Three-dimensional interconnected cobalt sulfide foam: Controllable synthesis and application in supercapacitor
Transition metal sulfides have been considered as the promising electroactive materials for the supercapacitors with high specific capacitances. Herein, cobalt sulfide foam (CSF) with three-dimensional (3D) porous hierarchical structure was controllably synthesized on the electrode by the facile ele...
Saved in:
Published in | Electrochimica Acta Vol. 317; pp. 551 - 561 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Oxford
Elsevier Ltd
10.09.2019
Elsevier BV |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Transition metal sulfides have been considered as the promising electroactive materials for the supercapacitors with high specific capacitances. Herein, cobalt sulfide foam (CSF) with three-dimensional (3D) porous hierarchical structure was controllably synthesized on the electrode by the facile electrochemical reduction of elemental sulfur in the precursor of sulfur incorporated polypyrrole (S/PPy) composite with a electrochemical reduction method followed with in-situ reacting with Co2+ ions in the electrolyte, and used for high-performance supercapacitors. Since such a CSF material provided smooth ion diffusion pathways for the fast ion transfer between electrode and electrolyte and simultaneously the anchoring of conductive PPy to the cross-linked cobalt sulfide (CoS) nanosheets enabled good electrical contact between the current collector and the active material for the fast electron transfer. By synergetic combination of these advantages, the optimum electrode delivered exceptional rate capability (84.8% capacity retention from 1 to 20 mA cm−2) and excellent cycling stability (86.8% capacity retention after 10000 cycles). An asymmetric supercapacitor assembled with the CSF as the positive electrode and activated carbon as the negative electrode displayed outstanding electrochemical performance. It is expected to provide a green and simple method for the preparation of transition metal sulfide-based electrodes for the practical energy storage.
[Display omitted]
•Cobalt sulfide foam (CSF) is fabricated by electrochemical reduction of sulfur.•CSF with 3D hierarchical structure provides unobstructed ion diffusion pathways.•PPy facilitates the electronic transportation between CoS and carbon paper.•Chemical bonding between PPy and CoS enables cycling stability of electrode. |
---|---|
AbstractList | Transition metal sulfides have been considered as the promising electroactive materials for the supercapacitors with high specific capacitances. Herein, cobalt sulfide foam (CSF) with three-dimensional (3D) porous hierarchical structure was controllably synthesized on the electrode by the facile electrochemical reduction of elemental sulfur in the precursor of sulfur incorporated polypyrrole (S/PPy) composite with a electrochemical reduction method followed with in-situ reacting with Co2+ ions in the electrolyte, and used for high-performance supercapacitors. Since such a CSF material provided smooth ion diffusion pathways for the fast ion transfer between electrode and electrolyte and simultaneously the anchoring of conductive PPy to the cross-linked cobalt sulfide (CoS) nanosheets enabled good electrical contact between the current collector and the active material for the fast electron transfer. By synergetic combination of these advantages, the optimum electrode delivered exceptional rate capability (84.8% capacity retention from 1 to 20 mA cm−2) and excellent cycling stability (86.8% capacity retention after 10000 cycles). An asymmetric supercapacitor assembled with the CSF as the positive electrode and activated carbon as the negative electrode displayed outstanding electrochemical performance. It is expected to provide a green and simple method for the preparation of transition metal sulfide-based electrodes for the practical energy storage. Transition metal sulfides have been considered as the promising electroactive materials for the supercapacitors with high specific capacitances. Herein, cobalt sulfide foam (CSF) with three-dimensional (3D) porous hierarchical structure was controllably synthesized on the electrode by the facile electrochemical reduction of elemental sulfur in the precursor of sulfur incorporated polypyrrole (S/PPy) composite with a electrochemical reduction method followed with in-situ reacting with Co2+ ions in the electrolyte, and used for high-performance supercapacitors. Since such a CSF material provided smooth ion diffusion pathways for the fast ion transfer between electrode and electrolyte and simultaneously the anchoring of conductive PPy to the cross-linked cobalt sulfide (CoS) nanosheets enabled good electrical contact between the current collector and the active material for the fast electron transfer. By synergetic combination of these advantages, the optimum electrode delivered exceptional rate capability (84.8% capacity retention from 1 to 20 mA cm−2) and excellent cycling stability (86.8% capacity retention after 10000 cycles). An asymmetric supercapacitor assembled with the CSF as the positive electrode and activated carbon as the negative electrode displayed outstanding electrochemical performance. It is expected to provide a green and simple method for the preparation of transition metal sulfide-based electrodes for the practical energy storage. [Display omitted] •Cobalt sulfide foam (CSF) is fabricated by electrochemical reduction of sulfur.•CSF with 3D hierarchical structure provides unobstructed ion diffusion pathways.•PPy facilitates the electronic transportation between CoS and carbon paper.•Chemical bonding between PPy and CoS enables cycling stability of electrode. |
Author | Kong, Wei Liu, Ye Hao, Xiaogang Zhang, Wei Guan, Guoqing Guo, Shoujing Yan, Wenjun Wang, Zhongde Fan, Huiling |
Author_xml | – sequence: 1 givenname: Ye surname: Liu fullname: Liu, Ye organization: Department of Chemical Engineering, Taiyuan University of Technology, Taiyuan, 030024, China – sequence: 2 givenname: Shoujing surname: Guo fullname: Guo, Shoujing organization: Department of Chemical Engineering, Taiyuan University of Technology, Taiyuan, 030024, China – sequence: 3 givenname: Wei surname: Zhang fullname: Zhang, Wei organization: Department of Chemical Engineering, Taiyuan University of Technology, Taiyuan, 030024, China – sequence: 4 givenname: Wei surname: Kong fullname: Kong, Wei organization: Department of Chemical Engineering, Taiyuan University of Technology, Taiyuan, 030024, China – sequence: 5 givenname: Zhongde surname: Wang fullname: Wang, Zhongde email: wangzhongde@tyut.edu.cn, zdwangtyut@hotmail.com organization: Department of Chemical Engineering, Taiyuan University of Technology, Taiyuan, 030024, China – sequence: 6 givenname: Wenjun surname: Yan fullname: Yan, Wenjun email: yanwenjun@sxicc.ac.cn organization: Analytical Instrumentation Center, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001, PR China – sequence: 7 givenname: Huiling surname: Fan fullname: Fan, Huiling organization: Department of Chemical Engineering, Taiyuan University of Technology, Taiyuan, 030024, China – sequence: 8 givenname: Xiaogang surname: Hao fullname: Hao, Xiaogang organization: Department of Chemical Engineering, Taiyuan University of Technology, Taiyuan, 030024, China – sequence: 9 givenname: Guoqing surname: Guan fullname: Guan, Guoqing organization: North Japan Research Institute for Sustainable Energy (NJRISE), Hirosaki University, 2-1-3, Matsubara, Aomori, 030-0813, Japan |
BackLink | https://cir.nii.ac.jp/crid/1870020692589252096$$DView record in CiNii |
BookMark | eNqNkU-LFDEQxYOs4OzqZ7BBr91W0t1JR_CwDOsfWPCynkN1uprNkEnaJCPstzfjiAcvCqnk8n4vvFfX7CrEQIy95tBx4PLdoSNPtmA9nQCuOxg7LvgztuOT6tt-GvUV2wHwvh3kJF-w65wPAKCkgh0LD4-JqF3ckUJ2MaBvXCiUbAyhutLS2DijL00--dUt1KwRj--bfQwlRe9x9tTkp1AeKbvcYFga3DbvLJZqVq0qt1U33NC6EtNL9nxFn-nV7_eGfft497D_3N5__fRlf3vf2kGNpV1XKRQKJTWCXBHEOK6THmo8HKZ5IehBzYLTbAnEOdrAERaBvQbJV9T9DXtz8d1S_H6iXMwhnlJNl40Qapq0GrSoKnVR2RRzTrSaLbkjpifDwZzLNQfzp1xzLtfAaGq5lfzwF1nj_cpcEjr_H_zbCx-cq-j5rtuCGkZqMU51BGhZZbcXGdWufjhKJltHwdLiUrU1S3T__OonoIWpiw |
CitedBy_id | crossref_primary_10_1149_1945_7111_ac1698 crossref_primary_10_1016_j_jpowsour_2024_235253 crossref_primary_10_1021_acsaem_0c01513 crossref_primary_10_1021_acsaem_0c02465 crossref_primary_10_1007_s12274_022_5201_x crossref_primary_10_1016_j_electacta_2022_141048 crossref_primary_10_1021_acsami_3c00087 crossref_primary_10_3390_ijms24119685 crossref_primary_10_1016_j_electacta_2021_138488 crossref_primary_10_1002_cssc_202400142 crossref_primary_10_1007_s10008_022_05265_0 crossref_primary_10_1016_j_ceramint_2022_09_094 crossref_primary_10_1016_j_est_2022_104401 crossref_primary_10_1016_j_est_2023_108847 crossref_primary_10_1111_jace_17529 crossref_primary_10_1016_j_jmat_2020_07_008 crossref_primary_10_1016_j_jpowsour_2020_228824 crossref_primary_10_1063_5_0011754 crossref_primary_10_1002_batt_202300068 crossref_primary_10_1002_celc_201902046 crossref_primary_10_1007_s12034_021_02502_6 crossref_primary_10_1002_cssc_202300027 crossref_primary_10_1016_j_flatc_2023_100504 crossref_primary_10_1016_j_jmst_2019_12_027 crossref_primary_10_1016_S1872_5805_20_60525_X crossref_primary_10_1016_j_jallcom_2021_158736 crossref_primary_10_1016_j_cej_2021_133776 crossref_primary_10_1016_j_jpowsour_2021_230003 crossref_primary_10_1016_j_apsusc_2022_152432 crossref_primary_10_1016_S1003_6326_20_65419_X crossref_primary_10_1016_j_cej_2024_156517 crossref_primary_10_1016_j_est_2023_107333 crossref_primary_10_1016_j_jelechem_2024_118738 crossref_primary_10_1016_j_jpowsour_2021_230303 crossref_primary_10_1016_j_cplett_2019_136824 crossref_primary_10_1016_j_est_2020_102200 crossref_primary_10_1016_j_ceramint_2022_10_180 crossref_primary_10_1016_j_est_2021_102764 crossref_primary_10_1016_j_est_2023_108846 |
Cites_doi | 10.1016/j.jpowsour.2010.01.046 10.1002/chem.201800960 10.1016/j.rser.2015.12.249 10.1016/j.cej.2014.07.031 10.1039/C1CS15060J 10.1016/j.electacta.2017.03.214 10.1016/j.matlet.2016.07.106 10.1002/adma.200904349 10.1016/j.jpowsour.2008.01.085 10.1039/C1JM13879K 10.1039/C2RA22373B 10.1002/adma.201404622 10.1002/adfm.201503662 10.1007/s40843-018-9361-0 10.1039/C5TA04464B 10.1021/ja3091438 10.1039/c4ta01043d 10.1039/C8NR01186A 10.1039/C4TA01078G 10.1039/C7DT04942K 10.1002/adma.201104753 10.1016/j.jpowsour.2010.06.084 10.1016/j.carbon.2016.12.018 10.1039/C6TA09128H 10.1002/anie.201303971 10.1016/j.electacta.2014.05.118 10.1002/smll.201804737 10.1016/j.cej.2017.04.127 10.1016/j.jpowsour.2006.02.065 10.1039/C7NR07931A 10.1039/C5CP01945A 10.1021/acsaem.7b00040 10.1016/j.electacta.2017.11.027 10.1016/j.jpowsour.2013.11.031 10.1021/acs.chemrev.5b00287 10.1016/j.cej.2015.05.011 10.1039/C2NR32040A 10.1016/j.jpowsour.2015.02.122 10.1039/C3TA14430E 10.1039/C4NR03057E 10.1016/j.actamat.2018.04.025 10.1039/c2cc32750c 10.1016/j.electacta.2017.08.158 10.1016/j.jpowsour.2013.06.027 10.1039/C4TA04420G 10.1016/j.apsusc.2017.09.130 10.1016/j.electacta.2018.03.131 10.1016/j.electacta.2014.01.009 10.1039/C6RA08067G 10.1039/C0DT01107J 10.1021/am5053784 10.1016/j.jhazmat.2016.03.089 10.1021/acsami.5b08716 10.1021/jacs.6b02540 |
ContentType | Journal Article |
Copyright | 2019 Elsevier Ltd Copyright Elsevier BV Sep 10, 2019 |
Copyright_xml | – notice: 2019 Elsevier Ltd – notice: Copyright Elsevier BV Sep 10, 2019 |
DBID | RYH AAYXX CITATION 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1016/j.electacta.2019.05.121 |
DatabaseName | CiNii Complete CrossRef Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry |
EISSN | 1873-3859 |
EndPage | 561 |
ExternalDocumentID | 10_1016_j_electacta_2019_05_121 S0013468619310540 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARLI AAXUO ABFNM ABFRF ABJNI ABMAC ABNUV ABYKQ ACBEA ACDAQ ACGFO ACGFS ACIWK ACNCT ACRLP ADBBV ADECG ADEWK ADEZE AEBSH AEFWE AEKER AENEX AFKWA AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AHPOS AIEXJ AIKHN AITUG AJOXV AJSZI AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA IHE J1W KOM M36 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SDF SDG SDP SES SPC SPCBC SSG SSK SSZ T5K TWZ UPT WH7 XPP YK3 ZMT ~02 ~G- AATTM AAXKI AAYWO ACVFH ADCNI AEIPS AEUPX AFPUW AFXIZ AGCQF AGRNS AIIUN AKBMS AKRWK AKYEP ANKPU APXCP RYH SSH 29G 41~ 53G AAQXK AAYXX ABEFU ABWVN ABXDB ACNNM ACRPL ADIYS ADMUD ADNMO AFJKZ AGQPQ AI. AIDUJ AIGII AJQLL ASPBG AVWKF AZFZN BNPGV CITATION FEDTE FGOYB HMU HVGLF HZ~ H~9 LPU R2- SC5 SCB SCH SEW T9H VH1 WUQ XOL ZY4 7SR 7U5 8BQ 8FD EFKBS JG9 L7M |
ID | FETCH-LOGICAL-c475t-ff627a2769a06fa0255f894201a48bde0307b21ebce02001341a0d2a39061fa93 |
IEDL.DBID | .~1 |
ISSN | 0013-4686 |
IngestDate | Fri Jul 25 06:28:05 EDT 2025 Tue Jul 01 03:01:58 EDT 2025 Thu Apr 24 22:58:36 EDT 2025 Thu Jun 26 22:03:30 EDT 2025 Fri Feb 23 02:26:21 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Supercapacitor Elemental sulfur Electrodeposition Cobalt sulfide foam |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c475t-ff627a2769a06fa0255f894201a48bde0307b21ebce02001341a0d2a39061fa93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-5875-3596 |
PQID | 2278897492 |
PQPubID | 2045485 |
PageCount | 11 |
ParticipantIDs | proquest_journals_2278897492 crossref_primary_10_1016_j_electacta_2019_05_121 crossref_citationtrail_10_1016_j_electacta_2019_05_121 nii_cinii_1870020692589252096 elsevier_sciencedirect_doi_10_1016_j_electacta_2019_05_121 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-09-10 |
PublicationDateYYYYMMDD | 2019-09-10 |
PublicationDate_xml | – month: 09 year: 2019 text: 2019-09-10 day: 10 |
PublicationDecade | 2010 |
PublicationPlace | Oxford |
PublicationPlace_xml | – name: Oxford |
PublicationTitle | Electrochimica Acta |
PublicationYear | 2019 |
Publisher | Elsevier Ltd Elsevier BV |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
References | Wan, Ji, Jiang, Yu, Miao, Zhang, Bie, Chen, Ruan (bib30) 2013; 243 Ray, Sarma, Jurovitzki, Misra (bib50) 2015; 260 Li, Bo, Zhang, Han, Nsabimana, Guo (bib41) 2014; 2 Xing, Zhu, Zhou, Zheng, Jiao (bib32) 2014; 136 Luo, Li, Yuan, Xiao (bib29) 2014; 123 Dong, Wang, Li, Wang, Chen, Li, Li, Zhang, Shi (bib34) 2010; 40 Yao, Chen, Lian, Wei, Zhang, Wu, Chen, Wang (bib38) 2016; 314 Zheng, Wang, Wang, Xia (bib39) 2014; 2 Hao, Jiang, Tian, Hao, Jiang (bib5) 2017; 253 Bao, Li, Guo, Qiao (bib28) 2008; 180 Tao, Han, Cheng, Yang, Yang, Ma, Han (bib18) 2018; 24 Deng, Yang, Yang, Shen, Zhao, Wang, Wang, Li, Qian (bib22) 2018; 428 Wen, Li, Li, Song, Wang, Xiong, Fang (bib42) 2015; 284 Xu, Jiang, Wang, Meng, Chen (bib44) 2016; 6 Chia, Eng, Ambrosi, Tan, Pumera (bib17) 2015; 115 Li, Wang, Wang, Huang (bib54) 2015; 17 Xu, Sun, Lu, Wang, Zhang, Qian, Liu (bib15) 2018; 334 Jiang, Lu, Li, Ho, Li, Jiao, Chen (bib31) 2014; 2 Lin, Chou (bib33) 2013; 3 Horng, Lu, Hsu, Chen, Chen, Chen (bib10) 2010; 195 Yuan, Wu, Xie, Lou (bib12) 2014; 53 Tang, Wang, Yin, Zhao, Wang, Tang (bib48) 2015; 27 Goodenough, Park (bib2) 2013; 135 Liu, Zhou, Fu, Zhang, Pan, Xie (bib52) 2017; 114 Izadi-Najafabadi, Yasuda, Kobashi, Yamada, Futaba, Hatori, Yumura, Iijima, Hata (bib55) 2010; 22 Snook, Kao, Best (bib11) 2011; 196 Rui, Tan, Yan (bib1) 2014; 6 Shi, Li, He, Zhang, Li (bib35) 2015; 3 Pandolfo, Hollenkamp (bib4) 2006; 157 Lai, Lu, Chen (bib26) 2012; 22 Liu, Yan, An, Du, Wang, Fan, Liu, Hao, Guan (bib36) 2018; 271 Lin, Dai, Tasi, Chou, Lin, Shen (bib51) 2015; 279 Gao, Zhang, Soyekwo, Lin, Lv, Qu, Chen, Zhu, Liu (bib24) 2017; 237 Yue, Tong, Lu, Tang, Bai, Jin, Han, He, Liu, Zhang (bib49) 2017; 5 Chen, Jiang, Zhao, Zhang, Guo, Xia (bib37) 2015; 3 Jiang, Jiang, Chen (bib6) 2014; 251 Zhi, Xiang, Li, Li, Wu (bib7) 2012; 5 Liu, Ma, Bando, Sasaki (bib16) 2012; 24 Xu, Su, Wang, Ma, Hu, Hu, Hu, Su, Zhang, Yang (bib20) 2018; 259 Han, Tao, Wang, Han (bib27) 2018; 10 Zhang, Wu, Lou (bib46) 2012; 48 Liu, Mao, Niu, Yi, Hou, Lu, Jiang, Xu, Li (bib43) 2015; 7 Cao, Zhao, Yu, Chen, Huang, Yang, Cao, Lu, Zhang, Zhang (bib45) 2016; 138 Hu, Chen, Xie, Zou, Qin, Bao (bib40) 2014; 6 Tian, Sun, Jiang, Jiang, Hao, Shao, Maiyalagan (bib13) 2017; 1 Zhou, Zhou, Yang, Lu, Cheng, Mai, Tang, Li, Chen (bib21) 2016; 25 Xu, Sun, Lu, Wang, Zhang, Liu (bib25) 2019; 62 Tao, Han, Ma, Han (bib19) 2018; 47 Du, Zheng, Li, He, Wang, Shi (bib23) 2017; 323 Shi, Zhang, Zhang, Zhang, Yu, Gong (bib53) 2018; 10 González, Goikolea, Barrena, Mysyk (bib3) 2016; 58 Wang, Zhang, Zhang (bib8) 2012; 41 Liu, Li, Shen, Dai, Kou, Zheng, Jiang, He (bib9) 2019 Xu, Sun, Lu, Wang, Zhang, Tao, Qian, Liu (bib14) 2018; 152 Tian, Ma, Zhu (bib47) 2016; 183 Yuan (10.1016/j.electacta.2019.05.121_bib12) 2014; 53 Lin (10.1016/j.electacta.2019.05.121_bib33) 2013; 3 González (10.1016/j.electacta.2019.05.121_bib3) 2016; 58 Wang (10.1016/j.electacta.2019.05.121_bib8) 2012; 41 Zhou (10.1016/j.electacta.2019.05.121_bib21) 2016; 25 Yao (10.1016/j.electacta.2019.05.121_bib38) 2016; 314 Pandolfo (10.1016/j.electacta.2019.05.121_bib4) 2006; 157 Li (10.1016/j.electacta.2019.05.121_bib41) 2014; 2 Xu (10.1016/j.electacta.2019.05.121_bib25) 2019; 62 Goodenough (10.1016/j.electacta.2019.05.121_bib2) 2013; 135 Lai (10.1016/j.electacta.2019.05.121_bib26) 2012; 22 Jiang (10.1016/j.electacta.2019.05.121_bib31) 2014; 2 Liu (10.1016/j.electacta.2019.05.121_bib16) 2012; 24 Zheng (10.1016/j.electacta.2019.05.121_bib39) 2014; 2 Zhi (10.1016/j.electacta.2019.05.121_bib7) 2012; 5 Hu (10.1016/j.electacta.2019.05.121_bib40) 2014; 6 Liu (10.1016/j.electacta.2019.05.121_bib43) 2015; 7 Zhang (10.1016/j.electacta.2019.05.121_bib46) 2012; 48 Horng (10.1016/j.electacta.2019.05.121_bib10) 2010; 195 Yue (10.1016/j.electacta.2019.05.121_bib49) 2017; 5 Shi (10.1016/j.electacta.2019.05.121_bib35) 2015; 3 Xu (10.1016/j.electacta.2019.05.121_bib15) 2018; 334 Chen (10.1016/j.electacta.2019.05.121_bib37) 2015; 3 Tang (10.1016/j.electacta.2019.05.121_bib48) 2015; 27 Xu (10.1016/j.electacta.2019.05.121_bib44) 2016; 6 Gao (10.1016/j.electacta.2019.05.121_bib24) 2017; 237 Dong (10.1016/j.electacta.2019.05.121_bib34) 2010; 40 Shi (10.1016/j.electacta.2019.05.121_bib53) 2018; 10 Xu (10.1016/j.electacta.2019.05.121_bib20) 2018; 259 Du (10.1016/j.electacta.2019.05.121_bib23) 2017; 323 Lin (10.1016/j.electacta.2019.05.121_bib51) 2015; 279 Rui (10.1016/j.electacta.2019.05.121_bib1) 2014; 6 Tian (10.1016/j.electacta.2019.05.121_bib13) 2017; 1 Tao (10.1016/j.electacta.2019.05.121_bib18) 2018; 24 Han (10.1016/j.electacta.2019.05.121_bib27) 2018; 10 Wan (10.1016/j.electacta.2019.05.121_bib30) 2013; 243 Li (10.1016/j.electacta.2019.05.121_bib54) 2015; 17 Luo (10.1016/j.electacta.2019.05.121_bib29) 2014; 123 Liu (10.1016/j.electacta.2019.05.121_bib9) 2019 Ray (10.1016/j.electacta.2019.05.121_bib50) 2015; 260 Tao (10.1016/j.electacta.2019.05.121_bib19) 2018; 47 Wen (10.1016/j.electacta.2019.05.121_bib42) 2015; 284 Snook (10.1016/j.electacta.2019.05.121_bib11) 2011; 196 Chia (10.1016/j.electacta.2019.05.121_bib17) 2015; 115 Xu (10.1016/j.electacta.2019.05.121_bib14) 2018; 152 Xing (10.1016/j.electacta.2019.05.121_bib32) 2014; 136 Liu (10.1016/j.electacta.2019.05.121_bib36) 2018; 271 Jiang (10.1016/j.electacta.2019.05.121_bib6) 2014; 251 Liu (10.1016/j.electacta.2019.05.121_bib52) 2017; 114 Izadi-Najafabadi (10.1016/j.electacta.2019.05.121_bib55) 2010; 22 Cao (10.1016/j.electacta.2019.05.121_bib45) 2016; 138 Bao (10.1016/j.electacta.2019.05.121_bib28) 2008; 180 Tian (10.1016/j.electacta.2019.05.121_bib47) 2016; 183 Hao (10.1016/j.electacta.2019.05.121_bib5) 2017; 253 Deng (10.1016/j.electacta.2019.05.121_bib22) 2018; 428 |
References_xml | – volume: 6 start-page: 55039 year: 2016 end-page: 55045 ident: bib44 article-title: Ag nanoparticle-decorated CoS nanosheet nanocomposites: a high-performance material for multifunctional applications in photocatalysis and supercapacitors publication-title: RSC Adv. – volume: 10 start-page: 10554 year: 2018 ident: bib53 article-title: Boosted electrochemical properties from the surface engineering of ultrathin interlaced Ni(OH) publication-title: Nanoscale – volume: 136 start-page: 550 year: 2014 end-page: 556 ident: bib32 article-title: Fabrication and shape evolution of CoS publication-title: Electrochim. Acta – volume: 5 start-page: 689 year: 2017 end-page: 698 ident: bib49 article-title: Hierarchical NiCo publication-title: J. Mater. Chem. A – volume: 58 start-page: 1189 year: 2016 end-page: 1206 ident: bib3 article-title: Review on supercapacitors: technologies and materials publication-title: Renew. Sustain. Energy Rev. – volume: 114 start-page: 187 year: 2017 end-page: 197 ident: bib52 article-title: In situ synthesis of CoS publication-title: Carbon – volume: 157 start-page: 11 year: 2006 end-page: 27 ident: bib4 article-title: Carbon properties and their role in supercapacitors publication-title: J. Power Sources – volume: 17 start-page: 16434 year: 2015 end-page: 16442 ident: bib54 article-title: Ni publication-title: Phys. Chem. Chem. Phys. – volume: 323 start-page: 415 year: 2017 end-page: 424 ident: bib23 article-title: Nanosheet-assembled NiS hollow structures with double shells and controlled shapes for high-performance supercapacitors publication-title: Chem. Eng. J. – volume: 115 start-page: 11941 year: 2015 end-page: 11966 ident: bib17 article-title: Electrochemistry of nanostructured layered transition-metal dichalcogenides publication-title: Chem. Rev. – volume: 5 start-page: 72 year: 2012 end-page: 88 ident: bib7 article-title: Nanostructured carbon-metal oxide composite electrodes for supercapacitors: a review publication-title: Nanoscale – volume: 25 start-page: 7530 year: 2016 end-page: 7538 ident: bib21 article-title: Ultrahigh-performance pseudocapacitor electrodes based on transition metal phosphide nanosheets array via phosphorization: a general and effective approach publication-title: Adv. Funct. Mater. – volume: 314 start-page: 129 year: 2016 end-page: 139 ident: bib38 article-title: Fe, Co, Ni nanocrystals encapsulated in nitrogen-doped carbon nanotubes as Fenton-like catalysts for organic pollutant removal publication-title: J. Hazard Mater. – volume: 40 start-page: 243 year: 2010 end-page: 248 ident: bib34 article-title: Hydrothermal synthesis and structure evolution of hierarchical cobalt sulfide nanostructures publication-title: Dalton Trans. – volume: 24 start-page: 12584 year: 2018 end-page: 12591 ident: bib18 article-title: A zinc cobalt sulfide nanosheet array derived from a 2D bimetallic metal-organic frameworks for high-performance supercapacitors publication-title: Chem. Eur J. – volume: 47 start-page: 3496 year: 2018 end-page: 3502 ident: bib19 article-title: A metal-organic framework derived hierarchical nickel-cobalt sulfide nanosheet array on Ni foam with enhanced electrochemical performance for supercapacitors publication-title: Dalton Trans. – volume: 243 start-page: 396 year: 2013 end-page: 402 ident: bib30 article-title: Hydrothermal synthesis of cobalt sulfide nanotubes: the size control and its application in supercapacitors publication-title: J. Power Sources – volume: 3 start-page: 2043 year: 2013 end-page: 2048 ident: bib33 article-title: Cathodic deposition of interlaced nanosheet-like cobalt sulfide films for high-performance supercapacitors publication-title: RSC Adv. – start-page: 1804737 year: 2019 ident: bib9 article-title: Multishelled transition metal-based microspheres: synthesis and applications for batteries and supercapacitors publication-title: Small – volume: 123 start-page: 183 year: 2014 end-page: 189 ident: bib29 article-title: Rapid synthesis of three-dimensional flower-like cobalt sulfide hierarchitectures by microwave assisted heating method for high-performance supercapacitors publication-title: Electrochim. Acta – volume: 53 start-page: 1488 year: 2014 end-page: 1504 ident: bib12 article-title: Mixed transition-metal oxides: design, synthesis, and energy-related applications publication-title: Angew. Chem. Int. Ed. – volume: 152 start-page: 162 year: 2018 end-page: 174 ident: bib14 article-title: Fabrication of the porous MnCo publication-title: Acta Mater. – volume: 1 start-page: 143 year: 2017 end-page: 153 ident: bib13 article-title: Exploration of the active center structure of nitrogen-doped graphene for control over the growth of Co publication-title: ACS Appl. Energy Mater. – volume: 135 start-page: 1167 year: 2013 end-page: 1176 ident: bib2 article-title: The Li-ion rechargeable battery: a perspective publication-title: J. Am. Chem. Soc. – volume: 3 start-page: 428 year: 2015 end-page: 437 ident: bib37 article-title: One-pot synthesis of porous nickel cobalt sulphides: tuning the composition for superior pseudocapacitance publication-title: J. Mater. Chem. A – volume: 22 start-page: E235 year: 2010 end-page: E241 ident: bib55 article-title: Extracting the full potential of single-walled carbon nanotubes as durable supercapacitor electrodes operable at 4 V with high power and energy density publication-title: Adv. Mater. – volume: 24 start-page: 2148 year: 2012 end-page: 2153 ident: bib16 article-title: A general strategy to layered transition-metal hydroxide nanocones: tuning the composition for high electrochemical performance publication-title: Adv. Mater. – volume: 279 start-page: 241 year: 2015 end-page: 249 ident: bib51 article-title: High-performance asymmetric supercapacitor based on Co publication-title: Chem. Eng. J. – volume: 10 start-page: 2735 year: 2018 end-page: 2741 ident: bib27 article-title: Design of a porous cobalt sulfide nanosheet array on Ni foam from zeolitic imidazolate frameworks as an advanced electrode for supercapacitors publication-title: Nanoscale – volume: 3 start-page: 20619 year: 2015 end-page: 20626 ident: bib35 article-title: Electrodeposition of high-capacitance 3D CoS/graphene nanosheets on nickel foam for high-performance aqueous asymmetric supercapacitor publication-title: J. Mater. Chem. A – volume: 22 start-page: 19 year: 2012 end-page: 30 ident: bib26 article-title: Metal sulfide nanostructures: synthesis, properties and applications in energy conversion and storage publication-title: J. Mater. Chem. – volume: 6 start-page: 19318 year: 2014 end-page: 19326 ident: bib40 article-title: CoNi publication-title: ACS Appl. Mater. Interfaces – volume: 196 start-page: 1 year: 2011 end-page: 12 ident: bib11 article-title: Conducting-polymer-based supercapacitor devices and electrodes publication-title: J. Power Sources – volume: 284 start-page: 279 year: 2015 end-page: 286 ident: bib42 article-title: Synthesis of three dimensional Co publication-title: J. Power Sources – volume: 334 start-page: 1466 year: 2018 end-page: 1476 ident: bib15 article-title: Fabrication of hierarchical MnMoO publication-title: Chem. Eur J. – volume: 62 start-page: 699 year: 2019 end-page: 710 ident: bib25 article-title: One-step electrodeposition fabrication of Ni publication-title: Sci. China Mater. – volume: 428 start-page: 148 year: 2018 end-page: 153 ident: bib22 article-title: Spinel FeCo publication-title: Appl. Surf. Sci. – volume: 2 start-page: 11672 year: 2014 end-page: 11682 ident: bib41 article-title: Cobalt and nitrogen co-embedded onion-like mesoporous carbon vesicles as efficient catalysts for oxygen reduction reaction publication-title: J. Mater. Chem. A – volume: 7 start-page: 25568 year: 2015 end-page: 25573 ident: bib43 article-title: Facile synthesis of novel networked ultralong cobalt sulfide nanotubes and its application in supercapacitors publication-title: ACS Appl. Mater. Interfaces – volume: 183 start-page: 290 year: 2016 end-page: 295 ident: bib47 article-title: Carbon supported Co publication-title: Mater. Lett. – volume: 48 start-page: 6912 year: 2012 end-page: 6914 ident: bib46 article-title: Unusual CoS publication-title: Chem. Commun. – volume: 6 start-page: 9889 year: 2014 end-page: 9924 ident: bib1 article-title: Nanostructured metal sulfides for energy storage publication-title: Nanoscale – volume: 138 start-page: 6924 year: 2016 end-page: 6927 ident: bib45 article-title: Synthesis of two-dimensional CoS publication-title: J. Am. Chem. Soc. – volume: 253 start-page: 21 year: 2017 end-page: 30 ident: bib5 article-title: Facile assembly of Co-Ni layered double hydroxide nanoflakes on carbon nitride coated N-doped graphene hollow spheres with high electrochemical capacitive performance publication-title: Electrochim. Acta – volume: 2 start-page: 8603 year: 2014 end-page: 8606 ident: bib31 article-title: Synthesis of amorphous cobalt sulfide polyhedral nanocages for high performance supercapacitors publication-title: J. Mater. Chem. A – volume: 260 start-page: 671 year: 2015 end-page: 683 ident: bib50 article-title: Fabrication and characterization of titania nanotube/cobalt sulfide supercapacitor electrode in various electrolytes publication-title: Chem. Eng. J. – volume: 237 start-page: 94 year: 2017 end-page: 101 ident: bib24 article-title: Novel amorphous nickel sulfide@CoS double-shelled polyhedral nanocages for supercapacitor electrode materials with superior electrochemical properties publication-title: Electrochim. Acta – volume: 271 start-page: 67 year: 2018 end-page: 76 ident: bib36 article-title: A polypyrrole hollow nanosphere with ultra-thin wrinkled shell: synergistic trapping of sulfur in lithium-sulfur batteries with excellent elasticity and buffer capability publication-title: Electrochim. Acta – volume: 195 start-page: 4418 year: 2010 end-page: 4422 ident: bib10 article-title: Flexible supercapacitor based on polyaniline nanowires/carbon cloth with both high gravimetric and area-normalized capacitance publication-title: J. Power Sources – volume: 41 start-page: 797 year: 2012 end-page: 828 ident: bib8 article-title: A review of electrode materials for electrochemical supercapacitors publication-title: Chem. Soc. Rev. – volume: 259 start-page: 617 year: 2018 end-page: 625 ident: bib20 article-title: One-step electrodeposition of nickel cobalt sulfide nanosheets on Ni nanowire film for hybrid supercapacitor publication-title: Electrochim. Acta – volume: 27 start-page: 1117 year: 2015 end-page: 1123 ident: bib48 article-title: Growth of polypyrrole ultrathin films on MoS publication-title: Adv. Mater. – volume: 180 start-page: 676 year: 2008 end-page: 681 ident: bib28 article-title: Biomolecule-assisted synthesis of cobalt sulfide nanowires for application in supercapacitors publication-title: J. Power Sources – volume: 251 start-page: 55 year: 2014 end-page: 65 ident: bib6 article-title: The role of holes in improving the performance of nitrogen-doped holey graphene as an active electrode material for supercapacitor and oxygen reduction reaction publication-title: J. Power Sources – volume: 2 start-page: 9079 year: 2014 ident: bib39 article-title: Low-loading cobalt coupled with nitrogen-doped porous graphene as excellent electrocatalyst for oxygen reduction reaction publication-title: J. Mater. Chem. A – volume: 195 start-page: 4418 year: 2010 ident: 10.1016/j.electacta.2019.05.121_bib10 article-title: Flexible supercapacitor based on polyaniline nanowires/carbon cloth with both high gravimetric and area-normalized capacitance publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2010.01.046 – volume: 24 start-page: 12584 year: 2018 ident: 10.1016/j.electacta.2019.05.121_bib18 article-title: A zinc cobalt sulfide nanosheet array derived from a 2D bimetallic metal-organic frameworks for high-performance supercapacitors publication-title: Chem. Eur J. doi: 10.1002/chem.201800960 – volume: 58 start-page: 1189 year: 2016 ident: 10.1016/j.electacta.2019.05.121_bib3 article-title: Review on supercapacitors: technologies and materials publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2015.12.249 – volume: 260 start-page: 671 year: 2015 ident: 10.1016/j.electacta.2019.05.121_bib50 article-title: Fabrication and characterization of titania nanotube/cobalt sulfide supercapacitor electrode in various electrolytes publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2014.07.031 – volume: 41 start-page: 797 year: 2012 ident: 10.1016/j.electacta.2019.05.121_bib8 article-title: A review of electrode materials for electrochemical supercapacitors publication-title: Chem. Soc. Rev. doi: 10.1039/C1CS15060J – volume: 237 start-page: 94 year: 2017 ident: 10.1016/j.electacta.2019.05.121_bib24 article-title: Novel amorphous nickel sulfide@CoS double-shelled polyhedral nanocages for supercapacitor electrode materials with superior electrochemical properties publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2017.03.214 – volume: 183 start-page: 290 year: 2016 ident: 10.1016/j.electacta.2019.05.121_bib47 article-title: Carbon supported Co9S8 hollow spheres assembled from ultrathin nanosheets for high-performance supercapacitors publication-title: Mater. Lett. doi: 10.1016/j.matlet.2016.07.106 – volume: 22 start-page: E235 year: 2010 ident: 10.1016/j.electacta.2019.05.121_bib55 article-title: Extracting the full potential of single-walled carbon nanotubes as durable supercapacitor electrodes operable at 4 V with high power and energy density publication-title: Adv. Mater. doi: 10.1002/adma.200904349 – volume: 180 start-page: 676 year: 2008 ident: 10.1016/j.electacta.2019.05.121_bib28 article-title: Biomolecule-assisted synthesis of cobalt sulfide nanowires for application in supercapacitors publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2008.01.085 – volume: 22 start-page: 19 year: 2012 ident: 10.1016/j.electacta.2019.05.121_bib26 article-title: Metal sulfide nanostructures: synthesis, properties and applications in energy conversion and storage publication-title: J. Mater. Chem. doi: 10.1039/C1JM13879K – volume: 3 start-page: 2043 year: 2013 ident: 10.1016/j.electacta.2019.05.121_bib33 article-title: Cathodic deposition of interlaced nanosheet-like cobalt sulfide films for high-performance supercapacitors publication-title: RSC Adv. doi: 10.1039/C2RA22373B – volume: 27 start-page: 1117 year: 2015 ident: 10.1016/j.electacta.2019.05.121_bib48 article-title: Growth of polypyrrole ultrathin films on MoS2 monolayers as high-performance supercapacitor electrodes publication-title: Adv. Mater. doi: 10.1002/adma.201404622 – volume: 25 start-page: 7530 year: 2016 ident: 10.1016/j.electacta.2019.05.121_bib21 article-title: Ultrahigh-performance pseudocapacitor electrodes based on transition metal phosphide nanosheets array via phosphorization: a general and effective approach publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201503662 – volume: 62 start-page: 699 year: 2019 ident: 10.1016/j.electacta.2019.05.121_bib25 article-title: One-step electrodeposition fabrication of Ni3S2 nanosheet arrays on Ni foam as an advanced electrode for asymmetric supercapacitors publication-title: Sci. China Mater. doi: 10.1007/s40843-018-9361-0 – volume: 334 start-page: 1466 year: 2018 ident: 10.1016/j.electacta.2019.05.121_bib15 article-title: Fabrication of hierarchical MnMoO4·H2O@ MnO2 core-shell nanosheet arrays on nickel foam as an advanced electrode for asymmetric supercapacitors publication-title: Chem. Eur J. – volume: 3 start-page: 20619 year: 2015 ident: 10.1016/j.electacta.2019.05.121_bib35 article-title: Electrodeposition of high-capacitance 3D CoS/graphene nanosheets on nickel foam for high-performance aqueous asymmetric supercapacitor publication-title: J. Mater. Chem. A doi: 10.1039/C5TA04464B – volume: 135 start-page: 1167 year: 2013 ident: 10.1016/j.electacta.2019.05.121_bib2 article-title: The Li-ion rechargeable battery: a perspective publication-title: J. Am. Chem. Soc. doi: 10.1021/ja3091438 – volume: 2 start-page: 9079 year: 2014 ident: 10.1016/j.electacta.2019.05.121_bib39 article-title: Low-loading cobalt coupled with nitrogen-doped porous graphene as excellent electrocatalyst for oxygen reduction reaction publication-title: J. Mater. Chem. A doi: 10.1039/c4ta01043d – volume: 10 start-page: 10554 year: 2018 ident: 10.1016/j.electacta.2019.05.121_bib53 article-title: Boosted electrochemical properties from the surface engineering of ultrathin interlaced Ni(OH)2 nanosheets with Co(OH)2 quantum dot modification publication-title: Nanoscale doi: 10.1039/C8NR01186A – volume: 2 start-page: 11672 year: 2014 ident: 10.1016/j.electacta.2019.05.121_bib41 article-title: Cobalt and nitrogen co-embedded onion-like mesoporous carbon vesicles as efficient catalysts for oxygen reduction reaction publication-title: J. Mater. Chem. A doi: 10.1039/C4TA01078G – volume: 47 start-page: 3496 year: 2018 ident: 10.1016/j.electacta.2019.05.121_bib19 article-title: A metal-organic framework derived hierarchical nickel-cobalt sulfide nanosheet array on Ni foam with enhanced electrochemical performance for supercapacitors publication-title: Dalton Trans. doi: 10.1039/C7DT04942K – volume: 24 start-page: 2148 year: 2012 ident: 10.1016/j.electacta.2019.05.121_bib16 article-title: A general strategy to layered transition-metal hydroxide nanocones: tuning the composition for high electrochemical performance publication-title: Adv. Mater. doi: 10.1002/adma.201104753 – volume: 196 start-page: 1 year: 2011 ident: 10.1016/j.electacta.2019.05.121_bib11 article-title: Conducting-polymer-based supercapacitor devices and electrodes publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2010.06.084 – volume: 114 start-page: 187 year: 2017 ident: 10.1016/j.electacta.2019.05.121_bib52 article-title: In situ synthesis of CoSx@carbon core-shell nanospheres decorated in carbon nanofibers for capacitor electrodes with superior rate and cycling performances publication-title: Carbon doi: 10.1016/j.carbon.2016.12.018 – volume: 5 start-page: 689 year: 2017 ident: 10.1016/j.electacta.2019.05.121_bib49 article-title: Hierarchical NiCo2O4 nanosheets/nitrogen doped graphene/carbon nanotube film with ultrahigh capacitance and long cycle stability as a flexible binder-free electrode for supercapacitors publication-title: J. Mater. Chem. A doi: 10.1039/C6TA09128H – volume: 53 start-page: 1488 year: 2014 ident: 10.1016/j.electacta.2019.05.121_bib12 article-title: Mixed transition-metal oxides: design, synthesis, and energy-related applications publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201303971 – volume: 136 start-page: 550 year: 2014 ident: 10.1016/j.electacta.2019.05.121_bib32 article-title: Fabrication and shape evolution of CoS2 octahedrons for application in supercapacitors publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2014.05.118 – start-page: 1804737 year: 2019 ident: 10.1016/j.electacta.2019.05.121_bib9 article-title: Multishelled transition metal-based microspheres: synthesis and applications for batteries and supercapacitors publication-title: Small doi: 10.1002/smll.201804737 – volume: 323 start-page: 415 year: 2017 ident: 10.1016/j.electacta.2019.05.121_bib23 article-title: Nanosheet-assembled NiS hollow structures with double shells and controlled shapes for high-performance supercapacitors publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2017.04.127 – volume: 157 start-page: 11 year: 2006 ident: 10.1016/j.electacta.2019.05.121_bib4 article-title: Carbon properties and their role in supercapacitors publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2006.02.065 – volume: 10 start-page: 2735 year: 2018 ident: 10.1016/j.electacta.2019.05.121_bib27 article-title: Design of a porous cobalt sulfide nanosheet array on Ni foam from zeolitic imidazolate frameworks as an advanced electrode for supercapacitors publication-title: Nanoscale doi: 10.1039/C7NR07931A – volume: 17 start-page: 16434 year: 2015 ident: 10.1016/j.electacta.2019.05.121_bib54 article-title: Ni3S2@CoS core-shell nano-triangular pyramid arrays on Ni foam for high-performance supercapacitors publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C5CP01945A – volume: 1 start-page: 143 year: 2017 ident: 10.1016/j.electacta.2019.05.121_bib13 article-title: Exploration of the active center structure of nitrogen-doped graphene for control over the growth of Co3O4 for a high-performance supercapacitor publication-title: ACS Appl. Energy Mater. doi: 10.1021/acsaem.7b00040 – volume: 259 start-page: 617 year: 2018 ident: 10.1016/j.electacta.2019.05.121_bib20 article-title: One-step electrodeposition of nickel cobalt sulfide nanosheets on Ni nanowire film for hybrid supercapacitor publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2017.11.027 – volume: 251 start-page: 55 year: 2014 ident: 10.1016/j.electacta.2019.05.121_bib6 article-title: The role of holes in improving the performance of nitrogen-doped holey graphene as an active electrode material for supercapacitor and oxygen reduction reaction publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2013.11.031 – volume: 115 start-page: 11941 year: 2015 ident: 10.1016/j.electacta.2019.05.121_bib17 article-title: Electrochemistry of nanostructured layered transition-metal dichalcogenides publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.5b00287 – volume: 279 start-page: 241 year: 2015 ident: 10.1016/j.electacta.2019.05.121_bib51 article-title: High-performance asymmetric supercapacitor based on Co9S8/3D graphene composite and graphene hydrogel publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2015.05.011 – volume: 5 start-page: 72 year: 2012 ident: 10.1016/j.electacta.2019.05.121_bib7 article-title: Nanostructured carbon-metal oxide composite electrodes for supercapacitors: a review publication-title: Nanoscale doi: 10.1039/C2NR32040A – volume: 284 start-page: 279 year: 2015 ident: 10.1016/j.electacta.2019.05.121_bib42 article-title: Synthesis of three dimensional Co9S8 nanorod@Ni(OH)2 nanosheet core-shell structure for high performance supercapacitor application publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2015.02.122 – volume: 2 start-page: 8603 year: 2014 ident: 10.1016/j.electacta.2019.05.121_bib31 article-title: Synthesis of amorphous cobalt sulfide polyhedral nanocages for high performance supercapacitors publication-title: J. Mater. Chem. A doi: 10.1039/C3TA14430E – volume: 6 start-page: 9889 year: 2014 ident: 10.1016/j.electacta.2019.05.121_bib1 article-title: Nanostructured metal sulfides for energy storage publication-title: Nanoscale doi: 10.1039/C4NR03057E – volume: 152 start-page: 162 year: 2018 ident: 10.1016/j.electacta.2019.05.121_bib14 article-title: Fabrication of the porous MnCo2O4 nanorod arrays on Ni foam as an advanced electrode for asymmetric supercapacitors publication-title: Acta Mater. doi: 10.1016/j.actamat.2018.04.025 – volume: 48 start-page: 6912 year: 2012 ident: 10.1016/j.electacta.2019.05.121_bib46 article-title: Unusual CoS2 ellipsoids with anisotropic tube-like cavities and their application in supercapacitors publication-title: Chem. Commun. doi: 10.1039/c2cc32750c – volume: 253 start-page: 21 year: 2017 ident: 10.1016/j.electacta.2019.05.121_bib5 article-title: Facile assembly of Co-Ni layered double hydroxide nanoflakes on carbon nitride coated N-doped graphene hollow spheres with high electrochemical capacitive performance publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2017.08.158 – volume: 243 start-page: 396 year: 2013 ident: 10.1016/j.electacta.2019.05.121_bib30 article-title: Hydrothermal synthesis of cobalt sulfide nanotubes: the size control and its application in supercapacitors publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2013.06.027 – volume: 3 start-page: 428 year: 2015 ident: 10.1016/j.electacta.2019.05.121_bib37 article-title: One-pot synthesis of porous nickel cobalt sulphides: tuning the composition for superior pseudocapacitance publication-title: J. Mater. Chem. A doi: 10.1039/C4TA04420G – volume: 428 start-page: 148 year: 2018 ident: 10.1016/j.electacta.2019.05.121_bib22 article-title: Spinel FeCo2S4 nanoflower arrays grown on Ni foam as novel binder-free electrodes for long-cycle-life supercapacitors publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2017.09.130 – volume: 271 start-page: 67 year: 2018 ident: 10.1016/j.electacta.2019.05.121_bib36 article-title: A polypyrrole hollow nanosphere with ultra-thin wrinkled shell: synergistic trapping of sulfur in lithium-sulfur batteries with excellent elasticity and buffer capability publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2018.03.131 – volume: 123 start-page: 183 year: 2014 ident: 10.1016/j.electacta.2019.05.121_bib29 article-title: Rapid synthesis of three-dimensional flower-like cobalt sulfide hierarchitectures by microwave assisted heating method for high-performance supercapacitors publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2014.01.009 – volume: 6 start-page: 55039 year: 2016 ident: 10.1016/j.electacta.2019.05.121_bib44 article-title: Ag nanoparticle-decorated CoS nanosheet nanocomposites: a high-performance material for multifunctional applications in photocatalysis and supercapacitors publication-title: RSC Adv. doi: 10.1039/C6RA08067G – volume: 40 start-page: 243 year: 2010 ident: 10.1016/j.electacta.2019.05.121_bib34 article-title: Hydrothermal synthesis and structure evolution of hierarchical cobalt sulfide nanostructures publication-title: Dalton Trans. doi: 10.1039/C0DT01107J – volume: 6 start-page: 19318 year: 2014 ident: 10.1016/j.electacta.2019.05.121_bib40 article-title: CoNi2S4 nanosheet arrays supported on nickel foams with ultrahigh capacitance for aqueous asymmetric supercapacitor applications publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am5053784 – volume: 314 start-page: 129 year: 2016 ident: 10.1016/j.electacta.2019.05.121_bib38 article-title: Fe, Co, Ni nanocrystals encapsulated in nitrogen-doped carbon nanotubes as Fenton-like catalysts for organic pollutant removal publication-title: J. Hazard Mater. doi: 10.1016/j.jhazmat.2016.03.089 – volume: 7 start-page: 25568 year: 2015 ident: 10.1016/j.electacta.2019.05.121_bib43 article-title: Facile synthesis of novel networked ultralong cobalt sulfide nanotubes and its application in supercapacitors publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.5b08716 – volume: 138 start-page: 6924 year: 2016 ident: 10.1016/j.electacta.2019.05.121_bib45 article-title: Synthesis of two-dimensional CoS1.097/nitrogen-doped carbon nanocomposites using metal-organic framework nanosheets as precursors for supercapacitor application publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b02540 |
SSID | ssj0007670 ssib006541935 ssib045030250 ssib017384335 |
Score | 2.4746025 |
Snippet | Transition metal sulfides have been considered as the promising electroactive materials for the supercapacitors with high specific capacitances. Herein, cobalt... |
SourceID | proquest crossref nii elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 551 |
SubjectTerms | Activated carbon Anchoring Chemical reduction Cobalt sulfide Cobalt sulfide foam Crosslinking Diffusion rate Electric contacts Electroactive materials Electrochemical analysis Electrodeposition Electrodes Electrolytes Electron transfer Elemental sulfur Energy storage Ion diffusion Metal sulfides Polypyrroles Structural hierarchy Sulfur Supercapacitor Supercapacitors Transition metals |
Title | Three-dimensional interconnected cobalt sulfide foam: Controllable synthesis and application in supercapacitor |
URI | https://dx.doi.org/10.1016/j.electacta.2019.05.121 https://cir.nii.ac.jp/crid/1870020692589252096 https://www.proquest.com/docview/2278897492 |
Volume | 317 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NT90wDLcYO2wcpo1t2mOActi1I0nbtOGGnoYeTOMEErcon1Knt_L0-jjswt-O3Q8GmiYOk9pKjZo0tV3bUeyfAb64Ctsd7TAqX2aF0zKzovQZl0HlFo1sSJTv_ONCLa6K8-vyegvmUy4MhVWOun_Q6b22HluORmoerZqGcnxFXqgaVwDooqDjQRnsRUVS_vXuT5hHpSo-VTGgp5_EePWlZiweFOOlCcJTSPEvC_WibZq_NHZvhk7fwpvRf2QnwxTfwVZsd-HVfCrbtgs7jxAG30N7ibyKWSAM_wF_gxFAxNpTfItHb5N5AgTZsO52mZoQWbqxv47ZfAhgX1JeFet-t-gldk3HbBvYox1vHAr7rXA0tLgeVcP6A1ydfrucL7KxxELmi6rcZCkpWVlZKW25SsSbMtW6QGrYonYhkgpwUkTnI5c9wYXlQdpcox-QrM4_wnZ708ZPwIIM3OvoSqdigX6TrqVVVqWg6jyIPM1ATWQ1fsQfpzIYSzMFmv00D_wwxA_DS4P8mAF_6LgaIDie73I88c08kSaDhuL5zgfIaZwjXQXqM_xypWVZ4ylxxTeD_UkGzPjDd4Yyimtcm2m59z_v_gyv6Y4CUgTfh-3N-jYeoNezcYe9WB_Cy5Oz74uLexRLAX4 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKOZQeEBQQW1rwAY6htpM4caUe0EK1pY_TVurN-CkFbdPVZquqF_4Uf7AzeZRWCPWAKiU5OPIjnsk85G9mCPloC2i3eMIoXZ5kVonE8NwlTHiZGlCyPmK88_GJnJxm38_ysxXye4iFQVhlL_s7md5K675lp9_NnXlVYYwvTzNZggcAJgoYHj2y8jBcX4Hf1uwdfAUifxJi_9t0PEn60gKJy4p8mcQoRWFEIZVhMuKa8liqDLShyUrrA7K-FTxYF5hoJ-KGeWFSBfovGszABHL_aQbiAssmfP71B1dSyIINZRNwefdAZW1tGwMXgsoU5gzlgv9LJT6pq-ovFdHqvf0X5HlvsNIv3Z68JCuh3iBr46FO3AZZv5PS8BWpp8AcIfFYNKBL-EExI8XCIaDGgXlLHWYgWdLmchYrH2i8MOe7dNwh5mcYyEWb6xrM0qZqqKk9vXPEDkNBvzmMBiregSxavCanj7Lxb8hqfVGHt4R64ZlTweZWhgwMNVUKI42MXpap52kcETlsq3Z9wnOsuzHTA7Ltp76lh0Z6aJZroMeIsNuO8y7nx8Nddge66Xvsq0EzPdx5GygNa8QnBwEKXy6VyEu4BbiYI7I18IDuJUyjMYS5BGdQic3_mfsDWZtMj4_00cHJ4TvyDN8gGoazLbK6XFyGbTC5lvZ9y-KU_Hjsf-oGPNI7cg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Three-dimensional+interconnected+cobalt+sulfide+foam%3A+Controllable+synthesis+and+application+in+supercapacitor&rft.jtitle=Electrochimica+acta&rft.au=Liu%2C+Ye&rft.au=Guo%2C+Shoujing&rft.au=Zhang%2C+Wei&rft.au=Kong%2C+Wei&rft.date=2019-09-10&rft.pub=Elsevier+Ltd&rft.issn=0013-4686&rft.eissn=1873-3859&rft.volume=317&rft.spage=551&rft.epage=561&rft_id=info:doi/10.1016%2Fj.electacta.2019.05.121&rft.externalDocID=S0013468619310540 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-4686&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-4686&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-4686&client=summon |