Integrating CdS quantum dots on hollow graphitic carbon nitride nanospheres for hydrogen evolution photocatalysis
[Display omitted] •CdS was deposited on HCNS to fabricate inorganic-polymeric heterojunctions.•The heterojunctions on the hollow polymer surface facilitate charge separation.•This CdS-HCNS efficiently catalyzes H2 evolution with visible light. Inorganic quantum dots (QDs) have been introduced onto t...
Saved in:
Published in | Applied catalysis. B, Environmental Vol. 179; pp. 479 - 488 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.12.2015
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | [Display omitted]
•CdS was deposited on HCNS to fabricate inorganic-polymeric heterojunctions.•The heterojunctions on the hollow polymer surface facilitate charge separation.•This CdS-HCNS efficiently catalyzes H2 evolution with visible light.
Inorganic quantum dots (QDs) have been introduced onto the exterior surface of hollow carbon nitride spheres (HCNS) to construct an inorganic-polymeric curved heterostructure for solar energy conversion. This hybrid nanoheterostructure cooperates well with cofactors to achieve efficient hydrogen evolution under visible light illumination. The enhanced photocatalytic performance of the heterostructure can be attributed to the unique three-dimensional (3D) hollow architectural framework of HCNS as a polymeric scaffold to form intimate interfacial contact with the QDs by a self-assembly strategy to facilitate surface kinetics of charge separation and mass transfer. Such inorganic-polymer hybrid nanoarchitectures based on controlled deposition of stiff QDs onto the flexible HCNS surface provide a valuable platform for constructing stable photoredox systems for solar-to-chemical conversion. This result promises the great potentials of biostructurally-mimic hollow soft semiconductors in developing photofunctional architectures, with an ample choice of secondary guest species to selectively engineer the interface physicochemistry of the hollow sphere for solar application. |
---|---|
AbstractList | [Display omitted]
•CdS was deposited on HCNS to fabricate inorganic-polymeric heterojunctions.•The heterojunctions on the hollow polymer surface facilitate charge separation.•This CdS-HCNS efficiently catalyzes H2 evolution with visible light.
Inorganic quantum dots (QDs) have been introduced onto the exterior surface of hollow carbon nitride spheres (HCNS) to construct an inorganic-polymeric curved heterostructure for solar energy conversion. This hybrid nanoheterostructure cooperates well with cofactors to achieve efficient hydrogen evolution under visible light illumination. The enhanced photocatalytic performance of the heterostructure can be attributed to the unique three-dimensional (3D) hollow architectural framework of HCNS as a polymeric scaffold to form intimate interfacial contact with the QDs by a self-assembly strategy to facilitate surface kinetics of charge separation and mass transfer. Such inorganic-polymer hybrid nanoarchitectures based on controlled deposition of stiff QDs onto the flexible HCNS surface provide a valuable platform for constructing stable photoredox systems for solar-to-chemical conversion. This result promises the great potentials of biostructurally-mimic hollow soft semiconductors in developing photofunctional architectures, with an ample choice of secondary guest species to selectively engineer the interface physicochemistry of the hollow sphere for solar application. Inorganic quantum dots (QDs) have been introduced onto the exterior surface of hollow carbon nitride spheres (HCNS) to construct an inorganic-polymeric curved heterostructure for solar energy conversion. This hybrid nanoheterostructure cooperates well with cofactors to achieve efficient hydrogen evolution under visible light illumination. The enhanced photocatalytic performance of the heterostructure can be attributed to the unique three-dimensional (3D) hollow architectural framework of HCNS as a polymeric scaffold to form intimate interfacial contact with the QDs by a self-assembly strategy to facilitate surface kinetics of charge separation and mass transfer. Such inorganic-polymer hybrid nanoarchitectures based on controlled deposition of stiff QDs onto the flexible HCNS surface provide a valuable platform for constructing stable photoredox systems for solar-to-chemical conversion. This result promises the great potentials of biostructurally-mimic hollow soft semiconductors in developing photofunctional architectures, with an ample choice of secondary guest species to selectively engineer the interface physicochemistry of the hollow sphere for solar application. |
Author | Zheng, Dandan zhang, Guigang Wang, Xinchen |
Author_xml | – sequence: 1 givenname: Dandan surname: Zheng fullname: Zheng, Dandan – sequence: 2 givenname: Guigang surname: zhang fullname: zhang, Guigang – sequence: 3 givenname: Xinchen surname: Wang fullname: Wang, Xinchen email: xcwang@fzu.edu.cn |
BookMark | eNqFkUFr4zAQhUXpwqbd_Qd70HEvTkeWLdl7KJTQ3RYKPbR7Foo8jhUcyZHklvz7KqSnHloYkBi-Nxq9d0HOnXdIyC8GSwZMXG2XejI6rZclsHoJuQSckQVrJC940_BzsoC2FAXnkn8nFzFuAaDkZbMg-3uXcBN0sm5DV90T3c_apXlHO58i9Y4Ofhz9K83INNhkDTU6rHPf2RRsh9Rp5-M0YMBIex_ocOiC36Cj-OLHOdmMToNPPu-nx0O08Qf51usx4s_385L8_3v7vLorHh7_3a9uHgpTyToVPYLGkmGLbZW_hZJxUa9lvnIBwgje16bqSmTApe4A2xIQpODS1CDb3L0kv09zp-D3M8akdjYaHEft0M9RZXdkw6Fq669RKSG_Kqs2o9UJNcHHGLBXU7A7HQ6KgTqGobbqFIY6hqEglzgu8-eDzNikj-6koO34lfj6JMZs14vFoKKx6Ax2NqBJqvP28wFvri2rKQ |
CitedBy_id | crossref_primary_10_1039_C8TA09906E crossref_primary_10_1002_cssc_201800053 crossref_primary_10_1007_s10854_017_8373_5 crossref_primary_10_1016_j_apcatb_2018_10_029 crossref_primary_10_1021_acs_energyfuels_0c04163 crossref_primary_10_3390_nano12142374 crossref_primary_10_1016_j_ceramint_2021_12_134 crossref_primary_10_1021_acscatal_2c05722 crossref_primary_10_1039_C5CC07867A crossref_primary_10_1039_C9CY01244C crossref_primary_10_1039_C7CC04515H crossref_primary_10_1016_j_apsusc_2021_150292 crossref_primary_10_1016_j_jmst_2020_04_032 crossref_primary_10_1016_j_apcatb_2019_117848 crossref_primary_10_1021_acssuschemeng_8b00596 crossref_primary_10_1016_j_mssp_2021_106134 crossref_primary_10_1016_j_apcatb_2017_02_025 crossref_primary_10_1039_C9CP01180C crossref_primary_10_1016_j_cej_2021_134375 crossref_primary_10_1016_j_apcatb_2017_03_066 crossref_primary_10_1016_j_apcatb_2016_03_062 crossref_primary_10_1016_j_cclet_2016_07_012 crossref_primary_10_1021_acssuschemeng_8b02098 crossref_primary_10_1016_j_ijhydene_2016_12_055 crossref_primary_10_1016_j_jece_2020_104313 crossref_primary_10_1039_D0SE00167H crossref_primary_10_1016_j_jssc_2016_07_020 crossref_primary_10_1039_C7EN00255F crossref_primary_10_1016_j_cattod_2018_02_043 crossref_primary_10_1021_acs_chemrev_1c00236 crossref_primary_10_1021_acsanm_1c01096 crossref_primary_10_1016_j_jallcom_2020_155057 crossref_primary_10_1007_s40242_019_8189_3 crossref_primary_10_1016_j_ijhydene_2017_08_078 crossref_primary_10_1016_j_cej_2020_126178 crossref_primary_10_1016_j_physb_2020_412367 crossref_primary_10_1039_C8CY02073F crossref_primary_10_1016_j_apcatb_2017_01_071 crossref_primary_10_1088_1742_6596_2411_1_012002 crossref_primary_10_1016_j_ceramint_2020_04_242 crossref_primary_10_1016_j_renene_2020_05_140 crossref_primary_10_1039_C6CP05618K crossref_primary_10_1039_D0DT00865F crossref_primary_10_1016_j_jcis_2017_01_010 crossref_primary_10_1007_s10853_019_04092_5 crossref_primary_10_1016_j_apcatb_2017_05_088 crossref_primary_10_1007_s11237_018_9541_2 crossref_primary_10_1021_acs_jpcc_3c06080 crossref_primary_10_1002_solr_201900435 crossref_primary_10_1039_C7DT04912A crossref_primary_10_1016_j_jphotochem_2021_113462 crossref_primary_10_1021_acs_iecr_6b00041 crossref_primary_10_1016_j_apcatb_2018_02_006 crossref_primary_10_1002_idm2_12159 crossref_primary_10_1007_s11426_019_9655_0 crossref_primary_10_1016_j_ijhydene_2018_11_067 crossref_primary_10_1016_j_apt_2017_01_010 crossref_primary_10_1021_acssuschemeng_9b04395 crossref_primary_10_3762_bjnano_8_159 crossref_primary_10_1016_j_nanoen_2020_104972 crossref_primary_10_1021_acssuschemeng_9b01685 crossref_primary_10_1155_2020_6505301 crossref_primary_10_1039_D1TA09809H crossref_primary_10_1016_j_apcatb_2017_03_043 crossref_primary_10_1021_acssuschemeng_8b02153 crossref_primary_10_1038_srep22268 crossref_primary_10_1039_C7SC01747B crossref_primary_10_1039_D1TA00704A crossref_primary_10_1039_C6TA05958A crossref_primary_10_1016_j_colsurfa_2023_131600 crossref_primary_10_1016_j_jssc_2016_03_042 crossref_primary_10_1016_j_ijhydene_2016_07_030 crossref_primary_10_1007_s12274_022_4896_z crossref_primary_10_1016_j_apcatb_2016_04_048 crossref_primary_10_1002_adma_201900281 crossref_primary_10_1021_accountsmr_1c00148 crossref_primary_10_3390_app14125333 crossref_primary_10_1002_adfm_202002021 crossref_primary_10_1016_j_apcatb_2024_124459 crossref_primary_10_3390_catal10010142 crossref_primary_10_1007_s11434_016_1053_7 crossref_primary_10_1016_j_solener_2020_05_071 crossref_primary_10_1016_j_surfin_2021_101312 crossref_primary_10_1002_asia_201700540 crossref_primary_10_1016_j_apcatb_2019_01_089 crossref_primary_10_1016_j_apsusc_2022_152711 crossref_primary_10_1016_j_ijhydene_2022_12_289 crossref_primary_10_1039_C7QI00115K crossref_primary_10_1021_acs_est_9b01453 crossref_primary_10_1080_09276440_2022_2076363 crossref_primary_10_1016_j_partic_2020_02_007 crossref_primary_10_1039_C7NJ01903C crossref_primary_10_1039_C8CY02611D crossref_primary_10_1007_s10853_019_03484_x crossref_primary_10_1016_j_chemosphere_2022_137249 crossref_primary_10_1039_C9TA01521C crossref_primary_10_1016_j_nanoen_2016_08_041 crossref_primary_10_1016_j_snb_2017_01_009 crossref_primary_10_1002_er_7791 crossref_primary_10_1016_j_matlet_2015_12_022 crossref_primary_10_1039_C9CY02612F crossref_primary_10_1039_C6RA15581B crossref_primary_10_1002_anie_201612551 crossref_primary_10_1016_j_apcatb_2016_03_026 crossref_primary_10_1002_anie_202419661 crossref_primary_10_1016_j_molliq_2021_117820 crossref_primary_10_1016_j_ijhydene_2020_01_105 crossref_primary_10_1016_j_jallcom_2019_152234 crossref_primary_10_1016_j_apsusc_2023_157214 crossref_primary_10_1016_j_ijhydene_2017_05_169 crossref_primary_10_1016_j_jcat_2017_06_020 crossref_primary_10_1016_j_apt_2017_09_036 crossref_primary_10_1021_acscatal_9b00314 crossref_primary_10_1021_acsami_6b01850 crossref_primary_10_1039_D4RA05492J crossref_primary_10_1016_j_jcis_2022_12_149 crossref_primary_10_1016_j_jece_2024_111956 crossref_primary_10_1088_2515_7655_abb782 crossref_primary_10_1021_acssuschemeng_3c07345 crossref_primary_10_1039_C7NR03656F crossref_primary_10_1002_cnma_202000125 crossref_primary_10_1016_j_apsusc_2015_08_241 crossref_primary_10_1016_j_jpcs_2022_110989 crossref_primary_10_1021_acsomega_9b03130 crossref_primary_10_1039_D0CY00308E crossref_primary_10_1016_j_inoche_2018_07_024 crossref_primary_10_1016_j_apsusc_2016_07_030 crossref_primary_10_1016_j_bios_2018_10_045 crossref_primary_10_1016_j_nanoen_2023_108402 crossref_primary_10_1016_j_apcatb_2017_08_075 crossref_primary_10_1002_adpr_202200065 crossref_primary_10_1007_s10854_017_8133_6 crossref_primary_10_1021_acsenergylett_6b00398 crossref_primary_10_1039_C5NR07004J crossref_primary_10_1002_ange_201612551 crossref_primary_10_1021_acs_chemrev_6b00075 crossref_primary_10_1016_j_jcat_2017_09_021 crossref_primary_10_1016_j_jphotochem_2016_09_012 crossref_primary_10_1007_s12209_021_00291_x crossref_primary_10_1016_j_ccr_2024_216176 crossref_primary_10_1016_j_jphotochem_2018_03_027 crossref_primary_10_1016_j_jmst_2021_03_019 crossref_primary_10_1039_C9EN00811J crossref_primary_10_1016_j_jcis_2020_04_094 crossref_primary_10_1021_acssuschemeng_8b01021 crossref_primary_10_1016_j_cattod_2017_03_018 crossref_primary_10_1016_j_jallcom_2017_04_119 crossref_primary_10_1039_C8EE00886H crossref_primary_10_1016_j_ijhydene_2019_01_102 crossref_primary_10_1002_solr_201900423 crossref_primary_10_1016_j_electacta_2019_135336 crossref_primary_10_1016_j_jmst_2021_09_046 crossref_primary_10_1016_j_apmt_2019_06_003 crossref_primary_10_1016_j_apsusc_2019_04_018 crossref_primary_10_1016_j_jcis_2019_07_014 crossref_primary_10_3390_molecules29225439 crossref_primary_10_1016_j_apcatb_2016_07_036 crossref_primary_10_1016_j_cej_2020_124496 crossref_primary_10_1016_j_apsusc_2016_01_194 crossref_primary_10_1049_mnl_2018_5682 crossref_primary_10_1039_C7CC08797G crossref_primary_10_1039_C8TA05539D crossref_primary_10_1016_j_compositesb_2024_111865 crossref_primary_10_1007_s40145_022_0637_8 crossref_primary_10_1039_C8DT02294A crossref_primary_10_1016_j_ijhydene_2022_02_038 crossref_primary_10_1021_acscatal_8b00104 crossref_primary_10_1002_tcr_202400127 crossref_primary_10_1016_j_conbuildmat_2024_138536 crossref_primary_10_1016_j_powtec_2019_01_012 crossref_primary_10_1002_smll_201900011 crossref_primary_10_1016_j_jphotochem_2016_06_002 crossref_primary_10_1016_j_seppur_2020_116618 crossref_primary_10_1002_cptc_202200143 crossref_primary_10_1016_j_apsusc_2018_11_138 crossref_primary_10_1021_acssuschemeng_1c00319 crossref_primary_10_1039_C6CC06970C crossref_primary_10_1002_cctc_201700640 crossref_primary_10_1016_j_ijhydene_2020_06_176 crossref_primary_10_1016_j_ijhydene_2021_09_019 crossref_primary_10_1002_cctc_201600828 crossref_primary_10_1002_ange_202419661 crossref_primary_10_1016_j_cattod_2015_08_006 crossref_primary_10_1039_C6TA09747B |
Cites_doi | 10.1002/adma.201400288 10.1038/ncomms2152 10.1002/anie.201308792 10.1021/jp3041692 10.1039/c2ta00672c 10.1021/cm049172b 10.1002/anie.201402191 10.1039/c3ee43750g 10.1002/adma.201303571 10.1002/adma.201400573 10.1002/adma.201303611 10.1126/science.1096566 10.1002/anie.201301357 10.1021/ja209206c 10.1002/adfm.200801173 10.1002/anie.201406476 10.1021/am403327g 10.1002/anie.201501001 10.1002/anie.201407319 10.1002/anie.201409149 10.1126/science.1251428 10.1038/srep01943 10.1038/35003535 10.1002/adma.201305929 10.1002/anie.201103244 10.1039/c3ee44189j 10.1021/ja2025454 10.1002/adfm.201200922 10.1002/anie.201309415 10.1002/anie.201403375 10.1557/mrs.2013.84 10.1002/anie.201404481 10.1002/anie.201304034 10.1002/anie.201410172 10.1038/nmat2317 10.1038/nmat1734 10.1002/anie.201301709 10.1002/anie.201406811 10.1016/j.ijhydene.2012.10.116 10.1039/C4NR06011C 10.1002/anie.201205333 10.1002/anie.201403946 10.1002/anie.201405161 |
ContentType | Journal Article |
Copyright | 2015 Elsevier B.V. |
Copyright_xml | – notice: 2015 Elsevier B.V. |
DBID | AAYXX CITATION 7SR 7SU 7U5 8BQ 8FD C1K FR3 JG9 KR7 L7M 7ST SOI |
DOI | 10.1016/j.apcatb.2015.05.060 |
DatabaseName | CrossRef Engineered Materials Abstracts Environmental Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Materials Research Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace Environment Abstracts Environment Abstracts |
DatabaseTitle | CrossRef Materials Research Database Civil Engineering Abstracts Engineered Materials Abstracts Technology Research Database Environmental Engineering Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Advanced Technologies Database with Aerospace METADEX Environmental Sciences and Pollution Management Environment Abstracts |
DatabaseTitleList | Materials Research Database Environment Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry Environmental Sciences |
EISSN | 1873-3883 |
EndPage | 488 |
ExternalDocumentID | 10_1016_j_apcatb_2015_05_060 S0926337315003161 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABFNM ABMAC ABNUV ABXDB ABYKQ ACDAQ ACGFS ACIWK ACRLP ADBBV ADEWK ADEZE ADMUD AEBSH AEKER AFKWA AFRAH AFTJW AGHFR AGUBO AGYEJ AHHHB AHPOS AI. AIEXJ AIKHN AITUG AJBFU AJOXV AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BBWZM BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA HLY HVGLF HZ~ IHE J1W KOM LX7 M41 MO0 N9A NDZJH O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SCE SDF SDG SES SEW SPC SPD SSG SSZ T5K VH1 WUQ XFK XPP ~02 ~G- AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU BNPGV CITATION SSH 7SR 7SU 7U5 8BQ 8FD C1K EFKBS FR3 JG9 KR7 L7M 7ST SOI |
ID | FETCH-LOGICAL-c475t-fe0ae21e9e94201e71365b72013606c63f5c4d2e1037ad0e920e07637c5079103 |
IEDL.DBID | .~1 |
ISSN | 0926-3373 |
IngestDate | Fri Jul 11 09:01:13 EDT 2025 Tue Aug 05 09:01:43 EDT 2025 Thu Apr 24 22:52:21 EDT 2025 Tue Jul 01 03:10:28 EDT 2025 Sat Mar 02 16:01:00 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Conjugated polymer Quantum dots Photocatalysis Hollow nanospheres Heterojunction |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c475t-fe0ae21e9e94201e71365b72013606c63f5c4d2e1037ad0e920e07637c5079103 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 1770360749 |
PQPubID | 23500 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_1877830495 proquest_miscellaneous_1770360749 crossref_primary_10_1016_j_apcatb_2015_05_060 crossref_citationtrail_10_1016_j_apcatb_2015_05_060 elsevier_sciencedirect_doi_10_1016_j_apcatb_2015_05_060 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-12-01 |
PublicationDateYYYYMMDD | 2015-12-01 |
PublicationDate_xml | – month: 12 year: 2015 text: 2015-12-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Applied catalysis. B, Environmental |
PublicationYear | 2015 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Zhang, Wang, Jin, Zhang, Lin, Huang, Yu (bib0140) 2012; 5 Zhang, Zhang, Ye, Qiu, Lin, Wang (bib0200) 2014; 26 Xie, Yu, Liu, Ma, Cheng (bib0040) 2014; 7 Fu, Chang, Tian, Xi, Dong (bib0125) 2013; 1 Ge, Zuo, Liu, Ma, Wang, Sun, Bartels, Feng (bib0135) 2012; 116 Siller, Severin, Chong, Björkman, Palgrave, Laybourn, Antonietti, Khimyak, Krasheninnikov, Rabe, Kaiser, Cooper, Thomas, Bojdys (bib0185) 2014; 53 Xia, Xia, Wang, Xie (bib0025) 2013; 38 Dasgupta, Sun, Brittman, Andrews, Lim, Gao, Yan, Yang (bib0035) 2014; 26 Zhang, Pan, Chai, Liang, Dong, Zhang, Qiu (bib0175) 2013; 3 Yin, Rioux, Erdonmez, Hughes, Somorjai, Alivisatos (bib0010) 2004; 304 Zou, Zhang, Yan, Wang, Ma, Li, Mçhwald, Mann (bib0070) 2014; 54 Zheng, Huang, Wang (bib0145) 2015; 7 Hu, Gao, Yu, Wang, Ning, Xu, Lou (bib0085) 2013; 52 Martin, Qiu, Shevlin, Handoko, Chen, Guo, Tang (bib0195) 2014; 53 Ma, Dai, Jaroniec, Qiao (bib0015) 2014; 53 Jun, Park, Lee, Thomas, Hong, Stucky (bib0160) 2013; 52 Cao, Yuan, Fang, Shahjamali, Boey, Barber, Loo, Xue (bib0130) 2013; 38 Liu, Xing, Chen, Shen, Yan, Zou, Ma, Möhwald, Yan (bib0060) 2015; 54 Zhang, Zhang, Sun, Wang (bib0220) 2012; 51 Eley, Li, Liao, Fairclough, Smith, Smith, Tsang (bib0090) 2014; 53 Zhang, Zhu, Tang, Müllen, Feng (bib0075) 2014; 26 Baker, Kamat (bib0095) 2009; 19 Liu, Wang, Wang, Huang, Yu (bib0170) 2014; 53 Zhang, Wu, Song, Paik, Lou (bib0020) 2014; 53 Zhang, Zhang, Lin, Wang (bib0120) 2015; 54 Niu, Zhang, Liu, Cheng (bib0180) 2012; 22 Bao, Gong, Li, Gao (bib0105) 2004; 16 Zheng, Lin, Ye, Guo, Wang (bib0190) 2014; 53 Wang, Maeda, Thomas, Takanabe, Xin, Carlsson, Domen, Antonietti (bib0110) 2009; 8 Caputo, Gross, Lau, Cavazza, Lotsch, Reisner (bib0115) 2014; 53 Chen, Wu, Yin, Li, Hong, Fan, Chen, Xue, Zhang (bib0100) 2014; 54 Bhunia, Yamauchi, Takanabe (bib0165) 2014; 53 Kim, Lee, Lee, Park (bib0065) 2012; 51 Peng, Manna, Yang, Wickham, Scher, Kadavanich, Alivisatos (bib0030) 2000; 404 Maeda, Lu, Domen (bib0050) 2013; 52 Zhang, Wang (bib0210) 2014; 7 Tada, Mitsui, Kiyonaga, Akita, Tanaka (bib0045) 2006; 5 Hu, Shaner, Beardslee, Lichterman, Brunschwig, Lewis (bib0005) 2014; 344 Shalom, Gimenez, Schipper, Cardona, Bisquert, Antonietti (bib0215) 2014; 53 Zheng, Jiao, Chen, Liu, Liang, Du, Zhang, Zhu, Smith, Jaroniec, Lu, Qiao (bib0205) 2015; 133 Li, Guo, Yu, Ran, Zhang, Yan, Gong (bib0080) 2011; 133 Zhang, Zhang, Yang, Wang (bib0155) 2014; 26 Zhou, Yu, Jaroniec (bib0055) 2014; 26 Sun, Zhang, Zhang, Antonietti, Fu, Wang (bib0150) 2012; 3 Jun (10.1016/j.apcatb.2015.05.060_bib0160) 2013; 52 Zhang (10.1016/j.apcatb.2015.05.060_bib0210) 2014; 7 Maeda (10.1016/j.apcatb.2015.05.060_bib0050) 2013; 52 Hu (10.1016/j.apcatb.2015.05.060_bib0085) 2013; 52 Zhang (10.1016/j.apcatb.2015.05.060_bib0075) 2014; 26 Zhang (10.1016/j.apcatb.2015.05.060_bib0175) 2013; 3 Caputo (10.1016/j.apcatb.2015.05.060_bib0115) 2014; 53 Zhang (10.1016/j.apcatb.2015.05.060_bib0020) 2014; 53 Hu (10.1016/j.apcatb.2015.05.060_bib0005) 2014; 344 Zhou (10.1016/j.apcatb.2015.05.060_bib0055) 2014; 26 Eley (10.1016/j.apcatb.2015.05.060_bib0090) 2014; 53 Li (10.1016/j.apcatb.2015.05.060_bib0080) 2011; 133 Sun (10.1016/j.apcatb.2015.05.060_bib0150) 2012; 3 Zhang (10.1016/j.apcatb.2015.05.060_bib0200) 2014; 26 Xie (10.1016/j.apcatb.2015.05.060_bib0040) 2014; 7 Xia (10.1016/j.apcatb.2015.05.060_bib0025) 2013; 38 Zou (10.1016/j.apcatb.2015.05.060_bib0070) 2014; 54 Dasgupta (10.1016/j.apcatb.2015.05.060_bib0035) 2014; 26 Zheng (10.1016/j.apcatb.2015.05.060_bib0205) 2015; 133 Zhang (10.1016/j.apcatb.2015.05.060_bib0120) 2015; 54 Niu (10.1016/j.apcatb.2015.05.060_bib0180) 2012; 22 Yin (10.1016/j.apcatb.2015.05.060_bib0010) 2004; 304 Kim (10.1016/j.apcatb.2015.05.060_bib0065) 2012; 51 Shalom (10.1016/j.apcatb.2015.05.060_bib0215) 2014; 53 Zhang (10.1016/j.apcatb.2015.05.060_bib0155) 2014; 26 Peng (10.1016/j.apcatb.2015.05.060_bib0030) 2000; 404 Liu (10.1016/j.apcatb.2015.05.060_bib0170) 2014; 53 Ge (10.1016/j.apcatb.2015.05.060_bib0135) 2012; 116 Baker (10.1016/j.apcatb.2015.05.060_bib0095) 2009; 19 Fu (10.1016/j.apcatb.2015.05.060_bib0125) 2013; 1 Cao (10.1016/j.apcatb.2015.05.060_bib0130) 2013; 38 Martin (10.1016/j.apcatb.2015.05.060_bib0195) 2014; 53 Chen (10.1016/j.apcatb.2015.05.060_bib0100) 2014; 54 Zheng (10.1016/j.apcatb.2015.05.060_bib0145) 2015; 7 Bhunia (10.1016/j.apcatb.2015.05.060_bib0165) 2014; 53 Ma (10.1016/j.apcatb.2015.05.060_bib0015) 2014; 53 Tada (10.1016/j.apcatb.2015.05.060_bib0045) 2006; 5 Zhang (10.1016/j.apcatb.2015.05.060_bib0140) 2012; 5 Siller (10.1016/j.apcatb.2015.05.060_bib0185) 2014; 53 Bao (10.1016/j.apcatb.2015.05.060_bib0105) 2004; 16 Zhang (10.1016/j.apcatb.2015.05.060_bib0220) 2012; 51 Liu (10.1016/j.apcatb.2015.05.060_bib0060) 2015; 54 Wang (10.1016/j.apcatb.2015.05.060_bib0110) 2009; 8 Zheng (10.1016/j.apcatb.2015.05.060_bib0190) 2014; 53 |
References_xml | – volume: 19 start-page: 805 year: 2009 end-page: 811 ident: bib0095 publication-title: Adv. Funct. Mater. – volume: 5 start-page: 10317 year: 2012 end-page: 10324 ident: bib0140 publication-title: Appl. Mater. Interfaces – volume: 53 start-page: 7450 year: 2014 end-page: 7455 ident: bib0185 publication-title: Angew. Chem. Int. Ed. – volume: 8 start-page: 76 year: 2009 end-page: 80 ident: bib0110 publication-title: Nat. Mater. – volume: 54 start-page: 2366 year: 2014 end-page: 2370 ident: bib0070 publication-title: Angew. Chem. Int. Ed. – volume: 133 start-page: 20116 year: 2015 end-page: 20119 ident: bib0205 publication-title: J. Am. Chem. Soc. – volume: 53 start-page: 12590 year: 2014 end-page: 12593 ident: bib0020 publication-title: Angew. Chem. Int. Ed. – volume: 26 start-page: 2137 year: 2014 end-page: 2184 ident: bib0035 publication-title: Adv. Mater. – volume: 7 start-page: 1895 year: 2014 end-page: 1901 ident: bib0040 publication-title: Energy Environ. Sci. – volume: 7 start-page: 465 year: 2015 end-page: 470 ident: bib0145 publication-title: Nanoscale – volume: 26 start-page: 805 year: 2014 end-page: 809 ident: bib0200 publication-title: Adv. Mater. – volume: 22 start-page: 4763 year: 2012 end-page: 4770 ident: bib0180 publication-title: Adv. Funct. Mater. – volume: 51 start-page: 10145 year: 2012 end-page: 10149 ident: bib0220 publication-title: Angew. Chem. Int. Ed. – volume: 53 start-page: 7281 year: 2014 end-page: 7285 ident: bib0015 publication-title: Angew. Chem. Int. Ed. – volume: 1 start-page: 3083 year: 2013 end-page: 3090 ident: bib0125 publication-title: J. Mater. Chem. A – volume: 3 start-page: 1943 year: 2013 end-page: 1950 ident: bib0175 publication-title: Sci. Rep. – volume: 53 start-page: 3654 year: 2014 end-page: 3658 ident: bib0215 publication-title: Angew. Chem. Int. Ed. – volume: 5 start-page: 782 year: 2006 end-page: 786 ident: bib0045 publication-title: Nat. Mater. – volume: 53 start-page: 9240 year: 2014 end-page: 9245 ident: bib0195 publication-title: Angew. Chem. Int. Ed. – volume: 53 start-page: 7838 year: 2014 end-page: 7842 ident: bib0090 publication-title: Angew. Chem. Int. Ed. – volume: 53 start-page: 11926 year: 2014 end-page: 11930 ident: bib0190 publication-title: Angew. Chem. Int. Ed. – volume: 52 start-page: 6488 year: 2013 end-page: 6491 ident: bib0050 publication-title: Angew. Chem. Int. Ed. – volume: 26 start-page: 4920 year: 2014 end-page: 4935 ident: bib0055 publication-title: Adv. Mater. – volume: 133 start-page: 10878 year: 2011 end-page: 10884 ident: bib0080 publication-title: J. Am. Chem. Soc. – volume: 344 start-page: 1005 year: 2014 end-page: 1009 ident: bib0005 publication-title: Science – volume: 52 start-page: 5636 year: 2013 end-page: 5639 ident: bib0085 publication-title: Angew. Chem. Int. Ed. – volume: 54 start-page: 1210 year: 2014 end-page: 1214 ident: bib0100 publication-title: Angew. Chem. Int. Ed. – volume: 16 start-page: 3853 year: 2004 end-page: 3859 ident: bib0105 publication-title: Chem. Mater. – volume: 52 start-page: 11083 year: 2013 end-page: 11087 ident: bib0160 publication-title: Angew. Chem. Int. Ed. – volume: 7 start-page: 1902 year: 2014 end-page: 1906 ident: bib0210 publication-title: Energy Environ. Sci. – volume: 38 start-page: 335 year: 2013 end-page: 343 ident: bib0025 publication-title: MRS Bull. – volume: 53 start-page: 11538 year: 2014 end-page: 11542 ident: bib0115 publication-title: Angew. Chem. Int. Ed. – volume: 54 start-page: 6297 year: 2015 end-page: 6301 ident: bib0120 publication-title: Angew. Chem. Int. Ed. – volume: 53 start-page: 133477 year: 2014 end-page: 133482 ident: bib0170 publication-title: Angew. Chem. Int. Ed. – volume: 38 start-page: 1258 year: 2013 end-page: 1266 ident: bib0130 publication-title: Int. J. Hydrogen Energy – volume: 304 start-page: 711 year: 2004 end-page: 714 ident: bib0010 publication-title: Science – volume: 26 start-page: 734 year: 2014 end-page: 738 ident: bib0075 publication-title: Adv. Mater. – volume: 54 start-page: 500 year: 2015 end-page: 505 ident: bib0060 publication-title: Angew. Chem. Int. Ed. – volume: 116 start-page: 13708 year: 2012 end-page: 13714 ident: bib0135 publication-title: J. Phys. Chem. C. – volume: 26 start-page: 4121 year: 2014 end-page: 4126 ident: bib0155 publication-title: Adv. Mater. – volume: 404 start-page: 59 year: 2000 end-page: 61 ident: bib0030 publication-title: Nature – volume: 51 start-page: 517 year: 2012 end-page: 520 ident: bib0065 publication-title: Angew. Chem. Int. Ed. – volume: 3 start-page: 1139 year: 2012 end-page: 1145 ident: bib0150 publication-title: Nat. Commun. – volume: 53 start-page: 11001 year: 2014 end-page: 11005 ident: bib0165 publication-title: Angew. Chem. Int. Ed. – volume: 26 start-page: 4920 year: 2014 ident: 10.1016/j.apcatb.2015.05.060_bib0055 publication-title: Adv. Mater. doi: 10.1002/adma.201400288 – volume: 3 start-page: 1139 year: 2012 ident: 10.1016/j.apcatb.2015.05.060_bib0150 publication-title: Nat. Commun. doi: 10.1038/ncomms2152 – volume: 54 start-page: 2366 year: 2014 ident: 10.1016/j.apcatb.2015.05.060_bib0070 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201308792 – volume: 116 start-page: 13708 year: 2012 ident: 10.1016/j.apcatb.2015.05.060_bib0135 publication-title: J. Phys. Chem. C. doi: 10.1021/jp3041692 – volume: 1 start-page: 3083 year: 2013 ident: 10.1016/j.apcatb.2015.05.060_bib0125 publication-title: J. Mater. Chem. A doi: 10.1039/c2ta00672c – volume: 16 start-page: 3853 year: 2004 ident: 10.1016/j.apcatb.2015.05.060_bib0105 publication-title: Chem. Mater. doi: 10.1021/cm049172b – volume: 53 start-page: 7450 year: 2014 ident: 10.1016/j.apcatb.2015.05.060_bib0185 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201402191 – volume: 7 start-page: 1895 year: 2014 ident: 10.1016/j.apcatb.2015.05.060_bib0040 publication-title: Energy Environ. Sci. doi: 10.1039/c3ee43750g – volume: 26 start-page: 734 year: 2014 ident: 10.1016/j.apcatb.2015.05.060_bib0075 publication-title: Adv. Mater. doi: 10.1002/adma.201303571 – volume: 26 start-page: 4121 year: 2014 ident: 10.1016/j.apcatb.2015.05.060_bib0155 publication-title: Adv. Mater. doi: 10.1002/adma.201400573 – volume: 26 start-page: 805 year: 2014 ident: 10.1016/j.apcatb.2015.05.060_bib0200 publication-title: Adv. Mater. doi: 10.1002/adma.201303611 – volume: 304 start-page: 711 year: 2004 ident: 10.1016/j.apcatb.2015.05.060_bib0010 publication-title: Science doi: 10.1126/science.1096566 – volume: 52 start-page: 6488 year: 2013 ident: 10.1016/j.apcatb.2015.05.060_bib0050 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201301357 – volume: 133 start-page: 20116 year: 2015 ident: 10.1016/j.apcatb.2015.05.060_bib0205 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja209206c – volume: 19 start-page: 805 year: 2009 ident: 10.1016/j.apcatb.2015.05.060_bib0095 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.200801173 – volume: 53 start-page: 12590 year: 2014 ident: 10.1016/j.apcatb.2015.05.060_bib0020 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201406476 – volume: 5 start-page: 10317 year: 2012 ident: 10.1016/j.apcatb.2015.05.060_bib0140 publication-title: Appl. Mater. Interfaces doi: 10.1021/am403327g – volume: 54 start-page: 6297 year: 2015 ident: 10.1016/j.apcatb.2015.05.060_bib0120 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201501001 – volume: 53 start-page: 11926 year: 2014 ident: 10.1016/j.apcatb.2015.05.060_bib0190 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201407319 – volume: 54 start-page: 500 year: 2015 ident: 10.1016/j.apcatb.2015.05.060_bib0060 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201409149 – volume: 344 start-page: 1005 year: 2014 ident: 10.1016/j.apcatb.2015.05.060_bib0005 publication-title: Science doi: 10.1126/science.1251428 – volume: 53 start-page: 133477 year: 2014 ident: 10.1016/j.apcatb.2015.05.060_bib0170 publication-title: Angew. Chem. Int. Ed. – volume: 3 start-page: 1943 year: 2013 ident: 10.1016/j.apcatb.2015.05.060_bib0175 publication-title: Sci. Rep. doi: 10.1038/srep01943 – volume: 404 start-page: 59 year: 2000 ident: 10.1016/j.apcatb.2015.05.060_bib0030 publication-title: Nature doi: 10.1038/35003535 – volume: 26 start-page: 2137 year: 2014 ident: 10.1016/j.apcatb.2015.05.060_bib0035 publication-title: Adv. Mater. doi: 10.1002/adma.201305929 – volume: 51 start-page: 517 year: 2012 ident: 10.1016/j.apcatb.2015.05.060_bib0065 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201103244 – volume: 7 start-page: 1902 year: 2014 ident: 10.1016/j.apcatb.2015.05.060_bib0210 publication-title: Energy Environ. Sci. doi: 10.1039/c3ee44189j – volume: 133 start-page: 10878 year: 2011 ident: 10.1016/j.apcatb.2015.05.060_bib0080 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja2025454 – volume: 22 start-page: 4763 year: 2012 ident: 10.1016/j.apcatb.2015.05.060_bib0180 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201200922 – volume: 53 start-page: 3654 year: 2014 ident: 10.1016/j.apcatb.2015.05.060_bib0215 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201309415 – volume: 53 start-page: 9240 year: 2014 ident: 10.1016/j.apcatb.2015.05.060_bib0195 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201403375 – volume: 38 start-page: 335 year: 2013 ident: 10.1016/j.apcatb.2015.05.060_bib0025 publication-title: MRS Bull. doi: 10.1557/mrs.2013.84 – volume: 53 start-page: 7838 year: 2014 ident: 10.1016/j.apcatb.2015.05.060_bib0090 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201404481 – volume: 52 start-page: 11083 year: 2013 ident: 10.1016/j.apcatb.2015.05.060_bib0160 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201304034 – volume: 54 start-page: 1210 year: 2014 ident: 10.1016/j.apcatb.2015.05.060_bib0100 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201410172 – volume: 8 start-page: 76 year: 2009 ident: 10.1016/j.apcatb.2015.05.060_bib0110 publication-title: Nat. Mater. doi: 10.1038/nmat2317 – volume: 5 start-page: 782 year: 2006 ident: 10.1016/j.apcatb.2015.05.060_bib0045 publication-title: Nat. Mater. doi: 10.1038/nmat1734 – volume: 52 start-page: 5636 year: 2013 ident: 10.1016/j.apcatb.2015.05.060_bib0085 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201301709 – volume: 53 start-page: 11538 year: 2014 ident: 10.1016/j.apcatb.2015.05.060_bib0115 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201406811 – volume: 38 start-page: 1258 year: 2013 ident: 10.1016/j.apcatb.2015.05.060_bib0130 publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2012.10.116 – volume: 7 start-page: 465 year: 2015 ident: 10.1016/j.apcatb.2015.05.060_bib0145 publication-title: Nanoscale doi: 10.1039/C4NR06011C – volume: 51 start-page: 10145 year: 2012 ident: 10.1016/j.apcatb.2015.05.060_bib0220 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201205333 – volume: 53 start-page: 7281 year: 2014 ident: 10.1016/j.apcatb.2015.05.060_bib0015 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201403946 – volume: 53 start-page: 11001 year: 2014 ident: 10.1016/j.apcatb.2015.05.060_bib0165 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201405161 |
SSID | ssj0002328 |
Score | 2.5608788 |
Snippet | [Display omitted]
•CdS was deposited on HCNS to fabricate inorganic-polymeric heterojunctions.•The heterojunctions on the hollow polymer surface facilitate... Inorganic quantum dots (QDs) have been introduced onto the exterior surface of hollow carbon nitride spheres (HCNS) to construct an inorganic-polymeric curved... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 479 |
SubjectTerms | Carbon nitride Conjugated polymer Heterojunction Heterostructures Hollow nanospheres Hydrogen evolution Nanostructure Photocatalysis Quantum dots Self assembly Semiconductors Three dimensional |
Title | Integrating CdS quantum dots on hollow graphitic carbon nitride nanospheres for hydrogen evolution photocatalysis |
URI | https://dx.doi.org/10.1016/j.apcatb.2015.05.060 https://www.proquest.com/docview/1770360749 https://www.proquest.com/docview/1877830495 |
Volume | 179 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3BbtQwEB1V5QAcECxUtEBlJK5hvbETJ8dq1WoLopdSqTfLcSbqopJsd7MgLnw7M45DASEqIeWSaCxZnvHzczzzDPCGKGxVVJVKUkeTXBeok0KphotziD3XMkXPG8UPZ_niQr-7zC53YD7WwnBaZcT-AdMDWscv0zia09VyOT2XZZorZRRRGorMsAXS2nCUv_1-m-ZBjCGgMRknbD2Wz4UcL7fyrq84wSsL-p1BqPKvy9MfQB1Wn5PH8CjSRnE09OwJ7GA7gfvz8ba2CTz8RVhwAnvHt_Vr1CxO4M1TuDmN8hBkJub1ubjZ0tBuPwvanG5E1woCw-vuqwg61pwYJ7xbV_SdZv56WaNoHYuLk6NxI4jviqtv9bqjIBT4JQaxWF11fRd-C7HayTO4ODn-OF8k8daFxGuT9UmD0mE6wxJLTQODhhPhKpOyuJvMfa6azOs6RS4wdLXEMpUoCaWMJ2pJ5EPtwW7btfgchOEz3tzU1azRWissCu9UYVRDHI1gtdkHNQ629VGSnG_GuLZj7tknO7jIsouspCeX-5D8bLUaJDnusDejH-1voWVp1bij5evR7ZbcyUcprsVuu7Ezw8JlRL_Kf9gUxhR8ipkd_HcPXsADfhvyZ17Cbr_e4itiQX11GML8EO4dnb5fnP0AA8YIFA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9wwEB2h5UB7QO22qJR-uFKv0XrjJE6OaAXaLbAXQOJmOc5EbEWTZTcL4t8zkzj0Q1WRKuXk2FI0M35-jmeeAb4Shc3TPFdBaGmSRylGQapUycU5xJ4LGaLjjeLZPJleRt-u4qstmPS1MJxW6bG_w_QWrX3LyFtztFwsRucyCxOltCJKQ5HJW6BtVqeKB7B9ODuZzp8AmUhDC8jUP-ABfQVdm-Zll842Oed4xa2EZ6tV-dcV6g-sbheg41ew65mjOOw-7jVsYTWEnUl_YdsQXv6iLTiEvaOfJWw0zM_h9Ru4nXmFCOomJsW5uN2QdTc_BO1P16KuBOHhTX0vWilrzo0Tzq5yaqfJv1oUKCrL-uLka1wLorzi-qFY1RSHAu98HIvldd3U7Z8hFjx5C5fHRxeTaeAvXggc2a8JSpQWwzFmmEVkGNScC5frkPXdZOISVcYuKkLkGkNbSMxCiZKASjtil8Q_1B4MqrrCdyA0H_MmusjHZRRFCtPUWZVqVRJNI2Qt90H1xjbOq5Lz5Rg3pk8_-246Fxl2kZH0JHIfgqdRy06V45n-uvej-S26DC0cz4z80rvdkDv5NMVWWG_WZqxZu4wYWPaPPqnWKR9kxu__-ws-w8704uzUnM7mJwfwgt906TQfYNCsNviRSFGTf_JB_wgCagrF |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Integrating+CdS+quantum+dots+on+hollow+graphitic+carbon+nitride+nanospheres+for+hydrogen+evolution+photocatalysis&rft.jtitle=Applied+catalysis.+B%2C+Environmental&rft.au=Zheng%2C+Dandan&rft.au=Zhang%2C+Guigang&rft.au=Wang%2C+Xinchen&rft.date=2015-12-01&rft.issn=0926-3373&rft.volume=179&rft.spage=479&rft.epage=488&rft_id=info:doi/10.1016%2Fj.apcatb.2015.05.060&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0926-3373&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0926-3373&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0926-3373&client=summon |