Catalytic Biomimetic Asymmetric Reduction of Alkenes and Imines Enabled by Chiral and Regenerable NAD(P)H Models

The development of biomimetic chemistry based on the NAD(P)H with hydrogen gas as terminal reductant is a long‐standing challenge. Through rational design of the chiral and regenerable NAD(P)H analogues based on planar‐chiral ferrocene, a biomimetic asymmetric reduction has been realized using bench...

Full description

Saved in:
Bibliographic Details
Published inAngewandte Chemie International Edition Vol. 58; no. 6; pp. 1813 - 1817
Main Authors Wang, Jie, Zhu, Zhou‐Hao, Chen, Mu‐Wang, Chen, Qing‐An, Zhou, Yong‐Gui
Format Journal Article
LanguageEnglish
Published WEINHEIM Wiley 04.02.2019
Wiley Subscription Services, Inc
EditionInternational ed. in English
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The development of biomimetic chemistry based on the NAD(P)H with hydrogen gas as terminal reductant is a long‐standing challenge. Through rational design of the chiral and regenerable NAD(P)H analogues based on planar‐chiral ferrocene, a biomimetic asymmetric reduction has been realized using bench‐stable Lewis acids as transfer catalysts. A broad set of alkenes and imines could be reduced with up to 98 % yield and 98 % ee, likely enabled by enzyme‐like cooperative bifunctional activation. This reaction represents the first general biomimetic asymmetric reduction (BMAR) process enabled by chiral and regenerable NAD(P)H analogues. This concept demonstrates catalytic utility of a chiral coenzyme NAD(P)H in asymmetric catalysis. Through rational design of chiral and regenerable NAD(P)H analogues based on planar‐chiral ferrocene, a biomimetic asymmetric reduction has been realized using bench‐stable Lewis acids as transfer catalysts. A broad set of tetrasubstituted alkenes and imines could be reduced with up to 98 % yield and 98 % ee. This protocol represents the first general biomimetic asymmetric reduction process enabled by NAD(P)H analogues.
AbstractList The development of biomimetic chemistry based on the NAD(P)H with hydrogen gas as terminal reductant is a long‐standing challenge. Through rational design of the chiral and regenerable NAD(P)H analogues based on planar‐chiral ferrocene, a biomimetic asymmetric reduction has been realized using bench‐stable Lewis acids as transfer catalysts. A broad set of alkenes and imines could be reduced with up to 98 % yield and 98 % ee, likely enabled by enzyme‐like cooperative bifunctional activation. This reaction represents the first general biomimetic asymmetric reduction (BMAR) process enabled by chiral and regenerable NAD(P)H analogues. This concept demonstrates catalytic utility of a chiral coenzyme NAD(P)H in asymmetric catalysis. Through rational design of chiral and regenerable NAD(P)H analogues based on planar‐chiral ferrocene, a biomimetic asymmetric reduction has been realized using bench‐stable Lewis acids as transfer catalysts. A broad set of tetrasubstituted alkenes and imines could be reduced with up to 98 % yield and 98 % ee. This protocol represents the first general biomimetic asymmetric reduction process enabled by NAD(P)H analogues.
The development of biomimetic chemistry based on the NAD(P)H with hydrogen gas as terminal reductant is a long‐standing challenge. Through rational design of the chiral and regenerable NAD(P)H analogues based on planar‐chiral ferrocene, a biomimetic asymmetric reduction has been realized using bench‐stable Lewis acids as transfer catalysts. A broad set of alkenes and imines could be reduced with up to 98 % yield and 98 % ee , likely enabled by enzyme‐like cooperative bifunctional activation. This reaction represents the first general biomimetic asymmetric reduction (BMAR) process enabled by chiral and regenerable NAD(P)H analogues. This concept demonstrates catalytic utility of a chiral coenzyme NAD(P)H in asymmetric catalysis.
The development of biomimetic chemistry based on the NAD(P)H with hydrogen gas as terminal reductant is a long-standing challenge. Through rational design of the chiral and regenerable NAD(P)H analogues based on planar-chiral ferrocene, a biomimetic asymmetric reduction has been realized using bench-stable Lewis acids as transfer catalysts. A broad set of alkenes and imines could be reduced with up to 98 % yield and 98 % ee, likely enabled by enzyme-like cooperative bifunctional activation. This reaction represents the first general biomimetic asymmetric reduction (BMAR) process enabled by chiral and regenerable NAD(P)H analogues. This concept demonstrates catalytic utility of a chiral coenzyme NAD(P)H in asymmetric catalysis.The development of biomimetic chemistry based on the NAD(P)H with hydrogen gas as terminal reductant is a long-standing challenge. Through rational design of the chiral and regenerable NAD(P)H analogues based on planar-chiral ferrocene, a biomimetic asymmetric reduction has been realized using bench-stable Lewis acids as transfer catalysts. A broad set of alkenes and imines could be reduced with up to 98 % yield and 98 % ee, likely enabled by enzyme-like cooperative bifunctional activation. This reaction represents the first general biomimetic asymmetric reduction (BMAR) process enabled by chiral and regenerable NAD(P)H analogues. This concept demonstrates catalytic utility of a chiral coenzyme NAD(P)H in asymmetric catalysis.
The development of biomimetic chemistry based on the NAD(P)H with hydrogen gas as terminal reductant is a long‐standing challenge. Through rational design of the chiral and regenerable NAD(P)H analogues based on planar‐chiral ferrocene, a biomimetic asymmetric reduction has been realized using bench‐stable Lewis acids as transfer catalysts. A broad set of alkenes and imines could be reduced with up to 98 % yield and 98 % ee, likely enabled by enzyme‐like cooperative bifunctional activation. This reaction represents the first general biomimetic asymmetric reduction (BMAR) process enabled by chiral and regenerable NAD(P)H analogues. This concept demonstrates catalytic utility of a chiral coenzyme NAD(P)H in asymmetric catalysis.
The development of biomimetic chemistry based on the NAD(P)H with hydrogen gas as terminal reductant is a long-standing challenge. Through rational design of the chiral and regenerable NAD(P)H analogues based on planarchiral ferrocene, a biomimetic asymmetric reduction has been realized using bench-stable Lewis acids as transfer catalysts. A broad set of alkenes and imines could be reduced with up to 98% yield and 98% ee, likely enabled by enzyme-like cooperative bifunctional activation. This reaction represents the first general biomimetic asymmetric reduction (BMAR) process enabled by chiral and regenerable NAD(P)H analogues. This concept demonstrates catalytic utility of a chiral coenzyme NAD(P)H in asymmetric catalysis.
Author Chen, Mu‐Wang
Chen, Qing‐An
Zhu, Zhou‐Hao
Zhou, Yong‐Gui
Wang, Jie
Author_xml – sequence: 1
  givenname: Jie
  orcidid: 0000-0001-8077-8047
  surname: Wang
  fullname: Wang, Jie
  organization: University of Chinese Academy of Sciences
– sequence: 2
  givenname: Zhou‐Hao
  orcidid: 0000-0002-5227-5669
  surname: Zhu
  fullname: Zhu, Zhou‐Hao
  organization: Chinese Academy of Sciences
– sequence: 3
  givenname: Mu‐Wang
  orcidid: 0000-0001-6493-1363
  surname: Chen
  fullname: Chen, Mu‐Wang
  organization: Chinese Academy of Sciences
– sequence: 4
  givenname: Qing‐An
  orcidid: 0000-0002-9129-2656
  surname: Chen
  fullname: Chen, Qing‐An
  organization: Chinese Academy of Sciences
– sequence: 5
  givenname: Yong‐Gui
  orcidid: 0000-0002-3321-5521
  surname: Zhou
  fullname: Zhou, Yong‐Gui
  email: ygzhou@dicp.ac.cn
  organization: Dalian University of Technology
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30556234$$D View this record in MEDLINE/PubMed
BookMark eNqNks1v1DAQxS1URNuFK0cUiUsrtIs_4th7DGGhK5WCqt4jx5mAi2MvdiKU_74OuyxSJQQnP2l-z_P0NOfoxHkHCL0keEUwpm-VM7CimEjCcoyfoDPCKVkyIdhJ0jljSyE5OUXnMd4nXkpcPEOnDHNeUJafoV2lBmWnwejsnfG96WGWZZz6pEKSt9COejDeZb7LSvsdHMRMuTbb9maWG6caC23WTFn1zQRlfw1v4WsCwzzKbsr3F18ur7JPvgUbn6OnnbIRXhzeBbr7sLmrrpbXnz9uq_J6qXNR4GXK14kUds0LzXTOBRCaM8VxQyRmSipgtGs6rfBa8qKlDS6EFG1OtGhaaNkCXey_3QX_Y4Q41L2JGqxVDvwYa0q4KDjLU28L9PoReu_H4FK4RAmKCybxTL06UGPTQ1vvgulVmOrfVSZA7oGf0PguagNOwxHDGOdcSlrIWcnKDGoutfKjG5L1zf9bE73a0zr4GAN0R5Lgej6Kej6K-ngUyZA_MujD-iEoY_9uWx9SGQvTP5bU5c1288f7AFHExxc
CitedBy_id crossref_primary_10_6023_cjoc202312004
crossref_primary_10_1002_ange_202422698
crossref_primary_10_2174_1570178618666210706112141
crossref_primary_10_1016_j_tet_2021_131968
crossref_primary_10_1021_acs_orglett_1c03430
crossref_primary_10_1021_acscatal_0c03958
crossref_primary_10_1039_D0CC03091K
crossref_primary_10_1021_acs_joc_4c00965
crossref_primary_10_1039_D4DT03063J
crossref_primary_10_3390_ijms24010400
crossref_primary_10_1039_D2QI01711C
crossref_primary_10_1055_a_2089_4934
crossref_primary_10_1021_jacs_4c13618
crossref_primary_10_1002_cssc_202201348
crossref_primary_10_1021_acs_orglett_1c00993
crossref_primary_10_1039_D0AN01837F
crossref_primary_10_1021_acs_orglett_2c01314
crossref_primary_10_1021_acs_joc_9b03054
crossref_primary_10_1002_cjoc_202000409
crossref_primary_10_1021_acs_joc_2c02905
crossref_primary_10_1021_acs_orglett_0c02700
crossref_primary_10_1007_s11426_023_1578_y
crossref_primary_10_1002_adsc_202201391
crossref_primary_10_1016_j_gresc_2024_02_007
crossref_primary_10_1021_acs_orglett_1c02568
crossref_primary_10_1039_D2OB01655A
crossref_primary_10_1039_D1OB02079J
crossref_primary_10_1002_ange_202303709
crossref_primary_10_1039_D3SC02080K
crossref_primary_10_3390_molecules26020489
crossref_primary_10_1021_acs_accounts_3c00129
crossref_primary_10_1021_acs_joc_0c01782
crossref_primary_10_1039_D0SC04188B
crossref_primary_10_1002_cjoc_202000045
crossref_primary_10_1039_D1TA07449K
crossref_primary_10_1039_D3CC03409G
crossref_primary_10_1002_anie_201914377
crossref_primary_10_1039_D3QO01609A
crossref_primary_10_1021_acs_joc_2c00677
crossref_primary_10_1038_s41557_023_01157_6
crossref_primary_10_1002_anie_202114490
crossref_primary_10_3390_inorganics10100152
crossref_primary_10_1021_acscatal_2c00083
crossref_primary_10_1002_anie_202422698
crossref_primary_10_1021_acs_orglett_1c04132
crossref_primary_10_1039_D3QO01196H
crossref_primary_10_1039_D1CC06896B
crossref_primary_10_1002_anie_202303709
crossref_primary_10_1039_D3SC03806H
crossref_primary_10_1021_acs_joc_3c02954
crossref_primary_10_1021_acs_orglett_4c00425
crossref_primary_10_1002_ejic_202100911
crossref_primary_10_1039_C9RA02694K
crossref_primary_10_1021_acsami_4c01101
crossref_primary_10_1016_j_gresc_2021_05_004
crossref_primary_10_1002_ange_201914377
crossref_primary_10_1002_ange_202114490
crossref_primary_10_1021_acs_orglett_4c02560
crossref_primary_10_1002_elps_202200148
Cites_doi 10.1021/acs.orglett.7b01343
10.1210/er.2009-0026
10.1021/ja8069852
10.1021/ar7001864
10.1021/ar020153m
10.1002/ange.201106808
10.1039/c39850001162
10.1021/ol0624373
10.1002/ange.201301972
10.1021/ja00066a066
10.1021/ol901762g
10.1021/ja903547q
10.1002/ange.201103240
10.1002/ange.200702555
10.1002/anie.201712435
10.1002/adsc.201000328
10.1016/j.tetasy.2007.04.028
10.1002/ange.201702926
10.1021/ja057222n
10.1039/c1gc15027h
10.1002/anie.200703925
10.1002/ange.200602482
10.1021/ol500176v
10.1039/b706887e
10.1002/anie.201301972
10.1002/anie.200462432
10.1002/anie.200600191
10.1002/1521-3757(20020201)114:3<496::AID-ANGE496>3.0.CO;2-Z
10.1021/ja211684v
10.1002/anie.201103240
10.1021/ol400995c
10.1002/ange.201204179
10.1039/c3gc37129h
10.1002/ange.201712435
10.1002/adsc.201000274
10.1002/ange.200600512
10.1002/ange.200601832
10.1021/acs.orglett.6b02283
10.1021/cr0500131
10.1039/c1cs15268h
10.1002/anie.200602482
10.1039/b700682a
10.1021/jacs.5b00085
10.1002/ange.200600191
10.1021/ja208073w
10.1021/ja509005e
10.1002/anie.201307371
10.1039/b618792g
10.1002/anie.201204179
10.1021/ar030171j
10.1002/anie.201702926
10.1002/anie.200461816
10.1002/ange.200462432
10.1021/jacs.7b07188
10.1021/ja00849a055
10.1021/ja065708d
10.1002/anie.200601832
10.1002/anie.200600512
10.1039/C7OB00113D
10.1002/anie.201706994
10.1021/ja992990y
10.1055/s-2007-990840
10.1021/ja074045c
10.1002/1521-3773(20020201)41:3<478::AID-ANIE478>3.0.CO;2-K
10.1002/anie.201106808
10.1021/acs.joc.5b00153
10.1021/ja043834g
10.1002/ange.201307371
10.1021/ja510980d
10.1002/ange.200703925
10.1021/ol0610892
10.1021/ol3012869
10.1021/ja990535w
10.1002/ange.201706994
10.1002/ange.200461816
10.1002/anie.200702555
10.1021/ol0515964
10.1021/ar500414x
10.1039/c7ob00113d
10.1055/s-0036-1588665
ContentType Journal Article
Copyright 2019 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim
2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Copyright_xml – notice: 2019 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
DBID AAYXX
CITATION
17B
1KM
1KN
AAWJD
BLEPL
DTL
EGQ
NPM
7TM
K9.
7X8
DOI 10.1002/anie.201813400
DatabaseName CrossRef
Web of Knowledge
Index Chemicus
Current Chemical Reactions
Web of Science - Science Citation Index Expanded - 2019
Web of Science Core Collection
Science Citation Index Expanded
Web of Science Primary (SCIE, SSCI & AHCI)
PubMed
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
Web of Science
PubMed
ProQuest Health & Medical Complete (Alumni)
Nucleic Acids Abstracts
MEDLINE - Academic
DatabaseTitleList
CrossRef
MEDLINE - Academic
ProQuest Health & Medical Complete (Alumni)
Web of Science
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 1KN
  name: Current Chemical Reactions
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/woscc/search-with-editions?editions=WOS.CCR
  sourceTypes:
    Enrichment Source
    Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3773
Edition International ed. in English
EndPage 1817
ExternalDocumentID 30556234
000458826800048
10_1002_anie_201813400
ANIE201813400
Genre shortCommunication
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 21532006, 21690074
– fundername: Dalian Institute of Chemical Physics
  funderid: DMTO201501
– fundername: Chinese Academy of Sciences
  funderid: XDB17020300, QYZDJ-SSW-SLH035
– fundername: Dalian Institute of Chemical Physics
  grantid: DMTO201501
– fundername: Chinese Academy of Sciences
  grantid: XDB17020300; QYZDJ-SSW-SLH035
– fundername: National Natural Science Foundation of China; National Natural Science Foundation of China (NSFC)
  grantid: 21532006; 21690074
– fundername: National Natural Science Foundation of China
  grantid: 21532006, 21690074
– fundername: Chinese Academy of Sciences
  grantid: XDB17020300, QYZDJ-SSW-SLH035
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABLJU
ABPPZ
ABPVW
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BTSUX
BY8
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
M53
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
TN5
UB1
UPT
UQL
V2E
VQA
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XSW
XV2
YZZ
ZZTAW
~IA
~KM
~WT
AAYXX
ABDBF
ABJNI
AEYWJ
AGHNM
AGYGG
CITATION
17B
1KM
1KN
BLEPL
DTL
GROUPED_WOS_SCIENCE_CITATION_INDEX_EXPANDED
GROUPED_WOS_WEB_OF_SCIENCE
NPM
YIN
7TM
K9.
7X8
ID FETCH-LOGICAL-c4760-556f7806956c3c457e1243a50b1803a8ae32fbfca09856d2b06787d41c7bded3
IEDL.DBID DR2
ISICitedReferencesCount 61
ISICitedReferencesURI https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestApp=WOS&DestLinkType=CitingArticles&UT=000458826800048
ISSN 1433-7851
1521-3773
IngestDate Fri Jul 11 00:45:37 EDT 2025
Fri Jul 25 10:45:18 EDT 2025
Wed Feb 19 02:30:39 EST 2025
Fri Aug 29 15:57:53 EDT 2025
Wed Jul 09 17:54:43 EDT 2025
Thu Apr 24 22:53:08 EDT 2025
Tue Jul 01 02:26:39 EDT 2025
Wed Jan 22 17:03:09 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords QUINOLINES
alkenes
HANTZSCH ESTERS
HYDROAMINATION/ASYMMETRIC TRANSFER HYDROGENATION
ENANTIOSELECTIVE TRANSFER HYDROGENATION
DEHYDROGENASE
asymmetric synthesis
NADH
BENZOTHIAZOLINE
biomimetic chemistry
reduction
ORGANOCATALYTIC TRANSFER HYDROGENATION
DERIVATIVES
synthetic methods
METAL-FREE
Language English
License 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
LogoURL https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg
MergedId FETCHMERGED-LOGICAL-c4760-556f7806956c3c457e1243a50b1803a8ae32fbfca09856d2b06787d41c7bded3
Notes Dedicated to the 70th anniversary of the Dalian Institute of Chemical Physics, Chinese Academy of Sciences
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-8077-8047
0000-0002-9129-2656
0000-0001-6493-1363
0000-0002-5227-5669
0000-0002-3321-5521
PMID 30556234
PQID 2172063801
PQPubID 946352
PageCount 5
ParticipantIDs proquest_miscellaneous_2157653481
crossref_primary_10_1002_anie_201813400
wiley_primary_10_1002_anie_201813400_ANIE201813400
proquest_journals_2172063801
webofscience_primary_000458826800048CitationCount
crossref_citationtrail_10_1002_anie_201813400
webofscience_primary_000458826800048
pubmed_primary_30556234
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate February 4, 2019
PublicationDateYYYYMMDD 2019-02-04
PublicationDate_xml – month: 02
  year: 2019
  text: February 4, 2019
  day: 04
PublicationDecade 2010
PublicationPlace WEINHEIM
PublicationPlace_xml – name: WEINHEIM
– name: Germany
– name: Weinheim
PublicationTitle Angewandte Chemie International Edition
PublicationTitleAbbrev ANGEW CHEM INT EDIT
PublicationTitleAlternate Angew Chem Int Ed Engl
PublicationYear 2019
Publisher Wiley
Wiley Subscription Services, Inc
Publisher_xml – name: Wiley
– name: Wiley Subscription Services, Inc
References 2014 2014; 53 126
1999; 121
1975; 97
2011; 13
2015; 80
2008 2008; 47 120
2012; 14
2014; 136
2013 2013; 52 125
2009; 11
2015; 48
2013; 15
2012; 134
2015; 137
2002 2002; 41 114
2012 2012; 51 124
2018 2018; 57 130
2004; 37
2005; 105
2010; 352
2014; 16
1985
2007; 5
2000; 122
2006; 128
2007; 18
2010; 31
2004 2004; 43 116
2007; 129
2017; 28
2006; 8
2003; 36
2007
2009; 131
2017 2017; 56 129
2016; 18
2011; 133
2009; 26
1989; 28
2017; 139
2006 2006; 45 118
2017; 15
2005; 127
2007 2007; 46 119
2004 2004; 44 117
2005; 7
2017; 19
2011 2011; 50 123
2007; 40
1993; 115
2008; 130
2012; 41
e_1_2_2_24_2
e_1_2_2_47_2
e_1_2_2_4_2
e_1_2_2_47_3
e_1_2_2_6_1
e_1_2_2_49_2
e_1_2_2_20_3
e_1_2_2_22_1
e_1_2_2_20_2
e_1_2_2_2_2
e_1_2_2_62_2
e_1_2_2_41_2
e_1_2_2_64_2
e_1_2_2_28_3
e_1_2_2_8_2
e_1_2_2_28_2
e_1_2_2_43_2
e_1_2_2_66_2
e_1_2_2_43_3
e_1_2_2_26_2
e_1_2_2_45_2
e_1_2_2_68_2
e_1_2_2_24_3
e_1_2_2_45_3
e_1_2_2_60_2
e_1_2_2_13_2
e_1_2_2_36_2
e_1_2_2_57_3
e_1_2_2_59_1
e_1_2_2_38_2
e_1_2_2_11_1
e_1_2_2_38_3
e_1_2_2_51_2
e_1_2_2_74_2
Singh S. (e_1_2_2_23_2) 1989; 28
e_1_2_2_74_3
e_1_2_2_19_2
e_1_2_2_30_2
e_1_2_2_53_2
e_1_2_2_30_3
e_1_2_2_51_3
e_1_2_2_17_2
e_1_2_2_32_2
e_1_2_2_55_2
e_1_2_2_32_3
e_1_2_2_15_2
e_1_2_2_34_2
e_1_2_2_57_2
e_1_2_2_76_2
e_1_2_2_70_1
e_1_2_2_72_1
e_1_2_2_3_2
e_1_2_2_69_3
e_1_2_2_48_2
e_1_2_2_69_2
e_1_2_2_5_2
e_1_2_2_21_2
e_1_2_2_1_1
Bai C.-B. (e_1_2_2_10_2) 2017; 28
e_1_2_2_40_2
e_1_2_2_61_2
e_1_2_2_63_3
e_1_2_2_29_2
e_1_2_2_42_2
e_1_2_2_63_2
e_1_2_2_7_2
e_1_2_2_65_3
e_1_2_2_67_1
e_1_2_2_27_2
e_1_2_2_44_2
e_1_2_2_65_2
e_1_2_2_25_3
e_1_2_2_46_1
e_1_2_2_9_2
e_1_2_2_25_2
e_1_2_2_35_3
e_1_2_2_12_2
e_1_2_2_37_2
e_1_2_2_58_2
e_1_2_2_39_1
e_1_2_2_52_1
e_1_2_2_50_2
e_1_2_2_75_2
e_1_2_2_18_2
e_1_2_2_31_2
e_1_2_2_73_2
e_1_2_2_56_1
e_1_2_2_33_2
e_1_2_2_54_2
e_1_2_2_16_1
e_1_2_2_77_1
e_1_2_2_14_2
e_1_2_2_35_2
e_1_2_2_71_1
Terada, M. (000458826800048.55) 2014; 126
Xu, HJ (WOS:000239309900010) 2006; 8
Phillips, AMF (WOS:000397945900002) 2017; 15
Rueping, M. (000458826800048.45) 2006; 118
Rueping, M. (000458826800048.48) 2006; 118
Macías, FA (WOS:000264555000002) 2009; 26
Ren, L (WOS:000299034200034) 2012; 51
Mayer, S. (000458826800048.33) 2006; 118
Zhu, C (WOS:000269670700039) 2009; 11
Rueping, M (WOS:000231294400046) 2005; 7
Chen, QA (WOS:000301084600085) 2012; 134
Liu, YT (WOS:000411810600054) 2017; 56
Wu, H (WOS:000320781200005) 2013; 15
Rueping, M (WOS:000238068000026) 2006; 45
Yang, JW (WOS:000225869900011) 2004; 43
Troutman, MV (WOS:000080646000031) 1999; 121
Zhao, L. (000458826800048.75) 2017; 129
Liu, YT (WOS:000403854300049) 2017; 19
Chen, MW (WOS:000383640600052) 2016; 18
Henseler, A. (000458826800048.16) 2011; 123
Xia, ZL (WOS:000426252400022) 2018; 57
OHNISHI, Y (WOS:A1975AL36200055) 1975; 97
Yang, J. W. (000458826800048.72) 2004; 116
Guo, QS (WOS:000252652200029) 2008; 47
Martin, NJA (WOS:000241157600026) 2006; 128
Schrems, MG (WOS:000250966100038) 2007; 46
Gebicki, J (WOS:000222094000005) 2004; 37
Tu, X.F. (000458826800048.58) 2012; 124
Sakamoto, T (WOS:000306050300020) 2012; 14
Yang, JW (WOS:000242046100059) 2006; 8
Cui, XH (WOS:000231916100004) 2005; 105
Henseler, A (WOS:000294177500043) 2011; 50
Zheng, C (WOS:000300797700025) 2012; 41
Zhu, C (WOS:000349806300025) 2015; 48
Zhao, L (WOS:000405308500013) 2017; 56
Arrayás, RG (WOS:000242595700007) 2006; 45
Yang, JW (WOS:000226010500016) 2005; 44
Han, ZY (WOS:000267633300025) 2009; 131
Mayer, S (WOS:000238718500028) 2006; 45
Terada, M (WOS:000328714900033) 2014; 53
Zhu, C (WOS:000281654500007) 2010; 352
Du, YL (WOS:000354004600056) 2015; 80
Dai, LX (WOS:000185430400003) 2003; 36
Rueping, M (WOS:000241474500037) 2006; 45
Lo, H. C. (000458826800048.24) 2002; 114
Houtkooper, RH (WOS:000276320300004) 2010; 31
Yang, J. W. (000458826800048.70) 2004; 117
Guo, Q.S. (000458826800048.12) 2008; 120
Yin, Q (WOS:000320298900031) 2013; 15
Wang, QL (WOS:000345308700005) 2014; 136
Lu, L.Q. (000458826800048.28) 2013; 125
Schrems, M. G. (000458826800048.51) 2007; 119
Lo, HC (WOS:000173880900016) 2002; 41
Wang, NX (WOS:000251507000002) 2007
Martin, NJA (WOS:000248185500025) 2007; 129
Lin, H (WOS:000248559900003) 2007; 5
Bai, CB (WOS:000402748600008) 2017; 28
Ouellet, SG (WOS:000251787500012) 2007; 40
Procuranti, B (WOS:000245261400007) 2007
Ren, L. (000458826800048.40) 2012; 124
l mez Arrays, R. G (000458826800048.2) 2006; 118
ZEHANI, S (WOS:A1985AQN3600012) 1985
Xia, Z.L. (000458826800048.65) 2018; 130
Tu, XF (WOS:000310874400031) 2012; 51
Wang, DW (WOS:000247898000011) 2007; 18
Xue, ZY (WOS:000282621700005) 2010; 352
Lu, LQ (WOS:000350192700049) 2015; 137
Rueping, M (WOS:000290227800003) 2011; 13
Ouellet, SG (WOS:000226240900015) 2005; 127
RIANT, O (WOS:A1993LT17200066) 1993; 115
Liu, Y.T. (000458826800048.23) 2017; 129
Lu, LQ (WOS:000322631600039) 2013; 52
Storer, RI (WOS:000234547700042) 2006; 128
Martin, NJA (WOS:000260047700026) 2008; 130
SINGH, S (WOS:A1989U517200001) 1989; 28
Kraft, S (WOS:000409286000001) 2017; 139
Chen, QA (WOS:000295997500030) 2011; 133
Wang, ZB (WOS:000348483500066) 2015; 137
Kanomata, N (WOS:000087118100005) 2000; 122
Chen, ZP (WOS:000332756400034) 2014; 16
References_xml – volume: 53 126
  start-page: 235 239
  year: 2014 2014
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 31
  start-page: 194
  year: 2010
  publication-title: Endocr. Rev.
– volume: 18
  start-page: 2785
  year: 2007
  publication-title: Synlett
– start-page: 1162
  year: 1985
  publication-title: J. Chem. Soc. Chem. Commun.
– volume: 50 123
  start-page: 8180 8330
  year: 2011 2011
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 139
  start-page: 11630
  year: 2017
  publication-title: J. Am. Chem. Soc.
– volume: 122
  start-page: 4563
  year: 2000
  publication-title: J. Am. Chem. Soc.
– volume: 56 129
  start-page: 8692 8818
  year: 2017 2017
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 56 129
  start-page: 12708 12882
  year: 2017 2017
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 97
  start-page: 4766
  year: 1975
  publication-title: J. Am. Chem. Soc.
– volume: 45 118
  start-page: 4193 4299
  year: 2006 2006
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 131
  start-page: 9182
  year: 2009
  publication-title: J. Am. Chem. Soc.
– volume: 137
  start-page: 383
  year: 2015
  publication-title: J. Am. Chem. Soc.
– start-page: 1421
  year: 2007
  publication-title: Chem. Commun.
– volume: 43 116
  start-page: 6660 6829
  year: 2004 2004
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 28
  start-page: 402
  year: 2017
  publication-title: Synlett
– volume: 115
  start-page: 5835
  year: 1993
  publication-title: J. Am. Chem. Soc.
– volume: 45 118
  start-page: 6751 6903
  year: 2006 2006
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 137
  start-page: 2763
  year: 2015
  publication-title: J. Am. Chem. Soc.
– volume: 5
  start-page: 2541
  year: 2007
  publication-title: Org. Biomol. Chem.
– volume: 46 119
  start-page: 8274 8422
  year: 2007 2007
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 19
  start-page: 3231
  year: 2017
  publication-title: Org. Lett.
– volume: 52 125
  start-page: 8382 8540
  year: 2013 2013
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 128
  start-page: 13368
  year: 2006
  publication-title: J. Am. Chem. Soc.
– volume: 133
  start-page: 16432
  year: 2011
  publication-title: J. Am. Chem. Soc.
– volume: 47 120
  start-page: 759 771
  year: 2008 2008
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 128
  start-page: 84
  year: 2006
  publication-title: J. Am. Chem. Soc.
– volume: 127
  start-page: 32
  year: 2005
  publication-title: J. Am. Chem. Soc.
– volume: 57 130
  start-page: 2653 2683
  year: 2018 2018
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 8
  start-page: 3449
  year: 2006
  publication-title: Org. Lett.
– volume: 40
  start-page: 1327
  year: 2007
  publication-title: Acc. Chem. Res.
– volume: 45 118
  start-page: 3683 3765
  year: 2006 2006
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 18
  start-page: 1103
  year: 2007
  publication-title: Tetrahedron: Asymmetry
– volume: 15
  start-page: 1773
  year: 2013
  publication-title: Green Chem.
– volume: 28
  start-page: 1
  year: 1989
  publication-title: Indian J. Chem. Sect. B
– volume: 352
  start-page: 1846
  year: 2010
  publication-title: Adv. Synth. Catal.
– volume: 48
  start-page: 388
  year: 2015
  publication-title: Acc. Chem. Res.
– volume: 352
  start-page: 2132
  year: 2010
  publication-title: Adv. Synth. Catal.
– volume: 80
  start-page: 4754
  year: 2015
  publication-title: J. Org. Chem.
– volume: 129
  start-page: 8976
  year: 2007
  publication-title: J. Am. Chem. Soc.
– volume: 51 124
  start-page: 771 795
  year: 2012 2012
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 11
  start-page: 4180
  year: 2009
  publication-title: Org. Lett.
– volume: 130
  start-page: 13862
  year: 2008
  publication-title: J. Am. Chem. Soc.
– volume: 41
  start-page: 2498
  year: 2012
  publication-title: Chem. Soc. Rev.
– volume: 121
  start-page: 4916
  year: 1999
  publication-title: J. Am. Chem. Soc.
– volume: 51 124
  start-page: 11346 11508
  year: 2012 2012
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 16
  start-page: 1406
  year: 2014
  publication-title: Org. Lett.
– volume: 37
  start-page: 379
  year: 2004
  publication-title: Acc. Chem. Res.
– volume: 41 114
  start-page: 478 496
  year: 2002 2002
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 15
  start-page: 2307
  year: 2017
  publication-title: Org. Biomol. Chem.
– volume: 15
  start-page: 2688
  year: 2013
  publication-title: Org. Lett.
– volume: 8
  start-page: 5653
  year: 2006
  publication-title: Org. Lett.
– volume: 18
  start-page: 4650
  year: 2016
  publication-title: Org. Lett.
– volume: 105
  start-page: 3272
  year: 2005
  publication-title: Chem. Rev.
– volume: 134
  start-page: 2442
  year: 2012
  publication-title: J. Am. Chem. Soc.
– volume: 44 117
  start-page: 108 110
  year: 2004 2004
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 136
  start-page: 16120
  year: 2014
  publication-title: J. Am. Chem. Soc.
– volume: 7
  start-page: 3781
  year: 2005
  publication-title: Org. Lett.
– volume: 36
  start-page: 659
  year: 2003
  publication-title: Acc. Chem. Res.
– volume: 26
  start-page: 478
  year: 2009
  publication-title: Nat. Prod. Rep.
– volume: 13
  start-page: 1084
  year: 2011
  publication-title: Green Chem.
– volume: 14
  start-page: 3312
  year: 2012
  publication-title: Org. Lett.
– volume: 45 118
  start-page: 7674 7836
  year: 2006 2006
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– ident: e_1_2_2_46_1
– ident: e_1_2_2_64_2
  doi: 10.1021/acs.orglett.7b01343
– ident: e_1_2_2_3_2
  doi: 10.1210/er.2009-0026
– ident: e_1_2_2_33_2
  doi: 10.1021/ja8069852
– ident: e_1_2_2_77_1
– ident: e_1_2_2_12_2
  doi: 10.1021/ar7001864
– ident: e_1_2_2_68_2
  doi: 10.1021/ar020153m
– ident: e_1_2_2_35_3
  doi: 10.1002/ange.201106808
– ident: e_1_2_2_40_2
  doi: 10.1039/c39850001162
– ident: e_1_2_2_41_2
  doi: 10.1021/ol0624373
– ident: e_1_2_2_57_3
  doi: 10.1002/ange.201301972
– ident: e_1_2_2_70_1
  doi: 10.1021/ja00066a066
– ident: e_1_2_2_18_2
  doi: 10.1021/ol901762g
– ident: e_1_2_2_34_2
  doi: 10.1021/ja903547q
– ident: e_1_2_2_20_3
  doi: 10.1002/ange.201103240
– ident: e_1_2_2_63_3
  doi: 10.1002/ange.200702555
– ident: e_1_2_2_38_2
  doi: 10.1002/anie.201712435
– ident: e_1_2_2_11_1
– ident: e_1_2_2_19_2
  doi: 10.1002/adsc.201000328
– ident: e_1_2_2_42_2
  doi: 10.1016/j.tetasy.2007.04.028
– ident: e_1_2_2_51_3
  doi: 10.1002/ange.201702926
– ident: e_1_2_2_75_2
  doi: 10.1021/ja057222n
– ident: e_1_2_2_13_2
  doi: 10.1039/c1gc15027h
– ident: e_1_2_2_32_2
  doi: 10.1002/anie.200703925
– ident: e_1_2_2_69_3
  doi: 10.1002/ange.200602482
– ident: e_1_2_2_54_2
  doi: 10.1021/ol500176v
– ident: e_1_2_2_5_2
  doi: 10.1039/b706887e
– ident: e_1_2_2_22_1
– ident: e_1_2_2_57_2
  doi: 10.1002/anie.201301972
– ident: e_1_2_2_24_2
  doi: 10.1002/anie.200462432
– ident: e_1_2_2_30_2
  doi: 10.1002/anie.200600191
– ident: e_1_2_2_47_3
  doi: 10.1002/1521-3757(20020201)114:3<496::AID-ANGE496>3.0.CO;2-Z
– ident: e_1_2_2_53_2
  doi: 10.1021/ja211684v
– ident: e_1_2_2_52_1
– ident: e_1_2_2_6_1
– ident: e_1_2_2_20_2
  doi: 10.1002/anie.201103240
– ident: e_1_2_2_36_2
  doi: 10.1021/ol400995c
– ident: e_1_2_2_39_1
– ident: e_1_2_2_45_3
  doi: 10.1002/ange.201204179
– ident: e_1_2_2_71_1
– ident: e_1_2_2_4_2
  doi: 10.1039/c3gc37129h
– volume: 28
  start-page: 1
  year: 1989
  ident: e_1_2_2_23_2
  publication-title: Indian J. Chem. Sect. B
– ident: e_1_2_2_38_3
  doi: 10.1002/ange.201712435
– ident: e_1_2_2_76_2
  doi: 10.1002/adsc.201000274
– ident: e_1_2_2_28_3
  doi: 10.1002/ange.200600512
– ident: e_1_2_2_74_3
  doi: 10.1002/ange.200601832
– ident: e_1_2_2_1_1
– ident: e_1_2_2_55_2
  doi: 10.1021/acs.orglett.6b02283
– ident: e_1_2_2_61_2
  doi: 10.1021/cr0500131
– ident: e_1_2_2_14_2
  doi: 10.1039/c1cs15268h
– ident: e_1_2_2_69_2
  doi: 10.1002/anie.200602482
– ident: e_1_2_2_73_2
  doi: 10.1039/b700682a
– ident: e_1_2_2_58_2
  doi: 10.1021/jacs.5b00085
– ident: e_1_2_2_30_3
  doi: 10.1002/ange.200600191
– ident: e_1_2_2_50_2
  doi: 10.1021/ja208073w
– ident: e_1_2_2_66_2
  doi: 10.1021/ja509005e
– ident: e_1_2_2_43_2
  doi: 10.1002/anie.201307371
– ident: e_1_2_2_49_2
  doi: 10.1039/b618792g
– ident: e_1_2_2_45_2
  doi: 10.1002/anie.201204179
– ident: e_1_2_2_2_2
  doi: 10.1021/ar030171j
– ident: e_1_2_2_51_2
  doi: 10.1002/anie.201702926
– ident: e_1_2_2_25_2
  doi: 10.1002/anie.200461816
– ident: e_1_2_2_24_3
  doi: 10.1002/ange.200462432
– ident: e_1_2_2_60_2
  doi: 10.1021/jacs.7b07188
– ident: e_1_2_2_7_2
  doi: 10.1021/ja00849a055
– ident: e_1_2_2_29_2
  doi: 10.1021/ja065708d
– volume: 28
  start-page: 402
  year: 2017
  ident: e_1_2_2_10_2
  publication-title: Synlett
– ident: e_1_2_2_74_2
  doi: 10.1002/anie.200601832
– ident: e_1_2_2_28_2
  doi: 10.1002/anie.200600512
– ident: e_1_2_2_56_1
– ident: e_1_2_2_15_2
  doi: 10.1039/C7OB00113D
– ident: e_1_2_2_65_2
  doi: 10.1002/anie.201706994
– ident: e_1_2_2_8_2
  doi: 10.1021/ja992990y
– ident: e_1_2_2_9_2
  doi: 10.1055/s-2007-990840
– ident: e_1_2_2_31_2
  doi: 10.1021/ja074045c
– ident: e_1_2_2_47_2
  doi: 10.1002/1521-3773(20020201)41:3<478::AID-ANIE478>3.0.CO;2-K
– ident: e_1_2_2_72_1
– ident: e_1_2_2_35_2
  doi: 10.1002/anie.201106808
– ident: e_1_2_2_44_2
  doi: 10.1021/acs.joc.5b00153
– ident: e_1_2_2_59_1
– ident: e_1_2_2_67_1
– ident: e_1_2_2_27_2
  doi: 10.1021/ja043834g
– ident: e_1_2_2_43_3
  doi: 10.1002/ange.201307371
– ident: e_1_2_2_37_2
  doi: 10.1021/ja510980d
– ident: e_1_2_2_32_3
  doi: 10.1002/ange.200703925
– ident: e_1_2_2_48_2
  doi: 10.1021/ol0610892
– ident: e_1_2_2_21_2
  doi: 10.1021/ol3012869
– ident: e_1_2_2_16_1
– ident: e_1_2_2_62_2
  doi: 10.1021/ja990535w
– ident: e_1_2_2_65_3
  doi: 10.1002/ange.201706994
– ident: e_1_2_2_25_3
  doi: 10.1002/ange.200461816
– ident: e_1_2_2_63_2
  doi: 10.1002/anie.200702555
– ident: e_1_2_2_26_2
  doi: 10.1021/ol0515964
– ident: e_1_2_2_17_2
  doi: 10.1021/ar500414x
– volume: 40
  start-page: 1327
  year: 2007
  ident: WOS:000251787500012
  article-title: Enantioselective organocatalytic transfer hydrogenation reactions using Hantzsch esters
  publication-title: ACCOUNTS OF CHEMICAL RESEARCH
  doi: 10.1021/ar7001864
– volume: 15
  start-page: 2688
  year: 2013
  ident: WOS:000320298900031
  article-title: Asymmetric Synthesis of Tetrahydro-β-carbolines via Chiral Phosphoric Acid Catalyzed Transfer Hydrogenation Reaction
  publication-title: ORGANIC LETTERS
  doi: 10.1021/ol400995c
– volume: 50
  start-page: 8180
  year: 2011
  ident: WOS:000294177500043
  article-title: Chiral Phosphoric Acid Catalyzed Transfer Hydrogenation: Facile Synthetic Access to Highly Optically Active Trifluoromethylated Amines
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.201103240
– volume: 128
  start-page: 84
  year: 2006
  ident: WOS:000234547700042
  article-title: Enantioselective organocatalytic reductive amination
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/ja057222n
– volume: 116
  start-page: 6829
  year: 2004
  ident: 000458826800048.72
  publication-title: Angew. Chem.
– volume: 130
  start-page: 13862
  year: 2008
  ident: WOS:000260047700026
  article-title: Organocatalytic asymmetric transferhydrogenation of β-nitroacrylates:: Accessing β2-amino acids
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/ja8069852
– volume: 97
  start-page: 4766
  year: 1975
  ident: WOS:A1975AL36200055
  article-title: REDUCTION BY A MODEL OF NAD(P)H - EFFECT OF METAL-ION AND STEREOCHEMISTRY ON REDUCTION OF ALPHA-KETO ESTERS BY 1,4-DIHYDRONICOTINAMIDE DERIVATIVES
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
– volume: 124
  start-page: 11508
  year: 2012
  ident: 000458826800048.58
  publication-title: Angew. Chem.
– volume: 45
  start-page: 4193
  year: 2006
  ident: WOS:000238718500028
  article-title: Asymmetric counteranion-directed catalysis
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.200600512
– volume: 45
  start-page: 6751
  year: 2006
  ident: WOS:000241474500037
  article-title: Remarkably low catalyst loading in Bronsted acid catalyzed transfer hydrogenations: Enantioselective reduction of benzoxazines, benzothiazines, and benzoxazinones
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.200601832
– volume: 51
  start-page: 11346
  year: 2012
  ident: WOS:000310874400031
  article-title: Highly Enantioselective Transfer Hydrogenation of Quinolines Catalyzed by Gold Phosphates: Achiral Ligand Tuning and Chiral-Anion Control of Stereoselectivity
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.201204179
– volume: 37
  start-page: 379
  year: 2004
  ident: WOS:000222094000005
  article-title: Transient species in the stepwise interconversion of NADH and NAD+
  publication-title: ACCOUNTS OF CHEMICAL RESEARCH
– volume: 45
  start-page: 3683
  year: 2006
  ident: WOS:000238068000026
  article-title: A highly enantioselective bronsted acid catalyzed cascade reaction: Organocatalytic transfer hydrogenation of quinolines and their application in the synthesis of alkaloids
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.200600191
– volume: 118
  start-page: 6903
  year: 2006
  ident: 000458826800048.48
  publication-title: Angew. Chem.
– volume: 41
  start-page: 478
  year: 2002
  ident: WOS:000173880900016
  article-title: Biomimetic NAD+ models for tandem cofactor regeneration, horse liver alcohol dehydrogenase recognition of 1,4-NADH derivatives, and chiral synthesis
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
– volume: 120
  start-page: 771
  year: 2008
  ident: 000458826800048.12
  publication-title: Angew. Chem.
– volume: 125
  start-page: 8540
  year: 2013
  ident: 000458826800048.28
  publication-title: Angew. Chem.
– volume: 8
  start-page: 3449
  year: 2006
  ident: WOS:000239309900010
  article-title: Catalytic hydrogenation of α,β-epoxy ketones to form β-hydroxy ketones mediated by an NADH coenzyme model
  publication-title: ORGANIC LETTERS
  doi: 10.1021/ol0610892
– volume: 134
  start-page: 2442
  year: 2012
  ident: WOS:000301084600085
  article-title: Dihydrophenanthridine: A New and Easily Regenerable NAD(P)H Model for Biomimetic Asymmetric Hydrogenation
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/ja211684v
– volume: 56
  start-page: 12708
  year: 2017
  ident: WOS:000411810600054
  article-title: Divergent Asymmetric Total Synthesis of Mulinane Diterpenoids
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.201706994
– volume: 31
  start-page: 194
  year: 2010
  ident: WOS:000276320300004
  article-title: The Secret Life of NAD+: An Old Metabolite Controlling New Metabolic Signaling Pathways
  publication-title: ENDOCRINE REVIEWS
  doi: 10.1210/er.2009-0026
– volume: 128
  start-page: 13368
  year: 2006
  ident: WOS:000241157600026
  article-title: Highly enantioselective transfer hydrogenation of α,β-unsaturated ketones
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/ja065708d
– volume: 80
  start-page: 4754
  year: 2015
  ident: WOS:000354004600056
  article-title: Chiral Gold Phosphate Catalyzed Tandem Hydroamination/Asymmetric Transfer Hydrogenation Enables Access to Chiral Tetrahydroquinolines
  publication-title: JOURNAL OF ORGANIC CHEMISTRY
  doi: 10.1021/acs.joc.5b00153
– volume: 45
  start-page: 7674
  year: 2006
  ident: WOS:000242595700007
  article-title: Recent applications of chiral ferrocene ligands in asymmetric catalysis
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.200602482
– volume: 48
  start-page: 388
  year: 2015
  ident: WOS:000349806300025
  article-title: Benzothiazoline: Versatile Hydrogen Donor for Organocatalytic Transfer Hydrogenation
  publication-title: ACCOUNTS OF CHEMICAL RESEARCH
  doi: 10.1021/ar500414x
– volume: 44
  start-page: 108
  year: 2005
  ident: WOS:000226010500016
  article-title: Metal-free, organocatalytic asymmetric transfer hydrogenation of α,β-unsaturated aldehydes
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
– volume: 123
  start-page: 8330
  year: 2011
  ident: 000458826800048.16
  publication-title: Angew. Chem.
– volume: 26
  start-page: 478
  year: 2009
  ident: WOS:000264555000002
  article-title: Rediscovering the bioactivity and ecological role of 1,4-benzoxazinones
  publication-title: NATURAL PRODUCT REPORTS
  doi: 10.1039/b700682a
– volume: 57
  start-page: 2653
  year: 2018
  ident: WOS:000426252400022
  article-title: Catalytic Asymmetric Dearomatization of Indolyl Dihydropyridines through an Enamine Isomerization/Spirocyclization/Transfer Hydrogenation Sequence
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.201712435
– start-page: 2785
  year: 2007
  ident: WOS:000251507000002
  article-title: Progress in coenzyme NADH model compounds and asymmetric reduction of benzoylformate
  publication-title: SYNLETT
  doi: 10.1055/s-2007-990840
– volume: 28
  start-page: 1
  year: 1989
  ident: WOS:A1989U517200001
  article-title: ASYMMETRIC REDUCTIONS OF IMINES USING NADH MODELS
  publication-title: INDIAN JOURNAL OF CHEMISTRY SECTION B-ORGANIC CHEMISTRY INCLUDING MEDICINAL CHEMISTRY
– volume: 129
  start-page: 12882
  year: 2017
  ident: 000458826800048.23
  publication-title: Angew. Chem.
– volume: 131
  start-page: 9182
  year: 2009
  ident: WOS:000267633300025
  article-title: Consecutive Intramolecular Hydroamination/Asymmetric Transfer Hydrogenation under Relay Catalysis of an Achiral Gold Complex/Chiral Bronsted Acid Binary System
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/ja903547q
– start-page: 1421
  year: 2007
  ident: WOS:000245261400007
  article-title: A reductase-mimicking thiourea organocatalyst incorporating a covalently bound NADH analogue: efficient 1,2-diketone reduction with in situ prosthetic group generation and recycling
  publication-title: CHEMICAL COMMUNICATIONS
  doi: 10.1039/b618792g
– volume: 126
  start-page: 239
  year: 2014
  ident: 000458826800048.55
  publication-title: Angew. Chem.
– volume: 114
  start-page: 496
  year: 2002
  ident: 000458826800048.24
  publication-title: Angew. Chem.
– volume: 53
  start-page: 235
  year: 2014
  ident: WOS:000328714900033
  article-title: Chiral Silver Phosphate Catalyzed Transformation of ortho-Alkynylaryl Ketones into 1H-Isochromene Derivatives through an Intramolecular-Cyclization/Enantioselective-Reduction Sequence
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.201307371
– volume: 18
  start-page: 1103
  year: 2007
  ident: WOS:000247898000011
  article-title: Iridium-catalyzed asymmetric transfer hydrogenation of quinolines with Hantzsch esters
  publication-title: TETRAHEDRON-ASYMMETRY
  doi: 10.1016/j.tetasy.2007.04.028
– volume: 129
  start-page: 8976
  year: 2007
  ident: WOS:000248185500025
  article-title: Organocatalytic asymmetric transfer hydrogenation of nitroolefins
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/ja074045c
– volume: 14
  start-page: 3312
  year: 2012
  ident: WOS:000306050300020
  article-title: Chiral Phosphoric Acid Catalyzed Enantioselective Transfer Deuteration of Ketimines by Use of Benzothiazoline As a Deuterium Donor: Synthesis of Optically Active Deuterated Amines
  publication-title: ORGANIC LETTERS
  doi: 10.1021/ol3012869
– volume: 127
  start-page: 32
  year: 2005
  ident: WOS:000226240900015
  article-title: Enantioselective organocatalytic hydride reduction
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/ja043834g
– volume: 137
  start-page: 2763
  year: 2015
  ident: WOS:000350192700049
  article-title: Relay Iron/Chiral Bronsted Acid Catalysis: Enantioselective Hydrogenation of Benzoxazinones
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/jacs.5b00085
– volume: 19
  start-page: 3231
  year: 2017
  ident: WOS:000403854300049
  article-title: Asymmetric Hydrogenation of Tetrasubstituted Cyclic Enones to Chiral Cycloalkanols with Three Contiguous Stereocenters
  publication-title: ORGANIC LETTERS
  doi: 10.1021/acs.orglett.7b01343
– volume: 129
  start-page: 8818
  year: 2017
  ident: 000458826800048.75
  publication-title: Angew. Chem.
– volume: 43
  start-page: 6660
  year: 2004
  ident: WOS:000225869900011
  article-title: A metal-free transfer hydrogenation:: Organocatalytic conjugate reduction of α,β-unsaturated aldehydes
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.200461816
– volume: 13
  start-page: 1084
  year: 2011
  ident: WOS:000290227800003
  article-title: Advances in catalytic metal-free reductions: from bio-inspired concepts to applications in the organocatalytic synthesis of pharmaceuticals and natural products
  publication-title: GREEN CHEMISTRY
  doi: 10.1039/c1gc15027h
– volume: 47
  start-page: 759
  year: 2008
  ident: WOS:000252652200029
  article-title: The development of double axially chiral phosphoric acids and their catalytic transfer hydrogenation of quinolines
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.200703925
– volume: 52
  start-page: 8382
  year: 2013
  ident: WOS:000322631600039
  article-title: Iron-Catalyzed Hydrogenation for the In Situ Regeneration of an NAD(P)H Model: Biomimetic Reduction of α-Keto-/α-Iminoesters
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.201301972
– volume: 15
  start-page: 2307
  year: 2017
  ident: WOS:000397945900002
  article-title: Recent advances in organocatalytic enantioselective transfer hydrogenation
  publication-title: ORGANIC & BIOMOLECULAR CHEMISTRY
  doi: 10.1039/c7ob00113d
– volume: 105
  start-page: 3272
  year: 2005
  ident: WOS:000231916100004
  article-title: Catalytic homogeneous asymmetric hydrogenations of largely unfunctionalized alkenes
  publication-title: CHEMICAL REVIEWS
  doi: 10.1021/cr0500131
– volume: 5
  start-page: 2541
  year: 2007
  ident: WOS:000248559900003
  article-title: Nicotinamide adenine dinucleotide: beyond a redox coenzyme
  publication-title: ORGANIC & BIOMOLECULAR CHEMISTRY
  doi: 10.1039/b706887e
– volume: 15
  start-page: 1773
  year: 2013
  ident: WOS:000320781200005
  article-title: Methods for the regeneration of nicotinamide coenzymes
  publication-title: GREEN CHEMISTRY
  doi: 10.1039/c3gc37129h
– volume: 41
  start-page: 2498
  year: 2012
  ident: WOS:000300797700025
  article-title: Transfer hydrogenation with Hantzsch esters and related organic hydride donors
  publication-title: CHEMICAL SOCIETY REVIEWS
  doi: 10.1039/c1cs15268h
– volume: 117
  start-page: 110
  year: 2004
  ident: 000458826800048.70
  publication-title: Angew. Chem.
– volume: 8
  start-page: 5653
  year: 2006
  ident: WOS:000242046100059
  article-title: Catalytic asymmetric transfer hydrogenation of α-ketoesters with Hantzsch esters
  publication-title: ORGANIC LETTERS
  doi: 10.1021/ol0624373
– volume: 130
  start-page: 2683
  year: 2018
  ident: 000458826800048.65
  publication-title: Angew. Chem.
– volume: 139
  start-page: 11630
  year: 2017
  ident: WOS:000409286000001
  article-title: Recent Advances in Asymmetric Hydrogenation of Tetrasubstituted Olefins
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/jacs.7b07188
– volume: 121
  start-page: 4916
  year: 1999
  ident: WOS:000080646000031
  article-title: Asymmetric hydrogenation of unfunctionalized tetrasubstituted olefins with a cationic zirconocene catalyst
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
– volume: 11
  start-page: 4180
  year: 2009
  ident: WOS:000269670700039
  article-title: Benzothiazoline: Highly Efficient Reducing Agent for the Enantioselective Organocatalytic Transfer Hydrogenation of Ketimines
  publication-title: ORGANIC LETTERS
  doi: 10.1021/ol901762g
– volume: 28
  start-page: 402
  year: 2017
  ident: WOS:000402748600008
  article-title: Progress on Chiral NAD(P)H Model Compounds
  publication-title: SYNLETT
  doi: 10.1055/s-0036-1588665
– volume: 36
  start-page: 659
  year: 2003
  ident: WOS:000185430400003
  article-title: Asymmetric catalysis with chiral ferrocene ligands
  publication-title: ACCOUNTS OF CHEMICAL RESEARCH
– volume: 119
  start-page: 8422
  year: 2007
  ident: 000458826800048.51
  publication-title: Angew. Chem.
– volume: 118
  start-page: 4299
  year: 2006
  ident: 000458826800048.33
  publication-title: Angew. Chem.
– volume: 56
  start-page: 8692
  year: 2017
  ident: WOS:000405308500013
  article-title: Renewable Molecular Flasks with NADH Models: Combination of Light-Driven Proton Reduction and Biomimetic Hydrogenation of Benzoxazinones
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.201702926
– volume: 133
  start-page: 16432
  year: 2011
  ident: WOS:000295997500030
  article-title: Biomimetic Asymmetric Hydrogenation: In Situ Regenerable Hantzsch Esters for Asymmetric Hydrogenation of Benzoxazinones
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/ja208073w
– volume: 352
  start-page: 2132
  year: 2010
  ident: WOS:000282621700005
  article-title: The First General, Highly Enantioselective Lewis Base Organocatalyzed Hydrosilylation of Benzoxazinones and Quinoxalinones
  publication-title: ADVANCED SYNTHESIS & CATALYSIS
  doi: 10.1002/adsc.201000274
– volume: 18
  start-page: 4650
  year: 2016
  ident: WOS:000383640600052
  article-title: Synthesis of Chiral Fluorinated Propargylamines via Chemoselective Biomimetic Hydrogenation
  publication-title: ORGANIC LETTERS
  doi: 10.1021/acs.orglett.6b02283
– volume: 352
  start-page: 1846
  year: 2010
  ident: WOS:000281654500007
  article-title: Enantioselective Organocatalytic Transfer Hydrogenation of α-Imino Esters by Utilization of Benzothiazoline as Highly Efficient Reducing Agent
  publication-title: ADVANCED SYNTHESIS & CATALYSIS
  doi: 10.1002/adsc.201000328
– volume: 118
  start-page: 3765
  year: 2006
  ident: 000458826800048.45
  publication-title: Angew. Chem.
– volume: 46
  start-page: 8274
  year: 2007
  ident: WOS:000250966100038
  article-title: Iridium-catalyzed asymmetric hydrogenation of unfunctionalized tetrasubstituted Olefins
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.200702555
– volume: 118
  start-page: 7836
  year: 2006
  ident: 000458826800048.2
  publication-title: Angew. Chem.
– volume: 16
  start-page: 1406
  year: 2014
  ident: WOS:000332756400034
  article-title: 4,5-Dihydropyrrolo[1,2-a]quinoxalines: A Tunable and Regenerable Biomimetic Hydrogen Source
  publication-title: ORGANIC LETTERS
  doi: 10.1021/ol500176v
– volume: 124
  start-page: 795
  year: 2012
  ident: 000458826800048.40
  publication-title: Angew. Chem.
– volume: 115
  start-page: 5835
  year: 1993
  ident: WOS:A1993LT17200066
  article-title: A GENERAL ASYMMETRIC-SYNTHESIS OF FERROCENES WITH PLANAR CHIRALITY
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
– start-page: 1162
  year: 1985
  ident: WOS:A1985AQN3600012
  article-title: ASYMMETRIC REDUCTIONS CATALYZED BY CHIRAL SHIFT-REAGENTS
  publication-title: JOURNAL OF THE CHEMICAL SOCIETY-CHEMICAL COMMUNICATIONS
– volume: 51
  start-page: 771
  year: 2012
  ident: WOS:000299034200034
  article-title: Step-Economical Synthesis of Tetrahydroquinolines by Asymmetric Relay Catalytic Friedlander Condensation/Transfer Hydrogenation
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.201106808
– volume: 137
  start-page: 383
  year: 2015
  ident: WOS:000348483500066
  article-title: Organocatalytic Asymmetric Synthesis of 1,1-Diarylethanes by Transfer Hydrogenation
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/ja510980d
– volume: 122
  start-page: 4563
  year: 2000
  ident: WOS:000087118100005
  article-title: A compact chemical miniature of a holoenzyme, coenzyme NADH linked dehydrogenase. Design and synthesis of bridged NADH models and their highly enantioselective reduction
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
– volume: 7
  start-page: 3781
  year: 2005
  ident: WOS:000231294400046
  article-title: Enantioselective Bronsted acid catalyzed transfer hydrogenation: Organocatalytic reduction of imines
  publication-title: ORGANIC LETTERS
  doi: 10.1021/ol0515964
– volume: 136
  start-page: 16120
  year: 2014
  ident: WOS:000345308700005
  article-title: Rhodium-Catalyzed Enantioselective Hydrogenation of Tetrasubstituted α-Acetoxy β-Enamido Esters: A New Approach to Chiral α-Hydroxyl-β-amino Acid Derivatives
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/ja509005e
SSID ssj0028806
Score 2.512951
Snippet The development of biomimetic chemistry based on the NAD(P)H with hydrogen gas as terminal reductant is a long‐standing challenge. Through rational design of...
The development of biomimetic chemistry based on the NAD(P)H with hydrogen gas as terminal reductant is a long-standing challenge. Through rational design of...
Source Web of Science
SourceID proquest
pubmed
webofscience
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1813
SubjectTerms Alkenes
asymmetric synthesis
Asymmetry
biomimetic chemistry
Biomimetics
Catalysis
Catalysts
Chemistry
Chemistry, Multidisciplinary
Imines
NAD
Organic chemistry
Physical Sciences
Reduction
Science & Technology
synthetic methods
Title Catalytic Biomimetic Asymmetric Reduction of Alkenes and Imines Enabled by Chiral and Regenerable NAD(P)H Models
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.201813400
http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestApp=WOS&DestLinkType=FullRecord&UT=000458826800048
https://www.ncbi.nlm.nih.gov/pubmed/30556234
https://www.proquest.com/docview/2172063801
https://www.proquest.com/docview/2157653481
Volume 58
WOS 000458826800048
WOSCitedRecordID wos000458826800048
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED-hvYwXYHyGbchIk4CHbIntOMljCJ06JCpUDWlvke04UK1Jp7V96P76-ZwP1iEEgrdEZ8vy-ey7s-9-B3CUJiaNWCrwVVf4vKqMrxJV-drQMuSaGeZic75MxPgb_3wRXdzJ4m_xIYYLN9wZ7rzGDS7V8uQnaChmYGNoVhIyK4f2EMaALbSKpgN-FLXC2aYXMeZjFfoetTGgJ9vdt7XSL6bmPa20bcg6TXT6GGQ_hzYA5fJ4vVLH-uYevOP_TPIJPOrMVJK1crUHD0zzFHbzvjrcM7jK8d5nY8nk42xRz2pMhiTZclPXWKNLkyliwuKqk0VFsvklnqlENiU5qzHSnoxc0lZJ1IbkP2bXdjAkTs13h4NtSWSSfXr_9cOYYLm2-fI5nJ-OzvOx31Vv8DWPReBHkahiy3_rgGmmeRQba0owGQUqTAImE2kYrVSlZZAmkSipQr0ZlzzUsSpNyV7ATrNozCsgzEjBSqmUrKz7R3mi8Q5GKJ1ywW1HD_x-8QrdIZtjgY150WIy0wLZWAxs9ODd0P6qxfT4bcuDXhaKbm8vCyzphYZeEHrwdiBb9uNTi2zMYo1trB8XYZKzBy9bGRqGcqBslHEPju4K1UB3ZrZ1fETiMv49CP-mWd5NHKEMVh5QJ1V_mF6RTc5Gw9_rf-m0Dw_td-ri2PkB7Kyu1-bQmmkr9cZtxVssGjB0
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VcigXyrOkFDBSEXBIm9iOkxw4LNmtdmm7QqtF6i2KHQdW3UfV3RVafhV_hX-Ex3nAFiEQUg8ck3Eetmc8M_bMNwD7caTjgMUCT3WFy4tCuzKShas0zX2umGY2Nue0L7of-Luz4GwDvta5MCU-RLPhhpJh12sUcNyQPvyBGoop2BibFfnMMGIVV3msV5-N1zZ_02ubKX5B6VFnmHTdqrCAq3goPDcIRBFGnjC-gWKKB6E2Wo5lgSf9yGNZlGlGC1mozIujQORU4pIe5txXocx1zsxrb8BNrCKOaP3tQQNYRY00lPlMjLlY9r6GifTo4frvrqvBX2zbK2pw3XK2qu9oG77Vg1ZGvJwfLBfyQH25gif5P43qHbhd2eGkVQrOXdjQ03uwldTl7-7DRYIbWytDJm9Hs8logtmepDVfTSZYhEyRAYLeIluTWUFa43NUGiSb5qQ3wVQC0rFZaTmRK5J8Gl2ajyFxoD9aoG9DIv1W-9X7112C9ejG8wcwvI7-PoTN6WyqHwFhOhMsz6TMCuPfUh4p3GQSUsVccPOgA27NLKmqoNuxgsg4LUGnaYqzljaz5sDLpv1FCVry25Z7Ne-l1eI1T7FmGVqynu_A84Zshh_PkrKpni2xjXFUA8zidmCn5NnmUxZ1jjLuwP7PTNzQrR9hPDsRWUgDB_y_aZZUHUeshoUD1HLxH7qXtvq9TnO1-y8PPYOt7vD0JD3p9Y8fwy1zP7ZB-3wPNheXS_3E2KQL-dQuAwTSaxaQ72uCi_s
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VIgEX3o9AASMVAYe0ie14kwOHkN3VLoVVtSpSb1HsOO2q-1J3V2j5U_wVfhIe5wFbhEBIPXBMxnnYnvHM2DPfAOxGoY4CFgk81RUuLwrtylAWrtI097limtnYnI8D0fvE3x8Hx1vwtc6FKfEhmg03lAy7XqOAz_Ni_wdoKGZgY2hW6DPDh1VY5YFefzZO2-Jtv21m-CWl3c5R0nOrugKu4i3huUEgilboCeMaKKZ40NJGybEs8KQfeiwLM81oIQuVeVEYiJxKXNFbOfdVS-Y6Z-a1V-AqF16EtSLawwavihphKNOZGHOx6n2NEunR_c3f3dSCv5i2F7TgpuFsNV_3Fnyrx6wMeDnbWy3lnvpyAU7yPxrU23CzssJJXIrNHdjS07twPamL392DeYLbWmtDJu9Gs8logrmeJF6sJxMsQabIECFvkanJrCDx-AxVBsmmOelPMJGAdGxOWk7kmiSno3PzMSQO9YmF-TYkMojbrw_f9AhWoxsv7sPRZfT3AWxPZ1P9CAjTmWB5JmVWGO-W8lDhFpOQKuKCmwcdcGteSVUF3I71Q8ZpCTlNU5y1tJk1B1417eclZMlvW-7UrJdWS9cixYplaMd6vgMvGrIZfjxJyqZ6tsI2xk0NMIfbgYclyzafsphzlHEHdn_m4YZuvQjj14nQAho44P9Ns6TqOCI1LB2glon_0L00HvQ7zdXjf3noOVw7bHfTD_3BwRO4YW5HNmKf78D28nylnxqDdCmf2UWAQHrJ8vEdFFiKqg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Catalytic+Biomimetic+Asymmetric+Reduction+of+Alkenes+and+Imines+Enabled+by+Chiral+and+Regenerable+NAD%28P%29H+Models&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Wang%2C+Jie&rft.au=Zhu%2C+Zhou-Hao&rft.au=Chen%2C+Mu-Wang&rft.au=Chen%2C+Qing-An&rft.date=2019-02-04&rft.issn=1521-3773&rft.eissn=1521-3773&rft.volume=58&rft.issue=6&rft.spage=1813&rft_id=info:doi/10.1002%2Fanie.201813400&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon