication-title: ACCOUNTS OF CHEMICAL RESEARCH doi: 10.1021/ar7001864 – volume: 15 start-page: 2688 year: 2013 ident: WOS:000320298900031 article-title: Asymmetric Synthesis of Tetrahydro-β-carbolines via Chiral Phosphoric Acid Catalyzed Transfer Hydrogenation Reaction publication-title: ORGANIC LETTERS doi: 10.1021/ol400995c – volume: 50 start-page: 8180 year: 2011 ident: WOS:000294177500043 article-title: Chiral Phosphoric Acid Catalyzed Transfer Hydrogenation: Facile Synthetic Access to Highly Optically Active Trifluoromethylated Amines publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.201103240 – volume: 128 start-page: 84 year: 2006 ident: WOS:000234547700042 article-title: Enantioselective organocatalytic reductive amination publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/ja057222n – volume: 116 start-page: 6829 year: 2004 ident: 000458826800048.72 publication-title: Angew. Chem. – volume: 130 start-page: 13862 year: 2008 ident: WOS:000260047700026 article-title: Organocatalytic asymmetric transferhydrogenation of β-nitroacrylates:: Accessing β2-amino acids publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/ja8069852 – volume: 97 start-page: 4766 year: 1975 ident: WOS:A1975AL36200055 article-title: REDUCTION BY A MODEL OF NAD(P)H - EFFECT OF METAL-ION AND STEREOCHEMISTRY ON REDUCTION OF ALPHA-KETO ESTERS BY 1,4-DIHYDRONICOTINAMIDE DERIVATIVES publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY – volume: 124 start-page: 11508 year: 2012 ident: 000458826800048.58 publication-title: Angew. Chem. – volume: 45 start-page: 4193 year: 2006 ident: WOS:000238718500028 article-title: Asymmetric counteranion-directed catalysis publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.200600512 – volume: 45 start-page: 6751 year: 2006 ident: WOS:000241474500037 article-title: Remarkably low catalyst loading in Bronsted acid catalyzed transfer hydrogenations: Enantioselective reduction of benzoxazines, benzothiazines, and benzoxazinones publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.200601832 – volume: 51 start-page: 11346 year: 2012 ident: WOS:000310874400031 article-title: Highly Enantioselective Transfer Hydrogenation of Quinolines Catalyzed by Gold Phosphates: Achiral Ligand Tuning and Chiral-Anion Control of Stereoselectivity publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.201204179 – volume: 37 start-page: 379 year: 2004 ident: WOS:000222094000005 article-title: Transient species in the stepwise interconversion of NADH and NAD+ publication-title: ACCOUNTS OF CHEMICAL RESEARCH – volume: 45 start-page: 3683 year: 2006 ident: WOS:000238068000026 article-title: A highly enantioselective bronsted acid catalyzed cascade reaction: Organocatalytic transfer hydrogenation of quinolines and their application in the synthesis of alkaloids publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.200600191 – volume: 118 start-page: 6903 year: 2006 ident: 000458826800048.48 publication-title: Angew. Chem. – volume: 41 start-page: 478 year: 2002 ident: WOS:000173880900016 article-title: Biomimetic NAD+ models for tandem cofactor regeneration, horse liver alcohol dehydrogenase recognition of 1,4-NADH derivatives, and chiral synthesis publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION – volume: 120 start-page: 771 year: 2008 ident: 000458826800048.12 publication-title: Angew. Chem. – volume: 125 start-page: 8540 year: 2013 ident: 000458826800048.28 publication-title: Angew. Chem. – volume: 8 start-page: 3449 year: 2006 ident: WOS:000239309900010 article-title: Catalytic hydrogenation of α,β-epoxy ketones to form β-hydroxy ketones mediated by an NADH coenzyme model publication-title: ORGANIC LETTERS doi: 10.1021/ol0610892 – volume: 134 start-page: 2442 year: 2012 ident: WOS:000301084600085 article-title: Dihydrophenanthridine: A New and Easily Regenerable NAD(P)H Model for Biomimetic Asymmetric Hydrogenation publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/ja211684v – volume: 56 start-page: 12708 year: 2017 ident: WOS:000411810600054 article-title: Divergent Asymmetric Total Synthesis of Mulinane Diterpenoids publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.201706994 – volume: 31 start-page: 194 year: 2010 ident: WOS:000276320300004 article-title: The Secret Life of NAD+: An Old Metabolite Controlling New Metabolic Signaling Pathways publication-title: ENDOCRINE REVIEWS doi: 10.1210/er.2009-0026 – volume: 128 start-page: 13368 year: 2006 ident: WOS:000241157600026 article-title: Highly enantioselective transfer hydrogenation of α,β-unsaturated ketones publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/ja065708d – volume: 80 start-page: 4754 year: 2015 ident: WOS:000354004600056 article-title: Chiral Gold Phosphate Catalyzed Tandem Hydroamination/Asymmetric Transfer Hydrogenation Enables Access to Chiral Tetrahydroquinolines publication-title: JOURNAL OF ORGANIC CHEMISTRY doi: 10.1021/acs.joc.5b00153 – volume: 45 start-page: 7674 year: 2006 ident: WOS:000242595700007 article-title: Recent applications of chiral ferrocene ligands in asymmetric catalysis publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.200602482 – volume: 48 start-page: 388 year: 2015 ident: WOS:000349806300025 article-title: Benzothiazoline: Versatile Hydrogen Donor for Organocatalytic Transfer Hydrogenation publication-title: ACCOUNTS OF CHEMICAL RESEARCH doi: 10.1021/ar500414x – volume: 44 start-page: 108 year: 2005 ident: WOS:000226010500016 article-title: Metal-free, organocatalytic asymmetric transfer hydrogenation of α,β-unsaturated aldehydes publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION – volume: 123 start-page: 8330 year: 2011 ident: 000458826800048.16 publication-title: Angew. Chem. – volume: 26 start-page: 478 year: 2009 ident: WOS:000264555000002 article-title: Rediscovering the bioactivity and ecological role of 1,4-benzoxazinones publication-title: NATURAL PRODUCT REPORTS doi: 10.1039/b700682a – volume: 57 start-page: 2653 year: 2018 ident: WOS:000426252400022 article-title: Catalytic Asymmetric Dearomatization of Indolyl Dihydropyridines through an Enamine Isomerization/Spirocyclization/Transfer Hydrogenation Sequence publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.201712435 – start-page: 2785 year: 2007 ident: WOS:000251507000002 article-title: Progress in coenzyme NADH model compounds and asymmetric reduction of benzoylformate publication-title: SYNLETT doi: 10.1055/s-2007-990840 – volume: 28 start-page: 1 year: 1989 ident: WOS:A1989U517200001 article-title: ASYMMETRIC REDUCTIONS OF IMINES USING NADH MODELS publication-title: INDIAN JOURNAL OF CHEMISTRY SECTION B-ORGANIC CHEMISTRY INCLUDING MEDICINAL CHEMISTRY – volume: 129 start-page: 12882 year: 2017 ident: 000458826800048.23 publication-title: Angew. Chem. – volume: 131 start-page: 9182 year: 2009 ident: WOS:000267633300025 article-title: Consecutive Intramolecular Hydroamination/Asymmetric Transfer Hydrogenation under Relay Catalysis of an Achiral Gold Complex/Chiral Bronsted Acid Binary System publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/ja903547q – start-page: 1421 year: 2007 ident: WOS:000245261400007 article-title: A reductase-mimicking thiourea organocatalyst incorporating a covalently bound NADH analogue: efficient 1,2-diketone reduction with in situ prosthetic group generation and recycling publication-title: CHEMICAL COMMUNICATIONS doi: 10.1039/b618792g – volume: 126 start-page: 239 year: 2014 ident: 000458826800048.55 publication-title: Angew. Chem. – volume: 114 start-page: 496 year: 2002 ident: 000458826800048.24 publication-title: Angew. Chem. – volume: 53 start-page: 235 year: 2014 ident: WOS:000328714900033 article-title: Chiral Silver Phosphate Catalyzed Transformation of ortho-Alkynylaryl Ketones into 1H-Isochromene Derivatives through an Intramolecular-Cyclization/Enantioselective-Reduction Sequence publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.201307371 – volume: 18 start-page: 1103 year: 2007 ident: WOS:000247898000011 article-title: Iridium-catalyzed asymmetric transfer hydrogenation of quinolines with Hantzsch esters publication-title: TETRAHEDRON-ASYMMETRY doi: 10.1016/j.tetasy.2007.04.028 – volume: 129 start-page: 8976 year: 2007 ident: WOS:000248185500025 article-title: Organocatalytic asymmetric transfer hydrogenation of nitroolefins publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/ja074045c – volume: 14 start-page: 3312 year: 2012 ident: WOS:000306050300020 article-title: Chiral Phosphoric Acid Catalyzed Enantioselective Transfer Deuteration of Ketimines by Use of Benzothiazoline As a Deuterium Donor: Synthesis of Optically Active Deuterated Amines publication-title: ORGANIC LETTERS doi: 10.1021/ol3012869 – volume: 127 start-page: 32 year: 2005 ident: WOS:000226240900015 article-title: Enantioselective organocatalytic hydride reduction publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/ja043834g – volume: 137 start-page: 2763 year: 2015 ident: WOS:000350192700049 article-title: Relay Iron/Chiral Bronsted Acid Catalysis: Enantioselective Hydrogenation of Benzoxazinones publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/jacs.5b00085 – volume: 19 start-page: 3231 year: 2017 ident: WOS:000403854300049 article-title: Asymmetric Hydrogenation of Tetrasubstituted Cyclic Enones to Chiral Cycloalkanols with Three Contiguous Stereocenters publication-title: ORGANIC LETTERS doi: 10.1021/acs.orglett.7b01343 – volume: 129 start-page: 8818 year: 2017 ident: 000458826800048.75 publication-title: Angew. Chem. – volume: 43 start-page: 6660 year: 2004 ident: WOS:000225869900011 article-title: A metal-free transfer hydrogenation:: Organocatalytic conjugate reduction of α,β-unsaturated aldehydes publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.200461816 – volume: 13 start-page: 1084 year: 2011 ident: WOS:000290227800003 article-title: Advances in catalytic metal-free reductions: from bio-inspired concepts to applications in the organocatalytic synthesis of pharmaceuticals and natural products publication-title: GREEN CHEMISTRY doi: 10.1039/c1gc15027h – volume: 47 start-page: 759 year: 2008 ident: WOS:000252652200029 article-title: The development of double axially chiral phosphoric acids and their catalytic transfer hydrogenation of quinolines publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.200703925 – volume: 52 start-page: 8382 year: 2013 ident: WOS:000322631600039 article-title: Iron-Catalyzed Hydrogenation for the In Situ Regeneration of an NAD(P)H Model: Biomimetic Reduction of α-Keto-/α-Iminoesters publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.201301972 – volume: 15 start-page: 2307 year: 2017 ident: WOS:000397945900002 article-title: Recent advances in organocatalytic enantioselective transfer hydrogenation publication-title: ORGANIC & BIOMOLECULAR CHEMISTRY doi: 10.1039/c7ob00113d – volume: 105 start-page: 3272 year: 2005 ident: WOS:000231916100004 article-title: Catalytic homogeneous asymmetric hydrogenations of largely unfunctionalized alkenes publication-title: CHEMICAL REVIEWS doi: 10.1021/cr0500131 – volume: 5 start-page: 2541 year: 2007 ident: WOS:000248559900003 article-title: Nicotinamide adenine dinucleotide: beyond a redox coenzyme publication-title: ORGANIC & BIOMOLECULAR CHEMISTRY doi: 10.1039/b706887e – volume: 15 start-page: 1773 year: 2013 ident: WOS:000320781200005 article-title: Methods for the regeneration of nicotinamide coenzymes publication-title: GREEN CHEMISTRY doi: 10.1039/c3gc37129h – volume: 41 start-page: 2498 year: 2012 ident: WOS:000300797700025 article-title: Transfer hydrogenation with Hantzsch esters and related organic hydride donors publication-title: CHEMICAL SOCIETY REVIEWS doi: 10.1039/c1cs15268h – volume: 117 start-page: 110 year: 2004 ident: 000458826800048.70 publication-title: Angew. Chem. – volume: 8 start-page: 5653 year: 2006 ident: WOS:000242046100059 article-title: Catalytic asymmetric transfer hydrogenation of α-ketoesters with Hantzsch esters publication-title: ORGANIC LETTERS doi: 10.1021/ol0624373 – volume: 130 start-page: 2683 year: 2018 ident: 000458826800048.65 publication-title: Angew. Chem. – volume: 139 start-page: 11630 year: 2017 ident: WOS:000409286000001 article-title: Recent Advances in Asymmetric Hydrogenation of Tetrasubstituted Olefins publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/jacs.7b07188 – volume: 121 start-page: 4916 year: 1999 ident: WOS:000080646000031 article-title: Asymmetric hydrogenation of unfunctionalized tetrasubstituted olefins with a cationic zirconocene catalyst publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY – volume: 11 start-page: 4180 year: 2009 ident: WOS:000269670700039 article-title: Benzothiazoline: Highly Efficient Reducing Agent for the Enantioselective Organocatalytic Transfer Hydrogenation of Ketimines publication-title: ORGANIC LETTERS doi: 10.1021/ol901762g – volume: 28 start-page: 402 year: 2017 ident: WOS:000402748600008 article-title: Progress on Chiral NAD(P)H Model Compounds publication-title: SYNLETT doi: 10.1055/s-0036-1588665 – volume: 36 start-page: 659 year: 2003 ident: WOS:000185430400003 article-title: Asymmetric catalysis with chiral ferrocene ligands publication-title: ACCOUNTS OF CHEMICAL RESEARCH – volume: 119 start-page: 8422 year: 2007 ident: 000458826800048.51 publication-title: Angew. Chem. – volume: 118 start-page: 4299 year: 2006 ident: 000458826800048.33 publication-title: Angew. Chem. – volume: 56 start-page: 8692 year: 2017 ident: WOS:000405308500013 article-title: Renewable Molecular Flasks with NADH Models: Combination of Light-Driven Proton Reduction and Biomimetic Hydrogenation of Benzoxazinones publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.201702926 – volume: 133 start-page: 16432 year: 2011 ident: WOS:000295997500030 article-title: Biomimetic Asymmetric Hydrogenation: In Situ Regenerable Hantzsch Esters for Asymmetric Hydrogenation of Benzoxazinones publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/ja208073w – volume: 352 start-page: 2132 year: 2010 ident: WOS:000282621700005 article-title: The First General, Highly Enantioselective Lewis Base Organocatalyzed Hydrosilylation of Benzoxazinones and Quinoxalinones publication-title: ADVANCED SYNTHESIS & CATALYSIS doi: 10.1002/adsc.201000274 – volume: 18 start-page: 4650 year: 2016 ident: WOS:000383640600052 article-title: Synthesis of Chiral Fluorinated Propargylamines via Chemoselective Biomimetic Hydrogenation publication-title: ORGANIC LETTERS doi: 10.1021/acs.orglett.6b02283 – volume: 352 start-page: 1846 year: 2010 ident: WOS:000281654500007 article-title: Enantioselective Organocatalytic Transfer Hydrogenation of α-Imino Esters by Utilization of Benzothiazoline as Highly Efficient Reducing Agent publication-title: ADVANCED SYNTHESIS & CATALYSIS doi: 10.1002/adsc.201000328 – volume: 118 start-page: 3765 year: 2006 ident: 000458826800048.45 publication-title: Angew. Chem. – volume: 46 start-page: 8274 year: 2007 ident: WOS:000250966100038 article-title: Iridium-catalyzed asymmetric hydrogenation of unfunctionalized tetrasubstituted Olefins publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.200702555 – volume: 118 start-page: 7836 year: 2006 ident: 000458826800048.2 publication-title: Angew. Chem. – volume: 16 start-page: 1406 year: 2014 ident: WOS:000332756400034 article-title: 4,5-Dihydropyrrolo[1,2-a]quinoxalines: A Tunable and Regenerable Biomimetic Hydrogen Source publication-title: ORGANIC LETTERS doi: 10.1021/ol500176v – volume: 124 start-page: 795 year: 2012 ident: 000458826800048.40 publication-title: Angew. Chem. – volume: 115 start-page: 5835 year: 1993 ident: WOS:A1993LT17200066 article-title: A GENERAL ASYMMETRIC-SYNTHESIS OF FERROCENES WITH PLANAR CHIRALITY publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY – start-page: 1162 year: 1985 ident: WOS:A1985AQN3600012 article-title: ASYMMETRIC REDUCTIONS CATALYZED BY CHIRAL SHIFT-REAGENTS publication-title: JOURNAL OF THE CHEMICAL SOCIETY-CHEMICAL COMMUNICATIONS – volume: 51 start-page: 771 year: 2012 ident: WOS:000299034200034 article-title: Step-Economical Synthesis of Tetrahydroquinolines by Asymmetric Relay Catalytic Friedlander Condensation/Transfer Hydrogenation publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.201106808 – volume: 137 start-page: 383 year: 2015 ident: WOS:000348483500066 article-title: Organocatalytic Asymmetric Synthesis of 1,1-Diarylethanes by Transfer Hydrogenation publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/ja510980d – volume: 122 start-page: 4563 year: 2000 ident: WOS:000087118100005 article-title: A compact chemical miniature of a holoenzyme, coenzyme NADH linked dehydrogenase. Design and synthesis of bridged NADH models and their highly enantioselective reduction publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY – volume: 7 start-page: 3781 year: 2005 ident: WOS:000231294400046 article-title: Enantioselective Bronsted acid catalyzed transfer hydrogenation: Organocatalytic reduction of imines publication-title: ORGANIC LETTERS doi: 10.1021/ol0515964 – volume: 136 start-page: 16120 year: 2014 ident: WOS:000345308700005 article-title: Rhodium-Catalyzed Enantioselective Hydrogenation of Tetrasubstituted α-Acetoxy β-Enamido Esters: A New Approach to Chiral α-Hydroxyl-β-amino Acid Derivatives publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/ja509005e |
SSID | ssj0028806 |
Score | 2.512951 |
Snippet | The development of biomimetic chemistry based on the NAD(P)H with hydrogen gas as terminal reductant is a long‐standing challenge. Through rational design of... The development of biomimetic chemistry based on the NAD(P)H with hydrogen gas as terminal reductant is a long-standing challenge. Through rational design of... |
Source | Web of Science |
SourceID | proquest pubmed webofscience crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1813 |
SubjectTerms | Alkenes asymmetric synthesis Asymmetry biomimetic chemistry Biomimetics Catalysis Catalysts Chemistry Chemistry, Multidisciplinary Imines NAD Organic chemistry Physical Sciences Reduction Science & Technology synthetic methods |
Title | Catalytic Biomimetic Asymmetric Reduction of Alkenes and Imines Enabled by Chiral and Regenerable NAD(P)H Models |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.201813400 http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestApp=WOS&DestLinkType=FullRecord&UT=000458826800048 https://www.ncbi.nlm.nih.gov/pubmed/30556234 https://www.proquest.com/docview/2172063801 https://www.proquest.com/docview/2157653481 |
Volume | 58 |
WOS | 000458826800048 |
WOSCitedRecordID | wos000458826800048 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED-hvYwXYHyGbchIk4CHbIntOMljCJ06JCpUDWlvke04UK1Jp7V96P76-ZwP1iEEgrdEZ8vy-ey7s-9-B3CUJiaNWCrwVVf4vKqMrxJV-drQMuSaGeZic75MxPgb_3wRXdzJ4m_xIYYLN9wZ7rzGDS7V8uQnaChmYGNoVhIyK4f2EMaALbSKpgN-FLXC2aYXMeZjFfoetTGgJ9vdt7XSL6bmPa20bcg6TXT6GGQ_hzYA5fJ4vVLH-uYevOP_TPIJPOrMVJK1crUHD0zzFHbzvjrcM7jK8d5nY8nk42xRz2pMhiTZclPXWKNLkyliwuKqk0VFsvklnqlENiU5qzHSnoxc0lZJ1IbkP2bXdjAkTs13h4NtSWSSfXr_9cOYYLm2-fI5nJ-OzvOx31Vv8DWPReBHkahiy3_rgGmmeRQba0owGQUqTAImE2kYrVSlZZAmkSipQr0ZlzzUsSpNyV7ATrNozCsgzEjBSqmUrKz7R3mi8Q5GKJ1ywW1HD_x-8QrdIZtjgY150WIy0wLZWAxs9ODd0P6qxfT4bcuDXhaKbm8vCyzphYZeEHrwdiBb9uNTi2zMYo1trB8XYZKzBy9bGRqGcqBslHEPju4K1UB3ZrZ1fETiMv49CP-mWd5NHKEMVh5QJ1V_mF6RTc5Gw9_rf-m0Dw_td-ri2PkB7Kyu1-bQmmkr9cZtxVssGjB0 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VcigXyrOkFDBSEXBIm9iOkxw4LNmtdmm7QqtF6i2KHQdW3UfV3RVafhV_hX-Ex3nAFiEQUg8ck3Eetmc8M_bMNwD7caTjgMUCT3WFy4tCuzKShas0zX2umGY2Nue0L7of-Luz4GwDvta5MCU-RLPhhpJh12sUcNyQPvyBGoop2BibFfnMMGIVV3msV5-N1zZ_02ubKX5B6VFnmHTdqrCAq3goPDcIRBFGnjC-gWKKB6E2Wo5lgSf9yGNZlGlGC1mozIujQORU4pIe5txXocx1zsxrb8BNrCKOaP3tQQNYRY00lPlMjLlY9r6GifTo4frvrqvBX2zbK2pw3XK2qu9oG77Vg1ZGvJwfLBfyQH25gif5P43qHbhd2eGkVQrOXdjQ03uwldTl7-7DRYIbWytDJm9Hs8logtmepDVfTSZYhEyRAYLeIluTWUFa43NUGiSb5qQ3wVQC0rFZaTmRK5J8Gl2ajyFxoD9aoG9DIv1W-9X7112C9ejG8wcwvI7-PoTN6WyqHwFhOhMsz6TMCuPfUh4p3GQSUsVccPOgA27NLKmqoNuxgsg4LUGnaYqzljaz5sDLpv1FCVry25Z7Ne-l1eI1T7FmGVqynu_A84Zshh_PkrKpni2xjXFUA8zidmCn5NnmUxZ1jjLuwP7PTNzQrR9hPDsRWUgDB_y_aZZUHUeshoUD1HLxH7qXtvq9TnO1-y8PPYOt7vD0JD3p9Y8fwy1zP7ZB-3wPNheXS_3E2KQL-dQuAwTSaxaQ72uCi_s |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VIgEX3o9AASMVAYe0ie14kwOHkN3VLoVVtSpSb1HsOO2q-1J3V2j5U_wVfhIe5wFbhEBIPXBMxnnYnvHM2DPfAOxGoY4CFgk81RUuLwrtylAWrtI097limtnYnI8D0fvE3x8Hx1vwtc6FKfEhmg03lAy7XqOAz_Ni_wdoKGZgY2hW6DPDh1VY5YFefzZO2-Jtv21m-CWl3c5R0nOrugKu4i3huUEgilboCeMaKKZ40NJGybEs8KQfeiwLM81oIQuVeVEYiJxKXNFbOfdVS-Y6Z-a1V-AqF16EtSLawwavihphKNOZGHOx6n2NEunR_c3f3dSCv5i2F7TgpuFsNV_3Fnyrx6wMeDnbWy3lnvpyAU7yPxrU23CzssJJXIrNHdjS07twPamL392DeYLbWmtDJu9Gs8logrmeJF6sJxMsQabIECFvkanJrCDx-AxVBsmmOelPMJGAdGxOWk7kmiSno3PzMSQO9YmF-TYkMojbrw_f9AhWoxsv7sPRZfT3AWxPZ1P9CAjTmWB5JmVWGO-W8lDhFpOQKuKCmwcdcGteSVUF3I71Q8ZpCTlNU5y1tJk1B1417eclZMlvW-7UrJdWS9cixYplaMd6vgMvGrIZfjxJyqZ6tsI2xk0NMIfbgYclyzafsphzlHEHdn_m4YZuvQjj14nQAho44P9Ns6TqOCI1LB2glon_0L00HvQ7zdXjf3noOVw7bHfTD_3BwRO4YW5HNmKf78D28nylnxqDdCmf2UWAQHrJ8vEdFFiKqg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Catalytic+Biomimetic+Asymmetric+Reduction+of+Alkenes+and+Imines+Enabled+by+Chiral+and+Regenerable+NAD%28P%29H+Models&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Wang%2C+Jie&rft.au=Zhu%2C+Zhou-Hao&rft.au=Chen%2C+Mu-Wang&rft.au=Chen%2C+Qing-An&rft.date=2019-02-04&rft.issn=1521-3773&rft.eissn=1521-3773&rft.volume=58&rft.issue=6&rft.spage=1813&rft_id=info:doi/10.1002%2Fanie.201813400&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon |