Integrating CdS quantum dots on hollow graphitic carbon nitride nanospheres for hydrogen evolution photocatalysis

[Display omitted] •CdS was deposited on HCNS to fabricate inorganic-polymeric heterojunctions.•The heterojunctions on the hollow polymer surface facilitate charge separation.•This CdS-HCNS efficiently catalyzes H2 evolution with visible light. Inorganic quantum dots (QDs) have been introduced onto t...

Full description

Saved in:
Bibliographic Details
Published inApplied catalysis. B, Environmental Vol. 179; pp. 479 - 488
Main Authors Zheng, Dandan, zhang, Guigang, Wang, Xinchen
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.12.2015
Subjects
Online AccessGet full text

Cover

Loading…
Abstract [Display omitted] •CdS was deposited on HCNS to fabricate inorganic-polymeric heterojunctions.•The heterojunctions on the hollow polymer surface facilitate charge separation.•This CdS-HCNS efficiently catalyzes H2 evolution with visible light. Inorganic quantum dots (QDs) have been introduced onto the exterior surface of hollow carbon nitride spheres (HCNS) to construct an inorganic-polymeric curved heterostructure for solar energy conversion. This hybrid nanoheterostructure cooperates well with cofactors to achieve efficient hydrogen evolution under visible light illumination. The enhanced photocatalytic performance of the heterostructure can be attributed to the unique three-dimensional (3D) hollow architectural framework of HCNS as a polymeric scaffold to form intimate interfacial contact with the QDs by a self-assembly strategy to facilitate surface kinetics of charge separation and mass transfer. Such inorganic-polymer hybrid nanoarchitectures based on controlled deposition of stiff QDs onto the flexible HCNS surface provide a valuable platform for constructing stable photoredox systems for solar-to-chemical conversion. This result promises the great potentials of biostructurally-mimic hollow soft semiconductors in developing photofunctional architectures, with an ample choice of secondary guest species to selectively engineer the interface physicochemistry of the hollow sphere for solar application.
AbstractList [Display omitted] •CdS was deposited on HCNS to fabricate inorganic-polymeric heterojunctions.•The heterojunctions on the hollow polymer surface facilitate charge separation.•This CdS-HCNS efficiently catalyzes H2 evolution with visible light. Inorganic quantum dots (QDs) have been introduced onto the exterior surface of hollow carbon nitride spheres (HCNS) to construct an inorganic-polymeric curved heterostructure for solar energy conversion. This hybrid nanoheterostructure cooperates well with cofactors to achieve efficient hydrogen evolution under visible light illumination. The enhanced photocatalytic performance of the heterostructure can be attributed to the unique three-dimensional (3D) hollow architectural framework of HCNS as a polymeric scaffold to form intimate interfacial contact with the QDs by a self-assembly strategy to facilitate surface kinetics of charge separation and mass transfer. Such inorganic-polymer hybrid nanoarchitectures based on controlled deposition of stiff QDs onto the flexible HCNS surface provide a valuable platform for constructing stable photoredox systems for solar-to-chemical conversion. This result promises the great potentials of biostructurally-mimic hollow soft semiconductors in developing photofunctional architectures, with an ample choice of secondary guest species to selectively engineer the interface physicochemistry of the hollow sphere for solar application.
Inorganic quantum dots (QDs) have been introduced onto the exterior surface of hollow carbon nitride spheres (HCNS) to construct an inorganic-polymeric curved heterostructure for solar energy conversion. This hybrid nanoheterostructure cooperates well with cofactors to achieve efficient hydrogen evolution under visible light illumination. The enhanced photocatalytic performance of the heterostructure can be attributed to the unique three-dimensional (3D) hollow architectural framework of HCNS as a polymeric scaffold to form intimate interfacial contact with the QDs by a self-assembly strategy to facilitate surface kinetics of charge separation and mass transfer. Such inorganic-polymer hybrid nanoarchitectures based on controlled deposition of stiff QDs onto the flexible HCNS surface provide a valuable platform for constructing stable photoredox systems for solar-to-chemical conversion. This result promises the great potentials of biostructurally-mimic hollow soft semiconductors in developing photofunctional architectures, with an ample choice of secondary guest species to selectively engineer the interface physicochemistry of the hollow sphere for solar application.
Author Zheng, Dandan
zhang, Guigang
Wang, Xinchen
Author_xml – sequence: 1
  givenname: Dandan
  surname: Zheng
  fullname: Zheng, Dandan
– sequence: 2
  givenname: Guigang
  surname: zhang
  fullname: zhang, Guigang
– sequence: 3
  givenname: Xinchen
  surname: Wang
  fullname: Wang, Xinchen
  email: xcwang@fzu.edu.cn
BookMark eNqFkUFr4zAQhUXpwqbd_Qd70HEvTkeWLdl7KJTQ3RYKPbR7Foo8jhUcyZHklvz7KqSnHloYkBi-Nxq9d0HOnXdIyC8GSwZMXG2XejI6rZclsHoJuQSckQVrJC940_BzsoC2FAXnkn8nFzFuAaDkZbMg-3uXcBN0sm5DV90T3c_apXlHO58i9Y4Ofhz9K83INNhkDTU6rHPf2RRsh9Rp5-M0YMBIex_ocOiC36Cj-OLHOdmMToNPPu-nx0O08Qf51usx4s_385L8_3v7vLorHh7_3a9uHgpTyToVPYLGkmGLbZW_hZJxUa9lvnIBwgje16bqSmTApe4A2xIQpODS1CDb3L0kv09zp-D3M8akdjYaHEft0M9RZXdkw6Fq669RKSG_Kqs2o9UJNcHHGLBXU7A7HQ6KgTqGobbqFIY6hqEglzgu8-eDzNikj-6koO34lfj6JMZs14vFoKKx6Ax2NqBJqvP28wFvri2rKQ
CitedBy_id crossref_primary_10_1039_C8TA09906E
crossref_primary_10_1002_cssc_201800053
crossref_primary_10_1007_s10854_017_8373_5
crossref_primary_10_1016_j_apcatb_2018_10_029
crossref_primary_10_1021_acs_energyfuels_0c04163
crossref_primary_10_3390_nano12142374
crossref_primary_10_1016_j_ceramint_2021_12_134
crossref_primary_10_1021_acscatal_2c05722
crossref_primary_10_1039_C5CC07867A
crossref_primary_10_1039_C9CY01244C
crossref_primary_10_1039_C7CC04515H
crossref_primary_10_1016_j_apsusc_2021_150292
crossref_primary_10_1016_j_jmst_2020_04_032
crossref_primary_10_1016_j_apcatb_2019_117848
crossref_primary_10_1021_acssuschemeng_8b00596
crossref_primary_10_1016_j_mssp_2021_106134
crossref_primary_10_1016_j_apcatb_2017_02_025
crossref_primary_10_1039_C9CP01180C
crossref_primary_10_1016_j_cej_2021_134375
crossref_primary_10_1016_j_apcatb_2017_03_066
crossref_primary_10_1016_j_apcatb_2016_03_062
crossref_primary_10_1016_j_cclet_2016_07_012
crossref_primary_10_1021_acssuschemeng_8b02098
crossref_primary_10_1016_j_ijhydene_2016_12_055
crossref_primary_10_1016_j_jece_2020_104313
crossref_primary_10_1039_D0SE00167H
crossref_primary_10_1016_j_jssc_2016_07_020
crossref_primary_10_1039_C7EN00255F
crossref_primary_10_1016_j_cattod_2018_02_043
crossref_primary_10_1021_acs_chemrev_1c00236
crossref_primary_10_1021_acsanm_1c01096
crossref_primary_10_1016_j_jallcom_2020_155057
crossref_primary_10_1007_s40242_019_8189_3
crossref_primary_10_1016_j_ijhydene_2017_08_078
crossref_primary_10_1016_j_cej_2020_126178
crossref_primary_10_1016_j_physb_2020_412367
crossref_primary_10_1039_C8CY02073F
crossref_primary_10_1016_j_apcatb_2017_01_071
crossref_primary_10_1088_1742_6596_2411_1_012002
crossref_primary_10_1016_j_ceramint_2020_04_242
crossref_primary_10_1016_j_renene_2020_05_140
crossref_primary_10_1039_C6CP05618K
crossref_primary_10_1039_D0DT00865F
crossref_primary_10_1016_j_jcis_2017_01_010
crossref_primary_10_1007_s10853_019_04092_5
crossref_primary_10_1016_j_apcatb_2017_05_088
crossref_primary_10_1007_s11237_018_9541_2
crossref_primary_10_1021_acs_jpcc_3c06080
crossref_primary_10_1002_solr_201900435
crossref_primary_10_1039_C7DT04912A
crossref_primary_10_1016_j_jphotochem_2021_113462
crossref_primary_10_1021_acs_iecr_6b00041
crossref_primary_10_1016_j_apcatb_2018_02_006
crossref_primary_10_1002_idm2_12159
crossref_primary_10_1007_s11426_019_9655_0
crossref_primary_10_1016_j_ijhydene_2018_11_067
crossref_primary_10_1016_j_apt_2017_01_010
crossref_primary_10_1021_acssuschemeng_9b04395
crossref_primary_10_3762_bjnano_8_159
crossref_primary_10_1016_j_nanoen_2020_104972
crossref_primary_10_1021_acssuschemeng_9b01685
crossref_primary_10_1155_2020_6505301
crossref_primary_10_1039_D1TA09809H
crossref_primary_10_1016_j_apcatb_2017_03_043
crossref_primary_10_1021_acssuschemeng_8b02153
crossref_primary_10_1038_srep22268
crossref_primary_10_1039_C7SC01747B
crossref_primary_10_1039_D1TA00704A
crossref_primary_10_1039_C6TA05958A
crossref_primary_10_1016_j_colsurfa_2023_131600
crossref_primary_10_1016_j_jssc_2016_03_042
crossref_primary_10_1016_j_ijhydene_2016_07_030
crossref_primary_10_1007_s12274_022_4896_z
crossref_primary_10_1016_j_apcatb_2016_04_048
crossref_primary_10_1002_adma_201900281
crossref_primary_10_1021_accountsmr_1c00148
crossref_primary_10_3390_app14125333
crossref_primary_10_1002_adfm_202002021
crossref_primary_10_1016_j_apcatb_2024_124459
crossref_primary_10_3390_catal10010142
crossref_primary_10_1007_s11434_016_1053_7
crossref_primary_10_1016_j_solener_2020_05_071
crossref_primary_10_1016_j_surfin_2021_101312
crossref_primary_10_1002_asia_201700540
crossref_primary_10_1016_j_apcatb_2019_01_089
crossref_primary_10_1016_j_apsusc_2022_152711
crossref_primary_10_1016_j_ijhydene_2022_12_289
crossref_primary_10_1039_C7QI00115K
crossref_primary_10_1021_acs_est_9b01453
crossref_primary_10_1080_09276440_2022_2076363
crossref_primary_10_1016_j_partic_2020_02_007
crossref_primary_10_1039_C7NJ01903C
crossref_primary_10_1039_C8CY02611D
crossref_primary_10_1007_s10853_019_03484_x
crossref_primary_10_1016_j_chemosphere_2022_137249
crossref_primary_10_1039_C9TA01521C
crossref_primary_10_1016_j_nanoen_2016_08_041
crossref_primary_10_1016_j_snb_2017_01_009
crossref_primary_10_1002_er_7791
crossref_primary_10_1016_j_matlet_2015_12_022
crossref_primary_10_1039_C9CY02612F
crossref_primary_10_1039_C6RA15581B
crossref_primary_10_1002_anie_201612551
crossref_primary_10_1016_j_apcatb_2016_03_026
crossref_primary_10_1002_anie_202419661
crossref_primary_10_1016_j_molliq_2021_117820
crossref_primary_10_1016_j_ijhydene_2020_01_105
crossref_primary_10_1016_j_jallcom_2019_152234
crossref_primary_10_1016_j_apsusc_2023_157214
crossref_primary_10_1016_j_ijhydene_2017_05_169
crossref_primary_10_1016_j_jcat_2017_06_020
crossref_primary_10_1016_j_apt_2017_09_036
crossref_primary_10_1021_acscatal_9b00314
crossref_primary_10_1021_acsami_6b01850
crossref_primary_10_1039_D4RA05492J
crossref_primary_10_1016_j_jcis_2022_12_149
crossref_primary_10_1016_j_jece_2024_111956
crossref_primary_10_1088_2515_7655_abb782
crossref_primary_10_1021_acssuschemeng_3c07345
crossref_primary_10_1039_C7NR03656F
crossref_primary_10_1002_cnma_202000125
crossref_primary_10_1016_j_apsusc_2015_08_241
crossref_primary_10_1016_j_jpcs_2022_110989
crossref_primary_10_1021_acsomega_9b03130
crossref_primary_10_1039_D0CY00308E
crossref_primary_10_1016_j_inoche_2018_07_024
crossref_primary_10_1016_j_apsusc_2016_07_030
crossref_primary_10_1016_j_bios_2018_10_045
crossref_primary_10_1016_j_nanoen_2023_108402
crossref_primary_10_1016_j_apcatb_2017_08_075
crossref_primary_10_1002_adpr_202200065
crossref_primary_10_1007_s10854_017_8133_6
crossref_primary_10_1021_acsenergylett_6b00398
crossref_primary_10_1039_C5NR07004J
crossref_primary_10_1002_ange_201612551
crossref_primary_10_1021_acs_chemrev_6b00075
crossref_primary_10_1016_j_jcat_2017_09_021
crossref_primary_10_1016_j_jphotochem_2016_09_012
crossref_primary_10_1007_s12209_021_00291_x
crossref_primary_10_1016_j_ccr_2024_216176
crossref_primary_10_1016_j_jphotochem_2018_03_027
crossref_primary_10_1016_j_jmst_2021_03_019
crossref_primary_10_1039_C9EN00811J
crossref_primary_10_1016_j_jcis_2020_04_094
crossref_primary_10_1021_acssuschemeng_8b01021
crossref_primary_10_1016_j_cattod_2017_03_018
crossref_primary_10_1016_j_jallcom_2017_04_119
crossref_primary_10_1039_C8EE00886H
crossref_primary_10_1016_j_ijhydene_2019_01_102
crossref_primary_10_1002_solr_201900423
crossref_primary_10_1016_j_electacta_2019_135336
crossref_primary_10_1016_j_jmst_2021_09_046
crossref_primary_10_1016_j_apmt_2019_06_003
crossref_primary_10_1016_j_apsusc_2019_04_018
crossref_primary_10_1016_j_jcis_2019_07_014
crossref_primary_10_3390_molecules29225439
crossref_primary_10_1016_j_apcatb_2016_07_036
crossref_primary_10_1016_j_cej_2020_124496
crossref_primary_10_1016_j_apsusc_2016_01_194
crossref_primary_10_1049_mnl_2018_5682
crossref_primary_10_1039_C7CC08797G
crossref_primary_10_1039_C8TA05539D
crossref_primary_10_1016_j_compositesb_2024_111865
crossref_primary_10_1007_s40145_022_0637_8
crossref_primary_10_1039_C8DT02294A
crossref_primary_10_1016_j_ijhydene_2022_02_038
crossref_primary_10_1021_acscatal_8b00104
crossref_primary_10_1002_tcr_202400127
crossref_primary_10_1016_j_conbuildmat_2024_138536
crossref_primary_10_1016_j_powtec_2019_01_012
crossref_primary_10_1002_smll_201900011
crossref_primary_10_1016_j_jphotochem_2016_06_002
crossref_primary_10_1016_j_seppur_2020_116618
crossref_primary_10_1002_cptc_202200143
crossref_primary_10_1016_j_apsusc_2018_11_138
crossref_primary_10_1021_acssuschemeng_1c00319
crossref_primary_10_1039_C6CC06970C
crossref_primary_10_1002_cctc_201700640
crossref_primary_10_1016_j_ijhydene_2020_06_176
crossref_primary_10_1016_j_ijhydene_2021_09_019
crossref_primary_10_1002_cctc_201600828
crossref_primary_10_1002_ange_202419661
crossref_primary_10_1016_j_cattod_2015_08_006
crossref_primary_10_1039_C6TA09747B
Cites_doi 10.1002/adma.201400288
10.1038/ncomms2152
10.1002/anie.201308792
10.1021/jp3041692
10.1039/c2ta00672c
10.1021/cm049172b
10.1002/anie.201402191
10.1039/c3ee43750g
10.1002/adma.201303571
10.1002/adma.201400573
10.1002/adma.201303611
10.1126/science.1096566
10.1002/anie.201301357
10.1021/ja209206c
10.1002/adfm.200801173
10.1002/anie.201406476
10.1021/am403327g
10.1002/anie.201501001
10.1002/anie.201407319
10.1002/anie.201409149
10.1126/science.1251428
10.1038/srep01943
10.1038/35003535
10.1002/adma.201305929
10.1002/anie.201103244
10.1039/c3ee44189j
10.1021/ja2025454
10.1002/adfm.201200922
10.1002/anie.201309415
10.1002/anie.201403375
10.1557/mrs.2013.84
10.1002/anie.201404481
10.1002/anie.201304034
10.1002/anie.201410172
10.1038/nmat2317
10.1038/nmat1734
10.1002/anie.201301709
10.1002/anie.201406811
10.1016/j.ijhydene.2012.10.116
10.1039/C4NR06011C
10.1002/anie.201205333
10.1002/anie.201403946
10.1002/anie.201405161
ContentType Journal Article
Copyright 2015 Elsevier B.V.
Copyright_xml – notice: 2015 Elsevier B.V.
DBID AAYXX
CITATION
7SR
7SU
7U5
8BQ
8FD
C1K
FR3
JG9
KR7
L7M
7ST
SOI
DOI 10.1016/j.apcatb.2015.05.060
DatabaseName CrossRef
Engineered Materials Abstracts
Environmental Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Materials Research Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Environment Abstracts
Environment Abstracts
DatabaseTitle CrossRef
Materials Research Database
Civil Engineering Abstracts
Engineered Materials Abstracts
Technology Research Database
Environmental Engineering Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
METADEX
Environmental Sciences and Pollution Management
Environment Abstracts
DatabaseTitleList
Materials Research Database
Environment Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
Environmental Sciences
EISSN 1873-3883
EndPage 488
ExternalDocumentID 10_1016_j_apcatb_2015_05_060
S0926337315003161
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABMAC
ABNUV
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIWK
ACRLP
ADBBV
ADEWK
ADEZE
ADMUD
AEBSH
AEKER
AFKWA
AFRAH
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHPOS
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BBWZM
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HLY
HVGLF
HZ~
IHE
J1W
KOM
LX7
M41
MO0
N9A
NDZJH
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SCE
SDF
SDG
SES
SEW
SPC
SPD
SSG
SSZ
T5K
VH1
WUQ
XFK
XPP
~02
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
BNPGV
CITATION
SSH
7SR
7SU
7U5
8BQ
8FD
C1K
EFKBS
FR3
JG9
KR7
L7M
7ST
SOI
ID FETCH-LOGICAL-c475t-fe0ae21e9e94201e71365b72013606c63f5c4d2e1037ad0e920e07637c5079103
IEDL.DBID .~1
ISSN 0926-3373
IngestDate Fri Jul 11 09:01:13 EDT 2025
Tue Aug 05 09:01:43 EDT 2025
Thu Apr 24 22:52:21 EDT 2025
Tue Jul 01 03:10:28 EDT 2025
Sat Mar 02 16:01:00 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Conjugated polymer
Quantum dots
Photocatalysis
Hollow nanospheres
Heterojunction
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c475t-fe0ae21e9e94201e71365b72013606c63f5c4d2e1037ad0e920e07637c5079103
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1770360749
PQPubID 23500
PageCount 10
ParticipantIDs proquest_miscellaneous_1877830495
proquest_miscellaneous_1770360749
crossref_primary_10_1016_j_apcatb_2015_05_060
crossref_citationtrail_10_1016_j_apcatb_2015_05_060
elsevier_sciencedirect_doi_10_1016_j_apcatb_2015_05_060
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-12-01
PublicationDateYYYYMMDD 2015-12-01
PublicationDate_xml – month: 12
  year: 2015
  text: 2015-12-01
  day: 01
PublicationDecade 2010
PublicationTitle Applied catalysis. B, Environmental
PublicationYear 2015
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Zhang, Wang, Jin, Zhang, Lin, Huang, Yu (bib0140) 2012; 5
Zhang, Zhang, Ye, Qiu, Lin, Wang (bib0200) 2014; 26
Xie, Yu, Liu, Ma, Cheng (bib0040) 2014; 7
Fu, Chang, Tian, Xi, Dong (bib0125) 2013; 1
Ge, Zuo, Liu, Ma, Wang, Sun, Bartels, Feng (bib0135) 2012; 116
Siller, Severin, Chong, Björkman, Palgrave, Laybourn, Antonietti, Khimyak, Krasheninnikov, Rabe, Kaiser, Cooper, Thomas, Bojdys (bib0185) 2014; 53
Xia, Xia, Wang, Xie (bib0025) 2013; 38
Dasgupta, Sun, Brittman, Andrews, Lim, Gao, Yan, Yang (bib0035) 2014; 26
Zhang, Pan, Chai, Liang, Dong, Zhang, Qiu (bib0175) 2013; 3
Yin, Rioux, Erdonmez, Hughes, Somorjai, Alivisatos (bib0010) 2004; 304
Zou, Zhang, Yan, Wang, Ma, Li, Mçhwald, Mann (bib0070) 2014; 54
Zheng, Huang, Wang (bib0145) 2015; 7
Hu, Gao, Yu, Wang, Ning, Xu, Lou (bib0085) 2013; 52
Martin, Qiu, Shevlin, Handoko, Chen, Guo, Tang (bib0195) 2014; 53
Ma, Dai, Jaroniec, Qiao (bib0015) 2014; 53
Jun, Park, Lee, Thomas, Hong, Stucky (bib0160) 2013; 52
Cao, Yuan, Fang, Shahjamali, Boey, Barber, Loo, Xue (bib0130) 2013; 38
Liu, Xing, Chen, Shen, Yan, Zou, Ma, Möhwald, Yan (bib0060) 2015; 54
Zhang, Zhang, Sun, Wang (bib0220) 2012; 51
Eley, Li, Liao, Fairclough, Smith, Smith, Tsang (bib0090) 2014; 53
Zhang, Zhu, Tang, Müllen, Feng (bib0075) 2014; 26
Baker, Kamat (bib0095) 2009; 19
Liu, Wang, Wang, Huang, Yu (bib0170) 2014; 53
Zhang, Wu, Song, Paik, Lou (bib0020) 2014; 53
Zhang, Zhang, Lin, Wang (bib0120) 2015; 54
Niu, Zhang, Liu, Cheng (bib0180) 2012; 22
Bao, Gong, Li, Gao (bib0105) 2004; 16
Zheng, Lin, Ye, Guo, Wang (bib0190) 2014; 53
Wang, Maeda, Thomas, Takanabe, Xin, Carlsson, Domen, Antonietti (bib0110) 2009; 8
Caputo, Gross, Lau, Cavazza, Lotsch, Reisner (bib0115) 2014; 53
Chen, Wu, Yin, Li, Hong, Fan, Chen, Xue, Zhang (bib0100) 2014; 54
Bhunia, Yamauchi, Takanabe (bib0165) 2014; 53
Kim, Lee, Lee, Park (bib0065) 2012; 51
Peng, Manna, Yang, Wickham, Scher, Kadavanich, Alivisatos (bib0030) 2000; 404
Maeda, Lu, Domen (bib0050) 2013; 52
Zhang, Wang (bib0210) 2014; 7
Tada, Mitsui, Kiyonaga, Akita, Tanaka (bib0045) 2006; 5
Hu, Shaner, Beardslee, Lichterman, Brunschwig, Lewis (bib0005) 2014; 344
Shalom, Gimenez, Schipper, Cardona, Bisquert, Antonietti (bib0215) 2014; 53
Zheng, Jiao, Chen, Liu, Liang, Du, Zhang, Zhu, Smith, Jaroniec, Lu, Qiao (bib0205) 2015; 133
Li, Guo, Yu, Ran, Zhang, Yan, Gong (bib0080) 2011; 133
Zhang, Zhang, Yang, Wang (bib0155) 2014; 26
Zhou, Yu, Jaroniec (bib0055) 2014; 26
Sun, Zhang, Zhang, Antonietti, Fu, Wang (bib0150) 2012; 3
Jun (10.1016/j.apcatb.2015.05.060_bib0160) 2013; 52
Zhang (10.1016/j.apcatb.2015.05.060_bib0210) 2014; 7
Maeda (10.1016/j.apcatb.2015.05.060_bib0050) 2013; 52
Hu (10.1016/j.apcatb.2015.05.060_bib0085) 2013; 52
Zhang (10.1016/j.apcatb.2015.05.060_bib0075) 2014; 26
Zhang (10.1016/j.apcatb.2015.05.060_bib0175) 2013; 3
Caputo (10.1016/j.apcatb.2015.05.060_bib0115) 2014; 53
Zhang (10.1016/j.apcatb.2015.05.060_bib0020) 2014; 53
Hu (10.1016/j.apcatb.2015.05.060_bib0005) 2014; 344
Zhou (10.1016/j.apcatb.2015.05.060_bib0055) 2014; 26
Eley (10.1016/j.apcatb.2015.05.060_bib0090) 2014; 53
Li (10.1016/j.apcatb.2015.05.060_bib0080) 2011; 133
Sun (10.1016/j.apcatb.2015.05.060_bib0150) 2012; 3
Zhang (10.1016/j.apcatb.2015.05.060_bib0200) 2014; 26
Xie (10.1016/j.apcatb.2015.05.060_bib0040) 2014; 7
Xia (10.1016/j.apcatb.2015.05.060_bib0025) 2013; 38
Zou (10.1016/j.apcatb.2015.05.060_bib0070) 2014; 54
Dasgupta (10.1016/j.apcatb.2015.05.060_bib0035) 2014; 26
Zheng (10.1016/j.apcatb.2015.05.060_bib0205) 2015; 133
Zhang (10.1016/j.apcatb.2015.05.060_bib0120) 2015; 54
Niu (10.1016/j.apcatb.2015.05.060_bib0180) 2012; 22
Yin (10.1016/j.apcatb.2015.05.060_bib0010) 2004; 304
Kim (10.1016/j.apcatb.2015.05.060_bib0065) 2012; 51
Shalom (10.1016/j.apcatb.2015.05.060_bib0215) 2014; 53
Zhang (10.1016/j.apcatb.2015.05.060_bib0155) 2014; 26
Peng (10.1016/j.apcatb.2015.05.060_bib0030) 2000; 404
Liu (10.1016/j.apcatb.2015.05.060_bib0170) 2014; 53
Ge (10.1016/j.apcatb.2015.05.060_bib0135) 2012; 116
Baker (10.1016/j.apcatb.2015.05.060_bib0095) 2009; 19
Fu (10.1016/j.apcatb.2015.05.060_bib0125) 2013; 1
Cao (10.1016/j.apcatb.2015.05.060_bib0130) 2013; 38
Martin (10.1016/j.apcatb.2015.05.060_bib0195) 2014; 53
Chen (10.1016/j.apcatb.2015.05.060_bib0100) 2014; 54
Zheng (10.1016/j.apcatb.2015.05.060_bib0145) 2015; 7
Bhunia (10.1016/j.apcatb.2015.05.060_bib0165) 2014; 53
Ma (10.1016/j.apcatb.2015.05.060_bib0015) 2014; 53
Tada (10.1016/j.apcatb.2015.05.060_bib0045) 2006; 5
Zhang (10.1016/j.apcatb.2015.05.060_bib0140) 2012; 5
Siller (10.1016/j.apcatb.2015.05.060_bib0185) 2014; 53
Bao (10.1016/j.apcatb.2015.05.060_bib0105) 2004; 16
Zhang (10.1016/j.apcatb.2015.05.060_bib0220) 2012; 51
Liu (10.1016/j.apcatb.2015.05.060_bib0060) 2015; 54
Wang (10.1016/j.apcatb.2015.05.060_bib0110) 2009; 8
Zheng (10.1016/j.apcatb.2015.05.060_bib0190) 2014; 53
References_xml – volume: 19
  start-page: 805
  year: 2009
  end-page: 811
  ident: bib0095
  publication-title: Adv. Funct. Mater.
– volume: 5
  start-page: 10317
  year: 2012
  end-page: 10324
  ident: bib0140
  publication-title: Appl. Mater. Interfaces
– volume: 53
  start-page: 7450
  year: 2014
  end-page: 7455
  ident: bib0185
  publication-title: Angew. Chem. Int. Ed.
– volume: 8
  start-page: 76
  year: 2009
  end-page: 80
  ident: bib0110
  publication-title: Nat. Mater.
– volume: 54
  start-page: 2366
  year: 2014
  end-page: 2370
  ident: bib0070
  publication-title: Angew. Chem. Int. Ed.
– volume: 133
  start-page: 20116
  year: 2015
  end-page: 20119
  ident: bib0205
  publication-title: J. Am. Chem. Soc.
– volume: 53
  start-page: 12590
  year: 2014
  end-page: 12593
  ident: bib0020
  publication-title: Angew. Chem. Int. Ed.
– volume: 26
  start-page: 2137
  year: 2014
  end-page: 2184
  ident: bib0035
  publication-title: Adv. Mater.
– volume: 7
  start-page: 1895
  year: 2014
  end-page: 1901
  ident: bib0040
  publication-title: Energy Environ. Sci.
– volume: 7
  start-page: 465
  year: 2015
  end-page: 470
  ident: bib0145
  publication-title: Nanoscale
– volume: 26
  start-page: 805
  year: 2014
  end-page: 809
  ident: bib0200
  publication-title: Adv. Mater.
– volume: 22
  start-page: 4763
  year: 2012
  end-page: 4770
  ident: bib0180
  publication-title: Adv. Funct. Mater.
– volume: 51
  start-page: 10145
  year: 2012
  end-page: 10149
  ident: bib0220
  publication-title: Angew. Chem. Int. Ed.
– volume: 53
  start-page: 7281
  year: 2014
  end-page: 7285
  ident: bib0015
  publication-title: Angew. Chem. Int. Ed.
– volume: 1
  start-page: 3083
  year: 2013
  end-page: 3090
  ident: bib0125
  publication-title: J. Mater. Chem. A
– volume: 3
  start-page: 1943
  year: 2013
  end-page: 1950
  ident: bib0175
  publication-title: Sci. Rep.
– volume: 53
  start-page: 3654
  year: 2014
  end-page: 3658
  ident: bib0215
  publication-title: Angew. Chem. Int. Ed.
– volume: 5
  start-page: 782
  year: 2006
  end-page: 786
  ident: bib0045
  publication-title: Nat. Mater.
– volume: 53
  start-page: 9240
  year: 2014
  end-page: 9245
  ident: bib0195
  publication-title: Angew. Chem. Int. Ed.
– volume: 53
  start-page: 7838
  year: 2014
  end-page: 7842
  ident: bib0090
  publication-title: Angew. Chem. Int. Ed.
– volume: 53
  start-page: 11926
  year: 2014
  end-page: 11930
  ident: bib0190
  publication-title: Angew. Chem. Int. Ed.
– volume: 52
  start-page: 6488
  year: 2013
  end-page: 6491
  ident: bib0050
  publication-title: Angew. Chem. Int. Ed.
– volume: 26
  start-page: 4920
  year: 2014
  end-page: 4935
  ident: bib0055
  publication-title: Adv. Mater.
– volume: 133
  start-page: 10878
  year: 2011
  end-page: 10884
  ident: bib0080
  publication-title: J. Am. Chem. Soc.
– volume: 344
  start-page: 1005
  year: 2014
  end-page: 1009
  ident: bib0005
  publication-title: Science
– volume: 52
  start-page: 5636
  year: 2013
  end-page: 5639
  ident: bib0085
  publication-title: Angew. Chem. Int. Ed.
– volume: 54
  start-page: 1210
  year: 2014
  end-page: 1214
  ident: bib0100
  publication-title: Angew. Chem. Int. Ed.
– volume: 16
  start-page: 3853
  year: 2004
  end-page: 3859
  ident: bib0105
  publication-title: Chem. Mater.
– volume: 52
  start-page: 11083
  year: 2013
  end-page: 11087
  ident: bib0160
  publication-title: Angew. Chem. Int. Ed.
– volume: 7
  start-page: 1902
  year: 2014
  end-page: 1906
  ident: bib0210
  publication-title: Energy Environ. Sci.
– volume: 38
  start-page: 335
  year: 2013
  end-page: 343
  ident: bib0025
  publication-title: MRS Bull.
– volume: 53
  start-page: 11538
  year: 2014
  end-page: 11542
  ident: bib0115
  publication-title: Angew. Chem. Int. Ed.
– volume: 54
  start-page: 6297
  year: 2015
  end-page: 6301
  ident: bib0120
  publication-title: Angew. Chem. Int. Ed.
– volume: 53
  start-page: 133477
  year: 2014
  end-page: 133482
  ident: bib0170
  publication-title: Angew. Chem. Int. Ed.
– volume: 38
  start-page: 1258
  year: 2013
  end-page: 1266
  ident: bib0130
  publication-title: Int. J. Hydrogen Energy
– volume: 304
  start-page: 711
  year: 2004
  end-page: 714
  ident: bib0010
  publication-title: Science
– volume: 26
  start-page: 734
  year: 2014
  end-page: 738
  ident: bib0075
  publication-title: Adv. Mater.
– volume: 54
  start-page: 500
  year: 2015
  end-page: 505
  ident: bib0060
  publication-title: Angew. Chem. Int. Ed.
– volume: 116
  start-page: 13708
  year: 2012
  end-page: 13714
  ident: bib0135
  publication-title: J. Phys. Chem. C.
– volume: 26
  start-page: 4121
  year: 2014
  end-page: 4126
  ident: bib0155
  publication-title: Adv. Mater.
– volume: 404
  start-page: 59
  year: 2000
  end-page: 61
  ident: bib0030
  publication-title: Nature
– volume: 51
  start-page: 517
  year: 2012
  end-page: 520
  ident: bib0065
  publication-title: Angew. Chem. Int. Ed.
– volume: 3
  start-page: 1139
  year: 2012
  end-page: 1145
  ident: bib0150
  publication-title: Nat. Commun.
– volume: 53
  start-page: 11001
  year: 2014
  end-page: 11005
  ident: bib0165
  publication-title: Angew. Chem. Int. Ed.
– volume: 26
  start-page: 4920
  year: 2014
  ident: 10.1016/j.apcatb.2015.05.060_bib0055
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201400288
– volume: 3
  start-page: 1139
  year: 2012
  ident: 10.1016/j.apcatb.2015.05.060_bib0150
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms2152
– volume: 54
  start-page: 2366
  year: 2014
  ident: 10.1016/j.apcatb.2015.05.060_bib0070
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201308792
– volume: 116
  start-page: 13708
  year: 2012
  ident: 10.1016/j.apcatb.2015.05.060_bib0135
  publication-title: J. Phys. Chem. C.
  doi: 10.1021/jp3041692
– volume: 1
  start-page: 3083
  year: 2013
  ident: 10.1016/j.apcatb.2015.05.060_bib0125
  publication-title: J. Mater. Chem. A
  doi: 10.1039/c2ta00672c
– volume: 16
  start-page: 3853
  year: 2004
  ident: 10.1016/j.apcatb.2015.05.060_bib0105
  publication-title: Chem. Mater.
  doi: 10.1021/cm049172b
– volume: 53
  start-page: 7450
  year: 2014
  ident: 10.1016/j.apcatb.2015.05.060_bib0185
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201402191
– volume: 7
  start-page: 1895
  year: 2014
  ident: 10.1016/j.apcatb.2015.05.060_bib0040
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c3ee43750g
– volume: 26
  start-page: 734
  year: 2014
  ident: 10.1016/j.apcatb.2015.05.060_bib0075
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201303571
– volume: 26
  start-page: 4121
  year: 2014
  ident: 10.1016/j.apcatb.2015.05.060_bib0155
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201400573
– volume: 26
  start-page: 805
  year: 2014
  ident: 10.1016/j.apcatb.2015.05.060_bib0200
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201303611
– volume: 304
  start-page: 711
  year: 2004
  ident: 10.1016/j.apcatb.2015.05.060_bib0010
  publication-title: Science
  doi: 10.1126/science.1096566
– volume: 52
  start-page: 6488
  year: 2013
  ident: 10.1016/j.apcatb.2015.05.060_bib0050
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201301357
– volume: 133
  start-page: 20116
  year: 2015
  ident: 10.1016/j.apcatb.2015.05.060_bib0205
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja209206c
– volume: 19
  start-page: 805
  year: 2009
  ident: 10.1016/j.apcatb.2015.05.060_bib0095
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.200801173
– volume: 53
  start-page: 12590
  year: 2014
  ident: 10.1016/j.apcatb.2015.05.060_bib0020
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201406476
– volume: 5
  start-page: 10317
  year: 2012
  ident: 10.1016/j.apcatb.2015.05.060_bib0140
  publication-title: Appl. Mater. Interfaces
  doi: 10.1021/am403327g
– volume: 54
  start-page: 6297
  year: 2015
  ident: 10.1016/j.apcatb.2015.05.060_bib0120
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201501001
– volume: 53
  start-page: 11926
  year: 2014
  ident: 10.1016/j.apcatb.2015.05.060_bib0190
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201407319
– volume: 54
  start-page: 500
  year: 2015
  ident: 10.1016/j.apcatb.2015.05.060_bib0060
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201409149
– volume: 344
  start-page: 1005
  year: 2014
  ident: 10.1016/j.apcatb.2015.05.060_bib0005
  publication-title: Science
  doi: 10.1126/science.1251428
– volume: 53
  start-page: 133477
  year: 2014
  ident: 10.1016/j.apcatb.2015.05.060_bib0170
  publication-title: Angew. Chem. Int. Ed.
– volume: 3
  start-page: 1943
  year: 2013
  ident: 10.1016/j.apcatb.2015.05.060_bib0175
  publication-title: Sci. Rep.
  doi: 10.1038/srep01943
– volume: 404
  start-page: 59
  year: 2000
  ident: 10.1016/j.apcatb.2015.05.060_bib0030
  publication-title: Nature
  doi: 10.1038/35003535
– volume: 26
  start-page: 2137
  year: 2014
  ident: 10.1016/j.apcatb.2015.05.060_bib0035
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201305929
– volume: 51
  start-page: 517
  year: 2012
  ident: 10.1016/j.apcatb.2015.05.060_bib0065
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201103244
– volume: 7
  start-page: 1902
  year: 2014
  ident: 10.1016/j.apcatb.2015.05.060_bib0210
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c3ee44189j
– volume: 133
  start-page: 10878
  year: 2011
  ident: 10.1016/j.apcatb.2015.05.060_bib0080
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja2025454
– volume: 22
  start-page: 4763
  year: 2012
  ident: 10.1016/j.apcatb.2015.05.060_bib0180
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201200922
– volume: 53
  start-page: 3654
  year: 2014
  ident: 10.1016/j.apcatb.2015.05.060_bib0215
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201309415
– volume: 53
  start-page: 9240
  year: 2014
  ident: 10.1016/j.apcatb.2015.05.060_bib0195
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201403375
– volume: 38
  start-page: 335
  year: 2013
  ident: 10.1016/j.apcatb.2015.05.060_bib0025
  publication-title: MRS Bull.
  doi: 10.1557/mrs.2013.84
– volume: 53
  start-page: 7838
  year: 2014
  ident: 10.1016/j.apcatb.2015.05.060_bib0090
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201404481
– volume: 52
  start-page: 11083
  year: 2013
  ident: 10.1016/j.apcatb.2015.05.060_bib0160
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201304034
– volume: 54
  start-page: 1210
  year: 2014
  ident: 10.1016/j.apcatb.2015.05.060_bib0100
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201410172
– volume: 8
  start-page: 76
  year: 2009
  ident: 10.1016/j.apcatb.2015.05.060_bib0110
  publication-title: Nat. Mater.
  doi: 10.1038/nmat2317
– volume: 5
  start-page: 782
  year: 2006
  ident: 10.1016/j.apcatb.2015.05.060_bib0045
  publication-title: Nat. Mater.
  doi: 10.1038/nmat1734
– volume: 52
  start-page: 5636
  year: 2013
  ident: 10.1016/j.apcatb.2015.05.060_bib0085
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201301709
– volume: 53
  start-page: 11538
  year: 2014
  ident: 10.1016/j.apcatb.2015.05.060_bib0115
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201406811
– volume: 38
  start-page: 1258
  year: 2013
  ident: 10.1016/j.apcatb.2015.05.060_bib0130
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2012.10.116
– volume: 7
  start-page: 465
  year: 2015
  ident: 10.1016/j.apcatb.2015.05.060_bib0145
  publication-title: Nanoscale
  doi: 10.1039/C4NR06011C
– volume: 51
  start-page: 10145
  year: 2012
  ident: 10.1016/j.apcatb.2015.05.060_bib0220
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201205333
– volume: 53
  start-page: 7281
  year: 2014
  ident: 10.1016/j.apcatb.2015.05.060_bib0015
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201403946
– volume: 53
  start-page: 11001
  year: 2014
  ident: 10.1016/j.apcatb.2015.05.060_bib0165
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201405161
SSID ssj0002328
Score 2.5608788
Snippet [Display omitted] •CdS was deposited on HCNS to fabricate inorganic-polymeric heterojunctions.•The heterojunctions on the hollow polymer surface facilitate...
Inorganic quantum dots (QDs) have been introduced onto the exterior surface of hollow carbon nitride spheres (HCNS) to construct an inorganic-polymeric curved...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 479
SubjectTerms Carbon nitride
Conjugated polymer
Heterojunction
Heterostructures
Hollow nanospheres
Hydrogen evolution
Nanostructure
Photocatalysis
Quantum dots
Self assembly
Semiconductors
Three dimensional
Title Integrating CdS quantum dots on hollow graphitic carbon nitride nanospheres for hydrogen evolution photocatalysis
URI https://dx.doi.org/10.1016/j.apcatb.2015.05.060
https://www.proquest.com/docview/1770360749
https://www.proquest.com/docview/1877830495
Volume 179
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3BbtQwEB1V5QAcECxUtEBlJK5hvbETJ8dq1WoLopdSqTfLcSbqopJsd7MgLnw7M45DASEqIeWSaCxZnvHzczzzDPCGKGxVVJVKUkeTXBeok0KphotziD3XMkXPG8UPZ_niQr-7zC53YD7WwnBaZcT-AdMDWscv0zia09VyOT2XZZorZRRRGorMsAXS2nCUv_1-m-ZBjCGgMRknbD2Wz4UcL7fyrq84wSsL-p1BqPKvy9MfQB1Wn5PH8CjSRnE09OwJ7GA7gfvz8ba2CTz8RVhwAnvHt_Vr1CxO4M1TuDmN8hBkJub1ubjZ0tBuPwvanG5E1woCw-vuqwg61pwYJ7xbV_SdZv56WaNoHYuLk6NxI4jviqtv9bqjIBT4JQaxWF11fRd-C7HayTO4ODn-OF8k8daFxGuT9UmD0mE6wxJLTQODhhPhKpOyuJvMfa6azOs6RS4wdLXEMpUoCaWMJ2pJ5EPtwW7btfgchOEz3tzU1azRWissCu9UYVRDHI1gtdkHNQ629VGSnG_GuLZj7tknO7jIsouspCeX-5D8bLUaJDnusDejH-1voWVp1bij5evR7ZbcyUcprsVuu7Ezw8JlRL_Kf9gUxhR8ipkd_HcPXsADfhvyZ17Cbr_e4itiQX11GML8EO4dnb5fnP0AA8YIFA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9wwEB2h5UB7QO22qJR-uFKv0XrjJE6OaAXaLbAXQOJmOc5EbEWTZTcL4t8zkzj0Q1WRKuXk2FI0M35-jmeeAb4Shc3TPFdBaGmSRylGQapUycU5xJ4LGaLjjeLZPJleRt-u4qstmPS1MJxW6bG_w_QWrX3LyFtztFwsRucyCxOltCJKQ5HJW6BtVqeKB7B9ODuZzp8AmUhDC8jUP-ABfQVdm-Zll842Oed4xa2EZ6tV-dcV6g-sbheg41ew65mjOOw-7jVsYTWEnUl_YdsQXv6iLTiEvaOfJWw0zM_h9Ru4nXmFCOomJsW5uN2QdTc_BO1P16KuBOHhTX0vWilrzo0Tzq5yaqfJv1oUKCrL-uLka1wLorzi-qFY1RSHAu98HIvldd3U7Z8hFjx5C5fHRxeTaeAvXggc2a8JSpQWwzFmmEVkGNScC5frkPXdZOISVcYuKkLkGkNbSMxCiZKASjtil8Q_1B4MqrrCdyA0H_MmusjHZRRFCtPUWZVqVRJNI2Qt90H1xjbOq5Lz5Rg3pk8_-246Fxl2kZH0JHIfgqdRy06V45n-uvej-S26DC0cz4z80rvdkDv5NMVWWG_WZqxZu4wYWPaPPqnWKR9kxu__-ws-w8704uzUnM7mJwfwgt906TQfYNCsNviRSFGTf_JB_wgCagrF
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Integrating+CdS+quantum+dots+on+hollow+graphitic+carbon+nitride+nanospheres+for+hydrogen+evolution+photocatalysis&rft.jtitle=Applied+catalysis.+B%2C+Environmental&rft.au=Zheng%2C+Dandan&rft.au=Zhang%2C+Guigang&rft.au=Wang%2C+Xinchen&rft.date=2015-12-01&rft.issn=0926-3373&rft.volume=179&rft.spage=479&rft.epage=488&rft_id=info:doi/10.1016%2Fj.apcatb.2015.05.060&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0926-3373&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0926-3373&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0926-3373&client=summon